WO2017164343A1 - Polypropylene resin composition for injection foam molding and injection foam molded body of same - Google Patents

Polypropylene resin composition for injection foam molding and injection foam molded body of same Download PDF

Info

Publication number
WO2017164343A1
WO2017164343A1 PCT/JP2017/011863 JP2017011863W WO2017164343A1 WO 2017164343 A1 WO2017164343 A1 WO 2017164343A1 JP 2017011863 W JP2017011863 W JP 2017011863W WO 2017164343 A1 WO2017164343 A1 WO 2017164343A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
weight
polypropylene resin
propylene
injection foam
Prior art date
Application number
PCT/JP2017/011863
Other languages
French (fr)
Japanese (ja)
Inventor
総一郎 辻本
正樹 天野
金田 豊
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2018507421A priority Critical patent/JPWO2017164343A1/en
Publication of WO2017164343A1 publication Critical patent/WO2017164343A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a polypropylene resin composition that can be suitably used for injection foam molding, and an injection foam molded body thereof.
  • Polypropylene resin has good physical properties and moldability, and its use range is rapidly expanding as an environmentally friendly material.
  • lightweight and excellent polypropylene resin products are provided.
  • One such product is a polypropylene resin injection foam molding.
  • the linear polypropylene resin usually used has a low impact resistance, so that the foam is easily broken, and it is difficult to apply it to uses in which the impact resistance is important. Moreover, there existed a tendency for the foaming defect to be easy to generate
  • Patent Document 1 a composition comprising (A) a linear polypropylene resin, (B) a modified polypropylene resin exhibiting strain-hardening properties, and a foaming agent is injected into a mold by injection foam molding. And a molded article obtained by the method are disclosed, and it is described that a high expansion ratio is possible and the surface appearance is good.
  • the polypropylene homopolymer was used as the base resin for modifying the component (B), and the impact resistance was insufficiently improved.
  • Patent Document 2 discloses a method for producing (A) a modified polypropylene resin obtained by melt-kneading (a) a polypropylene resin, (b) an isoprene monomer, and (c) a radical polymerization initiator. It is described that the obtained (A) exhibits strain-hardening properties and may be used for foam molding. However, there is no description about injection foam molding, and in that case, there is no description or suggestion about the impact resistance and the cell state when foamed, so it is not easy to apply to injection foam molding, The effect when applied was also completely unknown. In addition, there is no description that the component (A) is used in combination with an unmodified polypropylene resin.
  • Patent Document 3 (a) a polypropylene resin, (b) an isoprene monomer, and (c) a radical polymerization initiator obtained by melt-kneading, (A) a modified polypropylene resin is foamed.
  • the manufacturing method of a body is disclosed, and it is described that the heat-resistant and the foaming molding which was excellent in the expansion ratio is obtained.
  • injection foam molding there is no description about injection foam molding, and in that case, there is no description or suggestion about the impact resistance and the cell state when foamed, so it is not easy to apply to injection foam molding, The effect when applied was also completely unknown.
  • the component (A) is used in combination with an unmodified polypropylene resin.
  • Patent Document 4 (a) a modified polypropylene resin obtained by melt kneading (a) a polypropylene resin, (b) a monomer such as isoprene, and (c) a radical polymerization initiator is foamed.
  • the foamed sheet obtained is disclosed, and it is described that the drawdown during heating is small and the closed cell ratio is excellent.
  • injection foam molding there is no description about injection foam molding, and there is no description or suggestion about the impact resistance and the cell state when foamed, so it is not easy to apply to injection foam molding, and when applied The effect was also completely unknown.
  • the component (A) is used in combination with an unmodified polypropylene resin.
  • Patent Document 5 discloses a method of injection-molding a composition containing (A) a modified polypropylene resin exhibiting strain hardening and (C) a foaming agent into a mold, and a molding obtained thereby.
  • the body is disclosed, and it is described that the foam moldability is good and the rigidity is excellent.
  • propylene-ethylene block copolymer is used as the base resin for modification, there is no description or suggestion about impact resistance, so the effect when applied to applications that place importance on impact resistance is completely unknown. It was.
  • the component (A) is used in combination with an unmodified polypropylene resin.
  • JP 2005-224963 A JP 09-188729 A JP 09-188774 A JP 2001-139716 A JP 2007-130992 A
  • An object of the present invention is to provide a polypropylene-based resin composition that is excellent in impact resistance and can provide an injection foam molded article having a good foamed state, and an injection foam molded article thereof.
  • the present invention is as follows.
  • a conjugated diene-modified polypropylene resin which is a conjugated diene-modified propylene-ethylene block copolymer, having a melt flow rate measured at 230 ° C. and a load of 2.16 kg of 1 g / 10 min or more and less than 80 g / 10 min.
  • a and Polypropylene for injection foam molding containing a polypropylene resin (B) which is a propylene-ethylene block copolymer having a melt flow rate measured at 230 ° C. and a load of 2.16 kg of 1 g / 10 min or more and less than 80 g / 10 min.
  • a resin composition comprising: The content of the ethylene component in the component (A) is 1% by weight or more, The content of the component (A) is 1 to 49% by weight and the content of the component (B) is 51 to 99% by weight with respect to the total of 100% by weight of the component (A) and the component (B).
  • composition is a polypropylene resin for injection foam molding according to [1], wherein a melt flow rate measured at 230 ° C. and a load of 2.16 kg is 8 g / 10 min or more and less than 80 g / 10 min. Composition.
  • the content of the component (A) is 1 to 25% by weight, the content of the component (B) is 75 to 99% by weight with respect to the total of 100% by weight of the component (A) and the component (B), and ,
  • the content of the component (A) is 1 to 25% by weight, the content of the component (B) is 75 to 99% by weight with respect to the total of 100% by weight of the component (A) and the component (B), and ,
  • the polypropylene resin composition of the present invention is excellent in impact resistance and can give an injection foam molded article having a good foamed state. Therefore, the polypropylene resin composition of the present invention can be suitably used for injection foam molded articles such as automobile interior materials.
  • the present invention relates to a polypropylene resin composition for injection foam molding.
  • the composition is a conjugated diene-modified polypropylene which is a conjugated diene-modified propylene-ethylene block copolymer having a melt flow rate measured at 230 ° C. and a load of 2.16 kg of 1 g / 10 min or more and less than 80 g / 10 min.
  • a polypropylene resin (B) which is a propylene-ethylene block copolymer having a melt flow rate measured at 230 ° C. and a load of 2.16 kg of 1 g / 10 min or more and less than 80 g / 10 min Containing.
  • the content of the ethylene component in the component (A) is 1% by weight or more, and the content of the component (A) is 1 to 49% by weight with respect to the total of 100% by weight of the component (A) and the component (B). )
  • the component content is 51 to 99% by weight, and the melt tension of the composition measured at 200 ° C. and 10 m / min is 0.1 gf or more and less than 2.0 gf.
  • the conjugated diene modified polypropylene resin (A) of the present invention is a conjugated diene modified propylene having a melt flow rate of 1 g / 10 min or more and less than 80 g / 10 min measured at 230 ° C. and a load of 2.16 kg.
  • An ethylene block copolymer An ethylene block copolymer.
  • the melt flow rate of the component (A) is less than 1 g / 10 min, the resin composition is insufficient in fluidity, resulting in molding defects such as short shots and deterioration of mold transferability in injection foam molding with a large mold. May cause surface defects.
  • the melt flow rate of the component (A) is 80 g / 10 min or more, mixing with the component (B) may be insufficient, or the impact resistance of the injection foamed molded product may be insufficient.
  • the component (A) melt flow rate is preferably 20 g / 10 min or more and less than 80 g / 10 min when emphasizing the mold transfer property and the surface property of the molded body, and when the impact resistance of the molded body is important. Is preferably 1 g / 10 min or more and less than 20 g / 10 min.
  • melt flow rate (hereinafter sometimes abbreviated as “MFR”) is 230 ° C. using a melt indexer F-F01 (manufactured by Toyo Seiki Seisakusho Co., Ltd.) in accordance with JIS K7210: 1999. 2.
  • F-F01 manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • JIS K7210 1999. 2
  • the conjugated diene modified polypropylene resin (A) of the present invention has a melt tension measured at 200 ° C. and 10 m / min, preferably 1.0 gf or more, more preferably 2.0 gf or more.
  • melt tension of the component (A) is 1.0 gf or more, it becomes easy to obtain an injection foam molded article having uniform fine bubbles, for example, at a foaming ratio of 2 or more.
  • the melt tension Y of the resin composition is preferably not more than the melt tension obtained from the following linear equation from the viewpoint of impact resistance.
  • Y ⁇ ( ⁇ 0.032) X + 1.91 Y is the melt tension (gf) of the resin composition, and X is the MFR (g / 10 minutes) of the resin composition
  • the conjugated diene modified polypropylene resin (A) of the present invention is a conjugated diene modified propylene-ethylene block copolymer.
  • the copolymer is a resin obtained by reacting a propylene-ethylene block copolymer with a conjugated diene compound to introduce a branched structure into the propylene-ethylene block copolymer and increasing the molecular weight thereof.
  • the copolymer is preferably obtained by melt-mixing a propylene-ethylene block copolymer (a), a radical polymerization initiator (b) and a conjugated diene compound (c). This molten mixture is excellent in that it does not require expensive equipment and can be produced at low cost.
  • the propylene-ethylene block copolymer (a) used for obtaining the conjugated diene-modified polypropylene-based resin (A) includes a polymer mainly composed of ethylene in a linear polymer mainly composed of propylene, and A propylene-based polymer in which an ethylene-propylene-rubbery copolymer is dispersed to form a sea-island structure.
  • a propylene-based polymer is called impact-resistant polypropylene, and conventionally called block polypropylene in Japan, but is not a block copolymer in a chemical sense.
  • the propylene-ethylene block copolymer (a) is a propylene homopolymer or a copolymer (a1) mainly composed of propylene, an ethylene homopolymer (a2) and / or ethylene and carbon number.
  • a mixture containing a copolymer (a3) with 3 to 10 ⁇ -olefin is preferable.
  • (a1) corresponds to a linear polymer mainly composed of propylene which is a matrix
  • (a2) corresponds to a polymer mainly composed of ethylene
  • (a3) corresponds to an ethylene-propylene rubber-like copolymer. Corresponds to coalescence.
  • the propylene-ethylene block copolymer (a) is preferably a copolymer containing 51% by weight or more of a propylene component. From the viewpoint of crystallinity, rigidity, chemical resistance, etc., the propylene component is 60% by weight or more. The contained copolymer is more preferable, 70% by weight or more is further preferable, and 80% by weight or more is particularly preferable.
  • the propylene-ethylene block copolymer (a) contains 1% by weight or more of an ethylene component from the viewpoint of impact resistance, etc., but preferably contains 3% by weight or more. Is more preferable, 8% by weight or more is further preferable, and 10% by weight or more is particularly preferable.
  • the propylene-ethylene block copolymer (a) may be a copolymer obtained by copolymerizing a monomer copolymerizable with propylene in addition to propylene and ethylene.
  • monomers copolymerizable with propylene include 1-butene, isobutene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, and 3,4-dimethyl.
  • ⁇ -olefins such as 1-butene, 1-heptene, 3-methyl-1-hexene, 1-octene, 1-decene; cyclopentene, norbornene, tetracyclo [6,2,11,8,13, 6]
  • Cyclic olefins such as 4-dodecene; 5-methylene-2-norbornene, 5-ethylidene-2-norbornene, 1,4-hexadiene, methyl-1,4-hexadiene, 7-methyl-1,6-octadiene Diene such as vinyl chloride, vinylidene chloride, acrylonitrile, vinyl acetate, acrylic acid, methacrylic acid, maleic acid, acrylic acid Chill, butyl acrylate, methyl methacrylate, maleic anhydride, styrene, methyl styrene, vinyl toluene, vinyl monomers such as divinylbenzene; and the like.
  • J708UG has an ethylene polymer content of 14% by mass and can be suitably used in the present invention.
  • the radical polymerization initiator (b) used to obtain the conjugated diene-modified polypropylene resin (A) generally includes peroxides and azo compounds, but the propylene-ethylene block copolymer (a) and Those having hydrogen abstraction ability from the conjugated diene compound (c) are preferred. Although it does not specifically limit, For example, organic peroxides, such as a ketone peroxide, a peroxy ketal, a hydroperoxide, a dialkyl peroxide, a diacyl peroxide, a peroxy dicarbonate, a peroxy ester, are mentioned.
  • those having particularly high hydrogen abstraction ability are preferable, for example, 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) cyclohexane.
  • the addition amount of the radical polymerization initiator (b) used for obtaining the conjugated diene-modified polypropylene resin (A) is 0.05% by weight with respect to 100 parts by weight of the propylene-ethylene block copolymer (a). Part to 10 parts by weight, preferably 0.2 part to 5 parts by weight. If the addition amount of the radical polymerization initiator is less than 0.05 parts by weight, the modification may be insufficient. If the amount exceeds 10 parts by weight, the molecular chain scission takes priority over the modification, and the desired modification is achieved. Quality effects may not be obtained.
  • conjugated diene compound (c) used to obtain the conjugated diene-modified polypropylene resin (A)
  • examples of the conjugated diene compound (c) used to obtain the conjugated diene-modified polypropylene resin (A) include butadiene, isoprene, 1,3-heptadiene, 2,3-dimethylbutadiene, 2,5-dimethyl- 2,4-hexadiene and the like can be mentioned. These may be used alone or in combination. Of these, butadiene and isoprene are preferred because they are inexpensive and easy to handle and the reaction easily proceeds uniformly.
  • the addition amount of the conjugated diene compound (c) is preferably 0.01 parts by weight or more and 5 parts by weight or less, and 0.05 parts by weight or more and 2 parts by weight with respect to 100 parts by weight of the propylene-ethylene block copolymer (a). Part or less is more preferable. If the addition amount of the conjugated diene compound is less than 0.01 parts by weight, the modification may be insufficient, and if it exceeds 5 parts by weight, the fluidity may be insufficient.
  • a monomer copolymerizable with the conjugated diene compound may be used in combination with the conjugated diene compound.
  • copolymerizable monomers include vinyl chloride, vinylidene chloride, acrylonitrile, methacrylonitrile, acrylamide, methacrylamide, vinyl acetate, acrylic acid, methacrylic acid, maleic acid, maleic anhydride, acrylic acid.
  • Metal salt metal methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, stearyl acrylate, and other acrylic esters, methyl methacrylate, ethyl methacrylate, butyl methacrylate, methacrylic acid 2 -Methacrylic acid esters such as ethylhexyl and stearyl methacrylate.
  • the radical polymerization initiator (b) is added in an amount of 0.1 to 10 times the weight of the conjugated diene compound (c). (Standard), the melt flow rate of the conjugated diene-modified polypropylene resin (A) can be adjusted relatively easily to a range of 1 or more and less than 80.
  • the addition amount of the radical polymerization initiator (b) is preferably 0.5 to 7.5 times the addition amount of the conjugated diene compound (c), more preferably 0.75 to 5 times. It is.
  • an apparatus for reacting the propylene-ethylene block copolymer (a), the radical polymerization initiator (b), and the conjugated diene compound (c) includes: Rollers, kneaders, Banbury mixers, Brabenders, single-screw extruders, twin-screw extruders and other kneading machines, twin-screw surface renewal machines, horizontal twin-disk devices such as double-shaft multi-disk devices, and vertical helical ribbon stirrers Mold stirrer and the like.
  • a kneader is preferably used, and an extruder is particularly preferable from the viewpoint of productivity.
  • the method There is no particular limitation on the method.
  • the propylene-ethylene block copolymer (a), the radical polymerization initiator (b), and the conjugated diene compound (c) may be mixed and then melt-kneaded (stirred), or the propylene-ethylene block copolymer (a ) And then kneading (stirring), the radical polymerization initiator (b) and the conjugated diene compound (c) may be mixed simultaneously or separately, collectively or dividedly.
  • the temperature of the kneading (stirring) machine is preferably 130 to 300 ° C. from the viewpoint that the propylene-ethylene block copolymer (a) melts and does not thermally decompose.
  • the kneading (stirring) time is generally preferably 1 to 60 minutes.
  • the conjugated diene-modified polypropylene resin (A) can be produced. There is no restriction
  • the polypropylene resin (B) of the present invention is a propylene-ethylene block copolymer having a melt flow rate of 1 g / 10 min or more and less than 80 g / 10 min measured under conditions of 230 ° C. and 2.16 kg load. .
  • the propylene-ethylene block copolymer modified with conjugated diene is not included in the category of the polypropylene resin (B).
  • melt flow rate of the component (B) is less than 1 g / 10 min, when producing an injection molded body, if the mold cavity has a thin part with a clearance of, for example, about 1 to 2 mm, it melts at a relatively low pressure. It may be difficult to fill the resin into the mold, and it may not be possible to carry out continuous and stable injection molding.
  • the melt flow rate of the component (B) is 80 g / 10 min or more, the fluidity is excessive and the injection molding tends to become unstable.
  • the melt flow rate of the component (B) is more preferably 3 g / 10 min or more and 70 g / 10 min or less, and further preferably 5 g / 10 min or more and less than 70 g / 10 min.
  • the measurement conditions for the melt flow rate are the same as those described above.
  • the polypropylene resin (B) of the present invention is a propylene-ethylene block copolymer.
  • a propylene-ethylene block copolymer is a linear polymer mainly composed of propylene, in which a polymer mainly composed of ethylene and an ethylene-propylene rubber-like copolymer are dispersed to form a sea-island structure.
  • the same propylene-ethylene block copolymer (a) as described above can be used.
  • the polypropylene resin composition for injection foam molding of the present invention is excellent in impact resistance and good by using a combination of the conjugated diene-modified polypropylene resin (A) and the polypropylene resin (B) described above.
  • An injection foam molded article having a foamed state can be provided.
  • both components are blended so that the content of the component (B) is larger than the content of the component (A).
  • the content of the component (A) is 1 to 49% by weight and the content of the component (B) is 51 to 99% by weight with respect to the total of 100% by weight of the component (A) and the component (B). .
  • the content of component (A) is preferably 1 to 25% by weight, more preferably 5 to 25% by weight, and still more preferably 10 to 20% by weight.
  • the suitable range of the MFR and content of the component (A) can vary depending on the MFR of the component (B).
  • the MFR of the component (A) is preferably 20 g / 10 minutes or more, more preferably 40 g / 10 minutes or more from the viewpoint of fluidity
  • the MFR of the component (A) is less than 20 g / 10 minutes, problems such as deterioration of mold transferability may occur due to insufficient fluidity.
  • the amount of the component (A) added is preferably 5 to 49% by weight, more preferably 10 to 35% by weight.
  • the polypropylene resin composition for injection foam molding of the present invention has a melt tension measured at 200 ° C. and 10 m / min of 0.1 gf or more and less than 2.0 gf.
  • the melt tension of the resin composition is a numerical value measured after sufficiently melting and kneading each component, and the melt flow rate indicated by each of the conjugated diene-modified polypropylene resin (A) and the polypropylene resin (B), It can be easily adjusted depending on the kind, combination, blending amount, and the like of the components.
  • the melt tension represents the tension required to deform the molten resin, whereas the melt flow rate is a measure showing the fluidity of the molten resin, so they are different concepts.
  • the melt flow rate of the polypropylene resin composition for injection foam molding of the present invention is not limited, but is preferably 8 g / 10 min or more and less than 80 g / 10 min. This melt flow rate is measured under the conditions described above. When the melt flow rate of the polypropylene resin composition is within this range, the polypropylene resin composition for injection foam molding has fluidity suitable for injection foam molding and has high impact resistance after injection foam molding. A molded body can be obtained.
  • the melt flow rate of the polypropylene resin composition is a numerical value measured after sufficiently melting and kneading each component, and the melt flow rate indicated by each of the conjugated diene-modified polypropylene resin (A) and the polypropylene resin (B). And it can be easily adjusted depending on the blending amount of each component.
  • the polypropylene resin composition for injection foam molding of the present invention contains a foaming agent.
  • the foaming agent that can be used in the present invention can be used without particular limitation as long as it can be usually used for injection foam molding, and may be either a chemical foaming agent or a physical foaming agent.
  • the chemical foaming agent is mixed with a resin component in advance and then supplied to an extruder or an injection molding machine, and decomposes in a cylinder to generate a gas such as carbon dioxide.
  • the chemical foaming agent is not particularly limited, and examples thereof include inorganic chemical foaming agents such as sodium bicarbonate and ammonium carbonate, and organic chemical foaming agents such as azodicarbonamide and N, N′-dinitrosopentamethylenetetramine. It is done. These may be used alone or in combination of two or more.
  • the physical foaming agent is injected as a gaseous or supercritical fluid into the molten resin in the cylinder of an extruder or injection molding machine, and is dispersed or dissolved. After injection into the mold, the pressure is released. It functions as a foaming agent.
  • the physical foaming agent is not particularly limited, but examples thereof include aliphatic hydrocarbons such as propane and butane, alicyclic hydrocarbons such as cyclobutane and cyclopentane, halogenated hydrocarbons such as chlorodifluoromethane and dichloromethane, nitrogen, and the like. And inorganic gases such as carbon dioxide and air. These may be used alone or in combination of two or more.
  • foaming agents it can be safely used in ordinary extruders and injection molding machines, and it is easy to obtain uniform fine bubbles.
  • foaming agents include, for example, foaming aids such as organic acids such as citric acid, talc, lithium carbonate, etc.
  • a nucleating agent such as inorganic fine particles may be added.
  • the inorganic chemical foaming agent is prepared from a polyolefin resin master batch having a concentration of the foaming agent of 10 to 75% by weight from the viewpoints of handleability, storage stability, and dispersibility in polypropylene resin. Are preferably used.
  • the amount of the foaming agent used in the present invention can be appropriately set depending on the foaming ratio of the final product, the type of foaming agent, and the resin temperature during molding.
  • the inorganic chemical foaming agent is preferably in the range of 0.5 to 30 parts by weight, more preferably 1 to 20 parts by weight, with respect to 100 parts by weight of the polypropylene resin composition of the present invention. Used in. By using the inorganic chemical foaming agent in this range, it is possible to economically and easily obtain an injection foam molded article having a foaming ratio of 2 times or more and uniform fine cells.
  • the physical foaming agent is preferably injected in an amount of 0.05 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, with respect to 100 parts by weight of the polypropylene resin composition. Used by supplying to a molding machine.
  • the polypropylene-based resin composition of the present invention is a high-density polyethylene-based resin as well as a polypropylene resin that does not fall under any of the components (A) and (B) as long as the effects of the present invention are not impaired.
  • the polypropylene resin composition of the present invention is an antioxidant, a metal deactivator, a phosphorus processing stabilizer, an ultraviolet absorber, an ultraviolet stabilizer, as long as the effects of the present invention are not impaired, if necessary.
  • Stabilizers such as fluorescent brighteners, metal soaps, antacid adsorbents, crosslinking agents, chain transfer agents, nucleating agents, plasticizers, lubricants, fillers, reinforcing materials, pigments, dyes, flame retardants, antistatic agents, etc. These additives may be further contained.
  • the present invention also relates to an injection-foamed molded article of the polypropylene resin composition.
  • the expansion ratio of the injection-foamed molded article of the present invention is preferably 1.5 to 10 times, more preferably 2 to 6 times. If the expansion ratio is less than 1.5 times, it tends to be difficult to obtain light weight, and if it exceeds 10 times, the rigidity tends to be significantly reduced.
  • ⁇ Injection foam molding method> It does not specifically limit as an injection foam molding method which can be used in order to manufacture the injection foam molding of this invention, A well-known method is applicable. Specific molding conditions at that time can be appropriately determined in consideration of the melt flow rate, melt tension, type of molding machine, mold shape, and the like of the polypropylene resin composition.
  • the resin temperature is preferably 170 to 300 ° C., more preferably 190 to 270 ° C.
  • the mold temperature is preferably 10 to 100 ° C., more preferably 20 to 80 ° C.
  • test methods and criteria used for various evaluation methods are as follows.
  • melt flow rate In accordance with JIS K7210: 1999, the amount of resin extruded from a die at a predetermined time under a condition of 230 ° C. and 2.16 kg load using a melt indexer F-F01 (manufactured by Toyo Seiki Seisakusho) is 10 The value converted into the amount of resin extruded per minute was taken as the melt flow rate. This converted value was calculated by MFR automatic calculation processing (B method). The calculation formula is as follows. This method was applied even when the melt flow rate exceeded 50 (g / 10 min).
  • MFR (g / 10 min) (600 ⁇ m) / t (2) Melt tension (MT)
  • a capillograph manufactured by Toyo Seiki Seisakusyo Co., Ltd. equipped with a melt tension measurement attachment and having a ⁇ 10 mm cylinder fitted with an orifice of ⁇ 1 mm and a length of 10 mm at the tip was used. The sample was filled in a cylinder heated to 200 ° C. and preheated for 5 minutes.
  • the strand discharged from the die is placed on a pulley with a load cell below 370 mm or 520 mm and pulled at a speed of 10 m / min.
  • the load applied to was measured over time. About 5 minutes after the start of the measurement, the maximum value and the minimum value of the load obtained after the blurring of the load was substantially stabilized were measured, and the average value thereof was taken as the melt tension.
  • the melt tension was set to 0 when the load applied to the pulley with the load cell was so low that it could not be detected.
  • test sample has the best foamability.
  • The test sample has the poor foamability.
  • a base line is drawn so as to extend a portion that can be regarded as a substantially straight line on both sides across the peak of the DSC curve, and the DSC curve is separated from the low temperature side baseline a and the high temperature side baseline.
  • the amount of heat of fusion calculated from the area of the portion surrounded by the line ab connecting the point b and the DSC curve was ⁇ H.
  • the temperature at the point where the endothermic amount becomes maximum at one melting peak was defined as the melting peak temperature.
  • the maximum endothermic temperature at each peak was defined as the respective peak temperature, and it was clearly shown that there were two peak temperatures.
  • Table 2 shows the resins used as the polypropylene resin (B).
  • Examples 1 to 3 and Comparative Example 1 are both modified propylene- It contains an ethylene block copolymer (A-2) and a propylene-ethylene block copolymer (B-1).
  • the blending amount of (A-2) is 1 to 49% by weight (provided that the component (A) and It can be seen that the Dupont impact strength of the foam can be increased by setting the total amount of the component (B) to 100% by weight, and the same applies hereinafter. Among them, the DuPont impact strength of the foam can be further increased by setting the blending amount of (A-2) to 1 to 25% by weight.
  • Examples 4 to 6 and Comparative Example 2 both contain a modified propylene-ethylene block copolymer (A-1) and a propylene-ethylene block copolymer (B-1). It can be seen that the DuPont impact strength of the foam can be increased by setting the blending amount of 1) to 1 to 49% by weight. Among them, the DuPont impact strength of the foam can be further increased by setting the blending amount of (A-1) to 1 to 25% by weight.
  • the MFR of the component (A) is generally in the range of 20 to 80. From the viewpoint of impact resistance, the component (A) It can be seen that it is preferable that the blending amount is 1 to 25% by weight. When emphasizing mold transferability, it is preferable that the MFR of the component (A) is approximately in the range of 20 to 80.
  • Each of Examples 7 to 9 includes the modified propylene-ethylene block copolymer (A-6) and the propylene-ethylene block copolymer (B-1).
  • the blending amount of (A-6) It can be seen that the Dupont impact strength of the foam can be made higher than that of Comparative Examples 1 and 2 and about the same as or higher than that of Examples 1 to 6 by setting the content to 1 to 49% by weight. . Among them, the DuPont impact strength of the foam can be further increased by setting the blending amount of (A-6) to 1 to 25% by weight.
  • the MFR of the component (A) is generally in the range of 1 to 20, but from the viewpoint of impact resistance, the blending amount of the component (A) is 1 to 25. It turns out that it is suitable to set it as weight%. When the mold transfer property is not so important, it is preferable that the MFR of the component (A) is approximately in the range of 1 to 20.
  • Example 10 and Example 11 were modified propylene-ethylene block copolymers (A-1, A-2) and propylene-ethylene block copolymers (B -3), the DuPont impact strength of the foam can be further increased as compared with Examples 3 and 6 above.
  • Comparative Examples 12 to 13 are modified propylene-ethylene block copolymers (A-2, A-1) and propylene-ethylene block copolymers (B-4). In comparison with Examples 3 and 6 above, the DuPont impact strength of the foam is inferior.
  • component (A) is a modified propylene homopolymer and component (B) is a propylene-ethylene block copolymer Comparative Examples 3-5, Comparative Examples 6-8, and Comparative Examples 9-11 are: As the component A), the modified propylene homopolymers (A-5), (A-4), and (A-3), respectively, and as the component (B), the propylene-ethylene block copolymer (B-1) However, it can be seen that the DuPont impact strength of the foam is inferior to that of the example containing the modified propylene-ethylene block copolymer as the component (A).
  • the component (A) is a modified propylene homopolymer (A-5) and a modified propylene-ethylene block copolymer (A-6), respectively.
  • the composition is the same including the blending amount, but the former is inferior in the DuPont impact strength of the foam.
  • component (A) is a modified propylene-ethylene block copolymer and component (B) is a propylene homopolymer
  • Comparative Examples 14 to 16 are the modified propylene-ethylene block as component (A). Copolymers (A-6), (A-2), and (A-1), and propylene homopolymer (B-2) as component (B), but modified as component (A) Compared to Examples 9, 3, and 6 containing a propylene-ethylene block copolymer and a propylene-ethylene block copolymer as component (B), it can be seen that the DuPont impact strength of the foam is inferior. However, compared with Comparative Examples 17 to 19 containing the modified propylene homopolymer as the component (A) and the propylene homopolymer as the component (B), the foam has excellent DuPont impact strength.
  • component (A) is a modified propylene homopolymer
  • component (B) is a propylene homopolymer Comparative Examples 17 to 19 are the modified propylene homopolymer (A- 5), including (A-4) and (A-3), and propylene homopolymer (B-2) as component (B), but overall the foam has a low DuPont impact strength. I understand.
  • injection foam molding should be satisfactorily performed. I can't. From this, it is understood that it is essential to combine the component (A) with the component (B) in carrying out the injection foam molding.
  • FIG. 1 shows a graph in which the melt tension is plotted against the MFR obtained in each example and comparative example.
  • the examples are plotted with circles (outlined), and the comparative examples are plotted with triangles (black).
  • the melt tension of the resin composition of each example is equal to or less than the melt tension obtained from the following linear equation. Therefore, when the MFR of the resin composition is X, the melt tension Y of the resin composition is preferably not more than the melt tension obtained from the following linear equation from the viewpoint of impact resistance.
  • Y ⁇ ( ⁇ 0.032) X + 1.91 Y is the melt tension (gf) of the resin composition, and X is the MFR (g / 10 minutes) of the resin composition)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

Provided is a polypropylene resin composition which is capable of providing an injection foam molded body that has excellent impact resistance and good foam state. This composition contains a conjugated diene-modified polypropylene resin (A) which is a conjugated diene-modified propylene-ethylene block copolymer having a melt flow rate of 1 g/10 min or more but less than 80 g/10 min and a polypropylene resin (B) which is a propylene-ethylene block copolymer having a melt flow rate of 1 g/10 min or more but less than 80 g/10 min. This composition is configured such that: the content of the ethylene component in the component (A) is 1% by weight or more; the content of the component (A) is 1-49% by weight and the content of the component (B) is 51-99% by weight relative to 100% by weight of the total of the component (A) and the component (B); and the melt tension of the composition is 0.1 gf or more but less than 2.0 gf.

Description

射出発泡成形用のポリプロピレン系樹脂組成物、およびその射出発泡成形体Polypropylene resin composition for injection foam molding and injection foam molded body thereof
 本発明は、射出発泡成形に好適に使用し得るポリプロピレン系樹脂組成物、およびその射出発泡成形体に関する。 The present invention relates to a polypropylene resin composition that can be suitably used for injection foam molding, and an injection foam molded body thereof.
 ポリプロピレン系樹脂は、良好な物性及び成形性を有しており、また、環境に優しい材料として急速にその使用範囲が拡大している。特に、自動車部品等では、軽量で剛性に優れたポリプロピレン樹脂製品が提供されている。そのような製品の一つに、ポリプロピレン系樹脂の射出発泡成形体がある。 Polypropylene resin has good physical properties and moldability, and its use range is rapidly expanding as an environmentally friendly material. In particular, for automobile parts and the like, lightweight and excellent polypropylene resin products are provided. One such product is a polypropylene resin injection foam molding.
 一般に、射出発泡成形に用いるポリプロピレン系樹脂の特性としては、金型内の隅々まで樹脂が充填されるための流動性と、その後発泡するための発泡性が必要とされる。 Generally, as a characteristic of a polypropylene resin used for injection foam molding, fluidity for filling the resin into every corner of the mold and foamability for foaming thereafter are required.
 しかしながら、通常使用される線状ポリプロピレン系樹脂は、耐衝撃性が低いため、発泡体が破壊されやすく、耐衝撃性を重視するような用途への適用が困難であった。また、目視によりセル状態が劣ると判断される、発泡不良が発生しやすい傾向があった。 However, the linear polypropylene resin usually used has a low impact resistance, so that the foam is easily broken, and it is difficult to apply it to uses in which the impact resistance is important. Moreover, there existed a tendency for the foaming defect to be easy to generate | occur | produce judged that a cell state is inferior by visual observation.
 それらの改善のために、たとえば、以下のような提案がなされている。 For example, the following proposals have been made for these improvements.
 特許文献1には、(A)線状ポリプロピレン系樹脂、(B)歪硬化性を示す改質ポリプロピレン系樹脂、からなる樹脂と、発泡剤とを含む組成物を、金型内に射出発泡成形する方法と、それによって得られた成形体が開示され、高発泡倍率が可能で、表面外観が良好であることが記載されている。しかしながら、(B)成分の改質のためのベース樹脂としてポリプロピレンホモポリマーのみを用いており、耐衝撃性の改善は不十分なものであった。 In Patent Document 1, a composition comprising (A) a linear polypropylene resin, (B) a modified polypropylene resin exhibiting strain-hardening properties, and a foaming agent is injected into a mold by injection foam molding. And a molded article obtained by the method are disclosed, and it is described that a high expansion ratio is possible and the surface appearance is good. However, only the polypropylene homopolymer was used as the base resin for modifying the component (B), and the impact resistance was insufficiently improved.
 特許文献2には、(a)ポリプロピレン系樹脂、(b)イソプレン単量体、(c)ラジカル重合開始剤とを溶融混練して得られる、(A)改質ポリプロピレン系樹脂の製法が開示され、得られた(A)が、歪硬化性を示すこと、発泡成形に用いても良いことが記載されている。しかしながら、射出発泡成形については記載がなく、また、その場合の、耐衝撃性や、発泡した場合のセル状態については記載も示唆もないため、射出発泡成形に適用することは容易想到ではなく、適用した場合の効果もまったく不明であった。あわせて、(A)成分と、非改質のポリプロピレン系樹脂とを組み合わせて用いることも記載されていない。 Patent Document 2 discloses a method for producing (A) a modified polypropylene resin obtained by melt-kneading (a) a polypropylene resin, (b) an isoprene monomer, and (c) a radical polymerization initiator. It is described that the obtained (A) exhibits strain-hardening properties and may be used for foam molding. However, there is no description about injection foam molding, and in that case, there is no description or suggestion about the impact resistance and the cell state when foamed, so it is not easy to apply to injection foam molding, The effect when applied was also completely unknown. In addition, there is no description that the component (A) is used in combination with an unmodified polypropylene resin.
 特許文献3には、(a)ポリプロピレン系樹脂、(b)イソプレン単量体、(c)ラジカル重合開始剤とを溶融混練して得られる、(A)改質ポリプロピレン系樹脂を発泡させる、発泡体の製法が開示され、耐熱性が良好で、発泡倍率に優れた発泡成形体が得られることが記載されている。しかしながら、射出発泡成形については記載がなく、また、その場合の、耐衝撃性や、発泡した場合のセル状態については記載も示唆もないため、射出発泡成形に適用することは容易想到ではなく、適用した場合の効果もまったく不明であった。あわせて、(A)成分と、非改質のポリプロピレン系樹脂とを組み合わせて用いることも記載されていない。 In Patent Document 3, (a) a polypropylene resin, (b) an isoprene monomer, and (c) a radical polymerization initiator obtained by melt-kneading, (A) a modified polypropylene resin is foamed. The manufacturing method of a body is disclosed, and it is described that the heat-resistant and the foaming molding which was excellent in the expansion ratio is obtained. However, there is no description about injection foam molding, and in that case, there is no description or suggestion about the impact resistance and the cell state when foamed, so it is not easy to apply to injection foam molding, The effect when applied was also completely unknown. In addition, there is no description that the component (A) is used in combination with an unmodified polypropylene resin.
 特許文献4には、(a)ポリプロピレン系樹脂、(b)イソプレンなどの単量体、(c)ラジカル重合開始剤とを溶融混練して得られる、(A)改質ポリプロピレン系樹脂を発泡させて得られる、発泡シートが開示され、加熱時のドローダウンが小さく、独立気泡率に優れていることが記載されている。しかしながら、射出発泡成形については記載がなく、また、耐衝撃性や、発泡した場合のセル状態については記載も示唆もないため、射出発泡成形に適用することは容易想到ではなく、適用した場合の効果もまったく不明であった。あわせて、(A)成分と、非改質のポリプロピレン系樹脂とを組み合わせて用いることも記載されていない。 In Patent Document 4, (a) a modified polypropylene resin obtained by melt kneading (a) a polypropylene resin, (b) a monomer such as isoprene, and (c) a radical polymerization initiator is foamed. The foamed sheet obtained is disclosed, and it is described that the drawdown during heating is small and the closed cell ratio is excellent. However, there is no description about injection foam molding, and there is no description or suggestion about the impact resistance and the cell state when foamed, so it is not easy to apply to injection foam molding, and when applied The effect was also completely unknown. In addition, there is no description that the component (A) is used in combination with an unmodified polypropylene resin.
 特許文献5には、(A)歪硬化性を示す改質ポリプロピレン系樹脂と、(C)発泡剤とを含む組成物を、金型内に射出発泡成形する方法と、それによって得られた成形体が開示され、発泡成形性が良好で、剛性に優れることが記載されている。改質のためのベース樹脂として、プロピレン-エチレンブロックコポリマーを用いているものの、耐衝撃性については記載も示唆もないため、耐衝撃性を重視する用途に適用した場合の効果もまったく不明であった。あわせて、(A)成分と、非改質のポリプロピレン系樹脂とを組み合わせて用いることも記載されていない。 Patent Document 5 discloses a method of injection-molding a composition containing (A) a modified polypropylene resin exhibiting strain hardening and (C) a foaming agent into a mold, and a molding obtained thereby. The body is disclosed, and it is described that the foam moldability is good and the rigidity is excellent. Although propylene-ethylene block copolymer is used as the base resin for modification, there is no description or suggestion about impact resistance, so the effect when applied to applications that place importance on impact resistance is completely unknown. It was. In addition, there is no description that the component (A) is used in combination with an unmodified polypropylene resin.
 以上のように、射出発泡成形のためのポリプロピレン系樹脂組成物において、耐衝撃性と、発泡した場合のセル状態を両立するポリプロピレン系樹脂組成物を得ることは困難であった。 As described above, in a polypropylene resin composition for injection foam molding, it has been difficult to obtain a polypropylene resin composition that achieves both impact resistance and a cell state when foamed.
特開2005-224963号公報JP 2005-224963 A 特開平09-188729号公報JP 09-188729 A 特開平09-188774号公報JP 09-188774 A 特開2001-139716号公報JP 2001-139716 A 特開2007-130992号公報JP 2007-130992 A
 本発明の目的は、耐衝撃性に優れ、かつ良好な発泡状態を有する射出発泡成形体を与えることができるポリプロピレン系樹脂組成物、およびその射出発泡成形体を提供することである。 An object of the present invention is to provide a polypropylene-based resin composition that is excellent in impact resistance and can provide an injection foam molded article having a good foamed state, and an injection foam molded article thereof.
 本発明は以下のとおりである。 The present invention is as follows.
 [1] 230℃、2.16kg荷重で測定されるメルトフローレートが1g/10分以上80g/10分未満である共役ジエン改質プロピレン-エチレンブロック共重合体である共役ジエン改質ポリプロピレン系樹脂(A)、及び、
 230℃、2.16kg荷重で測定されるメルトフローレートが1g/10分以上80g/10分未満であるプロピレン-エチレンブロック共重合体であるポリプロピレン系樹脂(B)を含有する射出発泡成形用ポリプロピレン系樹脂組成物であって、
 (A)成分におけるエチレン成分の含有量は1重量%以上であり、
 (A)成分と(B)成分の合計100重量%に対し(A)成分の含有量が1~49重量%、(B)成分の含有量が51~99重量%であり、
 前記組成物の200℃、10m/minで測定されるメルトテンションが0.1gf以上2.0gf未満である、射出発泡成形用ポリプロピレン系樹脂組成物。
[1] A conjugated diene-modified polypropylene resin, which is a conjugated diene-modified propylene-ethylene block copolymer, having a melt flow rate measured at 230 ° C. and a load of 2.16 kg of 1 g / 10 min or more and less than 80 g / 10 min. (A) and
Polypropylene for injection foam molding containing a polypropylene resin (B) which is a propylene-ethylene block copolymer having a melt flow rate measured at 230 ° C. and a load of 2.16 kg of 1 g / 10 min or more and less than 80 g / 10 min. A resin composition comprising:
The content of the ethylene component in the component (A) is 1% by weight or more,
The content of the component (A) is 1 to 49% by weight and the content of the component (B) is 51 to 99% by weight with respect to the total of 100% by weight of the component (A) and the component (B).
A polypropylene resin composition for injection foam molding, wherein a melt tension measured at 200 ° C. and 10 m / min of the composition is 0.1 gf or more and less than 2.0 gf.
 [2] 前記組成物は、230℃、2.16kg荷重で測定されるメルトフローレートが8g/10分以上80g/10分未満である、前記[1]に記載の射出発泡成形用ポリプロピレン系樹脂組成物。 [2] The composition is a polypropylene resin for injection foam molding according to [1], wherein a melt flow rate measured at 230 ° C. and a load of 2.16 kg is 8 g / 10 min or more and less than 80 g / 10 min. Composition.
 [3] (A)成分と(B)成分の合計100重量%に対し(A)成分の含有量が1~25重量%、(B)成分の含有量が75~99重量%であり、かつ、
 (A)成分の230℃、2.16kg荷重で測定されるメルトフローレートが20g/10分以上80g/10分未満である、前記[1]又は[2]に記載の射出発泡成形用ポリプロピレン系樹脂組成物。
[3] The content of the component (A) is 1 to 25% by weight, the content of the component (B) is 75 to 99% by weight with respect to the total of 100% by weight of the component (A) and the component (B), and ,
The polypropylene system for injection foam molding according to the above [1] or [2], wherein the melt flow rate of the component (A) measured at 230 ° C. and a load of 2.16 kg is 20 g / 10 min or more and less than 80 g / 10 min. Resin composition.
 [4] (A)成分と(B)成分の合計100重量%に対し(A)成分の含有量が1~25重量%、(B)成分の含有量が75~99重量%であり、かつ、
 (A)成分の230℃、2.16kg荷重で測定されるメルトフローレートが1g/10分以上20g/10分未満である、前記[1]又は[2]に記載の射出発泡成形用ポリプロピレン系樹脂組成物。
[4] The content of the component (A) is 1 to 25% by weight, the content of the component (B) is 75 to 99% by weight with respect to the total of 100% by weight of the component (A) and the component (B), and ,
The polypropylene system for injection foam molding according to the above [1] or [2], wherein the melt flow rate measured at 230 ° C. under a 2.16 kg load of the component (A) is 1 g / 10 min or more and less than 20 g / 10 min. Resin composition.
 [5] 前記[1]~[4]のいずれかに記載のポリプロピレン系樹脂組成物の射出発泡成形体。 [5] An injection-foamed molded article of the polypropylene resin composition according to any one of [1] to [4].
 本発明のポリプロピレン系樹脂組成物は、耐衝撃性に優れ、かつ、良好な発泡状態を有する射出発泡成形体を与えることができる。そのため、本発明のポリプロピレン系樹脂組成物は、自動車内装材料などの射出発泡成形体に好適に使用できる。 The polypropylene resin composition of the present invention is excellent in impact resistance and can give an injection foam molded article having a good foamed state. Therefore, the polypropylene resin composition of the present invention can be suitably used for injection foam molded articles such as automobile interior materials.
各実施例および比較例で得られたMFRに対してメルトテンションをプロットしたグラフGraph in which melt tension is plotted against MFR obtained in each example and comparative example
 以下、本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described.
 本発明は、射出発泡成形用ポリプロピレン系樹脂組成物に関する。該組成物は、230℃、2.16kg荷重で測定されるメルトフローレートが1g/10分以上80g/10分未満である共役ジエン改質プロピレン-エチレンブロック共重合体である共役ジエン改質ポリプロピレン系樹脂(A)、及び、230℃、2.16kg荷重で測定されるメルトフローレートが1g/10分以上80g/10分未満であるプロピレン-エチレンブロック共重合体であるポリプロピレン系樹脂(B)を含有する。(A)成分におけるエチレン成分の含有量は1重量%以上であり、(A)成分と(B)成分の合計100重量%に対し(A)成分の含有量が1~49重量%、(B)成分の含有量が51~99重量%であり、前記組成物の200℃、10m/minで測定されるメルトテンションが0.1gf以上2.0gf未満である。 The present invention relates to a polypropylene resin composition for injection foam molding. The composition is a conjugated diene-modified polypropylene which is a conjugated diene-modified propylene-ethylene block copolymer having a melt flow rate measured at 230 ° C. and a load of 2.16 kg of 1 g / 10 min or more and less than 80 g / 10 min. And a polypropylene resin (B) which is a propylene-ethylene block copolymer having a melt flow rate measured at 230 ° C. and a load of 2.16 kg of 1 g / 10 min or more and less than 80 g / 10 min Containing. The content of the ethylene component in the component (A) is 1% by weight or more, and the content of the component (A) is 1 to 49% by weight with respect to the total of 100% by weight of the component (A) and the component (B). ) The component content is 51 to 99% by weight, and the melt tension of the composition measured at 200 ° C. and 10 m / min is 0.1 gf or more and less than 2.0 gf.
 <共役ジエン改質ポリプロピレン系樹脂(A)>
 本発明の共役ジエン改質ポリプロピレン系樹脂(A)は、230℃、2.16kg荷重の条件にて測定されるメルトフローレートが1g/10分以上80g/10分未満を示す共役ジエン改質プロピレン-エチレンブロック共重合体である。
<Conjugated Diene Modified Polypropylene Resin (A)>
The conjugated diene modified polypropylene resin (A) of the present invention is a conjugated diene modified propylene having a melt flow rate of 1 g / 10 min or more and less than 80 g / 10 min measured at 230 ° C. and a load of 2.16 kg. An ethylene block copolymer.
 (A)成分のメルトフローレートが1g/10分未満の場合、樹脂組成物の流動性が不足して大型金型での射出発泡成形においてショートショットなどの成形不良ならびに金型転写性の悪化による表面性の不良などを起こす場合がある。(A)成分のメルトフローレートが80g/10分以上であると、(B)成分との混合が不十分となったり、射出発泡成形体の耐衝撃性が不十分となる場合がある。(A)成分のメルトフローレートは、金型転写性や成形体の表面性を重視する場合は、20g/10分以上、80g/10分未満が好ましく、成形体の耐衝撃性を重視する場合は、1g/10分以上、20g/10分未満が好ましい。 When the melt flow rate of the component (A) is less than 1 g / 10 min, the resin composition is insufficient in fluidity, resulting in molding defects such as short shots and deterioration of mold transferability in injection foam molding with a large mold. May cause surface defects. When the melt flow rate of the component (A) is 80 g / 10 min or more, mixing with the component (B) may be insufficient, or the impact resistance of the injection foamed molded product may be insufficient. The component (A) melt flow rate is preferably 20 g / 10 min or more and less than 80 g / 10 min when emphasizing the mold transfer property and the surface property of the molded body, and when the impact resistance of the molded body is important. Is preferably 1 g / 10 min or more and less than 20 g / 10 min.
 ここで、メルトフローレート(以降、「MFR」と略す場合がある)とは、JIS K7210:1999に準拠し、メルトインデクサーF-F01((株)東洋精機製作所製)を用い、230℃、2.16kg荷重の条件にて、ダイから一定時間に押し出される樹脂量を、10分間に押し出される樹脂量に換算した値をいう。この換算値は、MFR自動演算処理(B法)によって算出した。計算式は以下の通りである。メルトフローレートが50g/10分を超える場合であっても、当方法を適用した。 Here, the melt flow rate (hereinafter sometimes abbreviated as “MFR”) is 230 ° C. using a melt indexer F-F01 (manufactured by Toyo Seiki Seisakusho Co., Ltd.) in accordance with JIS K7210: 1999. 2. A value obtained by converting the amount of resin extruded from a die in a certain time under a load of 16.16 kg into the amount of resin extruded in 10 minutes. This converted value was calculated by MFR automatic calculation processing (B method). The calculation formula is as follows. This method was applied even when the melt flow rate exceeded 50 g / 10 min.
 MFR(g/10分)=(427xLxρ)/t
  L(試験条件のインターバル):3(cm)
  ρ(試験温度での溶融密度):切り取り法により以下の式で算出される値(g/cm)、ただし切り取り法が不可能な場合には0.75(g/cm)とした
    ρ=m/(0.711xL)
     m:切り取り法により測定される、ピストンが上記インターバルLを移動して流出した試料の質量(g)
     L:上記インターバルと同じ
  t(インターバル移動時間):実際の測定値(秒)
 つまり、切り取り法が適用できる場合には、以下の計算式で算出しても良い。
MFR (g / 10 minutes) = (427 × Lxρ) / t
L (test condition interval): 3 (cm)
ρ (melt density at the test temperature): a value (g / cm 3 ) calculated by the following formula by the cutting method, but 0.75 (g / cm 3 ) when the cutting method is impossible ρ = M / (0.711xL)
m: Mass of the sample (g) measured by the cut-off method and moved out of the interval L by the piston
L: Same as the above interval t (interval movement time): Actual measured value (seconds)
That is, when the cutting method can be applied, it may be calculated by the following calculation formula.
 MFR(g/10分)=(600xm)/t
 本発明の共役ジエン改質ポリプロピレン系樹脂(A)は、200℃、10m/minで測定されるメルトテンションが好ましくは1.0gf以上、より好ましくは2.0gf以上である。(A)成分のメルトテンションが1.0gf以上であると、たとえば2倍以上の発泡倍率において、均一な微細気泡を有する射出発泡成形体を得ることが容易となる。
MFR (g / 10 min) = (600 × m) / t
The conjugated diene modified polypropylene resin (A) of the present invention has a melt tension measured at 200 ° C. and 10 m / min, preferably 1.0 gf or more, more preferably 2.0 gf or more. When the melt tension of the component (A) is 1.0 gf or more, it becomes easy to obtain an injection foam molded article having uniform fine bubbles, for example, at a foaming ratio of 2 or more.
 樹脂組成物のMFRをXとした場合、樹脂組成物のメルトテンションYは、以下の一次方程式から得られるメルトテンション以下であることが、耐衝撃性の観点から好ましい。
Y≦(-0.032)X+1.91
(Yを樹脂組成物のメルトテンション(gf)とし、Xを樹脂組成物のMFR(g/10分)とする)
 本発明の共役ジエン改質ポリプロピレン系樹脂(A)は、共役ジエン改質プロピレン-エチレンブロック共重合体である。該共重合体は、プロピレン-エチレンブロック共重合体に共役ジエン化合物を反応させることで、プロピレン-エチレンブロック共重合体に分岐構造を導入し、これを高分子量化してなる樹脂である。該共重合体は、プロピレン-エチレンブロック共重合体(a)、ラジカル重合開始剤(b)および共役ジエン化合物(c)を溶融混合して得られたものが好ましい。この溶融混合物は、高価な設備を必要とせず、安価に製造できる点で優れている。
When the MFR of the resin composition is X, the melt tension Y of the resin composition is preferably not more than the melt tension obtained from the following linear equation from the viewpoint of impact resistance.
Y ≦ (−0.032) X + 1.91
(Y is the melt tension (gf) of the resin composition, and X is the MFR (g / 10 minutes) of the resin composition)
The conjugated diene modified polypropylene resin (A) of the present invention is a conjugated diene modified propylene-ethylene block copolymer. The copolymer is a resin obtained by reacting a propylene-ethylene block copolymer with a conjugated diene compound to introduce a branched structure into the propylene-ethylene block copolymer and increasing the molecular weight thereof. The copolymer is preferably obtained by melt-mixing a propylene-ethylene block copolymer (a), a radical polymerization initiator (b) and a conjugated diene compound (c). This molten mixture is excellent in that it does not require expensive equipment and can be produced at low cost.
 <プロピレン-エチレンブロック共重合体(a)>
 共役ジエン改質ポリプロピレン系樹脂(A)を得るために用いられるプロピレン-エチレンブロック共重合体(a)は、プロピレンを主成分とする直鎖ポリマーの中に、エチレンを主成分とするポリマー、およびエチレン-プロピレン・ゴム状共重合体が分散し、海島構造を形成しているような、プロピレン系ポリマーである。このようなプロピレン系ポリマーは、耐衝撃性ポリプロピレン、日本国内では慣例的にブロックポリプロピレンなどと呼称されているが、化学的な意味でのブロック共重合体ではない。本発明において、プロピレン-エチレンブロック共重合体(a)は、プロピレンの単独重合体またはプロピレンを主体とする共重合体(a1)と、エチレンの単独重合体(a2)および/またはエチレンと炭素数3~10のα-オレフィンとの共重合体(a3)と、を含有する混合物であることが好ましい。この時、(a1)がマトリクスであるプロピレンを主成分とする直鎖ポリマーに相当し、(a2)がエチレンを主成分とするポリマーに相当し、(a3)がエチレン-プロピレン・ゴム状共重合体に相当する。
<Propylene-ethylene block copolymer (a)>
The propylene-ethylene block copolymer (a) used for obtaining the conjugated diene-modified polypropylene-based resin (A) includes a polymer mainly composed of ethylene in a linear polymer mainly composed of propylene, and A propylene-based polymer in which an ethylene-propylene-rubbery copolymer is dispersed to form a sea-island structure. Such a propylene-based polymer is called impact-resistant polypropylene, and conventionally called block polypropylene in Japan, but is not a block copolymer in a chemical sense. In the present invention, the propylene-ethylene block copolymer (a) is a propylene homopolymer or a copolymer (a1) mainly composed of propylene, an ethylene homopolymer (a2) and / or ethylene and carbon number. A mixture containing a copolymer (a3) with 3 to 10 α-olefin is preferable. At this time, (a1) corresponds to a linear polymer mainly composed of propylene which is a matrix, (a2) corresponds to a polymer mainly composed of ethylene, and (a3) corresponds to an ethylene-propylene rubber-like copolymer. Corresponds to coalescence.
 プロピレン-エチレンブロック共重合体(a)は、プロピレン成分を51重量%以上含有している共重合体が好ましく、結晶性、剛性、耐薬品性などの観点からは、プロピレン成分を60重量%以上含有している共重合体がより好ましく、70重量%以上がさらに好ましく、80重量%以上が特に好ましい。 The propylene-ethylene block copolymer (a) is preferably a copolymer containing 51% by weight or more of a propylene component. From the viewpoint of crystallinity, rigidity, chemical resistance, etc., the propylene component is 60% by weight or more. The contained copolymer is more preferable, 70% by weight or more is further preferable, and 80% by weight or more is particularly preferable.
 また、プロピレン-エチレンブロック共重合体(a)は、耐衝撃性などの観点からは、エチレン成分を1重量%以上含有するが、3重量%以上含有しているものが好ましく、5重量%以上がより好ましく、8重量%以上がさらに好ましく、10重量%以上が特に好ましい。 The propylene-ethylene block copolymer (a) contains 1% by weight or more of an ethylene component from the viewpoint of impact resistance, etc., but preferably contains 3% by weight or more. Is more preferable, 8% by weight or more is further preferable, and 10% by weight or more is particularly preferable.
 プロピレン-エチレンブロック共重合体(a)は、プロピレンとエチレンに加えて、プロピレンと共重合可能なモノマーを共重合したものであってもよい。そのようなプロピレンと共重合可能なモノマーとしては、例えば、1-ブテン、イソブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、3,4-ジメチル-1-ブテン、1-ヘプテン、3-メチル-1-ヘキセン、1-オクテン、1-デセンなどの4~12のα-オレフィン;シクロペンテン、ノルボルネン、テトラシクロ[6,2,11,8,13,6]-4-ドデセンなどの環状オレフィン;5-メチレン-2-ノルボルネン、5-エチリデン-2-ノルボルネン、1,4-ヘキサジエン、メチル-1,4-ヘキサジエン、7-メチル-1,6-オクタジエンなどのジエン;塩化ビニル、塩化ビニリデン、アクリロニトリル、酢酸ビニル、アクリル酸、メタクリル酸、マレイン酸、アクリル酸エチル、アクリル酸ブチル、メタクリル酸メチル、無水マレイン酸、スチレン、メチルスチレン、ビニルトルエン、ジビニルベンゼンなどのビニル単量体;などが挙げられる。これらは、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。これらのうち、耐寒性向上、安価等という点で、α-オレフィンが好ましく、1-ブテンがより好ましい。 The propylene-ethylene block copolymer (a) may be a copolymer obtained by copolymerizing a monomer copolymerizable with propylene in addition to propylene and ethylene. Examples of such monomers copolymerizable with propylene include 1-butene, isobutene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, and 3,4-dimethyl. 4 to 12 α-olefins such as 1-butene, 1-heptene, 3-methyl-1-hexene, 1-octene, 1-decene; cyclopentene, norbornene, tetracyclo [6,2,11,8,13, 6] Cyclic olefins such as 4-dodecene; 5-methylene-2-norbornene, 5-ethylidene-2-norbornene, 1,4-hexadiene, methyl-1,4-hexadiene, 7-methyl-1,6-octadiene Diene such as vinyl chloride, vinylidene chloride, acrylonitrile, vinyl acetate, acrylic acid, methacrylic acid, maleic acid, acrylic acid Chill, butyl acrylate, methyl methacrylate, maleic anhydride, styrene, methyl styrene, vinyl toluene, vinyl monomers such as divinylbenzene; and the like. These may be used alone or in combination of two or more. Of these, α-olefins are preferable and 1-butene is more preferable in terms of improving cold resistance and low cost.
 プロピレン-エチレンブロック共重合体(a)の市販品としては、例えば、(株)プライムポリマー製のJ709UG(MFR=55)、J708UG(MFR=45)、J830HV(MFR=30)、J717ZG(MFR=32)、J707EG(MFR=30)、J707G(MFR=30)、J715M(MFR=9)、J705UG(MFR=9)、J704UG(MFR=5)、J702LB(MFR=1.8)などが挙げられる。例えば、J708UGは、国際公開第2015/060201号によると、エチレン系重合体含有量が14質量%であるとされており、本発明で好適に用いることができる。 Examples of commercially available propylene-ethylene block copolymers (a) include J709UG (MFR = 55), J708UG (MFR = 45), J830HV (MFR = 30), J717ZG (MFR = 32), J707EG (MFR = 30), J707G (MFR = 30), J715M (MFR = 9), J705UG (MFR = 9), J704UG (MFR = 5), J702LB (MFR = 1.8), and the like. . For example, according to International Publication No. 2015/060201, J708UG has an ethylene polymer content of 14% by mass and can be suitably used in the present invention.
 <ラジカル重合開始剤(b)>
 共役ジエン改質ポリプロピレン系樹脂(A)を得るために用いられるラジカル重合開始剤(b)としては、一般に過酸化物、アゾ化合物などが挙げられるが、プロピレン-エチレンブロック共重合体(a)や共役ジエン化合物(c)からの水素引き抜き能を有するものが好ましい。特に限定されないが、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシジカーボネート、パーオキシエステルなどの有機過酸化物が挙げられる。
<Radical polymerization initiator (b)>
The radical polymerization initiator (b) used to obtain the conjugated diene-modified polypropylene resin (A) generally includes peroxides and azo compounds, but the propylene-ethylene block copolymer (a) and Those having hydrogen abstraction ability from the conjugated diene compound (c) are preferred. Although it does not specifically limit, For example, organic peroxides, such as a ketone peroxide, a peroxy ketal, a hydroperoxide, a dialkyl peroxide, a diacyl peroxide, a peroxy dicarbonate, a peroxy ester, are mentioned.
 これらのうち、特に水素引き抜き能が高いものが好ましく、例えば、1,1-ビス(t-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、n-ブチル4,4-ビス(t-ブチルパーオキシ)バレレート、2,2-ビス(t-ブチルパーオキシ)ブタンなどのパーオキシケタール、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-3-ヘキシンなどのジアルキルパーオキサイド、ベンゾイルパーオキサイドなどのジアシルパーオキサイド、t-ブチルパーオキシオクテート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシラウレート、t-ブチルパーオキシ3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシイソプロピルカーボネート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアセテート、t-ブチルパーオキシベンゾエート、ジ-t-ブチルパーオキシイソフタレートなどのパーオキシエステルなどが挙げられる。これらは、単独で使用してもよく、2種以上を組み合わせて使用してもよい。 Among these, those having particularly high hydrogen abstraction ability are preferable, for example, 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) cyclohexane. N-butyl 4,4-bis (t-butylperoxy) valerate, peroxyketals such as 2,2-bis (t-butylperoxy) butane, dicumyl peroxide, 2,5-dimethyl-2, 5-di (t-butylperoxy) hexane, α, α'-bis (t-butylperoxy-m-isopropyl) benzene, t-butylcumyl peroxide, di-t-butylperoxide, 2,5- Diacyl peroxide such as dimethyl-2,5-di (t-butylperoxy) -3-hexyne and benzoyl peroxide -Oxide, t-butyl peroxyoctate, t-butyl peroxyisobutyrate, t-butyl peroxylaurate, t-butyl peroxy 3,5,5-trimethylhexanoate, t-butyl peroxyisopropyl carbonate Peroxyesters such as 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, t-butylperoxyacetate, t-butylperoxybenzoate, and di-t-butylperoxyisophthalate It is done. These may be used alone or in combination of two or more.
 共役ジエン改質ポリプロピレン系樹脂(A)を得るために用いられるラジカル重合開始剤(b)の添加量としては、プロピレン-エチレンブロック共重合体(a)100重量部に対して、0.05重量部以上10重量部以下が好ましく、0.2重量部以上5重量部以下がさらに好ましい。ラジカル重合開始剤の添加量が0.05重量部未満では、改質が不十分となる場合があり、10重量部を超えると、改質よりも分子鎖切断が優先してしまい、所望の改質効果が得られない場合がある。 The addition amount of the radical polymerization initiator (b) used for obtaining the conjugated diene-modified polypropylene resin (A) is 0.05% by weight with respect to 100 parts by weight of the propylene-ethylene block copolymer (a). Part to 10 parts by weight, preferably 0.2 part to 5 parts by weight. If the addition amount of the radical polymerization initiator is less than 0.05 parts by weight, the modification may be insufficient. If the amount exceeds 10 parts by weight, the molecular chain scission takes priority over the modification, and the desired modification is achieved. Quality effects may not be obtained.
 <共役ジエン化合物(c)>
 共役ジエン改質ポリプロピレン系樹脂(A)を得るために用いられる共役ジエン化合物(c)としては、例えば、ブタジエン、イソプレン、1,3-ヘプタジエン、2,3-ジメチルブタジエン、2,5-ジメチル-2,4-ヘキサジエンなどが挙げられる。これらを単独で使用してもよいし、組み合わせて使用してもよい。これらの中では、安価で取り扱いやすく、反応が均一に進みやすい点から、ブタジエン、イソプレンが好ましい。
<Conjugated diene compound (c)>
Examples of the conjugated diene compound (c) used to obtain the conjugated diene-modified polypropylene resin (A) include butadiene, isoprene, 1,3-heptadiene, 2,3-dimethylbutadiene, 2,5-dimethyl- 2,4-hexadiene and the like can be mentioned. These may be used alone or in combination. Of these, butadiene and isoprene are preferred because they are inexpensive and easy to handle and the reaction easily proceeds uniformly.
 共役ジエン化合物(c)の添加量としては、プロピレン-エチレンブロック共重合体(a)100重量部に対して、0.01重量部以上5重量部以下が好ましく、0.05重量部以上2重量部以下がさらに好ましい。共役ジエン化合物の添加量が0.01重量部未満では、改質が不十分となる場合があり、5重量部を超えると、流動性が不充分となる場合がある。 The addition amount of the conjugated diene compound (c) is preferably 0.01 parts by weight or more and 5 parts by weight or less, and 0.05 parts by weight or more and 2 parts by weight with respect to 100 parts by weight of the propylene-ethylene block copolymer (a). Part or less is more preferable. If the addition amount of the conjugated diene compound is less than 0.01 parts by weight, the modification may be insufficient, and if it exceeds 5 parts by weight, the fluidity may be insufficient.
 共役ジエン改質ポリプロピレン系樹脂(A)を製造するにあたっては、前記共役ジエン化合物と共重合可能な単量体を、共役ジエン化合物と併用してもよい。そのような共重合可能な単量体としては、例えば、塩化ビニル、塩化ビニリデン、アクリロニトリル、メタクリロニトリル、アクリルアミド、メタクリルアミド、酢酸ビニル、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、アクリル酸金属塩、メタクリル酸金属塩、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、アクリル酸ステアリルなどのアクリル酸エステル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸ステアリルなどのメタクリル酸エステルなどが挙げられる。 In producing the conjugated diene-modified polypropylene resin (A), a monomer copolymerizable with the conjugated diene compound may be used in combination with the conjugated diene compound. Examples of such copolymerizable monomers include vinyl chloride, vinylidene chloride, acrylonitrile, methacrylonitrile, acrylamide, methacrylamide, vinyl acetate, acrylic acid, methacrylic acid, maleic acid, maleic anhydride, acrylic acid. Metal salt, metal methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, stearyl acrylate, and other acrylic esters, methyl methacrylate, ethyl methacrylate, butyl methacrylate, methacrylic acid 2 -Methacrylic acid esters such as ethylhexyl and stearyl methacrylate.
 <共役ジエン改質ポリプロピレン系樹脂(A)の製造に関する条件>
 共役ジエン改質ポリプロピレン系樹脂(A)を製造する際には、ラジカル重合開始剤(b)の添加量を、共役ジエン化合物(c)の添加量の0.1倍以上、10倍以下(重量基準)とすると、共役ジエン改質ポリプロピレン系樹脂(A)のメルトフローレートを1以上、80未満の範囲に比較的容易に調整することができる。ラジカル重合開始剤(b)の添加量は、好ましくは共役ジエン化合物(c)の添加量の0.5倍以上、7.5倍以下であり、より好ましくは0.75倍以上、5倍以下である。
<Conditions for production of conjugated diene-modified polypropylene resin (A)>
When the conjugated diene-modified polypropylene resin (A) is produced, the radical polymerization initiator (b) is added in an amount of 0.1 to 10 times the weight of the conjugated diene compound (c). (Standard), the melt flow rate of the conjugated diene-modified polypropylene resin (A) can be adjusted relatively easily to a range of 1 or more and less than 80. The addition amount of the radical polymerization initiator (b) is preferably 0.5 to 7.5 times the addition amount of the conjugated diene compound (c), more preferably 0.75 to 5 times. It is.
 共役ジエン改質ポリプロピレン系樹脂(A)を得るために、プロピレン-エチレンブロック共重合体(a)、ラジカル重合開始剤(b)、および共役ジエン化合物(c)を反応させるための装置としては、ロール、コニーダー、バンバリーミキサー、ブラベンダー、単軸押出機、2軸押出機などの混練機、2軸表面更新機、2軸多円板装置などの横型撹拌機、ダブルヘリカルリボン撹拌機などの縦型撹拌機、などが挙げられる。これらのうち、混練機を使用することが好ましく、特に押出機が生産性の点から好ましい。 In order to obtain the conjugated diene-modified polypropylene resin (A), an apparatus for reacting the propylene-ethylene block copolymer (a), the radical polymerization initiator (b), and the conjugated diene compound (c) includes: Rollers, kneaders, Banbury mixers, Brabenders, single-screw extruders, twin-screw extruders and other kneading machines, twin-screw surface renewal machines, horizontal twin-disk devices such as double-shaft multi-disk devices, and vertical helical ribbon stirrers Mold stirrer and the like. Among these, a kneader is preferably used, and an extruder is particularly preferable from the viewpoint of productivity.
 共役ジエン改質ポリプロピレン系樹脂(A)を得るために、プロピレン-エチレンブロック共重合体(a)、ラジカル重合開始剤(b)、および共役ジエン化合物(c)を混合および混練(撹拌)する順序または方法には、特に制限はない。プロピレン-エチレンブロック共重合体(a)、ラジカル重合開始剤(b)、および共役ジエン化合物(c)を混合したのち溶融混練(撹拌)してもよいし、プロピレン-エチレンブロック共重合体(a)を溶融混練(撹拌)した後、ラジカル重合開始剤(b)および共役ジエン化合物(c)を同時にあるいは別々に、一括してあるいは分割して混合してもよい。混練(撹拌)機の温度は130~300℃であることが、プロピレン-エチレンブロック共重合体(a)が溶融し、かつ熱分解しないという点で好ましい。また、混練(撹拌)時間は、一般に1~60分が好ましい。 The order of mixing and kneading (stirring) the propylene-ethylene block copolymer (a), the radical polymerization initiator (b), and the conjugated diene compound (c) to obtain the conjugated diene-modified polypropylene resin (A). There is no particular limitation on the method. The propylene-ethylene block copolymer (a), the radical polymerization initiator (b), and the conjugated diene compound (c) may be mixed and then melt-kneaded (stirred), or the propylene-ethylene block copolymer (a ) And then kneading (stirring), the radical polymerization initiator (b) and the conjugated diene compound (c) may be mixed simultaneously or separately, collectively or dividedly. The temperature of the kneading (stirring) machine is preferably 130 to 300 ° C. from the viewpoint that the propylene-ethylene block copolymer (a) melts and does not thermally decompose. The kneading (stirring) time is generally preferably 1 to 60 minutes.
 以上のようにして、共役ジエン改質ポリプロピレン系樹脂(A)を製造することができる。製造される共役ジエン改質ポリプロピレン系樹脂(A)の形状、大きさに制限はなく、ペレット状でもよい。 As described above, the conjugated diene-modified polypropylene resin (A) can be produced. There is no restriction | limiting in the shape and magnitude | size of the conjugated diene modified polypropylene resin (A) manufactured, A pellet form may be sufficient.
 <ポリプロピレン系樹脂(B)>
 本発明のポリプロピレン系樹脂(B)は、230℃、2.16kg荷重の条件にて測定されるメルトフローレートが1g/10分以上80g/10分未満を示すプロピレン-エチレンブロック共重合体である。ただし、共役ジエンにより改質されたプロピレン-エチレンブロック共重合体は、ポリプロピレン系樹脂(B)の範疇に含まれるものではない。
<Polypropylene resin (B)>
The polypropylene resin (B) of the present invention is a propylene-ethylene block copolymer having a melt flow rate of 1 g / 10 min or more and less than 80 g / 10 min measured under conditions of 230 ° C. and 2.16 kg load. . However, the propylene-ethylene block copolymer modified with conjugated diene is not included in the category of the polypropylene resin (B).
 (B)成分のメルトフローレートが1g/10分未満の場合、射出成形体を製造する際に、金型キャビティのクリアランスが例えば1~2mm程度の薄肉部分を有する場合、比較的低圧力で溶融樹脂を金型内に充填することが難しくなり、連続して安定した射出成形を実施できなくなる場合がある。(B)成分のメルトフローレートが80g/10分以上であると、流動性が過剰なため、射出成形が不安定になりやすい傾向がある。(B)成分のメルトフローレートは、3g/10分以上、70g/10分以下がより好ましく、5g/10分以上、70g/10分未満がさらに好ましい。なお、メルトフローレートの測定条件は上述のものと同様である。 When the melt flow rate of the component (B) is less than 1 g / 10 min, when producing an injection molded body, if the mold cavity has a thin part with a clearance of, for example, about 1 to 2 mm, it melts at a relatively low pressure. It may be difficult to fill the resin into the mold, and it may not be possible to carry out continuous and stable injection molding. When the melt flow rate of the component (B) is 80 g / 10 min or more, the fluidity is excessive and the injection molding tends to become unstable. The melt flow rate of the component (B) is more preferably 3 g / 10 min or more and 70 g / 10 min or less, and further preferably 5 g / 10 min or more and less than 70 g / 10 min. The measurement conditions for the melt flow rate are the same as those described above.
 本発明のポリプロピレン系樹脂(B)はプロピレン-エチレンブロック共重合体である。プロピレン-エチレンブロック共重合体は、プロピレンを主成分とする直鎖ポリマーの中に、エチレンを主成分とするポリマー、およびエチレン-プロピレン・ゴム状共重合体が分散し、海島構造を形成しているような、プロピレン系ポリマーであり、具体的には、前述したプロピレン-エチレンブロック共重合体(a)と同様のものを用いることができる。 The polypropylene resin (B) of the present invention is a propylene-ethylene block copolymer. A propylene-ethylene block copolymer is a linear polymer mainly composed of propylene, in which a polymer mainly composed of ethylene and an ethylene-propylene rubber-like copolymer are dispersed to form a sea-island structure. Specifically, the same propylene-ethylene block copolymer (a) as described above can be used.
 <射出発泡成形用ポリプロピレン系樹脂組成物>
 本発明の射出発泡成形用ポリプロピレン系樹脂組成物は、上述した共役ジエン改質ポリプロピレン系樹脂(A)と、ポリプロピレン系樹脂(B)を組み合わせて用いることで、耐衝撃性に優れ、かつ良好な発泡状態を有する射出発泡成形体を与えることができる。そのような射出成形体を得るには、両成分は、(A)成分の含有量より(B)成分の含有量が多くなるように配合される。具体的には、(A)成分と(B)成分の合計100重量%に対し(A)成分の含有量は1~49重量%、(B)成分の含有量は51~99重量%である。この範囲において、耐衝撃性に優れ、かつ良好な発泡状態を有する射出発泡成形体を得ることができる。耐衝撃性の観点から、(A)成分の含有量は、好ましくは1~25重量%、より好ましくは5~25重量%、さらに好ましくは、10~20重量%である。
<Polypropylene resin composition for injection foam molding>
The polypropylene resin composition for injection foam molding of the present invention is excellent in impact resistance and good by using a combination of the conjugated diene-modified polypropylene resin (A) and the polypropylene resin (B) described above. An injection foam molded article having a foamed state can be provided. In order to obtain such an injection-molded body, both components are blended so that the content of the component (B) is larger than the content of the component (A). Specifically, the content of the component (A) is 1 to 49% by weight and the content of the component (B) is 51 to 99% by weight with respect to the total of 100% by weight of the component (A) and the component (B). . In this range, it is possible to obtain an injection foam molded article having excellent impact resistance and a good foamed state. From the viewpoint of impact resistance, the content of component (A) is preferably 1 to 25% by weight, more preferably 5 to 25% by weight, and still more preferably 10 to 20% by weight.
 また、(B)成分のMFRに応じて(A)成分のMFRならびに含有量の好適な範囲は変動し得る。たとえば、(B)成分のMFRが8g/10分未満の場合、流動性の観点から(A)成分のMFRは好ましくは20g/10分以上、より好ましくは40g/10分以上であり、その中でも、(A)成分のMFRが20g/10分未満の場合、流動性の不足により金型転写性の悪化などの不具合が発生することがある。また、(B)成分のMFRが前記のように8g/10分未満の場合、(A)成分の添加量は、5~49重量%が好ましく、10~35重量%がより好ましい。 Also, the suitable range of the MFR and content of the component (A) can vary depending on the MFR of the component (B). For example, when the MFR of the component (B) is less than 8 g / 10 minutes, the MFR of the component (A) is preferably 20 g / 10 minutes or more, more preferably 40 g / 10 minutes or more from the viewpoint of fluidity, When the MFR of the component (A) is less than 20 g / 10 minutes, problems such as deterioration of mold transferability may occur due to insufficient fluidity. When the MFR of the component (B) is less than 8 g / 10 minutes as described above, the amount of the component (A) added is preferably 5 to 49% by weight, more preferably 10 to 35% by weight.
 本発明の射出発泡成形用ポリプロピレン系樹脂組成物は、200℃、10m/minで測定されるメルトテンションが0.1gf以上2.0gf未満である。前記ポリプロピレン系樹脂組成物のメルトテンションが上記の範囲であると、耐衝撃性に優れ、かつ良好な発泡状態を有する射出発泡成形体を得ることができる。樹脂組成物のメルトテンションは、各成分を十分に溶融混練した後に測定される数値であり、共役ジエン改質ポリプロピレン系樹脂(A)、ポリプロピレン系樹脂(B)それぞれが示すメルトフローレートや、各成分の種類、組合せ、配合量などに依拠して、容易に調整することができる。 The polypropylene resin composition for injection foam molding of the present invention has a melt tension measured at 200 ° C. and 10 m / min of 0.1 gf or more and less than 2.0 gf. When the melt tension of the polypropylene resin composition is within the above range, an injection foam molded article having excellent impact resistance and a good foamed state can be obtained. The melt tension of the resin composition is a numerical value measured after sufficiently melting and kneading each component, and the melt flow rate indicated by each of the conjugated diene-modified polypropylene resin (A) and the polypropylene resin (B), It can be easily adjusted depending on the kind, combination, blending amount, and the like of the components.
 メルトテンションは、溶融樹脂を変形させるのに要する張力を表すものであるのに対し、メルトフローレートは溶融樹脂の流動性を示す尺度であるため、両者は異なる概念である。 The melt tension represents the tension required to deform the molten resin, whereas the melt flow rate is a measure showing the fluidity of the molten resin, so they are different concepts.
 本発明の射出発泡成形用ポリプロピレン系樹脂組成物が示すメルトフローレートは限定されないが、8g/10分以上80g/10分未満であることが好ましい。このメルトフローレートは前述した条件で測定される。ポリプロピレン系樹脂組成物のメルトフローレートがこの範囲内にあると、前記射出発泡成形用ポリプロピレン系樹脂組成物が射出発泡成形に適した流動性を持ち、かつ射出発泡成形後に高い耐衝撃性能を有する成形体を得ることができる。 The melt flow rate of the polypropylene resin composition for injection foam molding of the present invention is not limited, but is preferably 8 g / 10 min or more and less than 80 g / 10 min. This melt flow rate is measured under the conditions described above. When the melt flow rate of the polypropylene resin composition is within this range, the polypropylene resin composition for injection foam molding has fluidity suitable for injection foam molding and has high impact resistance after injection foam molding. A molded body can be obtained.
 ポリプロピレン系樹脂組成物のメルトフローレートは、各成分を十分に溶融混練した後に測定される数値であり、共役ジエン改質ポリプロピレン系樹脂(A)、ポリプロピレン系樹脂(B)それぞれが示すメルトフローレートと、各成分の配合量などに依拠して、容易に調整することができる。 The melt flow rate of the polypropylene resin composition is a numerical value measured after sufficiently melting and kneading each component, and the melt flow rate indicated by each of the conjugated diene-modified polypropylene resin (A) and the polypropylene resin (B). And it can be easily adjusted depending on the blending amount of each component.
 <発泡剤(C)>
 本発明の射出発泡成形用ポリプロピレン系樹脂組成物は発泡剤を含有する。本発明で使用できる発泡剤としては、射出発泡成形に通常使用できるものであれば特に制限なく使用することができ、化学発泡剤、物理発泡剤のいずれであってもよい。
<Foaming agent (C)>
The polypropylene resin composition for injection foam molding of the present invention contains a foaming agent. The foaming agent that can be used in the present invention can be used without particular limitation as long as it can be usually used for injection foam molding, and may be either a chemical foaming agent or a physical foaming agent.
 化学発泡剤は、樹脂成分と予め混合してから押出機や射出成形機に供給され、シリンダ内で分解して炭酸ガス等の気体を発生するものである。化学発泡剤としては特に限定されないが、例えば、重炭酸ナトリウム、炭酸アンモニウム等の無機系化学発泡剤や、アゾジカルボンアミド、N,N’-ジニトロソペンタメチレンテトラミン等の有機系化学発泡剤が挙げられる。これらは単独で使用してもよいし、2種以上混合して使用してもよい。 The chemical foaming agent is mixed with a resin component in advance and then supplied to an extruder or an injection molding machine, and decomposes in a cylinder to generate a gas such as carbon dioxide. The chemical foaming agent is not particularly limited, and examples thereof include inorganic chemical foaming agents such as sodium bicarbonate and ammonium carbonate, and organic chemical foaming agents such as azodicarbonamide and N, N′-dinitrosopentamethylenetetramine. It is done. These may be used alone or in combination of two or more.
 物理発泡剤は、押出機や射出成形機のシリンダ内の溶融樹脂に対し、ガス状または超臨界流体として注入され、分散または溶解されるもので、金型内に射出後、圧力開放されることによって発泡剤として機能するものである。物理発泡剤としては特に限定されないが、例えば、プロパン、ブタン等の脂肪族炭化水素類、シクロブタン、シクロペンタン等の脂環式炭化水素類、クロロジフルオロメタン、ジクロロメタン等のハロゲン化炭化水素類、窒素、炭酸ガス、空気等の無機ガスなどが挙げられる。これらは単独で使用してもよいし、2種以上混合して使用してもよい。 The physical foaming agent is injected as a gaseous or supercritical fluid into the molten resin in the cylinder of an extruder or injection molding machine, and is dispersed or dissolved. After injection into the mold, the pressure is released. It functions as a foaming agent. The physical foaming agent is not particularly limited, but examples thereof include aliphatic hydrocarbons such as propane and butane, alicyclic hydrocarbons such as cyclobutane and cyclopentane, halogenated hydrocarbons such as chlorodifluoromethane and dichloromethane, nitrogen, and the like. And inorganic gases such as carbon dioxide and air. These may be used alone or in combination of two or more.
 これらの発泡剤の中では、通常の押出機や射出成形機で安全に使用でき、均一微細な気泡が得られやすいものとして、化学発泡剤としては無機系化学発泡剤、物理発泡剤としては窒素、炭酸ガス、空気等の無機ガスが好ましい。これらの発泡剤には、射出発泡成形体の気泡を安定的に均一微細にするために、必要に応じて、例えば、クエン酸のような有機酸等の発泡助剤や、タルク、炭酸リチウムのような無機微粒子等の造核剤を添加してもよい。通常、上記無機系化学発泡剤は、取扱性、貯蔵安定性、ポリプロピレン系樹脂への分散性の点から、該発泡剤の濃度が10~75重量%のポリオレフィン系樹脂のマスターバッチを作製したうえで使用されるのが好ましい。 Among these foaming agents, it can be safely used in ordinary extruders and injection molding machines, and it is easy to obtain uniform fine bubbles. As chemical foaming agents, inorganic chemical foaming agents, and as physical foaming agents, nitrogen Inorganic gases such as carbon dioxide and air are preferred. These foaming agents include, for example, foaming aids such as organic acids such as citric acid, talc, lithium carbonate, etc. A nucleating agent such as inorganic fine particles may be added. Usually, the inorganic chemical foaming agent is prepared from a polyolefin resin master batch having a concentration of the foaming agent of 10 to 75% by weight from the viewpoints of handleability, storage stability, and dispersibility in polypropylene resin. Are preferably used.
 本発明における発泡剤の使用量は、最終製品の発泡倍率と発泡剤の種類や成形時の樹脂温度によって適宜設定することができる。例えば、無機系化学発泡剤は、本発明のポリプロピレン系樹脂組成物100重量部に対して、好ましくは0.5重量部以上30重量部以下、さらに好ましくは1重量部以上20重量部以下の範囲で使用される。無機系化学発泡剤をこの範囲で使用することにより、発泡倍率が2倍以上、かつ、均一微細気泡の射出発泡成形体を経済的かつ容易に得ることができる。一方、物理発泡剤は、ポリプロピレン系樹脂組成物100重量部に対して、好ましくは0.05重量部以上10重量部以下、より好ましくは0.1重量部以上5重量部以下の範囲で、射出成形機に供給して使用される。 The amount of the foaming agent used in the present invention can be appropriately set depending on the foaming ratio of the final product, the type of foaming agent, and the resin temperature during molding. For example, the inorganic chemical foaming agent is preferably in the range of 0.5 to 30 parts by weight, more preferably 1 to 20 parts by weight, with respect to 100 parts by weight of the polypropylene resin composition of the present invention. Used in. By using the inorganic chemical foaming agent in this range, it is possible to economically and easily obtain an injection foam molded article having a foaming ratio of 2 times or more and uniform fine cells. On the other hand, the physical foaming agent is preferably injected in an amount of 0.05 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, with respect to 100 parts by weight of the polypropylene resin composition. Used by supplying to a molding machine.
 <その他の添加剤>
 本発明のポリプロピレン系樹脂組成物は、必要に応じて、本発明の効果を損なわない範囲で、(A)成分と(B)成分のいずれにも該当しないポリプロピレン系樹脂の他、高密度ポリエチレン系樹脂、高圧法低密度ポリエチレン系樹脂、線状低密度ポリエチレン系樹脂、エチレン-α-オレフィン共重合体、オレフィン系エラストマー、スチレン系エラストマー、その他の熱可塑性樹脂をさらに含有するものであってもよい。
<Other additives>
The polypropylene-based resin composition of the present invention is a high-density polyethylene-based resin as well as a polypropylene resin that does not fall under any of the components (A) and (B) as long as the effects of the present invention are not impaired. Resin, high-pressure low-density polyethylene resin, linear low-density polyethylene resin, ethylene-α-olefin copolymer, olefin-based elastomer, styrene-based elastomer, and other thermoplastic resins .
 また、本発明のポリプロピレン系樹脂組成物は、必要に応じて、本発明の効果を損なわない範囲で、酸化防止剤、金属不活性剤、燐系加工安定剤、紫外線吸収剤、紫外線安定剤、蛍光増白剤、金属石鹸、制酸吸着剤などの安定剤、架橋剤、連鎖移動剤、核剤、可塑剤、滑材、充填材、強化材、顔料、染料、難燃剤、帯電防止剤などの添加剤をさらに含有するものであってもよい。 In addition, the polypropylene resin composition of the present invention is an antioxidant, a metal deactivator, a phosphorus processing stabilizer, an ultraviolet absorber, an ultraviolet stabilizer, as long as the effects of the present invention are not impaired, if necessary. Stabilizers such as fluorescent brighteners, metal soaps, antacid adsorbents, crosslinking agents, chain transfer agents, nucleating agents, plasticizers, lubricants, fillers, reinforcing materials, pigments, dyes, flame retardants, antistatic agents, etc. These additives may be further contained.
 <射出発泡成形体>
 また、本発明は、前記ポリプロピレン系樹脂組成物の射出発泡成形体にも関する。
<Injection foam molding>
The present invention also relates to an injection-foamed molded article of the polypropylene resin composition.
 本発明の射出発泡成形体の発泡倍率は、好ましくは1.5倍以上10倍以下、さらに好ましくは2倍以上6倍以下である。発泡倍率が1.5倍未満では、軽量性が得られ難い傾向があり、10倍を超える場合には、剛性の低下が著しくなる傾向がある。 The expansion ratio of the injection-foamed molded article of the present invention is preferably 1.5 to 10 times, more preferably 2 to 6 times. If the expansion ratio is less than 1.5 times, it tends to be difficult to obtain light weight, and if it exceeds 10 times, the rigidity tends to be significantly reduced.
 <射出発泡成形方法>
 本発明の射出発泡成形体を製造するために使用できる射出発泡成形方法としては特に限定されず、公知の方法を適用することができる。その際の具体的な成形条件は、ポリプロピレン系樹脂組成物のメルトフローレート、メルトテンション、成形機の種類、金型の形状などを考慮して適宜決定することができる。一例として、樹脂温度としては好ましくは170~300℃、さらに好ましくは190~270℃、金型温度としては好ましくは10~100℃、さらに好ましくは20~80℃が例示される。また、成形サイクル1~120分、射出速度10~300mm/秒、射出圧10~200MPa等の条件で行うことが好ましい。
<Injection foam molding method>
It does not specifically limit as an injection foam molding method which can be used in order to manufacture the injection foam molding of this invention, A well-known method is applicable. Specific molding conditions at that time can be appropriately determined in consideration of the melt flow rate, melt tension, type of molding machine, mold shape, and the like of the polypropylene resin composition. As an example, the resin temperature is preferably 170 to 300 ° C., more preferably 190 to 270 ° C., and the mold temperature is preferably 10 to 100 ° C., more preferably 20 to 80 ° C. Further, it is preferable to carry out under conditions such as a molding cycle of 1 to 120 minutes, an injection speed of 10 to 300 mm / second, and an injection pressure of 10 to 200 MPa.
 以下に、実施例によって本発明をより詳しく説明するが、本発明は、これらによって何ら制限されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited to these examples.
 実施例および比較例において、各種の評価方法に用いられた試験法および判定基準は、次の通りである。 In the examples and comparative examples, the test methods and criteria used for various evaluation methods are as follows.
 (1)メルトフローレート(MFR)
 JIS K7210:1999に準拠し、メルトインデクサーF-F01((株)東洋精機製作所製)を用い、230℃、2.16kg荷重の条件にて、ダイから一定時間に押し出される樹脂量を、10分間に押し出される樹脂量に換算した値を、メルトフローレートとした。この換算値は、MFR自動演算処理(B法)によって算出した。計算式は以下の通りである。メルトフローレートが50(g/10分)を超える場合であっても、当方法を適用した。
(1) Melt flow rate (MFR)
In accordance with JIS K7210: 1999, the amount of resin extruded from a die at a predetermined time under a condition of 230 ° C. and 2.16 kg load using a melt indexer F-F01 (manufactured by Toyo Seiki Seisakusho) is 10 The value converted into the amount of resin extruded per minute was taken as the melt flow rate. This converted value was calculated by MFR automatic calculation processing (B method). The calculation formula is as follows. This method was applied even when the melt flow rate exceeded 50 (g / 10 min).
 MFR(g/10分)=(427xLxρ)/t
  L(試験条件のインターバル):3(cm)
  ρ(試験温度での溶融密度):切り取り法により以下の式で算出される値、ただし切り取り法が不可能な場合には0.75(g/cm3)とした
    ρ=m/(0.711xL)
     m:切り取り法により測定される、ピストンが上記インターバルLを移動して流出した試料の質量(g)
     L:上記インターバルと同じ
  t(インターバル移動時間):実際の測定値(秒)
 つまり、切り取り法が適用できる場合には、以下の計算式で算出しても良い。
MFR (g / 10 minutes) = (427 × Lxρ) / t
L (test condition interval): 3 (cm)
ρ (melt density at test temperature): a value calculated by the following formula by the cutting method, but when the cutting method is not possible, 0.75 (g / cm 3) ρ = m / (0.711 × L )
m: Mass of the sample (g) measured by the cut-off method and moved out of the interval L by the piston
L: Same as the above interval t (interval movement time): Actual measured value (seconds)
That is, when the cutting method can be applied, it may be calculated by the following calculation formula.
 MFR(g/10分)=(600xm)/t
 (2)メルトテンション(MT)
 メルトテンション測定用アタッチメントが装備されており、先端にφ1mm、長さ10mmのオリフィスを装着したφ10mmのシリンダを有するキャピログラフ((株)東洋精機製作所製)を使用した。200℃に加温したシリンダにサンプルを充填し、5分予熱した。前記の予熱時間経過後、ピストン降下速度10mm/分で降下させた際にダイから吐出されるストランドを、370mmもしくは520mm下のロードセル付きプーリーに掛けて10m/分の速度で引き取りながら、ロードセル付きプーリーにかかる荷重を経時的に測定した。測定開始から約5分後に、荷重のブレがおおよそ安定してから得られた荷重の最大値と最小値を測定して、それらの平均値をメルトテンションとした。なお、ロードセル付きプーリーにかかる荷重が感知されないほど低い場合はメルトテンションを0とした。
MFR (g / 10 min) = (600 × m) / t
(2) Melt tension (MT)
A capillograph (manufactured by Toyo Seiki Seisakusyo Co., Ltd.) equipped with a melt tension measurement attachment and having a φ10 mm cylinder fitted with an orifice of φ1 mm and a length of 10 mm at the tip was used. The sample was filled in a cylinder heated to 200 ° C. and preheated for 5 minutes. After the preheating time has elapsed, when the piston descends at a rate of 10 mm / min, the strand discharged from the die is placed on a pulley with a load cell below 370 mm or 520 mm and pulled at a speed of 10 m / min. The load applied to was measured over time. About 5 minutes after the start of the measurement, the maximum value and the minimum value of the load obtained after the blurring of the load was substantially stabilized were measured, and the average value thereof was taken as the melt tension. The melt tension was set to 0 when the load applied to the pulley with the load cell was so low that it could not be detected.
 また、上記条件でメルトテンションを測定する際にストランドが破断する場合は、10m/分でのメルトテンションが高過ぎるためであるので、引き取り速度を3m/分に変更してメルトテンションを測定した。原理的に、10m/分で測定した値と、3m/分で測定した値とを比較すると、前者が高く、後者が低くなるため、前者の条件で破断した場合は、後者の値よりも高いと推定できる。 Also, when the strand breaks when measuring the melt tension under the above conditions, the melt tension at 10 m / min is too high, so the melt tension was measured by changing the take-up speed to 3 m / min. In principle, when the value measured at 10 m / min is compared with the value measured at 3 m / min, the former is higher and the latter is lower. Therefore, when the fracture occurs under the former conditions, it is higher than the latter value. Can be estimated.
 (3)デュポン衝撃試験
 デュポン衝撃試験機(安田精機製作所製)を使用し、定落下重量によるステアケース法により50%破壊高さを求め、そのときの荷重からエネルギー値を計算した。落下荷重は300g、700g、もしくは1000gとし、エネルギー値の計算はJIS-K-7211に準じて行った。
(3) DuPont impact test Using a DuPont impact tester (manufactured by Yasuda Seiki Seisakusho), the 50% fracture height was determined by the steer case method using constant drop weight, and the energy value was calculated from the load at that time. The drop load was 300 g, 700 g, or 1000 g, and the energy value was calculated according to JIS-K-7221.
 (4)発泡体のセル状態の目視評価
 射出成形機(ニイガタマシンテクノ製MD350S-IV)をもちいて、以下の成形条件で、以下の評価用金型内に、完全に樹脂組成物が充填する最小の充填圧力で射出成形した。
・樹脂温度:200℃
・金型温度:40℃
・射出速度:100mm/sec
・使用金型:底面センター1点ピンゲートの平板金型
 成形品採取に当たっては、射出状態の安定性を保証するためにパージ(材料切り替え)後の4ショットを捨てて続く7ショットを採取した。射出成形体を切断し、断面の発泡状態を目視で観察した。発泡状態は、以下の基準で評価した。
◎:試験サンプルの中で、最も発泡性が良好なもの
○:試験サンプルの中で、発泡性が良好なもの
△:試験サンプルの中で、発泡性が劣るもの
 (5)DSC測定
 JIS K7122(1987)に準拠する測定方法により、セイコーインスツルメンツ(株)製の示差走査熱量計DSC6200を用いて、測定試料4~10mgを30℃から210℃まで10℃/分の速度で昇温して一旦融解し(1stスキャン)、次に210℃から30℃まで10℃/分の速度で冷却するという熱履歴の後、再度30℃から210℃まで10℃/分の速度で昇温して融解した時(2ndスキャン)の、DSC曲線を得た。 得られたDSC曲線において、DSC曲線のピークを挟んだ両側の実質的に直線とみなせる部分を延長する様にベースラインを引き、DSC曲線が低温側ベースラインから離れる点aと高温側ベースラインから離れる点bとを結んだ線abと、DSC曲線とに囲まれる部分の面積から算出される融解熱量を、ΔHとした。他方、得られたDSC曲線において、1つの融解ピークにて吸熱量が最大となる点の温度を、融解ピーク温度とした。融解ピークが2つ以上ある場合には、それぞれのピークでの最大吸熱量となる温度を、それぞれのピーク温度とし、2つのピーク温度を有することを明示した。
(4) Visual Evaluation of Cell State of Foam Using an injection molding machine (MD350S-IV manufactured by Niigata Machine Techno), the resin composition is completely filled in the following evaluation mold under the following molding conditions. Injection molded with minimum filling pressure.
・ Resin temperature: 200 ℃
・ Mold temperature: 40 ℃
・ Injection speed: 100mm / sec
-Mold used: Flat plate mold with 1-point pin gate at the bottom center In collecting the molded product, 4 shots after purging (material switching) were discarded and 7 subsequent shots were collected in order to guarantee the stability of the injection state. The injection molded body was cut, and the foamed state of the cross section was visually observed. The foaming state was evaluated according to the following criteria.
A: The test sample has the best foamability. B: The test sample has the best foamability. Δ: The test sample has the poor foamability. (5) DSC measurement JIS K7122 ( 1987), using a differential scanning calorimeter DSC6200 manufactured by Seiko Instruments Inc., 4 to 10 mg of a measurement sample was heated from 30 ° C. to 210 ° C. at a rate of 10 ° C./min and once melted. (1st scan), after the heat history of cooling from 210 ° C. to 30 ° C. at a rate of 10 ° C./min. A DSC curve of (2nd scan) was obtained. In the obtained DSC curve, a base line is drawn so as to extend a portion that can be regarded as a substantially straight line on both sides across the peak of the DSC curve, and the DSC curve is separated from the low temperature side baseline a and the high temperature side baseline. The amount of heat of fusion calculated from the area of the portion surrounded by the line ab connecting the point b and the DSC curve was ΔH. On the other hand, in the obtained DSC curve, the temperature at the point where the endothermic amount becomes maximum at one melting peak was defined as the melting peak temperature. When there were two or more melting peaks, the maximum endothermic temperature at each peak was defined as the respective peak temperature, and it was clearly shown that there were two peak temperatures.
 実施例においては、2ndスキャンの値を示した。 In the examples, 2nd scan values are shown.
 <共役ジエン改質ポリプロピレン系樹脂の作製>
 (製造例1)
 (a)プロピレン-エチレンブロック共重合体としてメルトフローレート45g/10分のプロピレン-エチレンブロック共重合体(a-1)(エチレン成分を14重量%含む)100重量部、および、(b)ラジカル重合開始剤としてt-ブチルパーオキシイソプロピルカーボネート1.1重量部の混合物を、ホッパーから70kg/時で46mmφ二軸押出機(L/D=40)に供給して、シリンダ温度200℃で溶融混練し、途中に設けた圧入部より、(c)共役ジエン化合物としてイソプレンモノマーを、定量ポンプを用いて0.32重量部(0.245kg/時の速度)で供給し、前記二軸押出機中で溶融混練することにより、共役ジエン改質ポリプロピレン系樹脂(A-1)のペレットを得た。MFR=60g/10分であった。得られた共役ジエン改質ポリプロピレン系樹脂(A-1)を、表1に示す。
<Preparation of conjugated diene modified polypropylene resin>
(Production Example 1)
(A) 100 parts by weight of a propylene-ethylene block copolymer (a-1) (containing 14% by weight of an ethylene component) as a propylene-ethylene block copolymer and a melt flow rate of 45 g / 10 min, and (b) a radical A mixture of 1.1 parts by weight of t-butylperoxyisopropyl carbonate as a polymerization initiator was supplied from a hopper to a 46 mmφ twin screw extruder (L / D = 40) at 70 kg / hour, and melt kneaded at a cylinder temperature of 200 ° C. Then, from the press-fitting portion provided in the middle, (c) 0.32 parts by weight (0.245 kg / hour) of isoprene monomer as a conjugated diene compound was supplied using a metering pump in the twin-screw extruder. Was then kneaded to obtain pellets of the conjugated diene-modified polypropylene resin (A-1). MFR = 60 g / 10 min. The obtained conjugated diene-modified polypropylene resin (A-1) is shown in Table 1.
 (製造例2)
 (b)ラジカル重合開始剤としてt-ブチルパーオキシイソプロピルカーボネートの量を1.1重量部、(c)共役ジエン化合物としてイソプレンの供給量を0.41重量部に変更した以外は、製造例1と同様にして、共役ジエン改質ポリプロピレン系樹脂(A-2)を得た。MFR=40g/10分であった。
(Production Example 2)
(B) Production Example 1 except that the amount of t-butylperoxyisopropyl carbonate as a radical polymerization initiator was changed to 1.1 parts by weight, and the amount of isoprene supplied as a (c) conjugated diene compound was changed to 0.41 parts by weight. In the same manner as above, a conjugated diene-modified polypropylene resin (A-2) was obtained. MFR = 40 g / 10 min.
 (製造例3)
 (a)プロピレン-エチレンブロック共重合体の代わりにメルトフローレート45g/10分のポリプロピレン単独重合体(a-2)を使用し、(b)ラジカル重合開始剤としてt-ブチルパーオキシイソプロピルカーボネートの量を1.1重量部、(c)共役ジエン化合物としてイソプレンの供給量を0.4重量部に変更した以外は、製造例1と同様にして、共役ジエン改質ポリプロピレン系樹脂(A-3)を得た。MFR=60g/10分であった。
(Production Example 3)
(A) A polypropylene homopolymer (a-2) having a melt flow rate of 45 g / 10 min was used in place of the propylene-ethylene block copolymer, and (b) t-butylperoxyisopropyl carbonate as a radical polymerization initiator was used. The conjugated diene modified polypropylene resin (A-3) was prepared in the same manner as in Production Example 1, except that the amount was 1.1 parts by weight and (c) the amount of isoprene supplied as the conjugated diene compound was changed to 0.4 parts by weight. ) MFR = 60 g / 10 min.
 (製造例4)
 (b)ラジカル重合開始剤としてt-ブチルパーオキシイソプロピルカーボネートの量を1.1重量部、(c)共役ジエン化合物としてイソプレンの供給量を0.44重量部に変更した以外は、製造例3と同様にして、共役ジエン改質ポリプロピレン系樹脂(A-4)を得た。MFR=40g/10分であった。
(Production Example 4)
(B) Production Example 3 except that the amount of t-butylperoxyisopropyl carbonate as a radical polymerization initiator was changed to 1.1 parts by weight, and the amount of isoprene supplied as a (c) conjugated diene compound was changed to 0.44 parts by weight. In the same manner as above, a conjugated diene-modified polypropylene resin (A-4) was obtained. MFR = 40 g / 10 min.
 (製造例5)
 (a)プロピレン-エチレンブロック共重合体の代わりにメルトフローレート8g/10分のポリプロピレン単独重合体(a-3)を使用し、(b)ラジカル重合開始剤としてt-ブチルパーオキシイソプロピルカーボネートの量を0.75重量部、(c)共役ジエン化合物としてイソプレンの供給量を0.5重量部に変更した以外は、製造例3と同様にして、共役ジエン改質ポリプロピレン系樹脂(A-5)を得た。MFR=7g/10分であった。
(Production Example 5)
(A) A polypropylene homopolymer (a-3) having a melt flow rate of 8 g / 10 min was used in place of the propylene-ethylene block copolymer, and (b) t-butyl peroxyisopropyl carbonate was used as a radical polymerization initiator. Conjugated diene modified polypropylene resin (A-5) in the same manner as in Production Example 3, except that the amount was changed to 0.75 parts by weight and (c) the amount of isoprene supplied as the conjugated diene compound was changed to 0.5 parts by weight. ) MFR = 7 g / 10 min.
 (製造例6)
 (a)プロピレン-エチレンブロック共重合体としてメルトフローレート5g/10分のプロピレン-エチレンブロック共重合体(a-4)(エチレン成分を14重量%含む)100重量部を使用し、(b)ラジカル重合開始剤としてt-ブチルパーオキシイソプロピルカーボネートの量を1.1重量部、(c)共役ジエン化合物としてイソプレンの供給量を0.42重量部に変更した以外は、製造例1と同様にして、共役ジエン改質ポリプロピレン系樹脂(A-6)を得た。MFR=9g/10分であった。
(Production Example 6)
(A) 100 parts by weight of a propylene-ethylene block copolymer (a-4) (containing 14% by weight of an ethylene component) having a melt flow rate of 5 g / 10 min as a propylene-ethylene block copolymer, (b) Except for changing the amount of t-butyl peroxyisopropyl carbonate as a radical polymerization initiator to 1.1 parts by weight and (c) the supply amount of isoprene as a conjugated diene compound to 0.42 parts by weight, the same as in Production Example 1. As a result, a conjugated diene-modified polypropylene resin (A-6) was obtained. MFR = 9 g / 10 min.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <ポリプロピレン系樹脂>
 ポリプロピレン系樹脂(B)として使用した樹脂を、表2に示した。
<Polypropylene resin>
Table 2 shows the resins used as the polypropylene resin (B).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (実施例1~11)
 <ポリプロピレン系樹脂組成物の作製>
 表3に示す種類・組成比にて、共役ジエン改質ポリプロピレン系樹脂(A)、ポリプロピレン系樹脂(B)、発泡剤(C)、着色剤(D)としてのカラーマスターバッチとをドライブレンドし、射出発泡成形に供した。
(Examples 1 to 11)
<Preparation of polypropylene resin composition>
Dry blending with conjugated diene modified polypropylene resin (A), polypropylene resin (B), foaming agent (C), and color masterbatch as colorant (D) at the types and composition ratios shown in Table 3. The sample was subjected to injection foam molding.
 (C)としては、EE25C(永和化成製)を3重量部、(D)としては、大日精化製、ダイカラーPP-M77255(ブラック)を1.5重量部(いずれも、(A)と(B)との合計を100重量部として)用いた。 As (C), 3 parts by weight of EE25C (manufactured by Eiwa Kasei), and as (D), 1.5 parts by weight of DAICOLOR PP-M77255 (black) manufactured by Dainichi Seika Co., Ltd. (B) was used as 100 parts by weight).
 <射出発泡成形体の発泡性評価>
 上の射出発泡成形について、前記した発泡性評価の項目に従い評価した。
<Foaming evaluation of injection foam molding>
The above injection foam molding was evaluated according to the items of foaming evaluation described above.
 (比較例1~19)
 表4に示す種類・組成比にて、実施例1と同様にして、ドライブレンド、射出発泡成形、評価を実施した。
 得られた結果を、表3及び表4に示す。
(Comparative Examples 1 to 19)
Dry blending, injection foam molding, and evaluation were carried out in the same manner as in Example 1 with the types and composition ratios shown in Table 4.
The obtained results are shown in Tables 3 and 4.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (4a)(A)成分が改質プロピレン-エチレンブロック共重合体、(B)成分がプロピレン-エチレンブロック共重合体の場合
 実施例1~3と、比較例1は、いずれも改質プロピレン-エチレンブロック共重合体(A-2)とプロピレン-エチレンブロック共重合体(B-1)とを含むものであるが、(A-2)の配合量を1~49重量%(ただし(A)成分と(B)成分との合計を100重量%とする、以下同じ)とすることで、発泡体のデュポン衝撃強度を高くすることが出来ることが分かる。その中でも、(A-2)の配合量を1~25重量%とすることで、発泡体のデュポン衝撃強度をさらに高めることが出来る。
(4a) When component (A) is a modified propylene-ethylene block copolymer, and component (B) is a propylene-ethylene block copolymer: Examples 1 to 3 and Comparative Example 1 are both modified propylene- It contains an ethylene block copolymer (A-2) and a propylene-ethylene block copolymer (B-1). The blending amount of (A-2) is 1 to 49% by weight (provided that the component (A) and It can be seen that the Dupont impact strength of the foam can be increased by setting the total amount of the component (B) to 100% by weight, and the same applies hereinafter. Among them, the DuPont impact strength of the foam can be further increased by setting the blending amount of (A-2) to 1 to 25% by weight.
 実施例4~6と、比較例2は、いずれも改質プロピレン-エチレンブロック共重合体(A-1)とプロピレン-エチレンブロック共重合体(B-1)とを含むものであるが、(A-1)の配合量を1~49重量%とすることで、発泡体のデュポン衝撃強度を高くすることが出来ることが分かる。その中でも、(A-1)の配合量を1~25重量%とすることで、発泡体のデュポン衝撃強度をさらに高めることが出来る。 Examples 4 to 6 and Comparative Example 2 both contain a modified propylene-ethylene block copolymer (A-1) and a propylene-ethylene block copolymer (B-1). It can be seen that the DuPont impact strength of the foam can be increased by setting the blending amount of 1) to 1 to 49% by weight. Among them, the DuPont impact strength of the foam can be further increased by setting the blending amount of (A-1) to 1 to 25% by weight.
 ここで、実施例1~6と、比較例1~2は、いずれも、(A)成分のMFRがおおむね20~80の範囲内であるが、耐衝撃性の観点からは、(A)成分の配合量を1~25重量%とすることが好適であることが分かる。金型転写性を重視する場合、(A)成分のMFRをおおむね20~80の範囲内とすることが好ましい。 Here, in all of Examples 1 to 6 and Comparative Examples 1 and 2, the MFR of the component (A) is generally in the range of 20 to 80. From the viewpoint of impact resistance, the component (A) It can be seen that it is preferable that the blending amount is 1 to 25% by weight. When emphasizing mold transferability, it is preferable that the MFR of the component (A) is approximately in the range of 20 to 80.
 実施例7~9は、いずれも改質プロピレン-エチレンブロック共重合体(A-6)とプロピレン-エチレンブロック共重合体(B-1)とを含むものであるが、(A-6)の配合量を1~49重量%とすることで、発泡体のデュポン衝撃強度を、上記比較例1~2よりも高く、上記実施例1~6と同程度あるいはそれ以上にまですることが出来ることが分かる。その中でも、(A-6)の配合量を1~25重量%とすることで、発泡体のデュポン衝撃強度をさらに高めることが出来る。 Each of Examples 7 to 9 includes the modified propylene-ethylene block copolymer (A-6) and the propylene-ethylene block copolymer (B-1). The blending amount of (A-6) It can be seen that the Dupont impact strength of the foam can be made higher than that of Comparative Examples 1 and 2 and about the same as or higher than that of Examples 1 to 6 by setting the content to 1 to 49% by weight. . Among them, the DuPont impact strength of the foam can be further increased by setting the blending amount of (A-6) to 1 to 25% by weight.
 ここで、実施例7~9は、いずれも、(A)成分のMFRがおおむね1~20の範囲内であるが、耐衝撃性の観点からは、(A)成分の配合量を1~25重量%とすることが好適であることが分かる。金型転写性があまり重視されない場合、(A)成分のMFRをおおむね1~20の範囲内とすることが好ましい。 In Examples 7 to 9, the MFR of the component (A) is generally in the range of 1 to 20, but from the viewpoint of impact resistance, the blending amount of the component (A) is 1 to 25. It turns out that it is suitable to set it as weight%. When the mold transfer property is not so important, it is preferable that the MFR of the component (A) is approximately in the range of 1 to 20.
 (B)成分のMFRが低い場合としては、実施例10、および実施例11が、改質プロピレン-エチレンブロック共重合体(A-1、A-2)とプロピレン-エチレンブロック共重合体(B-3)とを含むものであるが、それぞれ、上記実施例3、実施例6と比較して、発泡体のデュポン衝撃強度をさらに高めることが出来る。 In the case where the component (B) has a low MFR, Example 10 and Example 11 were modified propylene-ethylene block copolymers (A-1, A-2) and propylene-ethylene block copolymers (B -3), the DuPont impact strength of the foam can be further increased as compared with Examples 3 and 6 above.
 (B)成分のMFRが高い場合としては、比較例12~13が、改質プロピレン-エチレンブロック共重合体(A-2、A-1)とプロピレン-エチレンブロック共重合体(B-4)とを含むものであるが、それぞれ、上記実施例3、実施例6と比較して、発泡体のデュポン衝撃強度で劣るものとなる。 In the case where the MFR of the component (B) is high, Comparative Examples 12 to 13 are modified propylene-ethylene block copolymers (A-2, A-1) and propylene-ethylene block copolymers (B-4). In comparison with Examples 3 and 6 above, the DuPont impact strength of the foam is inferior.
 (4b)(A)成分が改質プロピレン単独重合体、(B)成分がプロピレン-エチレンブロック共重合体の場合
 比較例3~5、比較例6~8、および比較例9~11は、(A)成分として、それぞれ、改質プロピレン単独重合体(A-5)、(A-4)、および(A-3)と、(B)成分としてプロピレン-エチレンブロック共重合体(B-1)とを含むものであるが、(A)成分として改質プロピレン-エチレンブロック共重合体を含む実施例に比べると、発泡体のデュポン衝撃強度で劣ることが分かる。
(4b) When component (A) is a modified propylene homopolymer and component (B) is a propylene-ethylene block copolymer Comparative Examples 3-5, Comparative Examples 6-8, and Comparative Examples 9-11 are: As the component A), the modified propylene homopolymers (A-5), (A-4), and (A-3), respectively, and as the component (B), the propylene-ethylene block copolymer (B-1) However, it can be seen that the DuPont impact strength of the foam is inferior to that of the example containing the modified propylene-ethylene block copolymer as the component (A).
 たとえば、比較例4と、実施例9とは、(A)成分が、それぞれ、改質プロピレン単独重合体(A-5)、改質プロピレン-エチレンブロック共重合体(A-6)であること以外は、配合量も含めて同一の配合であるが、発泡体のデュポン衝撃強度においては、前者が劣るものとなっている。 For example, in Comparative Example 4 and Example 9, the component (A) is a modified propylene homopolymer (A-5) and a modified propylene-ethylene block copolymer (A-6), respectively. Other than the above, the composition is the same including the blending amount, but the former is inferior in the DuPont impact strength of the foam.
 (4c)(A)成分が改質プロピレン-エチレンブロック共重合体、(B)成分がプロピレン単独重合体の場合
 比較例14~16は、(A)成分として、それぞれ、改質プロピレン-エチレンブロック共重合体(A-6)、(A-2)、および(A-1)と、(B)成分としてプロピレン単独重合体(B-2)とを含むものであるが、(A)成分として改質プロピレン-エチレンブロック共重合体、(B)成分としてプロピレン-エチレンブロック共重合体を含む実施例9、3、6に比べると、発泡体のデュポン衝撃強度で劣ることが分かる。ただし、(A)成分として改質プロピレン単独重合体、(B)成分としてプロピレン単独重合体を含む比較例17~19に比べると、発泡体のデュポン衝撃強度で優れている。
(4c) When component (A) is a modified propylene-ethylene block copolymer and component (B) is a propylene homopolymer Comparative Examples 14 to 16 are the modified propylene-ethylene block as component (A). Copolymers (A-6), (A-2), and (A-1), and propylene homopolymer (B-2) as component (B), but modified as component (A) Compared to Examples 9, 3, and 6 containing a propylene-ethylene block copolymer and a propylene-ethylene block copolymer as component (B), it can be seen that the DuPont impact strength of the foam is inferior. However, compared with Comparative Examples 17 to 19 containing the modified propylene homopolymer as the component (A) and the propylene homopolymer as the component (B), the foam has excellent DuPont impact strength.
 (4d)(A)成分が改質プロピレン単独重合体、(B)成分がプロピレン単独重合体の場合
 比較例17~19は、(A)成分として、それぞれ、改質プロピレン単独重合体(A-5)、(A-4)、および(A-3)と、(B)成分としてプロピレン単独重合体(B-2)とを含むものであるが、全体的に、発泡体のデュポン衝撃強度が低いことが分かる。
(4d) When component (A) is a modified propylene homopolymer, and component (B) is a propylene homopolymer Comparative Examples 17 to 19 are the modified propylene homopolymer (A- 5), including (A-4) and (A-3), and propylene homopolymer (B-2) as component (B), but overall the foam has a low DuPont impact strength. I understand.
 なお、(A)成分を配合せずに(B)成分100重量部、(C)成分3重量部、(D)成分1.5重量部の配合においては、射出発泡成形を満足に実施することができない。このことから、射出発泡成形を実施するにあたって(B)成分に対して(A)成分を組み合わせることは必須であることが分かる。 In addition, in the blending of 100 parts by weight of the component (B), 3 parts by weight of the component (C) and 1.5 parts by weight of the component (D) without blending the component (A), injection foam molding should be satisfactorily performed. I can't. From this, it is understood that it is essential to combine the component (A) with the component (B) in carrying out the injection foam molding.
 また、各実施例および比較例で得られたMFRに対してメルトテンションをプロットしたグラフを図1に示す。 Further, FIG. 1 shows a graph in which the melt tension is plotted against the MFR obtained in each example and comparative example.
 図中には、実施例を丸(白抜き)で、比較例を三角(黒塗り)でプロットしている。その結果、各実施例の樹脂組成物のメルトテンションは、以下の一次方程式から得られるメルトテンション以下のものであることがわかる。従って、樹脂組成物のMFRをXとした場合、樹脂組成物のメルトテンションYは、以下の一次方程式から得られるメルトテンション以下であることが、耐衝撃性の観点から好ましい。
Y≦(-0.032)X+1.91
(Yを樹脂組成物のメルトテンション(gf)とし、Xを樹脂組成物のMFR(g/10分)とする)
In the figure, the examples are plotted with circles (outlined), and the comparative examples are plotted with triangles (black). As a result, it can be seen that the melt tension of the resin composition of each example is equal to or less than the melt tension obtained from the following linear equation. Therefore, when the MFR of the resin composition is X, the melt tension Y of the resin composition is preferably not more than the melt tension obtained from the following linear equation from the viewpoint of impact resistance.
Y ≦ (−0.032) X + 1.91
(Y is the melt tension (gf) of the resin composition, and X is the MFR (g / 10 minutes) of the resin composition)

Claims (5)

  1.  230℃、2.16kg荷重で測定されるメルトフローレートが1g/10分以上80g/10分未満である共役ジエン改質プロピレン-エチレンブロック共重合体である共役ジエン改質ポリプロピレン系樹脂(A)、及び、
     230℃、2.16kg荷重で測定されるメルトフローレートが1g/10分以上80g/10分未満であるプロピレン-エチレンブロック共重合体であるポリプロピレン系樹脂(B)を含有する射出発泡成形用ポリプロピレン系樹脂組成物であって、
     (A)成分におけるエチレン成分の含有量は1重量%以上であり、
     (A)成分と(B)成分の合計100重量%に対し(A)成分の含有量が1~49重量%、(B)成分の含有量が51~99重量%であり、
     前記組成物の200℃、10m/minで測定されるメルトテンションが0.1gf以上2.0gf未満である、射出発泡成形用ポリプロピレン系樹脂組成物。
    Conjugated diene-modified polypropylene resin (A) which is a conjugated diene-modified propylene-ethylene block copolymer having a melt flow rate measured at 230 ° C. and a load of 2.16 kg of 1 g / 10 min or more and less than 80 g / 10 min. ,as well as,
    Polypropylene for injection foam molding containing a polypropylene resin (B) which is a propylene-ethylene block copolymer having a melt flow rate measured at 230 ° C. and a load of 2.16 kg of 1 g / 10 min or more and less than 80 g / 10 min. A resin composition comprising:
    The content of the ethylene component in the component (A) is 1% by weight or more,
    The content of the component (A) is 1 to 49% by weight and the content of the component (B) is 51 to 99% by weight with respect to the total of 100% by weight of the component (A) and the component (B).
    A polypropylene resin composition for injection foam molding, wherein a melt tension measured at 200 ° C. and 10 m / min of the composition is 0.1 gf or more and less than 2.0 gf.
  2.  前記組成物は、230℃、2.16kg荷重で測定されるメルトフローレートが8g/10分以上80g/10分未満である、請求項1に記載の射出発泡成形用ポリプロピレン系樹脂組成物。 2. The polypropylene resin composition for injection foam molding according to claim 1, wherein the composition has a melt flow rate measured at 230 ° C. and a load of 2.16 kg of 8 g / 10 min or more and less than 80 g / 10 min.
  3.  (A)成分と(B)成分の合計100重量%に対し(A)成分の含有量が1~25重量%、(B)成分の含有量が75~99重量%であり、かつ、
     (A)成分の230℃、2.16kg荷重で測定されるメルトフローレートが20g/10分以上80g/10分未満である、請求項1又は2に記載の射出発泡成形用ポリプロピレン系樹脂組成物。
    The content of the component (A) is 1 to 25% by weight, the content of the component (B) is 75 to 99% by weight with respect to the total of 100% by weight of the component (A) and the component (B), and
    The polypropylene resin composition for injection foam molding according to claim 1 or 2, wherein the melt flow rate of component (A) measured at 230 ° C and a load of 2.16 kg is 20 g / 10 min or more and less than 80 g / 10 min. .
  4.  (A)成分と(B)成分の合計100重量%に対し(A)成分の含有量が1~25重量%、(B)成分の含有量が75~99重量%であり、かつ、
     (A)成分の230℃、2.16kg荷重で測定されるメルトフローレートが1g/10分以上20g/10分未満である、請求項1又は2に記載の射出発泡成形用ポリプロピレン系樹脂組成物。
    The content of the component (A) is 1 to 25% by weight, the content of the component (B) is 75 to 99% by weight with respect to the total of 100% by weight of the component (A) and the component (B), and
    The polypropylene resin composition for injection foam molding according to claim 1 or 2, wherein the melt flow rate of component (A) measured at 230 ° C and a load of 2.16 kg is 1 g / 10 min or more and less than 20 g / 10 min. .
  5.  請求項1~4のいずれかに記載のポリプロピレン系樹脂組成物の射出発泡成形体。 An injection-foamed molded article of the polypropylene resin composition according to any one of claims 1 to 4.
PCT/JP2017/011863 2016-03-24 2017-03-23 Polypropylene resin composition for injection foam molding and injection foam molded body of same WO2017164343A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018507421A JPWO2017164343A1 (en) 2016-03-24 2017-03-23 Polypropylene resin composition for injection foam molding and injection foam molded body thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016059704 2016-03-24
JP2016-059704 2016-03-24

Publications (1)

Publication Number Publication Date
WO2017164343A1 true WO2017164343A1 (en) 2017-09-28

Family

ID=59899531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011863 WO2017164343A1 (en) 2016-03-24 2017-03-23 Polypropylene resin composition for injection foam molding and injection foam molded body of same

Country Status (2)

Country Link
JP (1) JPWO2017164343A1 (en)
WO (1) WO2017164343A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019004311A1 (en) * 2017-06-28 2019-01-03 株式会社カネカ Injection-molded article of polypropylene resin composition
WO2021131933A1 (en) * 2019-12-23 2021-07-01 株式会社カネカ Polypropylene resin composition, method for producing same, method for producing pre-foamed particles, and method for producing foam molded articles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026645A (en) * 1998-07-13 2000-01-25 Kanegafuchi Chem Ind Co Ltd Production of foam comprising polypropylene resin
JP2010241978A (en) * 2009-04-07 2010-10-28 Kaneka Corp Polypropylene resin composition for injection foam molding, and injection foam molded article composed thereof
JP2012107097A (en) * 2010-11-16 2012-06-07 Kaneka Corp Polypropylene-based resin composition and injection foaming molded article comprising the resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026645A (en) * 1998-07-13 2000-01-25 Kanegafuchi Chem Ind Co Ltd Production of foam comprising polypropylene resin
JP2010241978A (en) * 2009-04-07 2010-10-28 Kaneka Corp Polypropylene resin composition for injection foam molding, and injection foam molded article composed thereof
JP2012107097A (en) * 2010-11-16 2012-06-07 Kaneka Corp Polypropylene-based resin composition and injection foaming molded article comprising the resin composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019004311A1 (en) * 2017-06-28 2019-01-03 株式会社カネカ Injection-molded article of polypropylene resin composition
WO2021131933A1 (en) * 2019-12-23 2021-07-01 株式会社カネカ Polypropylene resin composition, method for producing same, method for producing pre-foamed particles, and method for producing foam molded articles

Also Published As

Publication number Publication date
JPWO2017164343A1 (en) 2019-02-07

Similar Documents

Publication Publication Date Title
JP5770634B2 (en) Polypropylene resin, polypropylene resin composition, and injection-foamed molded article
JP4745057B2 (en) POLYPROPYLENE RESIN COMPOSITION, FOAM MOLDING COMPRISING THE SAME, AND METHOD FOR PRODUCING THE SAME
JP5368148B2 (en) Polypropylene resin composition for injection foam molding and injection foam molded body comprising the resin composition
JP5628553B2 (en) Thermoplastic elastomer composition for injection foam molding and injection foam molded article comprising the resin composition
JP4851104B2 (en) Polypropylene resin foam molded article and method for producing the same
JP2016003310A (en) Thermoplastic resin composition for injection foam molding and molding of the same
JP2009001772A (en) Polypropylene resin foam injection-molded article
JP5112674B2 (en) Polypropylene resin composition for injection foam molding and injection foam molded body comprising the resin composition
JP4908043B2 (en) Polypropylene resin injection foam
WO2017164343A1 (en) Polypropylene resin composition for injection foam molding and injection foam molded body of same
JP2007245450A (en) Thermoplastic resin foamed molded object and its manufacturing method
JP5122760B2 (en) Polypropylene resin injection foam
JP4963266B2 (en) Polypropylene resin injection foam
JP2012107097A (en) Polypropylene-based resin composition and injection foaming molded article comprising the resin composition
JP2017171788A (en) Polypropylene-based resin composition for injection foam molding and injection foam molded body
JP4519477B2 (en) Polypropylene-based resin foam molding and its production method
JP2019059861A (en) Polypropylene injection foam molding
JP5638928B2 (en) Polypropylene resin for injection foam molding and injection foam molded body thereof
JP2011094068A (en) Polypropylene-based resin composition for injection foam molding and injection foam molded article comprising the resin composition
JP2010106093A (en) Injection foam molding polypropylene-based resin composition and injection foam molded product composed of the resin composition
JP2012197345A (en) Polypropylenic resin composition for injection foam molding, and injection foam molded body comprising the same
JP2020007547A (en) Polypropylene injection foam molding
JP2016000795A (en) Thermoplastic resin composition for injection foam molding and molded body thereof
JP2019059854A (en) Polypropylene injection foam molding
JP2017193669A (en) Method for producing polypropylene-based resin injection foam molding

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018507421

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17770383

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17770383

Country of ref document: EP

Kind code of ref document: A1