WO2017164482A1 - 1축 동력 변환 장치 - Google Patents

1축 동력 변환 장치 Download PDF

Info

Publication number
WO2017164482A1
WO2017164482A1 PCT/KR2016/013724 KR2016013724W WO2017164482A1 WO 2017164482 A1 WO2017164482 A1 WO 2017164482A1 KR 2016013724 W KR2016013724 W KR 2016013724W WO 2017164482 A1 WO2017164482 A1 WO 2017164482A1
Authority
WO
WIPO (PCT)
Prior art keywords
drum
wire
power
power conversion
conversion module
Prior art date
Application number
PCT/KR2016/013724
Other languages
English (en)
French (fr)
Inventor
성용준
Original Assignee
성용준
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성용준 filed Critical 성용준
Priority to US16/088,127 priority Critical patent/US10655594B2/en
Priority to JP2018550441A priority patent/JP6734930B2/ja
Priority to CN201680083997.9A priority patent/CN109416014A/zh
Priority to EP16895608.4A priority patent/EP3434894A4/en
Publication of WO2017164482A1 publication Critical patent/WO2017164482A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1853Rotary generators driven by intermittent forces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/18Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
    • F03B13/1885Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is tied to the rem
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/18Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/18Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
    • F03B13/1845Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom slides relative to the rem
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/40Use of a multiplicity of similar components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/403Transmission of power through the shape of the drive components
    • F05B2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • F05B2260/40312Ratchet wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/42Storage of energy
    • F05B2260/421Storage of energy in the form of rotational kinetic energy, e.g. in flywheels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the present invention relates to a single-axis power converter for converting the kinetic energy of waves into rotational kinetic energy.
  • Wave is a high-density energy source among renewable energy sources, and it is an energy source that is attracting attention because it can be generated 24 hours a day, but research and development was started only in 1940. Wave generation is much slower in market formation than other renewable sources. Only recently (2008) are commercial systems available.
  • the kinetic energy of the waves is very irregular and nonuniform and needs to be converted into uniform rotational kinetic energy that can run the generator.
  • the present invention is to provide a single-axis power converter for transmitting the kinetic energy of the wave to the generator using a wire.
  • the single-axis power converter of the present invention is a floating unit is the kinetic energy of the wave input is mooring the sea by the wire; Direction change unit for changing the direction of the wire; And a power conversion module for transmitting the tension of the wire to the generator, wherein the power conversion module may transmit driving force from a drum to which the wire is wound to a power shaft to which the generator is connected.
  • the single-axis power converter of the present invention can turn the generator using a drum, which is connected to the floating unit flowing along the wave, a winding coil, a single power shaft on which the drum is installed, or a plurality of power shafts disposed on the coaxial shaft.
  • the single-axis power converter of the present invention has a simple structure in which a drum and a generator are linked to a single power shaft or a plurality of power shafts disposed on the same shaft, it is easy to manufacture, and according to the number of floating units installed. It can be easily extended.
  • the floating unit is provided with a generator, a power conversion module, a power shaft, a drum, and a one-way rotating member to float together with the floating unit.
  • a wave power generation system can be implemented.
  • FIG. 1 is a schematic view showing a one-axis power converter of the present invention.
  • FIG. 2 is a side view showing the one-axis power converter of the present invention.
  • FIG 3 is a schematic view showing a connection point to which the wire is connected to the floating unit of the present invention.
  • FIG 4 is a schematic view showing a position where the direction change portion is formed in the base unit of the present invention.
  • FIG. 5 is a schematic diagram illustrating an embodiment of a power conversion module of the present invention.
  • FIG. 6 is a schematic diagram showing another embodiment of the power conversion module of the present invention.
  • FIG. 7 is a schematic diagram showing another embodiment of the power conversion module of the present invention.
  • FIG. 8 is a schematic view showing a one-way rotating member of the present invention.
  • FIG. 9 is a schematic diagram illustrating a power conversion module according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing a power conversion module according to another embodiment of the present invention.
  • FIG. 11 is a schematic diagram illustrating a power conversion module according to another embodiment of the present invention.
  • FIG. 12 is a schematic diagram showing a one-axis power converter of the present invention applied to a floating wave power generator.
  • 13 is a plan view of the one-axis power converter applied to the floating wave power generator.
  • FIG. 1 is a schematic view showing a one-axis power converter of the present invention
  • Figure 2 is a side view showing a one-axis power converter of the present invention.
  • the illustrated one-axis power converter may include a floating unit 200, a direction converting unit 310, and a power conversion module 100.
  • the floating unit 200 is located in the sea level 50 or the sea, and may be translated or rotated according to the change of the sea level 50 caused by the waves. There may be a variety of ways of transferring the translational kinetic energy or rotational kinetic energy of the floating unit 200 by the waves to the generator 90 on the sea or on land. In the present invention, the kinetic energy of the floating unit 200 due to the wave is transmitted to the generator 90 using the flexible wire 10.
  • the power generation system to which the one-axis power converter of the present invention is applied can be operated as follows.
  • the wave force may be absorbed into the kinetic energy of the floating unit 200, and the kinetic energy of the floating unit 200 may be transmitted to the generator 90 through the wire 10.
  • the generator 90 may convert the kinetic energy transmitted through the wire 10 into electrical energy.
  • the floating unit 200 that primarily absorbs wave energy as mechanical energy is moored and floated at sea by the flexible wire 10, the floating unit 200 may vertically move up or down or rotate according to the movement of the wave.
  • the wire 10 extending from the floating unit 200 is connected to a generator 90 installed on the sea or onshore by passing through a base unit 300 provided at a position spaced apart from the floating unit 200, for example, a seabed, It can be connected to the generator 90 installed in the offshore structure, such as the breakwater (30).
  • the base unit 300 may be provided with a plurality of direction changing parts 310 to which the wires 10 extending from the floating unit 200 span.
  • the direction change unit 310 may change the direction of the wire 10 extending from the floating unit 200.
  • the direction change unit 310 may include a pulley.
  • the direction change unit 310 over which the wire 10 extends may be directly fixed to the seabed or fixed to the floating unit 200 without being installed in the base unit 300.
  • FIG 3 is a schematic diagram showing a connection point to which the wire 10 is connected to the floating unit 200 of the present invention.
  • Three or more wires 10 may be connected to the floating unit 200 at different positions on a plane.
  • the direction change unit 310 for changing the direction of the wire 10 may also be provided in plural as the number of the wires 10.
  • connection points d, e, and f to which the wire 10 is fixed or spanned to the floating unit 200 may be spaced apart from each other. .
  • connection points d, e, and f are spaced apart from each other, the floating unit 200 translates in both translational motion in the x-axis / y-axis / z-axis direction or rotational movement about the x-axis / y-axis / z-axis.
  • Rotational kinetic energy may be transmitted to the wire 10.
  • Preferably not having three or more connection points (d, e, f) located on a common straight line may be advantageous for absorbing and transferring the multiple degree of freedom movement to the wire 10.
  • the plurality of wires 10 and the connection point arrangement structure can significantly improve high efficiency power generation, multiple degree of freedom power generation, homeostasis of power generation, environmental adaptability, and response to wave fluctuations.
  • the position of the direction change unit 310 may also be important.
  • the imaginary circle having arcs of positions a, b, and c provided with a direction change unit 310 in which the wire 10 spans in the base unit 300 is defined as a closed curve K.
  • a closed curve K As shown in FIG. Can be.
  • An imaginary circle having arcs having connection points d, e, and f to which the wire 10 is connected in the floating unit 200 may be defined as a curve G.
  • the diameter of the closed curve K is u and the diameter of the closed curve G is v.
  • FIG. 5 is a schematic diagram illustrating an embodiment of a power conversion module of the present invention.
  • the power conversion module 100 may transmit the tension of the wire 10 passing through the base unit 300 or the direction changing unit 310 to the generator 90.
  • the power conversion module 100 may convert the kinetic energy of the floating unit 200 transmitted through the tension of the wire 10 into driving energy required for driving the generator 90.
  • the 1-axis power converter of the present invention can be applied to a power generation system that rotates the generator 90 by using the wave power to produce electrical energy. Accordingly, as illustrated in FIGS. 5 and 6, the shaft 91 of the generator 90 and the power shaft 130 as the output terminal of the power conversion module 100 may be a single common shaft. Meanwhile, as illustrated in FIG. 7, the power shaft 130 to which the drum 110 is connected is connected to the shaft 91 of the generator 90 by using a gear (not shown) or a coupling 190, and the generator 90. It can be formed to rotate with the axis 91 of the).
  • the power conversion module 100 may include a drum 110 on which the wire 10 passing through the floating unit 200 is wound, and a power shaft 130 rotated by the drum 110.
  • the power conversion module 100 may transmit a driving force to the power shaft 130 to which the generator 90 is connected from the drum 110 to which the wire 10 is wound.
  • the power conversion module 100 may turn the generator 90 using a single power shaft 130 on which the drum 110 is installed or a plurality of power shafts 130 disposed on the coaxial shaft.
  • the drum 110 may be formed in a cylindrical or cylindrical shape in which the wire 10 is wound around the outer circumferential surface.
  • the drum 110 may be rotatably formed in a forward direction a in which the wire 10 is unwound and in a reverse direction b in which the wire 10 is wound.
  • the drum 110 may be rotatable in a clockwise direction and rotatable in a counterclockwise direction.
  • 5 to 7 illustrate an embodiment in which the counterclockwise direction is the forward direction a and the clockwise direction is the reverse direction b.
  • the tension of the wire 10 is changed in the direction change unit 310. It may be applied to the drum 110 through. Due to the tension of the wire 10, the drum 110 may be rotated in a forward direction a where the wire 10 is released.
  • the wire 10 When the waves pass and the tension of the wire 10 is released, the wire 10 may be rewound to the drum 110 to prepare for the next wave.
  • the drum 110 may be rotated in the reverse direction b to which the wire 10 is wound to rewind the wire 10.
  • the power conversion module 100 may be provided with a restoring member (not shown).
  • the restoring member may include a spring, a spring, a weight, and the like, which rotate the drum 110 in the reverse direction b.
  • the power shaft 130 rotated by the drum 110 may be rotatably formed only in a preset preset direction c.
  • the power shaft 130 may be an output terminal of the power conversion module 100 connected to the shaft 91 of the generator 90. If necessary, a direction conversion unit (not shown) is provided between the shaft 91 of the generator 90 and the power shaft 130, or the shaft 91 of the generator 90 and the power shaft ( A speed controller (not shown) such as a speed reducer or an accelerator that adjusts the rotation ratio of 130 may be provided.
  • a speed controller such as a speed reducer or an accelerator that adjusts the rotation ratio of 130 may be provided.
  • the shaft 91 of the generator 90 may be rotated only in a specific direction. Therefore, the power shaft 130, which may be connected to the shaft 91 of the generator 90, is preferably rotated only in the preset preset direction ⁇ .
  • the preset direction c may be one of the rotation directions of the drum 110 or a rotation direction about an axis different from the rotation axis of the drum 110.
  • the preset direction c is advantageously the same as the forward direction a of the drum 110.
  • the power shaft 130 is constrained to the drum 110 when the drum 110 is rotated in the forward direction a by the tension of the wire 10 caused by the wave force so that the wave energy is transmitted to the generator 90. Can be rotated in the preset direction ⁇ . On the contrary, when the drum 110 is rotated in the reverse direction b by the restoring member, the power shaft 130 may be released from the drum 110. Even if the drum 110 is rotated in the reverse direction b, the power shaft 130 may be rotated as it is in the preset direction c that was being rotated because the restraint with the drum 110 is released.
  • FIG. 5 An embodiment of a restoring member is shown in FIG. 5, which shows a restoring member connected to the drum 110 and exerting a restoring force on the drum 110.
  • the restoration member connected to the drum 110 may be a spring spring 150, a coil spring 420, a weight, or the like.
  • the restoring member 420 rotates the drum 110 in the reverse direction b to rewind the wire 10 to the drum 110. do.
  • FIG. 6 is a schematic diagram showing another embodiment of the power conversion module of the present invention.
  • the restoration member shown in FIG. 6 may be a coil spring 420, a weight, or the like.
  • the shown restoring member is connected to one end of the wire 10.
  • One end of the wire 10 is connected to the floating unit 200, the other end 430 of the wire 10 is connected to a restoring member including a coil spring 420, and the middle of the wire 10 is a drum ( Winding 110).
  • the restoration member and the floating unit 200 including the coil spring 420 pull the wire 10 at both ends of the wire 10. If the floating unit 200 pulls the wire 10 more, the drum 110 is rotated in the forward direction a and drives the power shaft 130.
  • the drum 110 When the wave force is released and the force of the restoring member to pull the wire 10 is greater than that of the floating unit 200, the drum 110 is rotated in the reverse direction b to rewind the wire 10 to the drum 110. At this time, the drum 110 is released from the connection with the power shaft 130, and covers the power shaft 130.
  • the floating unit 200 and the restoring member are connected to both ends of one wire 10
  • the floating unit 200 is compared to the case where the floating unit 200 and the restoring member are connected to separate wires.
  • the wave force acting on is directly transmitted to the drum 110, and the restoring force of the restoring member is directly transmitted to the wire 10 without loss.
  • FIG. 7 is a schematic diagram showing a power conversion module 100 of the present invention.
  • FIG. 7 shows an embodiment having an inertia portion 170, such as a flywheel, and a coupling 190.
  • the one-way rotating member 150 may be interposed between the drum 110 and the power shaft 130.
  • the one-way rotating member 150 may include a one way clutch.
  • the drum 110 is rotated in the forward direction a when the wire 10 is pulled by the floating unit 200, and the wire 10 is wound when the force to pull the wire 10 is released. Can be rotated in the reverse direction b.
  • the power shaft 130 may be a rotation shaft of the drum 110 by the one-way rotating member 150.
  • the power shaft 130 which is the rotation shaft of the drum 110, may be rotated only in the forward direction a regardless of the rotation direction of the drum 110 by the one-way rotation member 150.
  • FIG. 8 is a schematic view showing the one-way rotating member 150 of the present invention.
  • the one-way rotating member 150 may be provided with a restraining portion 151 that is restrained by the drum 110 or the power shaft 130.
  • the restraining part 151 restrains the drum 110 and the power shaft 130 when the drum 110 is rotated in the forward direction, and releases the restraint of the drum 110 and the power shaft 130 when the drum 110 is rotated in the reverse direction. can do.
  • the one-way rotating member 150 may be formed in a hollow pipe shape.
  • the power shaft 130 may be fixed to the hollow.
  • the outer circumferential surface of the one-way rotating member 150 may be provided with a latch portion (151) of a latch shape protruding or recessed in the radial direction.
  • the one-way gear 111 inclined in one direction may be formed on the inner circumferential surface of the drum 110 in response to the restraining part 151.
  • the one-way rotating member 150 may be provided with an elastic member 153 for protruding the restricting portion 151 in the radial direction.
  • the end of the restraining part 151 by the elastic member 153 may be maintained in a state caught by the one-way gear 111 formed on the inner circumferential surface of the drum 110.
  • the end portion of the restraining part 151 is held by the one-way gear 111, so that the one-way rotation member 150 may also rotate along the forward direction a. Since the power shaft 130 is fixed to the one-way rotating member 150, the power shaft 130 may be rotated together with the one-way rotating member 150. In this case, the preset direction c corresponding to the rotation direction of the power shaft 130 may be the same as the positive direction a.
  • the end of the restrainer 151 may slide on the one-way gear 111. Therefore, even if the drum 110 is rotated along the reverse direction b, the one-way rotating member 150 may maintain the state of being rotated in the forward direction a. Therefore, the power shaft 130 fixed to the one-way rotating member 150 may also be continuously rotated along the forward direction a despite the reverse rotation of the drum 110.
  • the restrainer 151 may also operate in an operation mode different from the first mode.
  • the power conversion module 100 may be provided with a mode switching unit 160 for controlling the one-way rotating member 150.
  • the restrainer 151 may be operated in the first mode 1 or the second mode 2 by the mode switching unit 160.
  • the second mode may be an operation mode in which the restrainer 151 releases the restraint of the drum 110 and the power shaft 130 regardless of the rotation direction of the drum 110.
  • the mode switching unit 160 may recess the elastic member 153 or the restraining unit 151 such as a spring for protruding the restraining unit 151 in the radial direction to implement the second mode in the one-way rotating member 150.
  • the elastic member 153 itself is recessed with respect to the outer surface of the one-way rotating member 150 by the mode switching unit 160, or the restraining part 151 is forcibly recessed in the one-way rotating member 150. State can be maintained.
  • the constraining part 151 When the constraining part 151 is recessed in the one-way rotation member 150 by the mode switching unit 160, the constraining part 151 is the one-way gear 111 of the drum 110 regardless of the rotation direction of the drum 110. You can't mesh with it and you're going to run away.
  • the second mode may be used to protect the power conversion module 100 and the generator 90 from natural disasters such as typhoons.
  • the mode switching unit 160 operates the restrainer 151 in the first mode as usual, and restraints 151 in the second mode during maintenance of the power conversion module 100 or maintenance of the generator 90. Can be operated.
  • the speed at which the drum 110 rotates along the forward direction a may be constant due to the tension of the wire 10. However, since the wave force causing the tension of the wire 10 is nonuniform, the drum 110 is forced to rotate in the forward direction a by the nonuniform force.
  • the power shaft 130 may be rotated in the preset direction c by the drum 110 rotating in the forward direction a.
  • the power shaft 130 connected to the generator 90 may also be rotated at a non-uniform rotational speed. If the rotational speed of the generator 90 axis is uneven, the generator 90 is easily damaged, and it is difficult to obtain high quality electrical energy. Therefore, in order to maintain the rotation speed of the generator 90 shaft uniformly, a method of maintaining the rotation speed of the power shaft 130 uniformly is needed.
  • the inertia unit 170 may be provided in the power conversion module 100 to maintain the rotation speed of the power shaft 130 uniformly.
  • the inertial unit 170 may increase the rotational inertia of the power shaft 130 in the preset direction.
  • the inertial unit 170 may be installed at the other end of the wire 10 or the power shaft 130 and maintain the rotational speed of the power shaft 130 within a setting range.
  • a flywheel may be installed on the power shaft 130, and the power shaft 130 and the flywheel may be rotated together.
  • the flywheel may correspond to the inertia 170.
  • the inertia unit 170 may be any shape such as a flywheel, a spring, a weight, a spring, or the like, and a member for increasing the rotational inertia of the power shaft 130 is sufficient.
  • the power shaft 130 When the drum 110 is rotated in the forward direction a by the tension of the wire 10, the power shaft 130 may be rotated in the preset direction c by the one-way rotating member 150. At this time, the moment of the power shaft 130 is increased by the flywheel, even if the tension is suddenly applied due to the increased moment the power shaft 130 may be slowly rotated within the range of the set speed range. Then, the moment increased by the flywheel is stored in the inertial force of the flywheel.
  • the drum 110 When the tension of the wire 10 is released, the drum 110 may be wound around the wire 10 while being rotated in the reverse direction b by the restoring member.
  • the power shaft 130 may be maintained by the flywheel and the one-way rotating member 150 in the preset direction c for a predetermined period.
  • the setting period at this time may be a period from when the specific wave passes through the floating unit 200 until the next wave is applied. If there is no flywheel, the power shaft 130 may stop before satisfying the set period. However, since the inertia is increased by the inertia force corresponding to the moment stored in the flywheel, the power shaft 130 may be continuously rotated during the set period.
  • the inertia 170 such as a flywheel
  • sudden high speed rotation of the power shaft 130 may be prevented, and ultra-low speed rotation of the power shaft 130 may be prevented. Therefore, the rotational speed of the power shaft 130 can be properly maintained within the setting range suitable for the operation of the generator (90).
  • the installation space of the inertial unit 170 may be minimized.
  • the plurality of wires 10 are connected to the power conversion module 100 can reduce the interference between each wire (10).
  • FIG. 9 is a schematic diagram illustrating a power conversion module 100 according to an embodiment of the present invention.
  • 10 is a schematic diagram showing a power conversion module 100 according to another embodiment of the present invention.
  • the size and number of floating units 200 installed at sea may vary depending on the installation environment. For example, in some regions, a plurality of small floating units may be suitable as shown in FIG. 9, and in another region, a single large floating unit may be suitable as shown in FIG. 10. Therefore, the spacing or number of wires 10 connecting the floating unit 200 and the power conversion module 100 may also vary.
  • auxiliary direction switching unit 390 may be provided between the base unit 300 and the power conversion module 100, and may normalize the spacing and direction of the wire 10 input to the power conversion module 100.
  • the auxiliary direction switching unit 390 it is difficult to apply the auxiliary direction switching unit 390 in accordance with the number of installation of the wire 10 varies from place to place. Therefore, it is necessary to provide the drum 110 is arranged at different intervals according to the installation environment. In addition, the number of drums 110 installed on the power shaft 130 needs to be changed according to the installation environment. In other words, the power conversion module 100 according to the installation environment should be manufactured in different standards.
  • the power conversion module 100 manufactured in different standards has a problem of low compatibility, and the installation method is difficult for installation and maintenance because the installation method varies from specification to specification.
  • the power conversion module 100 may be all manufactured the same. In other words, the power conversion module 100 may be standardized.
  • One end of the wire 10 may be connected to a connection point of the floating unit 200, and the other end of the wire 10 may be wound around the drum 110 of the power conversion module 100.
  • the drum 110 may be provided as many as the number of wires 10 connected to the at least one floating unit 200.
  • each drum 110 may be disposed at different positions along the longitudinal direction of the power shaft 130.
  • each drum 110 may be formed in the same rotation direction in which the wire 10 is unwound so that one power shaft 130 provided with a plurality of drums 110 is rotated in a preset direction.
  • the power shafts 130 provided in each power conversion module 100 may have the same length, and each drum 110 may be disposed at a predetermined interval on the power shaft 130.
  • the wire 10 When the wire 10 is disposed at the first position in the longitudinal direction of the power shaft 130, the wire 10 may be wound on the drum 110 provided at the first position. It may be necessary to wind the wire 10 at a second position spaced from the first position, and the power shaft 130 may not extend to the second position.
  • the other power shaft 130 disposed at the second position is connected to the power shaft 130 disposed at the first position, and a wire (a) is connected to the drum 110 installed at the power shaft 130 facing the second position. 10) can be wound.
  • One-axis power converter of the present invention may include a coupling 190 for connecting a plurality of power conversion module (100). Each power conversion module 100 may be detachably connected by a couple.
  • the coupling 190 is a member connecting a plurality of rotation shafts, and a hole wound in a spring shape may be formed in the middle of the side surface.
  • a hole wound in a spring shape may be formed in the middle of the side surface.
  • the coupling 190 may connect the other end of the power shaft 130 provided in the other power conversion module 100 to one end of the power shaft 130 provided in the specific power conversion module 100.
  • the drum 110 may be added in units of lengths of the respective power shafts 130 by the coupling 190.
  • the second drum installed on the second power shaft is connected to the power shaft 130 from the first drum installed on the first power shaft. It may be spaced apart by a length.
  • the wire 10 extending from the floating unit 200 crosses perpendicularly to the power shaft 130 and may be wound around the drum 110 disposed closest to the crossing point.
  • the plurality of power shafts 130 connected to the coupling 190 and disposed on the coaxial are rotated together, and the shaft 91 of the generator 90 may be linked to at least one of the plurality of power shafts 130. .
  • the power shaft 130 is extended to a length of 1m.
  • a first drum provided on the first power shaft and the first power shaft may be used to connect the wire 10 in the first position.
  • the wire 10 is inclined to the first power shaft, and the first drum is normally wound even when the first drum is wound. Difficult to rotate
  • the second drum installed on the second power shaft is spaced 1 m corresponding to the length of the power shaft 130 from the first position. May be added to the location. Also, the second drum may face perpendicular to the wire 10 in the second position. Thus, the wire 10 in the second position can be wound around the second drum without difficulty.
  • a standardized power conversion module 100 in which a plurality of, for example, three drums 110 are installed on the power shaft 130 is connected by a coupling 190.
  • three wires 10 drawn from each floating unit 200 are connected to each power conversion module 100.
  • the power conversion module 100 of FIG. 10 is the same as the power conversion module 100 of FIG. 9. However, the floating unit 200 is formed much larger than FIG. 9. At this time, the interval between the first wire 11, the second wire 13, and the third wire 15 drawn out from the floating unit 200 is between the three drums 110 provided in one power conversion module 100. It can be larger than the interval. For example, an interval of each wire 10 may be 1 m, and an interval between each drum 110 may be 0,3 m. In this case, when three power conversion modules 100 provided with a power shaft 130 having a length of 1 m are connected, each wire 10 may be easily connected to the drum 110.
  • 3 power conversion module 100 may be connected by a coupling 190.
  • the first wire 11 may be wound around one of three first drums provided on the first power shaft of the first power conversion module 100. In this case, the remaining two of the three first drums provided on the first power shaft may be maintained in a state in which the wire 10 is not wound.
  • the second power shaft provided in the second power conversion module 100 may be connected to the first power shaft by the coupling 190.
  • one of the three second drums provided on the second power shaft may face perpendicular to the second wire 13 and may be wound around the second wire 13.
  • the other two of the three second drums provided on the second power shaft may be maintained in a state in which the wire 10 is not wound.
  • the third power shaft provided in the third power conversion module 100 may be connected to the second power shaft by the coupling 190.
  • one of the three third drums provided on the third power shaft may face perpendicular to the third wire 15 and may be wound around the third wire 15.
  • the other two of the three third drums provided on the third power shaft may be maintained in a state in which the wire 10 is not wound.
  • the first drum When the first wire 11 is pulled by the floating unit 200, the first drum is rotated in the forward direction a, and the coupling 190 causes the first power shaft, the second power shaft and the third power shaft to be the same. It can be rotated in the preset direction. Similarly, even if the second wire 13 is pulled to rotate the second drum in the forward direction a, or the third wire 15 is pulled to rotate the third drum in the forward direction a, each power shaft 130 is all in the same preset direction. Can be rotated together. Therefore, when the shaft 91 of the generator 90 is connected to at least one of the first power shaft, the second power shaft, and the third power shaft, the generator 90 may be normally driven.
  • FIG. 11 is a schematic diagram illustrating a power conversion module 100 according to another embodiment of the present invention.
  • one drum 110 may be installed on one power shaft 130.
  • the length of the power shaft 130 may be shorter than that of the plurality of drum 110 is installed.
  • the power shaft 130 according to the embodiment of FIG. 11 may have a length of 0.5 m.
  • a total of three power shafts 130 may be connected by a coupling 190.
  • the centrally arranged power shaft 130 may function only for the purpose of being simply connected to the other power shaft 130.
  • the coupling 190 may be used to extend to a length of 0.5m. If the 0.5 m long coupling 190 is applied, unnecessary power conversion module 100 may be excluded.
  • the coupling 190 of various lengths is provided according to the use environment, it may be advantageous to standardize the power conversion module 100.
  • a power conversion module 100 having a plurality of drums 110 installed on one power shaft 130 is standardized, or a power conversion module having one drum 110 installed on one power shaft 130.
  • the standardized power conversion module 100 may be applied to various environments according to the length selection of the coupling 190 connecting the respective power shafts 130.
  • 12 is a schematic diagram showing a one-axis power converter of the present invention applied to a floating wave power generator.
  • 13 is a plan view of the one-axis power converter applied to the floating wave power generator.
  • the power conversion module 100 may be installed at sea.
  • the power conversion module 100 may be installed in the floating unit 200 floating on the sea surface 50. This can be defined as a floating wave generator.
  • the one-axis power converter of the present invention may be particularly suitable for the floating wave power generator.
  • the generator 90 connected to the power conversion module 100 may also be installed in the floating unit 200.
  • the generator 90 and the power conversion module 100 installed in the floating unit 200 may be suspended in the sea together with the floating unit 200.
  • the wire 10 supporting the floating unit 200 does not need to extend from sea to land.
  • a transmission cable 80 may be installed that transmits the electricity produced by the generator 90 to the land.
  • an anchor 380 may be provided at one end of the wire 10 instead of the turning part 310 on the seabed.
  • the wire 10 connected to one end may pass through the connection point and may span the turning part 310.
  • the turning unit 310 may be installed in the floating unit 200 together with the generator 90 and the power conversion module 100 and floated together with the floating unit 200.
  • the other end of the wire 10 connected at one end to the anchor 380 is rotated in the same direction so that each drum 110 connected to each wire 10 is rotated in the same direction. It is good to enter.
  • the direction change unit 310 may be disposed on the same one axis of the power shaft 130.
  • the power conversion module 100 is preferably configured as simple as possible. Therefore, when the set number of wires 10 are installed in the floating unit 200, the power conversion module 100 is a single power shaft 130, as much as the number of wires 10 to the single power shaft 130 It is preferable to include a drum 110 is installed.
  • the power conversion module 100 mounted in the floating unit 200 may be formed in the same manner as in the embodiment of FIG. 9.

Abstract

본 발명이 1축 동력 변환 장치는 파도의 운동 에너지가 입력되며 와이어에 의해 바다에 계류되는 부유 유니트; 상기 와이어의 방향을 전환하는 방향 전환부; 상기 와이어의 장력을 발전기로 전달하는 동력 변환 모듈;을 포함하고, 상기 동력 변환 모듈은 상기 와이어가 감기는 드럼으로부터 상기 발전기가 연결된 동력축에 구동력을 전달할 수 있다.

Description

1축 동력 변환 장치
본 발명은 파도의 운동 에너지를 회전 운동 에너지로 변환하는 1축 동력 변환 장치에 관한 것이다.
에너지 소비가 급격하게 증가하고, 지구 온난화 등의 환경 문제가 늘어나면서, 환경 오염이 없는 신재생 에너지에 대한 관심이 높아지고 있다.
파도는 신재생 에너지원 중에서도 고밀도 에너지원이고, 하루 24시간 내내 발전 가능하기 때문에 주목받는 에너지원이지만, 연구개발은 1940년에야 개시되었다. 파력 발전은 다른 신재생 에너지에 비하여 시장 형성이 매우 늦은 편이다. 최근(2008년) 들어 비로소 상용화된 시스템이 등장할 정도이다.
파도의 운동 에너지는 매우 불규칙적이고 불균일하므로 발전기를 돌릴 수 있는 균일한 회전 운동 에너지로 변환될 필요가 있다.
본 발명은 와이어를 이용해 파도의 운동 에너지를 발전기로 전달하는 1축 동력 변환 장치를 제공하기 위한 것이다.
본 발명의 1축 동력 변환 장치는 파도의 운동 에너지가 입력되며 와이어에 의해 바다에 계류되는 부유 유니트; 상기 와이어의 방향을 전환하는 방향 전환부; 상기 와이어의 장력을 발전기로 전달하는 동력 변환 모듈;을 포함하고, 상기 동력 변환 모듈은 상기 와이어가 감기는 드럼으로부터 상기 발전기가 연결된 동력축에 구동력을 전달할 수 있다.
본 발명의 1축 동력 변환 장치는 파도에 따라 유동되는 부유 유니트에 연결된 와이어가 감기는 드럼, 드럼이 설치되는 단일의 동력축 또는 동축상에 배치되는 복수의 동력축을 이용해서 발전기를 돌릴 수 있다.
본 발명의 1축 동력 변환 장치는 단일의 동력축 또는 동축상에 배치되는 복수의 동력축에 드럼과 발전기가 링크되는 간소한 구조를 가지므로, 제조가 용이하고, 설치되는 부유 유니트의 개수에 맞춰 쉽게 확장될 수 있다.
본 발명의 1축 동력 변환 장치에 따르면, 동력 변환 모듈의 구조가 블록화 또는 모듈화되므로, 부유 유니트에 발전기, 동력 변환 모듈, 동력축, 드럼, 일방향 회전 부재가 설치되어 부유 유니트와 함께 부유되는 부유식 파력 발전 시스템이 구현될 수 있다.
도 1은 본 발명의 1축 동력 변환 장치를 나타낸 개략도이다.
도 2는 본 발명의 1축 동력 변환 장치를 나타낸 측면도이다.
도 3은 본 발명의 부유 유니트에 와이어가 연결되는 연결점을 나타낸 개략도이다.
도 4는 본 발명의 베이스 유니트에 방향 전환부가 형성된 위치를 나타낸 개략도이다.
도 5는 본 발명의 동력 변환 모듈의 일 실시예를 도시한 개략도이다.
도 6은 본 발명의 동력 변환 모듈의 다른 일 실시예를 도시한 개략도이다.
도 7은 본 발명의 동력 변환 모듈의 또 다른 일 실시예를 도시한 개략도이다.
도 8은 본 발명의 일방향 회전 부재를 나타낸 개략도이다.
도 9는 본 발명의 일 실시예에 따른 동력 변환 모듈을 나타낸 개략도이다.
도 10은 본 발명의 또 다른 실시예에 따른 동력 변환 모듈을 나타낸 개략도이다.
도 11은 본 발명의 또 다른 실시예에 따른 동력 변환 모듈을 나타낸 개략도이다.
도 12는 부유식 파력 발전 장치에 적용된 본 발명의 1축 동력 변환 장치를 나타낸 개략도이다.
도 13은 부유식 파력 발전 장치에 적용된 1축 동력 변환 장치의 평면도이다.
도 1은 본 발명의 1축 동력 변환 장치를 나타낸 개략도이고, 도 2는 본 발명의 1축 동력 변환 장치를 나타낸 측면도이다.
도시된 1축 동력 변환 장치는 부유 유니트(200), 방향 전환부(310), 동력 변환 모듈(100)을 포함할 수 있다.
부유 유니트(200)는 해수면(50) 또는 바다 속에 위치하며, 파도로 유발되는 해수면(50)의 변화에 따라 병진 운동하거나 회전 운동할 수 있다. 파도에 의한 부유 유니트(200)의 병진 운동 에너지 또는 회전 운동 에너지를 해상 또는 육상의 발전기(90)로 전달하는 다양한 방법이 존재할 수 있다. 본 발명에서는 플렉시블한 와이어(10)를 이용해서 파도에 의한 부유 유니트(200)의 운동 에너지를 발전기(90)로 전달하고 있다.
본 발명의 1축 동력 변환 장치가 적용된 발전 시스템은 다음과 같이 동작될 수 있다.
먼저, 파력을 부유 유니트(200)의 운동에너지로 흡수하고, 와이어(10)를 통해서 부유 유니트(200)의 운동 에너지를 발전기(90)로 전달할 수 있다.
발전기(90)는 와이어(10)를 통해 전달된 운동 에너지를 전기 에너지로 변환할 수 있다.
파력 에너지를 기계 에너지로 1차적으로 흡수하는 부유 유니트(200)는 플렉시블한 와이어(10)에 의해 해상에 계류되고 부유되기 때문에 파도에 움직임에 따라 상하 좌우 또는 회전 운동을 할 수 있다.
와이어(10)의 일단부는 부유 유니트(200)에 연결될 수 있다. 부유 유니트(200)로부터 연장되는 와이어(10)는 부유 유니트(200)로부터 이격된 위치, 예를 들어 해저에 마련된 베이스 유니트(300)를 통과해서 해상, 육상에 설치된 발전기(90)에 연결되거나, 방파제(30) 등의 해상 구조물에 설치된 발전기(90)에 연결될 수 있다.
베이스 유니트(300)에는 부유 유니트(200)로부터 연장된 와이어(10)가 걸쳐지는 방향 전환부(310)가 복수로 마련될 수 있다. 방향 전환부(310)는 부유 유니트(200)로부터 연장되는 와이어(10)의 방향을 전환시킬 수 있다. 일예로, 방향 전환부(310)는 도르레를 포함할 수 있다. 와이어(10)가 걸쳐지는 방향 전환부(310)는 베이스 유니트(300)에 설치되지 않고 해저에 직접 고정되거나 부유 유니트(200)에 고정될 수 있다.
도 3은 본 발명의 부유 유니트(200)에 와이어(10)가 연결되는 연결점을 나타낸 개략도이다.
부유 유니트(200)에는 평면상으로 서로 다른 위치에 3개 이상의 와이어(10)가 연결될 수 있다. 와이어(10)의 방향을 전환하는 방향 전환부(310) 역시 와이어(10)의 개수만큼 복수로 마련될 수 있다.
부유 유니트(200)의 다자유도 운동 에너지를 발전기(90)로 전달하기 위해, 부유 유니트(200)에 와이어(10)가 고정되거나 걸쳐지는 연결점(d, e, f)은 서로 이격될 수 있다.
연결점(d, e, f)이 서로 이격됨으로써, 부유 유니트(200)는 x축/y축/z축 방향의 병진 운동 또는 x축/y축/z축을 중심으로 한 회전 운동 모두에 대한 병진 또는 회전 운동 에너지를 와이어(10)에 전달할 수 있다. 바람직하게는 3개 이상의 연결점(d, e, f)이 공통의 일직선 상에 위치하지 않는 것이 다자유도 운동을 흡수하고 와이어(10)로 전달하는데 유리할 수 있다.
본 발명의 1축 동력 변환 장치는 복수의 와이어(10) 및 연결점 배치 구조는 고효율 발전, 다자유도 발전, 발전량의 항상성, 환경 적응성, 파도 변동 대응성을 획기적으로 높일 수 있다.
부유 유니트(200)에 연결된 복수의 와이어(10)가 정상적으로 운동 에너지를 전달하기 위해서는 방향 전환부(310)의 위치도 중요할 수 있다.
도 3 및 도 4에 도시된 바와 같이, 베이스 유니트(300)에서 와이어(10)가 걸쳐지는 방향 전환부(310)가 마련된 위치 a, b, c를 원호로 갖는 가상의 원이 폐곡선 K로 정의될 수 있다. 부유 유니트(200)에서 와이어(10)가 연결되는 연결점(d, e, f)을 원호로 갖는 가상의 원이 페곡선 G로 정의될 수 있다. 폐곡선 K의 지름을 u, 폐곡선 G의 지름을 v라고 한다.
이때, 지름 u와 지름 v가 다르면, 한 와이어(10)가 장력을 받을 때 다른 와이어(10)는 장력이 해소될 수 있다. 따라서, 장력이 교대로 발생되므로 부유 유니트(200)의 하나의 운동 주기에 대해서 서로 다른 와이어(10)가 에너지를 흡수할 수 있다.
도 5는 본 발명의 동력 변환 모듈의 일 실시예를 도시한 개략도이다.
동력 변환 모듈(100)은 베이스 유니트(300) 또는 방향 전환부(310)를 통과한 와이어(10)의 장력을 발전기(90)로 전달할 수 있다. 동력 변환 모듈(100)은 와이어(10)의 장력을 통해 전달된 부유 유니트(200)의 운동 에너지를 발전기(90)의 구동에 필요한 구동 에너지로 변환할 수 있다.
본 발명의 1축 동력 변환 장치는 파력을 이용해서 발전기(90)를 돌리고 전기 에너지를 생산하는 발전 시스템에 적용될 수 있다. 따라서, 도 5 및 도 6에 도시된 것과 같이 동력 변환 모듈(100)의 출력단으로서 발전기(90)의 축(91)과 동력축(130)은 단일한 공통의 축이 될 수 있다. 한편, 도 7에 도시된 것과 같이 드럼(110)이 연결된 동력축(130)은 기어(미도시) 또는 커플링(190) 등을 이용해 발전기(90)의 축(91)에 연결되고 발전기(90)의 축(91)과 함께 회전되도록 형성될 수 있다.
일 예로, 동력 변환 모듈(100)은 부유 유니트(200)를 통과한 와이어(10)가 감기는 드럼(110), 드럼(110)에 의해 회전되는 동력축(130)을 포함할 수 있다. 동력 변환 모듈(100)은 와이어(10)가 감기는 드럼(110)으로부터 발전기(90)가 연결된 동력축(130)에 구동력을 전달할 수 있다. 구체적으로, 동력 변환 모듈(100)은 드럼(110)이 설치되는 단일의 동력축(130) 또는 동축상에 배치되는 복수의 동력축(130)을 이용해서 발전기(90)를 돌릴 수 있다.
드럼(110)은 외주면에 와이어(10)가 감기는 원통 또는 원기둥 형상으로 형성될 수 있다. 드럼(110)은 와이어(10)가 풀리는 정방향(ⓐ) 및 와이어(10)가 감기는 역방향(ⓑ)으로 회전 가능하게 형성될 수 있다. 다시 말해, 드럼(110)은 시계 방향으로도 회전 가능하고, 반시계 방향으로도 회전 가능 형성될 수 있다. 도 5 내지 7에는 반시계 방향이 정방향 ⓐ이고, 시계 방향이 역방향 ⓑ인 실시예가 나타나고 있다.
파력에 의해 부유 유니트(200)가 x축/y축/z축 방향으로 병진 운동되거나 x축/y축/z축을 중심으로 하여 회전 운동되면, 와이어(10)의 장력은 방향 전환부(310)를 거쳐 드럼(110)에 인가될 수 있다. 와이어(10)의 장력에 의해 드럼(110)은 와이어(10)가 풀리는 정방향 ⓐ로 회전될 수 있다.
파도가 지나가서 와이어(10)의 장력이 해제되면 다음 파도에 대비하기 위해 와이어(10)는 드럼(110)에 되감길 수 있다. 드럼(110)은 와이어(10)를 되감기 위해 와이어(10)가 감기는 역방향 ⓑ로 회전될 수 있다. 드럼(110)을 역방향 ⓑ로 회전시키기 위해 동력 변환 모듈(100)에는 복원 부재(미도시)가 마련될 수 있다. 복원 부재는 드럼(110)을 역방향 ⓑ로 회전시키는 태엽, 스프링, 무게추 등을 포함할 수 있다.
드럼(110)에 의해 회전되는 동력축(130)은 양방향으로 회전 가능한 드럼(110)과 다르게 미리 설정된 프리셋 방향 ⓒ로만 회전 가능하게 형성될 수 있다.
동력축(130)은 발전기(90)의 축(91)에 연결되는 동력 변환 모듈(100)의 출력단이 될 수 있다. 필요에 따라, 발전기(90)의 축(91)과 동력축(130) 사이에는 회전 방향을 변환하는 방향 변환부(미도시)가 마련되거나, 발전기(90)의 축(91)과 동력축(130)의 회전비를 조절하는 감속기, 가속기 등의 속도 조절부(미도시)가 마련될 수 있다.
효율적인 전기 에너지의 생산 및 발전기(90)의 보호를 위해 발전기(90)의 축(91)은 특정 방향으로만 회전되는 것이 좋다. 따라서, 발전기(90)의 축(91)에 연결될 수 있는 동력축(130)은 미리 설정된 프리셋 방향 ⓒ로만 회전되는 것이 좋다. 프리셋 방향 ⓒ는 드럼(110)의 회전 방향 중 하나이거나, 드럼(110)의 회전축과 다른 축을 중심으로 한 회전 방향이라도 무방하다.
동력 변환 모듈(100)의 구조를 간소화시키기 위해 프리셋 방향 ⓒ는 드럼(110)의 정방향 ⓐ과 동일한 것이 유리하다.
파력 에너지가 발전기(90)에 전달되도록, 동력축(130)은 파력으로 인해 유발된 와이어(10)의 장력에 의해 드럼(110)이 정방향 ⓐ로 회전될 때, 드럼(110)에 구속된 상태로 프리셋 방향 ⓒ로 회전될 수 있다. 반대로, 동력축(130)은 복원 부재에 의해 드럼(110)이 역방향 ⓑ로 회전될 때, 드럼(110)과의 구속이 해제될 수 있다. 동력축(130)은 드럼(110)이 역방향 ⓑ로 회전되더라도, 드럼(110)과의 구속이 해제된 상태이므로, 회전 중이던 프리셋 방향 ⓒ 그대로 회전될 수 있다.
도 5에는 복원 부재의 일 실시예가 도시되며, 이에 따르면, 드럼(110)에 연결되며, 드럼(110)에 복원력을 작용하는 복원 부재가 도시된다. 도 5와 같이 드럼(110)에 연결되는 복원 부재는 태엽 스프링(150), 코일 스프링(420), 무게추 등이 될 수 있다. 와이어(10)의 장력에 의해 드럼(110)이 정방향 ⓐ로 회전될 때, 복원 부재(420)는 드럼(110)을 역방향 ⓑ으로 회전시켜 와이어(10)를 드럼(110)에 되감는 기능을 한다.
도 6은 본 발명의 동력 변환 모듈의 다른 일 실시예를 도시한 개략도이다. 도 6에 도시된 복원 부재는 코일 스프링(420), 무게추 등이 될 수 있다. 도시된 복원 부재는 와이어(10)의 일단부에 연결된다. 와이어(10)의 일단부는 부유 유니트(200)에 연결되며, 와이어(10)의 타단부(430)는 코일 스프링(420)을 포함하는 복원 부재에 연결되고, 와이어(10)의 중간부는 드럼(110)에 권취된다. 코일 스프링(420)을 포함하는 복원 부재 및 부유 유니트(200)는 와이어(10)의 양단에서 와이어(10)를 잡아당긴다. 부유 유니트(200)가 와이어(10)를 잡아당기는 힘이 더 크면, 드럼(110)은 정방향 ⓐ로 회전되며 동력축(130)을 구동한다. 파력이 해제되어 부유 유니트(200)보다 복원 부재가 와이어(10)를 잡아당기는 힘이 더 크면, 드럼(110)은 역방향 ⓑ로 회전되면서 와이어(10)를 드럼(110)에 되감는다. 이때, 드럼(110)은 동력축(130)과의 연결이 해제되며, 동력축(130)을 겉돈다.
도시된 바에 의하면, 하나의 와이어(10)의 양단에 부유 유니트(200) 및 복원 부재가 연결되므로, 별도의 와이어에 부유 유니트(200) 및 복원 부재가 연결되는 경우에 비하여, 부유 유니트(200)에서 작용하는 파력이 직접적으로 드럼(110)에 전달되고, 복원 부재의 복원력이 손실없이 와이어(10)에 직접 전달되는 장점이 있다.
도 7은 본 발명의 동력 변환 모듈(100)을 나타낸 개략도이다. 도 7에는 플라이휠 등의 관성부(170)와 커플링(190)을 구비한 실시예가 도시된다.
도 5 내지 도 7에 따르면, 파도에 의해 유발된 와이어(10)의 장력을 전달받기 위해 드럼(110)과 동력축(130)이 연결되면서, 드럼(110)의 양방향 회전과 동력축(130)의 프리셋 방향 회전을 만족시키기 위해 동력 변환 모듈(100)에는 일방향 회전 부재(150)가 마련될 수 있다.
일방향 회전 부재(150)는 드럼(110)과 동력축(130)의 사이에 개재될 수 있다.
일 예로, 일방향 회전 부재(150)는 원웨이 클러치(one way clutch)를 포함할 수 있다. 드럼(110)은 부유 유니트(200)에 의해 와이어(10)가 잡아당겨지면 정방향 ⓐ로 회전되고, 부유 유니트(200)가 와이어(10)를 잡아당기는 힘이 해제되면 와이어(10)가 감기도록 역방향 ⓑ로 회전될 수 있다. 이때, 동력축(130)은 일방향 회전 부재(150)에 의해 드럼(110)의 회전축이 될 수 있다. 드럼(110)의 회전축이 되는 동력축(130)은 일방향 회전 부재(150)에 의해 드럼(110)의 회전 방향에 상관없이 정방향 ⓐ로만 회전될 수 있다.
도 8은 본 발명의 일방향 회전 부재(150)를 나타낸 개략도이다.
일방향 회전 부재(150)에는 드럼(110) 또는 동력축(130)에 구속되는 구속부(151)가 마련될 수 있다.
구속부(151)는 드럼(110)의 정방향 회전시 드럼(110)과 동력축(130)을 구속하고, 드럼(110)의 역방향 회전시 드럼(110)과 동력축(130)의 구속을 해제할 수 있다.
일 예로, 일방향 회전 부재(150)는 중공 파이프 형상으로 형성될 수 있다. 중공에는 동력축(130)이 고정되게 끼워질 수 있다. 일방향 회전 부재(150)의 외주면에는 방사 방향을 따라 돌출되거나 함몰되는 래치(latch) 형상의 구속부(151)가 마련될 수 있다. 구속부(151)에 대응하여 드럼(110)의 내주면에는 일방향으로 기울어진 일방향 기어(111)가 형성될 수 있다.
일방향 회전 부재(150)에는 구속부(151)를 방사 방향으로 돌출시키는 탄성 부재(153)가 마련될 수 있다. 탄성 부재(153)에 의해 구속부(151)의 단부는 드럼(110)의 내주면에 형성된 일방향 기어(111)에 걸리는 상태가 유지될 수 있다.
드럼(110)이 정방향 ⓐ를 따라 회전되면 구속부(151)의 단부는 일방향 기어(111)에 걸린 상태가 유지되므로, 일방향 회전 부재(150)도 정방향 ⓐ를 따라 회전될 수 있다. 동력축(130)은 일방향 회전 부재(150)에 고정된 상태이므로 일방향 회전 부재(150)와 함께 회전될 수 있다. 이때, 동력축(130)의 회전 방향에 해당되는 프리셋 방향 ⓒ는 정방향 ⓐ와 동일할 수 있다.
드럼(110)이 역방향 ⓑ를 따라 회전되면 구속부(151)의 단부는 일방향 기어(111)에 슬라이딩될 수 있다. 따라서, 드럼(110)이 역방향 ⓑ를 따라 회전되더라도 일방향 회전 부재(150)는 정방향 ⓐ로 회전되는 상태를 유지할 수 있다. 따라서, 일방향 회전 부재(150)에 고정된 동력축(130) 역시 드럼(110)의 역방향 회전에도 불구하고 정방향 ⓐ를 따라 지속적으로 회전될 수 있다.
한편, 드럼(110)의 정방향 회전시 드럼(110)과 동력축(130)을 구속하고 드럼(110)의 역방향 회전시 드럼(110)과 동력축(130)의 구속을 해제하는 구속부(151)의 동작 모드를 제1 모드 ①이라 정의할 때, 구속부(151)는 제1 모드와 다른 동작 모드로도 동작될 수 있다. 구속부(151)가 복수의 동작 모드를 갖는 경우 동력 변환 모듈(100)에는 일방향 회전 부재(150)를 제어하는 모드 전환부(160)가 마련될 수 있다.
일 예로, 구속부(151)는 모드 전환부(160)에 의해 제1 모드 ① 또는 제2 모드 ②로 동작될 수 있다. 이때, 제2 모드는 드럼(110)의 회전 방향에 상관없이 구속부(151)가 드럼(110)과 동력축(130)의 구속을 해제하는 동작 모드일 수 있다.
모드 전환부(160)는 제2 모드를 구현하기 위해 구속부(151)를 방사 방향으로 돌출시키는 스프링 등의 탄성 부재(153) 또는 구속부(151)를 일방향 회전 부재(150)에 함몰시킬 수 있다. 제2 모드에 따르면, 모드 전환부(160)에 의해 탄성 부재(153) 자체가 일방향 회전 부재(150)의 외면에 대해 함몰되거나, 구속부(151)가 강제로 일방향 회전 부재(150)에 함몰된 상태가 유지될 수 있다.
모드 전환부(160)에 의해 구속부(151)가 일방향 회전 부재(150)에 함몰되면, 드럼(110)의 회전 방향에 상관없이 구속부(151)는 드럼(110)의 일방향 기어(111)에 맞물리지 못하고 헛돌게 된다. 제2 모드를 이용해 태풍과 같은 자연 재해로부터 동력 변환 모듈(100)과 발전기(90)를 보호할 수 있다. 또한, 모드 전환부(160)는 평소 제1 모드로 구속부(151)를 동작시키고, 동력 변환 모듈(100)의 유지 보수 또는 발전기(90)의 유지 보수시 제2 모드로 구속부(151)를 동작시킬 수 있다.
와이어(10)의 장력에 의해 드럼(110)이 정방향 ⓐ를 따라 회전하는 속도는 일정한 것이 좋다. 그러나, 와이어(10)의 장력을 유발하는 파력은 불균일하므로, 드럼(110)은 불균일한 힘에 의해 정방향 ⓐ로 회전될 수밖에 없다. 동력축(130)은 정방향 ⓐ로 회전되는 드럼(110)에 의해 프리셋 방향 ⓒ로 회전될 수 있다. 불균일하게 회전되는 드럼(110)에 의해, 발전기(90)에 연결된 동력축(130) 역시 불균일한 회전 속도로 회전될 수 있다. 발전기(90) 축의 회전 속도가 불균일하면 발전기(90)가 손상되기 쉽고, 고품질의 전기 에너지를 획득하기 어렵다. 따라서, 발전기(90) 축의 회전 속도를 균일하게 유지하기 위해 동력축(130)의 회전 속도를 균일하게 유지하는 방안이 필요하다.
불균일한 힘에도 불구하고 동력축(130)의 회전 속도를 균일하게 유지하기 위해 동력 변환 모듈(100)에는 관성부(170)가 마련될 수 있다. 관성부(170)는 동력축(130)의 프리셋 방향의 회전 관성을 증가시킬 수 있다. 또는 관성부(170)는 와이어(10)의 타단부 또는 동력축(130)에 설치되고 동력축(130)의 회전 속도를 설정 범위 내에서 유지시킬 수 있다.
일 예로, 도 1에 도시된 바와 같이 동력축(130)에 플라이휠이 설치되고, 동력축(130)과 플라이휠이 함께 회전될 수 있다. 플라이휠은 관성부(170)에 해당될 수 있다. 관성부(170)의 예를 들면, 플라이휠, 태엽, 무게추, 스프링 등 어떤 형태라도 무방하며, 동력축(130)의 회전 관성을 증가시키는 부재면 충분하다.
와이어(10)의 장력에 의해 드럼(110)이 정방향 ⓐ로 회전되면, 동력축(130)은 일방향 회전 부재(150)에 의해 프리셋 방향 ⓒ로 회전될 수 있다. 이때, 동력축(130)의 모멘트는 플라이휠에 의해 증가되며, 증가된 모멘트로 인해 장력이 급작스럽게 인가되더라도 동력축(130)은 설정 속도 범위를 벗어나지 않는 범위 내에서 천천히 회전될 수 있다. 그리고, 플라이휠에 의해 증가된 모멘트는 플라이휠의 관성력으로 저장된 상태가 된다.
와이어(10)의 장력이 해제되면, 드럼(110)은 복원 부재에 의해 역방향 ⓑ로 회전되면서 와이어(10)를 감을 수 있다. 이때, 동력축(130)은 플라이휠 및 일방향 회전 부재(150)에 의해 프리셋 방향 ⓒ로 회전되는 상태가 설정 기간동안 유지될 수 있다. 이때의 설정 기간은 특정 파도가 부유 유니트(200)를 지나간 후 다음 파도가 인가될 때까지의 기간일 수 있다. 플라이휠이 없다면 동력축(130)은 설정 기간을 만족하기 전에 멈출 수 있다. 그러나, 동력축(130)은 플라이휠에 저장된 모멘트에 해당되는 관성력에 의해 관성이 증가된 상태이므로, 설정 기간 동안 지속적으로 회전될 수 있다.
플라이휠 등의 관성부(170)에 따르면, 동력축(130)의 급작스런 고속 회전이 방지되고, 동력축(130)의 극저속 회전이 방지될 수 있다. 따라서, 동력축(130)의 회전 속도는 발전기(90)의 동작에 적합한 설정 범위 내에서 적절하게 유지될 수 있다.
또한, 플라이휠을 이용할 경우 관성부(170)의 설치 공간을 최소화할 수 있다. 또한, 복수의 와이어(10)가 동력 변환 모듈(100)에 연결된 경우 각 와이어(10) 간의 간섭을 줄일 수 있다.
도 9는 본 발명의 일 실시예에 따른 동력 변환 모듈(100)을 나타낸 개략도이다. 도 10은 본 발명의 다른 실시예에 따른 동력 변환 모듈(100)을 나타낸 개략도이다.
해상에 설치되는 부유 유니트(200)의 크기, 개수는 설치 환경에 따라 달라질 수 있다. 일 예로, 일정 지역에서는 도 9과 같이 복수의 소형 부유 유니트가 적합할 수 있고, 다른 지역에서는 도 10과 같이 단일의 대형 부유 유니트가 적합할 수 있다. 따라서, 부유 유니트(200)와 동력 변환 모듈(100)을 연결하는 와이어(10)의 간격 또는 개수 역시 다양하게 변할 수 있다.
와이어(10)의 다양한 간격은 해저면(70)에 설치되는 보조 방향 전환부(390)에 의해 일부 해소될 수 있다. 보조 방향 전환부(390)는 베이스 유니트(300)와 동력 변환 모듈(100) 사이에 마련될 수 있으며, 동력 변환 모듈(100)로 입력되는 와이어(10)의 간격과 방향을 규격화할 수 있다. 그러나, 보조 방향 전환부(390)를 적용하더라도 와이어(10)의 간격 문제는 근복적으로 해결되기 어렵다. 또한, 장소마다 달라지는 와이어(10)의 설치 개수에 맞춰 보조 방향 전환부(390)를 적용하는 것도 어렵다. 따라서, 설치 환경에 따라 서로 다른 간격으로 배치되는 드럼(110)이 마련될 필요가 있다. 또한, 설치 환경에 따라 동력축(130)에 설치되는 드럼(110)의 개수가 변경될 필요가 있다. 다시 말해, 설치 환경에 따라 동력 변환 모듈(100)은 서로 다른 규격으로 제작되어야 한다.
그러나, 서로 다른 규격으로 제작된 동력 변환 모듈(100)은 호환성이 낮은 문제가 있고, 설치 방법이 규격마다 달라지므로 설치 및 유지 보수가 어렵게 된다. 호환성을 보장하고, 설치 및 유지 보수의 편의를 위해 동력 변환 모듈(100)은 모두 동일하게 제작되는 것이 좋다. 다시 말해, 동력 변환 모듈(100)은 소위 규격화될 수 있다.
동력 변환 모듈(100)의 규격화를 위한 방안을 살펴보도록 한다.
와이어(10)의 일단부는 부유 유니트(200)의 연결점에 연결되고, 와이어(10)의 타단부는 동력 변환 모듈(100)의 드럼(110)에 감길 수 있다. 이때, 드럼(110)은 적어도 하나의 부유 유니트(200)에 연결된 와이어(10)의 개수만큼 마련될 수 있다. 그리고, 각 드럼(110)은 동력축(130)의 길이 방향을 따라 서로 다른 위치에 배치될 수 있다. 또한, 복수의 드럼(110)이 설치된 1개의 동력축(130)이 프리셋 방향으로 회전되도록, 각 드럼(110)은 와이어(10)가 풀리는 회전 방향이 모두 동일하게 형성될 수 있다.
각 동력 변환 모듈(100)에 마련된 동력축(130)은 모두 동일한 길이를 갖고, 각 드럼(110)은 동력축(130)에 기설정된 간격으로 배치될 수 있다. 동력축(130)의 길이 방향 상으로 와이어(10)가 제1 위치에 배치될 때, 제1 위치에 마련된 드럼(110)에 와이어(10)를 감을 수 있다. 제1 위치로부터 이격된 제2 위치에 와이어(10)를 감을 필요가 있고, 동력축(130)이 제2 위치까지 연장되지 않는 경우가 있을 수 있다. 이때, 제1 위치에 배치된 동력축(130)에 제2 위치에 배치된 다른 동력축(130)을 연결하고, 제2 위치에 대면되는 동력축(130)에 설치된 드럼(110)에 와이어(10)를 감을 수 있다.
본 발명의 1축 동력 변환 장치는 복수의 동력 변환 모듈(100)을 연결하는 커플링(190)을 포함할 수 있다. 각각의 동력 변환 모듈(100)은 커플리에 의해 착탈 가능하게 연결될 수 있다.
커플링(190)은 복수의 회전축을 연결하는 부재로, 측면 중간에 스프링 형상으로 와인딩되는 홀이 형성된 것일 수 있다. 복수의 회전축을 연결할 때 현실적으로 각 회전축은 완전하게 평행하게 연결되기 힘들다. 따라서, 각 회전축은 서로 미세하게 기울어진 상태로 연결되게 되는데, 강체의 연결 부재에 의해 각 회전축이 연결되면 각종 기구적 문제가 발생될 수 있다. 그러나, 커플링(190)은 중간에 형성된 스프링 형상의 홀로 인해 회전력은 그대로 복수의 회전축에 전달하면서, 각 회전축이 평행하게 연결되지 못하는 문제를 해소할 수 있다.
커플링(190)은 특정 동력 변환 모듈(100)에 마련된 동력축(130)의 일단에 다른 동력 변환 모듈(100)에 마련된 동력축(130)의 타단을 연결할 수 있다. 커플링(190)에 의해 드럼(110)은 각 동력축(130)의 길이 단위로 추가될 수 있다. 예를 들어, 제1 동력축과 제2 동력축이 커플링(190)에 의해 연결될 때, 제2 동력축에 설치된 제2 드럼은 제1 동력축에 설치된 제1 드럼으로부터 동력축(130)의 길이만큼 이격되어 배치될 수 있다.
부유 유니트(200)로부터 연장되는 와이어(10)는 동력축(130)에 수직하게 교차되고, 교차 지점에 가장 가깝게 배치된 드럼(110)에 감길 수 있다. 커플링(190)으로 연결되고 동축 상에 배치된 복수의 동력축(130)은 함께 회전되며, 복수의 동력축(130) 중 적어도 하나에는 발전기(90)의 축(91)이 링크될 수 있다.
일 예로, 동력축(130)이 1m의 길이로 연장된 경우를 가정한다.
제1 위치의 와이어(10)를 연결하기 위해 제1 동력축과 제1 동력축에 마련된 제1 드럼이 이용될 수 있다. 제1 위치로부터 1m 이격된 제2 위치의 와이어(10)를 제1 동력축에 연결하려면 와이어(10)는 제1 동력축에 기울어진 상태가 되고, 제1 드럼에 감기더라도 제1 드럼을 정상적으로 회전시키기 어렵다.
이때, 커플링(190)을 이용해서 제2 동력축을 제1 동력축에 연결하면, 제2 동력축에 설치된 제2 드럼은 제1 위치로부터 동력축(130)의 길이에 해당하는 1m만큼 이격된 위치에 추가된 상태가 될 수 있다. 또한, 제2 드럼은 제2 위치의 와이어(10)에 수직하게 대면될 수 있다. 따라서, 제2 위치의 와이어(10)는 제2 드럼에 무리없이 감길 수 있다.
도 9에는 동력축(130)에 복수, 예를 들어 3개의 드럼(110)이 설치된 규격화된 동력 변환 모듈(100)이 커플링(190)에 의해 연결되고 있다. 그리고, 각 동력 변환 모듈(100)마다 각 부유 유니트(200)로부터 인출된 와이어(10)가 3개씩 연결되고 있다.
도 10의 동력 변환 모듈(100)은 도 9의 동력 변환 모듈(100)과 동일하다. 다만, 부유 유니트(200)가 도 9보다 훨씬 크게 형성되고 있다. 이때, 부유 유니트(200)로부터 인출되는 제1 와이어(11), 제2 와이어(13), 제3 와이어(15) 간의 간격은 하나의 동력 변환 모듈(100)에 마련된 3개의 드럼(110) 간의 간격보다 클 수 있다. 일 예로, 각 와이어(10)의 간격은 1m일 수 있으며, 각 드럼(110) 간의 간격은 0,3m일 수 있다. 이 경우, 1m 길이의 동력축(130)이 마련된 3개의 동력 변환 모듈(100)이 연결되면 각 와이어(10)를 손쉽게 드럼(110)에 연결할 수 있다.
예를 들어, 제1 와이어(11), 제2 와이어(13), 제3 와이어(15)를 연결하기 위해 동일한 규격의 제1 동력 변환 모듈(100), 제2 동력 변환 모듈(100), 제3 동력 변환 모듈(100)이 커플링(190)에 의해 연결될 수 있다.
제1 동력 변환 모듈(100)의 제1 동력축에 마련된 3개의 제1 드럼 중 하나에 제1 와이어(11)가 감길 수 있다. 이때, 제1 동력축에 마련된 3개의 제1 드럼 중 나머지 두개는 와이어(10)가 감기지 않는 상태가 유지될 수 있다.
커플링(190)에 의해 제2 동력 변환 모듈(100)에 마련된 제2 동력축이 제1 동력축에 연결될 수 있다. 이때, 제2 동력축에 마련된 3개의 제2 드럼 중 하나는 제2 와이어(13)에 수직하게 대면되고, 제2 와이어(13)에 감길 수 있다. 제2 동력축에 마련된 3개의 제2 드럼 중 나머지 두개는 와이어(10)가 감기지 않는 상태가 유지될 수 있다.
커플링(190)에 의해 제3 동력 변환 모듈(100)에 마련된 제3 동력축이 제2 동력축에 연결될 수 있다. 이때, 제3 동력축에 마련된 3개의 제3 드럼 중 하나는 제3 와이어(15)에 수직하게 대면되고, 제3 와이어(15)에 감길 수 있다. 제3 동력축에 마련된 3개의 제3 드럼 중 나머지 두개는 와이어(10)가 감기지 않는 상태가 유지될 수 있다.
부유 유니트(200)에 의해 제1 와이어(11)가 당겨지면 제1 드럼이 정방향 ⓐ로 회전되고, 커플링(190)에 의해 제1 동력축, 제2 동력축 및 제3 동력축이 모두 동일한 프리셋 방향으로 회전될 수 있다. 마찬가지로, 제2 와이어(13)가 당겨져서 제2 드럼이 정방향 ⓐ로 회전되거나, 제3 와이어(15)가 당겨져서 제3 드럼이 정방향 ⓐ로 회전되더라도 각 동력축(130)은 모두 동일한 프리셋 방향으로 함께 회전될 수 있다. 따라서, 제1 동력축, 제2 동력축, 제3 동력축 중 적어도 하나에 발전기(90)의 축(91)이 연결되면, 발전기(90)는 정상적으로 구동될 수 있다.
도 9 및 도 10의 실시예에 따르면, 동일 규격의 동력 변환 모듈(100)만 복수로 마련되면 다양한 규격의 부유 유니트(200)로부터 인출된 와이어(10)가 연결될 수 있음을 알 수 있다.
도 11은 본 발명의 또다른 실시예에 따른 동력 변환 모듈(100)을 나타낸 개략도이다.
도 11에 도시된 동력 변환 모듈(100)에 따르면, 하나의 동력축(130)에 하나의 드럼(110)이 설치될 수 있다. 대신 동력축(130)의 길이가 복수의 드럼(110)이 설치된 것과 비교하여 짧게 형성될 수 있다. 일 예로, 도 11의 실시예에 따른 동력축(130)은 0.5m의 길이를 가질 수 있다.
제1 와이어(11)와 제2 와이어(13)가 1m 이격된 경우 제1 와이어(11)와 제2 와이어(13)에 수직하게 되면되는 드럼(110)을 제공하기 위해 총 3개의 동력축(130)이 커플링(190)에 의해 연결될 수 있다. 이렇게 되면 가운데 배치된 동력축(130)은 단순히 다른 동력축(130)에 연결되기 위한 용도로만 기능할 수 있다. 이런 경우 불필요한 동력 변환 모듈(100)을 배제하기 위해 커플링(190)은 0.5m의 길이로 연장되는 것이 이용될 수 있다. 0.5m 길이의 커플링(190)이 적용되면 가운데 불필요한 동력 변환 모듈(100)이 배제될 수 있다.
사용 환경에 따라 다양한 길이의 커플링(190)이 마련되면, 동력 변환 모듈(100)의 규격화에 유리할 수 있다. 일 예로, 하나의 동력축(130)에 복수의 드럼(110)이 설치된 동력 변환 모듈(100)이 규격화되어 제작되거나, 하나의 동력축(130)에 하나의 드럼(110)이 설치된 동력 변환 모듈(100)이 규격화되어 제작되더라도 각 동력축(130)을 연결하는 커플링(190)의 길이 선택에 따라, 다양한 환경에 규격화된 동력 변환 모듈(100)을 적용할 수 있다.
도 12는 부유식 파력 발전 장치에 적용된 본 발명의 1축 동력 변환 장치를 나타낸 개략도이다. 도 13은 부유식 파력 발전 장치에 적용된 1축 동력 변환 장치의 평면도이다.
동력 변환 모듈(100)은 해상에 설치되어도 무방하다. 일 예로, 동력 변환 모듈(100)은 해수면(50)에 부유하는 부유 유니트(200)에 설치될 수 있다. 이를 부유식 파력 발전 장치라 정의할 수 있다. 본 발명의 1축 동력 변환 장치는 부유식 파력 발전 장치에 특히 적합할 수 있다.
부유식 파력 발전 장치에서는 동력 변환 모듈(100)에 연결되는 발전기(90) 역시 부유 유니트(200)에 설치될 수 있다. 부유 유니트(200)에 설치된 발전기(90) 및 동력 변환 모듈(100)은 부유 유니트(200)와 함께 바다에 부유될 수 있다. 본 실시예에 따르면, 부유 유니트(200)를 지지하는 와이어(10)가 해상으로부터 육지까지 연장될 필요가 없다. 대신, 발전기(90)에서 생산된 전기를 육지로 전송하는 전송 케이블(80)이 설치될 수 있다.
도 12의 도시된 부유식 파력 발전 장치에서는 해저에 방향 전환부(310) 대신 와이어(10)의 일단이 고정되는 앵커(380)가 마련될 수 있다. 이때, 일단이 연결된 와이어(10)는 연결점을 통과해서 방향 전환부(310)에 걸쳐질 수 있다.
방향 전환부(310)는 발전기(90) 및 동력 변환 모듈(100)과 함께 부유 유니트(200)에 설치되고 부유 유니트(200)와 함께 부유될 수 있다.
각 와이어(10)에 연결된 각 드럼(110)이 모두 동일한 방향으로 회전되도록, 일단이 앵커(380)에 연결된 와이어(10)의 타단은 동력축(130)을 기준으로 동일한 일측으로부터 드럼(110)으로 입력되는 것이 좋다.
복수의 와이어(10)가 동력축(130)의 동일한 일측으로부터 입력되도록, 방향 전환부(310)는 동력축(130)의 동일한 일축에 모두 배치될 수 있다.
부유 유니트(200)의 부력이 훼손되지 않도록, 동력 변환 모듈(100)은 최대한 간소한 구성으로 구성되는 것이 좋다. 따라서, 부유 유니트(200)에 설정 개수의 와이어(10)가 설치되는 경우, 동력 변환 모듈(100)은 단일의 동력축(130), 와이어(10)의 개수만큼 단일의 동력축(130)에 설치되는 드럼(110)을 포함하는 것이 좋다. 일 예로, 부유 유니트(200)에 실장되는 동력 변환 모듈(100)은 도 9의 실시예와 동일하게 형성될 수 있다.

Claims (12)

  1. 파도의 운동 에너지가 입력되는 와이어에 의해 바다에 계류되는 부유 유니트;
    상기 와이어의 방향을 전환하는 방향 전환부;
    상기 와이어의 장력을 발전기로 전달하는 동력 변환 모듈;을 포함하고,
    상기 동력 변환 모듈은 상기 와이어가 감기는 드럼으로부터 상기 발전기가 연결된 동력축에 구동력을 전달하는 1축 동력 변환 장치.
  2. 제1항에 있어서,
    상기 동력 변환 모듈에는 상기 드럼과 상기 동력축의 사이에 개재되는 일방향 회전 부재가 마련되고,
    상기 드럼은 상기 부유 유니트에 의해 상기 와이어가 잡아당겨지면 정방향으로 회전되고, 상기 부유 유니트가 상기 와이어를 잡아당기는 힘이 해제되면 상기 와이어가 감기도록 역방향으로 회전되며,
    상기 동력축은 상기 일방향 회전 부재에 의해 상기 드럼의 회전축이 되고 상기 드럼의 회전 방향에 상관없이 상기 정방향으로만 회전되는 1축 동력 변환 장치.
  3. 제1항에 있어서,
    상기 동력 변환 모듈에는 상기 드럼과 상기 동력축의 사이에 개재되는 일방향 회전 부재, 상기 일방향 회전 부재를 제어하는 모드 전환부가 마련되고,
    상기 일방향 회전 부재에는 상기 드럼 또는 상기 동력축에 구속되는 구속부가 마련되며,
    상기 구속부는 상기 모드 전환부에 의해 제1 모드 또는 제2 모드로 동작되며,
    상기 제1 모드는 상기 드럼의 정방향 회전시 상기 드럼과 상기 동력축을 구속하고 상기 드럼의 역방향 회전시 상기 드럼과 상기 동력축의 구속을 해제하는 동작 모드이고,
    상기 제2 모드는 상기 드럼의 회전 방향에 상관없이 상기 구속부가 상기 드럼과 상기 동력축의 구속을 해제하는 동작 모드인 1축 동력 변환 장치.
  4. 제1항에 있어서,
    상기 와이어가 잡아당겨질 때 상기 드럼이 정방향으로 회전되면, 상기 동력축은 미리 설정된 프리셋 방향으로 회전되며,
    상기 동력 변환 모듈에는 상기 동력축의 상기 프리셋 방향의 회전 관성을 증가시키는 관성부가 마련된 1축 동력 변환 장치.
  5. 제1항에 있어서,
    상기 동력 변환 모듈에는 상기 드럼과 상기 동력축의 사이에 개재되는 일방향 회전 부재, 상기 드럼을 상기 와이어가 감기는 역방향으로 회전시키는 복원 부재가 마련되고,
    상기 와이어의 장력에 의해 상기 드럼이 상기 와이어가 풀리는 정방향으로 회전되면, 상기 동력축은 상기 일방향 회전 부재에 의해 미리 설정된 프리셋 방향으로 회전되며,
    상기 와이어의 장력이 해제되면 상기 드럼은 상기 복원 부재에 의해 상기 역방향으로 회전되면서 상기 와이어를 상기 드럼에 되감는 1축 동력 변환 장치.
  6. 제1항에 있어서,
    상기 부유 유니트에는 상기 와이어가 3개 이상 연결되고,
    상기 와이어가 걸쳐지는 방향 전환부가 복수로 마련되며,
    상기 와이어의 일단부는 상기 부유 유니트에 연결되고,
    상기 와이어의 타단부는 상기 드럼에 감기며,
    상기 드럼은 적어도 상기 부유 유니트에 연결된 와이어의 개수만큼 마련되고,
    각 드럼은 상기 동력축의 길이 방향을 따라 서로 다른 위치에 배치되며, 상기 와이어가 풀리는 회전 방향이 모두 동일하게 형성된 1축 동력 변환 장치.
  7. 제1항에 있어서,
    상기 동력 변환 모듈은 상기 드럼 및 상기 동력축을 포함하고,
    상기 동력 변환 모듈은 복수로 마련되고,
    각각의 상기 동력 변환 모듈은 커플링에 의해 착탈 가능하게 연결되는 1축 동력 변환 장치.
  8. 제1항에 있어서,
    상기 드럼과 상기 동력축의 사이에 개재되는 일방향 회전 부재가 마련되고,
    상기 동력 변환 모듈은 상기 드럼, 상기 동력축 및 상기 일방향 회전 부재를 포함하고,
    상기 동력 변환 모듈이 복수로 마련될 때, 복수의 상기 동력 변환 모듈을 연결하는 커플링이 마련되고,
    복수의 상기 동력 변환 모듈은 동일한 형상 또는 크기로 형성되는 1축 동력 변환 장치.
  9. 제1항에 있어서,
    상기 동력 변환 모듈이 복수로 마련될 때, 복수의 상기 동력 변환 모듈을 연결하는 커플링이 마련되고,
    상기 커플링은 특정 동력 변환 모듈에 마련된 동력축의 일단에 다른 동력 변환 모듈에 마련된 동력축의 타단을 연결하고,
    상기 커플링에 의해 상기 드럼은 각 동력축의 길이 단위로 추가되며,
    상기 부유 유니트로부터 연장되는 상기 와이어는 상기 동력축에 수직하게 교차되고, 교차 지점에 가장 가깝게 배치된 드럼에 감기며,
    상기 커플링으로 연결된 복수의 동력축은 함께 회전되며, 복수의 동력축 중 적어도 하나에는 상기 발전기가 링크되는 1축 동력 변환 장치.
  10. 제1항에 있어서,
    상기 동력축은 상기 드럼에 의해 회전되고,
    상기 드럼은 상기 와이어가 풀리는 정방향 및 상기 와이어가 감기는 역방향으로 회전 가능하게 형성되며,
    상기 동력축은 미리 설정된 프리셋 방향으로만 회전 가능하게 형성된 1축 동력 변환 장치.
  11. 제1항에 있어서,
    상기 발전기 및 상기 동력 변환 모듈은 상기 부유 유니트에 설치되고, 상기 부유 유니트와 함께 부유되는 1축 동력 변환 장치.
  12. 제11항에 있어서,
    상기 방향 전환부는 상기 발전기 및 상기 동력 변환 모듈과 함께 상기 부유 유니트에 설치되고 상기 부유 유니트와 함께 부유되는 1축 동력 변환 장치.
PCT/KR2016/013724 2016-03-25 2016-11-25 1축 동력 변환 장치 WO2017164482A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/088,127 US10655594B2 (en) 2016-03-25 2016-11-25 Uniaxial power converting apparatus
JP2018550441A JP6734930B2 (ja) 2016-03-25 2016-11-25 1軸動力変換装置
CN201680083997.9A CN109416014A (zh) 2016-03-25 2016-11-25 单轴动力转换装置
EP16895608.4A EP3434894A4 (en) 2016-03-25 2016-11-25 UNIQUE POWER CONVERSION DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0036073 2016-03-25
KR1020160036073A KR101758657B1 (ko) 2016-03-25 2016-03-25 1축 동력 변환 장치

Publications (1)

Publication Number Publication Date
WO2017164482A1 true WO2017164482A1 (ko) 2017-09-28

Family

ID=59442910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013724 WO2017164482A1 (ko) 2016-03-25 2016-11-25 1축 동력 변환 장치

Country Status (6)

Country Link
US (1) US10655594B2 (ko)
EP (1) EP3434894A4 (ko)
JP (1) JP6734930B2 (ko)
KR (1) KR101758657B1 (ko)
CN (1) CN109416014A (ko)
WO (1) WO2017164482A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021145838A1 (en) * 2020-01-14 2021-07-22 Atici Resit System for generating electrical energy from the wave energy
US20230063369A1 (en) * 2021-01-12 2023-03-02 Narayan R Iyer Magnetic peak load aversion in a wave energy conversion system
NO20210522A1 (en) * 2021-04-28 2022-08-22 Seasystems As Sea level compensation system for wave energy compensators
US20230279831A1 (en) * 2021-07-29 2023-09-07 Narayan R. Iyer System and method of capturing and storing ocean wave motion using an alternating-to-direct motion converter and liftable weights

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040091165A (ko) * 2003-04-19 2004-10-28 임명식 파력발전장치
CN201144760Y (zh) * 2008-01-09 2008-11-05 邓海城 太阳能、波浪能、风能综合发电坞
KR20100133364A (ko) * 2008-02-20 2010-12-21 오션 하베스팅 테크놀로지스 에이비 파력 발전 장치 및 송전
US8042670B2 (en) * 2008-11-17 2011-10-25 GM Global Technology Operations LLC Selectable one-way clutch with radial integrated forward/reverse rockers
KR20150120709A (ko) * 2014-04-18 2015-10-28 주식회사 인진 파력발전용 동력변환장치

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5424582A (en) * 1984-05-24 1995-06-13 Elektra Power Industries, Inc. Cushioned dual-action constant speed wave power generator
US8018084B2 (en) * 2004-11-09 2011-09-13 Gerald S. Rourke Wave powered electrical generator
WO2008038825A1 (fr) * 2006-09-27 2008-04-03 Iwao Ikegami Dispositif de stockage de l'énergie des vagues et générateur d'énergie l'utilisant
NO20071963A (no) * 2007-04-17 2008-08-11 Straumekraft As Anordning ved bølgekraftverk
US7791213B2 (en) * 2008-08-20 2010-09-07 Patterson Morris D Vertical motion wave power generator
US20100107627A1 (en) * 2008-11-06 2010-05-06 Eric Andres MORGAN Buoyancy energy storage and energy generation system
EP2432985A1 (en) * 2009-05-20 2012-03-28 Aquagen Technologies Pty Ltd Water wave energy converter
US20110031750A1 (en) * 2009-08-06 2011-02-10 Peter Alfred Kreissig Wave powered electricity generation
IT1395325B1 (it) * 2009-08-25 2012-09-14 A P Sistem Di Piccinini Alberto Sistema per una produzione di energia elettrica o meccanica dal moto ondoso
EP2630365A1 (en) * 2010-10-21 2013-08-28 Arthur Robert Williams Full-water-column surge-type wave-energy converter
KR101268485B1 (ko) * 2011-12-08 2013-06-05 이동인 파력 발전 장치
US9657710B2 (en) * 2011-03-01 2017-05-23 Bruce Gregory Dynamic tuning for wave energy conversion
GB201119292D0 (en) * 2011-11-08 2011-12-21 Marine Power Systems Ltd Wave power generator
US20160215751A1 (en) * 2013-07-31 2016-07-28 Ingine, Inc. Power converting apparatus
CN105408662B (zh) * 2013-07-31 2018-06-15 株式会社人进 动力变换装置
GB2529210B (en) * 2014-08-13 2018-01-31 Gregory Bruce Improved wave energy converter
KR101749036B1 (ko) * 2015-06-24 2017-06-21 주식회사 인진 부유식 파력 발전 장치
KR101769761B1 (ko) * 2016-01-13 2017-08-30 성용준 와이어를 포함하는 파력 발전 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040091165A (ko) * 2003-04-19 2004-10-28 임명식 파력발전장치
CN201144760Y (zh) * 2008-01-09 2008-11-05 邓海城 太阳能、波浪能、风能综合发电坞
KR20100133364A (ko) * 2008-02-20 2010-12-21 오션 하베스팅 테크놀로지스 에이비 파력 발전 장치 및 송전
US8042670B2 (en) * 2008-11-17 2011-10-25 GM Global Technology Operations LLC Selectable one-way clutch with radial integrated forward/reverse rockers
KR20150120709A (ko) * 2014-04-18 2015-10-28 주식회사 인진 파력발전용 동력변환장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3434894A4 *

Also Published As

Publication number Publication date
US10655594B2 (en) 2020-05-19
JP2019510165A (ja) 2019-04-11
US20190085816A1 (en) 2019-03-21
KR101758657B1 (ko) 2017-07-17
JP6734930B2 (ja) 2020-08-05
EP3434894A4 (en) 2019-09-25
EP3434894A1 (en) 2019-01-30
CN109416014A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
WO2017164482A1 (ko) 1축 동력 변환 장치
WO2019103510A1 (ko) 캡슐 부이형 파력 발전기
WO2010041829A2 (en) An apparatus for converting wave energy into electrical energy
WO2017086693A1 (ko) 중력과 부력을 이용한 자가 발전장치 및 구조물을 이용한 자가 발전장치 그리고 이를 이용한 해양 경계등
WO2017122839A1 (ko) 와이어를 포함하는 파력 발전 장치
JP6346271B2 (ja) 動力変換装置
WO2011059129A1 (ko) 압전세라믹 및 자석을 이용한 에너지 하비스팅 장치
WO2016208843A1 (ko) 부유식 파력 발전 장치
WO2015163700A1 (ko) 자가 발전장치
WO2020197081A1 (ko) 발전기 및 발전기의 제어방법
WO2012002607A1 (ko) 풍·조력 발전선
WO2013176407A1 (ko) 발전장치
WO2021206285A1 (ko) 태양광 발전용 폴 시스템의 회전장치
WO2016060498A1 (ko) 스크린 파력 발전장치
WO2012064112A2 (ko) 수직축 풍력발전 장치의 블레이드 구조 및 이를 이용한 풍력발전시스템
WO2019027282A1 (ko) 부유식 수상 태양광 발전시스템의 계류 및 회전장치
WO2017142169A1 (ko) 블럭형 파력 발전 장치 및 그 설치 방법
WO2019156516A1 (ko) 파력발전 시스템 및 그 제어 방법
WO2012081862A2 (ko) 태양광 및 풍력을 이용한 발전장치
WO2023058820A1 (ko) 파력 발전 시스템
WO2010002126A2 (ko) 선박 예인장치
WO2016085065A1 (ko) 부유식 해상 풍력발전설비
WO2021060705A1 (ko) 가로등용 풍력발전장치
WO2019172706A1 (ko) 파력발전 시스템 및 그 제어 방법
WO2021167278A1 (ko) 친환경 소수력 발전장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018550441

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016895608

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016895608

Country of ref document: EP

Effective date: 20181025

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895608

Country of ref document: EP

Kind code of ref document: A1