WO2017164530A2 - 다종 고체연료 연소기 - Google Patents

다종 고체연료 연소기 Download PDF

Info

Publication number
WO2017164530A2
WO2017164530A2 PCT/KR2017/002196 KR2017002196W WO2017164530A2 WO 2017164530 A2 WO2017164530 A2 WO 2017164530A2 KR 2017002196 W KR2017002196 W KR 2017002196W WO 2017164530 A2 WO2017164530 A2 WO 2017164530A2
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
combustion chamber
primary
fuel
air
Prior art date
Application number
PCT/KR2017/002196
Other languages
English (en)
French (fr)
Other versions
WO2017164530A3 (ko
Inventor
김성우
Original Assignee
김성우
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김성우 filed Critical 김성우
Priority to US16/082,276 priority Critical patent/US10890321B2/en
Priority to EP17770501.9A priority patent/EP3434975A4/en
Priority to CN201780011857.5A priority patent/CN108700286A/zh
Publication of WO2017164530A2 publication Critical patent/WO2017164530A2/ko
Publication of WO2017164530A3 publication Critical patent/WO2017164530A3/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B5/00Combustion apparatus with arrangements for burning uncombusted material from primary combustion
    • F23B5/02Combustion apparatus with arrangements for burning uncombusted material from primary combustion in main combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B10/00Combustion apparatus characterised by the combination of two or more combustion chambers
    • F23B10/02Combustion apparatus characterised by the combination of two or more combustion chambers including separate secondary combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B30/00Combustion apparatus with driven means for agitating the burning fuel; Combustion apparatus with driven means for advancing the burning fuel through the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B7/00Combustion techniques; Other solid-fuel combustion apparatus
    • F23B7/002Combustion techniques; Other solid-fuel combustion apparatus characterised by gas flow arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B80/00Combustion apparatus characterised by means creating a distinct flow path for flue gases or for non-combusted gases given off by the fuel
    • F23B80/02Combustion apparatus characterised by means creating a distinct flow path for flue gases or for non-combusted gases given off by the fuel by means for returning flue gases to the combustion chamber or to the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B80/00Combustion apparatus characterised by means creating a distinct flow path for flue gases or for non-combusted gases given off by the fuel
    • F23B80/04Combustion apparatus characterised by means creating a distinct flow path for flue gases or for non-combusted gases given off by the fuel by means for guiding the flow of flue gases, e.g. baffles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B90/00Combustion methods not related to a particular type of apparatus
    • F23B90/04Combustion methods not related to a particular type of apparatus including secondary combustion
    • F23B90/06Combustion methods not related to a particular type of apparatus including secondary combustion the primary combustion being a gasification or pyrolysis in a reductive atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L1/00Passages or apertures for delivering primary air for combustion 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L5/00Blast-producing apparatus before the fire
    • F23L5/02Arrangements of fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L9/00Passages or apertures for delivering secondary air for completing combustion of fuel 
    • F23L9/02Passages or apertures for delivering secondary air for completing combustion of fuel  by discharging the air above the fire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L9/00Passages or apertures for delivering secondary air for completing combustion of fuel 
    • F23L9/04Passages or apertures for delivering secondary air for completing combustion of fuel  by discharging the air beyond the fire, i.e. nearer the smoke outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24BDOMESTIC STOVES OR RANGES FOR SOLID FUELS; IMPLEMENTS FOR USE IN CONNECTION WITH STOVES OR RANGES
    • F24B1/00Stoves or ranges
    • F24B1/02Closed stoves
    • F24B1/026Closed stoves with several combustion zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24BDOMESTIC STOVES OR RANGES FOR SOLID FUELS; IMPLEMENTS FOR USE IN CONNECTION WITH STOVES OR RANGES
    • F24B1/00Stoves or ranges
    • F24B1/02Closed stoves
    • F24B1/08Closed stoves with fuel storage in a single undivided hopper within stove or range
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24BDOMESTIC STOVES OR RANGES FOR SOLID FUELS; IMPLEMENTS FOR USE IN CONNECTION WITH STOVES OR RANGES
    • F24B13/00Details solely applicable to stoves or ranges burning solid fuels 
    • F24B13/04Arrangements for feeding solid fuel, e.g. hoppers 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24BDOMESTIC STOVES OR RANGES FOR SOLID FUELS; IMPLEMENTS FOR USE IN CONNECTION WITH STOVES OR RANGES
    • F24B5/00Combustion-air or flue-gas circulation in or around stoves or ranges
    • F24B5/02Combustion-air or flue-gas circulation in or around stoves or ranges in or around stoves
    • F24B5/021Combustion-air or flue-gas circulation in or around stoves or ranges in or around stoves combustion-air circulation
    • F24B5/026Supply of primary and secondary air for combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24BDOMESTIC STOVES OR RANGES FOR SOLID FUELS; IMPLEMENTS FOR USE IN CONNECTION WITH STOVES OR RANGES
    • F24B5/00Combustion-air or flue-gas circulation in or around stoves or ranges
    • F24B5/02Combustion-air or flue-gas circulation in or around stoves or ranges in or around stoves
    • F24B5/028Arrangements combining combustion-air and flue-gas circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24BDOMESTIC STOVES OR RANGES FOR SOLID FUELS; IMPLEMENTS FOR USE IN CONNECTION WITH STOVES OR RANGES
    • F24B5/00Combustion-air or flue-gas circulation in or around stoves or ranges
    • F24B5/02Combustion-air or flue-gas circulation in or around stoves or ranges in or around stoves
    • F24B5/04Combustion-air or flue-gas circulation in or around stoves or ranges in or around stoves the air or gas passing downwards through the bottom of the stove of fire grate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B2700/00Combustion apparatus for solid fuel
    • F23B2700/018Combustion apparatus for solid fuel with fume afterburning by staged combustion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention improves the combustion efficiency by directly returning the secondary combustion heat of the solid fuel to the fuel to thermally decompose the fuel to burn biomass and various other solid fuels, including wood chips pellet agricultural by-products, etc. To a combustion device.
  • Zone A is the area where wood gas and air emitted from pyrolysis from firewood meet with primary combustion. This primary combustion heat is partly used as an energy source to return wood to pyrolyze wood, which is an important factor in sustaining combustion and part is radiated in all directions.
  • Zone B is an extended combustion zone, in which unburned wood gas and air further oxidize, produce heat and light, and increase the temperature of the combustion gas. Thermal energy generated in this zone is radiated and radiated to the space in the form of radiation and convection. Only a small part is returned to the wood and used for pyrolysis.
  • Zone C is the end of the combustion flame where the hottest zone of bonfire flame is formed. The energy generated here rarely returns to wood.
  • combustors such as stoves are efficiently utilizing the energy generated in these three stages to burn a long time with high efficiency with a given fuel.
  • the surrounding firewood in which primary combustion takes place is surrounded by a refractory heat storage material 13 or a refractory heat insulating material alone or in combination to accumulate and reflect the heat generated during the first combustion to return wood to wood fuel.
  • a refractory heat storage material 13 or a refractory heat insulating material alone or in combination to accumulate and reflect the heat generated during the first combustion to return wood to wood fuel.
  • the present invention has been made in order to solve the above problems, the secondary combustion heat is returned to the fuel of the primary combustion region through the switching of the combustion gas path and supplied in the form of direct conduction and radiation to provide stable combustion through pyrolysis of a stable fuel. To provide a combustor of conditions.
  • gasification combustion through pyrolysis of fuel is maintained at all times, so that it is possible to burn with one combustor irrespective of the type and size of the water content of fuel.
  • gasification combustion is maintained by pyrolysis of fuel
  • the required supply air can be maintained at an appropriate level, thereby preventing excessive generation of NOx and at the same time preventing smoke generation from incomplete combustion.
  • the multi-solid fuel combustor according to the present invention includes a fuel supply device by firewood input pipe or other fuel supply; A primary combustion chamber coupled to the fuel supply device and provided with a combustion gas outlet at one side or a lower side thereof, and the other side of which is blocked by a wall of the refractory material; By forming a space on the combustion gas outlet side of the primary combustion chamber to induce the primary combustion gas secondary expansion combustion, and after the expansion combustion to change the direction of the secondary combustion gas secondary combustion gas of the at least one primary combustion chamber A secondary combustion chamber composed of a refractory material wall having a structure for guiding a path to contact the lower outer wall or the side outer wall to concentrate the secondary combustion heat in the form of conduction and radiation to the primary combustion chamber fuel; An air supply system including a plurality of air supplies at least one of the entire combustion path including the primary combustion chamber and the secondary combustion chamber; There is a feature configured to include.
  • the firewood input pipe in the multi-stage solid fuel combustor according to the present invention is a columnar shape of a circular or oval or polygonal cross section on the upper combustion chamber and the air preheating supply for cooling the firewood supply pipe on the upper combustion chamber by adding The efficiency is improved.
  • the primary combustion chamber wall is basically composed of a thermally conductive refractory material in the multi-stage solid fuel combustor according to the present invention.
  • a large combustor having a high heat output has a characteristic of increasing efficiency when using a material having a reduced thermal conductivity.
  • the secondary combustion chamber wall is basically composed of a refractory insulating material, but a large combustor having a large heat output has a feature of increasing efficiency and stability by applying a thermally conductive material.
  • the air supply system is distributed in several places in the primary combustion chamber and the secondary combustion chamber start position and the secondary combustion chamber end position by the secondary supply air.
  • the output is regulated, reducing the generation of NOx and completely burning.
  • the multi-solid fuel combustor according to the present invention is characterized by increasing the precision of air control by electronically controlling the air supply amount by analyzing the exhaust gas through the temperature and oxygen sensors of the primary and secondary combustion chambers.
  • the multi-stage solid fuel combustor according to the present invention it is possible to arrange a combustion network in the primary combustion chamber and to replace it with a combustion network suitable for fuel characteristics, thereby enabling multi-fuel combustion.
  • the solid combustor according to the present invention is a combustion zone in which primary combustion occurs, and heat generated after the secondary combustion is transferred in the form of conductive radiation through the walls of the primary combustion chamber to promote thermal decomposition of the fuel, thereby generating sufficient pyrolysis gas to produce a kind of fuel. Regardless of the type of quality, it provides a stable combustion environment and can optimize the air supply to reduce the amount of NOx generated and to reduce the generation of soot due to incomplete combustion. Have.
  • FIG. 2 is a schematic diagram of a high efficiency firewood stove.
  • FIG 3 is a schematic view of a pocket stove.
  • FIG. 4 is a schematic diagram of a combustion apparatus having a firewood input pipe and directly returning combustion heat
  • FIG. 6 is a schematic view of a combustion apparatus that directly regenerates combustion heat
  • FIG. 7 is a schematic diagram of a combustion apparatus inducing a heat outlet of a primary combustion chamber downward;
  • FIG. 9 is a schematic diagram of adding a pellet and wood chip combustion network to the combustion device.
  • FIG. 10 is a schematic diagram of a combustion apparatus adding pellet and wood chip automatic feeding devices.
  • A primary combustion zone B: secondary extended combustion zone
  • Air preheating supply 33 Secondary air supply
  • the upper side of the figure is defined as the upper side
  • the lower side of the figure is defined as the lower side
  • the firewood input pipe 29 for fuel supply has a column shape composed of a circular, elliptical, or polygonal cross section, which basically carries various fuels such as firewood or wood chip pellets. It serves to continuously supply fuel to the region (27).
  • An external air preheating supply device 21 is provided in the firewood input pipe in the upper part of the combustion chamber to preheat the combustion chamber supply air to improve combustion efficiency, and absorb and cool the heat from the combustion chamber to prevent pyrolysis of non-combustion zone fuel. It has the effect of improving the duration and increasing the combustion stability.
  • a secondary air supply unit (23) for supplying air to the secondary expansion combustion chamber and a tertiary air supply unit (22) for supplying air after the secondary expansion combustion.
  • One side of the primary combustion space 27 formed at the bottom of the fuel supply pipe constitutes the hot air outlet, and the other side 26 except for the hot air outlet is made of a refractory heat conductive material so that the primary combustion gas after the second extended combustion 1 Upon direct contact outside the primary combustion chamber wall, the secondary combustion heat is transferred through the primary combustion chamber wall 26 in the form of conduction radiation to be used for pyrolysis of the fuel inside the primary combustion chamber to maintain sustained gasification combustion.
  • the combustion supply air is diversified into the tertiary air injected after the secondary air secondary combustion supplied to the primary air secondary expansion combustion chamber 28 directly supplied to the primary combustion chamber after exiting the primary combustion chamber. It works.
  • the primary air is directly supplied to the fuel when the initial combustion chamber cooling state to increase the heat generated combustion chamber temperature.
  • the secondary and tertiary air is reduced to the minimum state and the combustion chamber temperature is increased.
  • the amount of primary air is reduced and the amount of secondary air is increased, and combustion stability is increased.
  • the primary air is reduced to an appropriate level and the amount of secondary air is increased.
  • the amount of NOx generated is controlled by reducing the absolute amount of supply air required for combustion and by increasing the size of the combustion flame zone. In this case, the minimum amount of primary air must be maintained because the carbon-only binder contained in the general solid fuel is separated into CO form when oxygen is supplied with heat.
  • the tertiary air supplies additional oxygen to the unburned parts with only the primary and secondary air to achieve complete combustion.
  • the combustion output is controlled by the amount of primary and secondary air, and the tertiary air acts as an auxiliary supply air for complete combustion.
  • the primary air is injected directly into the fuel to directly control the output, the secondary air burns unburned gas after the primary combustion to generate the secondary combustion heat pyrolysis of the fuel through the primary combustion partition 26 (gas generation) ), It is directly involved in the heat output.
  • the tertiary air burns unburned gas after the 1st and 2nd combustion and discharges generated heat to the rear heat dissipation area, so it is irrelevant to the regulation of combustion output.
  • the diversification of the supply air over the 1st, 2nd and 3rd stages reduces the absolute amount of supply air and disperses the heat of combustion into a wide area, so that high temperatures are formed in a narrow area and NOx produced by excess air (oxygen) supply can be significantly reduced It provides a way.
  • the apparatus for adjusting the amount of air supply is not a known technique, and the supply of secondary and tertiary air may be supplied through the above air preheater 21 or through a separate line. It may be supplied. Combustion stability is maintained because it is supplied through a preheating section even though it is supplied through a separate line.
  • the secondary expansion combustion chamber since the secondary expansion combustion chamber has the highest heat and serves to return the heat path in the opposite direction, a high temperature resistant fire resistant material should be used.
  • the material of the secondary combustion chamber partition 24 is thermally conductive according to the size of the entire combustor. This should be applied to other materials. For example, a camping combustor installed in a small tent has a small overall power and it is difficult to maintain a high temperature in the combustion chamber. Therefore, the bulkhead material should be composed of a material that maximizes the insulation effect.
  • the secondary combustion chamber bulkhead 24 is composed of a thermally conductive material, and the secondary combustion gas whose temperature is lowered through heat dissipation to some extent is configured to rotate the primary combustion bulkhead to reduce the generation of NOx due to the high temperature.
  • the primary combustion bulkhead is to be protected.
  • a reprocessing apparatus 25 for reprocessing is formed, and the entire primary and secondary combustion chambers are surrounded by one housing 20 outside the combustion chamber to directly open a heat dissipation stove structure or a water tank.
  • the boiler structure or the air heat exchanger can be arranged to generate a hot air heater or the like.
  • the primary combustion chamber bulkhead is basically composed of a thermally conductive material, but a large combustor having a large heat output, because the primary combustion chamber transfer of excessive secondary combustion heat causes excessive pyrolysis.
  • Primary combustion walls of intermediate air layer structures with reduced thermal conductivity may be suitable for combustion stability.
  • large combustors can be applied to primary combustion walls of various materials, including refractory bricks.
  • FIG. 1 It is a schematic diagram when the combustor described above is employ
  • the secondary combustion gas is directed toward the rear hot air exit as it moves back and forth from the bottom and both sides of the primary combustion chamber. If this hot path is formed to be extremely narrow on both sides, the path is induced downward and the bottom path is extreme. Reduced to form a path on both sides. Furthermore, various applications such as wider one side and wider one side are possible.
  • FIG. 7 is a view showing the position of the primary combustion gas outlet downward, in which the combustion gas path is mainly transmitted to both sides of the primary combustion chamber after the expansion secondary combustion.
  • FIG. 8 is a schematic diagram of an additional reprocessing network disposed below the primary combustion chamber to rapidly reprocess fuel having a large amount of ash generated during combustion to increase combustion stability.
  • combustion net 9 is a combustion net disposed in the primary combustion chamber to efficiently burn fuel such as pellets or wood chips, and the combustion net is made to be replaced with a type suitable for fuel characteristics.
  • FIG. 10 is a view of a combustor equipped with an automated fuel supply system including a transfer screw and a fuel storage hopper instead of a firewood input tube. This allows the combustor to run for a long time without further manipulation.
  • one or more temperature sensors may be installed in the primary combustion chamber, the secondary combustion chamber, and the heat dissipation site, and the electronic control circuit may be adjusted to operate at the most suitable temperature and oxygen amount conditions in combination with the oxygen sensor information. It is possible.
  • the solid fuel combustor described above can be expanded from air heating apparatuses such as firewood stoves and pellet stoves, which are widely used in the market, to hot water heating apparatuses such as coal fired boilers and pellet boilers. It can be used as a burner for a small pollution-free generator for home use, and various applications are possible through technical application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Solid-Fuel Combustion (AREA)

Abstract

본 발명에 따른 다종 고체연료 연소기는 장작 투입 관 또는 기타 연료 공급기에 의한 연료 공급장치를 구비하고 상기 연료 공급장치에 결합 되어 일 측면 혹은 하측에 연소 가스 출구가 구비되어 나머지 면은 내화 전도성 재료의 벽에 의해 차단되어 1차 연소가 이루어지는 1차 연소실과 상기 1차 연소실의 연소가스 출구 쪽에 일정 공간을 형성하여 1차 연소가스가 확장 연소하도록 유도하고 연소가스의 진행 방향을 전환 시켜 2차 확장 연소 가스가 적어도 하나의 1차 연소실의 하측 외벽 또는 측면 외벽을 접촉하여 진행하도록 경로를 유도하여 1차 연소실 벽을 통해 내부 연료에 전도 및 복사의 형태로 2차 연소열을 전달하는 구조의 내화 재질 벽으로 구성되는 2차 연소실을 구비하여 고체 연료의 종류에 관계없이 항상 가스화 연소를 가능하게 하여 공해물질발생을 줄이고 작은 사이즈로 고출력이 가능한 고체 연료 연소 장치이다.

Description

다종 고체연료 연소기
본 발명은 고체 연료의 2차 연소 발생 열을 직접 연료에 되돌려 연료를 열분해 하는 방식으로 연소효율을 높여 장작 우드 칩 펠릿 농업 부산물 등을 포함한 바이오 매스 및 기타 각종 고체 연료를 종류에 관계없이 연소시킬 수 있는 연소 장치에 관한 것이다.
화석연료인 석유 가스를 제외한 우리 주변에 흔한 연료형태는 거의 고체 형태이다. 이에 먼저 고체 연료의 연소에 관해 고찰해 보고 분석하여 새로운 다종 고체연료 연소기에 반영하려고 한다.
도 1은 충분한 공기 공급 조건하의 장작의 연소 즉 모닥불을 분석한 것이다. A 영역은 장작에서 열분해 되어 뿜어 나오는 나무가스와 공기가 만나 1차 연소가 이루어지고 있는 영역이다. 이 1차 연소열은 일부는 나무로 돌아가서 나무를 열분해 하는 에너지원으로 사용되어 연소를 지속시키는 중요 요인이 되고 일부는 사방팔방으로 방사된다. B 영역은 확장 연소구간으로 미연소 나무가스와 공기가 추가로 산화반응을 일으키며 열과 빛을 생산하고 연소가스의 온도를 높이는데 이 영역에서 발생한 열에너지는 복사 및 대류의 형태로 많은 양이 공간으로 방사되고 적은 부분만 나무로 돌아가서 열분해에 사용되게 된다. C 영역은 연소 불꽃의 끝 부분으로 모닥불 불꽃의 가장 고온 영역이 이곳에 형성된다. 이곳에서 발생하는 에너지는 목재로는 거의 회귀하지 못한다.
실제 난로 등의 연소기에서는 주어진 연료로 고효율 장시간 연소시키기 위해 이 세 단계에서 발생하는 에너지를 효율적으로 활용하고 있다.
구체적인 예를 통해 살펴보면 도 2에서 일차연소가 일어나는 장작 주변을 내화 축열재(13) 혹은 내화 단열재의 단독 혹은 조합으로 주위를 둘러쌓아서 1차 연소시 발생 되는 열을 축적 반사시켜 목재 연료로 되돌려서 목재 연료의 열분해를 돕고 공기의 과잉 공급 없이 적은 양의 1차 공기(11)로 목재 연소반응을 안정적으로 유지한다. 아울러 B, C 영역의 연소열을 이용 적당한 열교환기(15)를 통해 공기를 예열 공급하여 연소의 효율성과 안정성을 도모한다. 한 편 대한민국 등록 특허 10-1471636 에 의하면 고체연료의 한 형태인 펠릿을 연소 후 고온 연소가스를 일부분 다시 공급공기로 회귀시켜 공급공기의 온도는 높이고 산소농도는 낮추어서 연소의 안정성은 유지하며 NOx의 발생량은 획기적으로 줄이는 방법이 강구되어 있다. 위 두 가지 방법은 B, C 영역의 발생 열을 연소반응을 위한 공급공기에 전달하여 에너지를 회귀하는 방법이라는 공통점이 존재한다. 이 B, C 영역에서 발생하는 열을 공급 공기에 전달하는 방법이 아닌 열의 전도 복사에 의해 고체 연료에 직접 전달하여 연소 효율을 높이는 방법으로 대한민국 공개실용신안 20-2013-0004708을 보면 작업장 등의 공간 난방용으로 많이 사용되는 포켓 스토브 구조로서 이는 1차 연소 및 2차 연소 후 연소 가스가 다시 장작 투입 관 주위로 직접 회귀하여 투입공기 가열 및 장작 투입 관을 가열하는데 직접 작용한다. 도 3에서 보듯이 장작 투입 관의 하부 측 즉 D 영역에서 1차 연소가 이루어지고 이 연소 불꽃이 상승하여 2차 확장 연소를 해서 E 영역의 장작 투입 관 부위에 열을 가하게 되면 관을 통해 공급되는 공급 공기 가열과 관에 접촉한 장작에 열 전도 혹은 복사 형태로 에너지를 공급하게 되는데 연소 반응이 억제되어야 할 영역의 장작에 열분해를 촉진하게 되는 열분해 영역 부적합의 문제점이 있다. 이 2차 연소열이 D 영역에 집중되어야 일정한 장작으로 긴 시간 안정적 연소를 가져오는데 E 영역으로 전달되어 장작 연소지속 시간을 단축하게 되고 연소반응의 균일화에 방해요소로 작용하게 된다.
즉 연료 전체가 연소기에 한꺼번에 공급되어 연소 되는 도 2의 형태가 아닌 장작 공급 관이나 기타 연료 공급 방법을 통해 일정영역에서 연료가 집중연소 되는 형태의 연소기에서 2차 연소 발생 열을 연소가스 경로 전환으로 되돌려 전도와 복사의 방법으로 1차 연소 영역 연료의 열분해를 효율적으로 촉진하는 방법이 강구되어 있지 않다.
본 발명은 상기의 문제점을 해결하기 위해 안출된 것으로 2차 연소 발생 열을 연소가스 경로 전환을 통해 1차 연소영역의 연료로 되돌려 직접적인 전도 및 복사의 형태로 공급하여 안정적 연료의 열분해를 통한 안정된 연소 조건의 연소기를 제공함에 있다.
아울러 연료의 열분해를 통한 가스화 연소를 상시 적으로 유지하여 연료의 함수율 연료의 종류 어떠한 형태 사이즈로 가공되었나에 관계없이 하나의 연소기로 연소 가능하게 함에 있다.
또 기본적으로 연료의 열분해에 의한 가스화 연소가 유지되므로 필요 공급 공기를 적정한 수준으로 유지할 수 있어 과다한 NOx 발생을 방지함과 동시에 불완전 연소에 따른 매연발생을 방지하고자 한다.
본 발명에 따른 다종 고체연료 연소기는 장작 투입 관 또는 기타 연료 공급기에 의한 연료 공급장치; 상기 연료 공급장치에 결합 되어 일 측면 혹은 하측에 연소 가스 출구가 구비되고 나머지 면은 내화 재료의 벽에 의해 차단되어 1차 연소가 이루어지는 1차 연소실; 상기 1차 연소실의 연소가스 출구 쪽에 공간을 형성하여 1차 연소가스가 2차 확장 연소하도록 유도하고 확장 연소 후 2차 연소가스의 진행 방향을 전환 시켜 2차 연소 가스가 적어도 하나의 1차 연소실의 하측 외벽 또는 측면 외벽을 접촉하여 진행하도록 경로를 유도하여 1차 연소실 연소영역 연료에 전도 및 복사의 형태로 2차 연소열을 집중 전달하는 구조의 내화 재질 벽으로 구성되는 2차 연소실; 1차 연소실, 2차 연소실을 포함한 전체 연소 경로 중에 적어도 하나 이상 다수의 공기 공급장치를 구비하는 공기공급 체계; 를 포함하여 구성되는 특징이 있다.
또한, 본 발명에 따른 다종 고체연료 연소기에서 상기 장작 투입 관은 1차 연소실 상부에 단면이 원형 또는 타원형 또는 다각형인 기둥 형태이고 1차 연소실 상부에 장작 공급 관 냉각작용하는 공기 예열 공급 장치를 추가하여 효율이 향상되는 특징이 있다.
또한, 본 발명에 따른 다종 고체연료 연소기에서 상기 1차 연소실 벽은 기본적으로 열 전도성 내화 소재로 구성되는데, 열 출력이 큰 대형 연소기는 열 전도성이 감소된 재질을 사용하면 효율이 높아지는 특징이 있다.
또한, 본 발명에 따른 다종 고체연료 연소기에서 상기 2차 연소실 벽은 기본적으로 내화 단열성 소재로 구성되나 열 출력이 큰 대형 연소기는 열 전도성 소재를 적용하여 효율과 안정성을 높일 수 있는 특징이 있다.
또한, 본 발명에 따른 다종 고체연료 연소기에서 상기 공기 공급체계는 1차 연소실 내부와 2차 확장연소실 시작 위치 2차 연소실 말단 위치로 공급공기를 여러 곳으로 분산 배치되어 1,2차 공급공기에 의해 출력이 조절되며 NOx의 생성을 줄이고, 완전연소 하는 특징이 있다.
또한, 본 발명에 따른 다종 고체연료 연소기에서 상기 1차, 2차 연소실의 온도 및 산소 센서를 통한 배기가스 분석으로 공기 공급량을 전자제어하여 공기 조절의 정밀성을 높이는 특징이 있다.
또한, 본 발명에 따른 다종 고체연료 연소기에서 상기 1차 연소실에 연소 망을 배치하고 연료특성에 적합한 연소 망으로 교체 가능하게 하여 다종 연료 연소가 가능한 특징이 있다.
본 발명에 의한 고체 연소기는 1차 연소가 일어나는 연소영역으로 2차 연소 후 발생 되는 열이 1차 연소실 벽을 통해 전도 복사의 형태로 전달되어 연료의 열분해를 촉진 충분한 열분해 가스를 생성하여 연료의 종류 품질 형태에 상관없이 안정된 연소 환경을 제공하게 되고 공기 공급을 최적화할 수 있어서 NOx의 발생량을 줄이고 아울러 불완전 연소에 따른 매연 발생도 줄이는 효과가 있으며 연소기 사이즈에 비해 고출력의 열량을 발생 시킬 수 있는 장점을 가지게 된다.
도 1은 장작 모닥불의 연소영역을 도시하였다.
도 2는 고효율 장작난로의 개략도이다.
도 3은 포켓 스토브의 개략도이다.
도 4는 장작 투입 관을 구비하고 연소열을 직접 회귀시키는 연소장치 개략도
도 5는 1차 연소실의 연소실 벽의 다른 한 종류
도 6은 연소열 직접 회귀하는 연소장치의 모식도
도 7은 1차 연소실의 열 출구를 하방으로 유도한 연소장치 개략도
도 8은 1차 연소실에 재처리 구를 추가한 개략도
도 9는 연소장치에 펠릿 및 우드 칩 연소 망을 추가한 개략도
도 10은 펠릿 및 우드 칩 자동 공급 장치를 추가한 연소장치의 개략도이다.
*도면의 주요 부분에 대한 부호의 설명*
A: 1차 연소영역 B: 2차 확장 연소 영역
C: 연소 불꽃의 최상위 D: 1차 연소구간
E: 2차 확장 연소구간
10: 2차 확장 연소 11: 1차 공급공기
12: 2차 공급공기 13: 내화 축열재
14: 장작 15: 열기 지연 공기공급판
20: 외부 하우징 21: 공기 예열 공급장치
22: 3차 공기공급장치 23: 2차 공기 공급장치
24: 2차 연소실 벽 25: 재 처리구
26: 1차 연소실 벽 27: 1차 연소실 내부
28: 2차 확장 연소공간 29: 장작 공급관
31: 공기 예열 공급 장치 33: 2차 공기 공급장치
34: 2차 확장 연소실 벽
이하, 본 발명의 기술적 사상을 첨부한 도면을 사용하여 더욱 구체적으로 설명합니다. 첨부된 도면은 본 발명의 기술적 사상을 더욱 구체적으로 설명하기 위하여 도시한 일 예에 불과하고 당업자라면 다양한 응용과 활용이 가능합니다.
본 발명의 방향 표시는 도면의 상측을 상측, 도면의 하측을 하측으로 정의하기로 한다.
아래 도면은 모두 연소기의 가장 간단한 형태인 난로에 대한 도면을 위주로 설명하였는데 물집을 추가 장착하여 보일러, 열교환기를 부착하여 온풍기 등의 형태로 활용될 수 있음은 당연한 추론이다.
도 3에서 연소기의 구성 요소를 살펴보면 연료 공급을 위한 장작 투입관(29) 은 단면이 원형 혹은 타원형 또는 다각형으로 구성된 기둥 형태로 안에 기본적으로 장작 혹은 우드 칩 펠릿 등의 다양한 연료를 적재 아래 1차 연소영역(27)으로 연료를 지속적으로 공급해 주는 역할을 한다. 연소실 상부의 장작 투입 관에 외부 공기 예열 공급 장치(21)를 구비하여 연소실 공급 공기를 예열하여 연소 효율을 향상시킴과 동시에 연소실에서 올라오는 열기를 흡수 냉각하여 비 연소 영역 연료의 열분해를 방지하여 연소지속시간을 향상하고 연소 안정성을 높이는 효과가 있다. 아울러 2차 확장 연소실에 공기 공급하는 2차 공기 공급 장치(23)와 2차 확장 연소 후 공기 공급하는 3차 공기 공급 장치(22)가 구비되어 있습니다.
연료 공급 관 하단에 형성된 1차 연소 공간 (27) 의 일 측면으로 열기 출구를 구성하고 열기 출구를 제외한 다른 면(26)은 내화 열 전도성 소재로 구성하여 1차 연소가스가 2차 확장 연소 후 1차 연소실 벽 외부를 직접 접촉하여 돌아나갈 때 2차 연소열이 1차 연소실 벽(26) 을 통해 전도 복사의 형태로 전달되어 1차 연소실 내부 연료의 열분해에 이용되게 하여 지속적 가스화 연소가 유지되게 한다. 이때 연소 공급 공기는 1차 연소실에 직접 공급되는 1차 공기 2차 확장 연소실(28)에 공급되는 2차 공기 2차 연소 후 1차 연소실을 돌아 나간 후 분사되는 3차 공기로 다원화하는데 이는 다음의 효과가 있다.
첫째 1차 공기는 초기 연소실 냉각 상태일 경우 연료에 직접 공급하여 열을 발생 연소실 온도를 끌어올리는 효과를 한다. 이때 2차, 3차 공기는 최소의 상태로 줄이고 연소실 온도를 높인다. 연소실의 온도가 올라가면서 1차 공기의 양은 줄이고 2차 공기의 양을 늘리면 연소의 안정성이 높아지고 2차 연소열에 의해 연료의 열분해가 본격화되면 1차 공기는 적정 수준으로 줄이고 2차 공기의 양을 늘려서 연소에 필요한 공급 공기 절대량을 줄이고 아울러 연소 불꽃 영역의 크기를 늘려서 NOx의 발생량을 조절하게 된다. 이때 1차 공기는 최소량은 유지해야 하는데 이는 일반 고체연료 속에 포함된 탄소만의 결합체는 열과 함께 산소가 공급되어야 CO 형태로 분리되어 나오기 때문이다. 3차 공기는 1,2차 공기만으로 미연소 된 부분에 추가 산소를 공급하여 완전 연소를 달성하게 된다.
이 연소 구조를 살펴보면 연소 출력은 1차 공기와 2차 공기의 양에 의해 조절되고 3차 공기는 완전 연소를 위한 보조 공급공기의 역할을 하게 된다. 이는 1차 공기는 연료에 직접 분사되어 직접적 출력 조절을 담당하게 되고 2차 공기는 1차 연소 후 미연소 가스를 태워서 2차 연소열을 발생 1차 연소 격벽(26)을 통해 연료의 열분해(가스 발생)를 촉진하므로 열 출력에 직접 관여하게 된다. 3차 공기는 1,2차 연소 후 미연소 가스를 태우고 발생 열량을 뒤쪽 방열 부위로 배출하므로 연소 출력 조절과는 관계없다. 1, 2, 3차에 걸친 공급공기의 다원화는 공급공기의 절대량을 줄이고 연소열이 넓은 영역으로 분산되므로 좁은 영역에 고온이 형성되고 과량의 공기(산소) 공급으로 만들어지는 NOx를 획기적으로 줄일 수 있는 방법을 제공하게 된다. 이때 도면에는 표시되어 있지 않으나 각각의 공기 공급량을 조절하는 장치는 공지 기술이라 표시하지 않았고 이 2차, 3차 공기의 공급은 위 공기 예열장치(21)를 통해서 공급될 수도 있고 별도의 라인을 통해 공급될 수도 있다. 별도의 라인을 통해 공급되어도 내부에서 예열 구간을 통해 공급되므로 연소 안정성은 유지된다.
여기서 2차 확장 연소실은 가장 고열이 형성되고 열기 경로를 반대 방향으로 되돌리는 역할을 하므로 고온에 견디는 내화성 소재를 사용하여야 하는데 이 2차 연소실 격벽(24)의 소재는 전체 연소기의 규모에 따라 열 전도성이 다른 소재로 적용되어야 한다. 한 예로 소형 텐트 안에 설치하는 캠핑용 연소기는 전체 출력이 작고 연소실도 고온 유지가 어려우므로 격벽 소재를 단열 효과를 최대화하는 소재로 구성하여야 연소 품질이 유지되고 규모가 큰 작업장용 연소기는 1차 연소실이 초고온이 형성되는 것을 막기 위해 2차 연소실 격벽(24)을 열 전도성 소재로 구성하여 어느 정도 방열을 통해 온도가 내려간 2차 연소가스가 1차 연소 격벽을 돌아가도록 구성해서 초고온에 따른 NOx 발생을 줄이고 1차 연소 격벽도 보호할 수 있도록 구성한다.
2차 확장 연소실 하부에는 재처리를 위한 재처리 장치(25)를 구성하고 이 연소실 외부에 1차, 2차 연소실 전체를 다시 하나의 하우징(20)으로 둘러싸서 직접 방열의 난로 구조나 물탱크를 배치하여 보일러 구조나 공기 열 교환기를 배치하여 온풍기 등으로 발전시킬 수 있다.
도 5는 중간 공기층 구조의 1차 연소실 격벽인데, 기본적으로 1차 연소실 격벽은 열 전도성 소재로 구성되는 것이 맞으나 열 출력이 큰 대형 연소기는 과도한 2차 연소열의 1차 연소실 전달은 과도한 열분해를 초래하므로 연소 안정을 위해 열 전도성이 감소 된 중간 공기층 구조의 1차 연소 벽이 적합할 수 있다. 한 걸음 더 나아가 대형 연소기는 내화벽돌 등을 포함한 다양한 재질의 1차 연소 벽을 응용할 수 있다.
도 6은 위에 설명한 연소기를 장작 투입 관을 원형 구조로 채택했을 경우의 모식도이다. 이 구조에 의하면 2차 연소가스가 1차 연소실의 밑면과 양 측면 모두를 돌아 나가면서 뒤쪽 열기 출구로 향하게 되는데 이 열기 경로를 양 측면을 극단적으로 좁게 형성하면 밑쪽으로 경로가 유도되고 밑면 경로를 극단적으로 줄이면 양 측면으로 경로가 형성된다. 나아가 양 측면 쪽 한쪽은 넓게 한쪽은 좁게 구성 하는등의 다양한 응용이 가능하게 된다.
이 모식도는 원형 장작 투입 관을 예시로 도시되었으나 사각 장작 투입 관을 포함 기타 다각형 구조의 장작 투입 관에도 비슷하게 응용될 수 있고 당업자는 명확히 추론 가능하여 추가 도면은 생략하였다.
도 7은 1차 연소가스 출구의 위치를 하방으로 잡은 도면인데 연소가스 경로가 확장 2차 연소 후 주로 양 측면을 통해 1차 연소실에 전달되는 특징을 가진다.
도 8은 재 발생량이 많은 연료를 연소시 신속하게 재처리를 해서 연소의 안정성을 높이기 위해 1차 연소실 하부에 추가로 재 처리망을 배치한 개략도이다.
도 9는 1차 연소실에 연소 망을 배치 펠릿이나 우드 칩 등의 연료를 효율적으로 연소시키는데 연소 망은 연료 특성에 맞는 종류로 교체 투입 가능하게 만들어진다.
도 10은 장작 투입 관 대신 이송 스크루와 연료 저장 호퍼를 포함하는 자동화된 연료 공급 체계를 탑재한 연소기의 모습이다. 이를 통해 추가 조작 없이 장시간 연소기를 작동 시킬 수 있다.
추가 적으로 도면으로 표현하지는 않았지만 2차 연소실 출구 쪽에 산소센서를 추가하여 공급 공기의 양을 더욱 정밀하게 조절하는 것도 가능할 것이다.
또 도면에는 표시되지 않았으나 1차 연소실, 2차 연소실, 및 방열 부위에 하나 이상의 온도센서 설치하고 상기 산소센서 정보와 합하여 가장 적합한 온도 및 산소량 조건에서 운전되도록 전자제어 회로를 구비하여 공기량을 조절하는 것도 가능하다.
이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
상기 기술한 고체연료 연소기는 기본적으로 시중에 널리 사용중인 화목 난로, 펠릿 난로 등의 공기 가열 장치에서 화목 보일러, 펠릿 보일러 등의 온수 가열 장치로 확대가 가능하며 각종 농가 부산물의 연소를 통한 난로, 보일러 등으로 활용 가능하며 가정용 무공해 소형 발전기를 위한 버너로서 기술적 활용을 통한 다양한 응용이 가능하다.

Claims (7)

  1. 장작 투입관 또는 기타 연료 공급기에 의한 연료 공급장치; 상기 연료 공급장치에 결합 되어 일 측면 혹은 하측에 연소 가스 출구가 구비되고 나머지 면은 내화 재료의 벽에 의해 차단되어 1차 연소가 이루어지는 1차 연소실; 상기 1차 연소실의 연소가스 출구 쪽에 공간을 형성하여 1차 연소가스가 2차 확장 연소하도록 유도하고 확장 연소 후 2차 연소가스의 진행 방향을 전환 시켜 2차 연소 가스가 적어도 하나의 1차 연소실의 하측 외벽 또는 측면 외벽을 접촉하여 진행하도록 경로를 유도하여 1차 연소실 연소영역 연료에 전도 및 복사의 형태로 2차 연소열을 집중 전달하는 구조의 내화 재질 벽으로 구성되는 2차 연소실; 1차 연소실, 2차 연소실을 포함한 전체 연소 경로 중에 적어도 하나 이상 다수의 공기 공급장치를 구비하는 공기공급 체계; 를 포함하여 구성되는 것을 특징으로 하는 고체 연료 연소장치.
  2. 제 1항에 있어서, 상기 장작 투입 관은 1차 연소실 상부에 단면이 원형 또는 타원형 또는 다각형인 기둥 형태이고 1차 연소실 상부에 장작 공급 관 냉각작용하는 공기 예열 공급 장치를 추가하여 효율이 향상되는 것을 특징으로 하는 고체 연료 연소 장치.
  3. 제 1 항에 있어서, 상기 1차 연소실 벽은 기본적으로 열 전도성 내화 소재로 구성되는데, 열 출력이 큰 대형 연소기는 열 전도성이 감소 된 재질을 사용하면 효율이 높아지는 것을 특징으로 하는 고체 연료 연소 장치.
  4. 제 1 항에 있어서, 상기 2차 연소실 벽은 기본적으로 내화 단열성 소재로 구성되나 열 출력이 큰 대형 연소기는 열 전도성 소재를 적용하여 효율과 안정성을 높일 수 있는 것을 특징으로 하는 고체 연료 연소 장치.
  5. 제 1 항에 있어서, 상기 공기 공급체계는 1차 연소실 내부와 2차 확장연소실 시작 위치 2차 연소실 말단 위치로 공급공기를 여러 곳으로 분산 배치되어 1,2차 공급 공기에 의해 출력이 조절되며 NOx의 생성을 줄이고, 완전연소 하는 것을 특징으로 하는 고체 연료 연소 장치.
  6. 제 5 항에 있어서, 상기 1차, 2차 연소실의 온도 및 산소 센서를 통한 배기가스 분석으로 공기 공급량을 전자제어하여 공기 조절의 정밀성을 높이는 것을 특징으로 하는 고체 연료 연소 장치.
  7. 제 1 항에 있어서, 상기 1차 연소실에 연소 망을 배치하고 연료특성에 적합한 연소 망으로 교체 가능하게 하여 다종 연료 연소가 가능한 것을 특징으로 하는 고체 연료 연소 장치.
PCT/KR2017/002196 2016-03-21 2017-02-28 다종 고체연료 연소기 WO2017164530A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/082,276 US10890321B2 (en) 2016-03-21 2017-02-28 Combustor for various types of solid fuels
EP17770501.9A EP3434975A4 (en) 2016-03-21 2017-02-28 COMBUSTION CHAMBER FOR VARIOUS TYPES OF SOLID FUELS
CN201780011857.5A CN108700286A (zh) 2016-03-21 2017-02-28 多种固体燃料燃烧器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160033097A KR101825285B1 (ko) 2016-03-21 2016-03-21 다종 고체연료 연소기
KR10-2016-0033097 2016-03-21

Publications (2)

Publication Number Publication Date
WO2017164530A2 true WO2017164530A2 (ko) 2017-09-28
WO2017164530A3 WO2017164530A3 (ko) 2018-08-02

Family

ID=59900607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/002196 WO2017164530A2 (ko) 2016-03-21 2017-02-28 다종 고체연료 연소기

Country Status (5)

Country Link
US (1) US10890321B2 (ko)
EP (1) EP3434975A4 (ko)
KR (1) KR101825285B1 (ko)
CN (1) CN108700286A (ko)
WO (1) WO2017164530A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109708149A (zh) * 2019-01-21 2019-05-03 山东正信德环保科技发展有限公司 多重燃烧采暖炉
CN110425573A (zh) * 2019-08-27 2019-11-08 中国矿业大学 一种清洁安全型燃烧系统及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11767980B2 (en) * 2020-11-03 2023-09-26 Dansons Us, Llc Longitudinal burn pot assembly and improved air flow system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130004708U (ko) 2012-01-26 2013-08-05 송윤영 화력 조절 장치를 갖춘 포켓 스토브
KR101471636B1 (ko) 2014-08-29 2014-12-15 한국기계연구원 저공해 펠릿 연소 장치 및 그 방법

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4779607A (en) * 1987-02-03 1988-10-25 Nu-Tec Incorporated Stove
US4836115A (en) * 1988-06-23 1989-06-06 Macarthur Charles E Vertical furnace
JP2598752B2 (ja) * 1994-02-10 1997-04-09 新日本技研株式会社 焼却炉
CN100356103C (zh) 2002-06-03 2007-12-19 霍努阿技术公司 医疗废弃物和其它废料的热解方法
JP2005207727A (ja) 2003-12-22 2005-08-04 Keiichi Kotaka 木炭燃焼装置
CN201069245Y (zh) * 2006-12-28 2008-06-04 付文宏 秸秆、原煤、型煤三用锅炉
ITUD20080014A1 (it) 2008-01-24 2009-07-25 Palazzetti Lelio Spa Bruciatore verticale per un'apparecchiatura per il riscaldamento domestico
US20100089295A1 (en) * 2008-10-15 2010-04-15 Mel Moench Continuously-Fed Non-Densified Biomass Combustion System
MY156263A (en) * 2008-10-20 2016-01-29 Gaia Inst Of Environmental Technology Inc Carbonization apparatus and carbonization method
DE102009007458B4 (de) * 2009-02-04 2013-08-29 Karl Stefan Riener Scheitholzofen
CN201582798U (zh) * 2009-12-31 2010-09-15 河南省科学院能源研究所有限公司 生物质成型燃料燃烧设备
CN201697135U (zh) * 2010-05-11 2011-01-05 吴学良 一种新型垃圾与生物质燃料焚烧炉
US20120312205A1 (en) * 2011-06-13 2012-12-13 Meeker John G Woodkiln molded combustion chamber
US20140311477A1 (en) * 2013-03-07 2014-10-23 Reginald James Davenport Control system for monitoring and adjusting combustion performance in a cordwood-fired heating appliance
KR101462333B1 (ko) * 2013-03-19 2014-11-20 송기택 화목 난로
KR101391400B1 (ko) 2013-04-01 2014-05-02 장정훈 하향 연소식 화목 보일러
EP2821698A1 (en) * 2013-05-01 2015-01-07 Aristidis Afentoulidis Secondary tube combustion chamber located in the primary combustion chamber of a solid biofuel gasification boiler
KR101515001B1 (ko) 2014-03-31 2015-05-04 임재욱 펠렛난로
DE102015004823A1 (de) * 2015-04-14 2016-11-03 Rika Innovative Ofentechnik Gmbh Ofen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130004708U (ko) 2012-01-26 2013-08-05 송윤영 화력 조절 장치를 갖춘 포켓 스토브
KR101471636B1 (ko) 2014-08-29 2014-12-15 한국기계연구원 저공해 펠릿 연소 장치 및 그 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3434975A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109708149A (zh) * 2019-01-21 2019-05-03 山东正信德环保科技发展有限公司 多重燃烧采暖炉
CN110425573A (zh) * 2019-08-27 2019-11-08 中国矿业大学 一种清洁安全型燃烧系统及方法
CN110425573B (zh) * 2019-08-27 2024-03-01 中国矿业大学 一种清洁安全型燃烧系统及方法

Also Published As

Publication number Publication date
WO2017164530A3 (ko) 2018-08-02
KR101825285B1 (ko) 2018-02-02
KR20170109251A (ko) 2017-09-29
US10890321B2 (en) 2021-01-12
CN108700286A (zh) 2018-10-23
US20190078775A1 (en) 2019-03-14
EP3434975A4 (en) 2019-11-20
EP3434975A2 (en) 2019-01-30

Similar Documents

Publication Publication Date Title
EP0401205B1 (en) Device for supply of secondary air, and boiler with the device
WO2017164530A2 (ko) 다종 고체연료 연소기
RU2660987C1 (ru) Пиролизный котел-утилизатор
WO2018030677A1 (ko) 난로
CA1165649A (en) Furnaces
WO2015046902A1 (ko) 연소장치
KR101325106B1 (ko) 폐기물 소각로 기능과 열매체 열교환기능을 구비한 연관식 보일러
KR101282581B1 (ko) 폐기물 고형연료를 이용한 보일러의 연소장치
KR20110133799A (ko) 고체 연료용 보일러
RU2528192C1 (ru) Пиролизный котел
KR101501002B1 (ko) 화실 일체형 구조를 갖는 노통 연관식 고효율 산업용 보일러
CN110375327B (zh) 一种高效清洁超焓燃烧装置及其应用的炉体
KR20140029658A (ko) 폐가스 소각장치 및 소각방법
CN102563668A (zh) 污泥与生活垃圾混合燃烧的炉排型锅炉
WO2017171362A2 (ko) 숯가마를 이용한 연소장치
CN202012949U (zh) 节能减排高温炉
RU2426028C1 (ru) Вертикальная топка пароводогрейного котла для переработки сыпучих видов топлива в тепловую энергию
RU2272960C1 (ru) Устройство для сжигания топлива
RU2483246C2 (ru) Вертикальная топка пароводогрейного котла для сжигания сыпучих видов топлива
WO2015142041A1 (ko) 과립고체 연료버너 및 그것을 이용한 보일러
WO2012173363A2 (ko) 화목연소장치와 이를 이용한 온풍기 및 온수보일러 장치
KR101325663B1 (ko) 화목보일러용 연소구
JPH0531045B2 (ko)
CN210921479U (zh) 锅炉燃烧室挡火墙
CN202648119U (zh) 连续燃烧双炉体取暖炉

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017770501

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017770501

Country of ref document: EP

Effective date: 20181022

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17770501

Country of ref document: EP

Kind code of ref document: A2