WO2017164162A1 - Sheet-shaped material and method for producing same - Google Patents

Sheet-shaped material and method for producing same Download PDF

Info

Publication number
WO2017164162A1
WO2017164162A1 PCT/JP2017/011194 JP2017011194W WO2017164162A1 WO 2017164162 A1 WO2017164162 A1 WO 2017164162A1 JP 2017011194 W JP2017011194 W JP 2017011194W WO 2017164162 A1 WO2017164162 A1 WO 2017164162A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
fiber
ultrafine
sea
fibers
Prior art date
Application number
PCT/JP2017/011194
Other languages
French (fr)
Japanese (ja)
Inventor
吉水邦典
石倉康弘
金子誠
松崎行博
西村誠
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020187024713A priority Critical patent/KR102337556B1/en
Priority to JP2018507327A priority patent/JP6838602B2/en
Publication of WO2017164162A1 publication Critical patent/WO2017164162A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent

Definitions

  • the present invention relates to a sheet-like material having an elegant appearance and excellent stretchability, and a method for producing the same, because the ultrafine fiber has a coiled crimp.
  • sheet-like materials mainly composed of ultrafine fibers and polymer elastic bodies have excellent characteristics not found in natural leather, and their use has been increasing year by year for clothing, chair upholstery, and automotive interior materials.
  • a sheet-like material excellent in stretchability has been demanded from the viewpoint of a feeling of wear especially for clothing and from a moldability viewpoint for materials.
  • studies have been made to have a structure in which fibers constituting the sheet-like material are attached in a side-by-side manner.
  • an island component is an inelastic polymer by removing a sea component from a converging fiber generating fiber in which a fiber component composed of an elastic polymer and an island-island structure having an island component composed of an inelastic polymer are adjacent to each other.
  • a fiber having a structure in which two types of fibers, a non-elastic ultrafine fiber bundle generation type fiber and an elastic fiber, are attached in a side-by-side manner is obtained, and an artificial leather using the fiber has been proposed.
  • the polyurethane fiber that is an elastic polymer is spun, the polyurethane fiber has a hard texture as a characteristic property of polyurethane, and there is a problem that the texture and drape of the fabric is lowered.
  • polyurethane fibers are difficult to dye with polyester dyes, and even when used in combination with polyester fibers, the dyeing process is complicated and it is difficult to dye them in a desired color.
  • Patent Document 2 proposes a method of inserting a woven or knitted fabric including a yarn including a side-by-side type composite fiber formed from two types of polyethylene terephthalate copolymers having a difference in intrinsic viscosity (IV). Stress concentration on the high viscosity side during stretching causes different internal strains between the two components, and crimps are developed.
  • the ultra-fine fibers that make up the sheet-like material are not latent crimped fibers, and only the woven or knitted fabric that is inserted for the purpose of reinforcing the strength of the sheet-like material is crimped.
  • the fineness of the ultrafine fibers on the surface of the sheet-like material is not expressed.
  • Patent Document 3 proposes an artificial leather containing latent crimped fibers obtained by composite spinning of two types of polytrimethylene terephthalate having different intrinsic viscosities in a side-by-side manner.
  • the ultrafine fiber length forming this sheet is very short as 5 mm or less, and since a fiber bundle cannot be formed by the direct spinning method, the entanglement between the ultrafine fibers and the crimp of the ultrafine fibers are small, It becomes a sheet-like material with poor stretchability.
  • Patent Document 4 proposes a non-woven fabric composed of side-by-side ultrafine fibers formed from two types of polyethylene terephthalate having a difference in intrinsic viscosity, and a sheet-like material containing water-dispersible polyurethane therein.
  • the nonwoven fabric is impregnated with the water-dispersed polyurethane, the water-dispersed polyurethane has a structure in which the entanglement points of the ultrafine fibers are hardened when drying.
  • polyurethane since polyurethane has a nonporous structure, there is no degree of freedom for ultrafine fibers. Therefore, the ultrafine fibers are crimped to make the surface of the sheet-like material dense, but do not exhibit stretch properties.
  • the reflection of the light of the surface fiber changes depending on the napped direction, and there is a characteristic that the hue varies depending on the viewing angle, when used for clothing and sheet materials, It was necessary to pay attention to the direction.
  • Japanese Patent No. 03128333 Japanese Patent No. 0535117 JP 2003-286663 A JP 2012-136800 A
  • the object of the present invention is to take into account the actual state of the above-mentioned prior art, a sheet-like material that has both a dense appearance and stretch properties such as a stretch rate and a stretch recovery rate, and a hue difference even when the viewing angle is changed while maintaining a high-class feeling. Provides a small sheet-like material and a method for producing them.
  • the present invention is a sheet-like material composed of an ultrafine fiber and a porous elastic polymer, the sheet-like material comprising a base material layer and a raised layer, and the ultrafine fiber has a coiled crimp.
  • the average single fiber diameter is 0.1 to 10 ⁇ m, the fiber length is 8 to 90 mm, and the sheet material has an elongation rate of 10% or more and an elongation recovery rate of 80% or more. It is a sheet-like thing characterized by these.
  • the ultrafine fiber constituting the sheet-like material is a sheet-like material characterized by containing fibers having a fiber length of 25 to 90 mm.
  • two or more types of polyethylene terephthalate polymers having a difference in intrinsic viscosity are bonded to a side-by-side type along the fiber length direction, or an eccentric core.
  • the viewpoint from the upper 45 ° oblique direction of the napping forward direction of the leather-like sheet material is the viewpoint 1, the upper oblique direction 45 ° of the napping reverse direction of the vertical direction
  • the viewpoint from the viewpoint 2 is the viewpoint 2
  • the viewpoint from any one of 45 degrees above the horizontal direction is the viewpoint 3
  • the color difference between the viewpoint 1 and the viewpoint 2 is ⁇ E * ab 12
  • the color difference between the viewpoint 2 and the viewpoint 3 is ⁇ E * ab 23
  • the viewpoint 1 is a leather-like sheet characterized by satisfying the following equation when ⁇ E * ab 31 is satisfied. 0.2 ⁇ ( ⁇ E * ab 12 + ⁇ E * ab 23 + ⁇ E * ab 31 ) /3 ⁇ 1.5
  • a sheet-like material that is excellent in functionality such as moldability and improved feeling of comfort, and in which a trace is hardly visible even when the surface of the sheet-like material is touched by hand or sitting.
  • FIG. 1 is a SEM photograph (100 times) showing the shape of the fiber on the surface of the sheet-like material obtained in Example 1.
  • FIG. 2 is a schematic diagram for explaining a method and apparatus for measuring the hue difference of a sheet-like material.
  • the sheet-like material of the present invention is a sheet-like material composed of ultrafine fibers and a porous elastic polymer, and the sheet-like material is composed of a base layer and a napped layer, and the ultrafine fibers are coiled. It has crimps, has an average single fiber diameter of 0.1 to 10 ⁇ m, contains fibers with a fiber length of 8 to 90 mm, and has an elongation rate of 10% or more and an elongation recovery rate of 80%. It is the sheet-like thing characterized by the above.
  • the raised layer is a layer formed by the fibers in which the sheet-like material is raised, and the base material layer is a layer other than the raised layer of the sheet-like material.
  • the average single fiber diameter of the ultrafine fibers is 0.1 to 10 ⁇ m from the viewpoint of the flexibility of the sheet-like material and the napped quality.
  • the average single fiber diameter is preferably 7 ⁇ m or less, more preferably 5 ⁇ m or less.
  • it is preferably 0.3 ⁇ m or more, and more preferably 0.5 ⁇ m or more, from the viewpoints of color development after dyeing, dispersibility of fibers during raising treatment such as grinding with sandpaper, and ease of spreading.
  • a preferable range is 0.3 ⁇ m to 0.7 ⁇ m in consideration of characteristics such as excellent flexibility, napped quality and color development at the time of dyeing, and a small hue difference depending on the viewing angle.
  • the average single fiber diameter of the ultrafine fibers is obtained by taking a scanning electron microscope (SEM) photograph of a cross section of the sheet-like material, randomly selecting 100 circular or nearly elliptical fibers, measuring the fiber diameter, and averaging Calculated by calculating the value.
  • SEM scanning electron microscope
  • the cross-sectional shape of the ultrafine fibers for example, polygons such as circles, ellipses, flats and triangles, fans, crosses, Y, H, X, W, C, and ⁇ -types can be used.
  • the ultrafine fibers constituting the fiber entangled body are in the form of ultrafine fiber bundles.
  • the ultrafine fibers When the ultrafine fibers are bundled, physical strength such as tensile strength and tear strength of the sheet-like material can be improved, and furthermore, wear resistance can be expressed.
  • the ultrafine fiber bundle As a form of the ultrafine fiber bundle, the ultrafine fibers may be somewhat separated from each other, and may be partially bonded or agglomerated in some cases.
  • the polymer forming the ultrafine fiber used in the present invention include polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate and polylactic acid and other polyesters, polyamides such as 6-nylon and 66-nylon, acrylic, polyethylene, and polypropylene.
  • thermoplastic resins that can be melt-spun such as thermoplastic cellulose.
  • polyester fibers made of a polyester polymer such as polyethylene terephthalate, polybutylene terephthalate, and polytrimethylene terephthalate are preferably used from the viewpoints of strength, dimensional stability, light resistance, and dyeability.
  • at least 2 or more types selected from these polymers may be combined.
  • fibers obtained from recycled raw materials or plant-derived raw materials may be used.
  • the ultrafine fibers can be configured by mixing fibers of different materials.
  • the polymer constituting the ultrafine fiber may be copolymerized with other components, and may contain additives such as organic particles, inorganic particles, flame retardants and antistatic agents.
  • the ultrafine fiber constituting the sheet-like product of the present invention may be a composite fiber in which two different types of polymers (A) and (B) are bonded side by side along the fiber length direction.
  • the combination of the polymer (A) and the polymer (B) can be appropriately selected from the polymers forming the ultrafine fibers, but is preferably a combination of polyester polymers having a difference in intrinsic viscosity, more preferably At least one of the polymer (A) or the polymer (B) is a polybutylene terephthalate polymer.
  • the ultrafine fiber obtained by spinning and stretching so as to form a structure in which a polymer of such a combination is bonded to the side-by-side type along the fiber length direction has two components due to stress concentration on the high viscosity side during stretching.
  • the difference in intrinsic viscosity is preferably 0.002 to 1.5.
  • the difference in intrinsic viscosity is increased by 0.002 or more, a fiber having excellent crimp characteristics can be obtained.
  • the difference in intrinsic viscosity exceeds 1.5, the crimped property of the obtained fiber is good, but the spun fiber is bent excessively to the high viscosity component side, so that stable spinning is performed for a long time. I can't.
  • at least one of the polymer combinations is a polybutylene terephthalate polymer.
  • polybutylene terephthalate polymer is a polymer having high crystallinity, for example, when polyethylene terephthalate is used as the other polymer, a difference in crystallinity is produced between the two polymers, and crimping tends to occur.
  • the intrinsic viscosity of the polyester polymer is preferably 0.5 to 2.0 for the high viscosity component.
  • the upper limit of the intrinsic viscosity is preferably 2.0 or less from the viewpoint of ease of molding such as melt extrusion, production cost, and molecular weight reduction due to molecular chain breakage caused by heat or shear force during the process.
  • the low viscosity component can be stably spun by setting the intrinsic viscosity to 0.3 to 1.
  • the inherent viscosity difference of the polyester polymer can be set to a desired viscosity by appropriately adjusting the polymerization time, temperature, catalyst amount and copolymerization component.
  • the intrinsic viscosity in the present invention is a value measured by dissolving a sample in orthochlorophenol at a temperature of 25 ° C.
  • the polyester polymer in the present invention has a structure in which a dicarboxylic acid or a derivative thereof and a diol or a derivative thereof are copolymerized as a main component, where the main component is based on the total weight. More than 50% by weight.
  • the polyester polymer may contain a copolymer component capable of forming another ester bond.
  • Examples of the copolymerizable compound include dicarboxylic acids such as isophthalic acid, succinic acid, cyclohexanedicarboxylic acid, adipic acid, dimer acid, sebacic acid and 5-isophthalic acid, ethylene glycol, butanediol, neopentyl glycol, cyclohexanedi Examples include diols such as methanol, polyethylene glycol, and polypropylene glycol. Further, if necessary, titanium dioxide serving as a matting agent, silica or alumina fine particles as a lubricant, hindered phenol derivatives as an antioxidant, and coloring pigments may be added.
  • dicarboxylic acids such as isophthalic acid, succinic acid, cyclohexanedicarboxylic acid, adipic acid, dimer acid, sebacic acid and 5-isophthalic acid
  • ethylene glycol, butanediol neopentyl glycol
  • the polybutylene terephthalate-based polymer in the present invention is mainly composed of a structure obtained by copolymerizing terephthalic acid or a derivative thereof and 1,4-butanediol or a derivative thereof.
  • the nonwoven fabric constituting the sheet-like material of the present invention may be either a short fiber nonwoven fabric or a long fiber nonwoven fabric, but a short fiber nonwoven fabric is preferably used in terms of texture and quality.
  • the short fiber nonwoven fabric used in the sheet-like material of the present invention is obtained by forming a laminated web using short fibers with a card and a cross wrapper and then applying a needle punch or a water jet punch or obtained by a papermaking method.
  • a needle punch or a water jet punch or obtained by a papermaking method As the obtained non-woven fabric, those obtained from a spunbond method, a melt blow method or the like can be appropriately employed.
  • the short fibers in the short fiber nonwoven fabric have a fiber length of 8 to 90 mm.
  • the fiber length is more preferably 25 to 90 mm.
  • Fibers with a fiber length of less than 8 mm are less likely to be entangled, and fiber dropout occurs during the manufacturing process of the sheet-like material. Moreover, although the fiber longer than 90 mm is excellent in entanglement property, when a napped part is comprised, it is inferior to abrasion resistance and tends to be inferior to surface quality.
  • the proportion of the fiber length of 8 to 90 mm of the ultrafine fiber is preferably 50% by mass or more of the entire ultrafine fiber constituting the sheet-like material.
  • the ratio of the fiber length of 8 to 90 mm is determined by first extracting and removing the elastic polymer in the sheet to make only ultrafine fibers, then randomly extracting 100 fibers, measuring the fiber length, and measuring the fiber length histogram. Is calculated by creating
  • the nonwoven fabric obtained as described above can be subjected to shrinkage treatment with warm water or steam in order to improve the fineness of the fibers.
  • the temperature of the hot water or steam is preferably treated so that the temperature of the sheet-like material is less than 100 ° C. so that the crimp of the ultrafine fiber described later does not appear. However, if the temperature of the sheet-like material itself is kept below 100 ° C., the temperature of hot water or steam applied to shrink the sheet-like material is allowed to be 100 ° C. or higher.
  • the shrinkage in the boiling water of the ultrafine fiber-expressing fiber constituting the nonwoven fabric is high during this shrinkage treatment, crimping is manifested after the shrinkage treatment even when the shrinkage treatment temperature of the sheet-like material is less than 100 ° C. May end up. Further, when the shrinkage rate of the fiber is low, the denseness of the sheet-like material does not increase, and an excellent surface feeling as a leather-like sheet material cannot be obtained.
  • the shrinkage ratio of the ultrafine fiber-expressing fiber constituting the nonwoven fabric in boiling water is preferably 5 to 25%.
  • the sheet-like material of the present invention can include a reinforcing layer for the purpose of improving the strength of the inner layer portion or the surface thereof.
  • a reinforcing layer woven fabrics, knitted fabrics, nonwoven fabrics (including paper), and film-like materials such as plastic films and metal thin film sheets can be employed.
  • the average single fiber diameter of the fibers is preferably about 0.1 to 20 ⁇ m from the viewpoint of the texture of the sheet-like material.
  • Examples of the types of fiber yarns constituting the woven or knitted fabric used in the present invention include filament yarn, spun yarn, innovative spun yarn, and mixed composite yarn of filament yarn and spun yarn. Since many yarns are present on the surface of the spun yarn due to its structure, when the nonwoven fabric and the woven fabric are entangled with each other, it becomes a drawback if the yarn falls off and is exposed on the surface. Therefore, it is preferable to use a filament yarn.
  • the filament yarn is roughly classified into a monofilament composed of a single fiber and a multifilament composed of a plurality of filament yarns. In the woven or knitted fabric used in the present invention, it is preferable to use a multifilament. In the case of monofilaments, the stiffness of the fiber becomes too high, and the texture of the sheet-like material may be impaired.
  • the total fineness of the fiber yarns constituting the woven or knitted fabric is preferably 50 to 150 dtex for reasons such as rigidity and basis weight.
  • the basis weight of the woven or knitted fabric is preferably 20 to 200 g / m 2 , more preferably 30 to 150 g / m 2 .
  • the basis weight of the woven or knitted fabric is less than 20 g / m 2 , the form as the woven or knitted fabric becomes poor, and wrinkles are generated when the woven or knitted fabric is inserted between the nonwoven fabric and the woven or knitted fabric is stacked on the surface of the nonwoven fabric, It becomes difficult to laminate uniformly.
  • twill or satin may be used, but a plain structure in which misalignment or the like hardly occurs is preferably used.
  • the sheet-like material of the present invention has a raised layer on one side or both sides of the sheet-like material. Moreover, when the ultrafine fiber has a coiled crimp, the sheet-like material can be given a bulky feeling, and stretch properties can also be expressed.
  • the stretch rate of the sheet material of the present invention is 10% or more and the stretch recovery rate is 80% or more.
  • the stretch rate is 10% or more and the stretch recovery rate is 80% or more, a sheet-like material having excellent stretch properties can be obtained.
  • the elongation rate is in JIS L 1096 (2010) 8.16.1 B method (constant load method), and the recovery rate is in JIS L 1096 (2010) 8.16.2 B-1 method (constant load method). It was measured. The holding interval was 10 cm, and the standing time after removing the load was 1 hour.
  • the radius of the coiled crimp of the ultrafine fiber constituting the nap layer is preferably an arc shape of 5 to 100 ⁇ m, more preferably 90 ⁇ m or less, and still more preferably 85 ⁇ m or less.
  • the radius is larger than 100 ⁇ m, the crimp is weakened and it is difficult to obtain stretchability.
  • it is preferably 7 ⁇ m or more, more preferably 20 ⁇ m or more.
  • the radius is smaller than 5 ⁇ m, the crimp becomes strong and the surface quality deteriorates.
  • the ultrafine fibers are crimped in a coil shape, the coverage of the ultrafine fibers on the surface of the sheet-like material is higher than when there is no crimp, and the non-woven fabric under the raised fibers is not visible, and only the raised fibers appear. It has a precise and elegant appearance.
  • the coiled ultrafine fibers are entangled with each other, so that an elongation margin with respect to tension is formed, and stretch properties are exhibited.
  • the sheet-like material of the present invention preferably contains 5 to 60% by mass of a porous elastic polymer with respect to the mass of the ultrafine fibers of the fiber entangled body.
  • a porous elastic polymer with respect to the mass of the ultrafine fibers of the fiber entangled body.
  • pigments such as carbon black, dyes, antifungal agents and antioxidants, UV absorbers, light stabilizers such as light stabilizers, flame retardants, penetrants and lubricants, silica Antiblocking agents such as water and titanium oxide, water repellents, viscosity modifiers, surfactants such as antistatic agents, antifoaming agents such as silicone, fillers such as cellulose, and coagulation regulators, and silica and titanium oxide, etc. Inorganic particles or the like can be contained.
  • the elastic polymer in the present invention is porous. By making it porous, the gripping force of the fiber by the elastic polymer can be lowered, and the stretch property by the crimping of the fiber can be expressed.
  • Examples of the elastic polymer used in the present invention include polyurethane elastomer, polyurea, polyacrylic acid, ethylene / vinyl acetate elastomer, acrylonitrile / butadiene elastomer and styrene / butadiene elastomer, polyvinyl alcohol, and polyethylene glycol. From the viewpoint of compression characteristics, polyurethane elastomers are preferably used.
  • the polymer elastic body can contain a plurality of polymer elastic bodies.
  • a solvent-based polyurethane elastomer can be used as the polyurethane elastomer used in the present invention.
  • polyurethane elastomer used in the present invention a polyurethane elastomer obtained by a reaction of a polymer diol, an organic diisocyanate and a chain extender is preferably used.
  • polymer diol for example, a polycarbonate diol, a polyester diol, a polyether diol, a silicone diol and a fluorine diol can be employed, and a copolymer combining these can also be used.
  • a polycarbonate diol and a polyether diol from the viewpoint of hydrolysis resistance, it is preferable to use a polycarbonate diol and a polyether diol.
  • the above polycarbonate diol can be produced by transesterification of alkylene glycol and carbonate or reaction of phosgene or chloroformate with alkylene glycol.
  • alkylene glycol examples include ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, and 1,10-decanediol.
  • Linear alkylene glycols, and branched alkylene glycols such as neopentyl glycol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol and 2-methyl-1,8-octanediol
  • Alicyclic diols such as 1,4-cyclohexanediol, aromatic diols such as bisphenol A, glycerin, trimethylolpropane, and pentaerythritol.
  • both polycarbonate-based diols obtained from individual alkylene glycols and copolymerized polycarbonate-based diols obtained from two or more types of alkylene glycols can be employed.
  • polyester diol examples include polyester diols obtained by condensing various low molecular weight polyols and polybasic acids.
  • low molecular weight polyol examples include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butanediol, 1,4-butanediol, and 2,2-dimethyl-1,3-propane.
  • adducts obtained by adding various alkylene oxides to bisphenol A can be used.
  • Polybasic acids include, for example, succinic acid, maleic acid, adipic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, phthalic acid, isophthalic acid, terephthalic acid, and hexahydro
  • succinic acid maleic acid, adipic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, phthalic acid, isophthalic acid, terephthalic acid, and hexahydro
  • succinic acid maleic acid, adipic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, phthalic acid, isophthalic acid, terephthalic acid, and hexahydro
  • isophthalic acid ter
  • polyether-based diol examples include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and copolymerized diols combining them.
  • the number average molecular weight of the polymer diol is preferably in the range of 500 to 4000 when the molecular weight of the polyurethane-based elastomer is constant.
  • the number average molecular weight preferably 500 or more, more preferably 1500 or more, it is possible to prevent the sheet-like material from becoming hard.
  • strength as a polyurethane-type elastomer is maintainable by making a number average molecular weight into 4000 or less, More preferably, 3000 or less.
  • organic diisocyanate used in the present invention examples include aliphatic diisocyanates such as hexamethylene diisocyanate, dicyclohexylmethane diisocyanate, isophorone diisocyanate and xylylene diisocyanate, and aromatic diisocyanates such as diphenylmethane diisocyanate and tolylene diisocyanate. These can also be used in combination.
  • chain extender amine chain extenders such as ethylenediamine and methylenebisaniline, and diol chain extenders such as ethylene glycol can be preferably used.
  • the polyamine obtained by making polyisocyanate and water react can also be used as a chain extender.
  • the polyurethane used in the present invention can be used in combination with a crosslinking agent for the purpose of improving water resistance, abrasion resistance, hydrolysis resistance and the like.
  • the cross-linking agent may be an external cross-linking agent added as a third component to the polyurethane-based elastomer, or an internal cross-linking agent that introduces a reaction point that becomes a cross-linked structure in advance in the polyurethane molecular structure. From the viewpoint that the cross-linking points can be formed more uniformly in the polyurethane molecular structure and the reduction in flexibility can be reduced, it is preferable to use an internal cross-linking agent.
  • crosslinking agent compounds having an isocyanate group, an oxazoline group, a carbodiimide group, an epoxy group, a melamine resin, a silanol group, and the like can be used.
  • the apparent density of the sheet-like material of the present invention is preferably 0.10 to 0.80 g / cm 3 , more preferably 0.20 to 0.70 g / cm 3 .
  • the apparent density is 0.10 g / cm 3 or more, the denseness and mechanical properties of the sheet-like material are good, and when it is 0.80 g / cm 3 or less, it is possible to avoid the texture becoming hard.
  • the thickness of the sheet is preferably 0.1 to 7 mm.
  • the sheet form has excellent form stability and dimensional stability.
  • the thickness is 7 mm or less, more preferably 5 mm or less, the sheet-like product is excellent in moldability.
  • the sheet-like material of the present invention has a small hue difference depending on the viewing angle, that is, L *, a *, and b * are measured from three directions with respect to the surface of the sheet, and the hue difference ⁇ E * between each point. Ab is obtained, and the average value thereof is in the range of 0.2 to 1.5. In general, when ⁇ E * ab exceeds 1.5, it is considered that the hue is different enough to be perceived. Therefore, the hue difference is preferably 1.5 or less. On the other hand, when the hue difference is 0.2 or less, the change in facial expression is small and the sense of quality is poor.
  • the hue difference is in the range of 0.2 to 1.5, so that the hue difference depending on the viewing angle is small while maintaining a high-class feeling and a changing expression.
  • the reflection of the part that is exposed to light can be suppressed, there is little patchy feeling, blurring is difficult to occur, and the surface of the sheet-like object is touched Even when sitting down, it is possible to obtain a sheet-like material in which traces are difficult to see.
  • the sheet-like material of the present invention contains functional agents such as dyes, pigments, softeners, texture modifiers, anti-pilling agents, antibacterial agents, deodorants, water repellents, light proofing agents, and weathering agents. May be.
  • the fibers are ultrafine fiber expression type fibers. After the ultrafine fiber expression type fiber is entangled in advance to obtain a non-woven fabric, the non-woven fabric formed by entanglement of a bundle of ultrafine fibers can be obtained by performing ultrafine fiber formation.
  • thermoplastic polymer component with different solubility in solvent etc. is used as sea component and island component, and the sea component is dissolved and removed by using solvent etc. in the later process to remove island component from ultra fine fiber.
  • the sea-island type composite fiber and the separation-dividing fiber that is separated by physical force such as water jet or swelling of the solvent can be employed, but preferably the ultrafine fiber diameter can be controlled uniformly, and the sheet-like material It is a sea-island type composite fiber that can make the surface appearance of
  • the sea-island type composite fiber can provide an appropriate gap between island components, that is, between the ultrafine fibers in the fiber bundle by removing the sea component, and the ultrafine fiber having a particularly small fiber diameter from each composite fiber. It is preferably used because the fibers can be efficiently expressed and a soft texture or bulkiness can be imparted to the sheet-like material.
  • sea-island type composite fiber For the sea-island type composite fiber, a sea-island type composite base is used, and a polymer inter-array system in which two components, the sea component and the island component, are spun together, and the two components, the sea component and the island component, are mixed.
  • a mixed spinning method for spinning can be used, but a sea-island type composite fiber by a polymer array system is more preferably used in that an ultrafine fiber having a uniform fineness can be obtained.
  • the ultrafine fiber-expressing fiber is preferably a sea-island type composite fiber
  • the island component is preferably a side-by-side type, but may be an eccentric core-sheath type.
  • two different types of polymer (A) and polymer (B) are bonded to the side-by-side type or the eccentric core-sheath type along the fiber length direction, so that the latent crimp type island component fiber is formed. can get.
  • the mass ratio of the sea component is less than 5% by mass, the island component is not sufficiently thinned. Further, when the mass ratio of the sea component exceeds 80 mass%, the productivity is lowered because the ratio of the eluted component is large.
  • an ultrafine fiber expression type fiber typified by a sea-island type composite fiber
  • Any method can be employed, such as. Stretching can be appropriately performed by a method of stretching in one to three stages by wet heat, dry heat, or both.
  • the stretched sea-island type composite fiber is preferably crimped and cut into a predetermined length to obtain a raw nonwoven fabric.
  • a usual method can be used for crimping and cutting.
  • sea component of the sea-island fiber examples include polyethylene, polypropylene, polystyrene, copolymer polyester obtained by copolymerizing sodium sulfoisophthalate and polyethylene glycol, polylactic acid, and PVA.
  • Sea-island type fiber ultrafine treatment can be performed by immersing the sea-island type fiber in a solvent and squeezing the solution.
  • a solvent for dissolving the sea component when the sea component is polyethylene, polypropylene, or polystyrene, an organic solvent such as toluene or trichloroethylene is used.
  • an alkaline aqueous solution such as sodium hydroxide or hot water is used.
  • devices such as a continuous dyeing machine, a vibro-washer type seawater removal machine, a liquid dyeing machine, a Wins dyeing machine, and a jigger dyeing machine can be used.
  • the dissolution and removal of the sea component can be performed at any timing before the impregnation with the elastic polymer, after the impregnation, and after the raising treatment.
  • the sea removal treatment is performed before the elastic polymer is applied, the elastic polymer is in close contact with the ultrafine fibers so that the ultrafine fibers can be strongly gripped, so that the abrasion resistance of the sheet-like material becomes better.
  • sea removal treatment is performed after the elastic polymer is applied, voids due to the sea component removed from the sea are generated between the elastic polymer and the ultrafine fibers. In addition, the compression property of the sheet-like material is improved.
  • the number of fibers in the ultrafine fiber bundle is preferably 10 to 9000 fibers / bundle, more preferably 10 to 4000 fibers / bundle.
  • the number of fibers is less than 10 / bundle, the fineness of the ultrafine fibers is poor, and for example, mechanical properties such as wear tend to be reduced.
  • the openability at the time of napping falls, and there exists a tendency for fiber distribution of a napped surface to become non-uniform
  • the degree of fiber density in the ultrafine fiber bundle is preferably 30 to 1000, more preferably 50 to 700.
  • the degree of fiber density is calculated by (number of fibers in the ultrafine fiber bundle) ⁇ (single fiber diameter) and is an index of the size of the ultrafine fiber bundle.
  • a method of entanglement of a fiber web with a needle punch or a water jet punch, a spun bond method, a melt blow method, a paper making method, or the like can be employed.
  • a method that undergoes a treatment such as a needle punch or a water jet punch is preferably used in order to obtain an ultrafine fiber bundle as described above.
  • the apparent density of the fiber entangled body composed of the ultrafine fiber generating fibers after the needle punching process or the water jet punching process is preferably 0.15 to 0.40 g / cm 3 .
  • the apparent density is 0.15 to 0.40 g / cm 3 or more.
  • a fiber entangled body having excellent shape stability and dimensional stability can be obtained.
  • the apparent density is 0.40 g / cm 3 or less, preferably 0.30 g / cm 3 or less, a sufficient space for applying the elastic polymer can be maintained between the fibers.
  • the fiber entangled body composed of the ultrafine fiber-generating fibers thus obtained is preferably subjected to heat shrinkage treatment with dry heat or wet heat, or both from the viewpoint of densification, and further densified. It is. Further, the fiber entangled body can be compressed in the thickness direction by calendaring or the like.
  • the elastic polymer is a fiber entanglement such as a nonwoven fabric in which a fiber bundle of ultrafine fibers is entangled. It is a preferred embodiment that it is not substantially present in. If the elastic polymer is present even inside the fiber bundle, the elastic polymer is adhered to each ultrafine fiber, so that the opening property during the buffing process is poor.
  • an elastic polymer is used as a solution
  • a method in which the sea component is dissolved and removed with a solvent that does not dissolve polyvinyl alcohol, then impregnated with the elastic polymer solution and solidified, and then the polyvinyl alcohol is removed can be preferably used.
  • polyvinyl alcohol polyvinyl alcohol having a saponification degree of 80% or more is preferably used.
  • the polyurethane elastomer is an organic solvent polyurethane elastomer.
  • the organic solvent-based polyurethane can be coagulated by dry heat coagulation, wet coagulation, or a combination of these, and wet coagulation in which it is coagulated by immersion in water is preferably used.
  • wet coagulation polyurethane does not concentrate at the entanglement point of the ultrafine fibers, and the polyurethane itself also becomes porous, so the degree of freedom between the ultrafine fibers increases and structurally imparts stretch properties to the sheet-like material. be able to.
  • the polyurethane elastomer is water-dispersed polyurethane
  • the polyurethane concentrates at the entanglement point of the ultrafine fiber and strongly grips the ultrafine fiber. Therefore, the ultrafine fiber does not have a degree of freedom and cannot exhibit stretch properties.
  • the temperature of wet solidification is not particularly limited.
  • the sheet-like material of the present invention has napping on at least one surface of the sheet-like material.
  • the raising treatment for forming napped fibers of the ultrafine fibers on the surface of the sheet-like material of the present invention can be performed by a grinding method using a sandpaper or a roll sander. Before the raising treatment, a lubricant such as a silicone emulsion may be applied to the sheet.
  • the sheet-like material may be obtained by dividing into half or several sheets in the thickness direction of the sheet-like material before performing the raising treatment.
  • the sheet-like material can be dyed depending on the application.
  • a method for dyeing a sheet-like material it is preferable to use a liquid dyeing machine because the sheet-like material can be softened by simultaneously giving a stagnation effect. If the dyeing temperature of the sheet-like material is too high, the polymer elastic body may be deteriorated. On the other hand, if it is too low, the dyeing to the fiber becomes insufficient.
  • the dyeing temperature is generally preferably 80 to 150 ° C, more preferably 110 to 130 ° C. The heat treatment and stagnation by the dyeing process tend to cause crimping of ultrafine fibers.
  • the nonwoven fabric is subjected to a heat treatment at a temperature of 100 ° C. or higher before the step of expressing the ultrafine fiber from the nonwoven fabric composed of the ultrafine fiber-expressing type fibers, crimping occurs after the sea component is dissolved, and the raising process is performed in the subsequent step. When processed, the crimps are stretched and the napped surface targeted by the present invention is hardly obtained.
  • the crimp of the ultrafine fibers in the raised layer is performed by performing a heat treatment at a temperature of 110 ° C. or more and 150 ° C. or less on the raised nonwoven fabric made of the ultrafine fibers. Achieved.
  • the ultrafine fibers of the napped layer are crimped, an napped surface having anisotropy can be obtained, and a sheet-like material with little hue difference depending on the viewing angle can be obtained.
  • Dye can be selected according to the type of fiber constituting the sheet.
  • disperse dyes can be used for polyester fibers
  • acidic dyes or metal-containing dyes can be used for polyamide fibers, and combinations thereof can be used.
  • a dyeing assistant when dyeing the sheet-like material.
  • a dyeing assistant By using a dyeing assistant, the uniformity and reproducibility of dyeing can be improved.
  • a finishing treatment using a softening agent such as silicone, an antistatic agent, a water repellent, a flame retardant, a light proofing agent, and an antibacterial agent can be performed in the same bath or after dyeing.
  • the sheet-like material of the present invention has both an elegant and precise appearance and stretchability (stretchability), the seat, ceiling, and interior in furniture, chairs and wall materials, and vehicle interiors such as automobiles, trains and aircraft Interior materials that have a very elegant appearance as a skin material such as shirts, jackets, casual shoes, sports shoes, shoes uppers such as men's shoes and women's shoes, trims, bags, belts, wallets, etc., and one of them It can be suitably used as industrial materials such as clothing materials and wiping cloths used for the parts. Furthermore, in the sheet-like material of the present invention, a large number of gaps of about several nm to 500 nm are created between single fibers or at the intertwined portion of the fibers. It can also be used for other purposes.
  • the sheet-like material of the present invention can also be used for artificial leather with silver by forming a coating layer on the surface thereof.
  • a method for forming a coating layer or an undercoat layer for making an artificial leather with silver there are a dry surface forming method, a direct coating method, etc., and various conventionally known methods can be adopted and are particularly limited. is not.
  • the method using apparatuses such as a reverse roll coater, a spray coater, a roll coater, a gravure coater, a kiss roll coater, a knife coater, a comma coater, can be mentioned.
  • the thickness of each layer can be appropriately set according to the application. The preferred thickness is 10 to 1000 ⁇ m, more preferably 50 to 800 ⁇ m.
  • the resin used for the coating layer is most preferably polyurethane.
  • Other resins can be appropriately mixed and used for the resin.
  • polyurethane having excellent durability such as polycarbonate.
  • silicone-modified polyurethane is preferably used.
  • the polyurethane resin can be used by containing silicone oil or a solid silicone compound.
  • Intrinsic viscosity IV 0.8 g of sample polymer is dissolved in 10 mL of orthochlorophenol (hereinafter abbreviated as OCP), and the relative viscosity ( ⁇ r) is obtained by the following equation using an Ostwald viscometer at a temperature of 25 ° C., and the intrinsic viscosity (IV) was calculated.
  • OCP orthochlorophenol
  • Thickness of sheet-like material Using a thickness gauge with a 0.01-mm scale (disk diameter of 9 mm or more), 5 points were measured at equal intervals in the sheet width direction under a load of 10 kPa, and the average value was obtained.
  • Hue difference of leather-like sheet Using a color difference meter (CR-410 manufactured by Konica Minolta Co., Ltd.), as shown in FIG. 2, the surface of the leather-like sheet 1 is 2, the vertical direction is 3, the horizontal direction is 4, the thickness direction is 5, When the napped forward direction is set to 6, the viewpoint from the diagonal 45 ° above the napped forward direction 6 in the vertical direction 3 of the leather-like sheet 1 with respect to the measurement target point on the surface 2 of the leather-like sheet 1 is viewed. 1 is the viewpoint from a diagonal direction 45 ° above the nap in the vertical direction 3 and the viewpoint 2 is a viewpoint from any one diagonal 45 ° in the horizontal direction 4, the viewpoint 3 is L at each viewpoint. *, A *, and b * were measured.
  • a cylindrical frame cut obliquely at 45 ° was prepared so as not to leak light from the device, and measurement was performed by fitting it to the tip of the device.
  • the color difference between the viewpoint 1 and the viewpoint 2 is ⁇ E * ab 12
  • the color difference between the viewpoint 2 and the viewpoint 3 is ⁇ E * ab 23
  • the color difference between the viewpoint 3 and the viewpoint 1 is ⁇ E * ab 31
  • the color difference ⁇ E * ab between each point was calculated.
  • ⁇ E * ab is obtained by the following formula.
  • ⁇ E * ab ( ⁇ L * ⁇ 2 + ⁇ a * ⁇ 2 + ⁇ b * ⁇ 2) 1/2 (In the formula, ⁇ L * represents a difference in L * value between two points, ⁇ a * represents a difference in a * value between two points, and ⁇ b * represents a difference in b * value between two points, respectively. )
  • Example 1 (raw cotton)
  • Polybutylene terephthalate having an intrinsic viscosity (IV) of 1.75 and polyethylene terephthalate having an intrinsic viscosity (IV) of 0.510 are used separately as island components, and in accordance with JIS K7206 (1999) as sea components.
  • PSt polystyrene
  • MFR melt flow rate
  • the fiber melt-spun at / 20 was stretched by a roller plate method under normal conditions and crimped, and then the fiber was cut to a length of 51 mm to obtain a sea-island composite fiber raw cotton having an average single fiber diameter of 26 ⁇ m.
  • Nonwoven fabric composed of ultrafine fibers Using this sea-island type composite fiber raw material, a laminated fiber web is formed through a card and cross wrapping process, needle punched at a punch number of 600 / cm 2 , and then needle punched at a punch number of 3000 / cm 2. As a result, a sheet-like material having a basis weight of 312 g / m 2 and a thickness of 1.70 mm was obtained.
  • the nonwoven fabric After shrinking the nonwoven fabric with hot water at a temperature of 98 ° C., the nonwoven fabric was impregnated with an aqueous solution of PVA (polyvinyl alcohol) having a concentration of 12% and dried with hot air at a temperature of 120 ° C. for 10 minutes. A non-woven fabric having a PVA mass of 30 mass% with respect to the mass was obtained. The nonwoven fabric obtained in this manner was immersed in trichlorethylene to dissolve and remove sea components to obtain a nonwoven fabric (sea removal sheet) made of ultrafine fibers.
  • PVA polyvinyl alcohol
  • the nonwoven fabric (sea removal sheet) made of ultrafine fibers thus obtained is immersed in a DMF (dimethylformamide) solution of polycarbonate polyurethane having a solid content adjusted to 12%, and then in an aqueous solution having a DMF concentration of 30%. To solidify the polyurethane. Thereafter, PVA and DMF were removed with hot water and dried with hot air at a temperature of 110 ° C. for 10 minutes to obtain a sheet-like material having a polyurethane mass of 37% by mass with respect to the mass of the ultrafine fibers comprising the island components. .
  • DMF dimethylformamide
  • the sheet-like material is cut in the thickness direction, and the surface opposite to the half-cut surface is made of 240 mesh sand paper, the bafrol speed is 500 m / min, the sheet conveyance speed is 1.0 m / min, and the bafrol and the sheet are in contact with each other. Buffing was performed at a sheet contact angle of 50 ° to form a raised surface.
  • the sheet-like material thus obtained is subjected to crimping treatment and dyeing simultaneously under a temperature condition of 130 ° C. using a liquid dyeing machine, and then dried using a drier to obtain a sheet-like material. I got a thing.
  • the obtained sheet-like material has a sheet thickness of 0.70 mm, an average single fiber diameter of 4.4 ⁇ m, and as a result of observing the napped layer portion, it is confirmed that crimps are expressed in the ultrafine fibers constituting the napped layer. As confirmed, the average radius of crimp was 25 ⁇ m. Moreover, it was confirmed by SEM observation (500 times) of the cross section that the polyurethane was porous. The stretchability of the sheet was good. The results are shown in Table 1.
  • Example 2 (raw cotton) In the same manner as in Example 1 except that polyethylene terephthalate having an intrinsic viscosity (IV) of 0.78 and polyethylene terephthalate having an intrinsic viscosity (IV) of 0.510 were separately melted and used as island components, A raw cotton of type composite fiber was obtained.
  • Nonwoven fabric composed of ultrafine fibers Using this sea-island type composite fiber raw material, a laminated fiber web is formed through a card and cross wrapping process, needle punched at a punch number of 600 / cm 2 , and then needle punched at a punch number of 3000 / cm 2. As a result, a sheet-like material having a basis weight of 335 g / m 2 and a thickness of 1.85 mm was obtained.
  • the nonwoven fabric After shrinking the nonwoven fabric with hot water at a temperature of 98 ° C., the nonwoven fabric was impregnated with an aqueous solution of PVA (polyvinyl alcohol) having a concentration of 12% and dried with hot air at a temperature of 120 ° C. for 10 minutes. A non-woven fabric having a PVA mass of 35 mass% relative to the mass was obtained. The nonwoven fabric obtained in this way was immersed in trichlorethylene to dissolve and remove sea components, and a nonwoven fabric (sea removal sheet) made of ultrafine hollow fibers was obtained.
  • PVA polyvinyl alcohol
  • the nonwoven fabric (sea removal sheet) made of ultrafine fibers thus obtained is immersed in a DMF (dimethylformamide) solution of polycarbonate polyurethane having a solid content adjusted to 12%, and then in an aqueous solution having a DMF concentration of 30%. To solidify the polyurethane. Thereafter, PVA and DMF were removed with hot water and dried with hot air at a temperature of 110 ° C. for 10 minutes to obtain a sheet-like material having a polyurethane mass of 37% by mass with respect to the mass of the ultrafine fibers comprising the island components. .
  • DMF dimethylformamide
  • the sheet-like material is cut in the thickness direction, and the surface opposite to the half-cut surface is made of 240 mesh sand paper, the bafrol speed is 500 m / min, the sheet conveyance speed is 1.0 m / min, and the bafrol and the sheet are in contact with each other. Buffing was performed at a sheet contact angle of 50 ° to form a raised surface.
  • the sheet-like material thus obtained is subjected to simultaneous crimping treatment and dyeing using a liquid dyeing machine under a temperature condition of 130 ° C., and then dried using a dryer. I got a thing.
  • the obtained sheet-like material has a sheet thickness of 0.70 mm and an average single fiber diameter of 4.4 ⁇ m, and as a result of observing the napped layer portion, it is confirmed that crimps are expressed in the ultrafine fibers constituting the napped layer. As confirmed, the average radius of crimp was 30 ⁇ m. Moreover, it was confirmed by SEM observation (500 times) of the cross section that the polyurethane was porous. The stretchability of the sheet was good. The results are shown in Table 1.
  • Example 3 (raw cotton) In the same manner as in Example 1 except that polyethylene terephthalate having an intrinsic viscosity (IV) of 0.655 and polyethylene terephthalate having an intrinsic viscosity (IV) of 0.651 were separately melted and used as island components, A raw cotton of type composite fiber was obtained.
  • Nonwoven fabric composed of ultrafine fibers Using this sea-island type composite fiber raw material, a laminated fiber web is formed through a card and cross wrapping process, needle punched at a punch number of 600 / cm 2 , and then needle punched at a punch number of 3000 / cm 2. As a result, a sheet-like material having a basis weight of 350 g / m 2 and a thickness of 1.90 mm was obtained.
  • the nonwoven fabric After shrinking the nonwoven fabric with hot water at a temperature of 98 ° C., the nonwoven fabric was impregnated with an aqueous solution of PVA (polyvinyl alcohol) having a concentration of 12% and dried with hot air at a temperature of 120 ° C. for 10 minutes. A non-woven fabric having a PVA mass of 35 mass% relative to the mass was obtained. The nonwoven fabric obtained in this way was immersed in trichlorethylene to dissolve and remove sea components, and a nonwoven fabric (sea removal sheet) made of ultrafine hollow fibers was obtained.
  • PVA polyvinyl alcohol
  • the nonwoven fabric (sea removal sheet) made of ultrafine fibers thus obtained is immersed in a DMF (dimethylformamide) solution of polycarbonate polyurethane having a solid content adjusted to 12%, and then in an aqueous solution having a DMF concentration of 30%. To solidify the polyurethane. Thereafter, PVA and DMF were removed with hot water and dried with hot air at a temperature of 110 ° C. for 10 minutes to obtain a sheet-like material having a polyurethane mass of 37% by mass with respect to the mass of the ultrafine fibers comprising the island components. .
  • DMF dimethylformamide
  • the sheet-like material is cut in the thickness direction, and the surface opposite to the half-cut surface is made of 240 mesh sand paper, the bafrol speed is 500 m / min, the sheet conveyance speed is 1.0 m / min, and the bafrol and the sheet are in contact with each other. Buffing was performed at a sheet contact angle of 50 ° to form a raised surface.
  • the sheet-like material thus obtained is subjected to simultaneous crimping treatment and dyeing using a liquid dyeing machine under a temperature condition of 130 ° C., and then dried using a dryer. I got a thing.
  • the obtained sheet-like material has a sheet thickness of 0.82 mm, an average single fiber diameter of 4.4 ⁇ m, and as a result of observing the napped layer portion, it is confirmed that crimps are expressed in the ultrafine fibers constituting the napped layer. As confirmed, the average radius of crimp was 55 ⁇ m. Moreover, it was confirmed by SEM observation (500 times) of the cross section that the polyurethane was porous. The stretchability of the sheet was good. The results are shown in Table 1.
  • Example 4 (raw cotton) Polyethylene terephthalate with an intrinsic viscosity (IV) of 0.780 and polyethylene terephthalate with an intrinsic viscosity (IV) of 0.654 are melted separately as island components and measured according to JIS K7206 (1999) as sea components.
  • Nonwoven fabric composed of ultrafine fibers Using this sea-island type composite fiber raw material, a laminated fiber web is formed through a card and cross wrapping process, needle punched at a punch number of 600 / cm 2 , and then needle punched at a punch number of 3000 / cm 2. As a result, a sheet-like material having a basis weight of 340 g / m 2 and a thickness of 1.85 mm was obtained.
  • the nonwoven fabric After shrinking the nonwoven fabric with hot water at a temperature of 98 ° C., the nonwoven fabric was impregnated with an aqueous solution of PVA (polyvinyl alcohol) having a concentration of 12% and dried with hot air at a temperature of 120 ° C. for 10 minutes. A nonwoven fabric having a PVA mass of 34 mass% with respect to the mass was obtained. The nonwoven fabric obtained in this way was immersed in trichlorethylene to dissolve and remove sea components, and a nonwoven fabric (sea removal sheet) made of ultrafine hollow fibers was obtained.
  • PVA polyvinyl alcohol
  • the nonwoven fabric (sea removal sheet) made of ultrafine fibers thus obtained is immersed in a DMF (dimethylformamide) solution of polycarbonate polyurethane having a solid content adjusted to 12%, and then in an aqueous solution having a DMF concentration of 30%. To solidify the polyurethane. Thereafter, PVA and DMF were removed with hot water and dried with hot air at a temperature of 110 ° C. for 10 minutes to obtain a sheet-like material having a polyurethane mass of 35% by mass with respect to the mass of the ultrafine fibers comprising the island components. .
  • DMF dimethylformamide
  • the sheet-like material is cut in the thickness direction, and the surface opposite to the half-cut surface is made of 240 mesh sand paper, the bafrol speed is 500 m / min, the sheet conveyance speed is 1.0 m / min, and the bafrol and the sheet are in contact with each other. Buffing was performed at a sheet contact angle of 50 ° to form a raised surface.
  • the sheet-like material thus obtained is subjected to simultaneous crimping treatment and dyeing using a liquid dyeing machine under a temperature condition of 130 ° C., and then dried using a dryer. I got a thing.
  • the obtained sheet-like material has a sheet thickness of 0.82 mm, an average single fiber diameter of 8.8 ⁇ m, and as a result of observing the napped layer portion, it is confirmed that crimps are expressed in the ultrafine fibers constituting the napped layer. As confirmed, the average radius of crimp was 45 ⁇ m. Moreover, it was confirmed by SEM observation (500 times) of the cross section that the polyurethane was porous. The stretchability of the sheet was good. The results are shown in Table 1.
  • Example 5 (raw cotton) Polybutylene terephthalate with an intrinsic viscosity (IV) of 1.75 and polyethylene terephthalate with an intrinsic viscosity (IV) of 0.510 are used separately as island components, and 8 mol of sodium 5-sulfoisophthalate is used as a sea component.
  • % Polyethylene terephthalate copolymerized using a sea-island type compound base with 24 islands, and the fiber melt-spun at an island / sea mass ratio of 80/20 is stretched under normal conditions using a roller plate method. After crimping, the fiber was cut to a length of 51 mm to obtain a sea-island composite fiber raw cotton having an average single fiber diameter of 16 ⁇ m.
  • Nonwoven fabric composed of ultrafine fibers Using this sea-island type composite fiber raw material, a laminated fiber web is formed through a card and cross wrapping process, needle punched at a punch number of 600 / cm 2 , and then needle punched at a punch number of 3000 / cm 2. As a result, a sheet-like material having a basis weight of 310 g / m 2 and a thickness of 1.70 mm was obtained.
  • the above nonwoven fabric is shrunk with hot water at a temperature of 96 ° C. and then immersed in a 15 g / L sodium hydroxide aqueous solution heated to 80 ° C. for 30 minutes to remove sea components of the sea-island fibers.
  • a sheet-like material made of ultrafine fibers and polyurethane was obtained.
  • it was dried with hot air at a temperature of 120 ° C. for 10 minutes, immersed in a DMF solution of polycarbonate polyurethane adjusted to a solid content concentration of 12%, and then the polyurethane was coagulated in an aqueous solution with a DMF concentration of 30%.
  • a sheet-like material having a polyurethane mass of 37 mass% relative to the mass of the ultrafine fiber made of the island component was obtained. Thereafter, the sheet-like material is cut in the thickness direction, and the surface opposite to the half-cut surface is made of 240 mesh sand paper, the bafrol speed is 500 m / min, the sheet conveyance speed is 1.0 m / min, and the bafrol and the sheet are in contact with each other. Buffing was performed at a sheet contact angle of 50 ° to form a raised surface.
  • the sheet-like material thus obtained is subjected to crimping treatment and dyeing simultaneously under a temperature condition of 130 ° C. using a liquid dyeing machine, and then dried using a drier to obtain a sheet-like material. I got a thing.
  • the obtained sheet-like material has a sheet thickness of 0.70 mm, an average single fiber diameter of 2.8 ⁇ m, and as a result of observing the napped layer portion, it is confirmed that crimps are expressed in the ultrafine fibers constituting the napped layer. As confirmed, the average radius of crimp was 30 ⁇ m. Moreover, it was confirmed by SEM observation (500 times) of the cross section that the polyurethane was porous. The stretchability of the sheet was good. The results are shown in Table 1.
  • Example 6 (Spinning, fabric making) Polyethylene terephthalate with an intrinsic viscosity (IV) of 0.780 and polyethylene terephthalate with an intrinsic viscosity (IV) of 0.654 are melted separately as island components and measured according to JIS K7206 (1999) as sea components. Using a polystyrene (PSt) having a Vicat softening point of 100 ° C., an MFR of 120, and a sea-island type composite base having 24 islands, the island / sea mass ratio is discharged from the base to 80/20. did.
  • PSt polystyrene
  • the ejector pressure was adjusted so that the spinning speed was 4000 m / min, and sea-island composite long fibers having an average single fiber diameter of 14 ⁇ m were collected by a net to obtain a 30 g / m 2 long fiber nonwoven fabric sheet.
  • Nonwoven fabric composed of ultrafine fibers Using this sea-island type composite fiber long-fiber nonwoven fabric sheet, a laminated fiber web is formed through a cross-wrapper process, needle punched with a punch number of 600 / cm 2 , and then needles with a punch number of 3000 / cm 2. Punching was performed to obtain a sheet-like material having a basis weight of 300 g / m 2 and a thickness of 1.80 mm.
  • the nonwoven fabric After shrinking the nonwoven fabric with hot water at a temperature of 98 ° C., the nonwoven fabric was impregnated with an aqueous solution of PVA (polyvinyl alcohol) having a concentration of 12% and dried with hot air at a temperature of 120 ° C. for 10 minutes. A non-woven fabric having a PVA mass of 30 mass% with respect to the mass was obtained. The nonwoven fabric obtained in this manner was immersed in trichlorethylene to dissolve and remove sea components to obtain a nonwoven fabric (sea removal sheet) made of ultrafine fibers.
  • PVA polyvinyl alcohol
  • the nonwoven fabric (sea removal sheet) made of ultrafine fibers thus obtained is immersed in a DMF (dimethylformamide) solution of polycarbonate polyurethane having a solid content adjusted to 12%, and then in an aqueous solution having a DMF concentration of 30%. To solidify the polyurethane. Thereafter, PVA and DMF were removed with hot water and dried with hot air at a temperature of 110 ° C. for 10 minutes to obtain a sheet-like material having a polyurethane mass of 38% by mass with respect to the mass of the ultrafine fibers comprising the island components. .
  • DMF dimethylformamide
  • the sheet-like material is cut in the thickness direction, and the surface opposite to the half-cut surface is made of 240 mesh sand paper, the bafrol speed is 500 m / min, the sheet conveyance speed is 1.0 m / min, and the bafrol and the sheet are in contact with each other. Buffing was performed at a sheet contact angle of 50 ° to form a raised surface.
  • the sheet-like material thus obtained is subjected to crimping treatment and dyeing simultaneously under a temperature condition of 130 ° C. using a liquid dyeing machine, and then dried using a drier to obtain a sheet-like material. I got a thing.
  • the obtained sheet-like material has a sheet thickness of 0.80 mm, an average single fiber diameter of 2 ⁇ m, and as a result of observing the napped layer portion, it was confirmed that crimps were expressed in the ultrafine fibers constituting the napped layer.
  • the average radius of crimp was 70 ⁇ m.
  • SEM observation (500 times) of the cross section that the polyurethane was porous.
  • the stretchability of the sheet was good. The results are shown in Table 1.
  • Example 7 (Spinning, fabric making) Among the island components, polyethylene terephthalate having an intrinsic viscosity (IV) of 0.780 as the core component and polyethylene terephthalate having an intrinsic viscosity (IV) of 0.510 as the sheath component are separately melted and used as JIS as the sea component.
  • a sea-island type composite base with polystyrene (PSt) having a Vicat softening point of 100 ° C. and an MFR of 120 measured according to K7206 (1999) having 24 islands and an eccentric core-shell type island component. Then, it was discharged from the base so that the island / sea mass ratio was 80/20.
  • PSt polystyrene
  • the ejector pressure was adjusted so that the spinning speed was 4000 m / min, and the sea-island composite long fibers having an average single fiber diameter of 25 ⁇ m were collected by a net to obtain a 30 g / m 2 long fiber nonwoven fabric sheet.
  • Nonwoven fabric composed of ultrafine fibers Using this sea-island type composite fiber long-fiber nonwoven fabric sheet, a laminated fiber web is formed through a cross-wrapper process, needle punched with a punch number of 600 / cm 2 , and then needles with a punch number of 3000 / cm 2. Punching was performed to obtain a sheet-like material having a basis weight of 300 g / m 2 and a thickness of 1.80 mm.
  • the nonwoven fabric After shrinking the nonwoven fabric with hot water at a temperature of 98 ° C., the nonwoven fabric was impregnated with an aqueous solution of PVA (polyvinyl alcohol) having a concentration of 12% and dried with hot air at a temperature of 120 ° C. for 10 minutes. A non-woven fabric having a PVA mass of 30 mass% with respect to the mass was obtained. The nonwoven fabric obtained in this manner was immersed in trichlorethylene to dissolve and remove sea components to obtain a nonwoven fabric (sea removal sheet) made of ultrafine fibers.
  • PVA polyvinyl alcohol
  • the nonwoven fabric (sea removal sheet) made of ultrafine fibers thus obtained is immersed in a DMF (dimethylformamide) solution of polycarbonate polyurethane having a solid content adjusted to 12%, and then in an aqueous solution having a DMF concentration of 30%. To solidify the polyurethane. Thereafter, PVA and DMF were removed with hot water and dried with hot air at a temperature of 110 ° C. for 10 minutes to obtain a sheet-like material having a polyurethane mass of 40 mass% with respect to the mass of the ultrafine fibers comprising the island components. .
  • DMF dimethylformamide
  • the sheet-like material is cut in the thickness direction, and the surface opposite to the half-cut surface is made of 240 mesh sand paper, the bafrol speed is 500 m / min, the sheet conveyance speed is 1.0 m / min, and the bafrol and the sheet are in contact with each other. Buffing was performed at a sheet contact angle of 50 ° to form a raised surface.
  • the sheet-like material thus obtained is subjected to crimping treatment and dyeing simultaneously under a temperature condition of 130 ° C. using a liquid dyeing machine, and then dried using a drier to obtain a sheet-like material. I got a thing.
  • the obtained sheet-like material has a sheet thickness of 0.80 mm and an average single fiber diameter of 3.6 ⁇ m, and as a result of observing the napped layer portion, it is confirmed that crimps are expressed in the ultrafine fibers constituting the napped layer. As a result, the average radius of crimp was 80 ⁇ m. Moreover, it was confirmed by SEM observation (500 times) of the cross section that the polyurethane was porous. The stretchability of the sheet was good. The results are shown in Table 1.
  • Example 8 (raw cotton) Polybutylene terephthalate having an intrinsic viscosity (IV) of 1.75 and polyethylene terephthalate having an intrinsic viscosity (IV) of 0.510 are used separately as island components, and in accordance with JIS K7206 (1999) as sea components.
  • PSt polystyrene
  • MFR polystyrene
  • sea-island type composite base having 24 islands
  • a melt-spun fiber at an island / sea mass ratio of 80/20 is obtained.
  • the fiber was cut to a length of 10 mm to obtain a raw material of sea-island type composite fiber having an average single fiber diameter of 26 ⁇ m.
  • Nonwoven fabric composed of ultrafine fibers Using this sea-island type composite fiber raw material, a laminated fiber web is formed through a card and cross wrapping process, needle punched at a punch number of 600 / cm2, and then needle punched at a punch number of 3000 / cm2. Thus, a sheet-like material having a basis weight of 162 g / m 2 and a thickness of 0.87 mm was obtained.
  • the nonwoven fabric After shrinking the nonwoven fabric with hot water at a temperature of 98 ° C., the nonwoven fabric was impregnated with an aqueous solution of PVA (polyvinyl alcohol) having a concentration of 12% and dried with hot air at a temperature of 120 ° C. for 10 minutes. A non-woven fabric having a PVA mass of 30 mass% with respect to the mass was obtained. The nonwoven fabric obtained in this manner was immersed in trichlorethylene to dissolve and remove sea components to obtain a nonwoven fabric (sea removal sheet) made of ultrafine fibers.
  • PVA polyvinyl alcohol
  • the nonwoven fabric (sea removal sheet) made of ultrafine fibers thus obtained is immersed in a DMF (dimethylformamide) solution of polycarbonate polyurethane having a solid content adjusted to 12%, and then in an aqueous solution having a DMF concentration of 30%. To solidify the polyurethane. Thereafter, PVA and DMF were removed with hot water and dried with hot air at a temperature of 110 ° C. for 10 minutes to obtain a sheet-like material having a polyurethane mass of 37% by mass with respect to the mass of the ultrafine fibers comprising the island components. .
  • DMF dimethylformamide
  • the sheet-like material is cut in the thickness direction, and the surface opposite to the half-cut surface is made of 240 mesh sand paper, the bafrol speed is 500 m / min, the sheet conveyance speed is 1.0 m / min, and the bafrol and the sheet are in contact with each other. Buffing was performed at a sheet contact angle of 50 ° to form a raised surface.
  • the sheet-like material thus obtained is subjected to crimping treatment and dyeing simultaneously under a temperature condition of 130 ° C. using a liquid dyeing machine, and then dried using a drier to obtain a sheet-like material. I got a thing.
  • the obtained sheet-like material has a sheet thickness of 0.72 mm, an average single fiber diameter of 4.4 ⁇ m, and as a result of observing the napped layer portion, it is confirmed that crimps are expressed in the ultrafine fibers constituting the napped layer. As confirmed, the average radius of crimp was 20 ⁇ m. Moreover, it was confirmed by SEM observation (500 times) of the cross section that the polyurethane was porous. The stretchability of the sheet was good. The results are shown in Table 1.
  • Example 9 (raw cotton) Polybutylene terephthalate having an intrinsic viscosity (IV) of 1.75 and polyethylene terephthalate having an intrinsic viscosity (IV) of 0.510 are used separately as island components, and in accordance with JIS K7206 (1999) as sea components. Using a polystyrene (PSt) having a measured Vicat softening point of 100 ° C., an MFR of 120, and using a sea-island type composite base having 24 islands, a melt-spun fiber at an island / sea mass ratio of 80/20 is obtained.
  • PSt polystyrene
  • the fiber was cut into a length of 80 mm after being stretched under a normal condition by a roller plate method, and a fiber was cut into a length of 80 mm to obtain a raw cotton of a sea-island type composite fiber having an average single fiber diameter of 26 ⁇ m.
  • Nonwoven fabric composed of ultrafine fibers Using this sea-island type composite fiber raw material, a laminated fiber web is formed through a card and cross wrapping process, needle punched at a punch number of 600 / cm2, and then needle punched at a punch number of 3000 / cm2. Thus, a sheet-like material having a basis weight of 172 g / m 2 and a thickness of 0.94 mm was obtained.
  • the nonwoven fabric After shrinking the nonwoven fabric with hot water at a temperature of 98 ° C., the nonwoven fabric was impregnated with an aqueous solution of PVA (polyvinyl alcohol) having a concentration of 12% and dried with hot air at a temperature of 120 ° C. for 10 minutes. A non-woven fabric having a PVA mass of 35 mass% relative to the mass was obtained. The nonwoven fabric obtained in this way was immersed in trichlorethylene to dissolve and remove sea components, and a nonwoven fabric (sea removal sheet) made of ultrafine hollow fibers was obtained.
  • PVA polyvinyl alcohol
  • the nonwoven fabric (sea removal sheet) made of ultrafine fibers thus obtained is immersed in a DMF (dimethylformamide) solution of polycarbonate polyurethane having a solid content adjusted to 12%, and then in an aqueous solution having a DMF concentration of 30%. To solidify the polyurethane. Thereafter, PVA and DMF were removed with hot water and dried with hot air at a temperature of 110 ° C. for 10 minutes to obtain a sheet-like material having a polyurethane mass of 37% by mass with respect to the mass of the ultrafine fibers comprising the island components. .
  • DMF dimethylformamide
  • the sheet-like material is cut in the thickness direction, and the surface opposite to the half-cut surface is made of 240 mesh sand paper, the bafrol speed is 500 m / min, the sheet conveyance speed is 1.0 m / min, and the bafrol and the sheet are in contact with each other. Buffing was performed at a sheet contact angle of 50 ° to form a raised surface.
  • the sheet-like material thus obtained is subjected to simultaneous crimping treatment and dyeing using a liquid dyeing machine under a temperature condition of 130 ° C., and then dried using a dryer. I got a thing.
  • the obtained sheet-like material has a sheet thickness of 0.73 mm and an average single fiber diameter of 4.4 ⁇ m.
  • crimps are expressed in the ultrafine fibers constituting the napped layer.
  • the average radius of crimp was 30 ⁇ m.
  • SEM observation (500 times) of the cross section that the polyurethane was porous. The stretchability of the sheet was good. The results are shown in Table 1.
  • Example 10 Polyethylene terephthalate having an intrinsic viscosity (IV) of 0.78 and polyethylene terephthalate having an intrinsic viscosity (IV) of 0.48 are melted separately as island components, and polystyrene is used as a sea component. Using a sea-island type composite die, a fiber that was melt-spun at an island / sea mass ratio of 80/20 was stretched 3.2 times by a roller plate method under normal conditions. After crimping, the fiber was 51 mm long. Then, a raw cotton having a sea-island type composite fiber having an average single fiber diameter of 4.4 ⁇ m and a boiling water shrinkage of 14.5% was obtained.
  • a laminated fiber web is formed through a card and cross wrapping process, and needle punching is performed at a punch number of 600 / cm 2 , and 3000 / A needle punch was applied with a number of cm 2 punches to obtain a sheet-like material.
  • the sheet-like material thus obtained is shrunk with hot water at a temperature of 96 ° C., then impregnated with a 12% concentration PVA (polyvinyl alcohol) aqueous solution, and dried with hot air at a temperature of 95 ° C. for 15 minutes.
  • PVA polyvinyl alcohol
  • a sheet-like material having a PVA mass of 20% by mass relative to the mass of the fiber sheet-like substrate was obtained.
  • This sheet-like material was immersed in trichlorethylene to dissolve and remove sea components, and a sea-removal sheet formed by intertwining ultrafine fibers and fabrics was obtained.
  • the sea removal sheet thus obtained was immersed in a DMF (dimethylformamide) solution of polyurethane adjusted to a solid content concentration of 12%, and then the polyurethane was coagulated in an aqueous solution having a DMF concentration of 30%. Thereafter, PVA and DMF are removed with hot water and dried with hot air at a temperature of 95 ° C. for 15 minutes, so that the mass of the sheet-like material composed of the above-mentioned ultrafine fibers composed of island components having a single fiber fineness of 0.21 dtex. A leather base sheet having a polyurethane mass of 28% by mass was obtained.
  • DMF dimethylformamide
  • the leather base sheet thus obtained was cut in half perpendicular to the thickness direction, and the cut surface was ground with an endless sandpaper with sandpaper count 180 to form a raised surface.
  • the leather base sheet thus obtained was put into a liquid dyeing machine, dyed in a beige color and crimped at the same time under a temperature of 120 ° C., and then dried in a dryer. A sheet-like product was obtained.
  • the leather-like sheet-like material thus obtained had a nap layer thickness of 150 ⁇ m, the nap on the surface was crimped, and the napping direction was random.
  • L *, a *, and b * were measured from three directions by the above-described measurement method, ⁇ E * ab between each point was obtained, and ⁇ E * ab average of the three points The value was 0.72, and there was no hue difference depending on the viewing angle.
  • the expression was rich and high-class, and when molded into a sheet, there was no patchy or blurred feeling. The results are shown in Table 2.
  • Example 11 In Example 1 above, except that the number of islands was 36 and the island / sea mass ratio was changed to 60/40, it was processed under the same conditions as in Example 1 and the average single fiber diameter was 2.1 ⁇ m. A leather-like sheet was obtained.
  • the leather-like sheet-like material thus obtained had a nap layer thickness of 180 ⁇ m, the nap on the surface was crimped, and the napping direction was random.
  • L *, a *, and b * were measured from three directions by the above-described measurement method, ⁇ E * ab between each point was obtained, and ⁇ E * ab average of the three points was obtained.
  • the value was 1.20, and there was no hue difference depending on the viewing angle.
  • the expression was rich and high-class, and when molded into a sheet, there was no patchy or blurred feeling. The results are shown in Table 2.
  • Example 12 In Example 1 above, polybutylene terephthalate having an intrinsic viscosity (IV) of 1.21 and polyethylene terephthalate having an intrinsic viscosity (IV) of 0.48 were used as island components, and the draw ratio was 3.7 times and the boiling water shrinkage A leather-like sheet was obtained by processing under the same conditions as in Example 1 except that raw cotton having a rate of 21.5% was obtained.
  • the leather-like sheet-like material thus obtained had a nap layer thickness of 150 ⁇ m, the napped surface was crimped, and the napped direction was random.
  • L *, a *, and b * are measured from three directions by the above-described measurement method, and ⁇ E * ab between each point is obtained.
  • the average value of E * ab was 0.46, and there was no hue difference depending on the viewing angle.
  • the expression was rich and high-class, and when molded into a sheet, there was no patchy or blurred feeling. The results are shown in Table 2.
  • Nonwoven fabric composed of ultrafine fibers Using this sea-island type composite fiber raw material, a laminated fiber web is formed through a card and cross wrapping process, needle punched at a punch number of 600 / cm 2 , and then needle punched at a punch number of 3000 / cm 2. As a result, a sheet-like material having a basis weight of 560 g / m 2 and a thickness of 3.15 mm was obtained.
  • Sheet After shrinking the nonwoven fabric with hot water at a temperature of 98 ° C., the nonwoven fabric was impregnated with an aqueous solution of PVA (polyvinyl alcohol) having a concentration of 12% and dried with hot air at a temperature of 120 ° C.
  • PVA polyvinyl alcohol
  • a nonwoven fabric having a PVA mass of 33 mass% relative to the mass was obtained.
  • the nonwoven fabric obtained in this way was immersed in trichlorethylene to dissolve and remove sea components, and a nonwoven fabric (sea removal sheet) made of ultrafine hollow fibers was obtained.
  • the nonwoven fabric (sea removal sheet) made of ultrafine fibers thus obtained is immersed in a DMF (dimethylformamide) solution of polycarbonate polyurethane having a solid content adjusted to 12%, and then in an aqueous solution having a DMF concentration of 30%. To solidify the polyurethane. Thereafter, PVA and DMF were removed with hot water, and dried with hot air at a temperature of 110 ° C.
  • the sheet-like material having a polyurethane mass of 32 mass% with respect to the mass of the ultrafine fibers comprising the island components.
  • the sheet-like material is cut in the thickness direction, and the surface opposite to the half-cut surface is made of 240 mesh sand paper, the bafrol speed is 500 m / min, the sheet conveyance speed is 1.0 m / min, and the bafrol and the sheet are in contact with each other. Buffing was performed at a sheet contact angle of 50 ° to form a raised surface.
  • the sheet-like material thus obtained is subjected to simultaneous crimping treatment and dyeing using a liquid dyeing machine under a temperature condition of 130 ° C., and then dried using a dryer. I got a thing.
  • the obtained sheet-like material has a sheet thickness of 0.90 mm, an average single fiber diameter of 4.4 ⁇ m, and as a result of observing the napped layer portion, it is confirmed that crimps are not expressed in the ultrafine fibers constituting the napped layer. confirmed. Moreover, it was confirmed by SEM observation (500 times) of the cross section that the polyurethane was porous, but the stretchability of the sheet was poor. The results are shown in Table 1.
  • the previously produced 74 dtex / 350 f composite multifilament (ultrafine fiber) was cut to a length of 5 mm, and then dispersed in water to produce a papermaking slurry for the surface layer and the back layer.
  • the surface fabric weight is 100 g / m 2
  • the back fabric weight is 100 g / m 2
  • the above fabric is inserted to form a laminated fiber sheet, and the fibers constituting the paper sheet are three-dimensionally entangled by jetting high-speed water flow. To obtain a nonwoven fabric.
  • the polyurethane was immersed in a DMF (dimethylformamide) solution of polycarbonate polyurethane having a solid content concentration adjusted to 12%, and then the polyurethane was coagulated in an aqueous solution having a DMF concentration of 30%. Then, DMF was removed with hot water and dried with hot air at a temperature of 110 ° C. for 10 minutes to obtain a sheet-like material having a polyurethane mass of 33 mass% relative to the mass of the ultrafine fibers.
  • DMF dimethylformamide
  • the surface of the sheet-like material was buffed using a 240 mesh sandpaper, buffing speed of 500 m / min, sheet conveyance speed of 1.0 m / min, and the sheet contact angle between the bafrol and the sheet was 50 °, and the raised surface Formed.
  • the sheet-like material thus obtained was dyed using a liquid flow dyeing machine.
  • the obtained sheet-like material has a sheet thickness of 0.90 mm and an average single fiber diameter of 4.4 ⁇ m.
  • the ultrafine fibers do not constitute a fiber bundle, and constitute a napped layer. It was confirmed that no crimp was developed in the ultrafine fibers.
  • Nonwoven fabric composed of ultrafine fibers Using this sea-island type composite fiber raw material, a laminated fiber web is formed through a card and cross wrapping process, needle punched at a punch number of 600 / cm 2 , and then needle punched at a punch number of 3000 / cm 2. Thus, a sheet-like material having a basis weight of 340 g / m 2 and a thickness of 1.80 mm was obtained.
  • the nonwoven fabric After shrinking the nonwoven fabric with hot water at a temperature of 98 ° C., the nonwoven fabric was impregnated with an aqueous solution of PVA (polyvinyl alcohol) having a concentration of 12% and dried with hot air at a temperature of 120 ° C. for 10 minutes. A nonwoven fabric having a PVA mass of 33 mass% relative to the mass was obtained. The nonwoven fabric obtained in this way was immersed in trichlorethylene to dissolve and remove sea components, and a nonwoven fabric (sea removal sheet) made of ultrafine hollow fibers was obtained.
  • PVA polyvinyl alcohol
  • the nonwoven fabric (sea removal sheet) made of ultrafine fibers thus obtained is immersed in a DMF (dimethylformamide) solution of polycarbonate polyurethane having a solid content adjusted to 12%, and then in an aqueous solution having a DMF concentration of 30%. To solidify the polyurethane. Thereafter, PVA and DMF were removed with hot water and dried with hot air at a temperature of 110 ° C. for 10 minutes to obtain a sheet-like material having a polyurethane mass of 38% by mass with respect to the mass of the ultrafine fibers comprising the island components. .
  • DMF dimethylformamide
  • the sheet-like material is cut in the thickness direction, and the surface opposite to the half-cut surface is made of 240 mesh sand paper, the bafrol speed is 500 m / min, the sheet conveyance speed is 1.0 m / min, and the bafrol and the sheet are in contact with each other. Buffing was performed at a sheet contact angle of 50 ° to form a raised surface.
  • the sheet-like material thus obtained is subjected to simultaneous crimping treatment and dyeing using a liquid dyeing machine under a temperature condition of 130 ° C., and then dried using a dryer. I got a thing.
  • the obtained sheet-like material has a sheet thickness of 0.80 mm and an average single fiber diameter of 4.4 ⁇ m.
  • crimps are expressed in the ultrafine fibers constituting the napped layer.
  • the average radius of crimp was 110 ⁇ m.
  • SEM observation (500 times) of the cross section that the polyurethane was porous, but the stretchability of the sheet was poor. The results are shown in Table 1.
  • Nonwoven fabric composed of ultrafine fibers Using this sea-island type composite fiber raw material, a laminated fiber web is formed through a card and cross wrapping process, needle punched at a punch number of 600 / cm 2 , and then needle punched at a punch number of 3000 / cm 2. As a result, a sheet-like material having a basis weight of 340 g / m 2 and a thickness of 1.85 mm was obtained.
  • the nonwoven fabric After shrinking the nonwoven fabric with hot water at a temperature of 98 ° C., the nonwoven fabric was impregnated with an aqueous solution of PVA (polyvinyl alcohol) having a concentration of 12% and dried with hot air at a temperature of 120 ° C. for 10 minutes. A nonwoven fabric having a PVA mass of 34 mass% with respect to the mass was obtained. The nonwoven fabric obtained in this way was immersed in trichlorethylene to dissolve and remove sea components, and a nonwoven fabric (sea removal sheet) made of ultrafine hollow fibers was obtained.
  • PVA polyvinyl alcohol
  • the nonwoven fabric (sea removal sheet) made of ultrafine fibers thus obtained is immersed in a DMF (dimethylformamide) solution of polycarbonate polyurethane having a solid content adjusted to 12%, and then in an aqueous solution having a DMF concentration of 30%. To solidify the polyurethane. Thereafter, PVA and DMF were removed with hot water and dried with hot air at a temperature of 110 ° C. for 10 minutes to obtain a sheet-like material having a polyurethane mass of 35% by mass with respect to the mass of the ultrafine fibers comprising the island components. .
  • DMF dimethylformamide
  • the sheet-like material is cut in the thickness direction, and the surface opposite to the half-cut surface is made of 240 mesh sand paper, the bafrol speed is 500 m / min, the sheet conveyance speed is 1.0 m / min, and the bafrol and the sheet are in contact with each other. Buffing was performed at a sheet contact angle of 50 ° to form a raised surface.
  • the sheet-like material thus obtained is subjected to simultaneous crimping treatment and dyeing using a liquid dyeing machine under a temperature condition of 130 ° C., and then dried using a dryer. I got a thing.
  • the obtained sheet-like material has a sheet thickness of 0.70 mm, an average single fiber diameter of 0.05 ⁇ m, and as a result of observing the napped layer portion, it is confirmed that crimps are expressed in the ultrafine fibers constituting the napped layer. As a result, the radius average value of crimps was 3 ⁇ m. Moreover, it was confirmed by SEM observation (500 times) of the cross section that the polyurethane was porous, but the stretchability of the sheet was poor. The results are shown in Table 1.
  • Nonwoven fabric composed of ultrafine fibers Using this sea-island type composite fiber raw material, a laminated fiber web is formed through a card and cross wrapping process, needle punched at a punch number of 600 / cm 2 , and then needle punched at a punch number of 3000 / cm 2. As a result, a sheet-like material having a basis weight of 340 g / m 2 and a thickness of 1.83 mm was obtained.
  • the nonwoven fabric was shrunk with hot water at a temperature of 98 ° C. and then hot-air dried at a drying temperature of 100 ° C. for 5 minutes. Then, the polyurethane mass with respect to the mass of the ultrafine fibers composed of island components is impregnated with a water-dispersed polyurethane liquid (ether type) having a polyurethane solid content concentration of 12% by mass and dried with hot air at a drying temperature of 100 ° C. for 10 minutes. Of 45% by mass was obtained.
  • ether type water-dispersed polyurethane liquid
  • the sheet-like material thus obtained is immersed in a 15 g / L sodium hydroxide aqueous solution heated to a temperature of 80 ° C. and treated for 30 minutes to remove sea components of the sea-island type composite fiber.
  • a sheet-like material made of ultrafine fibers and water-dispersed polyurethane was obtained.
  • the sheet-like material is cut in the thickness direction, and the surface opposite to the half-cut surface is made of 240 mesh sand paper, the bafrol speed is 500 m / min, the sheet conveyance speed is 1.0 m / min, and the bafrol and the sheet are in contact with each other. Buffing was performed at a sheet contact angle of 50 ° to form a raised surface.
  • the sheet-like material thus obtained is subjected to simultaneous crimping treatment and dyeing using a liquid dyeing machine under a temperature condition of 130 ° C., and then dried using a dryer. I got a thing.
  • the obtained sheet-like material has a sheet thickness of 0.75 mm, an average single fiber diameter of 4.4 ⁇ m, and as a result of observing the napped layer portion, it is confirmed that crimps are expressed in the ultrafine fibers constituting the napped layer. As confirmed, the radius average value of crimps was 60 ⁇ m. Moreover, the SEM observation (500 times) of the cross section revealed that the polyurethane was nonporous, and the stretchability of the sheet was poor. The results are shown in Table 1.
  • Example 6 (raw cotton) Example 1 except that polybutylene terephthalate having an intrinsic viscosity (IV) of 1.750 and polyethylene terephthalate having an intrinsic viscosity (IV) of 0.025 were separately melted and used as island components. When the base was discharged, the yarn was bent significantly, and the yarn was broken frequently and could not be manufactured stably.
  • Example 7 A leather-like sheet was obtained under the same conditions as in Example 1 except that the island component was a polyethylene terephthalate single component having an intrinsic viscosity (IV) of 0.78 in Example 1.
  • the leather-like sheet-like material thus obtained had a napped layer thickness of 210 ⁇ m, no napped surface, and the napped direction was aligned in one direction.
  • L *, a *, and b * were measured from three directions by the above-described measurement method, ⁇ E * ab between each point was obtained, and ⁇ E * ab average of the three points was obtained.
  • the value was 2.51, and there was a difference in hue depending on the viewing angle, and when it was molded into a sheet, a feeling of patching or blur occurred.
  • Table 2 The results are shown in Table 2.
  • Example 8 In Example 1 above, the sheet after needle punching was shrunk with hot water at a temperature of 96 ° C., then impregnated with 12% PVA (polyvinyl alcohol) aqueous solution, and dried with hot air at a temperature of 120 ° C. for 15 minutes. A leather-like sheet was obtained under the same conditions as in Example 1 except that.
  • PVA polyvinyl alcohol
  • the napped layer has a thickness of 195 ⁇ m, and the napped surface is weakly crimped, and the crimps developed before the napping treatment are stretched by the napping treatment. It became.
  • L *, a *, and b * were measured from three directions by the above-described measurement method, ⁇ E * ab between each point was obtained, and ⁇ E * ab average of the three points was obtained.
  • the value was 2.31, and there was a difference in hue depending on the viewing angle, and when the sheet was molded, a feeling of patching or blurring occurred.
  • Table 2 The results are shown in Table 2.
  • Example 9 In Example 3 above, polybutylene terephthalate having an intrinsic viscosity (IV) of 1.21 and polyethylene terephthalate having an intrinsic viscosity (IV) of 0.48 were used as island components, and the draw ratio was 3.9 times, boiling water shrinkage. A leather-like sheet was obtained by processing under the same conditions as in Example 3 except that a raw cotton having a rate of 25.2% was obtained.
  • the leather-like sheet thus obtained has a raised layer thickness of 170 ⁇ m, and the raised surface of the surface is weakly crimped, and the crimp developed in the heat shrinking process before the raising treatment is raised. It became a shape stretched by.
  • L *, a *, and b * were measured from three directions by the above-described measurement method, ⁇ E * ab between each point was obtained, and ⁇ E * ab average of the three points was obtained. The value was 1.98, and there was a difference in hue depending on the viewing angle. When molded into a sheet, a feeling of patching or blurring occurred. The results are shown in Table 2.
  • the leather-like sheet-like material thus obtained had a nap layer thickness of 40 ⁇ m, the nap on the surface was crimped, and the napping direction was random.
  • L *, a *, and b * are measured from three directions by the above-described measurement method, ⁇ E * ab between each point is obtained, and ⁇ E * ab average value of the three points was 0.17, and there was no hue difference depending on the viewing angle, but the change in facial expression was poor and the sense of luxury was lacking. The results are shown in Table 2.

Abstract

Provided are: a sheet-shaped material having excellent appearance and feeling, and moreover having a high elongation rate and a high elongation recovery rate; and a method for producing the same. The sheet-shaped material is formed from ultra fine fibers and a porous elastic polymer, and is characterized in that: the sheet-shaped material comprises a substrate layer and a napped layer; the ultra fine fibers have a coil-shaped crimp, have an average single fiber diameter of 0.1-10 μm, and include fibers having a fiber length of 8-90 mm; and the sheet-shaped material has an elongation rate of 10% or more, and an elongation recovery rate of 80% or more.

Description

シート状物およびその製造方法Sheet material and method for producing the same
 本発明は極細繊維がコイル状の捲縮を有していることにより、優美な外観と優れたストレッチ性を有するシート状物、およびその製造方法に関する。 The present invention relates to a sheet-like material having an elegant appearance and excellent stretchability, and a method for producing the same, because the ultrafine fiber has a coiled crimp.
 従来、主として極細繊維と高分子弾性体からなるシート状物は天然皮革にない優れた特徴を有しており、衣料や椅子張り、自動車内装材用途などにその使用が年々広がってきた。そして、最近は、特に衣料用途では着用感、資材用途では成型性の観点から、ストレッチ性に優れるシート状物が求められている。シート状物にストレッチ性を付与することを目的として、シート状物を構成する繊維をサイドバイサイド状に貼り付けた構造を持たせる検討が行われている。 Conventionally, sheet-like materials mainly composed of ultrafine fibers and polymer elastic bodies have excellent characteristics not found in natural leather, and their use has been increasing year by year for clothing, chair upholstery, and automotive interior materials. Recently, a sheet-like material excellent in stretchability has been demanded from the viewpoint of a feeling of wear especially for clothing and from a moldability viewpoint for materials. For the purpose of imparting stretch properties to a sheet-like material, studies have been made to have a structure in which fibers constituting the sheet-like material are attached in a side-by-side manner.
 例えば、特許文献1では弾性ポリマーからなる繊維成分と非弾性ポリマーからなる島成分を有する海島構造とが隣接した集束繊維発生型繊維から海成分を除去することによって、島成分が非弾性ポリマーである非弾性極細繊維束発生型繊維と弾性繊維の2種の繊維をサイドバイサイド状に貼り付けた構造の繊維が得られ、その繊維を用いた人工皮革が提案されている。しかしながら、弾性ポリマーであるポリウレタン系の繊維を紡糸する場合、ポリウレタン系繊維はポリウレタン固有の性質として風合いが硬く、織物の風合いやドレープ性が低下するといった問題がある。さらに、ポリウレタン系繊維はポリエステル用の染料には染まり難く、ポリエステル繊維と併用したとしても、染色工程が複雑になるばかりか所望の色彩に染色することが困難であった。 For example, in Patent Document 1, an island component is an inelastic polymer by removing a sea component from a converging fiber generating fiber in which a fiber component composed of an elastic polymer and an island-island structure having an island component composed of an inelastic polymer are adjacent to each other. A fiber having a structure in which two types of fibers, a non-elastic ultrafine fiber bundle generation type fiber and an elastic fiber, are attached in a side-by-side manner is obtained, and an artificial leather using the fiber has been proposed. However, when a polyurethane fiber that is an elastic polymer is spun, the polyurethane fiber has a hard texture as a characteristic property of polyurethane, and there is a problem that the texture and drape of the fabric is lowered. Furthermore, polyurethane fibers are difficult to dye with polyester dyes, and even when used in combination with polyester fibers, the dyeing process is complicated and it is difficult to dye them in a desired color.
 特許文献2では、固有粘度(IV)差のある2種類のポリエチレンテレフタレート共重合体から形成されたサイドバイサイド型の複合繊維を含んでなる糸を含む織編物を挿入する方法が提案されている。延伸時の高粘度側への応力集中により、2成分間で異なった内部歪みが生じ、捲縮が発現する。しかしながら、シート状物を構成する極細繊維は潜在捲縮発現型繊維ではなく、シート状物の強度を補強する目的で挿入される織編物のみが捲縮するため、シート状物にストレッチ性は付与できるが、シート状物表面の極細繊維の緻密感は発現しないものである。 Patent Document 2 proposes a method of inserting a woven or knitted fabric including a yarn including a side-by-side type composite fiber formed from two types of polyethylene terephthalate copolymers having a difference in intrinsic viscosity (IV). Stress concentration on the high viscosity side during stretching causes different internal strains between the two components, and crimps are developed. However, the ultra-fine fibers that make up the sheet-like material are not latent crimped fibers, and only the woven or knitted fabric that is inserted for the purpose of reinforcing the strength of the sheet-like material is crimped. However, the fineness of the ultrafine fibers on the surface of the sheet-like material is not expressed.
 特許文献3では、固有粘度の異なる2種類のポリトリメチレンテレフタレートをサイドバイサイド型に複合紡糸し、得られた潜在捲縮発現型繊維を含む人工皮革が提案されている。しかしながら、このシートを形成する極細繊維長は5mm以下と非常に短く、また直接紡糸法のため繊維束を形成することができないことから、極細繊維同士の絡合および極細繊維の捲縮が小さく、ストレッチ性に乏しいシート状物になる。 Patent Document 3 proposes an artificial leather containing latent crimped fibers obtained by composite spinning of two types of polytrimethylene terephthalate having different intrinsic viscosities in a side-by-side manner. However, the ultrafine fiber length forming this sheet is very short as 5 mm or less, and since a fiber bundle cannot be formed by the direct spinning method, the entanglement between the ultrafine fibers and the crimp of the ultrafine fibers are small, It becomes a sheet-like material with poor stretchability.
 一方、特許文献4では固有粘度に差のある2種類のポリエチレンテレフタレートから形成されたサイドバイサイド型の極細繊維からなる不織布と、その内部に水分散型ポリウレタンを含有するシート状物が提案されている。本特許文献では、水分散型ポリウレタンを不織布に含浸しているため、乾燥する際に水分散型ポリウレタンが極細繊維の交絡点を固めた構造となる。また、ポリウレタンは無孔構造であるため、極細繊維の自由度はない。そのため、極細繊維は捲縮してシート状物表面の外観は緻密になるが、ストレッチ性は発現しないものである。 On the other hand, Patent Document 4 proposes a non-woven fabric composed of side-by-side ultrafine fibers formed from two types of polyethylene terephthalate having a difference in intrinsic viscosity, and a sheet-like material containing water-dispersible polyurethane therein. In this patent document, since the nonwoven fabric is impregnated with the water-dispersed polyurethane, the water-dispersed polyurethane has a structure in which the entanglement points of the ultrafine fibers are hardened when drying. Moreover, since polyurethane has a nonporous structure, there is no degree of freedom for ultrafine fibers. Therefore, the ultrafine fibers are crimped to make the surface of the sheet-like material dense, but do not exhibit stretch properties.
 すなわち、これまで緻密な外観と、伸張率および伸張回復率といったストレッチ性を両立したシート状物は得られていない。 That is, until now, a sheet-like material having both a fine appearance and stretch properties such as a stretch rate and a stretch recovery rate has not been obtained.
 また、一般的に表面に立毛を有するスエード調人工皮革において、立毛の方向によって表面繊維の光の反射が変化し、見る角度によって色相が異なる特徴があり、衣料やシート材に使用する際において、方向に注意する必要があった。 In addition, in the suede-like artificial leather generally having napped on the surface, the reflection of the light of the surface fiber changes depending on the napped direction, and there is a characteristic that the hue varies depending on the viewing angle, when used for clothing and sheet materials, It was necessary to pay attention to the direction.
特許第03128333号公報Japanese Patent No. 03128333 特許第05035117号公報Japanese Patent No. 0535117 特開2003-286663号公報JP 2003-286663 A 特開2012-136800号公報JP 2012-136800 A
 上記のような課題を解決する提案に関する文献はこれまでに見られないが、本発明者らは潜在捲縮糸を用いて表面の繊維の方向性に変化をつけることにより、上記の課題を解決することができた。 Although no literature on proposals for solving the above problems has been found so far, the present inventors solved the above problems by changing the direction of the fibers on the surface using latent crimped yarns. We were able to.
 本発明の目的は、上記従来技術の実状に鑑み、緻密な外観と、伸張率および伸張回復率といったストレッチ性を両立したシート状物、また、高級感を持ちながら見る角度を変えても色相差が小さいシート状物およびそれらの製造方法を提供するものである。 The object of the present invention is to take into account the actual state of the above-mentioned prior art, a sheet-like material that has both a dense appearance and stretch properties such as a stretch rate and a stretch recovery rate, and a hue difference even when the viewing angle is changed while maintaining a high-class feeling. Provides a small sheet-like material and a method for producing them.
 本発明は、極細繊維と多孔化した弾性体ポリマーから構成されるシート状物であって、前記シート状物は基材層と立毛層からなり、前記極細繊維は、コイル状の捲縮を有し、平均単繊維直径が0.1~10μmであり、繊維長が8~90mmの繊維を含み、かつ、前記シート状物の伸張率が10%以上、伸張回復率が80%以上であることを特徴とするシート状物である。 The present invention is a sheet-like material composed of an ultrafine fiber and a porous elastic polymer, the sheet-like material comprising a base material layer and a raised layer, and the ultrafine fiber has a coiled crimp. The average single fiber diameter is 0.1 to 10 μm, the fiber length is 8 to 90 mm, and the sheet material has an elongation rate of 10% or more and an elongation recovery rate of 80% or more. It is a sheet-like thing characterized by these.
 本発明のシート状物の好ましい態様によれば、前記シート状物を構成する極細繊維は、繊維長が25~90mmの繊維を含むことを特徴とするシート状物である。 According to a preferred aspect of the sheet-like material of the present invention, the ultrafine fiber constituting the sheet-like material is a sheet-like material characterized by containing fibers having a fiber length of 25 to 90 mm.
 また、本発明のシート状物の好ましい態様によれば、固有粘度差のある2種類以上のポリエチレンテレフタレート系重合体が繊維長さ方向に沿って、サイドバイサイド型に貼り合わされた、または、偏心した芯鞘構造を形成している平均単繊維直径が0.3μm以上7μm以下の複合繊維からなる不織布と、その内部に高分子弾性体を含有し、表面に立毛層を有する皮革様シート状物であって、皮革様シート状物表面の測定対象点に対し、皮革様シート状物のタテ方向の立毛順方向の上方斜め45°からの視点を視点1、タテ方向の立毛逆方向の上方斜め45°からの視点を視点2、ヨコ方向の任意の一方の上方斜め45°からの視点を視点3とし、視点1と視点2との色差を△E*ab12、視点2と視点3との色差を△E*ab23、視点3と視点1との色差を△E*ab31としたとき、次式を満たすことを特徴とする皮革様シート状物である。
・0.2≦(△E*ab12+△E*ab23+△E*ab31)/3≦1.5
Further, according to a preferred embodiment of the sheet-like material of the present invention, two or more types of polyethylene terephthalate polymers having a difference in intrinsic viscosity are bonded to a side-by-side type along the fiber length direction, or an eccentric core. A leather-like sheet-like material containing a nonwoven fabric composed of a composite fiber having an average single fiber diameter of 0.3 μm or more and 7 μm or less forming a sheath structure, a polymer elastic body inside, and a napped layer on the surface. From the point of measurement of the surface of the leather-like sheet material, the viewpoint from the upper 45 ° oblique direction of the napping forward direction of the leather-like sheet material is the viewpoint 1, the upper oblique direction 45 ° of the napping reverse direction of the vertical direction The viewpoint from the viewpoint 2 is the viewpoint 2, the viewpoint from any one of 45 degrees above the horizontal direction is the viewpoint 3, the color difference between the viewpoint 1 and the viewpoint 2 is ΔE * ab 12 , and the color difference between the viewpoint 2 and the viewpoint 3 is △ E * ab 23 , viewpoint 3 And the viewpoint 1 is a leather-like sheet characterized by satisfying the following equation when ΔE * ab 31 is satisfied.
0.2 ≦ (ΔE * ab 12 + ΔE * ab 23 + ΔE * ab 31 ) /3≦1.5
 緻密な外観と、伸張率および伸張回復率といったストレッチ性を両立したシート状物、また、スエード調人工皮革の高級感と変化のある表情を持ちながら、見る角度による色相差が小さい皮革様シート状物、およびそれらの製造方法を得ることができる。これによって、成型性や着心地感向上等の機能性に優れ、シート状物の表面を手で触れた場合や座った場合においても、跡が見えにくいシート状物が得られる。 A sheet-like material that has both a precise appearance and stretch properties such as stretch rate and stretch recovery rate, and a leather-like sheet shape that has a high-quality and varied expression of suede-like artificial leather and has a small hue difference depending on the viewing angle. Products, and methods for their production. As a result, it is possible to obtain a sheet-like material that is excellent in functionality such as moldability and improved feeling of comfort, and in which a trace is hardly visible even when the surface of the sheet-like material is touched by hand or sitting.
図1は、実施例1で得られたシート状物表面の繊維の形状を示すSEM写真(100倍)である。FIG. 1 is a SEM photograph (100 times) showing the shape of the fiber on the surface of the sheet-like material obtained in Example 1. 図2は、シート状物の色相差を測定する方法と装置を説明するための概略図である。FIG. 2 is a schematic diagram for explaining a method and apparatus for measuring the hue difference of a sheet-like material.
 本発明のシート状物は、極細繊維と多孔化した弾性体ポリマーから構成されるシート状物であって、前記シート状物は基材層と立毛層からなり、前記極細繊維は、コイル状の捲縮を有し、平均単繊維直径が0.1~10μmであり、繊維長が8~90mmの繊維を含み、かつ、前記シート状物の伸張率が10%以上、伸張回復率が80%以上であることを特徴とするシート状物である。 The sheet-like material of the present invention is a sheet-like material composed of ultrafine fibers and a porous elastic polymer, and the sheet-like material is composed of a base layer and a napped layer, and the ultrafine fibers are coiled. It has crimps, has an average single fiber diameter of 0.1 to 10 μm, contains fibers with a fiber length of 8 to 90 mm, and has an elongation rate of 10% or more and an elongation recovery rate of 80%. It is the sheet-like thing characterized by the above.
 本発明における立毛層とは、シート状物の立毛している繊維がなす層であり、基材層とはシート状物の立毛層以外の層を指す。 In the present invention, the raised layer is a layer formed by the fibers in which the sheet-like material is raised, and the base material layer is a layer other than the raised layer of the sheet-like material.
 本発明において、極細繊維の平均単繊維直径は、シート状物の柔軟性や立毛品位の観点から0.1~10μmであることが重要である。平均単繊維直径は大きくなると、表面品位に乏しいシート状物となることから、好ましくは7μm以下、より好ましくは5μm以下である。一方、染色後の発色性やサンドペーパーなどによる研削など起毛処理時の繊維の分散性、さばけ易さの観点からは、好ましくは0.3μm以上、より好ましくは0.5μm以上である。また、柔軟性や立毛品位および染色時の発色性に優れ、且つ見る角度による色相差が小さくなる特性を考慮した場合の好ましい範囲は0.3μm~0.7μmである。 In the present invention, it is important that the average single fiber diameter of the ultrafine fibers is 0.1 to 10 μm from the viewpoint of the flexibility of the sheet-like material and the napped quality. When the average single fiber diameter is increased, a sheet-like product having poor surface quality is obtained. Therefore, the average single fiber diameter is preferably 7 μm or less, more preferably 5 μm or less. On the other hand, it is preferably 0.3 μm or more, and more preferably 0.5 μm or more, from the viewpoints of color development after dyeing, dispersibility of fibers during raising treatment such as grinding with sandpaper, and ease of spreading. In addition, a preferable range is 0.3 μm to 0.7 μm in consideration of characteristics such as excellent flexibility, napped quality and color development at the time of dyeing, and a small hue difference depending on the viewing angle.
 なお、極細繊維平均単繊維直径は、シート状物断面の走査型電子顕微鏡(SEM)写真を撮影し、円形または円形に近い楕円形の繊維をランダムに100本選び、繊維径を測定し、平均値を計算することで算出される。 In addition, the average single fiber diameter of the ultrafine fibers is obtained by taking a scanning electron microscope (SEM) photograph of a cross section of the sheet-like material, randomly selecting 100 circular or nearly elliptical fibers, measuring the fiber diameter, and averaging Calculated by calculating the value.
 極細繊維の断面形状としては、例えば、丸、楕円、扁平および三角などの多角形、扇、十字、Y、H、X、W、C、およびπ型などを用いることができる。 As the cross-sectional shape of the ultrafine fibers, for example, polygons such as circles, ellipses, flats and triangles, fans, crosses, Y, H, X, W, C, and π-types can be used.
 繊維絡合体を構成する極細繊維は、極細繊維束の形態をとっている。極細繊維が束となっていることで、シート状物の引張強力や引裂強力といった物理的な強度を向上し、さらには耐摩耗性も発現することができるものである。極細繊維束の形態としては、極細繊維同士が多少離れていてもよく、場合によっては部分的に結合していてもよく、凝集していてもよい。本発明で用いられる極細繊維を形成するポリマーとしては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレートおよびポリ乳酸などのポリエステル、6-ナイロンや66-ナイロンなどのポリアミド、アクリル、ポリエチレン、ポリプロピレン、および熱可塑性セルロースなどの溶融紡糸可能な熱可塑性樹脂などが挙げられる。中でも、強度、寸法安定性、耐光性および染色性の観点から、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート等のポリエステル系重合体からなるポリエステル繊維が好ましく用いられる。なお、これらのポリマーから選ばれる少なくとも2種以上が組み合わされていてもよい。 The ultrafine fibers constituting the fiber entangled body are in the form of ultrafine fiber bundles. When the ultrafine fibers are bundled, physical strength such as tensile strength and tear strength of the sheet-like material can be improved, and furthermore, wear resistance can be expressed. As a form of the ultrafine fiber bundle, the ultrafine fibers may be somewhat separated from each other, and may be partially bonded or agglomerated in some cases. Examples of the polymer forming the ultrafine fiber used in the present invention include polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate and polylactic acid and other polyesters, polyamides such as 6-nylon and 66-nylon, acrylic, polyethylene, and polypropylene. And thermoplastic resins that can be melt-spun such as thermoplastic cellulose. Of these, polyester fibers made of a polyester polymer such as polyethylene terephthalate, polybutylene terephthalate, and polytrimethylene terephthalate are preferably used from the viewpoints of strength, dimensional stability, light resistance, and dyeability. In addition, at least 2 or more types selected from these polymers may be combined.
 また、環境配慮の観点から、リサイクル原料や植物由来原料から得られる繊維であってもよい。また、極細繊維は、異なる素材の繊維が混合され構成されることができる。 Further, from the viewpoint of environmental consideration, fibers obtained from recycled raw materials or plant-derived raw materials may be used. Further, the ultrafine fibers can be configured by mixing fibers of different materials.
 また、極細繊維を構成するポリマーには、他の成分が共重合されていても良く、また、有機粒子、無機粒子、難燃剤、帯電防止剤等の添加剤を含有させることができる。 Further, the polymer constituting the ultrafine fiber may be copolymerized with other components, and may contain additives such as organic particles, inorganic particles, flame retardants and antistatic agents.
 本発明のシート状物を構成する極細繊維は、異なる2種類のポリマー(A)および(B)が繊維長さ方向に沿ってサイドバイサイド型に貼りあわされた複合繊維であってもよい。 The ultrafine fiber constituting the sheet-like product of the present invention may be a composite fiber in which two different types of polymers (A) and (B) are bonded side by side along the fiber length direction.
 前記ポリマー(A)と前記ポリマー(B)の組み合わせとしては、前述の極細繊維を形成するポリマーから適宜選ぶことができるが、好ましくは固有粘度差のあるポリエステル系重合体の組み合わせであり、より好ましくは前記ポリマー(A)または前記ポリマー(B)の少なくとも一方がポリブチレンテレフタレート系重合体である。特に、かかる組み合わせのポリマーを繊維長さ方向に沿ってサイドバイサイド型に貼り合わせた構造を形成するよう紡糸、延伸して得られる極細繊維は、延伸時の高粘度側への応力集中により、2成分間で異なった内部歪みが生じ、それによってシート化した後に熱処理することにより、高粘度側が大きく収縮し、単繊維内で歪みが生じてコイル状の捲縮が発現する。この捲縮により、シート状物表面の立毛層部分の繊維の絡まりが大きくなり、ストレッチ性が発現する。 The combination of the polymer (A) and the polymer (B) can be appropriately selected from the polymers forming the ultrafine fibers, but is preferably a combination of polyester polymers having a difference in intrinsic viscosity, more preferably At least one of the polymer (A) or the polymer (B) is a polybutylene terephthalate polymer. In particular, the ultrafine fiber obtained by spinning and stretching so as to form a structure in which a polymer of such a combination is bonded to the side-by-side type along the fiber length direction has two components due to stress concentration on the high viscosity side during stretching. Different internal strains occur between them, and heat treatment after forming into a sheet thereby causes the high-viscosity side to shrink significantly, producing strain within the single fiber and developing coiled crimps. By this crimp, the fiber entanglement of the napped layer portion on the surface of the sheet-like material becomes large, and stretch properties are expressed.
 サイドバイサイド型に貼り合わされた複合繊維において、ポリマー(A)とポリマー(B)がポリエステル系共重合体である場合、その固有粘度差は0.002~1.5であることが好ましい。固有粘度差を0.002以上大きくすると、捲縮特性の優れた繊維が得られる。一方、固有粘度差が1.5を越えると、得られた繊維の捲縮特性は良好ではあるものの、紡糸された繊維が高粘度成分側に過度に曲がるため、長時間の安定した紡糸をすることができない。また、前記ポリマーの組み合わせとしては少なくとも一方がポリブチレンテレフタレート系重合体であることが好ましい。ポリブチレンテレフタレート系重合体は、結晶性が高いポリマーであるため、例えばもう一方にポリエチレンテレフタレートとした際、両ポリマー間で結晶性に差が生まれ、捲縮発現しやすい。 In the composite fiber bonded to the side-by-side type, when the polymer (A) and the polymer (B) are polyester-based copolymers, the difference in intrinsic viscosity is preferably 0.002 to 1.5. When the difference in intrinsic viscosity is increased by 0.002 or more, a fiber having excellent crimp characteristics can be obtained. On the other hand, when the difference in intrinsic viscosity exceeds 1.5, the crimped property of the obtained fiber is good, but the spun fiber is bent excessively to the high viscosity component side, so that stable spinning is performed for a long time. I can't. Further, it is preferable that at least one of the polymer combinations is a polybutylene terephthalate polymer. Since the polybutylene terephthalate polymer is a polymer having high crystallinity, for example, when polyethylene terephthalate is used as the other polymer, a difference in crystallinity is produced between the two polymers, and crimping tends to occur.
 本発明におけるポリエステル系重合体の固有粘度は、高粘度成分においては0.5~2.0であることが好ましい。固有粘度を0.5以上とすることにより、十分な強度と伸度を兼ね備えた繊維を製造することが可能となる。また、固有粘度の上限は溶融押し出しなどの成形の容易さ、製造コスト、工程途中の熱やせん断力によって起きる分子鎖切断による分子量低下の点から、2.0以下が好ましい。一方、低粘度成分は、固有粘度を0.3~1にすることにより安定紡糸が可能となる。 In the present invention, the intrinsic viscosity of the polyester polymer is preferably 0.5 to 2.0 for the high viscosity component. By setting the intrinsic viscosity to 0.5 or more, a fiber having sufficient strength and elongation can be produced. The upper limit of the intrinsic viscosity is preferably 2.0 or less from the viewpoint of ease of molding such as melt extrusion, production cost, and molecular weight reduction due to molecular chain breakage caused by heat or shear force during the process. On the other hand, the low viscosity component can be stably spun by setting the intrinsic viscosity to 0.3 to 1.
 また、両成分の複合比率は、質量比で、高粘度成分:低粘度成分=75:25~35:65(質量%)の範囲が好ましく、より好ましくは65:35~45:55(質量%)の範囲である。この範囲内であれば、得られるシート状物のストレッチ性に合わせて複合比を適宜設定可能であり、例えば、ソフト感に優れたシート状物を得るには、高粘度成分の複合比を低く、タフネスを得るには高粘度成分の複合比を高くすればよい。 The composite ratio of both components is preferably in the range of high viscosity component: low viscosity component = 75: 25 to 35:65 (mass%), more preferably 65:35 to 45:55 (mass%). ). Within this range, the composite ratio can be appropriately set according to the stretchability of the obtained sheet-like material. For example, in order to obtain a sheet-like material having an excellent soft feeling, the composite ratio of the high viscosity component is lowered. In order to obtain toughness, the composite ratio of the high viscosity component may be increased.
 ポリエステル系重合体の固有粘度差は、重合の時間、温度、触媒量や共重合成分を適宜調節することにより、所望の粘度とすることができる。 The inherent viscosity difference of the polyester polymer can be set to a desired viscosity by appropriately adjusting the polymerization time, temperature, catalyst amount and copolymerization component.
 本発明における固有粘度は、オルソクロロフェノール中に試料を溶かして25℃の温度で測定した値である。 The intrinsic viscosity in the present invention is a value measured by dissolving a sample in orthochlorophenol at a temperature of 25 ° C.
 本発明におけるポリエステル系重合体とは、ジカルボン酸類またはその誘導体とジオール類またはその誘導体とが共重合してなる構造を主成分としたものであり、ここで主成分とは全体の重量に対して50重量%より多いことをいう。ポリエステル系重合体は、他のエステル結合が可能な共重合成分を含むものであってもよい。共重合可能な化合物としては、例えばイソフタル酸、コハク酸、シクロヘキサンジカルボン酸、アジピン酸、ダイマ酸、セバシン酸および5-イソフタル酸などのジカルボン酸類や、エチレングリコール、ブタンジオール、ネオペンチルグリコール、シクロヘキサンジメタノール、ポリエチレングリコールおよびポリプロピレングリコールなどのジオール類を挙げることができる。また、必要に応じて、艶消し剤となる二酸化チタン、滑剤としてのシリカやアルミナの微粒子、抗酸化剤としてのヒンダードフェノール誘導体、および着色顔料などを添加してもよい。 The polyester polymer in the present invention has a structure in which a dicarboxylic acid or a derivative thereof and a diol or a derivative thereof are copolymerized as a main component, where the main component is based on the total weight. More than 50% by weight. The polyester polymer may contain a copolymer component capable of forming another ester bond. Examples of the copolymerizable compound include dicarboxylic acids such as isophthalic acid, succinic acid, cyclohexanedicarboxylic acid, adipic acid, dimer acid, sebacic acid and 5-isophthalic acid, ethylene glycol, butanediol, neopentyl glycol, cyclohexanedi Examples include diols such as methanol, polyethylene glycol, and polypropylene glycol. Further, if necessary, titanium dioxide serving as a matting agent, silica or alumina fine particles as a lubricant, hindered phenol derivatives as an antioxidant, and coloring pigments may be added.
 本発明におけるポリブチレンテレフタレート系重合体とは、テレフタル酸またはその誘導体と、1,4-ブタンジオールまたはその誘導体とが共重合してなる構造を主成分としたものである。 The polybutylene terephthalate-based polymer in the present invention is mainly composed of a structure obtained by copolymerizing terephthalic acid or a derivative thereof and 1,4-butanediol or a derivative thereof.
 本発明のシート状物を構成する不織布は、短繊維不織布および長繊維不織布のいずれでもよいが、風合いや品位の点では短繊維不織布が好ましく用いられる。 The nonwoven fabric constituting the sheet-like material of the present invention may be either a short fiber nonwoven fabric or a long fiber nonwoven fabric, but a short fiber nonwoven fabric is preferably used in terms of texture and quality.
 本発明のシート状物に用いられる短繊維不織布としては、短繊維をカードおよびクロスラッパーを用いて積層ウエブを形成させた後に、ニードルパンチやウォータージェットパンチを施して得られるものや抄紙法で得られるもの、長繊維不織布としては、スパンボンド法やメルトブロー法などから得られるものを適宜採用することができる。 The short fiber nonwoven fabric used in the sheet-like material of the present invention is obtained by forming a laminated web using short fibers with a card and a cross wrapper and then applying a needle punch or a water jet punch or obtained by a papermaking method. As the obtained non-woven fabric, those obtained from a spunbond method, a melt blow method or the like can be appropriately employed.
 短繊維不織布における短繊維は、8~90mmの繊維長を含むことが重要である。繊維長を8mm以上とすることにより、絡合により耐摩耗性に優れたシート状物を得ることができる。また、繊維長を90mm以下とすることにより、シート状物の圧縮特性や表面品位に優れたシート状物を得ることができる。繊維長は、より好ましくは25~90mmである。 It is important that the short fibers in the short fiber nonwoven fabric have a fiber length of 8 to 90 mm. By setting the fiber length to 8 mm or more, a sheet-like material having excellent wear resistance can be obtained by entanglement. Moreover, by setting the fiber length to 90 mm or less, it is possible to obtain a sheet-like material excellent in compression characteristics and surface quality of the sheet-like material. The fiber length is more preferably 25 to 90 mm.
 繊維長が8mmより小さい繊維は絡合されにくく、シート状物の製造工程中に繊維脱落が発生する。また、90mmより長い繊維は絡合性に優れるが、立毛部を構成した際は耐摩耗性に乏しく、また表面品位に劣る傾向になる。 Fibers with a fiber length of less than 8 mm are less likely to be entangled, and fiber dropout occurs during the manufacturing process of the sheet-like material. Moreover, although the fiber longer than 90 mm is excellent in entanglement property, when a napped part is comprised, it is inferior to abrasion resistance and tends to be inferior to surface quality.
 極細繊維の8~90mmの繊維長の割合は、シート状物を構成する極細繊維全体の50質量%以上であることが好ましい。 The proportion of the fiber length of 8 to 90 mm of the ultrafine fiber is preferably 50% by mass or more of the entire ultrafine fiber constituting the sheet-like material.
 なお、繊維長8~90mmの割合は、まずシート状物中の弾性体ポリマーを抽出・除去し極細繊維のみとした後、繊維をランダムに100本抜き出し、繊維長を測定し、繊維長のヒストグラムを作成することによって算出される。 The ratio of the fiber length of 8 to 90 mm is determined by first extracting and removing the elastic polymer in the sheet to make only ultrafine fibers, then randomly extracting 100 fibers, measuring the fiber length, and measuring the fiber length histogram. Is calculated by creating
 前記のようにして得られた不織布には、繊維の緻密感向上のために、温水やスチームによって収縮処理を施すことができる。温水やスチームの温度は、後述する極細繊維の捲縮が発現することがないように、シート状物の温度が100℃未満となるように処理することが好ましい。ただし、シート状物自体の温度が100℃未満に保たれるのであれば、シート状物を収縮させるために付与する温水やスチームの温度は100℃以上であることも許容される。また、この収縮処理の際に、不織布を構成する極細繊維発現型繊維の沸騰水における収縮率が高い場合、シート状物の収縮処理温度が100℃未満の場合においても収縮処理後に捲縮が発現してしまう場合がある。また、繊維の収縮率が低い場合はシート状物の緻密性が上がらず、皮革様シート状物としての優れた表面感が得られなくなる。これにより、不織布を構成する極細繊維発現型繊維の沸騰水における収縮率は、5~25%であることが好ましい。 The nonwoven fabric obtained as described above can be subjected to shrinkage treatment with warm water or steam in order to improve the fineness of the fibers. The temperature of the hot water or steam is preferably treated so that the temperature of the sheet-like material is less than 100 ° C. so that the crimp of the ultrafine fiber described later does not appear. However, if the temperature of the sheet-like material itself is kept below 100 ° C., the temperature of hot water or steam applied to shrink the sheet-like material is allowed to be 100 ° C. or higher. In addition, when the shrinkage in the boiling water of the ultrafine fiber-expressing fiber constituting the nonwoven fabric is high during this shrinkage treatment, crimping is manifested after the shrinkage treatment even when the shrinkage treatment temperature of the sheet-like material is less than 100 ° C. May end up. Further, when the shrinkage rate of the fiber is low, the denseness of the sheet-like material does not increase, and an excellent surface feeling as a leather-like sheet material cannot be obtained. Thus, the shrinkage ratio of the ultrafine fiber-expressing fiber constituting the nonwoven fabric in boiling water is preferably 5 to 25%.
 本発明のシート状物は、その内層部あるいは表面に強度を向上させるなどの目的で補強層を含ませることができる。補強層としては、織物、編物、不織布(紙を含む)、およびプラスチックフィルムや金属薄膜シートなどのフィルム状物等を採用することができる。補強層が繊維で構成された織物や編物の場合、繊維の平均単繊維直径は、0.1~20μm程度であることがシート状物の風合いの観点から好ましい。 The sheet-like material of the present invention can include a reinforcing layer for the purpose of improving the strength of the inner layer portion or the surface thereof. As the reinforcing layer, woven fabrics, knitted fabrics, nonwoven fabrics (including paper), and film-like materials such as plastic films and metal thin film sheets can be employed. In the case of a woven or knitted fabric in which the reinforcing layer is composed of fibers, the average single fiber diameter of the fibers is preferably about 0.1 to 20 μm from the viewpoint of the texture of the sheet-like material.
 本発明で用いられる織編物を構成する繊維糸条の種類としては、フィラメントヤーン、紡績糸、革新紡績糸およびフィラメントヤーンと紡績糸の混合複合糸などが挙げられる。紡績糸は、その構造上表面に多数毛羽が存在するため、不織布と織物を絡合する際、その毛羽が脱落し表面に露出すると欠点となるため、フィラメントヤーンを用いることが好ましい。フィラメントヤーンには、大別すると単繊維1本で構成されたモノフィラメントと複数本で構成されたマルチフィラメントとがあるが、本発明で用いられる織編物では、マルチフィラメントを用いることが好ましい。モノフィラメントでは、繊維の剛性が高くなりすぎるためシート状物の風合いを損ねることがある。 Examples of the types of fiber yarns constituting the woven or knitted fabric used in the present invention include filament yarn, spun yarn, innovative spun yarn, and mixed composite yarn of filament yarn and spun yarn. Since many yarns are present on the surface of the spun yarn due to its structure, when the nonwoven fabric and the woven fabric are entangled with each other, it becomes a drawback if the yarn falls off and is exposed on the surface. Therefore, it is preferable to use a filament yarn. The filament yarn is roughly classified into a monofilament composed of a single fiber and a multifilament composed of a plurality of filament yarns. In the woven or knitted fabric used in the present invention, it is preferable to use a multifilament. In the case of monofilaments, the stiffness of the fiber becomes too high, and the texture of the sheet-like material may be impaired.
 織編物を構成する繊維糸条の総繊度は、剛性および目付などの理由から、好ましくは50~150dtexである。 The total fineness of the fiber yarns constituting the woven or knitted fabric is preferably 50 to 150 dtex for reasons such as rigidity and basis weight.
 前記織編物の目付は20~200g/mが好ましく、さらに好ましくは30~150g/mである。織編物の目付が20g/m未満では、織編物としての形態が乏しくなり、織編物を不織布と不織布の間に挿入したとき、あるいは織編物を不織布の表面に重ねる際にシワが発生し、均一に積層させることが困難となる。また、織編物の目付が200g/mを超えると、織編物の構造が密となり、不織布と織編物の絡合が困難となる傾向になる。 The basis weight of the woven or knitted fabric is preferably 20 to 200 g / m 2 , more preferably 30 to 150 g / m 2 . When the basis weight of the woven or knitted fabric is less than 20 g / m 2 , the form as the woven or knitted fabric becomes poor, and wrinkles are generated when the woven or knitted fabric is inserted between the nonwoven fabric and the woven or knitted fabric is stacked on the surface of the nonwoven fabric, It becomes difficult to laminate uniformly. On the other hand, when the basis weight of the woven or knitted fabric exceeds 200 g / m 2 , the structure of the woven or knitted fabric becomes dense, and the entanglement between the nonwoven fabric and the woven or knitted fabric tends to be difficult.
 本発明において用いられる織物の基本組織は、ツイルやサテンを用いても良いが、目ずれなどが発生しにくい平組織が好ましく用いられる。 As the basic structure of the fabric used in the present invention, twill or satin may be used, but a plain structure in which misalignment or the like hardly occurs is preferably used.
 本発明のシート状物は、シート状物の片面または両面に立毛層を有する。また、極細繊維がコイル状の捲縮を有することで、シート状物に嵩高感を付与でき、ストレッチ性も発現できる。 The sheet-like material of the present invention has a raised layer on one side or both sides of the sheet-like material. Moreover, when the ultrafine fiber has a coiled crimp, the sheet-like material can be given a bulky feeling, and stretch properties can also be expressed.
 本発明のシート状物の伸張率は10%以上、伸張回復率が80%以上であることが重要である。伸張率が10%以上、伸張回復率が80%以上であることにより、ストレッチ性に優れたシート状物を得ることができる。 It is important that the stretch rate of the sheet material of the present invention is 10% or more and the stretch recovery rate is 80% or more. When the stretch rate is 10% or more and the stretch recovery rate is 80% or more, a sheet-like material having excellent stretch properties can be obtained.
 なお、伸長率はJIS L 1096(2010)8.16.1 B法(定荷重法)において、伸長回復率はJIS L 1096(2010)8.16.2 B-1法(定荷重法)において測定した。また、つかみ間隔は10cmとし、荷重を取り除いた後の放置時間は1時間とした。 The elongation rate is in JIS L 1096 (2010) 8.16.1 B method (constant load method), and the recovery rate is in JIS L 1096 (2010) 8.16.2 B-1 method (constant load method). It was measured. The holding interval was 10 cm, and the standing time after removing the load was 1 hour.
 立毛層を構成する極細繊維が有するコイル状の捲縮の半径は、5~100μmの弧状であることが好ましく、より好ましくは、90μm以下、さらに好ましくは85μm以下である。半径が100μmより大きくなると、捲縮は弱くなり、ストレッチ性は得られにくい。一方、表面品位の観点から好ましくは7μm以上、より好ましくは20μm以上である。半径が5μmより小さくなると、捲縮は強くなり、表面品位は悪化する。極細繊維がコイル状に捲縮することで、シート状物表面の極細繊維のカバー率は捲縮がない場合よりも高くなり、立毛の下の不織布自体が見えずに立毛のみの外観となるため、緻密で優美な外観となる。また、シート状物の内部構造としては、コイル状の極細繊維同士が絡まることで、引張に対する伸びしろが形成され、ストレッチ性が発現する。 The radius of the coiled crimp of the ultrafine fiber constituting the nap layer is preferably an arc shape of 5 to 100 μm, more preferably 90 μm or less, and still more preferably 85 μm or less. When the radius is larger than 100 μm, the crimp is weakened and it is difficult to obtain stretchability. On the other hand, from the viewpoint of surface quality, it is preferably 7 μm or more, more preferably 20 μm or more. When the radius is smaller than 5 μm, the crimp becomes strong and the surface quality deteriorates. Since the ultrafine fibers are crimped in a coil shape, the coverage of the ultrafine fibers on the surface of the sheet-like material is higher than when there is no crimp, and the non-woven fabric under the raised fibers is not visible, and only the raised fibers appear. It has a precise and elegant appearance. In addition, as the internal structure of the sheet-like material, the coiled ultrafine fibers are entangled with each other, so that an elongation margin with respect to tension is formed, and stretch properties are exhibited.
 本発明のシート状物は、繊維絡合体の極細繊維質量に対し5~60質量%の多孔化した弾性体ポリマーを含有することが好ましい。極細繊維質量に対し5質量%以上の弾性体ポリマーを含有することによって、シート状物に適度な圧縮特性を付与することが可能となる。弾性体ポリマーの質量が60質量%より多い場合は、立毛工程での繊維の開繊性が乏しくなり、またシート状物のしなやかさが低下することがある。さらには、シート状物が染色されて用いられる場合、染色後の繊維絡合体の繊維と弾性体ポリマーの色調に差が生じるため、弾性体ポリマーは少ない方が好ましい場合がある。環境配慮の面では、弾性体ポリマーを多量に含有せしめることは、製造工程における有機物の使用量が増加するため好ましくなく、弾性体ポリマーが少ない方が、リサイクル原料や植物由来原料から得られる繊維を用いた場合、再生回収や廃棄が容易となる。弾性体ポリマーの質量のより好ましい範囲は、15~55質量%である。 The sheet-like material of the present invention preferably contains 5 to 60% by mass of a porous elastic polymer with respect to the mass of the ultrafine fibers of the fiber entangled body. By containing 5% by mass or more of the elastic polymer with respect to the mass of the ultrafine fiber, it becomes possible to impart an appropriate compression property to the sheet-like material. When the mass of the elastic polymer is more than 60% by mass, the fiber opening property in the napping process may be poor, and the flexibility of the sheet-like material may be reduced. Furthermore, when the sheet-like material is used after being dyed, there is a difference in the color tone between the fibers of the fiber entangled body after dyeing and the elastic polymer. In terms of environmental considerations, it is not preferable to add a large amount of elastic polymer because the amount of organic matter used in the production process increases, and the smaller the amount of elastic polymer, the more the fibers obtained from recycled materials and plant-derived materials. When used, it can be easily recovered and discarded. A more preferable range of the mass of the elastic polymer is 15 to 55% by mass.
 上記の弾性体ポリマーには、必要に応じてカーボンブラック等の顔料、染料、防カビ剤および酸化防止剤、紫外線吸収剤、および光安定剤などの耐光剤、難燃剤、浸透剤や滑剤、シリカや酸化チタン等のアンチブロッキング剤、撥水剤、粘度調整剤、帯電防止剤等の界面活性剤、シリコーン等の消泡剤、セルロース等の充填剤、および凝固調整剤、およびシリカや酸化チタン等の無機粒子等を含有させることができる。 For the above-mentioned elastic polymer, pigments such as carbon black, dyes, antifungal agents and antioxidants, UV absorbers, light stabilizers such as light stabilizers, flame retardants, penetrants and lubricants, silica Antiblocking agents such as water and titanium oxide, water repellents, viscosity modifiers, surfactants such as antistatic agents, antifoaming agents such as silicone, fillers such as cellulose, and coagulation regulators, and silica and titanium oxide, etc. Inorganic particles or the like can be contained.
 本発明における弾性体ポリマーは多孔化していることが重要である。多孔化していることで、弾性体ポリマーによる繊維の把持力を低くすることができ、繊維の捲縮によるストレッチ性を発現することができる。 It is important that the elastic polymer in the present invention is porous. By making it porous, the gripping force of the fiber by the elastic polymer can be lowered, and the stretch property by the crimping of the fiber can be expressed.
 本発明で用いられる弾性体ポリマーとしては、ポリウレタン系エラストマー、ポリウレア、ポリアクリル酸、エチレン・酢酸ビニルエラストマーおよびアクリロニトリル・ブタジエンエラストマーおよびスチレン・ブタジエンエラストマー、ポリビニルアルコール、およびポリエチレングリコール等が挙げられ、耐久性と圧縮特性の観点からは、ポリウレタン系エラストマーが好ましく用いられる。高分子弾性体には、複数の高分子弾性体を含有せしめることができる。 Examples of the elastic polymer used in the present invention include polyurethane elastomer, polyurea, polyacrylic acid, ethylene / vinyl acetate elastomer, acrylonitrile / butadiene elastomer and styrene / butadiene elastomer, polyvinyl alcohol, and polyethylene glycol. From the viewpoint of compression characteristics, polyurethane elastomers are preferably used. The polymer elastic body can contain a plurality of polymer elastic bodies.
 本発明で特に好ましく用いられるポリウレタン系エラストマーとしては、ポリウレタンやポリウレタン・ポリウレアエラストマーなどが挙げられる。 Examples of the polyurethane elastomer particularly preferably used in the present invention include polyurethane and polyurethane / polyurea elastomer.
 本発明で使用されるポリウレタン系エラストマーは、溶剤系のポリウレタン系エラストマーを用いることができる。 As the polyurethane elastomer used in the present invention, a solvent-based polyurethane elastomer can be used.
 本発明で用いられるポリウレタン系エラストマーとしては、ポリマージオールと有機ジイソシアネートと鎖伸長剤との反応により得られるポリウレタン系エラストマーが好ましく用いられる。 As the polyurethane elastomer used in the present invention, a polyurethane elastomer obtained by a reaction of a polymer diol, an organic diisocyanate and a chain extender is preferably used.
 上記のポリマージオールとしては、例えば、ポリカーボネート系ジオール、ポリエステル系ジオール、ポリエーテル系ジオール、シリコーン系ジオールおよびフッ素系ジオールを採用することができ、これらを組み合わせた共重合体を用いることもできる。中でも、耐加水分解性の観点からは、ポリカーボネート系ジオールおよびポリエーテル系ジオールを用いることが好ましい態様である。 As the polymer diol, for example, a polycarbonate diol, a polyester diol, a polyether diol, a silicone diol and a fluorine diol can be employed, and a copolymer combining these can also be used. Among these, from the viewpoint of hydrolysis resistance, it is preferable to use a polycarbonate diol and a polyether diol.
 上記のポリカーボネート系ジオールは、アルキレングリコールと炭酸エステルのエステル交換反応、あるいはホスゲンまたはクロル蟻酸エステルとアルキレングリコールとの反応などによって製造することができる。 The above polycarbonate diol can be produced by transesterification of alkylene glycol and carbonate or reaction of phosgene or chloroformate with alkylene glycol.
 また、アルキレングリコールとしては、例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、1,10-デカンジオールなどの直鎖アルキレングリコールや、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオールおよび2-メチル-1,8-オクタンジオールなどの分岐アルキレングリコール、1,4-シクロヘキサンジオールなどの脂環族ジオール、ビスフェノールAなどの芳香族ジオール、グリセリン、トリメチロールプロパン、およびペンタエリスリトールなどが挙げられる。本発明では、それぞれ単独のアルキレングリコールから得られるポリカーボネート系ジオールでも、2種類以上のアルキレングリコールから得られる共重合ポリカーボネート系ジオールのいずれも採用することができる。 Examples of the alkylene glycol include ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, and 1,10-decanediol. Linear alkylene glycols, and branched alkylene glycols such as neopentyl glycol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol and 2-methyl-1,8-octanediol Alicyclic diols such as 1,4-cyclohexanediol, aromatic diols such as bisphenol A, glycerin, trimethylolpropane, and pentaerythritol. In the present invention, both polycarbonate-based diols obtained from individual alkylene glycols and copolymerized polycarbonate-based diols obtained from two or more types of alkylene glycols can be employed.
 また、ポリエステル系ジオールとしては、各種低分子量ポリオールと多塩基酸とを縮合させて得られるポリエステルジオールを挙げることができる。 Further, examples of the polyester diol include polyester diols obtained by condensing various low molecular weight polyols and polybasic acids.
 低分子量ポリオールとしては、例えば、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、2,2-ジメチル-1,3-プロパンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,8-オクタンジオール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、シクロヘキサン-1,4-ジオール、およびシクロヘキサン-1,4-ジメタノールから選ばれる一種または二種以上を使用することができる。 Examples of the low molecular weight polyol include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butanediol, 1,4-butanediol, and 2,2-dimethyl-1,3-propane. Diol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,8-octanediol, diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol, cyclohexane-1,4-diol, and One or more selected from cyclohexane-1,4-dimethanol can be used.
 また、ビスフェノールAに各種アルキレンオキサイドを付加させた付加物も使用可能である。 Also, adducts obtained by adding various alkylene oxides to bisphenol A can be used.
 また、多塩基酸としては、例えば、コハク酸、マレイン酸、アジピン酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、フタル酸、イソフタル酸、テレフタル酸、およびヘキサヒドロイソフタル酸から選ばれる一種または二種以上が挙げられる。 Polybasic acids include, for example, succinic acid, maleic acid, adipic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, phthalic acid, isophthalic acid, terephthalic acid, and hexahydro One kind or two or more kinds selected from isophthalic acid can be mentioned.
 本発明で用いられるポリエーテル系ジオールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、およびそれらを組み合わせた共重合ジオールを挙げることができる。 Examples of the polyether-based diol used in the present invention include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and copolymerized diols combining them.
 ポリマージオールの数平均分子量は、ポリウレタン系エラトマーの分子量が一定の場合、500~4000の範囲であることが好ましい。数平均分子量を好ましくは500以上、より好ましくは1500以上とすることにより、シート状物が硬くなることを防ぐことができる。また、数平均分子量を4000以下、より好ましくは3000以下とすることにより、ポリウレタン系エラストマーとしての強度を維持することができる。 The number average molecular weight of the polymer diol is preferably in the range of 500 to 4000 when the molecular weight of the polyurethane-based elastomer is constant. By making the number average molecular weight preferably 500 or more, more preferably 1500 or more, it is possible to prevent the sheet-like material from becoming hard. Moreover, the intensity | strength as a polyurethane-type elastomer is maintainable by making a number average molecular weight into 4000 or less, More preferably, 3000 or less.
 本発明で用いられる有機ジイソシアネートとしては、例えば、ヘキサメチレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、イソフォロンジイソシアネート、キシリレンジイソシアネート等の脂肪族系ジイソシアネートや、ジフェニルメタンジイソシアネート、およびトリレンジイソシアネート等の芳香族系ジイソシアネートが挙げられ、またこれらを組み合わせて用いることもできる。 Examples of the organic diisocyanate used in the present invention include aliphatic diisocyanates such as hexamethylene diisocyanate, dicyclohexylmethane diisocyanate, isophorone diisocyanate and xylylene diisocyanate, and aromatic diisocyanates such as diphenylmethane diisocyanate and tolylene diisocyanate. These can also be used in combination.
 鎖伸長剤としては、好ましくはエチレンジアミンやメチレンビスアニリン等のアミン系の鎖伸長剤、およびエチレングリコール等のジオール系の鎖伸長剤を用いることができる。また、ポリイソシアネートと水を反応させて得られるポリアミンを鎖伸長剤として用いることもできる。 As the chain extender, amine chain extenders such as ethylenediamine and methylenebisaniline, and diol chain extenders such as ethylene glycol can be preferably used. Moreover, the polyamine obtained by making polyisocyanate and water react can also be used as a chain extender.
 本発明で用いられるポリウレタンは、耐水性、耐摩耗性および耐加水分解性等を向上させる目的で架橋剤を併用することができる。架橋剤は、ポリウレタン系エラストマーに対し、第3成分として添加する外部架橋剤でもよく、またポリウレタン分子構造内に予め架橋構造となる反応点を導入する内部架橋剤も用いることができる。ポリウレタン分子構造内により均一に架橋点を形成することができ、柔軟性の減少を軽減できるという観点から、内部架橋剤を用いることが好ましい。 The polyurethane used in the present invention can be used in combination with a crosslinking agent for the purpose of improving water resistance, abrasion resistance, hydrolysis resistance and the like. The cross-linking agent may be an external cross-linking agent added as a third component to the polyurethane-based elastomer, or an internal cross-linking agent that introduces a reaction point that becomes a cross-linked structure in advance in the polyurethane molecular structure. From the viewpoint that the cross-linking points can be formed more uniformly in the polyurethane molecular structure and the reduction in flexibility can be reduced, it is preferable to use an internal cross-linking agent.
 架橋剤としては、イソシアネート基、オキサゾリン基、カルボジイミド基、エポキシ基、メラミン樹脂、およびシラノール基などを有する化合物を用いることができる。 As the crosslinking agent, compounds having an isocyanate group, an oxazoline group, a carbodiimide group, an epoxy group, a melamine resin, a silanol group, and the like can be used.
 本発明のシート状物の見かけ密度は、0.10~0.80g/cmであることが好ましく、より好ましくは0.20~0.70g/cmである。見かけ密度が0.10g/cm以上になると、シート状物の緻密感や機械物性が良好であり、0.80g/cm以下であると、風合いが硬くなることを避けることができる。 The apparent density of the sheet-like material of the present invention is preferably 0.10 to 0.80 g / cm 3 , more preferably 0.20 to 0.70 g / cm 3 . When the apparent density is 0.10 g / cm 3 or more, the denseness and mechanical properties of the sheet-like material are good, and when it is 0.80 g / cm 3 or less, it is possible to avoid the texture becoming hard.
 シート状物の厚みは、0.1~7mmであることが好ましい。この厚さを0.1mm以上、好ましくは0.3mm以上とすることにより、シート状物の形態安定性と寸法安定性に優れる。一方、厚さを7mm以下、より好ましくは5mm以下とすることにより、シート状物の成形性に優れる。 The thickness of the sheet is preferably 0.1 to 7 mm. By setting the thickness to 0.1 mm or more, preferably 0.3 mm or more, the sheet form has excellent form stability and dimensional stability. On the other hand, when the thickness is 7 mm or less, more preferably 5 mm or less, the sheet-like product is excellent in moldability.
 本発明のシート状物は、見る角度による色相差が小さいこと、すなわち、シートの表面に対して3方向からL*、a*、およびb*を測定し、各点間で色相差△E*abを求め、その平均値が0.2~1.5の範囲であることを特徴とする。一般的に△E*abが1.5を超えると色相が感知できるほどに異なるとされているため、色相差は1.5以下であることが好ましい。一方で、色相差が0.2以下になると、表情の変化が少なく高級感に乏しいものとなる。よって、皮革様シート状物を3方向から見たときの色相差を0.2~1.5の範囲にすることにより、高級感と変化のある表情を持ちながら、見る角度による色相差が小さい、すなわち、自動車シートやソファー等の立体型に成型した場合においても光が当たる部分の反射が抑制でき、つぎはぎ感が少なく、ボケが生じにくく、シート状物の表面を手で触れた場合や座った場合においても、跡が見えにくいシート状物が得られる。 The sheet-like material of the present invention has a small hue difference depending on the viewing angle, that is, L *, a *, and b * are measured from three directions with respect to the surface of the sheet, and the hue difference ΔE * between each point. Ab is obtained, and the average value thereof is in the range of 0.2 to 1.5. In general, when ΔE * ab exceeds 1.5, it is considered that the hue is different enough to be perceived. Therefore, the hue difference is preferably 1.5 or less. On the other hand, when the hue difference is 0.2 or less, the change in facial expression is small and the sense of quality is poor. Therefore, when the leather-like sheet-like material is viewed from three directions, the hue difference is in the range of 0.2 to 1.5, so that the hue difference depending on the viewing angle is small while maintaining a high-class feeling and a changing expression. In other words, even when it is molded into a three-dimensional shape such as an automobile seat or sofa, the reflection of the part that is exposed to light can be suppressed, there is little patchy feeling, blurring is difficult to occur, and the surface of the sheet-like object is touched Even when sitting down, it is possible to obtain a sheet-like material in which traces are difficult to see.
 本発明のシート状物は、例えば、染料、顔料、柔軟剤、風合い調整剤、ピリング防止剤、抗菌剤、消臭剤、撥水剤、耐光剤、および耐候剤などの機能性薬剤を含んでいてもよい。 The sheet-like material of the present invention contains functional agents such as dyes, pigments, softeners, texture modifiers, anti-pilling agents, antibacterial agents, deodorants, water repellents, light proofing agents, and weathering agents. May be.
 次に、本発明のシート状物を製造する方法について説明する。 Next, a method for producing the sheet-like material of the present invention will be described.
 本発明のシート状物に用いられる不織布を構成する極細繊維を得る手段としては、極細繊維発現型繊維であることが重要である。極細繊維発現型繊維をあらかじめ絡合し不織布とした後で、繊維の極細化を行うことによって、極細繊維の束が絡合してなる不織布を得ることができる。 As a means for obtaining ultrafine fibers constituting the non-woven fabric used in the sheet-like material of the present invention, it is important that the fibers are ultrafine fiber expression type fibers. After the ultrafine fiber expression type fiber is entangled in advance to obtain a non-woven fabric, the non-woven fabric formed by entanglement of a bundle of ultrafine fibers can be obtained by performing ultrafine fiber formation.
 極細繊維発現型繊維としては、溶剤などへの溶解性の異なる熱可塑性高分子成分を海成分および島成分とし、後工程で海成分を溶剤などを用いて溶解除去することによって島成分を極細繊維とする海島型複合繊維や、ウォータージェット等の物理的な力や溶剤の膨潤により剥離分割する剥離分割型繊維を採用することができるが、好ましくは極細繊維径を均一に制御でき、シート状物の表面外観を優美にできる海島型複合繊維である。海島型複合繊維は、海成分を除去することによって島成分間、すなわち繊維束内部の極細繊維間に適度な空隙を付与することができ、かつ1本あたりの複合繊維から特に繊維径の小さな極細繊維を効率良く発現させることができ、シート状物に柔らかな風合いや嵩高性などを付与することができるので好ましく用いられる。 As ultra-fine fiber expression type fiber, thermoplastic polymer component with different solubility in solvent etc. is used as sea component and island component, and the sea component is dissolved and removed by using solvent etc. in the later process to remove island component from ultra fine fiber. The sea-island type composite fiber and the separation-dividing fiber that is separated by physical force such as water jet or swelling of the solvent can be employed, but preferably the ultrafine fiber diameter can be controlled uniformly, and the sheet-like material It is a sea-island type composite fiber that can make the surface appearance of The sea-island type composite fiber can provide an appropriate gap between island components, that is, between the ultrafine fibers in the fiber bundle by removing the sea component, and the ultrafine fiber having a particularly small fiber diameter from each composite fiber. It is preferably used because the fibers can be efficiently expressed and a soft texture or bulkiness can be imparted to the sheet-like material.
 海島型複合繊維には、海島型複合用口金を用い、海成分と島成分の2成分を相互配列して紡糸する高分子相互配列体方式と、海成分と島成分の2成分を混合して紡糸する混合紡糸方式などを用いることができるが、均一な繊度の極細繊維が得られる点で高分子配列体方式による海島型複合繊維がより好ましく用いられる。 For the sea-island type composite fiber, a sea-island type composite base is used, and a polymer inter-array system in which two components, the sea component and the island component, are spun together, and the two components, the sea component and the island component, are mixed. A mixed spinning method for spinning can be used, but a sea-island type composite fiber by a polymer array system is more preferably used in that an ultrafine fiber having a uniform fineness can be obtained.
 また、本発明において、前記極細繊維発現型繊維が海島型複合繊維であり、島成分がサイドバイサイド型であることが好ましいが、偏心した芯鞘型でもよい。島成分において、異なる2種類のポリマー(A)およびポリマー(B)が繊維長さ方向に沿ってサイドバイサイド型、または偏心した芯鞘型に貼り合わされることで、潜在捲縮型の島成分繊維が得られる。 In the present invention, the ultrafine fiber-expressing fiber is preferably a sea-island type composite fiber, and the island component is preferably a side-by-side type, but may be an eccentric core-sheath type. In the island component, two different types of polymer (A) and polymer (B) are bonded to the side-by-side type or the eccentric core-sheath type along the fiber length direction, so that the latent crimp type island component fiber is formed. can get.
 また、本発明で用いられる海島型複合繊維における海成分と島成分の質量割合は、海成分:島成分=5:95~80:20の範囲であることが好ましい。海成分の質量割合が5質量%を下回る場合、島成分の極細化が不十分となる。また、海成分の質量割合が80質量%を超える場合、溶出成分の割合が多いため生産性が低くなる。海成分と島成分の質量割合は、より好ましくは、海成分:島成分=10:90~60:40の範囲である。 In addition, the mass ratio of the sea component to the island component in the sea-island composite fiber used in the present invention is preferably in the range of sea component: island component = 5: 95 to 80:20. When the mass ratio of the sea component is less than 5% by mass, the island component is not sufficiently thinned. Further, when the mass ratio of the sea component exceeds 80 mass%, the productivity is lowered because the ratio of the eluted component is large. The mass ratio of the sea component and the island component is more preferably in the range of sea component: island component = 10: 90 to 60:40.
 本発明において、海島型複合繊維で代表される極細繊維発現型繊維を延伸する場合は、未延伸糸を一旦巻取り後、別途延伸を行うか、もしくは未延伸糸を引取りそのまま連続して延伸を行うなど、いずれの方法も採用することができる。延伸は、湿熱または乾熱あるいはその両者によって、1段~3段延伸する方法で適宜行うことができる。次に、延伸された海島型複合繊維に、好ましくは捲縮加工を施し、所定長にカットして不織布の原綿を得る。捲縮加工やカット加工は通常の方法を用いることができる。 In the present invention, when drawing an ultrafine fiber expression type fiber typified by a sea-island type composite fiber, after winding the undrawn yarn once, it is drawn separately, or the undrawn yarn is taken up and drawn continuously. Any method can be employed, such as. Stretching can be appropriately performed by a method of stretching in one to three stages by wet heat, dry heat, or both. Next, the stretched sea-island type composite fiber is preferably crimped and cut into a predetermined length to obtain a raw nonwoven fabric. A usual method can be used for crimping and cutting.
 海島型繊維の海成分としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、スルホイソフタル酸ナトリウムやポリエチレングリコールなどを共重合した共重合ポリエステル、ポリ乳酸、およびPVAなどが挙げられる。 Examples of the sea component of the sea-island fiber include polyethylene, polypropylene, polystyrene, copolymer polyester obtained by copolymerizing sodium sulfoisophthalate and polyethylene glycol, polylactic acid, and PVA.
 海島型繊維の繊維極細化処理(脱海処理)は、溶剤中に海島型繊維を浸漬し、搾液することによって行うことができる。海成分を溶解する溶剤としては、海成分がポリエチレン、ポリプロピレンまたはポリスチレンの場合には、トルエンやトリクロロエチレンなどの有機溶剤を用いられる。また、海成分が共重合ポリエステルまたはポリ乳酸の場合には、水酸化ナトリウムなどのアルカリ水溶液や熱水が用いられる。 Sea-island type fiber ultrafine treatment (sea removal treatment) can be performed by immersing the sea-island type fiber in a solvent and squeezing the solution. As the solvent for dissolving the sea component, when the sea component is polyethylene, polypropylene, or polystyrene, an organic solvent such as toluene or trichloroethylene is used. Further, when the sea component is a copolyester or polylactic acid, an alkaline aqueous solution such as sodium hydroxide or hot water is used.
 繊維極細化処理には、連続染色機、バイブロウォッシャー型脱海機、液流染色機、ウィンス染色機およびジッガー染色機等の装置を用いることができる。 For the ultrafine fiber treatment, devices such as a continuous dyeing machine, a vibro-washer type seawater removal machine, a liquid dyeing machine, a Wins dyeing machine, and a jigger dyeing machine can be used.
 海成分の溶解除去は、弾性体ポリマーを含浸する前、含浸した後、および起毛処理後のいずれのタイミングでも行うことができる。弾性体ポリマー付与前に脱海処理を行うと、極細繊維に直接弾性体ポリマーが密着する構造となって極細繊維を強く把持できることから、シート状物の耐摩耗性がより良好となる。一方、弾性体ポリマー付与後に脱海処理を行うと、弾性体ポリマーと極細繊維間に、脱海された海成分に起因する空隙が生成することから、極細繊維を直接弾性体ポリマーが把持せずにシート状物の圧縮特性が良好となる。 The dissolution and removal of the sea component can be performed at any timing before the impregnation with the elastic polymer, after the impregnation, and after the raising treatment. When the sea removal treatment is performed before the elastic polymer is applied, the elastic polymer is in close contact with the ultrafine fibers so that the ultrafine fibers can be strongly gripped, so that the abrasion resistance of the sheet-like material becomes better. On the other hand, when sea removal treatment is performed after the elastic polymer is applied, voids due to the sea component removed from the sea are generated between the elastic polymer and the ultrafine fibers. In addition, the compression property of the sheet-like material is improved.
 本発明では、極細繊維束内の繊維数は10~9000本/束であることが好ましく、より好ましくは10~4000本/束である。繊維数が10本/束未満の場合には、極細繊維の緻密性が乏しく、例えば、摩耗等の機械物性が低下する傾向がある。また、繊維数が9000本/束より多い場合には、立毛時の開繊性が低下し、立毛面の繊維分布が不均一となる傾向がある。 In the present invention, the number of fibers in the ultrafine fiber bundle is preferably 10 to 9000 fibers / bundle, more preferably 10 to 4000 fibers / bundle. When the number of fibers is less than 10 / bundle, the fineness of the ultrafine fibers is poor, and for example, mechanical properties such as wear tend to be reduced. Moreover, when there are more than 9000 fibers / bundle, the openability at the time of napping falls, and there exists a tendency for fiber distribution of a napped surface to become non-uniform | heterogenous.
 繊維の密集性の観点からは、極細繊維束内の繊維密集度合いは30~1000であることが好ましく、より好ましくは50~700である。繊維密集度合いは、(極細繊維束内の繊維数)×(単繊維直径)で算出し、極細繊維の束の大きさの指標となる。このように、極細繊維束内の繊維密集度合いを30~1000とすることにより、繊維絡合体とする際の加工操業性が良く、繊維束の緻密性が良くなる。 From the viewpoint of fiber density, the degree of fiber density in the ultrafine fiber bundle is preferably 30 to 1000, more preferably 50 to 700. The degree of fiber density is calculated by (number of fibers in the ultrafine fiber bundle) × (single fiber diameter) and is an index of the size of the ultrafine fiber bundle. As described above, when the fiber density in the ultrafine fiber bundle is set to 30 to 1000, the processing operability when the fiber entangled body is obtained is improved, and the denseness of the fiber bundle is improved.
 本発明で用いられる繊維絡合体を得る方法としては、繊維ウエブをニードルパンチやウォータージェットパンチにより絡合させる方法、スパンボンド法、メルトブロー法および抄紙法などを採用することができる。中でも、前述のような極細繊維束の態様とする上で、ニードルパンチやウォータージェットパンチなどの処理を経る方法が好ましく用いられる。 As a method of obtaining a fiber entangled body used in the present invention, a method of entanglement of a fiber web with a needle punch or a water jet punch, a spun bond method, a melt blow method, a paper making method, or the like can be employed. Among them, a method that undergoes a treatment such as a needle punch or a water jet punch is preferably used in order to obtain an ultrafine fiber bundle as described above.
 ニードルパンチ処理あるいはウォータージェットパンチ処理後の極細繊維発生型繊維で構成された繊維絡合体の見かけ密度は、0.15~0.40g/cmであることが好ましい。見かけ密度を0.15g/cm以上とすることにより、形態安定性と寸法安定性が優れた繊維絡合体にできる。一方、見かけ密度を0.40g/cm以下、好ましくは0.30g/cm以下とすることにより、弾性重合体を付与するための十分な空間を繊維間に維持することができる。 The apparent density of the fiber entangled body composed of the ultrafine fiber generating fibers after the needle punching process or the water jet punching process is preferably 0.15 to 0.40 g / cm 3 . By setting the apparent density to 0.15 g / cm 3 or more, a fiber entangled body having excellent shape stability and dimensional stability can be obtained. On the other hand, when the apparent density is 0.40 g / cm 3 or less, preferably 0.30 g / cm 3 or less, a sufficient space for applying the elastic polymer can be maintained between the fibers.
 このようにして得られた極細繊維発生型繊維で構成された繊維絡合体は、緻密化の観点から、乾熱もしくは湿熱、またはその両者によって熱収縮処理させ、さらに高密度化させることが好ましい態様である。また、繊維絡合体はカレンダー処理等により、厚み方向に圧縮させることもできる。 The fiber entangled body composed of the ultrafine fiber-generating fibers thus obtained is preferably subjected to heat shrinkage treatment with dry heat or wet heat, or both from the viewpoint of densification, and further densified. It is. Further, the fiber entangled body can be compressed in the thickness direction by calendaring or the like.
 また、シート状物表面の繊維分布の緻密性および均一性を得るためには、弾性体ポリマーは極細繊維の繊維束が絡合されてなる不織布等の繊維絡合体について、極細繊維の繊維束内部には実質的に存在しないことが好ましい態様である。繊維束内部にまで弾性体ポリマーが存在すると、弾性体ポリマーが各極細繊維と接着して存在することになるため、バフィング処理の際の開繊性が乏しくなる。 In addition, in order to obtain denseness and uniformity of the fiber distribution on the surface of the sheet-like material, the elastic polymer is a fiber entanglement such as a nonwoven fabric in which a fiber bundle of ultrafine fibers is entangled. It is a preferred embodiment that it is not substantially present in. If the elastic polymer is present even inside the fiber bundle, the elastic polymer is adhered to each ultrafine fiber, so that the opening property during the buffing process is poor.
 高分子弾性体が、極細繊維の繊維束内部には実質的に存在しない形態を得る方法としては、例えば、弾性体ポリマーを溶液とし、
(1)極細繊維発生型の海島型繊維で構成された繊維絡合体に、前記の弾性体ポリマー溶液を含浸し凝固させた後、海島型繊維の海成分を、弾性体ポリマーは溶解しない溶剤で溶解除去する方法や、
(2)極細繊維発生型の海島型繊維で構成された繊維絡合体に、鹸化度が好ましくは80%以上のポリビニルアルコールを付与し、繊維の周囲の大部分を保護した後、海島型繊維の海成分を、ポリビニルアルコールは溶解しない溶剤で溶解除去し、次いで前記の弾性体ポリマー溶液を含浸し凝固させた後、ポリビニルアルコールを除去する方法、などを好ましく用いることができる。
As a method of obtaining a form in which the macromolecular elastic body does not substantially exist inside the fiber bundle of ultrafine fibers, for example, an elastic polymer is used as a solution,
(1) After impregnating the elastic polymer solution with the fiber entangled body composed of ultra-fine fiber-generating sea-island fiber and solidifying it, the sea component of the sea-island fiber is a solvent that does not dissolve the elastic polymer. How to dissolve and remove,
(2) A fiber entangled body composed of ultra-fine fiber-generating sea-island fibers is provided with polyvinyl alcohol having a saponification degree of preferably 80% or more to protect most of the surroundings of the sea-island fibers. A method in which the sea component is dissolved and removed with a solvent that does not dissolve polyvinyl alcohol, then impregnated with the elastic polymer solution and solidified, and then the polyvinyl alcohol is removed can be preferably used.
 前記のポリビニルアルコールとしては、鹸化度80%以上のポリビニルアルコールが好ましく用いられる。 As the polyvinyl alcohol, polyvinyl alcohol having a saponification degree of 80% or more is preferably used.
 ポリウレタン系エラストマー液を繊維絡合体に含浸等し、凝固させる場合、ポリウレタン系エラストマーは有機溶剤系のポリウレタン系エラストマーであることが重要である。 When the fiber entanglement is impregnated with a polyurethane elastomer liquid and solidified, it is important that the polyurethane elastomer is an organic solvent polyurethane elastomer.
 有機溶剤系ポリウレタンは、乾熱凝固または湿式凝固あるいはこれらを組み合わせて凝固させることができるが、なかでも水中に浸漬して凝固させる湿式凝固が好ましく用いられる。湿式凝固とすることにより、極細繊維の交絡点にポリウレタンが集中することがなく、ポリウレタン自体も多孔化するため、極細繊維同士の自由度が増し、構造的にシート状物にストレッチ性を付与することができる。一方、ポリウレタン系エラストマーが水分散型のポリウレタンの場合、凝固方法として乾熱凝固があるが、極細繊維の交絡点にポリウレタンが集中して極細繊維を強く把持し、さらにポリウレタン自体も無孔構造となるため、極細繊維に自由度がなく、ストレッチ性は発現できない。 The organic solvent-based polyurethane can be coagulated by dry heat coagulation, wet coagulation, or a combination of these, and wet coagulation in which it is coagulated by immersion in water is preferably used. By wet coagulation, polyurethane does not concentrate at the entanglement point of the ultrafine fibers, and the polyurethane itself also becomes porous, so the degree of freedom between the ultrafine fibers increases and structurally imparts stretch properties to the sheet-like material. be able to. On the other hand, when the polyurethane elastomer is water-dispersed polyurethane, there is dry heat coagulation as a coagulation method, but the polyurethane concentrates at the entanglement point of the ultrafine fiber and strongly grips the ultrafine fiber. Therefore, the ultrafine fiber does not have a degree of freedom and cannot exhibit stretch properties.
 湿式凝固の温度は、特に限定はされない。 The temperature of wet solidification is not particularly limited.
 繊維絡合体に弾性体ポリマーを付与後、得られた弾性体ポリマー付与シート状物を、シート厚み方向に半裁ないしは数枚に分割することは、生産効率に優れ好ましい態様である。 It is a preferable aspect that is excellent in production efficiency to divide the obtained elastic polymer-added sheet material into half or several sheets in the sheet thickness direction after applying the elastic polymer to the fiber entangled body.
 本発明のシート状物は、シート状物の少なくとも一面に、立毛を有することが重要である。 It is important that the sheet-like material of the present invention has napping on at least one surface of the sheet-like material.
 本発明のシート状物の表面に極細繊維の立毛を形成するための起毛処理は、サンドペーパーやロールサンダーなどを用いて、研削する方法などにより施すことができる。起毛処理の前に、シート状物にシリコーンエマルジョンなどの滑剤を付与してもよい。 The raising treatment for forming napped fibers of the ultrafine fibers on the surface of the sheet-like material of the present invention can be performed by a grinding method using a sandpaper or a roll sander. Before the raising treatment, a lubricant such as a silicone emulsion may be applied to the sheet.
 また、上記の起毛処理の前に帯電防止剤を付与することは、研削によってシート状物から発生した研削粉がサンドペーパー上に堆積しにくくなる傾向にあり好ましい態様である。 Also, applying an antistatic agent before the above-mentioned raising treatment tends to make it difficult for the grinding powder generated from the sheet-like material to be deposited on the sandpaper by grinding, which is a preferable embodiment.
 シート状物は、起毛処理を行う前に、シート状物厚み方向に半裁ないしは数枚に分割されて得られるものでもよい。 The sheet-like material may be obtained by dividing into half or several sheets in the thickness direction of the sheet-like material before performing the raising treatment.
 シート状物は、用途に応じて染色することができる。シート状物の染色方法としては、シート状物を染色すると同時に揉み効果を与えてシート状物を柔軟化することができることから、液流染色機を用いることが好ましい。シート状物の染色温度は、高すぎると高分子弾性体が劣化する場合があり、逆に低すぎると繊維への染着が不十分となるため、繊維の種類により設定することが好ましい。染色温度は、一般に80~150℃であることが好ましく、より好ましくは110~130℃である。前記染色工程による熱処理および揉みにより極細繊維の捲縮が発現されやすくなる。 The sheet-like material can be dyed depending on the application. As a method for dyeing a sheet-like material, it is preferable to use a liquid dyeing machine because the sheet-like material can be softened by simultaneously giving a stagnation effect. If the dyeing temperature of the sheet-like material is too high, the polymer elastic body may be deteriorated. On the other hand, if it is too low, the dyeing to the fiber becomes insufficient. The dyeing temperature is generally preferably 80 to 150 ° C, more preferably 110 to 130 ° C. The heat treatment and stagnation by the dyeing process tend to cause crimping of ultrafine fibers.
 極細繊維の捲縮を発現させるための製造工程としては、下記(1)~(3)の順番で実施することが好ましい。
(1)極細繊維発現型繊維からなる不織布から極細繊維を発現させる工程、
(2)極細繊維からなる不織布を起毛させる工程、
(3)起毛処理後の不織布に110℃以上150℃以下の温度で熱処理を施すことにより、立毛層の極細繊維に捲縮を発現させる工程。
It is preferable to carry out the following manufacturing steps (1) to (3) as production steps for expressing crimps of ultrafine fibers.
(1) a step of expressing ultrafine fibers from a nonwoven fabric composed of ultrafine fiber-expressing fibers,
(2) a step of raising a nonwoven fabric made of ultrafine fibers,
(3) A step of causing crimps to appear in the ultrafine fibers of the napped layer by subjecting the nonwoven fabric after the raising treatment to heat treatment at a temperature of 110 ° C. to 150 ° C.
 例えば、極細繊維発現型繊維からなる不織布から極細繊維を発現させる工程の前に、不織布に100℃以上の温度の熱処理を施すと、海成分を溶解後に捲縮が発現し、後工程で起毛処理加工した際に捲縮が伸ばされる形となってしまい、本発明の目的とする立毛表面が得られにくくなる。 For example, if the nonwoven fabric is subjected to a heat treatment at a temperature of 100 ° C. or higher before the step of expressing the ultrafine fiber from the nonwoven fabric composed of the ultrafine fiber-expressing type fibers, crimping occurs after the sea component is dissolved, and the raising process is performed in the subsequent step. When processed, the crimps are stretched and the napped surface targeted by the present invention is hardly obtained.
 また、本発明の皮革様シート状物の製造方法において、立毛層における極細繊維の捲縮は、極細繊維からなる起毛加工処理後の不織布に110℃以上150℃以下の温度の熱処理を施すことにより達成される。立毛層の極細繊維が捲縮することにより、異方性を持った立毛表面が得られ、見る角度による色相差の少ないシート状物を得ることができる。 In the method for producing a leather-like sheet according to the present invention, the crimp of the ultrafine fibers in the raised layer is performed by performing a heat treatment at a temperature of 110 ° C. or more and 150 ° C. or less on the raised nonwoven fabric made of the ultrafine fibers. Achieved. When the ultrafine fibers of the napped layer are crimped, an napped surface having anisotropy can be obtained, and a sheet-like material with little hue difference depending on the viewing angle can be obtained.
 染料は、シート状物を構成する繊維の種類にあわせて、選択することができる。例えば、ポリエステル系繊維であれば分散染料を用い、ポリアミド系繊維であれば酸性染料や含金染料を用い、更にそれらの組み合わせを用いることができる。 Dye can be selected according to the type of fiber constituting the sheet. For example, disperse dyes can be used for polyester fibers, acidic dyes or metal-containing dyes can be used for polyamide fibers, and combinations thereof can be used.
 また、シート状物の染色時に染色助剤を使用することも好ましい態様である。染色助剤を用いることにより、染色の均一性や再現性を向上させることができる。また、染色と同浴または染色後に、シリコーン等の柔軟剤、帯電防止剤、撥水剤、難燃剤、耐光剤および抗菌剤等を用いた仕上げ剤処理を施すことができる。 In addition, it is also a preferable aspect to use a dyeing assistant when dyeing the sheet-like material. By using a dyeing assistant, the uniformity and reproducibility of dyeing can be improved. In addition, a finishing treatment using a softening agent such as silicone, an antistatic agent, a water repellent, a flame retardant, a light proofing agent, and an antibacterial agent can be performed in the same bath or after dyeing.
 本発明のシート状物は、優美で緻密な外観とストレッチ性(伸縮性)を両立しているため、家具、椅子および壁材や、自動車、電車および航空機などの車輛室内における座席、天井および内装などの表皮材として非常に優美な外観を有する内装材、シャツ、ジャケット、カジュアルシューズ、スポーツシューズ、紳士靴および婦人靴等の靴のアッパー、トリム等、鞄、ベルト、財布等、およびそれらの一部に使用した衣料用資材、ワイピングクロス、等の工業用資材として好適に用いることができる。さらに、本発明のシート状物では、単繊維同士もしくは繊維の絡合部に多数の数nm~500nm程度の隙間が生まれるため、多孔性材料のような特異的な性質を示す場合もあり、フィルターなどの用途としての使用も可能である。 Since the sheet-like material of the present invention has both an elegant and precise appearance and stretchability (stretchability), the seat, ceiling, and interior in furniture, chairs and wall materials, and vehicle interiors such as automobiles, trains and aircraft Interior materials that have a very elegant appearance as a skin material such as shirts, jackets, casual shoes, sports shoes, shoes uppers such as men's shoes and women's shoes, trims, bags, belts, wallets, etc., and one of them It can be suitably used as industrial materials such as clothing materials and wiping cloths used for the parts. Furthermore, in the sheet-like material of the present invention, a large number of gaps of about several nm to 500 nm are created between single fibers or at the intertwined portion of the fibers. It can also be used for other purposes.
 本発明のシート状物は、その表面にコーティング層を形成して、銀付人工皮革に用いることもできる。銀付人工皮革とするためのコーティング層や下引き層の形成方法としては、乾式造面法、ダイレクトコート法などがあり、従来公知の種々の方法を採用することができ、特に限定されるものではない。例えば、リバースロールコーター、スプレーコーター、ロールコーター、グラビアコーター、キスロールコーター、ナイフコーター、コンマコーターなどの装置を用いた方法を挙げることができる。各層の厚みは、用途に応じて適宜設定することができる。好ましい厚みは10~1000μmであり、より好ましくは50~800μmである。 The sheet-like material of the present invention can also be used for artificial leather with silver by forming a coating layer on the surface thereof. As a method for forming a coating layer or an undercoat layer for making an artificial leather with silver, there are a dry surface forming method, a direct coating method, etc., and various conventionally known methods can be adopted and are particularly limited. is not. For example, the method using apparatuses, such as a reverse roll coater, a spray coater, a roll coater, a gravure coater, a kiss roll coater, a knife coater, a comma coater, can be mentioned. The thickness of each layer can be appropriately set according to the application. The preferred thickness is 10 to 1000 μm, more preferably 50 to 800 μm.
 コーティング層に用いられる樹脂はポリウレタンが最も好適である。前記の樹脂には、適宜他の樹脂を混合して用いることもできる。近年、多くの用途で耐久性が要求されていることから、ポリカーボネート系などの耐久性に優れたポリウレタンを用いることが好ましい。耐摩耗性の点からは、シリコーン変性ポリウレタンが好ましく用いられる。同じ理由で、ポリウレタン樹脂にシリコーンオイルや固体のシリコーン系化合物を含有させて使用することもできる。 The resin used for the coating layer is most preferably polyurethane. Other resins can be appropriately mixed and used for the resin. In recent years, since durability is required for many applications, it is preferable to use polyurethane having excellent durability such as polycarbonate. From the viewpoint of wear resistance, silicone-modified polyurethane is preferably used. For the same reason, the polyurethane resin can be used by containing silicone oil or a solid silicone compound.
 次に、実施例を用いて本発明のシート状物とその製造方法についてさらに具体的に説明する。次に、実施例で用いた評価法とその測定条件について説明する。 Next, the sheet-like material of the present invention and the manufacturing method thereof will be described more specifically using examples. Next, the evaluation methods used in the examples and the measurement conditions will be described.
 (1)固有粘度IV
 オルソクロロフェノール(以下、OCPと略記する。)10mL中に試料ポリマーを0.8g溶かし、25℃の温度でオストワルド粘度計を用いて相対粘度(ηr)を下式により求め、固有粘度(IV)を算出した。
ηr=η/η0=(t×d)/(t0×d0)
固有粘度IV=0.0242ηr+0.2634
ここで、η:ポリマー溶液の粘度
η0:OCPの粘度
t:溶液の落下時間(秒)
d:溶液の密度(g/cm
t0:OCPの落下時間(秒)
d0:OCPの密度(g/cm)。
(1) Intrinsic viscosity IV
0.8 g of sample polymer is dissolved in 10 mL of orthochlorophenol (hereinafter abbreviated as OCP), and the relative viscosity (ηr) is obtained by the following equation using an Ostwald viscometer at a temperature of 25 ° C., and the intrinsic viscosity (IV) Was calculated.
ηr = η / η0 = (t × d) / (t0 × d0)
Intrinsic viscosity IV = 0.0242ηr + 0.2634
Where η: viscosity of the polymer solution η0: OCP viscosity t: solution drop time (seconds)
d: density of the solution (g / cm 3 )
t0: OCP fall time (seconds)
d0: OCP density (g / cm 3 ).
 (2)平均単繊維直径
 シート状物を厚み方向にカットした断面を観察面として、走査型電子顕微鏡(SEM。キーエンス社製VE-7800型)により観察し、任意の100カ所の極細繊維の単繊維直径を測定し、平均値を算出した。
(2) Average single fiber diameter Using a scanning electron microscope (SEM, model VE-7800 manufactured by Keyence Corporation) as an observation surface, a cross-section of the sheet-like material cut in the thickness direction was used. The fiber diameter was measured and the average value was calculated.
 (3)捲縮半径
 走査型電子顕微鏡(SEM。キーエンス社製VE-7800型)を用いて、シート状物の表面を撮影(倍率100倍)し、捲縮され弧状を示す繊維の半径を測定した。n数は20で、その平均値を求めた。弧状を円の一部とした際、該弧状からなる円周部分が円全体の1/2を超えない場合には、当該繊維は捲縮された繊維に該当しないものとして測定対象から除外するものとした。
(3) Crimp radius Using a scanning electron microscope (SEM, VE-7800 manufactured by Keyence Corporation), the surface of the sheet is photographed (magnification 100 times), and the radius of the crimped and arc-shaped fiber is measured. did. The n number was 20, and the average value was obtained. When the arc shape is a part of a circle and the circumferential portion of the arc shape does not exceed 1/2 of the entire circle, the fiber is excluded from the measurement subject as not being a crimped fiber. It was.
 (4)シート状物の目付
 JIS L 1096(1999)8.4.2に記載された方法で測定した。
20cm×20cmの試験片を5枚採取し、それぞれの質量(g)を量り、その平均値を1m当たりの質量(g/m)で表した。
(4) Fabric weight of sheet-like material Measured by the method described in JIS L 1096 (1999) 8.4.2.
A test piece of 20 cm × 20 cm to 5 sheets collected, weighed respective mass (g), representing the average value in 1 m 2 per mass (g / m 2).
 (5)シート状物の厚さ
 0.01mm目盛りの厚さ計(ディスク直径9mm以上)を用い、10kPa荷重下で、シート幅方向等間隔に5点測定し、その平均値を求めた。
(5) Thickness of sheet-like material Using a thickness gauge with a 0.01-mm scale (disk diameter of 9 mm or more), 5 points were measured at equal intervals in the sheet width direction under a load of 10 kPa, and the average value was obtained.
 (6)ストレッチ性
 伸長率、伸長回復率により行った。シートの各方向について、伸長率、伸長回復率の両方が目標値を超えた場合は評価を「○」とし合格、どちらか一方または両方が目標を超えなかった場合は「×」とし、不合格とした。
・伸長率
JIS L 1096(2010) 8.16.1 B法(定荷重法)においてシート状物の伸長率を測定した。
なお、本発明において良好なレベル(目標値)は、伸長率10%以上である。
・伸長回復率
JIS L 1096(2010) 8.16.2 B-1法(定荷重法)においてシート状物の伸長回復率を測定した。また、つかみ間隔は10cmとし、荷重を取り除いた後の放置時間は1時間とした。
なお、本発明において良好なレベル(目標値)は、伸長回復率80%以上である。
(6) Stretchability It was carried out according to the elongation rate and elongation recovery rate. For each direction of the sheet, if both the stretch rate and stretch recovery rate exceed the target values, the evaluation is "○", and the evaluation is "good", if either or both do not exceed the target, "X", fail It was.
-Elongation rate The elongation rate of the sheet-like material was measured in JIS L 1096 (2010) 8.16.1 B method (constant load method).
In the present invention, a good level (target value) is an elongation rate of 10% or more.
Elongation recovery rate The elongation recovery rate of the sheet-like material was measured according to JIS L 1096 (2010) 8.16.2 B-1 method (constant load method). The holding interval was 10 cm, and the standing time after removing the load was 1 hour.
In the present invention, a good level (target value) is an elongation recovery rate of 80% or more.
 (7)皮革様シート状物の色相差:
 色彩色差計(コニカミノルタ社製CR-410)を用いて、図2に記載のとおり、皮革様シート状物1の表面を2、タテ方向を3、ヨコ方向を4、厚さ方向を5、立毛順方向を6とした場合、皮革様シート状物1の表面2の測定対象点に対し、皮革様シート状物1のタテ方向3の立毛順方向6の上方斜め45°からの視点を視点1とし、タテ方向3の立毛逆方向の上方斜め45°からの視点を視点2とし、ヨコ方向4の任意の一方の上方斜め45°からの視点を視点3とした場合、各視点でそれぞれL*、a*、およびb*を測定した。測定の際には、装置の光が漏れないように45°に斜めカットした円筒形の枠を作成して装置の先端にはめて測定した。視点1と視点2との色差を△E*ab12とし、視点2と視点3との色差を△E*ab23とし、視点3と視点1との色差を△E*ab31としたとき、測定したL*、a*、およびb*から、各点間の色差△E*abを算出した。△E*abは、次の計算式で求められる。
・△E*ab=(△L*^2+△a*^2+△b*^2)1/2
(式中、△L*は2点間のL*値の差、△a*は2点間のa*値の差、△b*は2点間のb*値の差を、それぞれ表す。)
 [実施例1]
 (原綿)
 島成分として固有粘度(IV)が1.75のポリブチレンテレフタレートと固有粘度(IV)が0.510のポリエチレンテレフタレートを、それぞれ別に溶融して用い、また海成分としてJIS K7206(1999)に準じて測定したビカット軟化点が100℃で、メルトフローレート(以下、MFRという)が120のポリスチレン(PSt)を用い、島数が24島の海島型複合用口金を用いて、島/海質量比率80/20で溶融紡糸した繊維を、ローラープレート方式で通常の条件により延伸し捲縮加工後、繊維を51mmの長さにカットし、平均単繊維直径26μmの海島型複合繊維の原綿を得た。
(7) Hue difference of leather-like sheet:
Using a color difference meter (CR-410 manufactured by Konica Minolta Co., Ltd.), as shown in FIG. 2, the surface of the leather-like sheet 1 is 2, the vertical direction is 3, the horizontal direction is 4, the thickness direction is 5, When the napped forward direction is set to 6, the viewpoint from the diagonal 45 ° above the napped forward direction 6 in the vertical direction 3 of the leather-like sheet 1 with respect to the measurement target point on the surface 2 of the leather-like sheet 1 is viewed. 1 is the viewpoint from a diagonal direction 45 ° above the nap in the vertical direction 3 and the viewpoint 2 is a viewpoint from any one diagonal 45 ° in the horizontal direction 4, the viewpoint 3 is L at each viewpoint. *, A *, and b * were measured. At the time of measurement, a cylindrical frame cut obliquely at 45 ° was prepared so as not to leak light from the device, and measurement was performed by fitting it to the tip of the device. When the color difference between the viewpoint 1 and the viewpoint 2 is ΔE * ab 12 , the color difference between the viewpoint 2 and the viewpoint 3 is ΔE * ab 23 , and the color difference between the viewpoint 3 and the viewpoint 1 is ΔE * ab 31 , From the measured L *, a *, and b *, the color difference ΔE * ab between each point was calculated. ΔE * ab is obtained by the following formula.
ΔE * ab = (ΔL * ^ 2 + Δa * ^ 2 + Δb * ^ 2) 1/2
(In the formula, ΔL * represents a difference in L * value between two points, Δa * represents a difference in a * value between two points, and Δb * represents a difference in b * value between two points, respectively. )
[Example 1]
(raw cotton)
Polybutylene terephthalate having an intrinsic viscosity (IV) of 1.75 and polyethylene terephthalate having an intrinsic viscosity (IV) of 0.510 are used separately as island components, and in accordance with JIS K7206 (1999) as sea components. An island / sea mass ratio of 80 using polystyrene (PSt) having a measured Vicat softening point of 100 ° C., a melt flow rate (hereinafter referred to as MFR) of 120, and a number of islands of 24 islands. The fiber melt-spun at / 20 was stretched by a roller plate method under normal conditions and crimped, and then the fiber was cut to a length of 51 mm to obtain a sea-island composite fiber raw cotton having an average single fiber diameter of 26 μm.
 (極細繊維発現型繊維からなる不織布)
 この海島型複合繊維の原綿を用いて、カードおよびクロスラッパー工程を経て積層繊維ウエブを形成し、600本/cmのパンチ本数でニードルパンチした後に、3000本/cmのパンチ本数でニードルパンチを施して、目付が312g/mで、厚みが1.70mmのシート状物を得た。
(Nonwoven fabric composed of ultrafine fibers)
Using this sea-island type composite fiber raw material, a laminated fiber web is formed through a card and cross wrapping process, needle punched at a punch number of 600 / cm 2 , and then needle punched at a punch number of 3000 / cm 2. As a result, a sheet-like material having a basis weight of 312 g / m 2 and a thickness of 1.70 mm was obtained.
 (シート状物)
 上記の不織布を98℃の温度の熱水で収縮させた後、これに12%の濃度のPVA(ポリビニルアルコール)水溶液を含浸し、120℃の温度の熱風で10分間乾燥することにより、不織布の質量に対するPVA質量が30質量%の不織布を得た。このようにして得られた不織布を、トリクロロエチレン中に浸漬して海成分を溶解除去し、極細繊維からなる不織布(脱海シート)を得た。このようにして得られた極細繊維からなる不織布(脱海シート)を、固形分濃度を12%に調整したポリカーボネート系ポリウレタンのDMF(ジメチルホルムアミド)溶液に浸漬し、次いでDMF濃度30%の水溶液中でポリウレタンを凝固させた。その後、PVAおよびDMFを熱水で除去し、110℃の温度の熱風で10分間乾燥することにより、島成分からなる前記の極細繊維の質量に対するポリウレタン質量が37質量%のシート状物を得た。
その後、シート状物を厚さ方向に半裁し、半裁面の反対側の面を240メッシュのサンドペーパーを用い、バフロール速度500m/分、シート搬送速度1.0m/分、バフロールとシートが接触するシート接触角を50°としてバフィングを行い、立毛面を形成した。
(Sheet)
After shrinking the nonwoven fabric with hot water at a temperature of 98 ° C., the nonwoven fabric was impregnated with an aqueous solution of PVA (polyvinyl alcohol) having a concentration of 12% and dried with hot air at a temperature of 120 ° C. for 10 minutes. A non-woven fabric having a PVA mass of 30 mass% with respect to the mass was obtained. The nonwoven fabric obtained in this manner was immersed in trichlorethylene to dissolve and remove sea components to obtain a nonwoven fabric (sea removal sheet) made of ultrafine fibers. The nonwoven fabric (sea removal sheet) made of ultrafine fibers thus obtained is immersed in a DMF (dimethylformamide) solution of polycarbonate polyurethane having a solid content adjusted to 12%, and then in an aqueous solution having a DMF concentration of 30%. To solidify the polyurethane. Thereafter, PVA and DMF were removed with hot water and dried with hot air at a temperature of 110 ° C. for 10 minutes to obtain a sheet-like material having a polyurethane mass of 37% by mass with respect to the mass of the ultrafine fibers comprising the island components. .
Thereafter, the sheet-like material is cut in the thickness direction, and the surface opposite to the half-cut surface is made of 240 mesh sand paper, the bafrol speed is 500 m / min, the sheet conveyance speed is 1.0 m / min, and the bafrol and the sheet are in contact with each other. Buffing was performed at a sheet contact angle of 50 ° to form a raised surface.
 このようにして得られたシート状物を、液流染色機を用いて、130℃の温度条件下で、捲縮処理と染色を同時に行った後に、乾燥機を用いて乾燥を行い、シート状物を得た。 The sheet-like material thus obtained is subjected to crimping treatment and dyeing simultaneously under a temperature condition of 130 ° C. using a liquid dyeing machine, and then dried using a drier to obtain a sheet-like material. I got a thing.
 得られたシート状物は、シート厚みが0.70mm、平均単繊維直径が4.4μmで、立毛層部分を観察した結果、立毛層を構成する極細繊維に捲縮が発現していることを確認し、捲縮の半径平均値は25μmであった。また、断面のSEM観察(500倍)により、ポリウレタンは多孔化していることを確認した。シート状物のストレッチ性は良好であった。結果を表1に示す。 The obtained sheet-like material has a sheet thickness of 0.70 mm, an average single fiber diameter of 4.4 μm, and as a result of observing the napped layer portion, it is confirmed that crimps are expressed in the ultrafine fibers constituting the napped layer. As confirmed, the average radius of crimp was 25 μm. Moreover, it was confirmed by SEM observation (500 times) of the cross section that the polyurethane was porous. The stretchability of the sheet was good. The results are shown in Table 1.
 [実施例2]
 (原綿)
 島成分として固有粘度(IV)が0.78のポリエチレンテレフタレートと固有粘度(IV)が0.510のポリエチレンテレフタレートを、それぞれ別に溶融して用いたこと以外は、実施例1と同様にして、海島型複合繊維の原綿を得た。
[Example 2]
(raw cotton)
In the same manner as in Example 1 except that polyethylene terephthalate having an intrinsic viscosity (IV) of 0.78 and polyethylene terephthalate having an intrinsic viscosity (IV) of 0.510 were separately melted and used as island components, A raw cotton of type composite fiber was obtained.
 (極細繊維発現型繊維からなる不織布)
 この海島型複合繊維の原綿を用いて、カードおよびクロスラッパー工程を経て積層繊維ウエブを形成し、600本/cmのパンチ本数でニードルパンチした後に、3000本/cmのパンチ本数でニードルパンチを施して、目付が335g/mで、厚みが1.85mmのシート状物を得た。
(Nonwoven fabric composed of ultrafine fibers)
Using this sea-island type composite fiber raw material, a laminated fiber web is formed through a card and cross wrapping process, needle punched at a punch number of 600 / cm 2 , and then needle punched at a punch number of 3000 / cm 2. As a result, a sheet-like material having a basis weight of 335 g / m 2 and a thickness of 1.85 mm was obtained.
 (シート状物)
 上記の不織布を98℃の温度の熱水で収縮させた後、これに12%の濃度のPVA(ポリビニルアルコール)水溶液を含浸し、120℃の温度の熱風で10分間乾燥することにより、不織布の質量に対するPVA質量が35質量%の不織布を得た。このようにして得られた不織布を、トリクロロエチレン中に浸漬して海成分を溶解除去し、極細中空繊維からなる不織布(脱海シート)を得た。このようにして得られた極細繊維からなる不織布(脱海シート)を、固形分濃度を12%に調整したポリカーボネート系ポリウレタンのDMF(ジメチルホルムアミド)溶液に浸漬し、次いでDMF濃度30%の水溶液中でポリウレタンを凝固させた。その後、PVAおよびDMFを熱水で除去し、110℃の温度の熱風で10分間乾燥することにより、島成分からなる前記の極細繊維の質量に対するポリウレタン質量が37質量%のシート状物を得た。
その後、シート状物を厚さ方向に半裁し、半裁面の反対側の面を240メッシュのサンドペーパーを用い、バフロール速度500m/分、シート搬送速度1.0m/分、バフロールとシートが接触するシート接触角を50°としてバフィングを行い、立毛面を形成した。
(Sheet)
After shrinking the nonwoven fabric with hot water at a temperature of 98 ° C., the nonwoven fabric was impregnated with an aqueous solution of PVA (polyvinyl alcohol) having a concentration of 12% and dried with hot air at a temperature of 120 ° C. for 10 minutes. A non-woven fabric having a PVA mass of 35 mass% relative to the mass was obtained. The nonwoven fabric obtained in this way was immersed in trichlorethylene to dissolve and remove sea components, and a nonwoven fabric (sea removal sheet) made of ultrafine hollow fibers was obtained. The nonwoven fabric (sea removal sheet) made of ultrafine fibers thus obtained is immersed in a DMF (dimethylformamide) solution of polycarbonate polyurethane having a solid content adjusted to 12%, and then in an aqueous solution having a DMF concentration of 30%. To solidify the polyurethane. Thereafter, PVA and DMF were removed with hot water and dried with hot air at a temperature of 110 ° C. for 10 minutes to obtain a sheet-like material having a polyurethane mass of 37% by mass with respect to the mass of the ultrafine fibers comprising the island components. .
Thereafter, the sheet-like material is cut in the thickness direction, and the surface opposite to the half-cut surface is made of 240 mesh sand paper, the bafrol speed is 500 m / min, the sheet conveyance speed is 1.0 m / min, and the bafrol and the sheet are in contact with each other. Buffing was performed at a sheet contact angle of 50 ° to form a raised surface.
 このようして得られたシート状物を、液流染色機を用いて、130℃の温度条件下で、捲縮処理と染色を同時に行った後に、乾燥機を用いて乾燥を行い、シート状物を得た。 The sheet-like material thus obtained is subjected to simultaneous crimping treatment and dyeing using a liquid dyeing machine under a temperature condition of 130 ° C., and then dried using a dryer. I got a thing.
 得られたシート状物は、シート厚みが0.70mm、平均単繊維径が4.4μmで、立毛層部分を観察した結果、立毛層を構成する極細繊維に捲縮が発現していることを確認し、捲縮の半径平均値は30μmであった。また、断面のSEM観察(500倍)により、ポリウレタンは多孔化していることを確認した。シート状物のストレッチ性は良好であった。結果を表1に示す。 The obtained sheet-like material has a sheet thickness of 0.70 mm and an average single fiber diameter of 4.4 μm, and as a result of observing the napped layer portion, it is confirmed that crimps are expressed in the ultrafine fibers constituting the napped layer. As confirmed, the average radius of crimp was 30 μm. Moreover, it was confirmed by SEM observation (500 times) of the cross section that the polyurethane was porous. The stretchability of the sheet was good. The results are shown in Table 1.
 [実施例3]
 (原綿)
 島成分として固有粘度(IV)が0.655のポリエチレンテレフタレートと固有粘度(IV)が0.651のポリエチレンテレフタレートを、それぞれ別に溶融して用いたこと以外は、実施例1と同様にして、海島型複合繊維の原綿を得た。
[Example 3]
(raw cotton)
In the same manner as in Example 1 except that polyethylene terephthalate having an intrinsic viscosity (IV) of 0.655 and polyethylene terephthalate having an intrinsic viscosity (IV) of 0.651 were separately melted and used as island components, A raw cotton of type composite fiber was obtained.
 (極細繊維発現型繊維からなる不織布)
 この海島型複合繊維の原綿を用いて、カードおよびクロスラッパー工程を経て積層繊維ウエブを形成し、600本/cmのパンチ本数でニードルパンチした後に、3000本/cmのパンチ本数でニードルパンチを施して、目付が350g/mで、厚みが1.90mmのシート状物を得た。
(Nonwoven fabric composed of ultrafine fibers)
Using this sea-island type composite fiber raw material, a laminated fiber web is formed through a card and cross wrapping process, needle punched at a punch number of 600 / cm 2 , and then needle punched at a punch number of 3000 / cm 2. As a result, a sheet-like material having a basis weight of 350 g / m 2 and a thickness of 1.90 mm was obtained.
 (シート状物)
 上記の不織布を98℃の温度の熱水で収縮させた後、これに12%の濃度のPVA(ポリビニルアルコール)水溶液を含浸し、120℃の温度の熱風で10分間乾燥することにより、不織布の質量に対するPVA質量が35質量%の不織布を得た。このようにして得られた不織布を、トリクロロエチレン中に浸漬して海成分を溶解除去し、極細中空繊維からなる不織布(脱海シート)を得た。このようにして得られた極細繊維からなる不織布(脱海シート)を、固形分濃度を12%に調整したポリカーボネート系ポリウレタンのDMF(ジメチルホルムアミド)溶液に浸漬し、次いでDMF濃度30%の水溶液中でポリウレタンを凝固させた。その後、PVAおよびDMFを熱水で除去し、110℃の温度の熱風で10分間乾燥することにより、島成分からなる前記の極細繊維の質量に対するポリウレタン質量が37質量%のシート状物を得た。
その後、シート状物を厚さ方向に半裁し、半裁面の反対側の面を240メッシュのサンドペーパーを用い、バフロール速度500m/分、シート搬送速度1.0m/分、バフロールとシートが接触するシート接触角を50°としてバフィングを行い、立毛面を形成した。
(Sheet)
After shrinking the nonwoven fabric with hot water at a temperature of 98 ° C., the nonwoven fabric was impregnated with an aqueous solution of PVA (polyvinyl alcohol) having a concentration of 12% and dried with hot air at a temperature of 120 ° C. for 10 minutes. A non-woven fabric having a PVA mass of 35 mass% relative to the mass was obtained. The nonwoven fabric obtained in this way was immersed in trichlorethylene to dissolve and remove sea components, and a nonwoven fabric (sea removal sheet) made of ultrafine hollow fibers was obtained. The nonwoven fabric (sea removal sheet) made of ultrafine fibers thus obtained is immersed in a DMF (dimethylformamide) solution of polycarbonate polyurethane having a solid content adjusted to 12%, and then in an aqueous solution having a DMF concentration of 30%. To solidify the polyurethane. Thereafter, PVA and DMF were removed with hot water and dried with hot air at a temperature of 110 ° C. for 10 minutes to obtain a sheet-like material having a polyurethane mass of 37% by mass with respect to the mass of the ultrafine fibers comprising the island components. .
Thereafter, the sheet-like material is cut in the thickness direction, and the surface opposite to the half-cut surface is made of 240 mesh sand paper, the bafrol speed is 500 m / min, the sheet conveyance speed is 1.0 m / min, and the bafrol and the sheet are in contact with each other. Buffing was performed at a sheet contact angle of 50 ° to form a raised surface.
 このようして得られたシート状物を、液流染色機を用いて、130℃の温度条件下で、捲縮処理と染色を同時に行った後に、乾燥機を用いて乾燥を行い、シート状物を得た。 The sheet-like material thus obtained is subjected to simultaneous crimping treatment and dyeing using a liquid dyeing machine under a temperature condition of 130 ° C., and then dried using a dryer. I got a thing.
 得られたシート状物は、シート厚みが0.82mm、平均単繊維径が4.4μmで、立毛層部分を観察した結果、立毛層を構成する極細繊維に捲縮が発現していることを確認し、捲縮の半径平均値は55μmであった。また、断面のSEM観察(500倍)により、ポリウレタンは多孔化していることを確認した。シート状物のストレッチ性は良好であった。結果を表1に示す。 The obtained sheet-like material has a sheet thickness of 0.82 mm, an average single fiber diameter of 4.4 μm, and as a result of observing the napped layer portion, it is confirmed that crimps are expressed in the ultrafine fibers constituting the napped layer. As confirmed, the average radius of crimp was 55 μm. Moreover, it was confirmed by SEM observation (500 times) of the cross section that the polyurethane was porous. The stretchability of the sheet was good. The results are shown in Table 1.
 [実施例4]
 (原綿)
 島成分として固有粘度(IV)が0.780のポリエチレンテレフタレートと固有粘度(IV)が0.654のポリエチレンテレフタレートを、それぞれ別に溶融して用い、また海成分としてJIS K7206(1999)に準じて測定したビカット軟化点が100℃で、MFRが120のポリスチレン(PSt)を用い、島数が24島の海島型複合用口金を用いて、島/海質量比率80/20で溶融紡糸した繊維を、ローラープレート方式で通常の条件により延伸し捲縮加工後、繊維を51mmの長さにカットし、平均単繊維直径52μmの海島型複合繊維の原綿を得た。
[Example 4]
(raw cotton)
Polyethylene terephthalate with an intrinsic viscosity (IV) of 0.780 and polyethylene terephthalate with an intrinsic viscosity (IV) of 0.654 are melted separately as island components and measured according to JIS K7206 (1999) as sea components. Using a polystyrene (PSt) having a Vicat softening point of 100 ° C., an MFR of 120, and a sea-island type composite die having 24 islands, a fiber that has been melt-spun at an island / sea mass ratio of 80/20, After stretching and crimping by a roller plate method under normal conditions, the fibers were cut to a length of 51 mm to obtain a sea-island composite fiber raw cotton having an average single fiber diameter of 52 μm.
 (極細繊維発現型繊維からなる不織布)
 この海島型複合繊維の原綿を用いて、カードおよびクロスラッパー工程を経て積層繊維ウエブを形成し、600本/cmのパンチ本数でニードルパンチした後に、3000本/cmのパンチ本数でニードルパンチを施して、目付が340g/mで、厚みが1.85mmのシート状物を得た。
(Nonwoven fabric composed of ultrafine fibers)
Using this sea-island type composite fiber raw material, a laminated fiber web is formed through a card and cross wrapping process, needle punched at a punch number of 600 / cm 2 , and then needle punched at a punch number of 3000 / cm 2. As a result, a sheet-like material having a basis weight of 340 g / m 2 and a thickness of 1.85 mm was obtained.
 (シート状物)
 上記の不織布を98℃の温度の熱水で収縮させた後、これに12%の濃度のPVA(ポリビニルアルコール)水溶液を含浸し、120℃の温度の熱風で10分間乾燥することにより、不織布の質量に対するPVA質量が34質量%の不織布を得た。このようにして得られた不織布を、トリクロロエチレン中に浸漬して海成分を溶解除去し、極細中空繊維からなる不織布(脱海シート)を得た。このようにして得られた極細繊維からなる不織布(脱海シート)を、固形分濃度を12%に調整したポリカーボネート系ポリウレタンのDMF(ジメチルホルムアミド)溶液に浸漬し、次いでDMF濃度30%の水溶液中でポリウレタンを凝固させた。その後、PVAおよびDMFを熱水で除去し、110℃の温度の熱風で10分間乾燥することにより、島成分からなる前記の極細繊維の質量に対するポリウレタン質量が35質量%のシート状物を得た。
その後、シート状物を厚さ方向に半裁し、半裁面の反対側の面を240メッシュのサンドペーパーを用い、バフロール速度500m/分、シート搬送速度1.0m/分、バフロールとシートが接触するシート接触角を50°としてバフィングを行い、立毛面を形成した。
(Sheet)
After shrinking the nonwoven fabric with hot water at a temperature of 98 ° C., the nonwoven fabric was impregnated with an aqueous solution of PVA (polyvinyl alcohol) having a concentration of 12% and dried with hot air at a temperature of 120 ° C. for 10 minutes. A nonwoven fabric having a PVA mass of 34 mass% with respect to the mass was obtained. The nonwoven fabric obtained in this way was immersed in trichlorethylene to dissolve and remove sea components, and a nonwoven fabric (sea removal sheet) made of ultrafine hollow fibers was obtained. The nonwoven fabric (sea removal sheet) made of ultrafine fibers thus obtained is immersed in a DMF (dimethylformamide) solution of polycarbonate polyurethane having a solid content adjusted to 12%, and then in an aqueous solution having a DMF concentration of 30%. To solidify the polyurethane. Thereafter, PVA and DMF were removed with hot water and dried with hot air at a temperature of 110 ° C. for 10 minutes to obtain a sheet-like material having a polyurethane mass of 35% by mass with respect to the mass of the ultrafine fibers comprising the island components. .
Thereafter, the sheet-like material is cut in the thickness direction, and the surface opposite to the half-cut surface is made of 240 mesh sand paper, the bafrol speed is 500 m / min, the sheet conveyance speed is 1.0 m / min, and the bafrol and the sheet are in contact with each other. Buffing was performed at a sheet contact angle of 50 ° to form a raised surface.
 このようして得られたシート状物を、液流染色機を用いて、130℃の温度条件下で、捲縮処理と染色を同時に行った後に、乾燥機を用いて乾燥を行い、シート状物を得た。 The sheet-like material thus obtained is subjected to simultaneous crimping treatment and dyeing using a liquid dyeing machine under a temperature condition of 130 ° C., and then dried using a dryer. I got a thing.
 得られたシート状物は、シート厚みが0.82mm、平均単繊維径が8.8μmで、立毛層部分を観察した結果、立毛層を構成する極細繊維に捲縮が発現していることを確認し、捲縮の半径平均値は45μmであった。また、断面のSEM観察(500倍)により、ポリウレタンは多孔化していることを確認した。シート状物のストレッチ性は良好であった。結果を表1に示す。 The obtained sheet-like material has a sheet thickness of 0.82 mm, an average single fiber diameter of 8.8 μm, and as a result of observing the napped layer portion, it is confirmed that crimps are expressed in the ultrafine fibers constituting the napped layer. As confirmed, the average radius of crimp was 45 μm. Moreover, it was confirmed by SEM observation (500 times) of the cross section that the polyurethane was porous. The stretchability of the sheet was good. The results are shown in Table 1.
 [実施例5]
 (原綿)
 島成分として固有粘度(IV)が1.75のポリブチレンテレフタレートと固有粘度(IV)が0.510のポリエチレンテレフタレートを、それぞれ別に溶融して用い、また海成分として5-スルホイソフタル酸ナトリウムを8mol%共重合したポリエチレンテルフタレートを用い、島数が24島の海島型複合用口金を用いて、島/海質量比率80/20で溶融紡糸した繊維を、ローラープレート方式で通常の条件により延伸し捲縮加工後、繊維を51mmの長さにカットし、平均単繊維直径16μmの海島型複合繊維の原綿を得た。
[Example 5]
(raw cotton)
Polybutylene terephthalate with an intrinsic viscosity (IV) of 1.75 and polyethylene terephthalate with an intrinsic viscosity (IV) of 0.510 are used separately as island components, and 8 mol of sodium 5-sulfoisophthalate is used as a sea component. % Polyethylene terephthalate copolymerized using a sea-island type compound base with 24 islands, and the fiber melt-spun at an island / sea mass ratio of 80/20 is stretched under normal conditions using a roller plate method. After crimping, the fiber was cut to a length of 51 mm to obtain a sea-island composite fiber raw cotton having an average single fiber diameter of 16 μm.
 (極細繊維発現型繊維からなる不織布)
 この海島型複合繊維の原綿を用いて、カードおよびクロスラッパー工程を経て積層繊維ウエブを形成し、600本/cmのパンチ本数でニードルパンチした後に、3000本/cmのパンチ本数でニードルパンチを施して、目付が310g/mで、厚みが1.70mmのシート状物を得た。
(Nonwoven fabric composed of ultrafine fibers)
Using this sea-island type composite fiber raw material, a laminated fiber web is formed through a card and cross wrapping process, needle punched at a punch number of 600 / cm 2 , and then needle punched at a punch number of 3000 / cm 2. As a result, a sheet-like material having a basis weight of 310 g / m 2 and a thickness of 1.70 mm was obtained.
 (シート状物)
 上記の不織布を96℃の温度の熱水で収縮させた後、80℃に加熱した濃度15g/Lの水酸化ナトリウム水溶液に浸漬して30分処理を行い、海島型繊維の海成分を除去し、極細繊維とポリウレタンからなるシート状物を得た。次に、120℃の温度の熱風で10分間乾燥し、固形分濃度を12%に調整したポリカーボネート系ポリウレタンのDMF溶液に浸漬し、次いでDMF濃度30%の水溶液中でポリウレタンを凝固させ、110℃の温度の熱風で10分間乾燥することにより、島成分からなる前記の極細繊維の質量に対するポリウレタン質量が37質量%のシート状物を得た。
その後、シート状物を厚さ方向に半裁し、半裁面の反対側の面を240メッシュのサンドペーパーを用い、バフロール速度500m/分、シート搬送速度1.0m/分、バフロールとシートが接触するシート接触角を50°としてバフィングを行い、立毛面を形成した。 このようにして得られたシート状物を、液流染色機を用いて、130℃の温度条件下で、捲縮処理と染色を同時に行った後に、乾燥機を用いて乾燥を行い、シート状物を得た。
(Sheet)
The above nonwoven fabric is shrunk with hot water at a temperature of 96 ° C. and then immersed in a 15 g / L sodium hydroxide aqueous solution heated to 80 ° C. for 30 minutes to remove sea components of the sea-island fibers. A sheet-like material made of ultrafine fibers and polyurethane was obtained. Next, it was dried with hot air at a temperature of 120 ° C. for 10 minutes, immersed in a DMF solution of polycarbonate polyurethane adjusted to a solid content concentration of 12%, and then the polyurethane was coagulated in an aqueous solution with a DMF concentration of 30%. By drying with hot air at a temperature of 10 minutes for 10 minutes, a sheet-like material having a polyurethane mass of 37 mass% relative to the mass of the ultrafine fiber made of the island component was obtained.
Thereafter, the sheet-like material is cut in the thickness direction, and the surface opposite to the half-cut surface is made of 240 mesh sand paper, the bafrol speed is 500 m / min, the sheet conveyance speed is 1.0 m / min, and the bafrol and the sheet are in contact with each other. Buffing was performed at a sheet contact angle of 50 ° to form a raised surface. The sheet-like material thus obtained is subjected to crimping treatment and dyeing simultaneously under a temperature condition of 130 ° C. using a liquid dyeing machine, and then dried using a drier to obtain a sheet-like material. I got a thing.
 得られたシート状物は、シート厚みが0.70mm、平均単繊維直径が2.8μmで、立毛層部分を観察した結果、立毛層を構成する極細繊維に捲縮が発現していることを確認し、捲縮の半径平均値は30μmであった。また、断面のSEM観察(500倍)により、ポリウレタンは多孔化していることを確認した。シート状物のストレッチ性は良好であった。結果を表1に示す。 The obtained sheet-like material has a sheet thickness of 0.70 mm, an average single fiber diameter of 2.8 μm, and as a result of observing the napped layer portion, it is confirmed that crimps are expressed in the ultrafine fibers constituting the napped layer. As confirmed, the average radius of crimp was 30 μm. Moreover, it was confirmed by SEM observation (500 times) of the cross section that the polyurethane was porous. The stretchability of the sheet was good. The results are shown in Table 1.
 [実施例6] 
 (紡糸、製布)
 島成分として固有粘度(IV)が0.780のポリエチレンテレフタレートと固有粘度(IV)が0.654のポリエチレンテレフタレートを、それぞれ別に溶融して用い、また海成分としてJIS K7206(1999)に準じて測定したビカット軟化点が100℃で、MFRが120のポリスチレン(PSt)を用い、島数が24島の海島型複合用口金を用いて、島/海質量比率80/20となるように口金から吐出した。紡速が4000m/分となるようにエジェクター圧力を調整し、平均単繊維直径14μmの海島型複合長繊維をネットで捕集し、30g/mの長繊維不織布シートを得た。
[Example 6]
(Spinning, fabric making)
Polyethylene terephthalate with an intrinsic viscosity (IV) of 0.780 and polyethylene terephthalate with an intrinsic viscosity (IV) of 0.654 are melted separately as island components and measured according to JIS K7206 (1999) as sea components. Using a polystyrene (PSt) having a Vicat softening point of 100 ° C., an MFR of 120, and a sea-island type composite base having 24 islands, the island / sea mass ratio is discharged from the base to 80/20. did. The ejector pressure was adjusted so that the spinning speed was 4000 m / min, and sea-island composite long fibers having an average single fiber diameter of 14 μm were collected by a net to obtain a 30 g / m 2 long fiber nonwoven fabric sheet.
 (極細繊維発現型繊維からなる不織布)
 この海島型複合繊維の長繊維不織布シートを用いて、クロスラッパー工程を経て積層繊維ウエブを形成し、600本/cmのパンチ本数でニードルパンチした後に、3000本/cmのパンチ本数でニードルパンチを施して、目付が300g/mで、厚みが1.80mmのシート状物を得た。
(Nonwoven fabric composed of ultrafine fibers)
Using this sea-island type composite fiber long-fiber nonwoven fabric sheet, a laminated fiber web is formed through a cross-wrapper process, needle punched with a punch number of 600 / cm 2 , and then needles with a punch number of 3000 / cm 2. Punching was performed to obtain a sheet-like material having a basis weight of 300 g / m 2 and a thickness of 1.80 mm.
 (シート状物)
 上記の不織布を98℃の温度の熱水で収縮させた後、これに12%の濃度のPVA(ポリビニルアルコール)水溶液を含浸し、120℃の温度の熱風で10分間乾燥することにより、不織布の質量に対するPVA質量が30質量%の不織布を得た。このようにして得られた不織布を、トリクロロエチレン中に浸漬して海成分を溶解除去し、極細繊維からなる不織布(脱海シート)を得た。このようにして得られた極細繊維からなる不織布(脱海シート)を、固形分濃度を12%に調整したポリカーボネート系ポリウレタンのDMF(ジメチルホルムアミド)溶液に浸漬し、次いでDMF濃度30%の水溶液中でポリウレタンを凝固させた。その後、PVAおよびDMFを熱水で除去し、110℃の温度の熱風で10分間乾燥することにより、島成分からなる前記の極細繊維の質量に対するポリウレタン質量が38質量%のシート状物を得た。
その後、シート状物を厚さ方向に半裁し、半裁面の反対側の面を240メッシュのサンドペーパーを用い、バフロール速度500m/分、シート搬送速度1.0m/分、バフロールとシートが接触するシート接触角を50°としてバフィングを行い、立毛面を形成した。
(Sheet)
After shrinking the nonwoven fabric with hot water at a temperature of 98 ° C., the nonwoven fabric was impregnated with an aqueous solution of PVA (polyvinyl alcohol) having a concentration of 12% and dried with hot air at a temperature of 120 ° C. for 10 minutes. A non-woven fabric having a PVA mass of 30 mass% with respect to the mass was obtained. The nonwoven fabric obtained in this manner was immersed in trichlorethylene to dissolve and remove sea components to obtain a nonwoven fabric (sea removal sheet) made of ultrafine fibers. The nonwoven fabric (sea removal sheet) made of ultrafine fibers thus obtained is immersed in a DMF (dimethylformamide) solution of polycarbonate polyurethane having a solid content adjusted to 12%, and then in an aqueous solution having a DMF concentration of 30%. To solidify the polyurethane. Thereafter, PVA and DMF were removed with hot water and dried with hot air at a temperature of 110 ° C. for 10 minutes to obtain a sheet-like material having a polyurethane mass of 38% by mass with respect to the mass of the ultrafine fibers comprising the island components. .
Thereafter, the sheet-like material is cut in the thickness direction, and the surface opposite to the half-cut surface is made of 240 mesh sand paper, the bafrol speed is 500 m / min, the sheet conveyance speed is 1.0 m / min, and the bafrol and the sheet are in contact with each other. Buffing was performed at a sheet contact angle of 50 ° to form a raised surface.
 このようにして得られたシート状物を、液流染色機を用いて、130℃の温度条件下で、捲縮処理と染色を同時に行った後に、乾燥機を用いて乾燥を行い、シート状物を得た。 The sheet-like material thus obtained is subjected to crimping treatment and dyeing simultaneously under a temperature condition of 130 ° C. using a liquid dyeing machine, and then dried using a drier to obtain a sheet-like material. I got a thing.
 得られたシート状物は、シート厚みが0.80mm、平均単繊維直径が2μmで、立毛層部分を観察した結果、立毛層を構成する極細繊維に捲縮が発現していることを確認し、捲縮の半径平均値は70μmであった。また、断面のSEM観察(500倍)により、ポリウレタンは多孔化していることを確認した。シート状物のストレッチ性は良好であった。結果を表1に示す。 The obtained sheet-like material has a sheet thickness of 0.80 mm, an average single fiber diameter of 2 μm, and as a result of observing the napped layer portion, it was confirmed that crimps were expressed in the ultrafine fibers constituting the napped layer. The average radius of crimp was 70 μm. Moreover, it was confirmed by SEM observation (500 times) of the cross section that the polyurethane was porous. The stretchability of the sheet was good. The results are shown in Table 1.
 [実施例7]
 (紡糸、製布)
 島成分のうち芯成分として固有粘度(IV)が0.780のポリエチレンテレフタレートを、鞘成分として固有粘度(IV)が0.510のポリエチレンテレフタレートを、それぞれ別に溶融して用い、また海成分としてJIS K7206(1999)に準じて測定したビカット軟化点が100℃で、MFRが120のポリスチレン(PSt)を用い、島数が24島で島成分が偏心芯鞘型である海島型複合用口金を用いて、島/海質量比率80/20となるように口金から吐出した。紡速が4000m/分となるようにエジェクター圧力を調整し、平均単繊維直径25μmの海島型複合長繊維をネットで捕集し、30g/mの長繊維不織布シートを得た。
[Example 7]
(Spinning, fabric making)
Among the island components, polyethylene terephthalate having an intrinsic viscosity (IV) of 0.780 as the core component and polyethylene terephthalate having an intrinsic viscosity (IV) of 0.510 as the sheath component are separately melted and used as JIS as the sea component. Using a sea-island type composite base with polystyrene (PSt) having a Vicat softening point of 100 ° C. and an MFR of 120 measured according to K7206 (1999), having 24 islands and an eccentric core-shell type island component. Then, it was discharged from the base so that the island / sea mass ratio was 80/20. The ejector pressure was adjusted so that the spinning speed was 4000 m / min, and the sea-island composite long fibers having an average single fiber diameter of 25 μm were collected by a net to obtain a 30 g / m 2 long fiber nonwoven fabric sheet.
 (極細繊維発現型繊維からなる不織布)
 この海島型複合繊維の長繊維不織布シートを用いて、クロスラッパー工程を経て積層繊維ウエブを形成し、600本/cmのパンチ本数でニードルパンチした後に、3000本/cmのパンチ本数でニードルパンチを施して、目付が300g/mで、厚みが1.80mmのシート状物を得た。
(Nonwoven fabric composed of ultrafine fibers)
Using this sea-island type composite fiber long-fiber nonwoven fabric sheet, a laminated fiber web is formed through a cross-wrapper process, needle punched with a punch number of 600 / cm 2 , and then needles with a punch number of 3000 / cm 2. Punching was performed to obtain a sheet-like material having a basis weight of 300 g / m 2 and a thickness of 1.80 mm.
 (シート状物)
 上記の不織布を98℃の温度の熱水で収縮させた後、これに12%の濃度のPVA(ポリビニルアルコール)水溶液を含浸し、120℃の温度の熱風で10分間乾燥することにより、不織布の質量に対するPVA質量が30質量%の不織布を得た。このようにして得られた不織布を、トリクロロエチレン中に浸漬して海成分を溶解除去し、極細繊維からなる不織布(脱海シート)を得た。このようにして得られた極細繊維からなる不織布(脱海シート)を、固形分濃度を12%に調整したポリカーボネート系ポリウレタンのDMF(ジメチルホルムアミド)溶液に浸漬し、次いでDMF濃度30%の水溶液中でポリウレタンを凝固させた。その後、PVAおよびDMFを熱水で除去し、110℃の温度の熱風で10分間乾燥することにより、島成分からなる前記の極細繊維の質量に対するポリウレタン質量が40質量%のシート状物を得た。
その後、シート状物を厚さ方向に半裁し、半裁面の反対側の面を240メッシュのサンドペーパーを用い、バフロール速度500m/分、シート搬送速度1.0m/分、バフロールとシートが接触するシート接触角を50°としてバフィングを行い、立毛面を形成した。
(Sheet)
After shrinking the nonwoven fabric with hot water at a temperature of 98 ° C., the nonwoven fabric was impregnated with an aqueous solution of PVA (polyvinyl alcohol) having a concentration of 12% and dried with hot air at a temperature of 120 ° C. for 10 minutes. A non-woven fabric having a PVA mass of 30 mass% with respect to the mass was obtained. The nonwoven fabric obtained in this manner was immersed in trichlorethylene to dissolve and remove sea components to obtain a nonwoven fabric (sea removal sheet) made of ultrafine fibers. The nonwoven fabric (sea removal sheet) made of ultrafine fibers thus obtained is immersed in a DMF (dimethylformamide) solution of polycarbonate polyurethane having a solid content adjusted to 12%, and then in an aqueous solution having a DMF concentration of 30%. To solidify the polyurethane. Thereafter, PVA and DMF were removed with hot water and dried with hot air at a temperature of 110 ° C. for 10 minutes to obtain a sheet-like material having a polyurethane mass of 40 mass% with respect to the mass of the ultrafine fibers comprising the island components. .
Thereafter, the sheet-like material is cut in the thickness direction, and the surface opposite to the half-cut surface is made of 240 mesh sand paper, the bafrol speed is 500 m / min, the sheet conveyance speed is 1.0 m / min, and the bafrol and the sheet are in contact with each other. Buffing was performed at a sheet contact angle of 50 ° to form a raised surface.
 このようにして得られたシート状物を、液流染色機を用いて、130℃の温度条件下で、捲縮処理と染色を同時に行った後に、乾燥機を用いて乾燥を行い、シート状物を得た。 The sheet-like material thus obtained is subjected to crimping treatment and dyeing simultaneously under a temperature condition of 130 ° C. using a liquid dyeing machine, and then dried using a drier to obtain a sheet-like material. I got a thing.
 得られたシート状物は、シート厚みが0.80mm、平均単繊維直径が3.6μmで、立毛層部分を観察した結果、立毛層を構成する極細繊維に捲縮が発現していることを確認し、捲縮の半径平均値は80μmであった。また、断面のSEM観察(500倍)により、ポリウレタンは多孔化していることを確認した。シート状物のストレッチ性は良好であった。結果を表1に示す。 The obtained sheet-like material has a sheet thickness of 0.80 mm and an average single fiber diameter of 3.6 μm, and as a result of observing the napped layer portion, it is confirmed that crimps are expressed in the ultrafine fibers constituting the napped layer. As a result, the average radius of crimp was 80 μm. Moreover, it was confirmed by SEM observation (500 times) of the cross section that the polyurethane was porous. The stretchability of the sheet was good. The results are shown in Table 1.
 [実施例8]
 (原綿)
 島成分として固有粘度(IV)が1.75のポリブチレンテレフタレートと固有粘度(IV)が0.510のポリエチレンテレフタレートを、それぞれ別に溶融して用い、また海成分としてJIS K7206(1999)に準じて測定したビカット軟化点が100℃で、MFRが120のポリスチレン(PSt)を用い、島数が24島の海島型複合用口金を用いて、島/海質量比率80/20で溶融紡糸した繊維を、ローラープレート方式で通常の条件により延伸し捲縮加工後、繊維を10mmの長さにカットし、平均単繊維直径26μmの海島型複合繊維の原綿を得た。
[Example 8]
(raw cotton)
Polybutylene terephthalate having an intrinsic viscosity (IV) of 1.75 and polyethylene terephthalate having an intrinsic viscosity (IV) of 0.510 are used separately as island components, and in accordance with JIS K7206 (1999) as sea components. Using a polystyrene (PSt) having a measured Vicat softening point of 100 ° C., an MFR of 120, and using a sea-island type composite base having 24 islands, a melt-spun fiber at an island / sea mass ratio of 80/20 is obtained. Then, after drawing and crimping by a roller plate method under normal conditions, the fiber was cut to a length of 10 mm to obtain a raw material of sea-island type composite fiber having an average single fiber diameter of 26 μm.
 (極細繊維発現型繊維からなる不織布)
 この海島型複合繊維の原綿を用いて、カードおよびクロスラッパー工程を経て積層繊維ウエブを形成し、600本/cm2のパンチ本数でニードルパンチした後に、3000本/cm2のパンチ本数でニードルパンチを施して、目付が162g/m2で、厚みが0.87mmのシート状物を得た。
(Nonwoven fabric composed of ultrafine fibers)
Using this sea-island type composite fiber raw material, a laminated fiber web is formed through a card and cross wrapping process, needle punched at a punch number of 600 / cm2, and then needle punched at a punch number of 3000 / cm2. Thus, a sheet-like material having a basis weight of 162 g / m 2 and a thickness of 0.87 mm was obtained.
 (シート状物)
 上記の不織布を98℃の温度の熱水で収縮させた後、これに12%の濃度のPVA(ポリビニルアルコール)水溶液を含浸し、120℃の温度の熱風で10分間乾燥することにより、不織布の質量に対するPVA質量が30質量%の不織布を得た。このようにして得られた不織布を、トリクロロエチレン中に浸漬して海成分を溶解除去し、極細繊維からなる不織布(脱海シート)を得た。このようにして得られた極細繊維からなる不織布(脱海シート)を、固形分濃度を12%に調整したポリカーボネート系ポリウレタンのDMF(ジメチルホルムアミド)溶液に浸漬し、次いでDMF濃度30%の水溶液中でポリウレタンを凝固させた。その後、PVAおよびDMFを熱水で除去し、110℃の温度の熱風で10分間乾燥することにより、島成分からなる前記の極細繊維の質量に対するポリウレタン質量が37質量%のシート状物を得た。
(Sheet)
After shrinking the nonwoven fabric with hot water at a temperature of 98 ° C., the nonwoven fabric was impregnated with an aqueous solution of PVA (polyvinyl alcohol) having a concentration of 12% and dried with hot air at a temperature of 120 ° C. for 10 minutes. A non-woven fabric having a PVA mass of 30 mass% with respect to the mass was obtained. The nonwoven fabric obtained in this manner was immersed in trichlorethylene to dissolve and remove sea components to obtain a nonwoven fabric (sea removal sheet) made of ultrafine fibers. The nonwoven fabric (sea removal sheet) made of ultrafine fibers thus obtained is immersed in a DMF (dimethylformamide) solution of polycarbonate polyurethane having a solid content adjusted to 12%, and then in an aqueous solution having a DMF concentration of 30%. To solidify the polyurethane. Thereafter, PVA and DMF were removed with hot water and dried with hot air at a temperature of 110 ° C. for 10 minutes to obtain a sheet-like material having a polyurethane mass of 37% by mass with respect to the mass of the ultrafine fibers comprising the island components. .
 その後、シート状物を厚さ方向に半裁し、半裁面の反対側の面を240メッシュのサンドペーパーを用い、バフロール速度500m/分、シート搬送速度1.0m/分、バフロールとシートが接触するシート接触角を50°としてバフィングを行い、立毛面を形成した。 Thereafter, the sheet-like material is cut in the thickness direction, and the surface opposite to the half-cut surface is made of 240 mesh sand paper, the bafrol speed is 500 m / min, the sheet conveyance speed is 1.0 m / min, and the bafrol and the sheet are in contact with each other. Buffing was performed at a sheet contact angle of 50 ° to form a raised surface.
 このようにして得られたシート状物を、液流染色機を用いて、130℃の温度条件下で、捲縮処理と染色を同時に行った後に、乾燥機を用いて乾燥を行い、シート状物を得た。 The sheet-like material thus obtained is subjected to crimping treatment and dyeing simultaneously under a temperature condition of 130 ° C. using a liquid dyeing machine, and then dried using a drier to obtain a sheet-like material. I got a thing.
 得られたシート状物は、シート厚みが0.72mm、平均単繊維直径が4.4μmで、立毛層部分を観察した結果、立毛層を構成する極細繊維に捲縮が発現していることを確認し、捲縮の半径平均値は20μmであった。また、断面のSEM観察(500倍)により、ポリウレタンは多孔化していることを確認した。シート状物のストレッチ性は良好であった。結果を表1に示す。 The obtained sheet-like material has a sheet thickness of 0.72 mm, an average single fiber diameter of 4.4 μm, and as a result of observing the napped layer portion, it is confirmed that crimps are expressed in the ultrafine fibers constituting the napped layer. As confirmed, the average radius of crimp was 20 μm. Moreover, it was confirmed by SEM observation (500 times) of the cross section that the polyurethane was porous. The stretchability of the sheet was good. The results are shown in Table 1.
 [実施例9]
 (原綿)
 島成分として固有粘度(IV)が1.75のポリブチレンテレフタレートと固有粘度(IV)が0.510のポリエチレンテレフタレートを、それぞれ別に溶融して用い、また海成分としてJIS K7206(1999)に準じて測定したビカット軟化点が100℃で、MFRが120のポリスチレン(PSt)を用い、島数が24島の海島型複合用口金を用いて、島/海質量比率80/20で溶融紡糸した繊維を、ローラープレート方式で通常の条件により延伸し捲縮加工後、繊維を80mmの長さにカットし、平均単繊維直径26μmの海島型複合繊維の原綿を得た。
[Example 9]
(raw cotton)
Polybutylene terephthalate having an intrinsic viscosity (IV) of 1.75 and polyethylene terephthalate having an intrinsic viscosity (IV) of 0.510 are used separately as island components, and in accordance with JIS K7206 (1999) as sea components. Using a polystyrene (PSt) having a measured Vicat softening point of 100 ° C., an MFR of 120, and using a sea-island type composite base having 24 islands, a melt-spun fiber at an island / sea mass ratio of 80/20 is obtained. The fiber was cut into a length of 80 mm after being stretched under a normal condition by a roller plate method, and a fiber was cut into a length of 80 mm to obtain a raw cotton of a sea-island type composite fiber having an average single fiber diameter of 26 μm.
 (極細繊維発現型繊維からなる不織布)
 この海島型複合繊維の原綿を用いて、カードおよびクロスラッパー工程を経て積層繊維ウエブを形成し、600本/cm2のパンチ本数でニードルパンチした後に、3000本/cm2のパンチ本数でニードルパンチを施して、目付が172g/m2で、厚みが0.94mmのシート状物を得た。
(Nonwoven fabric composed of ultrafine fibers)
Using this sea-island type composite fiber raw material, a laminated fiber web is formed through a card and cross wrapping process, needle punched at a punch number of 600 / cm2, and then needle punched at a punch number of 3000 / cm2. Thus, a sheet-like material having a basis weight of 172 g / m 2 and a thickness of 0.94 mm was obtained.
 (シート状物)
 上記の不織布を98℃の温度の熱水で収縮させた後、これに12%の濃度のPVA(ポリビニルアルコール)水溶液を含浸し、120℃の温度の熱風で10分間乾燥することにより、不織布の質量に対するPVA質量が35質量%の不織布を得た。このようにして得られた不織布を、トリクロロエチレン中に浸漬して海成分を溶解除去し、極細中空繊維からなる不織布(脱海シート)を得た。このようにして得られた極細繊維からなる不織布(脱海シート)を、固形分濃度を12%に調整したポリカーボネート系ポリウレタンのDMF(ジメチルホルムアミド)溶液に浸漬し、次いでDMF濃度30%の水溶液中でポリウレタンを凝固させた。その後、PVAおよびDMFを熱水で除去し、110℃の温度の熱風で10分間乾燥することにより、島成分からなる前記の極細繊維の質量に対するポリウレタン質量が37質量%のシート状物を得た。
その後、シート状物を厚さ方向に半裁し、半裁面の反対側の面を240メッシュのサンドペーパーを用い、バフロール速度500m/分、シート搬送速度1.0m/分、バフロールとシートが接触するシート接触角を50°としてバフィングを行い、立毛面を形成した。
(Sheet)
After shrinking the nonwoven fabric with hot water at a temperature of 98 ° C., the nonwoven fabric was impregnated with an aqueous solution of PVA (polyvinyl alcohol) having a concentration of 12% and dried with hot air at a temperature of 120 ° C. for 10 minutes. A non-woven fabric having a PVA mass of 35 mass% relative to the mass was obtained. The nonwoven fabric obtained in this way was immersed in trichlorethylene to dissolve and remove sea components, and a nonwoven fabric (sea removal sheet) made of ultrafine hollow fibers was obtained. The nonwoven fabric (sea removal sheet) made of ultrafine fibers thus obtained is immersed in a DMF (dimethylformamide) solution of polycarbonate polyurethane having a solid content adjusted to 12%, and then in an aqueous solution having a DMF concentration of 30%. To solidify the polyurethane. Thereafter, PVA and DMF were removed with hot water and dried with hot air at a temperature of 110 ° C. for 10 minutes to obtain a sheet-like material having a polyurethane mass of 37% by mass with respect to the mass of the ultrafine fibers comprising the island components. .
Thereafter, the sheet-like material is cut in the thickness direction, and the surface opposite to the half-cut surface is made of 240 mesh sand paper, the bafrol speed is 500 m / min, the sheet conveyance speed is 1.0 m / min, and the bafrol and the sheet are in contact with each other. Buffing was performed at a sheet contact angle of 50 ° to form a raised surface.
 このようして得られたシート状物を、液流染色機を用いて、130℃の温度条件下で、捲縮処理と染色を同時に行った後に、乾燥機を用いて乾燥を行い、シート状物を得た。 The sheet-like material thus obtained is subjected to simultaneous crimping treatment and dyeing using a liquid dyeing machine under a temperature condition of 130 ° C., and then dried using a dryer. I got a thing.
 得られたシート状物は、シート厚みが0.73mm、平均単繊維径が4.4μmで、立毛層部分を観察した結果、立毛層を構成する極細繊維に捲縮が発現していることを確認し、捲縮の半径平均値は30μmであった。また、断面のSEM観察(500倍)により、ポリウレタンは多孔化していることを確認した。シート状物のストレッチ性は良好であった。結果を表1に示す。 The obtained sheet-like material has a sheet thickness of 0.73 mm and an average single fiber diameter of 4.4 μm. As a result of observing the napped layer portion, it is confirmed that crimps are expressed in the ultrafine fibers constituting the napped layer. As confirmed, the average radius of crimp was 30 μm. Moreover, it was confirmed by SEM observation (500 times) of the cross section that the polyurethane was porous. The stretchability of the sheet was good. The results are shown in Table 1.
 [実施例10]
 島成分として固有粘度(IV)が0.78のポリエチレンテレフタレートと固有粘度(IV)が0.48のポリエチレンテレフタレートを、それぞれ別に溶融して用い、また海成分としてポリスチレンを用い、島数が24島の海島型複合用口金を用いて、島/海質量比率80/20で溶融紡糸した繊維を、ローラープレート方式で通常の条件により3.2倍に延伸し、クリンパー処理後、繊維を51mmの長さにカットして、平均単繊維直径が4.4μmの海島型複合繊維で沸騰水収縮率が14.5%の原綿を得た。
[Example 10]
Polyethylene terephthalate having an intrinsic viscosity (IV) of 0.78 and polyethylene terephthalate having an intrinsic viscosity (IV) of 0.48 are melted separately as island components, and polystyrene is used as a sea component. Using a sea-island type composite die, a fiber that was melt-spun at an island / sea mass ratio of 80/20 was stretched 3.2 times by a roller plate method under normal conditions. After crimping, the fiber was 51 mm long. Then, a raw cotton having a sea-island type composite fiber having an average single fiber diameter of 4.4 μm and a boiling water shrinkage of 14.5% was obtained.
 このようにして得られた海島型複合繊維の原綿を用いて、カードおよびクロスラッパー工程を経て積層繊維ウエブを形成し、600本/cmのパンチ本数でニードルパンチを施した後に、3000本/cmのパンチ本数でニードルパンチを施して、シート状物を得た。 Using the raw cotton of the sea-island type composite fiber thus obtained, a laminated fiber web is formed through a card and cross wrapping process, and needle punching is performed at a punch number of 600 / cm 2 , and 3000 / A needle punch was applied with a number of cm 2 punches to obtain a sheet-like material.
 このようにして得られたシート状物を、96℃の温度の熱水で収縮させた後、濃度12%のPVA(ポリビニルアルコール)水溶液を含浸し、温度95℃の熱風で15分間乾燥することにより、繊維シート状物基体の質量に対するPVA質量が20質量%のシート状物を得た。このシート状物をトリクロロエチレン中に浸漬して海成分を溶解除去し、極細繊維と織物が絡合してなる脱海シートを得た。このようにして得られた脱海シートを、固形分濃度が12%に調整したポリウレタンのDMF(ジメチルホルムアミド)溶液に浸漬し、次いでDMF濃度30%の水溶液中でポリウレタンを凝固させた。その後、PVAおよびDMFを熱水で除去し、95℃の温度の熱風で15分間乾燥することにより、単繊維繊度が0.21dtexの島成分からなる前記の極細繊維からなるシート状物の質量に対するポリウレタン質量が28質量%の皮革基材シートを得た。 The sheet-like material thus obtained is shrunk with hot water at a temperature of 96 ° C., then impregnated with a 12% concentration PVA (polyvinyl alcohol) aqueous solution, and dried with hot air at a temperature of 95 ° C. for 15 minutes. Thus, a sheet-like material having a PVA mass of 20% by mass relative to the mass of the fiber sheet-like substrate was obtained. This sheet-like material was immersed in trichlorethylene to dissolve and remove sea components, and a sea-removal sheet formed by intertwining ultrafine fibers and fabrics was obtained. The sea removal sheet thus obtained was immersed in a DMF (dimethylformamide) solution of polyurethane adjusted to a solid content concentration of 12%, and then the polyurethane was coagulated in an aqueous solution having a DMF concentration of 30%. Thereafter, PVA and DMF are removed with hot water and dried with hot air at a temperature of 95 ° C. for 15 minutes, so that the mass of the sheet-like material composed of the above-mentioned ultrafine fibers composed of island components having a single fiber fineness of 0.21 dtex. A leather base sheet having a polyurethane mass of 28% by mass was obtained.
 このようにして得られた皮革基材シートを厚さ方向に垂直に半裁し、半裁面をサンドペーパー番手180番のエンドレスサンドペーパーで研削し、立毛面を形成させた。このようにして得られた皮革基材シートを液流染色機に投入し、120℃の温度の条件下で、ベージュ色に染色と捲縮処理を同時に行った後に乾燥機で乾燥を行い、皮革様シート状物を得た。 The leather base sheet thus obtained was cut in half perpendicular to the thickness direction, and the cut surface was ground with an endless sandpaper with sandpaper count 180 to form a raised surface. The leather base sheet thus obtained was put into a liquid dyeing machine, dyed in a beige color and crimped at the same time under a temperature of 120 ° C., and then dried in a dryer. A sheet-like product was obtained.
 このようにして得られた皮革様シート状物について、立毛層の厚みは150μmで、表面の立毛はコイル状に捲縮が発現し、立毛の方向はランダムであることを確認した。得られたシートの表面について、前述の測定方法によって、3方向からL*、a*、およびb*を測定し、各点間の△E*abを求め、その3点の△E*ab平均値は0.72で、見る角度による色相差は無かった。また、表情が豊かで高級感もあり、シートに成型した際につぎはぎ感やボケ感も無かった。結果を表2に示す。 It was confirmed that the leather-like sheet-like material thus obtained had a nap layer thickness of 150 μm, the nap on the surface was crimped, and the napping direction was random. About the surface of the obtained sheet, L *, a *, and b * were measured from three directions by the above-described measurement method, ΔE * ab between each point was obtained, and ΔE * ab average of the three points The value was 0.72, and there was no hue difference depending on the viewing angle. In addition, the expression was rich and high-class, and when molded into a sheet, there was no patchy or blurred feeling. The results are shown in Table 2.
 [実施例11]
 上記の実施例1において、島数を36島とし、島/海質量比率を60/40に変更したこと以外は、実施例1と同一条件で加工して、平均単繊維直径が2.1μmの皮革様シート状物を得た。
[Example 11]
In Example 1 above, except that the number of islands was 36 and the island / sea mass ratio was changed to 60/40, it was processed under the same conditions as in Example 1 and the average single fiber diameter was 2.1 μm. A leather-like sheet was obtained.
 このようにして得られた皮革様シート状物について、立毛層の厚さは180μmで、表面の立毛はコイル状に捲縮が発現し、立毛の方向はランダムであることを確認した。得られたシートの表面について、前述の測定方法にて3方向からL*、a*、およびb*を測定し、各点間の△E*abを求め、その3点の△E*ab平均値は1.20で、見る角度による色相差は無かった。また、表情が豊かで高級感もあり、シートに成型した際につぎはぎ感やボケ感も無かった。結果を表2に示す。 It was confirmed that the leather-like sheet-like material thus obtained had a nap layer thickness of 180 μm, the nap on the surface was crimped, and the napping direction was random. With respect to the surface of the obtained sheet, L *, a *, and b * were measured from three directions by the above-described measurement method, ΔE * ab between each point was obtained, and ΔE * ab average of the three points was obtained. The value was 1.20, and there was no hue difference depending on the viewing angle. In addition, the expression was rich and high-class, and when molded into a sheet, there was no patchy or blurred feeling. The results are shown in Table 2.
 [実施例12]
 上記の実施例1において、島成分として固有粘度(IV)が1.21のポリブチレンテレフタレートと固有粘度(IV)が0.48のポリエチレンテレフタレートを使用し、延伸倍率3.7倍、沸騰水収縮率21.5%の原綿を得たこと以外は、実施例1と同一条件で加工して皮革様シート状物を得た。
[Example 12]
In Example 1 above, polybutylene terephthalate having an intrinsic viscosity (IV) of 1.21 and polyethylene terephthalate having an intrinsic viscosity (IV) of 0.48 were used as island components, and the draw ratio was 3.7 times and the boiling water shrinkage A leather-like sheet was obtained by processing under the same conditions as in Example 1 except that raw cotton having a rate of 21.5% was obtained.
 このようにして得られた皮革様シート状物について、立毛層の厚さは150μmで、表面の立毛はコイル状に捲縮が発現し、立毛の方向はランダムであることを確認した。得られた皮革様シート状物の表面について、前述の測定方法にて3方向からL*、a*、およびb*を測定し、各点間の△E*abを求め、その3点の△E*ab平均値は0.46で、見る角度による色相差は無かった。また、表情が豊かで高級感もあり、シートに成型した際につぎはぎ感やボケ感も無かった。結果を表2に示す。 It was confirmed that the leather-like sheet-like material thus obtained had a nap layer thickness of 150 μm, the napped surface was crimped, and the napped direction was random. About the surface of the obtained leather-like sheet-like material, L *, a *, and b * are measured from three directions by the above-described measurement method, and ΔE * ab between each point is obtained. The average value of E * ab was 0.46, and there was no hue difference depending on the viewing angle. In addition, the expression was rich and high-class, and when molded into a sheet, there was no patchy or blurred feeling. The results are shown in Table 2.
 [比較例1]
 (原綿)
 島成分として固有粘度(IV)が0.718のポリエチレンテレフタレートを、海成分としてJIS K7206(1999)に準じて測定したビカット軟化点が100℃で、MFRが120のポリスチレン(PSt)を、島数が24島の海島型複合用口金を用いて、島/海質量比率80/20で溶融紡糸した繊維を、ローラープレート方式で通常の条件により延伸し捲縮加工後、繊維を51mmの長さにカットし、平均単繊維直径26μmの海島型複合繊維の原綿を得た。
[Comparative Example 1]
(raw cotton)
Polyethylene terephthalate having an intrinsic viscosity (IV) of 0.718 as an island component, and polystyrene (PSt) having a Vicat softening point of 100 ° C. and MFR of 120 measured as a sea component according to JIS K7206 (1999) Using a sea-island type composite base of 24 islands, the fiber melt-spun at an island / sea mass ratio of 80/20 is drawn by a roller plate method under normal conditions and crimped, and then the fiber is 51 mm long. Cut to obtain raw cotton of sea-island type composite fiber having an average single fiber diameter of 26 μm.
 (極細繊維発現型繊維からなる不織布)
 この海島型複合繊維の原綿を用いて、カードおよびクロスラッパー工程を経て積層繊維ウエブを形成し、600本/cmのパンチ本数でニードルパンチした後に、3000本/cmのパンチ本数でニードルパンチを施して、目付が560g/mで、厚みが3.15mmのシート状物を得た。
(シート状物)
 上記の不織布を98℃の温度の熱水で収縮させた後、これに12%の濃度のPVA(ポリビニルアルコール)水溶液を含浸し、120℃の温度の熱風で10分間乾燥することにより、不織布の質量に対するPVA質量が33質量%の不織布を得た。このようにして得られた不織布を、トリクロロエチレン中に浸漬して海成分を溶解除去し、極細中空繊維からなる不織布(脱海シート)を得た。このようにして得られた極細繊維からなる不織布(脱海シート)を、固形分濃度を12%に調整したポリカーボネート系ポリウレタンのDMF(ジメチルホルムアミド)溶液に浸漬し、次いでDMF濃度30%の水溶液中でポリウレタンを凝固させた。その後、PVAおよびDMFを熱水で除去し、110℃の温度の熱風で10分間乾燥することにより、島成分からなる前記の極細繊維の質量に対するポリウレタン質量が32質量%のシート状物を得た。
その後、シート状物を厚さ方向に半裁し、半裁面の反対側の面を240メッシュのサンドペーパーを用い、バフロール速度500m/分、シート搬送速度1.0m/分、バフロールとシートが接触するシート接触角を50°としてバフィングを行い、立毛面を形成した。
(Nonwoven fabric composed of ultrafine fibers)
Using this sea-island type composite fiber raw material, a laminated fiber web is formed through a card and cross wrapping process, needle punched at a punch number of 600 / cm 2 , and then needle punched at a punch number of 3000 / cm 2. As a result, a sheet-like material having a basis weight of 560 g / m 2 and a thickness of 3.15 mm was obtained.
(Sheet)
After shrinking the nonwoven fabric with hot water at a temperature of 98 ° C., the nonwoven fabric was impregnated with an aqueous solution of PVA (polyvinyl alcohol) having a concentration of 12% and dried with hot air at a temperature of 120 ° C. for 10 minutes. A nonwoven fabric having a PVA mass of 33 mass% relative to the mass was obtained. The nonwoven fabric obtained in this way was immersed in trichlorethylene to dissolve and remove sea components, and a nonwoven fabric (sea removal sheet) made of ultrafine hollow fibers was obtained. The nonwoven fabric (sea removal sheet) made of ultrafine fibers thus obtained is immersed in a DMF (dimethylformamide) solution of polycarbonate polyurethane having a solid content adjusted to 12%, and then in an aqueous solution having a DMF concentration of 30%. To solidify the polyurethane. Thereafter, PVA and DMF were removed with hot water, and dried with hot air at a temperature of 110 ° C. for 10 minutes to obtain a sheet-like material having a polyurethane mass of 32 mass% with respect to the mass of the ultrafine fibers comprising the island components. .
Thereafter, the sheet-like material is cut in the thickness direction, and the surface opposite to the half-cut surface is made of 240 mesh sand paper, the bafrol speed is 500 m / min, the sheet conveyance speed is 1.0 m / min, and the bafrol and the sheet are in contact with each other. Buffing was performed at a sheet contact angle of 50 ° to form a raised surface.
 このようして得られたシート状物を、液流染色機を用いて、130℃の温度条件下で、捲縮処理と染色を同時に行った後に、乾燥機を用いて乾燥を行い、シート状物を得た。 The sheet-like material thus obtained is subjected to simultaneous crimping treatment and dyeing using a liquid dyeing machine under a temperature condition of 130 ° C., and then dried using a dryer. I got a thing.
 得られたシート状物は、シート厚みが0.90mm、平均単繊維径が4.4μmで、立毛層部分を観察した結果、立毛層を構成する極細繊維に捲縮が発現していないことを確認した。また、断面のSEM観察(500倍)により、ポリウレタンは多孔化していることを確認したが、シート状物のストレッチ性は不良であった。結果を表1に示す。 The obtained sheet-like material has a sheet thickness of 0.90 mm, an average single fiber diameter of 4.4 μm, and as a result of observing the napped layer portion, it is confirmed that crimps are not expressed in the ultrafine fibers constituting the napped layer. confirmed. Moreover, it was confirmed by SEM observation (500 times) of the cross section that the polyurethane was porous, but the stretchability of the sheet was poor. The results are shown in Table 1.
 [比較例2] 
 (紡糸)
 固有粘度(IV)が0.718のポリエチレンテレフタレートを紡糸口金から押出し、ローラープレート方式で通常の条件により延伸し、74dtex/350fの複合マルチフィラメント(極細繊維)を得た。
[Comparative Example 2]
(spinning)
Polyethylene terephthalate having an intrinsic viscosity (IV) of 0.718 was extruded from a spinneret, and stretched by a roller plate method under ordinary conditions to obtain a 74 dtex / 350 f composite multifilament (ultrafine fiber).
 一方、上記と同様にして、56dtex/12fのマルチフィラメントを得た。この複合フィラメントを撚糸(1500/m)したものを経糸及び緯糸に用いて、平織の織物を作製した。 On the other hand, a 56 dtex / 12f multifilament was obtained in the same manner as described above. A plain woven fabric was produced using twisted yarn (1500 / m) of the composite filament for warp and weft.
 先に製造した74dtex/350fの複合マルチフィラメント(極細繊維)を長さ5mmにカットした後、水中に分散させ、表層用と裏層用の抄造用スラリーを作製した。表層目付を100g/m、裏層目付を100g/m とし、上記織物を挿入して、積層構造繊維シートを形成し、高速水流の噴射により抄造シートを構成する繊維同士を三次元交絡させて不織布を得た。 The previously produced 74 dtex / 350 f composite multifilament (ultrafine fiber) was cut to a length of 5 mm, and then dispersed in water to produce a papermaking slurry for the surface layer and the back layer. The surface fabric weight is 100 g / m 2 , the back fabric weight is 100 g / m 2 , the above fabric is inserted to form a laminated fiber sheet, and the fibers constituting the paper sheet are three-dimensionally entangled by jetting high-speed water flow. To obtain a nonwoven fabric.
 その後、固形分濃度を12%に調整したポリカーボネート系ポリウレタンのDMF(ジメチルホルムアミド)溶液に浸漬し、次いでDMF濃度30%の水溶液中でポリウレタンを凝固させた。その後、DMFを熱水で除去し、110℃の温度の熱風で10分間乾燥することにより、前記の極細繊維の質量に対するポリウレタン質量が33質量%のシート状物を得た。 Thereafter, the polyurethane was immersed in a DMF (dimethylformamide) solution of polycarbonate polyurethane having a solid content concentration adjusted to 12%, and then the polyurethane was coagulated in an aqueous solution having a DMF concentration of 30%. Then, DMF was removed with hot water and dried with hot air at a temperature of 110 ° C. for 10 minutes to obtain a sheet-like material having a polyurethane mass of 33 mass% relative to the mass of the ultrafine fibers.
 その後、シート状物の表面を240メッシュのサンドペーパーを用い、バフロール速度500m/分、シート搬送速度1.0m/分、バフロールとシートが接触するシート接触角を50°としてバフィングを行い、立毛面を形成した。 Thereafter, the surface of the sheet-like material was buffed using a 240 mesh sandpaper, buffing speed of 500 m / min, sheet conveyance speed of 1.0 m / min, and the sheet contact angle between the bafrol and the sheet was 50 °, and the raised surface Formed.
 このようにして得られたシート状物を、液流染色機を用いて染色した。得られたシート状物は、シート厚みが0.90mm、平均単繊維径が4.4μmで、立毛層部分を観察した結果、極細繊維は繊維束を構成しておらず、また立毛層を構成する極細繊維に捲縮が発現していないことを確認した。また、断面のSEM観察(500倍)により、ポリウレタンは多孔化していることを確認したが、シート状物のストレッチ性は不良であった。結果を表1に示す。 The sheet-like material thus obtained was dyed using a liquid flow dyeing machine. The obtained sheet-like material has a sheet thickness of 0.90 mm and an average single fiber diameter of 4.4 μm. As a result of observing the napped layer portion, the ultrafine fibers do not constitute a fiber bundle, and constitute a napped layer. It was confirmed that no crimp was developed in the ultrafine fibers. Moreover, it was confirmed by SEM observation (500 times) of the cross section that the polyurethane was porous, but the stretchability of the sheet was poor. The results are shown in Table 1.
 [比較例3]
 (原綿)
 島成分として固有粘度(IV)が0.652のポリエチレンテレフタレートと固有粘度(IV)が0.651のポリエチレンテレフタレートを、それぞれ別に溶融して用いたこと以外は、実施例1と同様にして、海島型複合繊維の原綿を得た。
[Comparative Example 3]
(raw cotton)
In the same manner as in Example 1 except that polyethylene terephthalate having an intrinsic viscosity (IV) of 0.652 and polyethylene terephthalate having an intrinsic viscosity (IV) of 0.651 were separately melted and used as island components, A raw cotton of type composite fiber was obtained.
 (極細繊維発現型繊維からなる不織布)
 この海島型複合繊維の原綿を用いて、カードおよびクロスラッパー工程を経て積層繊維ウエブを形成し、600本/cmのパンチ本数でニードルパンチした後に、3000本/cmのパンチ本数でニードルパンチを施して、目付が340g/mで、厚みが1.80mmのシート状物を得た。
(Nonwoven fabric composed of ultrafine fibers)
Using this sea-island type composite fiber raw material, a laminated fiber web is formed through a card and cross wrapping process, needle punched at a punch number of 600 / cm 2 , and then needle punched at a punch number of 3000 / cm 2. Thus, a sheet-like material having a basis weight of 340 g / m 2 and a thickness of 1.80 mm was obtained.
 (シート状物)
 上記の不織布を98℃の温度の熱水で収縮させた後、これに12%の濃度のPVA(ポリビニルアルコール)水溶液を含浸し、120℃の温度の熱風で10分間乾燥することにより、不織布の質量に対するPVA質量が33質量%の不織布を得た。このようにして得られた不織布を、トリクロロエチレン中に浸漬して海成分を溶解除去し、極細中空繊維からなる不織布(脱海シート)を得た。このようにして得られた極細繊維からなる不織布(脱海シート)を、固形分濃度を12%に調整したポリカーボネート系ポリウレタンのDMF(ジメチルホルムアミド)溶液に浸漬し、次いでDMF濃度30%の水溶液中でポリウレタンを凝固させた。その後、PVAおよびDMFを熱水で除去し、110℃の温度の熱風で10分間乾燥することにより、島成分からなる前記の極細繊維の質量に対するポリウレタン質量が38質量%のシート状物を得た。
その後、シート状物を厚さ方向に半裁し、半裁面の反対側の面を240メッシュのサンドペーパーを用い、バフロール速度500m/分、シート搬送速度1.0m/分、バフロールとシートが接触するシート接触角を50°としてバフィングを行い、立毛面を形成した。
(Sheet)
After shrinking the nonwoven fabric with hot water at a temperature of 98 ° C., the nonwoven fabric was impregnated with an aqueous solution of PVA (polyvinyl alcohol) having a concentration of 12% and dried with hot air at a temperature of 120 ° C. for 10 minutes. A nonwoven fabric having a PVA mass of 33 mass% relative to the mass was obtained. The nonwoven fabric obtained in this way was immersed in trichlorethylene to dissolve and remove sea components, and a nonwoven fabric (sea removal sheet) made of ultrafine hollow fibers was obtained. The nonwoven fabric (sea removal sheet) made of ultrafine fibers thus obtained is immersed in a DMF (dimethylformamide) solution of polycarbonate polyurethane having a solid content adjusted to 12%, and then in an aqueous solution having a DMF concentration of 30%. To solidify the polyurethane. Thereafter, PVA and DMF were removed with hot water and dried with hot air at a temperature of 110 ° C. for 10 minutes to obtain a sheet-like material having a polyurethane mass of 38% by mass with respect to the mass of the ultrafine fibers comprising the island components. .
Thereafter, the sheet-like material is cut in the thickness direction, and the surface opposite to the half-cut surface is made of 240 mesh sand paper, the bafrol speed is 500 m / min, the sheet conveyance speed is 1.0 m / min, and the bafrol and the sheet are in contact with each other. Buffing was performed at a sheet contact angle of 50 ° to form a raised surface.
 このようして得られたシート状物を、液流染色機を用いて、130℃の温度条件下で、捲縮処理と染色を同時に行った後に、乾燥機を用いて乾燥を行い、シート状物を得た。 The sheet-like material thus obtained is subjected to simultaneous crimping treatment and dyeing using a liquid dyeing machine under a temperature condition of 130 ° C., and then dried using a dryer. I got a thing.
 得られたシート状物は、シート厚みが0.80mm、平均単繊維径が4.4μmで、立毛層部分を観察した結果、立毛層を構成する極細繊維に捲縮が発現していることを確認したが、捲縮の半径平均値は110μmであった。また、断面のSEM観察(500倍)により、ポリウレタンは多孔化していることを確認したが、シート状物のストレッチ性は不良であった。結果を表1に示す。 The obtained sheet-like material has a sheet thickness of 0.80 mm and an average single fiber diameter of 4.4 μm. As a result of observing the napped layer portion, it is confirmed that crimps are expressed in the ultrafine fibers constituting the napped layer. As confirmed, the average radius of crimp was 110 μm. Moreover, it was confirmed by SEM observation (500 times) of the cross section that the polyurethane was porous, but the stretchability of the sheet was poor. The results are shown in Table 1.
 [比較例4]
 (原綿)
 島/海質量比率を20/80としたこと以外は、実施例1と同様にして、海島型複合繊維の原綿を得た。
[Comparative Example 4]
(raw cotton)
A raw cotton of sea-island type composite fiber was obtained in the same manner as in Example 1 except that the island / sea mass ratio was 20/80.
 (極細繊維発現型繊維からなる不織布)
 この海島型複合繊維の原綿を用いて、カードおよびクロスラッパー工程を経て積層繊維ウエブを形成し、600本/cmのパンチ本数でニードルパンチした後に、3000本/cmのパンチ本数でニードルパンチを施して、目付が340g/mで、厚みが1.85mmのシート状物を得た。
(Nonwoven fabric composed of ultrafine fibers)
Using this sea-island type composite fiber raw material, a laminated fiber web is formed through a card and cross wrapping process, needle punched at a punch number of 600 / cm 2 , and then needle punched at a punch number of 3000 / cm 2. As a result, a sheet-like material having a basis weight of 340 g / m 2 and a thickness of 1.85 mm was obtained.
 (シート状物)
 上記の不織布を98℃の温度の熱水で収縮させた後、これに12%の濃度のPVA(ポリビニルアルコール)水溶液を含浸し、120℃の温度の熱風で10分間乾燥することにより、不織布の質量に対するPVA質量が34質量%の不織布を得た。このようにして得られた不織布を、トリクロロエチレン中に浸漬して海成分を溶解除去し、極細中空繊維からなる不織布(脱海シート)を得た。このようにして得られた極細繊維からなる不織布(脱海シート)を、固形分濃度を12%に調整したポリカーボネート系ポリウレタンのDMF(ジメチルホルムアミド)溶液に浸漬し、次いでDMF濃度30%の水溶液中でポリウレタンを凝固させた。その後、PVAおよびDMFを熱水で除去し、110℃の温度の熱風で10分間乾燥することにより、島成分からなる前記の極細繊維の質量に対するポリウレタン質量が35質量%のシート状物を得た。
その後、シート状物を厚さ方向に半裁し、半裁面の反対側の面を240メッシュのサンドペーパーを用い、バフロール速度500m/分、シート搬送速度1.0m/分、バフロールとシートが接触するシート接触角を50°としてバフィングを行い、立毛面を形成した。
(Sheet)
After shrinking the nonwoven fabric with hot water at a temperature of 98 ° C., the nonwoven fabric was impregnated with an aqueous solution of PVA (polyvinyl alcohol) having a concentration of 12% and dried with hot air at a temperature of 120 ° C. for 10 minutes. A nonwoven fabric having a PVA mass of 34 mass% with respect to the mass was obtained. The nonwoven fabric obtained in this way was immersed in trichlorethylene to dissolve and remove sea components, and a nonwoven fabric (sea removal sheet) made of ultrafine hollow fibers was obtained. The nonwoven fabric (sea removal sheet) made of ultrafine fibers thus obtained is immersed in a DMF (dimethylformamide) solution of polycarbonate polyurethane having a solid content adjusted to 12%, and then in an aqueous solution having a DMF concentration of 30%. To solidify the polyurethane. Thereafter, PVA and DMF were removed with hot water and dried with hot air at a temperature of 110 ° C. for 10 minutes to obtain a sheet-like material having a polyurethane mass of 35% by mass with respect to the mass of the ultrafine fibers comprising the island components. .
Thereafter, the sheet-like material is cut in the thickness direction, and the surface opposite to the half-cut surface is made of 240 mesh sand paper, the bafrol speed is 500 m / min, the sheet conveyance speed is 1.0 m / min, and the bafrol and the sheet are in contact with each other. Buffing was performed at a sheet contact angle of 50 ° to form a raised surface.
 このようして得られたシート状物を、液流染色機を用いて、130℃の温度条件下で、捲縮処理と染色を同時に行った後に、乾燥機を用いて乾燥を行い、シート状物を得た。 The sheet-like material thus obtained is subjected to simultaneous crimping treatment and dyeing using a liquid dyeing machine under a temperature condition of 130 ° C., and then dried using a dryer. I got a thing.
 得られたシート状物は、シート厚みが0.70mm、平均単繊維径が0.05μmで、立毛層部分を観察した結果、立毛層を構成する極細繊維に捲縮が発現していることを確認し、捲縮の半径平均値は3μmであった。また、断面のSEM観察(500倍)により、ポリウレタンは多孔化していることを確認したが、シート状物のストレッチ性は不良であった。結果を表1に示す。 The obtained sheet-like material has a sheet thickness of 0.70 mm, an average single fiber diameter of 0.05 μm, and as a result of observing the napped layer portion, it is confirmed that crimps are expressed in the ultrafine fibers constituting the napped layer. As a result, the radius average value of crimps was 3 μm. Moreover, it was confirmed by SEM observation (500 times) of the cross section that the polyurethane was porous, but the stretchability of the sheet was poor. The results are shown in Table 1.
 [比較例5]
 (原綿)
島成分として固有粘度(IV)が0.780のポリエチレンテレフタレートと固有粘度(IV)が0.510のポリエチレンテレフタレートを、それぞれ別に溶融して用い、また海成分として5-スルホイソフタル酸ナトリウムを8mol%共重合したポリエチレンテレフタレートを用い、島数が24島の海島型複合用口金を用いて、島/海質量比率80/20で溶融紡糸した繊維を、ローラープレート方式で通常の条件により延伸し捲縮加工後、繊維を51mmの長さにカットし、平均単繊維直径26μmの海島型複合繊維の原綿を得た。
[Comparative Example 5]
(raw cotton)
Polyethylene terephthalate with an intrinsic viscosity (IV) of 0.780 and polyethylene terephthalate with an intrinsic viscosity (IV) of 0.510 are used separately as island components, and 8 mol% of sodium 5-sulfoisophthalate is used as a sea component. Using a copolymerized polyethylene terephthalate, using a sea-island type compound base with 24 islands, a fiber that has been melt-spun at an island / sea mass ratio of 80/20 is drawn and crimped by a roller plate method under normal conditions. After processing, the fiber was cut into a length of 51 mm to obtain a raw material of sea-island type composite fiber having an average single fiber diameter of 26 μm.
 (極細繊維発現型繊維からなる不織布)
 この海島型複合繊維の原綿を用いて、カードおよびクロスラッパー工程を経て積層繊維ウエブを形成し、600本/cmのパンチ本数でニードルパンチした後に、3000本/cmのパンチ本数でニードルパンチを施して、目付が340g/mで、厚みが1.83mmのシート状物を得た。
(Nonwoven fabric composed of ultrafine fibers)
Using this sea-island type composite fiber raw material, a laminated fiber web is formed through a card and cross wrapping process, needle punched at a punch number of 600 / cm 2 , and then needle punched at a punch number of 3000 / cm 2. As a result, a sheet-like material having a basis weight of 340 g / m 2 and a thickness of 1.83 mm was obtained.
 (シート状物)
 上記の不織布を98℃の温度の熱水で収縮させた後、乾燥温度100℃で5分間熱風乾燥した。その後、ポリウレタン固形分濃度が12質量%の水分散型ポリウレタン液(エーテル系)を含浸し、乾燥温度100℃で10分間熱風乾燥することで、島成分からなる前記の極細繊維の質量に対するポリウレタン質量が45質量%のシート状物を得た。
(Sheet)
The nonwoven fabric was shrunk with hot water at a temperature of 98 ° C. and then hot-air dried at a drying temperature of 100 ° C. for 5 minutes. Then, the polyurethane mass with respect to the mass of the ultrafine fibers composed of island components is impregnated with a water-dispersed polyurethane liquid (ether type) having a polyurethane solid content concentration of 12% by mass and dried with hot air at a drying temperature of 100 ° C. for 10 minutes. Of 45% by mass was obtained.
 次に、このようにして得られたシート状物を、80℃の温度に加熱された濃度15g/Lの水酸化ナトリウム水溶液に浸漬して30分処理を行い海島型複合繊維の海成分を除去し、極細繊維と水分散型ポリウレタンからなるシート状物を得た。
その後、シート状物を厚さ方向に半裁し、半裁面の反対側の面を240メッシュのサンドペーパーを用い、バフロール速度500m/分、シート搬送速度1.0m/分、バフロールとシートが接触するシート接触角を50°としてバフィングを行い、立毛面を形成した。
Next, the sheet-like material thus obtained is immersed in a 15 g / L sodium hydroxide aqueous solution heated to a temperature of 80 ° C. and treated for 30 minutes to remove sea components of the sea-island type composite fiber. Thus, a sheet-like material made of ultrafine fibers and water-dispersed polyurethane was obtained.
Thereafter, the sheet-like material is cut in the thickness direction, and the surface opposite to the half-cut surface is made of 240 mesh sand paper, the bafrol speed is 500 m / min, the sheet conveyance speed is 1.0 m / min, and the bafrol and the sheet are in contact with each other. Buffing was performed at a sheet contact angle of 50 ° to form a raised surface.
 このようして得られたシート状物を、液流染色機を用いて、130℃の温度条件下で、捲縮処理と染色を同時に行った後に、乾燥機を用いて乾燥を行い、シート状物を得た。 The sheet-like material thus obtained is subjected to simultaneous crimping treatment and dyeing using a liquid dyeing machine under a temperature condition of 130 ° C., and then dried using a dryer. I got a thing.
 得られたシート状物は、シート厚みが0.75mm、平均単繊維径が4.4μmで、立毛層部分を観察した結果、立毛層を構成する極細繊維に捲縮が発現していることを確認し、捲縮の半径平均値は60μmであった。また、断面のSEM観察(500倍)により、ポリウレタンは無孔化しており、シート状物のストレッチ性は不良であった。結果を表1に示す。 The obtained sheet-like material has a sheet thickness of 0.75 mm, an average single fiber diameter of 4.4 μm, and as a result of observing the napped layer portion, it is confirmed that crimps are expressed in the ultrafine fibers constituting the napped layer. As confirmed, the radius average value of crimps was 60 μm. Moreover, the SEM observation (500 times) of the cross section revealed that the polyurethane was nonporous, and the stretchability of the sheet was poor. The results are shown in Table 1.
 [比較例6]
 (原綿)
 島成分として固有粘度(IV)が1.750のポリブチレンテレフタレートと固有粘度(IV)が0.025のポリエチレンテレフタレートを、それぞれ別に溶融して用いたこと以外は、実施例1と同様にしたところ、口金吐出の際に糸曲がりが著しく、糸切れ多発して安定に製造できなかった。
[Comparative Example 6]
(raw cotton)
Example 1 except that polybutylene terephthalate having an intrinsic viscosity (IV) of 1.750 and polyethylene terephthalate having an intrinsic viscosity (IV) of 0.025 were separately melted and used as island components. When the base was discharged, the yarn was bent significantly, and the yarn was broken frequently and could not be manufactured stably.
 [比較例7]
 上記の実施例1において、島成分を固有粘度(IV)が0.78のポリエチレンテレフタレート単成分としたこと以外は、実施例1と同一条件で皮革様シート状物を得た。
[Comparative Example 7]
A leather-like sheet was obtained under the same conditions as in Example 1 except that the island component was a polyethylene terephthalate single component having an intrinsic viscosity (IV) of 0.78 in Example 1.
 このようにして得られた皮革様シート状物について、立毛層の厚さは210μmで、表面の立毛は捲縮がなく、立毛の方向は一方向に揃っていた。得られたシートの表面について、前述の測定方法にて3方向からL*、a*、およびb*を測定し、各点間の△E*abを求め、その3点の△E*ab平均値は2.51で、見る角度によって色相差があり、シートに成型した際につぎはぎ感やボケ感が生じた。結果を表2に示す。 The leather-like sheet-like material thus obtained had a napped layer thickness of 210 μm, no napped surface, and the napped direction was aligned in one direction. With respect to the surface of the obtained sheet, L *, a *, and b * were measured from three directions by the above-described measurement method, ΔE * ab between each point was obtained, and ΔE * ab average of the three points was obtained. The value was 2.51, and there was a difference in hue depending on the viewing angle, and when it was molded into a sheet, a feeling of patching or blur occurred. The results are shown in Table 2.
 [比較例8]
 上記の実施例1において、ニードルパンチ後のシート状物を96℃の温度の熱水で収縮させた後、12%のPVA(ポリビニルアルコール)水溶液を含浸し、温度120℃の熱風で15分間乾燥したこと以外は、実施例1と同一条件で皮革様シート状物を得た。
[Comparative Example 8]
In Example 1 above, the sheet after needle punching was shrunk with hot water at a temperature of 96 ° C., then impregnated with 12% PVA (polyvinyl alcohol) aqueous solution, and dried with hot air at a temperature of 120 ° C. for 15 minutes. A leather-like sheet was obtained under the same conditions as in Example 1 except that.
 このようにして得られた皮革様シート状物について、立毛層の厚さは195μmで、表面の立毛は捲縮が弱く、起毛処理加工前に発現した捲縮が起毛処理加工によって伸ばされた形となった。得られたシートの表面について、前述の測定方法にて3方向からL*、a*、およびb*を測定し、各点間の△E*abを求め、その3点の△E*ab平均値は2.31で、見る角度によって色相差があり、シートに成型した際につぎはぎ感やボケ感が生じた。結果を表2に示す。 In the leather-like sheet thus obtained, the napped layer has a thickness of 195 μm, and the napped surface is weakly crimped, and the crimps developed before the napping treatment are stretched by the napping treatment. It became. With respect to the surface of the obtained sheet, L *, a *, and b * were measured from three directions by the above-described measurement method, ΔE * ab between each point was obtained, and ΔE * ab average of the three points was obtained. The value was 2.31, and there was a difference in hue depending on the viewing angle, and when the sheet was molded, a feeling of patching or blurring occurred. The results are shown in Table 2.
 [比較例9]
 上記の実施例3において、島成分として固有粘度(IV)が1.21のポリブチレンテレフタレートと固有粘度(IV)が0.48のポリエチレンテレフタレートを使用し、延伸倍率3.9倍、沸騰水収縮率25.2%の原綿を得たこと以外は、実施例3と同一条件で加工して皮革様シート状物を得た。
[Comparative Example 9]
In Example 3 above, polybutylene terephthalate having an intrinsic viscosity (IV) of 1.21 and polyethylene terephthalate having an intrinsic viscosity (IV) of 0.48 were used as island components, and the draw ratio was 3.9 times, boiling water shrinkage. A leather-like sheet was obtained by processing under the same conditions as in Example 3 except that a raw cotton having a rate of 25.2% was obtained.
 このようにして得られた皮革様シート状物について、立毛層の厚さは170μmで、表面の立毛は捲縮が弱く、起毛処理加工前の熱収縮工程にて発現した捲縮が起毛処理加工によって伸ばされた形となった。得られたシートの表面について、前述の測定方法にて3方向からL*、a*、およびb*を測定し、各点間の△E*abを求め、その3点の△E*ab平均値は1.98で、見る角度によって色相差があり、シートに成型した際につぎはぎ感やボケ感が生じた。結果を表2に示す。 The leather-like sheet thus obtained has a raised layer thickness of 170 μm, and the raised surface of the surface is weakly crimped, and the crimp developed in the heat shrinking process before the raising treatment is raised. It became a shape stretched by. With respect to the surface of the obtained sheet, L *, a *, and b * were measured from three directions by the above-described measurement method, ΔE * ab between each point was obtained, and ΔE * ab average of the three points was obtained. The value was 1.98, and there was a difference in hue depending on the viewing angle. When molded into a sheet, a feeling of patching or blurring occurred. The results are shown in Table 2.
 [比較例10]
 上記の実施例1において、厚み方向に半裁後のサンドペーパー処理において、番手を320番のサンドペーパーに変更したこと以外は実施例1と同一条件で加工して皮革様シート状物を得た。
[Comparative Example 10]
In the above Example 1, in the sandpaper processing after half-cutting in the thickness direction, a leather-like sheet was obtained by processing under the same conditions as in Example 1 except that the count was changed to 320th sandpaper.
 このようにして得られた皮革様シート状物について、立毛層の厚みは40μmで、表面の立毛はコイル状に捲縮が発現し、立毛の方向はランダムであることを確認した。得られたシートの表面について、前述の測定方法にて3方向からL*、a*、b*を測定し、各点間の△E*abを求め、その3点の△E*ab平均値は0.17で、見る角度による色相差は無かったが、表情の変化が乏しく高級感に欠けるものであった。結果を表2に示す。 It was confirmed that the leather-like sheet-like material thus obtained had a nap layer thickness of 40 μm, the nap on the surface was crimped, and the napping direction was random. With respect to the surface of the obtained sheet, L *, a *, and b * are measured from three directions by the above-described measurement method, ΔE * ab between each point is obtained, and ΔE * ab average value of the three points Was 0.17, and there was no hue difference depending on the viewing angle, but the change in facial expression was poor and the sense of luxury was lacking. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
1:皮革様シート状物
2:皮革様シート状物の表面
3:タテ方向
4:ヨコ方向
5:厚さ方向
6:立毛順方向
1: Leather-like sheet-like material 2: Surface of leather-like sheet-like material 3: Vertical direction 4: Horizontal direction 5: Thickness direction 6: Napped forward direction

Claims (9)

  1.  極細繊維と多孔化した弾性体ポリマーから構成されるシート状物であって、前記シート状物は基材層と立毛層からなり、前記極細繊維は、コイル状の捲縮を有し、平均単繊維直径が0.1~10μmであり、繊維長が8~90mmの繊維を含み、かつ、前記シート状物の伸張率が10%以上、伸張回復率が80%以上であることを特徴とするシート状物。 A sheet-like material composed of an ultrafine fiber and a porous elastic polymer, the sheet-like material comprising a base material layer and a raised layer, and the ultrafine fiber has a coiled crimp and has an average size It includes fibers having a fiber diameter of 0.1 to 10 μm and a fiber length of 8 to 90 mm, and the sheet material has an elongation rate of 10% or more and an elongation recovery rate of 80% or more. Sheet material.
  2.  前記シート状物を構成する極細繊維は、繊維長が25~90mmの繊維を含むことを特徴とする請求項1に記載のシート状物。 2. The sheet-like material according to claim 1, wherein the ultrafine fibers constituting the sheet-like material contain fibers having a fiber length of 25 to 90 mm.
  3.  前記立毛層を構成する極細繊維が有するコイル状の捲縮の半径が、5~100μmの弧状であることを特徴とする請求項1または2に記載のシート状物。 The sheet-like material according to claim 1 or 2, wherein the coiled crimp radius of the ultrafine fibers constituting the napped layer is an arc shape of 5 to 100 µm.
  4.  前記極細繊維が、異なる2種類のポリマー(A)およびポリマー(B)が繊維長さ方向に沿ってサイドバイサイド型に貼りあわされていることを特徴とする請求項1~3のいずれかに記載のシート状物。 4. The ultrafine fiber according to any one of claims 1 to 3, wherein two different types of polymers (A) and polymers (B) are bonded side by side along the fiber length direction. Sheet material.
  5.  前記ポリマー(A)と前記ポリマー(B)はポリエステル系重合体であり、かつ固有粘度(IV)差が0.002~1.5であることを特徴とする請求項4に記載のシート状物。 The sheet-like material according to claim 4, wherein the polymer (A) and the polymer (B) are polyester polymers and have a difference in intrinsic viscosity (IV) of 0.002 to 1.5. .
  6.  前記ポリマー(A)または前記ポリマー(B)の少なくとも一方はポリブチレンテレフタレート系重合体であることを特徴とする請求項4または5に記載のシート状物。 6. The sheet-like material according to claim 4 or 5, wherein at least one of the polymer (A) and the polymer (B) is a polybutylene terephthalate polymer.
  7. 請求項1~6のいずれかに記載のシート状物を製造する方法であって、極細繊維発現型繊維からなるシート状物から極細繊維を発現させることを特徴とするシート状物の製造方法。 A method for producing a sheet-like material according to any one of claims 1 to 6, characterized in that the ultrafine fibers are expressed from the sheet-like material comprising the ultrafine fiber-expressing fibers.
  8.  前記極細繊維発現型繊維が海島型複合繊維であり、島成分がサイドバイサイド型であることを特徴とする請求項7に記載のシート状物の製造方法。 The method for producing a sheet-like material according to claim 7, wherein the ultrafine fiber-expressing fiber is a sea-island type composite fiber, and the island component is a side-by-side type.
  9.  固有粘度差のある2種類以上のポリエチレンテレフタレート系重合体が繊維長さ方向に沿って、サイドバイサイド型に貼り合わされた、または、偏心した芯鞘構造を形成している平均単繊維直径が0.3μm以上7μm以下の複合繊維からなる不織布と、その内部に高分子弾性体を含有し、表面に立毛層を有する皮革様シート状物であって、皮革様シートの状物表面の測定対象点に対し、皮革様シート状物のタテ方向の立毛順方向の上方斜め45°からの視点を視点1、タテ方向の立毛逆方向の上方斜め45°からの視点を視点2、ヨコ方向の任意の一方の上方斜め45°からの視点を視点3とし、視点1と視点2との色差を△E*ab12、視点2と視点3との色差を△E*ab23、視点3と視点1との色差を△E*ab31としたとき、次式を満たすことを特徴とする皮革様シート状物。
    ・0.2≦(△E*ab12+△E*ab23+△E*ab31)/3≦1.5
    Two or more types of polyethylene terephthalate polymers with different intrinsic viscosities are bonded side by side along the fiber length direction, or the average single fiber diameter forming an eccentric core-sheath structure is 0.3 μm A leather-like sheet-like material having a nonwoven fabric composed of a composite fiber of 7 μm or less and a polymer elastic body inside thereof and having a raised layer on the surface thereof, with respect to the measurement target point on the surface of the leather-like sheet , The viewpoint from the upper 45 ° oblique direction of the vertical napping direction of the leather-like sheet, the viewpoint 1 from the upper oblique direction 45 ° of the vertical napping direction of the vertical direction, the viewpoint 2 from any one of the horizontal direction The viewpoint from obliquely upward 45 ° is set as viewpoint 3, the color difference between viewpoint 1 and viewpoint 2 is ΔE * ab 12 , the color difference between viewpoint 2 and viewpoint 3 is ΔE * ab 23 , and the color difference between viewpoint 3 and viewpoint 1 is when was the △ E * ab 31, the following Leather-like sheet material and satisfies the.
    0.2 ≦ (ΔE * ab 12 + ΔE * ab 23 + ΔE * ab 31 ) /3≦1.5
PCT/JP2017/011194 2016-03-24 2017-03-21 Sheet-shaped material and method for producing same WO2017164162A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187024713A KR102337556B1 (en) 2016-03-24 2017-03-21 Sheet-like article and manufacturing method thereof
JP2018507327A JP6838602B2 (en) 2016-03-24 2017-03-21 Sheet-shaped material and its manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-060272 2016-03-24
JP2016060272 2016-03-24
JP2016090453 2016-04-28
JP2016-090453 2016-04-28

Publications (1)

Publication Number Publication Date
WO2017164162A1 true WO2017164162A1 (en) 2017-09-28

Family

ID=59899536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011194 WO2017164162A1 (en) 2016-03-24 2017-03-21 Sheet-shaped material and method for producing same

Country Status (4)

Country Link
JP (1) JP6838602B2 (en)
KR (1) KR102337556B1 (en)
TW (1) TW201738060A (en)
WO (1) WO2017164162A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019189962A (en) * 2018-04-23 2019-10-31 東レ株式会社 Sheet-like article, and method of manufacturing the same
CN113039062A (en) * 2018-11-16 2021-06-25 电化株式会社 Thermoplastic resin sheet having hair-like body and molded article thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109112845A (en) * 2018-10-19 2019-01-01 江苏尚科聚合新材料有限公司 A kind of softness combined artificial leather and preparation method thereof
KR102553908B1 (en) * 2021-04-30 2023-07-10 주식회사 콤포 Elastic Artificial Fur

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097821A (en) * 2003-08-28 2005-04-14 Kuraray Co Ltd Artificial leather and method for producing the same
JP2008115519A (en) * 2006-10-11 2008-05-22 Toray Ind Inc Leather-like sheet and method for manufacturing the same
JP2010203021A (en) * 2009-03-06 2010-09-16 Toray Ind Inc Sheet material
JP2011190560A (en) * 2010-03-16 2011-09-29 Toray Ind Inc Leathery sheet-like material and method for producing the same
JP2012136800A (en) * 2010-12-27 2012-07-19 Toray Ind Inc Leather-like sheet-shaped material and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2904881B2 (en) 1989-07-10 1999-06-14 三井化学株式会社 Method for producing tetracyclododecene
JP2898532B2 (en) * 1994-01-31 1999-06-02 帝人株式会社 Suede-like fabric manufacturing method
JP2003286663A (en) 2002-03-26 2003-10-10 Asahi Kasei Corp Artificial leather

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097821A (en) * 2003-08-28 2005-04-14 Kuraray Co Ltd Artificial leather and method for producing the same
JP2008115519A (en) * 2006-10-11 2008-05-22 Toray Ind Inc Leather-like sheet and method for manufacturing the same
JP2010203021A (en) * 2009-03-06 2010-09-16 Toray Ind Inc Sheet material
JP2011190560A (en) * 2010-03-16 2011-09-29 Toray Ind Inc Leathery sheet-like material and method for producing the same
JP2012136800A (en) * 2010-12-27 2012-07-19 Toray Ind Inc Leather-like sheet-shaped material and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019189962A (en) * 2018-04-23 2019-10-31 東レ株式会社 Sheet-like article, and method of manufacturing the same
CN113039062A (en) * 2018-11-16 2021-06-25 电化株式会社 Thermoplastic resin sheet having hair-like body and molded article thereof
CN113039062B (en) * 2018-11-16 2023-05-26 电化株式会社 Thermoplastic resin sheet having wool and molded article thereof

Also Published As

Publication number Publication date
KR20180122336A (en) 2018-11-12
TW201738060A (en) 2017-11-01
JPWO2017164162A1 (en) 2019-02-07
JP6838602B2 (en) 2021-03-03
KR102337556B1 (en) 2021-12-10

Similar Documents

Publication Publication Date Title
JP4935721B2 (en) Elastic sheet and manufacturing method thereof
JP6733673B2 (en) Leather cloth
WO2015115290A1 (en) Sheet-like article, and method for producing same
WO2017164162A1 (en) Sheet-shaped material and method for producing same
WO2020054256A1 (en) Artificial leather and method for manufacturing same
JP2019027001A (en) Leather-like sheet
JP2018003181A (en) Grained artificial leather and method for producing the same
JP6613764B2 (en) Artificial leather and method for producing the same
EP3816342B1 (en) Artificial leather and production method therefor
JP6972564B2 (en) Sheet-like material
JP2012136800A (en) Leather-like sheet-shaped material and method for producing the same
JP5088293B2 (en) Leather-like sheet material, interior material, clothing material and industrial material using the same, and method for producing leather-like sheet material
WO2020003866A1 (en) Sheet-shaped item and manufacturing method therefor
JP5035117B2 (en) Sheet material and method for producing the same
JP5168083B2 (en) Leather-like sheet material, interior material, clothing material and industrial material using the same, and method for producing leather-like sheet material
JP5640397B2 (en) Manufacturing method of sheet-like material
JP2018053404A (en) Sheet-like article
JP2021070904A (en) Artificial leather and method for producing the same
JP2012136801A (en) Artificial leather having novel pattern and method for producing the same
JP6354337B2 (en) Sheet
JP2010203021A (en) Sheet material
JP2020051003A (en) Grained artificial leather and method for producing the same
WO2022044945A1 (en) Artificial leather
JP2018003191A (en) Sheet-like product and method for producing the same and grained artificial leather
JP2018123443A (en) Fabric and manufacturing method thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018507327

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187024713

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17770204

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17770204

Country of ref document: EP

Kind code of ref document: A1