WO2020003866A1 - Sheet-shaped item and manufacturing method therefor - Google Patents
Sheet-shaped item and manufacturing method therefor Download PDFInfo
- Publication number
- WO2020003866A1 WO2020003866A1 PCT/JP2019/021238 JP2019021238W WO2020003866A1 WO 2020003866 A1 WO2020003866 A1 WO 2020003866A1 JP 2019021238 W JP2019021238 W JP 2019021238W WO 2020003866 A1 WO2020003866 A1 WO 2020003866A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sheet
- fiber
- ultrafine fibers
- mass
- ultrafine
- Prior art date
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N3/00—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
- D06N3/12—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
- D06N3/14—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4382—Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
- D04H1/43825—Composite fibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/44—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
- D04H1/46—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/44—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
- D04H1/46—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
- D04H1/48—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation
- D04H1/482—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation in combination with shrinkage
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/44—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
- D04H1/46—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
- D04H1/498—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres entanglement of layered webs
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/70—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
- D04H1/72—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H11/00—Non-woven pile fabrics
- D04H11/08—Non-woven pile fabrics formed by creation of a pile on at least one surface of a non-woven fabric without addition of pile-forming material, e.g. by needling, by differential shrinking
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06C—FINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
- D06C13/00—Shearing, clipping or cropping surfaces of textile fabrics; Pile cutting; Trimming seamed edges
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/37—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/564—Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/37—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/643—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N3/00—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
- D06N3/0002—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
- D06N3/0004—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using ultra-fine two-component fibres, e.g. island/sea, or ultra-fine one component fibres (< 1 denier)
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N3/00—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
- D06N3/0002—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
- D06N3/0006—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using woven fabrics
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N3/00—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
- D06N3/0002—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
- D06N3/0009—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using knitted fabrics
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N3/00—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
- D06N3/0002—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
- D06N3/0011—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using non-woven fabrics
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N3/00—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
- D06N3/0002—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
- D06N3/0013—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using multilayer webs
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N3/00—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
- D06N3/0002—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
- D06N3/004—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using flocked webs or pile fabrics upon which a resin is applied; Teasing, raising web before resin application
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N3/00—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
- D06N3/007—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by mechanical or physical treatments
- D06N3/0075—Napping, teasing, raising or abrading of the resin coating
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N3/00—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
- D06N3/04—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D06N3/10—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds with styrene-butadiene copolymerisation products or other synthetic rubbers or elastomers except polyurethanes
- D06N3/106—Elastomers
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N3/00—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
- D06N3/18—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with two layers of different macromolecular materials
- D06N3/183—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with two layers of different macromolecular materials the layers are one next to the other
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N3/00—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
- D06N3/18—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with two layers of different macromolecular materials
- D06N3/186—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with two layers of different macromolecular materials one of the layers is on one surface of the fibrous web and the other layer is on the other surface of the fibrous web
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06C—FINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
- D06C11/00—Teasing, napping or otherwise roughening or raising pile of textile fabrics
Definitions
- the present invention relates to a sheet-like material and a method for producing the same.
- the sheet-like material mainly composed of a nonwoven fabric made of microfibers and a polymer elastic material has excellent characteristics such as high durability and uniformity that are not found in natural leather. It has been used for various purposes such as materials, interior materials, shoes and clothing. Above all, in the napped sheet-like material in which the surface of the sheet-like material is polished and the fine fibers on the surface are raised, for example, depending on its use, a material having a uniform and smooth surface is used. Proposals have been made even to those having irregularities, such as a sheet-like material having a tactile sensation close to the moist and slimy feel of nubuck as disclosed in Document 1.
- Patent Documents 2 and 3 having a nap surface in which microfibers at the nanofiber level are densely arranged, suitable for polishing applications A sheet is disclosed.
- a suede-like sheet having a smooth surface and uniform as exemplified in Patent Documents 2 and 3 is used.
- the sheet-shaped material has a more glossy appearance and an elegant and excellent appearance.
- the conventional sheet-like material having a smooth and uniform surface is suitable for polishing, and therefore, the properties such as light fastness and gloss required for interior materials, shoes, and clothing are not sufficient. There was a need for excellent abrasion resistance that was not easily broken during actual use.
- the present inventors have conducted intensive studies in order to achieve the above object, and as a result, the conventional sheet-like material for polishing purposes hit the sheet-like material because the average fiber length of the ultrafine fibers in the nap layer was short. It has been found that light is irregularly reflected, so that a sufficient glossiness cannot be obtained, and that sufficient abrasion resistance cannot be obtained because of a small amount of a polymer elastic body as a binder. In other words, in order to achieve a fine touch and excellent glossiness on the suede-like artificial leather surface, it is important that the surface coverage and the fiber length of the ultrafine fibers in the nap layer be in a specific range. In addition, they have found that it is important to set the amount of the elastic polymer in a specific range in order to achieve the wear resistance, and have reached the present invention.
- the present invention is to solve the above problems.
- the sheet-like article of the present invention is a sheet-like article containing an ultrafine fiber bundle formed by combining a plurality of ultrafine fibers made of a thermoplastic resin, wherein the sheet-like article comprises a base layer and a nap layer, and
- the material layer is a fiber entangled body made of the ultrafine fiber bundle, and the nap layer has nap made of only the ultrafine fiber on at least one surface of the sheet-like material, and has the following conditions (1) to ( Satisfies all of 3).
- the average single yarn diameter of the ultrafine fibers is 0.1 ⁇ m or more and 10 ⁇ m or less.
- the average fiber length of the ultrafine fibers in the nap layer is 250 ⁇ m or more and 500 ⁇ m or less.
- the surface coverage of the ultrafine fibers in the nap layer is 60% or more and 100% or less.
- the sheet-like material is composed of the ultrafine fiber bundle and a polymer elastic body, and the polymer elastic body is provided inside the fiber entangled body. It is contained.
- the ultrafine fiber bundle is composed of at least 10 fibers / bundle and at most 400 fibers / bundle.
- the CV value (coefficient of variation) of the average fiber length of the ultrafine fibers in the nap layer is 30% or less.
- the amount of the polymer elastic body applied to the ultrafine fibers is more than 0% by mass and 60% by mass or less.
- the method for producing a sheet-like material of the present invention is a method for producing the above-mentioned sheet-like material, wherein the silicone-based lubricant is applied in an amount of 0.01% by mass or more and 3.0% by mass or less based on the mass of the sheet-like material. After that, a buffing process is performed on the product surface in a state where the sheet material is dried.
- the amount of grinding when buffing the product surface is 20 g / m 2 or more and 250 g / m 2 or less.
- the number of times of the buffing treatment of the product surface is performed in multiple stages of at least two or more, and the number of sandpaper is gradually reduced or the same.
- the present invention by setting the surface coverage and the fiber length of the ultrafine fibers in the napped layer within the above ranges, an elegant appearance suitable for applications such as interior materials, shoes, and clothing, that is, the surface of a sheet-like material
- the density and glossiness of the ultrafine fibers can be remarkably improved, and a sheet having excellent abrasion resistance in actual use can be obtained.
- FIG. 1 is a conceptual diagram illustrating a method for measuring the average fiber length of ultrafine fibers in a nap layer of a sheet-like material according to the present invention.
- the sheet-like article of the present invention is a sheet-like article containing an ultrafine fiber bundle formed by combining a plurality of ultrafine fibers made of a thermoplastic resin, wherein the sheet-like article comprises a base layer and a nap layer, and
- the material layer is a fiber entangled body made of the ultrafine fiber bundle, and the nap layer has nap made of only the ultrafine fiber on at least one surface of the sheet-like material, and has the following conditions (1) to ( Satisfies all of 3).
- the average single yarn diameter of the ultrafine fibers is 0.1 ⁇ m or more and 10 ⁇ m or less.
- the average fiber length of the ultrafine fibers in the nap layer is 250 ⁇ m or more and 500 ⁇ m or less.
- the surface coverage of the ultrafine fibers in the nap layer is 60% or more and 100% or less.
- the appearance quality of the sheet-like material can be made excellent in the denseness and glossiness of the above-described ultrafine fibers.
- the configuration of the sheet-like material according to the present invention will be described in detail.
- ultrafine fibers made of a thermoplastic resin constituting the sheet-like material are, for example, polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyester such as polytrimethylene terephthalate and polylactic acid, and polyamides. 6, polyamide 66, polyamide 12, and the like; polyolefins such as acrylic, polyethylene, and polypropylene; and melt-spinnable resins such as polyphenylene sulfide (PPS) and thermoplastic cellulose.
- polyester is preferably used from the viewpoint of strength, dimensional stability and light resistance.
- fibers obtained from recycled materials or plant-derived materials can also be used.
- Polycondensation polymers represented by polyesters and polyamides constituting fibers are often used because of their high melting points and excellent heat resistance to heat. Furthermore, it is also allowed that ultrafine fibers of different materials are mixed.
- inorganic particles such as titanium oxide particles, a lubricant, a pigment, a heat stabilizer, an ultraviolet absorber, a conductive agent, a heat storage agent, an antibacterial agent, etc. are added to the thermoplastic resin. Is also a preferred embodiment.
- the average single yarn diameter of the ultrafine fibers is 0.1 ⁇ m or more and 10 ⁇ m or less.
- the average single yarn diameter is 10 ⁇ m or less, preferably 8.0 ⁇ m or less, and more preferably 7.0 ⁇ m or less.
- the sheet becomes a sheet having high single fiber strength and rigidity. It has excellent effects on fiber dispersibility during napping treatment such as grinding, and ease of handling.
- the average single yarn diameter of the ultrafine fibers adopts a value measured as follows.
- A) A scanning electron microscope (SEM) photograph of the surface of the sheet is taken.
- B) 100 ultrafine fibers are randomly selected and the diameter of 100 single yarns is measured.
- the average single yarn diameter of the fiber is calculated by calculating the diameter and area of a circumscribed circle of the fiber cross section, and calculating the actual area of the fiber cross section with respect to the area of the circumscribed circle.
- the equivalent diameter calculated from the ratio is adopted.
- the cross-sectional shape of the ultrafine fibers in the present invention may be, in addition to a round cross-section, an elliptical shape, a flat shape, a triangular shape such as a polygon, a fan shape, or a cross shape such as a cross shape in accordance with the characteristics of a desired sheet-like material. it can.
- the ultrafine fibers constituting the fiber entangled body take the form of an ultrafine fiber bundle formed by combining a plurality of ultrafine fibers.
- the form of the ultrafine fiber bundle in which a plurality of the ultrafine fibers are combined refers to a so-called bundle-like state in which a plurality of the ultrafine fibers are present in contact at least in part.
- the particles may be bonded to each other by fusing, or may be aggregated.
- the number of fibers in the ultrafine fiber bundle is preferably from 10 / bundle to 400 / bundle, more preferably from 15 / bundle to 200 / bundle.
- the number of fibers is less than 10 fibers / bundle, the fineness of the ultrafine fibers is poor, and for example, mechanical properties such as abrasion tend to decrease.
- the number of fibers is more than 400 fibers / bundle, the spreadability at the time of raising the hair is reduced, and the fiber distribution on the raised hair tends to be uneven.
- the sheet material of the present invention comprises a base material layer and a napped layer.
- the substrate layer is a fiber entangled body made of the ultrafine fiber bundle.
- the nap layer has nap made of only the ultrafine fibers on at least one surface of the sheet-like material.
- the average fiber length of the ultrafine fibers in the nap layer is 250 ⁇ m or more and 500 ⁇ m or less.
- the present inventors focused on the average fiber length constituting the nap layer.
- To be glossy means to have a surface with a high mirror reflectance of light, and to mean that the napped layer surface is smooth. Therefore, if the fiber length is long, the glossiness tends to be excellent.
- the average fiber length of the ultrafine fibers constituting the nap layer is 500 ⁇ m or more, the ultrafine fibers are too long, and undesirably deteriorates the quality.
- the smoothness of the napped layer surface is poor, and light is irregularly reflected on the napped layer surface.
- the average fiber length of the ultrafine fibers constituting the nap layer is 250 ⁇ m or more and 500 ⁇ m or less, preferably 300 ⁇ m or more and 400 ⁇ m or less, a sheet-like material excellent in glossiness can be obtained.
- the average fiber length ( ⁇ m) of the ultrafine fibers in the nap layer is a value measured as follows, as shown in the conceptual diagram of FIG. (A) Using a lint brush, align the nap fibers with the barbs. (B) A cross-sectional SEM image of the sheet is taken at a magnification of 40 ⁇ . (C) In the SEM image, a line L is drawn at the root of the ultrafine fibers in the non-woven fabric, and when the fiber bundle is formed, the upper limit where the fiber bundle exists. (D) Draw a line U at the upper limit where the fiber closest to the observation surface is napped. (E) Draw a plurality of lines Pn (P1, P2, P3,...
- the CV value of the average fiber length of the ultrafine fibers in the napped layer is obtained by calculating the arithmetic average value and the standard deviation by measuring the above average fiber length, and expressing the value obtained by dividing the standard deviation by the average value as a percentage (%). This indicates that the smaller the value, the more uniform.
- the surface coverage of the ultrafine fibers in the nap layer is 60% or more and 100% or less.
- the surface coverage was determined by enlarging the nap surface to an observation magnification of 30 to 70 times so that the presence of the nap fiber could be confirmed by SEM, and using image analysis software to calculate the ratio of the total area of the nap portion to a total area of 4 mm 2 Calculated and defined as nap coverage.
- the ratio of the total area can be calculated by performing a binarization process on the photographed SEM image using the image analysis software “ImageJ” and setting the napped portion and the non-napped portion to a threshold value of 100.
- the image was manually edited and the portion was calculated as a non-nap portion.
- the above-mentioned image analysis software “ImageJ” is exemplified.
- the image analysis system is composed of image processing software having a function of calculating a specified pixel area ratio
- the image analysis software It is not limited to “ImageJ”.
- the image processing software “ImageJ” is a commonly used software and was developed by the National Institutes of Health.
- the image processing software “ImageJ” has a function of specifying a necessary area in a captured image and performing pixel analysis.
- the sheet material of the present invention is preferably composed of the ultrafine fiber bundle and a polymer elastic body, and the polymer elastic body is preferably contained inside the fiber entangled body.
- the mass of the polymer elastic body in consideration of excellent abrasion resistance should be more than 20% by mass, preferably 25% by mass or more based on the mass of the ultrafine fibers of the fiber entangled body. Thereby, it becomes possible to impart appropriate compression characteristics and wear resistance to the sheet-like material.
- the mass of the polymer elastic body is more than 60% by mass, the fiber opening property in the napping step becomes poor, and the flexibility of the sheet-like material may decrease.
- the sheet-like material when the sheet-like material is used after being dyed, there is a difference in the color tone between the fiber of the fiber entangled body after dyeing and the elastic polymer, so that it may be preferable that the amount of the elastic polymer is smaller.
- it is not preferable to excessively contain the elastic polymer because the amount of the organic substance used in the production process increases, and the less the elastic polymer, the less the recycled material or the plant-derived material.
- pigments such as carbon black, dyes, fungicides and antioxidants, ultraviolet absorbers, light stabilizers such as light stabilizers, flame retardants, penetrants and lubricants, Antiblocking agents such as silica and titanium oxide, water repellents, viscosity modifiers, surfactants such as antistatic agents, defoamers, fillers such as cellulose, and coagulation regulators, and inorganics such as silica and titanium oxide Particles and the like can be contained.
- pigments such as carbon black, dyes, fungicides and antioxidants, ultraviolet absorbers, light stabilizers such as light stabilizers, flame retardants, penetrants and lubricants, Antiblocking agents such as silica and titanium oxide, water repellents, viscosity modifiers, surfactants such as antistatic agents, defoamers, fillers such as cellulose, and coagulation regulators, and inorganics such as silica and titanium oxide Particles and the like can be contained.
- Examples of the elastic polymer used in the present invention include polyurethane elastomer, polyurea, polyacrylic acid, ethylene / vinyl acetate elastomer, acrylonitrile / butadiene elastomer and styrene / butadiene elastomer, polyvinyl alcohol, and polyethylene glycol. From the viewpoints of properties and compressive properties, polyurethane elastomers are preferably used. A plurality of polymer elastic bodies can be contained in the polymer elastic body.
- Polyurethane-based elastomers particularly preferably used in the present invention include polyurethane and polyurethane-polyurea elastomers.
- the sandpaper has a count of 180 pounds in ASTM D4158-08 (2016) “Standard—Guide—For—Abrasion—Resistence—of—Textile—Fabrics” (Uniform—Abrasion), with a load of 180 pounds of sandpaper. It is important that the number of times of tearing of the seafar measured by the above is 20 or more per 0.10 mm thickness of the sheet. By setting the number of times of tearing abrasion per 0.10 mm of the sheet material to 20 times or more, preferably 25 times, and more preferably 35 times or more, a sheet material excellent in tear resistance is obtained.
- the number of breaks of seafar abrasion was determined using a seafarer abrasion test under the condition of a friction surface ( ⁇ 50 mm) on the napped layer side of the sheet-like material and a sandpaper of 180 grit with a load of 2 pounds.
- Abrasion test is performed using a machine, the number of times until the sheet-like material tears limit is activated, and the abrasion tester stops, is divided by the thickness of the sheet-like material, and the number of seafar wear tears per 0.10 mm thickness (Times / 0.10 mm).
- Step of forming fiber entangled body composed of ultrafine fiber-generating fibers In the method for producing a sheet-like material of the present invention, it is preferable to first form a fiber entangled body composed of ultrafine fiber-generating fibers. By doing so, it is possible to easily form a fiber entangled body in which the ultrafine fiber bundle is entangled, as compared with the case where the fiber entangled body is directly formed from the ultrafine fibers.
- sea-island fibers are particularly preferable.
- the sea-island type composite fiber is a sea-island type composite fiber in which two components, a sea component and an island component, are mutually arranged and spun using a sea-island type composite mouthpiece, or a mixed spinning in which the two components of a sea component and an island component are mixed and spun.
- these sea-island fibers a highly controlled ultrafine fiber is obtained, and a sufficiently long ultrafine fiber is obtained, which also contributes to the strength of a nonwoven fabric and a sheet-like material having the nonwoven fabric. Therefore, sea-island type composite fibers are preferably used.
- the ratio of the sea component and the island component is preferably such that the mass ratio of the island fiber to the sea-island composite fiber is 0.2 to 0.9, and 0.2 to 0.8. Is a more preferred embodiment.
- the mass ratio By setting the mass ratio to 0.2 or more, the removal rate of sea components is reduced, and the productivity is improved. Further, it is preferable that the mass ratio be 0.9 or less, since the openability of the island fibers can be improved and the merging of the island components can be prevented.
- the island component that becomes an ultrafine fiber in the process described later is as described for the thermoplastic resin.
- the sea component polyethylene, polypropylene, polystyrene, copolymerized polystyrene, copolymerized polyester obtained by copolymerizing sodium sulfoisophthalic acid, polyethylene glycol, and the like, polylactic acid, and the like can be used. It is preferable to use polystyrene or copolymerized polystyrene as a sea component in order to express high shrinkage in the densification shrinkage treatment described later.
- nonwoven fabric a nonwoven fabric obtained by a papermaking method, a short fiber obtained by applying a needle punch or a water jet punch after forming a laminated web using a card and a cross wrapper with short fibers, and a spun bonding method It can be appropriately selected from long-fiber nonwoven fabrics obtained by melt blowing or the like in accordance with desired characteristics, but short-fiber nonwoven fabrics are preferably used in terms of texture and quality.
- the fiber length of the ultrafine fiber generating fiber is preferably 8 mm or more and 90 mm or less.
- the fiber length is more preferably 25 mm or more and 90 mm or less. Note that fibers having a fiber length of less than 8 mm are less likely to be entangled, and fibers fall off during the manufacturing process of the sheet. Further, fibers longer than 90 mm are excellent in entanglement, but tend to have poor abrasion resistance and poor surface quality when a nap layer is formed.
- the number of needle barbs is preferably one or more and nine or less.
- the number of needle barbs is preferably one or more and nine or less.
- the number of punches is preferably not less than 1000 pieces / cm 2 and not more than 6000 pieces / cm 2 .
- the number of punching pieces is preferably not less than 1000 pieces / cm 2 and not more than 6000 pieces / cm 2 .
- water jet punching treatment it is preferable to perform the water in a columnar flow state.
- water is ejected from a nozzle having a diameter of 0.05 mm to 1.0 mm at a pressure of 2 MPa to 60 MPa.
- Apparent density of the constructed nonwoven microfine fiber-forming fibers after needle punching or water jet punching is preferably 0.15 g / cm 3 or more 0.45 g / cm 3 or less.
- Apparent density of the constructed nonwoven microfine fiber-forming fibers after needle punching or water jet punching is preferably 0.15 g / cm 3 or more 0.45 g / cm 3 or less.
- the nonwoven fabric composed of the ultrafine fiber-generating fibers obtained as described above can be shrunk by dry heat or wet heat or both to further increase the density. Further, it can be compressed in the thickness direction by calendering or the like.
- the sheet-like material of the present invention can include a reinforcing layer in the inner layer portion or the surface thereof for the purpose of improving the strength, etc. Thereafter, a step of laminating and integrating this reinforcing layer may be performed.
- a woven fabric, a knitted fabric, a nonwoven fabric (including paper), and a film-like material such as a plastic film or a metal thin film sheet can be used.
- a woven or knitted fabric in which the reinforcing layer is made of fibers synthetic fibers made of polyester, polyamide, polyethylene, polypropylene, or a copolymer thereof are preferably used as the yarns.
- synthetic fibers composed of polyester, polyamide and their copolymers can be preferably used singly or in combination or in combination.
- a yarn constituting a woven or knitted fabric a filament yarn, a spun yarn, a blended yarn of a filament and a short fiber, or the like can be used as a yarn constituting a woven or knitted fabric.
- the average single fiber diameter of the fibers constituting these yarns is preferably 0.1 ⁇ m or more and 20 ⁇ m or less from the viewpoint of the texture of the sheet.
- the sheet-like material may be cut by a needle depending on the thread type of the woven or knitted material and the strength of the sheet-like material may be reduced.
- the yarn type of the yarn constituting the woven or knitted fabric is a twisted yarn.
- the number of twists of the twisted yarn is preferably 500 T / m or more and 4500 T / m or less, more preferably 1000 T / m or more and 4000 T / m or less, and still more preferably 1500 T / m or more and 4000 T / m or less. Preferably it is 2000 T / m or more and 4000 T / m or less.
- the fineness of the yarn constituting the woven or knitted fabric (total fineness in the case of a multifilament)
- the basis weight of the woven or knitted fabric as the reinforcing layer and the basis weight of the sheet-like material are large. Become.
- the rigidity of the sheet is increased, and it is difficult to obtain sufficient flexibility as a sheet used for applications such as interior materials, shoes, and clothing. Therefore, it is preferably 30 dtex or more and 150 dtex or less, and more preferably 50 dtex or more and 130 dtex or less.
- the average single fiber fineness of the single fibers constituting the yarn constituting the woven or knitted fabric used in the present invention can be 1 dtex or more and 10 dtex or less, and ultrafine fibers having a single fiber fineness of 0.001 dtex or more and 1 dtex or less can be obtained. It can also be used.
- the woven or knitted fabric used in the present invention is a conjugate fiber in which two or more types of polymers are conjugated in a side-by-side type or an eccentric core-sheath type (hereinafter sometimes referred to as a “side-by-side or other conjugate fiber”).
- a conjugate fiber in which two or more types of polymers are conjugated in a side-by-side type or an eccentric core-sheath type (hereinafter sometimes referred to as a “side-by-side or other conjugate fiber”).
- a composite fiber such as a side-by-side type composed of two or more polymers having a difference in intrinsic viscosity (IV), different internal strains occur between the two components due to stress concentration on the high viscosity side during stretching.
- IV intrinsic viscosity
- the high-viscosity side largely shrinks due to the difference in elastic recovery rate after stretching and the difference in heat shrinkage in the heat treatment step, and strain is generated in the single fiber, so that a three-dimensional coil-type crimp can be developed. .
- examples of the woven fabric used in the present invention include plain woven, twill woven, satin woven and various woven fabrics based on their woven structures.
- the knitted fabric any of a knitted fabric represented by warp knitting and tricot knitting, a lace knitted fabric, and various knitted fabrics based on these knitting structures can be adopted.
- a woven fabric is preferred from the viewpoint of processability, and a plain woven fabric is particularly preferably used in terms of cost.
- a polymer elastic body is applied to a nonwoven fabric composed of sea-island composite fibers of a microfine fiber generation type. It is preferable to provide a step of applying a water-soluble resin before the formation. By providing the step of applying this water-soluble resin, the surface of the fibers constituting the fiber bundle of the ultrafine fibers and the woven or knitted fabric is protected by the water-soluble resin, and the surface of the fibers constituting the fiber bundle of the ultrafine fibers or the woven or knitted fabric is In addition, the portion directly joined to the elastic polymer is not continuous but intermittent, and the bonding area can be appropriately suppressed.
- the timing at which the water-soluble resin is applied may be before or after the process of expressing the ultrafine fibers described below, as long as it is before the application of the elastic polymer.
- polyvinyl alcohol polyethylene glycol, saccharides, starch and the like can be used.
- polyvinyl alcohol having a saponification degree of 80% or more is preferably used.
- the sea component of the sea-island composite fiber is dissolved and removed with a solvent in which polyvinyl alcohol does not dissolve, and then impregnated with a solution of a polymer elastic material, and then water or A method of removing polyvinyl alcohol after coagulation in an organic solvent aqueous solution is preferably used.
- the amount of the polyvinyl alcohol is preferably 0.1% by mass or more and 70% by mass or less based on the mass of the fibers contained in the nonwoven fabric.
- (D) Ultrafine fiber developing step When the sea-island composite fiber is used as the ultrafine fiber-expressing fiber, the sea component is dissolved and removed from the sea-island composite fiber to express the ultrafine fiber from the ultrafine fiber generating fiber.
- the step is performed before or after the step of applying the polymer elastic body and the silicone-based lubricant described later, or at the timing before or after the raising processing step described later.
- an organic solvent such as toluene or trichloroethylene is used if the sea component is a polyolefin such as polyethylene or polystyrene. If the sea component is polylactic acid or a copolyester, an aqueous alkali solution such as sodium hydroxide can be used.
- This step can be performed by immersing the fiber entangled body made of the ultrafine fiber-generating fibers in the above-mentioned solvent and squeezing the solution.
- devices such as a continuous dyeing machine, a vibro washer type deseamer, a liquid jet dyeing machine, a Wins dyeing machine and a Jigger dyeing machine can be used.
- the polymer elastic body can be contained inside the above-mentioned fiber entangled body or inside the fiber entangled body laminated and integrated with the reinforcing layer.
- a polyurethane elastomer dissolved in a solvent or a water-dispersed polyurethane elastomer can be used.
- a solvent-type polyurethane resin (“Chrisbon” (registered trademark) MP-812NB, manufactured by DIC Corporation) or a water-dispersed polyurethane resin (“Hydran” (registered trademark) WLI-602, manufactured by DIC Corporation) may be used. it can.
- the polyurethane elastomer is of a solvent type, wet coagulation in which the polyurethane elastomer is immersed in water for coagulation is preferable, and when the polyurethane elastomer is a water-dispersed polyurethane, wet heat coagulation is preferably used.
- the polyurethane-based elastomer is of a water-dispersed type, those exhibiting heat-sensitive coagulation properties are preferably used.
- the polyurethane elastomer liquid undergoes a migration phenomenon that concentrates on the surface layer of the fiber entangled body during dry coagulation, and the sheet material containing the polyurethane elastomer is , Tend to harden.
- thermosetting property refers to a property that when the polyurethane elastomer liquid is heated, when a certain temperature (thermal coagulation temperature) is reached, the fluidity of the polyurethane elastomer liquid decreases and solidifies.
- the heat-sensitive coagulation temperature of the water-dispersed polyurethane-based elastomer is preferably 40 ° C. or more and 90 ° C. or less.
- the heat-sensitive coagulation temperature is preferably 40 ° C. or more and 90 ° C. or less.
- a heat-sensitive coagulant can be appropriately added.
- the heat-sensitive coagulant include inorganic salts such as sodium sulfate, magnesium sulfate, calcium sulfate and calcium chloride, and radical reactions such as sodium persulfate, potassium persulfate, ammonium persulfate, azobisisobutyronitrile and benzoyl peroxide. Initiators.
- the wet coagulation temperature is not particularly limited in the case of a solvent-based polyurethane elastomer.
- the temperature may be at least the thermosensitive coagulation temperature of the polyurethane elastomer, for example, preferably from 40 ° C to 100 ° C.
- the temperature of the wet heat coagulation may be at least the heat-sensitive coagulation temperature of the water-dispersed polyurethane elastomer, and is preferably, for example, 40 ° C or more and 200 ° C or less.
- the temperature of the wet heat coagulation is preferably, for example, 40 ° C or more and 200 ° C or less.
- a polyurethane elastomer obtained by reacting a polymer diol, an organic diisocyanate, and a chain extender is preferably used.
- a polycarbonate diol for example, a polycarbonate diol, a polyester diol, a polyether diol, a silicone diol, and a fluorine diol can be adopted, and a copolymer obtained by combining these can also be used.
- a polycarbonate diol and a polyether diol from the viewpoint of hydrolysis resistance
- a more preferable embodiment is a polycarbonate diol from the viewpoint of abrasion resistance.
- the above polycarbonate diol can be produced by a transesterification reaction between an alkylene glycol and a carbonate, or a reaction between phosgene or chloroformate and an alkylene glycol.
- alkylene glycol examples include ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, and 1,10-decanediol.
- Linear alkylene glycols and branched alkylene glycols such as neopentyl glycol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol and 2-methyl-1,8-octanediol
- alicyclic diols such as 1,4-cyclohexanediol
- aromatic diols such as bisphenol A, glycerin, trimethylolpropane, and pentaerythritol.
- a polycarbonate diol obtained from a single alkylene glycol or a copolymerized polycarbonate diol obtained from two or more alkylene glycols can be used.
- polyester diol examples include polyester diols obtained by condensing various low-molecular-weight polyols with polybasic acids.
- low molecular weight polyol examples include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butanediol, 1,4-butanediol, and 2,2-dimethyl-1,3-propane.
- adducts obtained by adding various alkylene oxides to bisphenol A can be used.
- polybasic acids include, for example, succinic acid, maleic acid, adipic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, phthalic acid, isophthalic acid, terephthalic acid, and hexahydroacid
- succinic acid maleic acid, adipic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, phthalic acid, isophthalic acid, terephthalic acid, and hexahydroacid
- polyether diol examples include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and a copolymerized diol obtained by combining them.
- the number average molecular weight of the polymer diol is preferably in the range of 500 or more and 4000 or less when the molecular weight of the polyurethane-based elastomer is constant.
- the number average molecular weight is preferably 500 or more, more preferably 1500 or more, it is possible to prevent the sheet from becoming hard. Further, by setting the number average molecular weight to 4000 or less, more preferably 3000 or less, the strength as a polyurethane elastomer can be maintained.
- organic diisocyanate used in the present invention examples include an aliphatic diisocyanate such as hexamethylene diisocyanate, dicyclohexylmethane diisocyanate, isophorone diisocyanate, and xylylene diisocyanate, and an aromatic diisocyanate such as diphenylmethane diisocyanate and tolylene diisocyanate. And these can be used in combination.
- chain extender amine chain extenders such as ethylenediamine and methylenebisaniline and diol chain extenders such as ethylene glycol can be preferably used. Further, a polyamine obtained by reacting a polyisocyanate with water can be used as a chain extender.
- the polyurethane used in the present invention may be used in combination with a crosslinking agent for the purpose of improving water resistance, abrasion resistance, hydrolysis resistance and the like.
- the cross-linking agent may be an external cross-linking agent added as a third component to the polyurethane-based elastomer, or an internal cross-linking agent that introduces a reaction point to be a cross-linked structure in the polyurethane molecular structure in advance. It is preferable to use an internal cross-linking agent from the viewpoint that a cross-linking point can be formed more uniformly in the polyurethane molecular structure and a decrease in flexibility can be reduced.
- crosslinking agent a compound having an isocyanate group, an oxazoline group, a carbodiimide group, an epoxy group, a melamine resin, a silanol group, or the like can be used.
- step (F) Step of Applying Silicone-Based Lubricant In the step (b) of applying a water-soluble resin, that is, in the case of obtaining a sheet-like material in which a polymer elastic body is contained inside the fiber entangled body, fibers
- the sheet after impregnating and solidifying the entangled body with the elastic polymer is preferably provided with a silicone-based lubricant in an amount of 0.01% by mass or more and 3.0% by mass or less based on the mass of the sheet.
- the fine fibers are dispersed, and a uniform nap layer is easily formed.
- the content exceeds 3.0% by mass, it is difficult to form nap due to the sliding effect of silicone.
- a more preferable range of the silicone-based lubricant is 0.1% by mass or more and 2.0% by mass or less based on the mass of the sheet material.
- the silicone-based lubricant for example, “SM7036EX” manufactured by Toray Cortex Co., Ltd. can be used.
- the silicone-based lubricant there is a method of impregnating the sheet with a silicone oil liquid or a method of spraying and applying by spraying. For more uniform application, the sheet is impregnated with the silicone oil liquid and applied. The method is preferred.
- silicone oil immediately after the solidification of the elastic polymer.
- silicone oil it is preferable to apply silicone oil before heating to dry the water.
- (G) Half-cutting step After the ultrafine fiber developing step, when a polymer elastic body and / or a silicone-based lubricant is applied to the fiber entangled body, the sheet is cut in half in the thickness direction after the step. Or, it can be divided into several pieces. This is preferable because a sheet-like material can be obtained more efficiently.
- the sheet-like material of the present invention includes the base layer and the napped layer as described above, and the napped layer has the napped only of the ultrafine fibers on at least one surface of the sheet-shaped material. Things.
- the nap is generally obtained by buffing treatment, but the buffing treatment is preferably performed by a method of grinding the sheet surface of the ultrafine fiber nonwoven fabric using a sandpaper or a roll sander. In particular, by raising the sheet surface using sandpaper, a uniform and dense nap can be formed.
- ⁇ ⁇ ⁇ As described above, by applying a silicone-based lubricant to the sheet-like material before the raising treatment, the releasability of the elastic polymer and the microfiber is improved, and a long glossy nap is developed. In addition, the surface of the ultrafine fiber is protected, the effect of suppressing fusion is exhibited, and the fiber opening property is improved by the lubricating effect.
- applying an antistatic agent before the raising treatment of the sheet-like material is a preferable embodiment in that grinding powder generated from the sheet-like material by grinding is less likely to be deposited on sandpaper.
- the surface of the fiber entangled body such as a nonwoven fabric or the entire fiber entangled body is treated in a wet state with water or a chemical in order to make the nap surface more uniform and dense nap in a state of high nap coverage.
- the sheet is in a dry state during the raising process.
- the sandpaper is also in a wet state, and the paper life is shortened, such as breakage during continuous processing. Further, since it is necessary to remove water by drying after the raising process, the production efficiency is inferior and this is an unfavorable aspect.
- the number of times of buffing is at least two times, preferably three or more times, and the number of sandpapers used in each step is further reduced stepwise or at least the same. By doing so, the nap can be finished uniformly.
- the count of the sandpaper is a preferred embodiment in which the particle size P specified in JIS R6252: 2006 “Abrasive paper” is in the range of 120 to 600.
- the grinding amount at the time of buffing treatment is 20 g / m 2 or more and 250 g / m 2 or less, preferably 30 g / m 2.
- the concentration is at least 100 g / m 2 .
- the sheet can be dyed according to the application.
- a method for dyeing the sheet-like material it is preferable to use a liquid jet dyeing machine since the sheet-like material can be softened by imparting a kneading effect at the same time as dyeing the sheet-like material. If the dyeing temperature of the sheet-like material is too high, the polymer elastic body may be deteriorated. On the other hand, if the temperature is too low, the dyeing to the fiber becomes insufficient.
- the dyeing temperature is preferably from 80 ° C to 150 ° C, more preferably from 110 ° C to 130 ° C.
- the dye can be selected according to the type of fiber constituting the sheet.
- a disperse dye is used for polyester fibers, and an acid dye or a gold-containing dye is used for polyamide fibers, and a combination thereof can be used.
- a dyeing aid at the time of dyeing the sheet.
- the uniformity and reproducibility of the dyeing can be improved.
- a finishing agent treatment using a softening agent such as silicone, an antistatic agent, a water repellent, a flame retardant, a light resistant agent, an antibacterial agent, or the like can be performed in the same bath or after the dyeing.
- the sheet-like material of the present invention does not have a partially crimped portion or a resin-coated portion on the raised surface.
- the partial pressure bonding includes processing by hot embossing and the like. Although it is possible to impart irregularities to the surface of the sheet-like material by partial pressure bonding or resin coating, there are portions with no nap on the surface where such treatment is performed. In a part without piloerection, a dense feeling and a glossy feeling as the object of the present invention may not be obtained. However, in applications where it is sufficient to have a partially good tactile sensation, these treatments may be performed as necessary.
- Apparent density of the sheet of the present invention is preferably, more preferably 0.200 g / cm 3 or more 0.700 g / cm 3 or less or less 0.100 g / cm 3 or more 0.900 g / cm 3 .
- the apparent density is 0.100 g / cm 3 or more, the denseness and mechanical properties of the sheet material are good, and when the apparent density is 0.900 g / cm 3 or less, it is possible to prevent the texture from becoming hard.
- the apparent density of a sheet-shaped thing points out the value measured as follows.
- A The basis weight of the sheet is measured by a method according to JIS L 1096: 2010 “Test method for fabrics and knitted fabrics” 8.3.2. That is, two test pieces of 20 cm ⁇ 20 cm were sampled, their mass (g) was weighed, and the arithmetic average value was expressed as mass per 1 m 2 (g / m 2 ).
- B As a thickness of a sheet-like material, five points are measured at equal intervals in the sheet width direction under a load of 10 kPa using a thickness gauge (disc diameter of 9 mm or more) with a scale of 0.01 mm, and the arithmetic average value is obtained.
- the apparent density is calculated by the following formula using the basis weight and thickness of the sheet obtained in (A) and (B), and the value is rounded to four decimal places.
- Apparent density (g / cm 3 ) weight (g / m 2 ) thickness (mm) ⁇ 1000
- the thickness of the sheet is preferably 0.1 mm or more and 7 mm or less. By setting the thickness to 0.1 mm or more, preferably 0.3 mm or more, the sheet-like material is excellent in morphological stability and dimensional stability. On the other hand, by setting the thickness to 7 mm or less, more preferably 5 mm or less, the formability of the sheet is excellent.
- the sheet-like material of the present invention has an elegant appearance and a very smooth touch, and also has abrasion resistance, it can be used for uppers of shoes such as shirts, jackets, casual shoes, sports shoes, men's shoes and women's shoes, It can be suitably used for clothing such as trims, bags, belts, wallets, and accessories for clothing such as buttons and pockets.
- the sheet-like material of the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
- the evaluation method used in the examples and the measurement conditions will be described. However, in the measurement of each physical property, unless otherwise specified, the measurement was performed based on the method described above.
- Intrinsic viscosity of polymer (IV) 0.8 g of a sample polymer is dissolved in 10 mL of orthochlorophenol (hereinafter sometimes abbreviated as OCP), and the relative viscosity ⁇ r is determined by the following equation using an Ostwald viscometer at a temperature of 25 ° C., and the intrinsic viscosity ( IV) was calculated.
- OCP orthochlorophenol
- Average fiber length of microfibers in the nap layer ( ⁇ m), CV value of average fiber length of microfibers (%)
- VE-7800 manufactured by KEYENCE CORPORATION was used as a scanning electron microscope.
- a good level in the present invention is "A”.
- Example 1 Polyethylene terephthalate (PET) having an intrinsic viscosity (IV) of 0.718 is used as an island component, polystyrene having an MFR of 18 g / 10 minutes is used as a sea component, and a sea-island type composite mouthpiece having 36 islands is used. After melt-spinning at an island / sea mass ratio of 55/45, the fiber was drawn and crimped, and then cut into 51 mm to obtain a raw cotton of sea-island type composite fiber having a single fiber fineness of 3.1 dtex.
- PET polyethylene terephthalate
- IV intrinsic viscosity
- a laminated web is formed through a card and a cross wrapper process, needle punched at a punch count of 600 / cm 2 , and then needle punched at a punch count of 2900 / cm 2. To give a sheet.
- the sheet After shrinking this sheet with hot water at 96 ° C., the sheet is impregnated with a 10% aqueous PVA solution and dried with hot air at 110 ° C. for 10 minutes to obtain a sheet having a PVA weight of 30% by weight based on the weight of the sheet.
- the sea component was dissolved and removed from the sheet in trichlorethylene to obtain a desealed sheet in which the ultrafine fibers and the woven fabric were entangled. SEM observation of the cross section of the sea-removed sheet revealed that the average single yarn diameter was 2.1 ⁇ m.
- the desealed sheet made of the ultrafine fibers was impregnated with a DMF solution of a polycarbonate-based polyurethane adjusted to a solid concentration of 12%, and the polyurethane was coagulated in an aqueous solution having a DMF concentration of 30%. Thereafter, PVA and DMF were removed with hot water and impregnated with a silicone oil emulsion adjusted to a concentration of 1% by mass, and the silicone-based lubricant applied amount was reduced to 0.5% by mass with respect to the total mass of the fiber mass and the polyurethane mass. It was given to be. Subsequently, the sheet was dried with hot air at 110 ° C. for 10 minutes to obtain a sheet having a polyurethane content of 30% by mass relative to the island component mass of the sheet (the total mass of the ultrafine fibers and the woven or knitted fabric).
- the obtained sheet was cut in half in the thickness direction, and the cut surface was ground at 100 g / m 2 with endless sandpaper of 180, 180 and 240 sandpaper counts to form a raised surface.
- the sheet thus obtained was dyed with a jet dyeing machine at 110 ° C., and then dried with a drier to obtain a sheet having a thickness of 0.5 mm and an apparent density of 0.360 g / cm 3 .
- a product was obtained.
- the obtained sheet-like material had an average fiber length of the ultrafine fibers in the nap layer of 370 ⁇ m, a CV value of the average fiber length of 15%, a surface coverage of the ultrafine fibers in the nap layer of 80%, and a seafar wear breakage of 65%. Times / 0.10 mm, and the appearance quality was A.
- Example 2 Polyethylene terephthalate (PET) having an intrinsic viscosity (IV) of 0.718 is used as an island component, polystyrene having an MFR of 18 g / 10 minutes is used as a sea component, and a sea-island type composite mouthpiece having 36 islands is used. After melt-spinning at an island / sea mass ratio of 55/45, the fiber was drawn and crimped, and then cut into 51 mm to obtain a raw cotton of sea-island type composite fiber having a single fiber fineness of 3.1 dtex.
- PET polyethylene terephthalate
- IV intrinsic viscosity
- a laminated web is formed through a card and a cross wrapper process, needle punched at a punch count of 600 / cm 2 , and then needle punched at a punch count of 2900 / cm 2. To give a sheet.
- the sheet After shrinking the sheet with hot water at 96 ° C., the sheet is impregnated with a 10% aqueous PVA solution and dried with hot air at a temperature of 110 ° C. for 10 minutes to obtain a sheet having a PVA weight of 25% by weight based on the weight of the sheet.
- the sea component was dissolved and removed from the sheet in trichlorethylene to obtain a desealed sheet in which the ultrafine fibers and the woven fabric were entangled. SEM observation of the cross section of the sea-removed sheet revealed that the average single yarn diameter was 2.1 ⁇ m.
- the desealed sheet made of the ultrafine fibers was impregnated with a DMF solution of a polycarbonate-based polyurethane adjusted to a solid concentration of 10%, and the polyurethane was coagulated in an aqueous solution having a DMF concentration of 30%. Thereafter, PVA and DMF were removed with hot water, and a silicone oil emulsion adjusted to a concentration of 1% by mass was impregnated, so that the amount of the silicone-based lubricant applied was 0.2% by mass based on the total mass of the fiber mass and the polyurethane mass. It was given to be. Subsequently, the sheet was dried with hot air of 110 ° C. for 10 minutes to obtain a sheet having a polyurethane content of 25% by mass relative to the island component mass (the total mass of the ultrafine fibers and the woven or knitted fabric).
- the obtained sheet was cut in half in the thickness direction, and the cut surface was ground at 60 g / m 2 with endless sandpaper of 180th, 180th, and 240th counts of sandpaper to form a raised surface.
- the sheet thus obtained was dyed with a jet dyeing machine at 110 ° C., and then dried with a drier to obtain a sheet having a thickness of 0.5 mm and an apparent density of 0.360 g / cm 3 .
- a product was obtained.
- the obtained sheet-like material had an average fiber length of the microfibers in the nap layer of 260 ⁇ m, a CV value of the average fiber length of 20%, a surface coverage of the microfiber in the nap layer of 73%, and a number of seafar wear tears of 40. Times / 0.10 mm, and the appearance quality was A.
- Example 3 Polyethylene terephthalate (PET) having an intrinsic viscosity (IV) of 0.718 is used as an island component, polystyrene having an MFR of 18 g / 10 minutes is used as a sea component, and a sea-island type composite mouthpiece having 36 islands is used. After melt-spinning at an island / sea mass ratio of 55/45, the fiber was drawn and crimped, and then cut into 51 mm to obtain a raw cotton of sea-island type composite fiber having a single fiber fineness of 3.1 dtex.
- PET polyethylene terephthalate
- IV intrinsic viscosity
- a laminated web is formed through a card and a cross wrapper process, needle punched at a punch count of 600 / cm 2 , and then needle punched at a punch count of 2900 / cm 2. To give a sheet.
- the sheet After shrinking the sheet with hot water at 96 ° C., the sheet is impregnated with a 15% aqueous PVA solution and dried with hot air at a temperature of 110 ° C. for 10 minutes to obtain a sheet having a PVA weight of 40% by weight based on the weight of the sheet.
- the sea component was dissolved and removed from the sheet in trichlorethylene to obtain a desealed sheet in which the ultrafine fibers and the woven fabric were entangled. SEM observation of the cross section of the sea-removed sheet revealed that the average single yarn diameter was 2.1 ⁇ m.
- the desealed sheet made of this ultrafine fiber was impregnated with a DMF solution of a polycarbonate / polyester polyurethane adjusted to a solid content of 9.5%, and the polyurethane was coagulated in an aqueous solution having a DMF concentration of 30%. Thereafter, the PVA and DMF were removed with hot water and impregnated with a silicone oil emulsion adjusted to a concentration of 1% by mass, and the silicone-based lubricant applied amount was reduced to 0.6% by mass based on the total mass of the fiber mass and the polyurethane mass. It was given to be. Subsequently, the sheet was dried with hot air of 110 ° C. for 10 minutes to obtain a sheet having a polyurethane content of 23% by mass relative to the island component mass (the total mass of the ultrafine fibers and the woven or knitted fabric) of the sheet.
- the obtained sheet was cut in half in the thickness direction, and the cut surface was ground at 70 g / m 2 with endless sandpaper of 180 count, 180 count, and 240 count of sandpaper to form a napped surface.
- the sheet thus obtained was dyed with a jet dyeing machine at 110 ° C., and then dried with a drier to obtain a sheet having a thickness of 0.5 mm and an apparent density of 0.360 g / cm 3 .
- a product was obtained.
- the obtained sheet-like material has an average fiber length of 400 ⁇ m of the ultrafine fibers in the nap layer, a CV value of the average fiber length of 10%, a surface coverage of the ultrafine fibers in the nap layer of 90%, and a number of sifter wear tears of 45. Times / 0.10 mm, and the appearance quality was A.
- Nylon 6 having an MFR of 58.3 g / 10 min was used as an island component, and polystyrene (Co-PSt) obtained by copolymerizing 22 mol% of 2-ethylhexyl acrylate having a MFR of 300 g / 10 min as a sea component was used.
- Using a sea-island composite mouthpiece with 36 islands melt-spun at an island / sea mass ratio of 30/70, stretched and crimped, then cut to 51 mm, and a single fiber fineness of 24 ⁇ m is used. Fiber raw cotton was obtained.
- a laminated web is formed through a card and a cross wrapper process, needle punched at a punch count of 600 / cm 2 , and then needle punched at a punch count of 2900 / cm 2.
- the sheet After shrinking this sheet with 85 ° C. hot water, the sheet is impregnated with a 15% PVA aqueous solution and dried with hot air at a temperature of 110 ° C. for 10 minutes to obtain a sheet having a PVA weight of 50% by weight based on the weight of the sheet.
- the sea component was dissolved and removed from the sheet in trichlorethylene to obtain a desealed sheet in which the ultrafine fibers and the woven fabric were entangled.
- the cross section of the desealed sheet was SEM, and the average single yarn diameter was 1.0 ⁇ m.
- the desealed sheet made of the ultrafine fibers was impregnated with a polyether / polyester polyurethane DMF solution adjusted to a solid content of 9%, and the polyurethane was coagulated in an aqueous solution having a DMF concentration of 30%. Thereafter, PVA and DMF were removed with hot water and impregnated with a silicone oil emulsion solution adjusted to a concentration of 0.5% by mass, and the silicone-based lubricant applied amount was 0.1% by mass based on the total mass of the fiber mass and polyurethane mass. %. Subsequently, the sheet was dried with hot air at 100 ° C. for 10 minutes to obtain a sheet having a polyurethane content of 20% by mass relative to the island component mass (the total mass of the ultrafine fibers and the woven or knitted fabric) of the sheet.
- the obtained sheet was cut in half in the thickness direction, and the cut surface was ground at 30 g / m 2 with endless sandpaper of 150-, 180-, and 180-th sandpaper to form a napped surface.
- the sheet thus obtained was dyed with a jet dyeing machine at 85 ° C., and then dried with a drier to obtain a sheet having a thickness of 0.5 mm and an apparent density of 0.300 g / cm 3 .
- a product was obtained.
- the obtained sheet-like material has an average fiber length of the ultrafine fibers in the nap layer of 280 ⁇ m, a CV value of the average fiber length of 28%, a surface coverage of the ultrafine fibers in the nap layer of 62%, and a number of sifter abrasion breakage of 20. Times / 0.10 mm, and the appearance quality was A.
- Nylon 6 having an MFR of 58.3 g / 10 min was used as an island component, and polystyrene (Co-PSt) obtained by copolymerizing 22 mol% of 2-ethylhexyl acrylate having a MFR of 300 g / 10 min as a sea component was used.
- Using a sea-island-type composite die with 280 islands melt-spun at an island / sea mass ratio of 30/70, stretched and crimped, then cut to 51 mm, and single-fiber fineness of 24 ⁇ m was used for the sea-island composite. Fiber raw cotton was obtained.
- a laminated web is formed through a card and a cross wrapper process, needle punched at a punch count of 600 / cm 2 , and then needle punched at a punch count of 2900 / cm 2.
- the sheet After shrinking the sheet with hot water at 85 ° C, the sheet is impregnated with a 12% PVA aqueous solution and dried with hot air at a temperature of 100 ° C for 10 minutes to obtain a sheet having a PVA weight of 40% by weight based on the sheet weight.
- the sea component was dissolved and removed from the sheet in trichlorethylene to obtain a desealed sheet in which the ultrafine fibers and the woven fabric were entangled. SEM observation of the cross section of the sea-removed sheet revealed that the average single yarn diameter was 1.0 ⁇ m.
- the desealed sheet made of the ultrafine fibers was impregnated with a polyether / polyester-based polyurethane DMF solution adjusted to a solid concentration of 10%, and the polyurethane was coagulated in an aqueous solution having a DMF concentration of 30%. Thereafter, PVA and DMF were removed with hot water and impregnated with a silicone oil emulsion adjusted to a concentration of 0.1% by mass, and the silicone-based lubricant applied amount was 0.01% by mass based on the total mass of the fiber mass and polyurethane mass. %. Subsequently, the sheet was dried with hot air at 110 ° C. for 10 minutes to obtain a sheet having a polyurethane content of 35% by mass relative to the island component mass (the total mass of the ultrafine fibers and the woven or knitted fabric) of the sheet.
- the obtained sheet was cut in half in the thickness direction, and the cut surface was ground at 40 g / m 2 with endless sandpaper of 150-, 180-, and 180-th sandpaper to form a napped surface.
- the sheet thus obtained was dyed with a jet dyeing machine at 85 ° C., and then dried with a drier to obtain a sheet having a thickness of 0.5 mm and an apparent density of 0.300 g / cm 3 .
- a product was obtained.
- the average fiber length of the microfibers in the nap layer was 260 ⁇ m
- the CV value of the average fiber length was 10%
- the surface coverage of the microfibers in the nap layer was 70%
- the number of sifter abrasion was 30. Times / 0.10 mm, and the appearance quality was A.
- Example 6 Polyethylene terephthalate (PET) having an intrinsic viscosity (IV) of 0.718 is used as an island component, polystyrene having an MFR of 18 g / 10 minutes is used as a sea component, and a sea-island type compound mouthpiece having 50 islands is used. After melt-spinning at an island / sea mass ratio of 80/20, it was stretched and crimped, and then cut into 51 mm to obtain a raw cotton of sea-island composite fiber having a single fiber fineness of 3.1 dtex.
- PET polyethylene terephthalate
- IV intrinsic viscosity
- a laminated web is formed through a card and a cross wrapper process, needle punched at a punch count of 600 / cm 2 , and then needle punched at a punch count of 2900 / cm 2.
- the sheet After shrinking the sheet with hot water of 96 ° C., the sheet is impregnated with a 5% PVA aqueous solution and dried with hot air at a temperature of 110 ° C. for 10 minutes to obtain a sheet having a PVA weight of 30% by weight based on the weight of the sheet.
- the sea component was dissolved and removed from the sheet in trichlorethylene to obtain a desealed sheet in which the ultrafine fibers and the woven fabric were entangled.
- SEM observation of the cross section of the sea-removed sheet revealed that the average single yarn diameter was 7.0 ⁇ m.
- the desealed sheet made of the ultrafine fibers was impregnated with a DMF solution of a polycarbonate-based polyurethane adjusted to a solid concentration of 11%, and the polyurethane was coagulated in an aqueous solution having a DMF concentration of 30%. Thereafter, PVA and DMF were removed with hot water and impregnated with a silicone oil emulsion adjusted to a concentration of 5% by mass, so that the silicone-based lubricant applied amount became 2.0% by mass based on the total mass of the fiber mass and polyurethane mass. It was given to be. Subsequently, the sheet was dried with hot air at 110 ° C. for 10 minutes to obtain a sheet in which the polyurethane content was 40% by mass relative to the island component mass (the total mass of the ultrafine fibers and the woven or knitted fabric).
- the obtained sheet was cut in half in the thickness direction, and the cut surface was ground at 160 g / m 2 with endless sandpaper of sand paper counts 120, 150, and 180 to form a raised surface.
- the sheet thus obtained was dyed with a jet dyeing machine at 110 ° C., and then dried with a drier to obtain a sheet having a thickness of 1.0 mm and an apparent density of 0.400 g / cm 3 .
- a product was obtained.
- the obtained sheet-like material had an average fiber length of the microfibers in the nap layer of 350 ⁇ m, a CV value of the average fiber length of 25%, a surface coverage of the microfiber in the nap layer of 65%, and a number of tears of 80 stiffener abrasion. Times / 0.10 mm, and the appearance quality was A.
- Nylon 6 having an MFR of 58.3 g / 10 min was used as an island component, and polystyrene (Co-PSt) obtained by copolymerizing 22 mol% of 2-ethylhexyl acrylate having a MFR of 300 g / 10 min as a sea component was used.
- Using a sea-island type composite die with 100 islands melt-spun at an island / sea mass ratio of 30/70, stretched and crimped, then cut into 51 mm, and a single fiber fineness of 24 ⁇ m is used. Fiber raw cotton was obtained.
- a laminated web is formed through a card and a cross wrapper process, needle punched at a punch count of 600 / cm 2 , and then needle punched at a punch count of 2900 / cm 2.
- the sheet After shrinking the sheet with hot water at 85 ° C., the sheet is impregnated with a 20% aqueous PVA solution and dried with hot air at a temperature of 100 ° C. for 10 minutes to obtain a sheet having a PVA weight of 60% by weight based on the weight of the sheet.
- the sea component was dissolved and removed from the sheet in trichlorethylene to obtain a desealed sheet in which the ultrafine fibers and the woven fabric were entangled.
- SEM observation of the cross section of the sea-removed sheet revealed that the average single yarn diameter was 1.0 ⁇ m.
- the desealed sheet made of the ultrafine fibers was impregnated with a polyether / polyester polyurethane DMF solution adjusted to a solid content of 9%, and the polyurethane was coagulated in an aqueous solution having a DMF concentration of 30%. Thereafter, PVA and DMF were removed with hot water and impregnated with a silicone oil emulsion solution adjusted to a concentration of 3% by mass, and the silicone-based lubricant applied amount was reduced to 1.0% by mass based on the total mass of the fiber mass and the polyurethane mass. It was given to be. Subsequently, the sheet was dried with hot air at 110 ° C. for 10 minutes to obtain a sheet having a polyurethane content of 5% by mass relative to the island component mass (the total mass of the ultrafine fibers and the woven or knitted fabric) of the sheet.
- the obtained sheet was cut in half in the thickness direction, and the cut surface was ground at 50 g / m 2 with endless sandpaper of 150th and 180th counts of sandpaper to form a raised surface.
- the sheet thus obtained was dyed with a jet dyeing machine at 85 ° C., and then dried with a drier to obtain a sheet having a thickness of 0.5 mm and an apparent density of 0.300 g / cm 3 .
- a product was obtained.
- the obtained sheet-like material has an average fiber length of 400 ⁇ m of the ultrafine fibers in the nap layer, a CV value of the average fiber length of 25%, a surface coverage of the ultrafine fibers of the nap layer of 99%, and a number of sifter abrasion breakage of 10%. Times / 0.10 mm, and the appearance quality was A.
- Example 8 Polyethylene terephthalate (PET) having an intrinsic viscosity (IV) of 0.718 is used as an island component, polystyrene having an MFR of 18 g / 10 minutes is used as a sea component, and a sea-island type composite mouthpiece having 36 islands is used. After melt-spinning at an island / sea mass ratio of 55/45, the fiber was drawn and crimped, and then cut into 51 mm to obtain a raw cotton of sea-island type composite fiber having a single fiber fineness of 3.1 dtex.
- PET Polyethylene terephthalate
- IV intrinsic viscosity
- a laminated web is formed through a card and a cross wrapper process, needle punched at a punch count of 600 / cm 2 , and then needle punched at a punch count of 2900 / cm 2. To give a sheet.
- the obtained sheet was cut in half in the thickness direction, and the cut surface was ground at 20 g / m 2 with endless sandpaper of 180th, 180th and 240th counts of sandpaper to form a napped surface.
- the sheet thus obtained was dyed with a jet dyeing machine at 110 ° C., and then dried with a drier to obtain a sheet having a thickness of 0.5 mm and an apparent density of 0.360 g / cm 3 .
- a product was obtained.
- the obtained sheet-like material had an average fiber length of the fine fibers in the nap layer of 250 ⁇ m, a CV value of the average fiber length of 29%, a surface coverage of the ultra-fine fibers in the nap layer of 62%, and a number of sifter abrasion breakage of 7. Times / 0.10 mm, and the appearance quality was A.
- Example 9 Polyethylene terephthalate (PET) having an intrinsic viscosity (IV) of 0.718 is used as an island component, polystyrene having an MFR of 18 g / 10 minutes is used as a sea component, and a sea-island type composite mouthpiece having 16 islands is used. After melt-spinning at an island / sea mass ratio of 80/20, it was stretched and crimped, and then cut into 51 mm to obtain a raw cotton of sea-island composite fiber having a single fiber fineness of 3.1 dtex.
- PET polyethylene terephthalate
- IV intrinsic viscosity
- a laminated web is formed through a card and a cross wrapper process, needle punched at a punch count of 600 / cm 2 , and then needle punched at a punch count of 2900 / cm 2.
- the web and plain weave single yarn consisting of a single component having an intrinsic viscosity (IV) of 0.65, multifilaments (84 dtex, 72 filaments) having a twist number of 2500 T / m are used as warp and weft, and the weaving density is reduced. 97 pieces / 2.54 cm, 76 pieces / 2.54 cm) to obtain a sheet.
- the sheet After shrinking the sheet with hot water of 96 ° C., the sheet is impregnated with a 5% aqueous solution of PVA and dried with hot air at a temperature of 110 ° C. for 10 minutes to obtain a sheet having a PVA weight of 20% by weight based on the weight of the sheet.
- the sea component was dissolved and removed from the sheet in trichlorethylene to obtain a desealed sheet in which the ultrafine fibers and the woven fabric were entangled. SEM observation of the cross section of the sea-removed sheet revealed that the average single yarn diameter was 4.4 ⁇ m.
- the desealed sheet made of the ultrafine fibers was impregnated with a DMF solution of a polycarbonate-based polyurethane adjusted to a solid concentration of 11%, and the polyurethane was coagulated in an aqueous solution having a DMF concentration of 30%. Thereafter, PVA and DMF were removed with hot water, and a silicone oil emulsion adjusted to a concentration of 1% by mass was impregnated, so that the amount of the silicone-based lubricant applied was 0.2% by mass based on the total mass of the fiber mass and the polyurethane mass. It was given to be. Subsequently, the sheet was dried with hot air at 110 ° C. for 10 minutes to obtain a sheet having a polyurethane content of 27% by mass relative to the island component mass of the sheet (the total mass of the ultrafine fibers and the woven or knitted fabric).
- the obtained sheet was cut in half in the thickness direction, and the cut surface was ground at 60 g / m 2 with an endless sandpaper of sand paper counts 120, 150 and 180 to form a raised surface.
- the sheet thus obtained was dyed with a jet dyeing machine at 110 ° C., and then dried with a drier to obtain a sheet having a thickness of 1.0 mm and an apparent density of 0.400 g / cm 3 .
- a product was obtained.
- the obtained sheet-like material had an average fiber length of 450 ⁇ m of the ultrafine fibers in the nap layer, a CV value of the average fiber length of 20%, a surface coverage of the ultrafine fibers in the nap layer of 80%, and a number of 55 times of seafar abrasion.
- the number of times / 0.10 mm appearance quality was A.
- Example 10 Polyethylene terephthalate (PET) having an intrinsic viscosity (IV) of 0.718 is used as an island component, polystyrene having an MFR of 18 g / 10 minutes is used as a sea component, and a sea-island type composite mouthpiece having 16 islands is used. After melt-spinning at an island / sea mass ratio of 80/20, it was stretched and crimped, and then cut into 51 mm to obtain a raw cotton of sea-island composite fiber having a single fiber fineness of 3.1 dtex.
- PET polyethylene terephthalate
- IV intrinsic viscosity
- a laminated web is formed through a card and a cross wrapper process, needle punched at a punch count of 600 / cm 2 , and then needle punched at a punch count of 2900 / cm 2.
- the web and plain weave single yarn consisting of a single component having an intrinsic viscosity (IV) of 0.65, multifilaments (84 dtex, 72 filaments) having a twist number of 2500 T / m are used as warp and weft, and the weaving density is reduced. 97 pieces / 2.54 cm, 76 pieces / 2.54 cm) to obtain a sheet.
- the sheet After shrinking the sheet with hot water of 96 ° C., the sheet is impregnated with a 5% aqueous solution of PVA and dried with hot air at a temperature of 110 ° C. for 10 minutes to obtain a sheet having a PVA weight of 20% by weight based on the weight of the sheet.
- the sea component was dissolved and removed from the sheet in trichlorethylene to obtain a desealed sheet in which the ultrafine fibers and the woven fabric were entangled. SEM observation of the cross section of the sea-removed sheet revealed that the average single yarn diameter was 4.4 ⁇ m.
- the desealed sheet made of the ultrafine fibers was impregnated with a DMF solution of a polycarbonate-based polyurethane adjusted to a solid concentration of 11%, and the polyurethane was coagulated in an aqueous solution having a DMF concentration of 30%. Thereafter, PVA and DMF were removed with hot water and impregnated with a silicone oil emulsion solution adjusted to a concentration of 1% by mass, and the silicone-based lubricant applied amount was reduced to 0.05% by mass with respect to the total mass of the fiber mass and the polyurethane mass. It was given to be. Subsequently, the sheet was dried with hot air at 110 ° C. for 10 minutes to obtain a sheet having a polyurethane content of 27% by mass relative to the island component mass of the sheet (the total mass of the ultrafine fibers and the woven or knitted fabric).
- sandpaper count 120 fastest the half-cut surface, 120 fastest, the product surface at 150 fastest endless sandpaper 80 g / m 2 by grinding to form a napped surface.
- the sheet thus obtained was dyed with a jet dyeing machine at 110 ° C., and then dried with a drier to obtain a sheet having a thickness of 1.0 mm and an apparent density of 0.400 g / cm 3 .
- a product was obtained.
- the obtained sheet-like material had an average fiber length of 300 ⁇ m of the ultrafine fibers in the nap layer, a CV value of the average fiber length of 28%, a surface coverage of the ultrafine fibers of the nap layer of 63%, and a number of seafar wear tears of 50%. Times / 0.10 mm, and the appearance quality was A.
- Nylon 6 having an MFR of 58.3 g / 10 min was used as an island component, and polystyrene (Co-PSt) obtained by copolymerizing 22 mol% of 2-ethylhexyl acrylate having a MFR of 300 g / 10 min as a sea component was used.
- Using a sea-island composite nozzle with 500 islands melt-spun at an island / sea mass ratio of 30/70, stretched and crimped, then cut to 51 mm, and a single fiber fineness of 24 ⁇ m Fiber raw cotton was obtained.
- a laminated web is formed through a card and a cross wrapper process, needle punched at a punch count of 600 / cm 2 , and then needle punched at a punch count of 2900 / cm 2.
- the sheet After shrinking the sheet with hot water at 85 ° C., the sheet is impregnated with a 12% aqueous PVA solution and dried with hot air at a temperature of 100 ° C. for 10 minutes to obtain a sheet having a PVA weight of 45% by weight based on the weight of the sheet.
- the sea component was dissolved and removed from the sheet in trichlorethylene to obtain a desealed sheet in which the ultrafine fibers and the woven fabric were entangled.
- SEM observation of the cross section of the sea-removed sheet revealed that the average single yarn diameter was 0.5 ⁇ m.
- the desealed sheet made of the ultrafine fibers was impregnated with a polyether / polyester polyurethane DMF solution adjusted to a solid content of 9%, and the polyurethane was coagulated in an aqueous solution having a DMF concentration of 30%. Thereafter, PVA and DMF were removed with hot water and impregnated with a silicone oil emulsion solution adjusted to a concentration of 1.0% by mass, and the silicone-based lubricant applied amount was 0.2% by mass based on the total mass of the fiber mass and polyurethane mass. %. Subsequently, the sheet was dried with hot air of 110 ° C. for 10 minutes to obtain a sheet having a polyurethane content of 25% by mass relative to the island component mass (the total mass of the ultrafine fibers and the woven or knitted fabric).
- the obtained sheet was cut in half in the thickness direction, and the cut surface was ground at 15 g / m 2 with endless sandpaper of 150th and 180th counts of sandpaper to form a raised surface.
- the sheet thus obtained was dyed with a jet dyeing machine at 85 ° C., and then dried with a drier to obtain a sheet having a thickness of 0.5 mm and an apparent density of 0.300 g / cm 3 .
- a product was obtained.
- the obtained sheet-like material had an average fiber length of 200 ⁇ m of the ultrafine fibers in the nap layer, a CV value of the average fiber length of 35%, a surface coverage of the ultrafine fibers in the nap layer of 70%, and a number of sifter abrasion breaks of 23. Times / 0.10 mm, and the appearance quality was B.
- Nylon 6 having an MFR of 58.3 g / 10 min was used as an island component, and polystyrene (Co-PSt) obtained by copolymerizing 22 mol% of 2-ethylhexyl acrylate having a MFR of 300 g / 10 min as a sea component was used.
- Using a sea-island-type composite die with 300 islands melt-spun at an island / sea mass ratio of 30/70, stretched and crimped, then cut to 51 mm, and single-fiber fineness of 24 ⁇ m Fiber raw cotton was obtained.
- a laminated web is formed through a card and a cross wrapper process, needle punched at a punch count of 600 / cm 2 , and then needle punched at a punch count of 2900 / cm 2.
- the sheet After shrinking the sheet with hot water at 85 ° C, the sheet is impregnated with a 12% PVA aqueous solution and dried with hot air at a temperature of 100 ° C for 10 minutes to obtain a sheet having a PVA weight of 40% by weight based on the sheet weight.
- the sea component was dissolved and removed from the sheet in trichlorethylene to obtain a desealed sheet in which the ultrafine fibers and the woven fabric were entangled.
- the average single yarn diameter was 1.0 ⁇ m by SEM of the cross section of the sea-removed sheet.
- the desealed sheet made of the ultrafine fibers was impregnated with a polyether / polyester polyurethane DMF solution adjusted to a solid content of 9%, and the polyurethane was coagulated in an aqueous solution having a DMF concentration of 30%. Thereafter, PVA and DMF were removed with hot water, and dried with hot air at 110 ° C. for 10 minutes to obtain a sheet having a polyurethane content of 30% by mass relative to the island component mass (total mass of the ultrafine fibers and the woven or knitted fabric) of the sheet. Obtained.
- the obtained sheet is cut in half in the thickness direction, and the cut sheet is impregnated with water so that the mass of the sheet containing water becomes 200% of the dry mass, and then squeezed.
- the product surface was ground at 15 g / m 2 with endless sandpaper of 150 count, 180 count, and 180 count of paper to form a napped surface.
- the sheet thus obtained was dyed with a jet dyeing machine at 85 ° C., and then dried with a drier to obtain a sheet having a thickness of 0.5 mm and an apparent density of 0.300 g / cm 3 .
- a product was obtained.
- the average fiber length of the microfibers in the nap layer was 150 ⁇ m
- the CV value of the average fiber length was 40%
- the surface coverage of the microfibers in the nap layer was 80%
- the number of tears of seafar abrasion was 25. Times / 0.10 mm
- the appearance quality was C.
- a laminated web is formed through a card and a cross wrapper process, needle punched at a punch count of 600 / cm 2 , and then needle punched at a punch count of 2900 / cm 2.
- the sheet After shrinking the sheet with hot water of 96 ° C., the sheet is impregnated with a 5% aqueous PVA solution and dried with hot air at a temperature of 110 ° C. for 10 minutes to obtain a sheet having a PVA weight of 35% by weight based on the weight of the sheet.
- the sea component was dissolved and removed from the sheet in trichlorethylene to obtain a desealed sheet in which the ultrafine fibers and the woven fabric were entangled.
- SEM observation of the cross section of the sea-removed sheet revealed that the average single yarn diameter was 5.0 ⁇ m.
- the desealed sheet made of the ultrafine fibers was impregnated with a DMF solution of a polycarbonate-based polyurethane adjusted to a solid concentration of 10%, and the polyurethane was coagulated in an aqueous solution having a DMF concentration of 30%. Thereafter, PVA and DMF were removed with hot water. Subsequently, the sheet was dried with hot air at 110 ° C. for 10 minutes to obtain a sheet having a polyurethane content of 15% by mass relative to the island component mass (the total mass of the ultrafine fibers and the woven or knitted fabric) of the sheet.
- the obtained sheet was cut in half in the thickness direction, and the cut surface was ground at 15 g / m 2 with endless sandpaper having a sandpaper count of 120 to form a napped surface.
- the sheet thus obtained was dyed with a jet dyeing machine at 110 ° C., and then dried with a drier to obtain a sheet having a thickness of 1.0 mm and an apparent density of 0.400 g / cm 3 .
- a product was obtained.
- the raised surface of the dyed fiber base material was embossed using an embossing roll having a pattern having shallow shrink wrinkles along the pores of natural leather.
- the width of the projections of the embossing roll was 220 ⁇ m, the engraving depth was 750 ⁇ m, and the area ratio of the projections was 13%.
- the conditions of the embossing treatment were performed at a surface temperature of the embossing roll of 140 ° C., a pressure of 0.3 MPa, and an embossing roll speed of 1.5 m / min to obtain a sheet.
- the obtained sheet-like material has an average fiber length of 300 ⁇ m of the ultrafine fibers in the nap layer, a CV value of the average fiber length of 40%, a surface coverage of the ultrafine fibers in the nap layer of 50%, and a number of sifter abrasion breakage of 16. Times / 0.10 mm, and the appearance quality was C.
- a laminated web is formed through a card and a cross wrapper process, needle punched at a punch count of 600 / cm 2 , and then needle punched at a punch count of 2900 / cm 2.
- the sheet After shrinking this sheet with hot water at 96 ° C., the sheet is impregnated with a 10% aqueous PVA solution and dried with hot air at 110 ° C. for 10 minutes to obtain a sheet having a PVA weight of 30% by weight based on the weight of the sheet.
- the sea component was dissolved and removed from the sheet in trichlorethylene to obtain a desealed sheet in which the ultrafine fibers and the woven fabric were entangled. SEM observation of the cross section of the sea-removed sheet revealed that the average single yarn diameter was 2.0 ⁇ m.
- the desealed sheet made of the ultrafine fibers was impregnated with a DMF solution of a polycarbonate-based polyurethane adjusted to a solid concentration of 10%, and the polyurethane was coagulated in an aqueous solution having a DMF concentration of 30%. Thereafter, PVA and DMF were removed with hot water and impregnated with a silicone oil emulsion adjusted to a concentration of 10% by mass, so that the silicone-based lubricant applied amount was 6.0% by mass based on the total mass of the fiber mass and polyurethane mass. It was given to be. Subsequently, the sheet was dried with hot air at 110 ° C. for 10 minutes to obtain a sheet having a polyurethane content of 20% by mass relative to the island component mass of the sheet (the total mass of the ultrafine fibers and the woven or knitted fabric).
- the obtained sheet was cut in half in the thickness direction, and the cut surface was sanded with sandpaper count 180 and endless sandpaper to grind the product surface by 20 g / m 2 to form a raised surface.
- the sheet thus obtained was dyed with a jet dyeing machine at 110 ° C., and then dried with a drier to obtain a sheet having a thickness of 0.5 mm and an apparent density of 0.360 g / cm 3 .
- a product was obtained.
- the obtained sheet-like material had an average fiber length of 600 ⁇ m of the ultrafine fibers in the nap layer, a CV value of the average fiber length of 40%, a surface coverage of the ultrafine fibers of the nap layer of 45%, and a number of 28 times of tearing abrasions. Times / 0.10 mm, and the appearance quality was C.
- a laminated web is formed through a card and a cross wrapper process, needle punched at a punch count of 600 / cm 2 , and then needle punched at a punch count of 2900 / cm 2.
- the sheet After shrinking this sheet with hot water of 96 ° C., the sheet is impregnated with a 3% aqueous solution of PVA, and dried with hot air at a temperature of 110 ° C. for 10 minutes to obtain a sheet having a PVA weight of 10% by weight based on the weight of the sheet.
- the sea component was dissolved and removed from the sheet in trichlorethylene to obtain a desealed sheet in which the ultrafine fibers and the woven fabric were entangled.
- SEM observation of the cross section of the sea-removed sheet revealed that the average single yarn diameter was 2.0 ⁇ m.
- the desealed sheet made of the ultrafine fibers was impregnated with a DMF solution of a polycarbonate-based polyurethane adjusted to a solid concentration of 10%, and the polyurethane was coagulated in an aqueous solution having a DMF concentration of 30%. Thereafter, PVA and DMF were removed with hot water and impregnated with a silicone oil emulsion adjusted to a concentration of 5% by mass, so that the silicone-based lubricant applied amount became 2.0% by mass based on the total mass of the fiber mass and the polyurethane mass. It was given to be. Subsequently, the sheet was dried with hot air of 110 ° C. for 10 minutes to obtain a sheet having a polyurethane content of 65% by mass relative to the island component mass of the sheet (the total mass of the ultrafine fibers and the woven or knitted fabric).
- the obtained sheet is cut in half in the thickness direction, and the cut surface is ground at 20 g / m 2 with endless sandpaper of 150-, 180-, 240-, 320-, and 600-th sandpaper. Surface formed.
- the sheet thus obtained was dyed with a jet dyeing machine at 110 ° C., and then dried with a drier to obtain a sheet having a thickness of 0.5 mm and an apparent density of 0.360 g / cm 3 .
- a product was obtained.
- the obtained sheet-like product had an average fiber length of 330 ⁇ m of the ultrafine fibers in the nap layer, a CV value of the average fiber length of 40%, a surface coverage of the ultrafine fibers in the nap layer of 45%, and a number of sifter abrasion breakage of 100. Times / 0.10 mm, and the appearance quality was C.
- the sheet-shaped article of the present invention has high formability while having an elegant appearance and a very smooth touch, and is used for furniture, chairs and wall materials, and seats and ceilings in vehicle interiors such as automobiles, trains and aircraft.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Dispersion Chemistry (AREA)
- Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)
- Treatment Of Fiber Materials (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Abstract
A sheet-shaped item including ultrafine fiber bundles that are obtained by gathering a plurality of ultrafine fibers comprising a thermoplastic resin, said sheet-shaped item comprising a base material layer and a nap layer, wherein the base material layer is a fiber entanglement comprising ultrafine fiber bundles, the nap layer has a nap consisting of ultrafine fibers on at least one surface of the sheet-shaped item, and the sheet-shaped item satisfies all of the following conditions (1)-(3). (1) The average single-fiber diameter of the ultrafine fibers is 0.1μm to 10μm. (2) Among the ultrafine fibers, the average fiber length of the ultrafine fibers in the nap layer is 250μm to 500μm. (3) The surface coverage of the ultrafine fibers in the nap layer is 60% to 100%. A sheet-shaped item with a fine surface and superior glossiness is thus provided.
Description
本発明は、シート状物およびその製造方法に関する。
The present invention relates to a sheet-like material and a method for producing the same.
主として極細繊維からなる不織布と高分子弾性体とからなるシート状物は、耐久性や均一性の高さなど天然皮革にはない優れた特徴を有しており、車両用のシート材や上張材、インテリア材や靴および衣料など、様々な用途に用いられてきた。なかでも、シート状物の表面を研磨させるなどして該表面の極細繊維を起毛させた、立毛シート状物においては、例えば、その用途に応じて、均一で滑らかな表面を有するものから、特許文献1に開示されるような、ヌバックの有するしっとりとしたヌメリ感のある触感に近い触感を有するシート状物のように、凹凸を有するものまで提案がなされてきた。
The sheet-like material mainly composed of a nonwoven fabric made of microfibers and a polymer elastic material has excellent characteristics such as high durability and uniformity that are not found in natural leather. It has been used for various purposes such as materials, interior materials, shoes and clothing. Above all, in the napped sheet-like material in which the surface of the sheet-like material is polished and the fine fibers on the surface are raised, for example, depending on its use, a material having a uniform and smooth surface is used. Proposals have been made even to those having irregularities, such as a sheet-like material having a tactile sensation close to the moist and slimy feel of nubuck as disclosed in Document 1.
これらの中で、均一で滑らかな表面を有するものとして、例えば、特許文献2や3で開示されるような、ナノファイバーレベルの極細繊維を緻密に配列した立毛表面を有する、研磨用途に好適なシート状物が開示されている。
Among these, as those having a uniform and smooth surface, for example, as disclosed in Patent Documents 2 and 3, having a nap surface in which microfibers at the nanofiber level are densely arranged, suitable for polishing applications A sheet is disclosed.
ところで、特許文献1で例示されるような、凹凸を有する不均一なシート状物とは異なり、特許文献2や3で例示されるような、表面が平滑で均一なスエード調のシート状物をインテリア材や靴、衣料用途へ用いようとするには、シート状物について、さらに光沢感を有させ、優美で優れた外観とすることが求められてきた。しかしながら、従来の表面が平滑で均一なシート状物は、研磨用途に好適なものであったため、インテリア材や靴、衣料用途に要求される耐光堅牢性や光沢感といった特性について、十分なものではなく、また実使用で破れにくい優れた耐摩耗性が必要であった。
By the way, unlike a non-uniform sheet having unevenness as exemplified in Patent Document 1, a suede-like sheet having a smooth surface and uniform as exemplified in Patent Documents 2 and 3 is used. In order to be used for interior materials, shoes, and clothing, it has been required that the sheet-shaped material has a more glossy appearance and an elegant and excellent appearance. However, the conventional sheet-like material having a smooth and uniform surface is suitable for polishing, and therefore, the properties such as light fastness and gloss required for interior materials, shoes, and clothing are not sufficient. There was a need for excellent abrasion resistance that was not easily broken during actual use.
そこで、本発明の目的は、優美な外観、つまりはシート状物表面の極細繊維の緻密性と光沢感、また耐摩耗性についても飛躍的に向上させたシート状物を提供することにある。
Accordingly, it is an object of the present invention to provide a sheet-like article having an excellent appearance, that is, the fineness and glossiness of ultrafine fibers on the surface of the sheet-like article, and the abrasion resistance are remarkably improved.
本発明者らは、上記の課題を達成すべく鋭意検討を重ねた結果、従来の研磨用途のシート状物は、立毛層における極細繊維の平均繊維長が短いことから、シート状物に当たった光が乱反射してしまい、十分な光沢感が得られないこと、またバインダーである高分子弾性体が少ないことから、十分な耐摩耗性が得られないことを見出した。すなわち、スエード調の人工皮革表面を緻密な触感と、優美で優れた光沢感を達成するためには、立毛層における極細繊維の表面被覆率と繊維長を特定の範囲とすることが重要であること、さらには耐摩耗性を達成するためには、高分子弾性体の付量を特定の範囲とすることが重要であることを見出し、本発明に至ったものである。
The present inventors have conducted intensive studies in order to achieve the above object, and as a result, the conventional sheet-like material for polishing purposes hit the sheet-like material because the average fiber length of the ultrafine fibers in the nap layer was short. It has been found that light is irregularly reflected, so that a sufficient glossiness cannot be obtained, and that sufficient abrasion resistance cannot be obtained because of a small amount of a polymer elastic body as a binder. In other words, in order to achieve a fine touch and excellent glossiness on the suede-like artificial leather surface, it is important that the surface coverage and the fiber length of the ultrafine fibers in the nap layer be in a specific range. In addition, they have found that it is important to set the amount of the elastic polymer in a specific range in order to achieve the wear resistance, and have reached the present invention.
本発明は、上記の課題を解決せんとするものである。
The present invention is to solve the above problems.
本発明のシート状物は、熱可塑性樹脂からなる極細繊維が複数本合わせられてなる極細繊維束を含むシート状物であって、前記シート状物が基材層と立毛層からなり、前記基材層は前記極細繊維束からなる繊維絡合体であって、前記立毛層は前記シート状物の少なくとも一面に前記極細繊維のみからなる立毛を有するものであって、以下の条件(1)~(3)の全てを満足する。
(1)前記極細繊維の平均単糸直径が0.1μm以上10μm以下であること。
(2)前記極細繊維のうち、立毛層における極細繊維の平均繊維長が250μm以上500μm以下であること。
(3)立毛層における極細繊維の表面被覆率が60%以上100%以下であること。 The sheet-like article of the present invention is a sheet-like article containing an ultrafine fiber bundle formed by combining a plurality of ultrafine fibers made of a thermoplastic resin, wherein the sheet-like article comprises a base layer and a nap layer, and The material layer is a fiber entangled body made of the ultrafine fiber bundle, and the nap layer has nap made of only the ultrafine fiber on at least one surface of the sheet-like material, and has the following conditions (1) to ( Satisfies all of 3).
(1) The average single yarn diameter of the ultrafine fibers is 0.1 μm or more and 10 μm or less.
(2) Among the ultrafine fibers, the average fiber length of the ultrafine fibers in the nap layer is 250 μm or more and 500 μm or less.
(3) The surface coverage of the ultrafine fibers in the nap layer is 60% or more and 100% or less.
(1)前記極細繊維の平均単糸直径が0.1μm以上10μm以下であること。
(2)前記極細繊維のうち、立毛層における極細繊維の平均繊維長が250μm以上500μm以下であること。
(3)立毛層における極細繊維の表面被覆率が60%以上100%以下であること。 The sheet-like article of the present invention is a sheet-like article containing an ultrafine fiber bundle formed by combining a plurality of ultrafine fibers made of a thermoplastic resin, wherein the sheet-like article comprises a base layer and a nap layer, and The material layer is a fiber entangled body made of the ultrafine fiber bundle, and the nap layer has nap made of only the ultrafine fiber on at least one surface of the sheet-like material, and has the following conditions (1) to ( Satisfies all of 3).
(1) The average single yarn diameter of the ultrafine fibers is 0.1 μm or more and 10 μm or less.
(2) Among the ultrafine fibers, the average fiber length of the ultrafine fibers in the nap layer is 250 μm or more and 500 μm or less.
(3) The surface coverage of the ultrafine fibers in the nap layer is 60% or more and 100% or less.
本発明のシート状物の好ましい態様によれば、前記のシート状物が、前記の極細繊維束とさらに高分子弾性体とから構成され、該高分子弾性体は前記の繊維絡合体の内部に含有されてなる。
According to a preferred aspect of the sheet-like material of the present invention, the sheet-like material is composed of the ultrafine fiber bundle and a polymer elastic body, and the polymer elastic body is provided inside the fiber entangled body. It is contained.
本発明のシート状物の好ましい態様によれば、前記の極細繊維束は、10本/束以上400本/束以下の極細繊維から構成される。
According to a preferred embodiment of the sheet-like material of the present invention, the ultrafine fiber bundle is composed of at least 10 fibers / bundle and at most 400 fibers / bundle.
本発明のシート状物の好ましい態様によれば、前記の立毛層における極細繊維の平均繊維長のCV値(変動係数)が、30%以下である。
According to a preferred embodiment of the sheet material of the present invention, the CV value (coefficient of variation) of the average fiber length of the ultrafine fibers in the nap layer is 30% or less.
本発明のシート状物の好ましい態様によれば、前記の極細繊維に対する前記の高分子弾性体の付量が0質量%より多く60質量%以下である。
According to a preferred embodiment of the sheet material of the present invention, the amount of the polymer elastic body applied to the ultrafine fibers is more than 0% by mass and 60% by mass or less.
本発明のシート状物の製造方法は、前記のシート状物を製造する方法であって、シリコーン系滑剤を前記シート状物の質量に対し0.01質量%以上3.0質量%以下付与させた後、シート状物が乾燥した状態で製品面のバフィング処理を施すことを特徴とする。
The method for producing a sheet-like material of the present invention is a method for producing the above-mentioned sheet-like material, wherein the silicone-based lubricant is applied in an amount of 0.01% by mass or more and 3.0% by mass or less based on the mass of the sheet-like material. After that, a buffing process is performed on the product surface in a state where the sheet material is dried.
本発明のシート状物の製造方法の好ましい態様によれば、前記の製品面をバフィング処理した際の研削量を20g/m2以上250g/m2以下である。
According to a preferred embodiment of the method for producing a sheet-like material of the present invention, the amount of grinding when buffing the product surface is 20 g / m 2 or more and 250 g / m 2 or less.
本発明のシート状物の製造方法の好ましい態様によれば、前記の製品面のバフィング処理回数を少なくとも2回以上の多段階で行い、さらにサンドペーパーの番手を段階的に細かくするか、または同じにする。
According to a preferred embodiment of the method for producing a sheet-like material of the present invention, the number of times of the buffing treatment of the product surface is performed in multiple stages of at least two or more, and the number of sandpaper is gradually reduced or the same. To
本発明のシート状物の製造方法の好ましい態様によれば、ASTM D4158-08(2016)「Standard Guide for Abrasion Resistance of Textile Fabrics (Uniform Abrasion)」(耐摩耗性評価方法)のうち、サンドペーパーの番手が180番、荷重2ポンドで測定したシーファー摩耗破れ回数が、シート状物の厚み0.10mm当たり20回以上である。
According to a preferred embodiment of the method for producing a sheet-like material of the present invention, among the ASTM D4158-08 (2016) "Standard \ Guide \ for \ Abrasion \ Resistance \ of \ Textile \ Fabrics \ (Uniform \ Abrasion)" (paper abrasion resistance evaluation method) The number of tears of sifter abrasion measured with a count of 180 and a load of 2 pounds is 20 times or more per 0.10 mm thickness of the sheet.
本発明によれば、立毛層における極細繊維の表面被覆率と繊維長を上記の範囲とすることによって、インテリア材や靴、衣料などの用途に好適な、優美な外観、つまりはシート状物表面の極細繊維の緻密性と光沢感を飛躍的に向上させ、また実使用において優れた耐摩耗性を有したシート状物を得ることができる。
According to the present invention, by setting the surface coverage and the fiber length of the ultrafine fibers in the napped layer within the above ranges, an elegant appearance suitable for applications such as interior materials, shoes, and clothing, that is, the surface of a sheet-like material The density and glossiness of the ultrafine fibers can be remarkably improved, and a sheet having excellent abrasion resistance in actual use can be obtained.
本発明のシート状物は、熱可塑性樹脂からなる極細繊維が複数本合わせられてなる極細繊維束を含むシート状物であって、前記シート状物が基材層と立毛層からなり、前記基材層は前記極細繊維束からなる繊維絡合体であって、前記立毛層は前記シート状物の少なくとも一面に前記極細繊維のみからなる立毛を有するものであって、以下の条件(1)~(3)の全てを満足する。
(1)前記極細繊維の平均単糸直径が0.1μm以上10μm以下であること。
(2)前記極細繊維のうち、立毛層における極細繊維の平均繊維長が250μm以上500μm以下であること。
(3)立毛層における極細繊維の表面被覆率が60%以上100%以下であること。 The sheet-like article of the present invention is a sheet-like article containing an ultrafine fiber bundle formed by combining a plurality of ultrafine fibers made of a thermoplastic resin, wherein the sheet-like article comprises a base layer and a nap layer, and The material layer is a fiber entangled body made of the ultrafine fiber bundle, and the nap layer has nap made of only the ultrafine fiber on at least one surface of the sheet-like material, and has the following conditions (1) to ( Satisfies all of 3).
(1) The average single yarn diameter of the ultrafine fibers is 0.1 μm or more and 10 μm or less.
(2) Among the ultrafine fibers, the average fiber length of the ultrafine fibers in the nap layer is 250 μm or more and 500 μm or less.
(3) The surface coverage of the ultrafine fibers in the nap layer is 60% or more and 100% or less.
(1)前記極細繊維の平均単糸直径が0.1μm以上10μm以下であること。
(2)前記極細繊維のうち、立毛層における極細繊維の平均繊維長が250μm以上500μm以下であること。
(3)立毛層における極細繊維の表面被覆率が60%以上100%以下であること。 The sheet-like article of the present invention is a sheet-like article containing an ultrafine fiber bundle formed by combining a plurality of ultrafine fibers made of a thermoplastic resin, wherein the sheet-like article comprises a base layer and a nap layer, and The material layer is a fiber entangled body made of the ultrafine fiber bundle, and the nap layer has nap made of only the ultrafine fiber on at least one surface of the sheet-like material, and has the following conditions (1) to ( Satisfies all of 3).
(1) The average single yarn diameter of the ultrafine fibers is 0.1 μm or more and 10 μm or less.
(2) Among the ultrafine fibers, the average fiber length of the ultrafine fibers in the nap layer is 250 μm or more and 500 μm or less.
(3) The surface coverage of the ultrafine fibers in the nap layer is 60% or more and 100% or less.
このようにすることで、シート状物の外観品位を、前記した極細繊維の緻密性と光沢感に優れたものとすることができる。以下に、本発明に係るシート状物の構成について詳細に示す。
こ と By doing so, the appearance quality of the sheet-like material can be made excellent in the denseness and glossiness of the above-described ultrafine fibers. Hereinafter, the configuration of the sheet-like material according to the present invention will be described in detail.
(熱可塑性樹脂)
本発明のシート状物において、シート状物を構成する熱可塑性樹脂からなる極細繊維は、この熱可塑性樹脂として、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレートおよびポリ乳酸などのポリエステル、ポリアミド6やポリアミド66、ポリアミド12などのポリアミド、アクリル、ポリエチレン、ポリプロピレンなどのポリオレフィン、ポリフェニレンスルフィド(PPS)および熱可塑性セルロースなどの溶融紡糸可能な樹脂などが挙げられる。中でも、強度、寸法安定性および耐光性の観点から、ポリエステルが好ましく用いられる。また、環境配慮の観点から、リサイクル原料や植物由来原料から得られる繊維を用いることもできる。繊維を構成するポリエステルやポリアミドに代表される重縮合系ポリマーは、融点が高いものが多く、熱に対する耐熱性に優れており好ましく用いられる。さらに、異なる素材の極細繊維が混合されることも許容される。 (Thermoplastic resin)
In the sheet-like material of the present invention, ultrafine fibers made of a thermoplastic resin constituting the sheet-like material are, for example, polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyester such as polytrimethylene terephthalate and polylactic acid, and polyamides. 6, polyamide 66, polyamide 12, and the like; polyolefins such as acrylic, polyethylene, and polypropylene; and melt-spinnable resins such as polyphenylene sulfide (PPS) and thermoplastic cellulose. Among them, polyester is preferably used from the viewpoint of strength, dimensional stability and light resistance. From the viewpoint of environmental consideration, fibers obtained from recycled materials or plant-derived materials can also be used. Polycondensation polymers represented by polyesters and polyamides constituting fibers are often used because of their high melting points and excellent heat resistance to heat. Furthermore, it is also allowed that ultrafine fibers of different materials are mixed.
本発明のシート状物において、シート状物を構成する熱可塑性樹脂からなる極細繊維は、この熱可塑性樹脂として、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレートおよびポリ乳酸などのポリエステル、ポリアミド6やポリアミド66、ポリアミド12などのポリアミド、アクリル、ポリエチレン、ポリプロピレンなどのポリオレフィン、ポリフェニレンスルフィド(PPS)および熱可塑性セルロースなどの溶融紡糸可能な樹脂などが挙げられる。中でも、強度、寸法安定性および耐光性の観点から、ポリエステルが好ましく用いられる。また、環境配慮の観点から、リサイクル原料や植物由来原料から得られる繊維を用いることもできる。繊維を構成するポリエステルやポリアミドに代表される重縮合系ポリマーは、融点が高いものが多く、熱に対する耐熱性に優れており好ましく用いられる。さらに、異なる素材の極細繊維が混合されることも許容される。 (Thermoplastic resin)
In the sheet-like material of the present invention, ultrafine fibers made of a thermoplastic resin constituting the sheet-like material are, for example, polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyester such as polytrimethylene terephthalate and polylactic acid, and polyamides. 6, polyamide 66, polyamide 12, and the like; polyolefins such as acrylic, polyethylene, and polypropylene; and melt-spinnable resins such as polyphenylene sulfide (PPS) and thermoplastic cellulose. Among them, polyester is preferably used from the viewpoint of strength, dimensional stability and light resistance. From the viewpoint of environmental consideration, fibers obtained from recycled materials or plant-derived materials can also be used. Polycondensation polymers represented by polyesters and polyamides constituting fibers are often used because of their high melting points and excellent heat resistance to heat. Furthermore, it is also allowed that ultrafine fibers of different materials are mixed.
前記の熱可塑性樹脂に、シート状物の所望の物性に応じて、酸化チタン粒子等の無機粒子、潤滑剤、顔料、熱安定剤、紫外線吸収剤、導電剤、蓄熱剤、抗菌剤等を添加することも好ましい態様である。
According to the desired physical properties of the sheet, inorganic particles such as titanium oxide particles, a lubricant, a pigment, a heat stabilizer, an ultraviolet absorber, a conductive agent, a heat storage agent, an antibacterial agent, etc. are added to the thermoplastic resin. Is also a preferred embodiment.
(極細繊維)
本発明において、極細繊維の平均単糸直径が0.1μm以上10μm以下であることが重要である。平均単糸直径を10μm以下、好ましくは8.0μm以下、より好ましくは7.0μm以下とすることにより、緻密性でタッチの柔らかい表面品位に優れたシート状物が得られる。また、立毛層が形成された面の単位面積当たりの立毛の本数が多くなり、より滑らかな表面を得ることができる。 (Microfiber)
In the present invention, it is important that the average single yarn diameter of the ultrafine fibers is 0.1 μm or more and 10 μm or less. By setting the average single yarn diameter to 10 μm or less, preferably 8.0 μm or less, and more preferably 7.0 μm or less, a sheet-like material having a dense and soft touch with excellent surface quality can be obtained. Further, the number of naps per unit area of the surface on which the nap layer is formed is increased, and a smoother surface can be obtained.
本発明において、極細繊維の平均単糸直径が0.1μm以上10μm以下であることが重要である。平均単糸直径を10μm以下、好ましくは8.0μm以下、より好ましくは7.0μm以下とすることにより、緻密性でタッチの柔らかい表面品位に優れたシート状物が得られる。また、立毛層が形成された面の単位面積当たりの立毛の本数が多くなり、より滑らかな表面を得ることができる。 (Microfiber)
In the present invention, it is important that the average single yarn diameter of the ultrafine fibers is 0.1 μm or more and 10 μm or less. By setting the average single yarn diameter to 10 μm or less, preferably 8.0 μm or less, and more preferably 7.0 μm or less, a sheet-like material having a dense and soft touch with excellent surface quality can be obtained. Further, the number of naps per unit area of the surface on which the nap layer is formed is increased, and a smoother surface can be obtained.
また、極細繊維の平均単糸直径を、0.1μm以上、好ましくは1.0μm以上とすることにより、単繊維強度および剛性の高いシート状物になり、染色後の発色性、サンドペーパーなどによる研削など起毛処理時の繊維の分散性、およびさばけやすさに優れた効果を奏する。
Further, by setting the average single yarn diameter of the ultrafine fibers to 0.1 μm or more, preferably 1.0 μm or more, the sheet becomes a sheet having high single fiber strength and rigidity. It has excellent effects on fiber dispersibility during napping treatment such as grinding, and ease of handling.
なお、本発明において極細繊維の平均単糸直径は、以下のように測定される値を採用するものとする。
(a)シート状物の表面の走査型電子顕微鏡(SEM)写真を撮影する。
(b)極細繊維をランダムに100本選び、100本の単糸直径を測定する。
(c)測定した100本の値の算術平均値を算出し、小数点以下第2位を四捨五入して、平均単糸直径とする。 In the present invention, the average single yarn diameter of the ultrafine fibers adopts a value measured as follows.
(A) A scanning electron microscope (SEM) photograph of the surface of the sheet is taken.
(B) 100 ultrafine fibers are randomly selected and the diameter of 100 single yarns is measured.
(C) The arithmetic mean value of the 100 measured values is calculated, rounded to the second decimal place, and used as the average single yarn diameter.
(a)シート状物の表面の走査型電子顕微鏡(SEM)写真を撮影する。
(b)極細繊維をランダムに100本選び、100本の単糸直径を測定する。
(c)測定した100本の値の算術平均値を算出し、小数点以下第2位を四捨五入して、平均単糸直径とする。 In the present invention, the average single yarn diameter of the ultrafine fibers adopts a value measured as follows.
(A) A scanning electron microscope (SEM) photograph of the surface of the sheet is taken.
(B) 100 ultrafine fibers are randomly selected and the diameter of 100 single yarns is measured.
(C) The arithmetic mean value of the 100 measured values is calculated, rounded to the second decimal place, and used as the average single yarn diameter.
ただし、極細繊維が後述するような異形断面である場合においては、当該繊維の平均単糸直径は、繊維断面の外接円の直径、面積を算出し、この外接円の面積に対する繊維断面の実面積の比から算出される相当直径を採用するものとする。
However, when the ultrafine fiber has an irregular cross section as described later, the average single yarn diameter of the fiber is calculated by calculating the diameter and area of a circumscribed circle of the fiber cross section, and calculating the actual area of the fiber cross section with respect to the area of the circumscribed circle. The equivalent diameter calculated from the ratio is adopted.
また、本発明における極細繊維の断面形状としては、丸断面以外に、所望のシート状物の特性に合わせて楕円、扁平、三角などの多角形、扇形、十字型などの異形断面とすることができる。
In addition, the cross-sectional shape of the ultrafine fibers in the present invention may be, in addition to a round cross-section, an elliptical shape, a flat shape, a triangular shape such as a polygon, a fan shape, or a cross shape such as a cross shape in accordance with the characteristics of a desired sheet-like material. it can.
本発明において、繊維絡合体を構成する極細繊維は、極細繊維が複数本合わせられてなる極細繊維束の形態をとる。この極細繊維が複数本合わせられてなる極細繊維束の形態としては、複数本の極細繊維が少なくとも一部で接触して存在している、いわゆる束状の状態となっているものを指し、部分的に融着するなどして結合していてもよく、凝集していてもよい。
In the present invention, the ultrafine fibers constituting the fiber entangled body take the form of an ultrafine fiber bundle formed by combining a plurality of ultrafine fibers. The form of the ultrafine fiber bundle in which a plurality of the ultrafine fibers are combined refers to a so-called bundle-like state in which a plurality of the ultrafine fibers are present in contact at least in part. The particles may be bonded to each other by fusing, or may be aggregated.
本発明では、極細繊維束内の繊維数は10本/束以上400本/束以下であることが好ましく、より好ましくは15本/束以上200本/束以下である。繊維数が10本/束未満の場合には、極細繊維の緻密性が乏しく、例えば、摩耗等の機械物性が低下する傾向がある。また、繊維数が400本/束より多い場合には、立毛時の開繊性が低下し、立毛面の繊維分布が不均一となる傾向がある。
で は In the present invention, the number of fibers in the ultrafine fiber bundle is preferably from 10 / bundle to 400 / bundle, more preferably from 15 / bundle to 200 / bundle. When the number of fibers is less than 10 fibers / bundle, the fineness of the ultrafine fibers is poor, and for example, mechanical properties such as abrasion tend to decrease. When the number of fibers is more than 400 fibers / bundle, the spreadability at the time of raising the hair is reduced, and the fiber distribution on the raised hair tends to be uneven.
(シート状物)
本発明のシート状物は基材層と立毛層からなる。基材層は前記極細繊維束からなる繊維絡合体である。立毛層は前記シート状物の少なくとも一面に前記極細繊維のみからなる立毛を有する。 (Sheet-like material)
The sheet material of the present invention comprises a base material layer and a napped layer. The substrate layer is a fiber entangled body made of the ultrafine fiber bundle. The nap layer has nap made of only the ultrafine fibers on at least one surface of the sheet-like material.
本発明のシート状物は基材層と立毛層からなる。基材層は前記極細繊維束からなる繊維絡合体である。立毛層は前記シート状物の少なくとも一面に前記極細繊維のみからなる立毛を有する。 (Sheet-like material)
The sheet material of the present invention comprises a base material layer and a napped layer. The substrate layer is a fiber entangled body made of the ultrafine fiber bundle. The nap layer has nap made of only the ultrafine fibers on at least one surface of the sheet-like material.
本発明において、立毛層における極細繊維の平均繊維長が250μm以上500μm以下であることが重要である。ここで、光沢感の指標を定量的に評価するべく、本発明者は立毛層を構成する平均繊維長に着目した。光沢感があるということは、光の鏡面反射率が高い表面有することであり、立毛層表面が平滑であることである。従って、長い繊維長であれば光沢感に優れる傾向になる。一方、立毛層を構成する極細繊維の平均繊維長が500μm以上であると、極細繊維が長すぎるため、ボサボサした品位となり好ましくない。250μm以下では、立毛層表面の平滑性に劣り、光が立毛層表面を乱反射するため、光沢感が不十分となる。立毛層を構成する極細繊維の平均繊維長が250μm以上500μm以下、好ましくは300μm以上400μm以下とすることで光沢感に優れたシート状物が得られる。
に お い て In the present invention, it is important that the average fiber length of the ultrafine fibers in the nap layer is 250 μm or more and 500 μm or less. Here, in order to quantitatively evaluate the index of the glossiness, the present inventors focused on the average fiber length constituting the nap layer. To be glossy means to have a surface with a high mirror reflectance of light, and to mean that the napped layer surface is smooth. Therefore, if the fiber length is long, the glossiness tends to be excellent. On the other hand, if the average fiber length of the ultrafine fibers constituting the nap layer is 500 μm or more, the ultrafine fibers are too long, and undesirably deteriorates the quality. When the thickness is 250 μm or less, the smoothness of the napped layer surface is poor, and light is irregularly reflected on the napped layer surface. When the average fiber length of the ultrafine fibers constituting the nap layer is 250 μm or more and 500 μm or less, preferably 300 μm or more and 400 μm or less, a sheet-like material excellent in glossiness can be obtained.
立毛層における極細繊維の平均繊維長(μm)は、図1に概念図を示すとおり、以下のように測定された値とする。
(a)立毛繊維をリントブラシを用いて逆目に揃える。
(b)シート状物の断面SEM画像を倍率40倍で撮影する。
(c)前記のSEM画像において、不織布中の極細繊維の根本、繊維束を形成しているときは繊維束が存在する上限に線Lを引く。
(d)観察面のもっとも手前の繊維が立毛している上限に線Uを引く。
(e)200μm間隔で厚み方向に平行な複数本の線Pn(P1、P2、P3、・・・P15)を引く。
(f)各線Pn上のLからUまでの線分の長さを測定する。
(g)異なる9本の各線Pn上の線分の長さを求め、それらの算術平均値を求める。
(h)これをシート状物の万遍なく選択した10箇所で行う。
(i)各算術平均値をさらに算術平均し、小数点以下第2位を四捨五入して、立毛層における極細繊維の平均繊維長(μm)とする。 The average fiber length (μm) of the ultrafine fibers in the nap layer is a value measured as follows, as shown in the conceptual diagram of FIG.
(A) Using a lint brush, align the nap fibers with the barbs.
(B) A cross-sectional SEM image of the sheet is taken at a magnification of 40 ×.
(C) In the SEM image, a line L is drawn at the root of the ultrafine fibers in the non-woven fabric, and when the fiber bundle is formed, the upper limit where the fiber bundle exists.
(D) Draw a line U at the upper limit where the fiber closest to the observation surface is napped.
(E) Draw a plurality of lines Pn (P1, P2, P3,... P15) parallel to the thickness direction at intervals of 200 μm.
(F) Measure the length of the line segment from L to U on each line Pn.
(G) The lengths of the line segments on each of the nine different lines Pn are obtained, and their arithmetic average values are obtained.
(H) This operation is performed at ten selected places of the sheet.
(I) Each arithmetic average value is further arithmetically averaged and rounded to the second decimal place to obtain the average fiber length (μm) of the ultrafine fibers in the nap layer.
(a)立毛繊維をリントブラシを用いて逆目に揃える。
(b)シート状物の断面SEM画像を倍率40倍で撮影する。
(c)前記のSEM画像において、不織布中の極細繊維の根本、繊維束を形成しているときは繊維束が存在する上限に線Lを引く。
(d)観察面のもっとも手前の繊維が立毛している上限に線Uを引く。
(e)200μm間隔で厚み方向に平行な複数本の線Pn(P1、P2、P3、・・・P15)を引く。
(f)各線Pn上のLからUまでの線分の長さを測定する。
(g)異なる9本の各線Pn上の線分の長さを求め、それらの算術平均値を求める。
(h)これをシート状物の万遍なく選択した10箇所で行う。
(i)各算術平均値をさらに算術平均し、小数点以下第2位を四捨五入して、立毛層における極細繊維の平均繊維長(μm)とする。 The average fiber length (μm) of the ultrafine fibers in the nap layer is a value measured as follows, as shown in the conceptual diagram of FIG.
(A) Using a lint brush, align the nap fibers with the barbs.
(B) A cross-sectional SEM image of the sheet is taken at a magnification of 40 ×.
(C) In the SEM image, a line L is drawn at the root of the ultrafine fibers in the non-woven fabric, and when the fiber bundle is formed, the upper limit where the fiber bundle exists.
(D) Draw a line U at the upper limit where the fiber closest to the observation surface is napped.
(E) Draw a plurality of lines Pn (P1, P2, P3,... P15) parallel to the thickness direction at intervals of 200 μm.
(F) Measure the length of the line segment from L to U on each line Pn.
(G) The lengths of the line segments on each of the nine different lines Pn are obtained, and their arithmetic average values are obtained.
(H) This operation is performed at ten selected places of the sheet.
(I) Each arithmetic average value is further arithmetically averaged and rounded to the second decimal place to obtain the average fiber length (μm) of the ultrafine fibers in the nap layer.
さらに、立毛層における極細繊維の平均繊維長のCV値を30%以下、より好ましくは25%以下とすることにより、上述した光沢感を十分に発現することができる。ここでいう極細繊維の平均繊維長のCV値は、前記の平均繊維長を測定して算術平均値および標準偏差を算出し、標準偏差を平均値で割った値を百分率(%)表示したものであり、この値が小さいほど均一であることを示すものである。
Further, by setting the CV value of the average fiber length of the ultrafine fibers in the napped layer to 30% or less, more preferably 25% or less, the above-mentioned glossiness can be sufficiently exhibited. The CV value of the average fiber length of the ultrafine fibers referred to here is obtained by calculating the arithmetic average value and the standard deviation by measuring the above average fiber length, and expressing the value obtained by dividing the standard deviation by the average value as a percentage (%). This indicates that the smaller the value, the more uniform.
本発明において、立毛層における極細繊維の表面被覆率が60%以上100%以下であることが重要である。表面被覆率を60%以上、好ましくは65%以上とすることにより、緻密な立毛となり、優雅な表面外観で、かつ極めてソフトな表面タッチで、かつ繊維の脱落が起こりにくいシート状物を得ることができる。表面被覆率は、立毛面について、SEMにより立毛繊維の存在がわかるように観察倍率30倍~70倍に拡大し、画像分析ソフトを用いて合計面積4mm2あたりの立毛部分の総面積の比率を算出し、立毛被覆率とした。総面積の比率は、撮影したSEM画像について、画像分析ソフトウェア「ImageJ」を用い、立毛部分と非立毛部分を閾値100に設定して2値化処理することで算出できる。また、立毛被覆率の算出において、立毛ではない物質が立毛として算出され立毛被覆率に大きく影響している場合、手動で画像を編集しその部分を非立毛部分として算出した。
In the present invention, it is important that the surface coverage of the ultrafine fibers in the nap layer is 60% or more and 100% or less. By setting the surface coverage to 60% or more, preferably 65% or more, it is possible to obtain a sheet-like material having a dense nap, an elegant surface appearance, an extremely soft surface touch, and less likely to lose fibers. Can be. The surface coverage was determined by enlarging the nap surface to an observation magnification of 30 to 70 times so that the presence of the nap fiber could be confirmed by SEM, and using image analysis software to calculate the ratio of the total area of the nap portion to a total area of 4 mm 2 Calculated and defined as nap coverage. The ratio of the total area can be calculated by performing a binarization process on the photographed SEM image using the image analysis software “ImageJ” and setting the napped portion and the non-napped portion to a threshold value of 100. In the calculation of the nap coverage, when a substance that was not nap was calculated as nap and greatly affected the nap coverage, the image was manually edited and the portion was calculated as a non-nap portion.
画像分析システムとしては、前記の画像分析ソフトウェア「ImageJ」が例示されるが、画像分析システムは、規定の画素の面積比率を計算する機能を有する画像処理ソフトウェアからなることであれば、画像分析ソフトウェア「ImageJ」に限らない。なお、画像処理ソフトウェア「ImageJ」は通用のソフトウェアであり、アメリカ国立衛生研究所により開発された。該画像処理ソフトウェア「ImageJ」は、取り込んだ画像に対し、必要な領域を特定し、画素分析を行う機能を有している。
As the image analysis system, the above-mentioned image analysis software “ImageJ” is exemplified. However, if the image analysis system is composed of image processing software having a function of calculating a specified pixel area ratio, the image analysis software It is not limited to “ImageJ”. It should be noted that the image processing software “ImageJ” is a commonly used software and was developed by the National Institutes of Health. The image processing software “ImageJ” has a function of specifying a necessary area in a captured image and performing pixel analysis.
本発明のシート状物は、前記極細繊維束とさらに高分子弾性体とから構成され、高分子弾性体は前記繊維絡合体の内部に含有されてなるのが好ましい。
シ ー ト The sheet material of the present invention is preferably composed of the ultrafine fiber bundle and a polymer elastic body, and the polymer elastic body is preferably contained inside the fiber entangled body.
すなわち、繊維絡合体の極細繊維質量に対し0質量%より多く、60質量%以下の高分子弾性体を含有することが好ましい。極細繊維質量に対し0質量%より多く、好ましくは3質量%以上の高分子弾性体を含有することによって、シート状物に適度な圧縮特性を付与することが可能となる。また、優れた耐摩耗性を考慮した場合の高分子弾性体の質量は、繊維絡合体の極細繊維質量に対し20質量%より多く、好ましくは25質量%以上の高分子弾性体を含有することによって、シート状物に適度な圧縮特性、耐摩耗性を付与することが可能となる。高分子弾性体の質量が60質量%より多い場合は、立毛工程での繊維の開繊性が乏しくなり、またシート状物のしなやかさが低下することがある。
That is, it is preferable to contain more than 0% by mass and 60% by mass or less of a polymer elastic body based on the mass of the ultrafine fibers of the fiber entangled body. By containing more than 0% by mass, preferably 3% by mass or more of the polymer elastic body with respect to the mass of the ultrafine fibers, it becomes possible to impart appropriate compression characteristics to the sheet-like material. In addition, the mass of the polymer elastic body in consideration of excellent abrasion resistance should be more than 20% by mass, preferably 25% by mass or more based on the mass of the ultrafine fibers of the fiber entangled body. Thereby, it becomes possible to impart appropriate compression characteristics and wear resistance to the sheet-like material. When the mass of the polymer elastic body is more than 60% by mass, the fiber opening property in the napping step becomes poor, and the flexibility of the sheet-like material may decrease.
さらには、シート状物が染色されて用いられる場合、染色後の繊維絡合体の繊維と高分子弾性体の色調に差が生じるため、高分子弾性体は少ない方が好ましい場合がある。一方、環境配慮の面では、高分子弾性体を過度に含有させることは、製造工程における有機物の使用量が増加するため好ましくなく、高分子弾性体が少ない方が、リサイクル原料や植物由来原料から得られる繊維を用いた場合、再生回収や廃棄が容易となる。
場合 Furthermore, when the sheet-like material is used after being dyed, there is a difference in the color tone between the fiber of the fiber entangled body after dyeing and the elastic polymer, so that it may be preferable that the amount of the elastic polymer is smaller. On the other hand, from the viewpoint of environmental consideration, it is not preferable to excessively contain the elastic polymer because the amount of the organic substance used in the production process increases, and the less the elastic polymer, the less the recycled material or the plant-derived material. When the obtained fiber is used, it is easy to recover and collect and to dispose.
上記の高分子弾性体には、必要に応じてカーボンブラック等の顔料、染料、防カビ剤および酸化防止剤、紫外線吸収剤、および光安定剤などの耐光剤、難燃剤、浸透剤や滑剤、シリカや酸化チタン等のアンチブロッキング剤、撥水剤、粘度調整剤、帯電防止剤等の界面活性剤、消泡剤、セルロース等の充填剤、および凝固調整剤、およびシリカや酸化チタン等の無機粒子等を含有させることができる。
The above polymer elastic body, if necessary, pigments such as carbon black, dyes, fungicides and antioxidants, ultraviolet absorbers, light stabilizers such as light stabilizers, flame retardants, penetrants and lubricants, Antiblocking agents such as silica and titanium oxide, water repellents, viscosity modifiers, surfactants such as antistatic agents, defoamers, fillers such as cellulose, and coagulation regulators, and inorganics such as silica and titanium oxide Particles and the like can be contained.
本発明で用いられる高分子弾性体としては、ポリウレタン系エラストマー、ポリウレア、ポリアクリル酸、エチレン・酢酸ビニルエラストマーおよびアクリロニトリル・ブタジエンエラストマーおよびスチレン・ブタジエンエラストマー、ポリビニルアルコール、およびポリエチレングリコール等が挙げられ、耐久性と圧縮特性の観点からは、ポリウレタン系エラストマーが好ましく用いられる。高分子弾性体には、複数の高分子弾性体を含有せしめることができる。
Examples of the elastic polymer used in the present invention include polyurethane elastomer, polyurea, polyacrylic acid, ethylene / vinyl acetate elastomer, acrylonitrile / butadiene elastomer and styrene / butadiene elastomer, polyvinyl alcohol, and polyethylene glycol. From the viewpoints of properties and compressive properties, polyurethane elastomers are preferably used. A plurality of polymer elastic bodies can be contained in the polymer elastic body.
本発明で特に好ましく用いられるポリウレタン系エラストマーとしては、ポリウレタンやポリウレタン・ポリウレアエラストマーなどが挙げられる。
ポ リ ウ レ タ ン Polyurethane-based elastomers particularly preferably used in the present invention include polyurethane and polyurethane-polyurea elastomers.
本発明のシート状物においては、ASTM D4158-08(2016)「Standard Guide for Abrasion Resistance of Textile Fabrics (Uniform Abrasion)」(耐摩耗性評価方法)の、サンドペーパーの番手が180番、荷重2ポンドで測定したシーファー摩耗破れ回数が、シート状物の厚み0.10mm当たり20回以上であることが重要である。シート状物の厚み0.10mm当たりのシーファー摩耗破れ回数が20回以上、好ましくは25回、より好ましくは35回以上とすることにより、耐破れ性に優れたシート状物が得られる。
In the sheet-like material of the present invention, the sandpaper has a count of 180 pounds in ASTM D4158-08 (2016) “Standard—Guide—For—Abrasion—Resistence—of—Textile—Fabrics” (Uniform—Abrasion), with a load of 180 pounds of sandpaper. It is important that the number of times of tearing of the seafar measured by the above is 20 or more per 0.10 mm thickness of the sheet. By setting the number of times of tearing abrasion per 0.10 mm of the sheet material to 20 times or more, preferably 25 times, and more preferably 35 times or more, a sheet material excellent in tear resistance is obtained.
シーファー摩耗破れ回数(回/0.10mm)は、シート状物の立毛層側の面を摩擦面(φ50mm)、番手が180番のサンドペーパーを摩擦子とし、荷重2ポンドの条件でシーファー摩耗試験機を用いて、摩耗試験を行い、シート状物が破れリミットが作動し、摩耗試験機が停止するまでの回数を、シート状物の厚みで除し、厚み0.10mm当たりのシーファー摩耗破れ回数(回/0.10mm)とした。
The number of breaks of seafar abrasion (times / 0.10 mm) was determined using a seafarer abrasion test under the condition of a friction surface (φ50 mm) on the napped layer side of the sheet-like material and a sandpaper of 180 grit with a load of 2 pounds. Abrasion test is performed using a machine, the number of times until the sheet-like material tears limit is activated, and the abrasion tester stops, is divided by the thickness of the sheet-like material, and the number of seafar wear tears per 0.10 mm thickness (Times / 0.10 mm).
(シート状物の製造方法)
シート状物の製造方法について、以下にさらに詳しく示す。 (Production method of sheet material)
The method for producing the sheet-like material will be described in more detail below.
シート状物の製造方法について、以下にさらに詳しく示す。 (Production method of sheet material)
The method for producing the sheet-like material will be described in more detail below.
(a)極細繊維発生型繊維からなる繊維絡合体の形成工程
本発明のシート状物の製造方法においては、まず、極細繊維発生型繊維からなる繊維絡合体を形成することが好ましい。このようにすることで、直接極細繊維から繊維絡合体を形成するのに比べ、容易に極細繊維束が絡合した繊維絡合体を形成することができる。 (A) Step of forming fiber entangled body composed of ultrafine fiber-generating fibers In the method for producing a sheet-like material of the present invention, it is preferable to first form a fiber entangled body composed of ultrafine fiber-generating fibers. By doing so, it is possible to easily form a fiber entangled body in which the ultrafine fiber bundle is entangled, as compared with the case where the fiber entangled body is directly formed from the ultrafine fibers.
本発明のシート状物の製造方法においては、まず、極細繊維発生型繊維からなる繊維絡合体を形成することが好ましい。このようにすることで、直接極細繊維から繊維絡合体を形成するのに比べ、容易に極細繊維束が絡合した繊維絡合体を形成することができる。 (A) Step of forming fiber entangled body composed of ultrafine fiber-generating fibers In the method for producing a sheet-like material of the present invention, it is preferable to first form a fiber entangled body composed of ultrafine fiber-generating fibers. By doing so, it is possible to easily form a fiber entangled body in which the ultrafine fiber bundle is entangled, as compared with the case where the fiber entangled body is directly formed from the ultrafine fibers.
前記の極細繊維発生型繊維としては、特に、海島型繊維が好ましい。海島型繊維には、海島型複合用口金を用い海成分と島成分の2成分を相互配列して紡糸する海島型複合繊維や、海成分と島成分の2成分を混合して紡糸する混合紡糸繊維等がある。これらの海島型繊維の中でも、高精度に制御された極細繊維が得られる点、また十分な長さの極細繊維が得られ、不織布および不織布を有してなるシート状物の強度にも資する点から、海島型複合繊維が好ましく用いられる。
海 As the ultrafine fiber-generating fibers, sea-island fibers are particularly preferable. The sea-island type composite fiber is a sea-island type composite fiber in which two components, a sea component and an island component, are mutually arranged and spun using a sea-island type composite mouthpiece, or a mixed spinning in which the two components of a sea component and an island component are mixed and spun. There are fibers and the like. Among these sea-island fibers, a highly controlled ultrafine fiber is obtained, and a sufficiently long ultrafine fiber is obtained, which also contributes to the strength of a nonwoven fabric and a sheet-like material having the nonwoven fabric. Therefore, sea-island type composite fibers are preferably used.
前記の海島型複合繊維において、海成分と島成分の比率は、海島型複合繊維に対する島繊維の質量比が0.2以上0.9以下であることが好ましく、0.2以上0.8以下であることがより好ましい態様である。質量比を0.2以上とすることにより、海成分の除去率が少なくなり、生産性が向上する。また、質量比を0.9以下とすることにより、島繊維の開繊性を向上させ、また島成分の合流を防止することができるため好ましい。
In the sea-island composite fiber, the ratio of the sea component and the island component is preferably such that the mass ratio of the island fiber to the sea-island composite fiber is 0.2 to 0.9, and 0.2 to 0.8. Is a more preferred embodiment. By setting the mass ratio to 0.2 or more, the removal rate of sea components is reduced, and the productivity is improved. Further, it is preferable that the mass ratio be 0.9 or less, since the openability of the island fibers can be improved and the merging of the island components can be prevented.
なお、前記の海島型複合繊維において、後述する工程によって極細繊維となる島成分は、前記の熱可塑性樹脂で示したとおりである。一方、海成分は、ポリエチレン、ポリプロピレン、ポリスチレン、共重合ポリスチレン、ナトリウムスルホイソフタル酸やポリエチレングリコールなどを共重合した共重合ポリエステル、およびポリ乳酸等を用いることができる。後述する高密度化収縮処理にて高い収縮性を発現させるために、海性分としてポリスチレンや共重合ポリスチレンを用いることが好ましい。
島 In the sea-island composite fiber, the island component that becomes an ultrafine fiber in the process described later is as described for the thermoplastic resin. On the other hand, as the sea component, polyethylene, polypropylene, polystyrene, copolymerized polystyrene, copolymerized polyester obtained by copolymerizing sodium sulfoisophthalic acid, polyethylene glycol, and the like, polylactic acid, and the like can be used. It is preferable to use polystyrene or copolymerized polystyrene as a sea component in order to express high shrinkage in the densification shrinkage treatment described later.
前記の極細繊維発生型繊維からなる繊維絡合体を形成するためには、極細繊維発生型繊維の不織布等を形成することが好ましい。このようにすることによって、後工程である起毛処理を行った際、シート状物の表面品位を良好なものとすることができる。
In order to form a fiber entangled body composed of the above-mentioned ultrafine fiber-generating fibers, it is preferable to form a nonwoven fabric of the ultrafine fiber-generating fibers. By doing so, the surface quality of the sheet material can be improved when the raising process, which is a subsequent step, is performed.
前記の不織布としては、抄紙法で得られる不織布、短繊維をカードおよびクロスラッパーを用いて積層ウェブを形成させた後に、ニードルパンチやウォータージェットパンチを施して得られる短繊維不織布、およびスパンボンド法やメルトブロー法などから得られる長繊維不織布から所望の特性に合わせて適宜採用することができるが、風合いや品位の点では短繊維不織布が好ましく用いられる。
As the nonwoven fabric, a nonwoven fabric obtained by a papermaking method, a short fiber obtained by applying a needle punch or a water jet punch after forming a laminated web using a card and a cross wrapper with short fibers, and a spun bonding method It can be appropriately selected from long-fiber nonwoven fabrics obtained by melt blowing or the like in accordance with desired characteristics, but short-fiber nonwoven fabrics are preferably used in terms of texture and quality.
前記の短繊維不織布における、極細繊維発生型繊維の繊維長は、8mm以上90mm以下であることが好ましい。前記の繊維長を8mm以上とすることにより、絡合により耐摩耗性に優れたシート状物を得ることができる。また、前記の繊維長を90mm以下とすることにより、圧縮特性や表面品位に優れたシート状物を得ることができる。繊維長は、より好ましくは25mm以上90mm以下である。なお、繊維長が8mmより小さい繊維は絡合されにくく、シート状物の製造工程中に繊維脱落が発生する。また、90mmより長い繊維は絡合性に優れるが、立毛層を形成した際には耐摩耗性に乏しく、かつ、表面品位に劣る傾向となる。
繊 維 In the short-fiber nonwoven fabric, the fiber length of the ultrafine fiber generating fiber is preferably 8 mm or more and 90 mm or less. By setting the fiber length to 8 mm or more, a sheet-like material having excellent wear resistance due to entanglement can be obtained. Further, by setting the fiber length to 90 mm or less, a sheet-like material having excellent compression characteristics and surface quality can be obtained. The fiber length is more preferably 25 mm or more and 90 mm or less. Note that fibers having a fiber length of less than 8 mm are less likely to be entangled, and fibers fall off during the manufacturing process of the sheet. Further, fibers longer than 90 mm are excellent in entanglement, but tend to have poor abrasion resistance and poor surface quality when a nap layer is formed.
ニードルパンチ処理に用いられるニードルにおいて、ニードルバーブ(切りかき)の数は好ましくは1本以上9本以下である。ニードルバーブを1本以上とすることにより効率的な繊維の絡合が可能となる。一方、ニードルバーブを9本以下とすることにより繊維損傷を抑えることができる。
ニ ー ド ル In the needle used for the needle punching process, the number of needle barbs (cutting) is preferably one or more and nine or less. By using one or more needle barbs, efficient intertwining of fibers becomes possible. On the other hand, fiber damage can be suppressed by setting the number of needle barbs to nine or less.
パンチング本数は、好ましくは1000本/cm2以上6000本/cm2以下である。パンチング本数を1000本/cm2以上とすることにより、緻密性が得られ、高精度の仕上げを得ることができる。一方、パンチング本数を6000本/cm2以下とすることにより、加工性の悪化、繊維損傷および強度低下を防ぐことができる。
The number of punches is preferably not less than 1000 pieces / cm 2 and not more than 6000 pieces / cm 2 . By setting the number of punching pieces to 1000 pieces / cm 2 or more, denseness can be obtained, and high-precision finishing can be obtained. On the other hand, by setting the number of punches to 6000 / cm 2 or less, it is possible to prevent deterioration in workability, fiber damage and strength reduction.
また、ウォータージェットパンチ処理を行う場合には、水は柱状流の状態で行うことが好ましい。具体的には、直径0.05mm以上1.0mm以下のノズルから圧力2MPa以上60MPa以下で水を噴出させることが好ましい態様である。
場合 In addition, when performing the water jet punching treatment, it is preferable to perform the water in a columnar flow state. Specifically, in a preferred embodiment, water is ejected from a nozzle having a diameter of 0.05 mm to 1.0 mm at a pressure of 2 MPa to 60 MPa.
ニードルパンチ処理あるいはウォータージェットパンチ処理後の極細繊維発生型繊維で構成された不織布の見掛け密度は、0.15g/cm3以上0.45g/cm3以下であることが好ましい。見掛け密度を0.15g/cm3以上とすることにより、形態安定性と寸法安定性が優れた不織布にでき、研磨加工時の研磨布の伸びによる加工ムラおよびスクラッチ欠点の発生を抑えることができる。一方、見掛け密度を0.45g/cm3以下とすることにより、高分子弾性体を付与するための十分な空間を繊維間に維持することができる。
Apparent density of the constructed nonwoven microfine fiber-forming fibers after needle punching or water jet punching is preferably 0.15 g / cm 3 or more 0.45 g / cm 3 or less. By setting the apparent density to 0.15 g / cm 3 or more, a nonwoven fabric having excellent morphological stability and dimensional stability can be obtained, and the occurrence of processing unevenness and scratch defects due to elongation of the polishing cloth during polishing can be suppressed. . On the other hand, by setting the apparent density to 0.45 g / cm 3 or less, a sufficient space for providing the elastic polymer can be maintained between the fibers.
このようにして得られた極細繊維発生型繊維で構成された不織布は、緻密化の観点から、乾熱もしくは湿熱またはその両者によって収縮させ、さらに高密度化させることができる。また、カレンダー処理等により厚み方向に圧縮させることもできる。
不 織布 From the viewpoint of densification, the nonwoven fabric composed of the ultrafine fiber-generating fibers obtained as described above can be shrunk by dry heat or wet heat or both to further increase the density. Further, it can be compressed in the thickness direction by calendering or the like.
(b)繊維絡合体と補強層の積層一体化工程
本発明のシート状物は、その内層部あるいは表面に強度を向上させるなどの目的で補強層を含ませることができ、繊維絡合体の形成後に、この補強層を積層一体化させる工程を行うこともできる。前記の補強層としては、織物、編物、不織布(紙を含む)、およびプラスチックフィルムや金属薄膜シートなどのフィルム状物等を採用することができる。 (B) Step of Laminating and Integrating Fiber Entangled Body and Reinforcing Layer The sheet-like material of the present invention can include a reinforcing layer in the inner layer portion or the surface thereof for the purpose of improving the strength, etc. Thereafter, a step of laminating and integrating this reinforcing layer may be performed. As the reinforcing layer, a woven fabric, a knitted fabric, a nonwoven fabric (including paper), and a film-like material such as a plastic film or a metal thin film sheet can be used.
本発明のシート状物は、その内層部あるいは表面に強度を向上させるなどの目的で補強層を含ませることができ、繊維絡合体の形成後に、この補強層を積層一体化させる工程を行うこともできる。前記の補強層としては、織物、編物、不織布(紙を含む)、およびプラスチックフィルムや金属薄膜シートなどのフィルム状物等を採用することができる。 (B) Step of Laminating and Integrating Fiber Entangled Body and Reinforcing Layer The sheet-like material of the present invention can include a reinforcing layer in the inner layer portion or the surface thereof for the purpose of improving the strength, etc. Thereafter, a step of laminating and integrating this reinforcing layer may be performed. As the reinforcing layer, a woven fabric, a knitted fabric, a nonwoven fabric (including paper), and a film-like material such as a plastic film or a metal thin film sheet can be used.
補強層が繊維で構成された織物や編物の場合、構成する糸条には、ポリエステル、ポリアミド、ポリエチレン、またはポリプロピレン、またはそれらの共重合体などからなる合成繊維が好適に用いられる。中でも、ポリエステル、ポリアミドおよびそれらの共重合体からなる合成繊維を単独でまたは複合もしくは混合して好ましく用いることができる。また、織物や編物を構成する糸条としては、フィラメントヤーン、紡績糸、およびフィラメントと短繊維の混紡糸などを用いることができる。また、これら糸条を構成する繊維の平均単繊維直径は、0.1μm以上20μm以下であることがシート状物の風合いの観点から好ましい。
織物 In the case of a woven or knitted fabric in which the reinforcing layer is made of fibers, synthetic fibers made of polyester, polyamide, polyethylene, polypropylene, or a copolymer thereof are preferably used as the yarns. Among them, synthetic fibers composed of polyester, polyamide and their copolymers can be preferably used singly or in combination or in combination. Further, as a yarn constituting a woven or knitted fabric, a filament yarn, a spun yarn, a blended yarn of a filament and a short fiber, or the like can be used. In addition, the average single fiber diameter of the fibers constituting these yarns is preferably 0.1 μm or more and 20 μm or less from the viewpoint of the texture of the sheet.
前記の積層一体化工程として、ニードルパンチ工程を適用する場合、織物や編物の糸種によっては針によって切断されてシート状物の強力が低下することがある。これを抑制する手段として、織物や編物を構成する糸条の糸種を撚糸とすることが好ましい。
ニ ー ド ル When the needle punching step is applied as the lamination and integration step, the sheet-like material may be cut by a needle depending on the thread type of the woven or knitted material and the strength of the sheet-like material may be reduced. As means for suppressing this, it is preferable that the yarn type of the yarn constituting the woven or knitted fabric is a twisted yarn.
前記の織物や編物を構成する糸条が撚糸である場合においては、撚数が500T/m以下では、糸条を構成する単繊維同士の絞まりが不十分であるため、ニードルに引っかかり損傷しやすい。また、撚数が多すぎても撚糸が硬くなりすぎ、シート状物の風合が柔軟なものとならず、好ましくない。そのため、撚糸の撚数は500T/m以上4500T/m以下であることが好ましく、より好ましくは1000T/m以上4000T/m以下であり、さらに好ましくは1500T/m以上4000T/m以下であり、最も好ましくは2000T/m以上4000T/m以下である。
In the case where the yarn constituting the woven or knitted fabric is a twisted yarn, if the number of twists is 500 T / m or less, the single fibers constituting the yarn are insufficiently squeezed, so that the yarn is easily caught and damaged. . Further, if the number of twists is too large, the twisted yarn becomes too hard, and the feeling of the sheet-like material does not become flexible, which is not preferable. Therefore, the number of twists of the twisted yarn is preferably 500 T / m or more and 4500 T / m or less, more preferably 1000 T / m or more and 4000 T / m or less, and still more preferably 1500 T / m or more and 4000 T / m or less. Preferably it is 2000 T / m or more and 4000 T / m or less.
また、前記の織物や編物を構成する糸条の繊度(マルチフィラメントの場合は総繊度)について、その繊度が200dtex以上では補強層である織物や編物の目付、そして、シート状物の目付が大きくなる。その結果、シート状物の剛性が高くなるため、インテリア材や靴、および衣料などの用途に用いられるシート状物として十分な柔軟性を得ることが困難となる。よって、30dtex以上150dtex以下とすることが好ましく、50dtex以上130dtex以下とすることが好ましい。また、本発明で用いられる織編物を構成する糸条を構成する単繊維の平均単繊維繊度は、1dtex以上10dtex以下とすることができ、0.001dtex以上1dtex以下の単繊維繊度の極細繊維を用いることもできる。
In addition, with regard to the fineness of the yarn constituting the woven or knitted fabric (total fineness in the case of a multifilament), if the fineness is 200 dtex or more, the basis weight of the woven or knitted fabric as the reinforcing layer and the basis weight of the sheet-like material are large. Become. As a result, the rigidity of the sheet is increased, and it is difficult to obtain sufficient flexibility as a sheet used for applications such as interior materials, shoes, and clothing. Therefore, it is preferably 30 dtex or more and 150 dtex or less, and more preferably 50 dtex or more and 130 dtex or less. In addition, the average single fiber fineness of the single fibers constituting the yarn constituting the woven or knitted fabric used in the present invention can be 1 dtex or more and 10 dtex or less, and ultrafine fibers having a single fiber fineness of 0.001 dtex or more and 1 dtex or less can be obtained. It can also be used.
また、本発明で用いられる織物や編物については、2種類以上のポリマーがサイドバイサイド型または偏心芯鞘型に複合された複合繊維(以下、「サイドバイサイド型等複合繊維」と記載することがある。)を含んでなる織編物も用いることができる。例えば、固有粘度(IV)差のある2種類以上のポリマーからなるサイドバイサイド型等複合繊維においては、延伸時の高粘度側への応力集中により、2成分間で異なった内部歪みが生じる。この内部歪みのため、延伸後の弾性回復率差および熱処理工程での熱収縮差により高粘度側が大きく収縮し、単繊維内で歪みが生じて3次元コイル型の捲縮を発現させることができる。
Further, the woven or knitted fabric used in the present invention is a conjugate fiber in which two or more types of polymers are conjugated in a side-by-side type or an eccentric core-sheath type (hereinafter sometimes referred to as a “side-by-side or other conjugate fiber”). Can also be used. For example, in a composite fiber such as a side-by-side type composed of two or more polymers having a difference in intrinsic viscosity (IV), different internal strains occur between the two components due to stress concentration on the high viscosity side during stretching. Due to this internal strain, the high-viscosity side largely shrinks due to the difference in elastic recovery rate after stretching and the difference in heat shrinkage in the heat treatment step, and strain is generated in the single fiber, so that a three-dimensional coil-type crimp can be developed. .
さらに、本発明で用いられる織物としては、平織、綾織、朱子織およびそれらの織組織を基本とした各種織物などが挙げられる。また、編物としては、経編、トリコット編みで代表される緯編、レース編みおよびそれらの編組織を基本とした各種編物のいずれも採用することができる。それらの中でも、加工性の観点から織物が好ましく、特にコストの面で平織織物が好ましく用いられる。
織物 Further, examples of the woven fabric used in the present invention include plain woven, twill woven, satin woven and various woven fabrics based on their woven structures. Further, as the knitted fabric, any of a knitted fabric represented by warp knitting and tricot knitting, a lace knitted fabric, and various knitted fabrics based on these knitting structures can be adopted. Among them, a woven fabric is preferred from the viewpoint of processability, and a plain woven fabric is particularly preferably used in terms of cost.
(c)水溶性樹脂の付与工程
高分子弾性体が前記の繊維絡合体の内部に含有されてなるシート状物を得る場合において、シート状物表面の繊維分布の緻密性および均一性を得るためには、高分子弾性体は、極細繊維の繊維束が絡合してなる不織布(繊維絡合体)について、極細繊維の繊維束内部には実質的に存在しないことが好ましい態様である。繊維束内部にまで高分子弾性体が存在すると、高分子弾性体が各極細繊維と接着して存在することになるため、バフィング処理の際に表面繊維が引きちぎられやすく、かつ、立毛を形成し難い。 (C) Step of Applying Water-Soluble Resin When obtaining a sheet-like material in which a polymer elastic body is contained inside the fiber entangled body, in order to obtain denseness and uniformity of fiber distribution on the surface of the sheet-like material. In a non-woven fabric (fiber entangled body) formed by entanglement of a fiber bundle of microfibers, the polymer elastic body is preferably not substantially present inside the fiber bundle of microfibers. When the polymer elastic body is present even inside the fiber bundle, the polymer elastic body is bonded to each of the ultrafine fibers, so that the surface fibers are easily torn off during the buffing process, and the nap is formed. hard.
高分子弾性体が前記の繊維絡合体の内部に含有されてなるシート状物を得る場合において、シート状物表面の繊維分布の緻密性および均一性を得るためには、高分子弾性体は、極細繊維の繊維束が絡合してなる不織布(繊維絡合体)について、極細繊維の繊維束内部には実質的に存在しないことが好ましい態様である。繊維束内部にまで高分子弾性体が存在すると、高分子弾性体が各極細繊維と接着して存在することになるため、バフィング処理の際に表面繊維が引きちぎられやすく、かつ、立毛を形成し難い。 (C) Step of Applying Water-Soluble Resin When obtaining a sheet-like material in which a polymer elastic body is contained inside the fiber entangled body, in order to obtain denseness and uniformity of fiber distribution on the surface of the sheet-like material. In a non-woven fabric (fiber entangled body) formed by entanglement of a fiber bundle of microfibers, the polymer elastic body is preferably not substantially present inside the fiber bundle of microfibers. When the polymer elastic body is present even inside the fiber bundle, the polymer elastic body is bonded to each of the ultrafine fibers, so that the surface fibers are easily torn off during the buffing process, and the nap is formed. hard.
高分子弾性体が、極細繊維の繊維束内部には実質的に存在しない形態を得る方法としては、例えば、極細繊維発生型の海島型複合繊維で構成された不織布に、高分子弾性体を付与する以前に水溶性樹脂を付与する工程を設けることが好ましい。この水溶性樹脂を付与する工程を設けることにより、極細繊維の繊維束や織編物を構成する繊維の表面が水溶性樹脂により保護され、極細繊維の繊維束や織編物を構成する繊維の表面において、高分子弾性体と直接接合している箇所が連続的ではなく断続的に存在することとなり、接着面積を適度に抑えることができる。水溶性樹脂を付与するタイミングは、高分子弾性体を付与する前であれば、後述する極細繊維の発現処理の前であっても後であっても構わない。
As a method for obtaining a form in which the polymer elastic body is not substantially present inside the fiber bundle of the ultrafine fibers, for example, a polymer elastic body is applied to a nonwoven fabric composed of sea-island composite fibers of a microfine fiber generation type. It is preferable to provide a step of applying a water-soluble resin before the formation. By providing the step of applying this water-soluble resin, the surface of the fibers constituting the fiber bundle of the ultrafine fibers and the woven or knitted fabric is protected by the water-soluble resin, and the surface of the fibers constituting the fiber bundle of the ultrafine fibers or the woven or knitted fabric is In addition, the portion directly joined to the elastic polymer is not continuous but intermittent, and the bonding area can be appropriately suppressed. The timing at which the water-soluble resin is applied may be before or after the process of expressing the ultrafine fibers described below, as long as it is before the application of the elastic polymer.
このような水溶性樹脂としては、ポリビニルアルコール、ポリエチレングリコール、糖類および澱粉などを用いることができる。その中でも、鹸化度80%以上のポリビニルアルコールが好ましく用いられる。
ポ リ ビ ニ ル As such a water-soluble resin, polyvinyl alcohol, polyethylene glycol, saccharides, starch and the like can be used. Among them, polyvinyl alcohol having a saponification degree of 80% or more is preferably used.
ポリビニルアルコールを付与し、繊維の周囲の大部分を保護した後、海島型複合繊維の海成分を、ポリビニルアルコールは溶解しない溶剤で溶解除去し、次いで高分子弾性体の溶液を含浸し、水もしくは有機溶剤水溶液中で凝固させた後、ポリビニルアルコールを除去する方法が好ましく用いられる。
After imparting polyvinyl alcohol and protecting most of the periphery of the fiber, the sea component of the sea-island composite fiber is dissolved and removed with a solvent in which polyvinyl alcohol does not dissolve, and then impregnated with a solution of a polymer elastic material, and then water or A method of removing polyvinyl alcohol after coagulation in an organic solvent aqueous solution is preferably used.
なお、該ポリビニルアルコールの付与量としては、不織布に含まれる繊維質量に対して0.1質量%以上70質量%以下であることが好ましい。
The amount of the polyvinyl alcohol is preferably 0.1% by mass or more and 70% by mass or less based on the mass of the fibers contained in the nonwoven fabric.
(d)極細繊維発現工程
極細繊維発現型繊維として海島型複合繊維を用いている場合、海島型複合繊維から海成分を溶解、除去するなどして、極細繊維発生型繊維から極細繊維を発現させる工程は、後述する高分子弾性体、シリコーン系滑剤の付与工程の前、あるいは後、さらには後述する立毛処理工程の前、あるいは後のいずれかのタイミングで行う。 (D) Ultrafine fiber developing step When the sea-island composite fiber is used as the ultrafine fiber-expressing fiber, the sea component is dissolved and removed from the sea-island composite fiber to express the ultrafine fiber from the ultrafine fiber generating fiber. The step is performed before or after the step of applying the polymer elastic body and the silicone-based lubricant described later, or at the timing before or after the raising processing step described later.
極細繊維発現型繊維として海島型複合繊維を用いている場合、海島型複合繊維から海成分を溶解、除去するなどして、極細繊維発生型繊維から極細繊維を発現させる工程は、後述する高分子弾性体、シリコーン系滑剤の付与工程の前、あるいは後、さらには後述する立毛処理工程の前、あるいは後のいずれかのタイミングで行う。 (D) Ultrafine fiber developing step When the sea-island composite fiber is used as the ultrafine fiber-expressing fiber, the sea component is dissolved and removed from the sea-island composite fiber to express the ultrafine fiber from the ultrafine fiber generating fiber. The step is performed before or after the step of applying the polymer elastic body and the silicone-based lubricant described later, or at the timing before or after the raising processing step described later.
上記の海成分を溶解する溶剤としては、海成分がポリエチレンなどのポリオレフィンやポリスチレン等であれば、トルエンやトリクロロエチレン等の有機溶媒が用いられる。また、海成分がポリ乳酸や共重合ポリエステルであれば、水酸化ナトリウム等のアルカリ水溶液を用いることができる。
溶 剤 As a solvent for dissolving the above sea component, an organic solvent such as toluene or trichloroethylene is used if the sea component is a polyolefin such as polyethylene or polystyrene. If the sea component is polylactic acid or a copolyester, an aqueous alkali solution such as sodium hydroxide can be used.
この工程は、前記の溶剤中に極細繊維発生型繊維からなる繊維絡合体を浸漬し、窄液することによって行うことができる。
工程 This step can be performed by immersing the fiber entangled body made of the ultrafine fiber-generating fibers in the above-mentioned solvent and squeezing the solution.
また、この工程には、連続染色機、バイブロウォッシャー型脱海機、液流染色機、ウィンス染色機およびジッガー染色機等の装置を用いることができる。
装置 Further, in this step, devices such as a continuous dyeing machine, a vibro washer type deseamer, a liquid jet dyeing machine, a Wins dyeing machine and a Jigger dyeing machine can be used.
(e)高分子弾性体の含有工程
さらに、高分子弾性体を前記の繊維絡合体の内部、あるいは補強層と積層一体化された繊維絡合体の内部に含有させることができる。 (E) Step of containing polymer elastic body Further, the polymer elastic body can be contained inside the above-mentioned fiber entangled body or inside the fiber entangled body laminated and integrated with the reinforcing layer.
さらに、高分子弾性体を前記の繊維絡合体の内部、あるいは補強層と積層一体化された繊維絡合体の内部に含有させることができる。 (E) Step of containing polymer elastic body Further, the polymer elastic body can be contained inside the above-mentioned fiber entangled body or inside the fiber entangled body laminated and integrated with the reinforcing layer.
本発明で使用されるポリウレタン系エラストマーは、溶剤に溶解させたポリウレタン系エラストマーや水分散型のポリウレタン系エラストマーを用いることができる。例えば、溶剤型ポリウレタン樹脂(DIC株式会社製“クリスボン”(登録商標)MP-812NB)や、水分散型ポリウレタン樹脂(DIC株式会社製“ハイドラン”(登録商標)WLI-602)等を用いることができる。
ポ リ ウ レ タ ン As the polyurethane elastomer used in the present invention, a polyurethane elastomer dissolved in a solvent or a water-dispersed polyurethane elastomer can be used. For example, a solvent-type polyurethane resin (“Chrisbon” (registered trademark) MP-812NB, manufactured by DIC Corporation) or a water-dispersed polyurethane resin (“Hydran” (registered trademark) WLI-602, manufactured by DIC Corporation) may be used. it can.
ポリウレタン系エラストマーが溶剤型の場合には、水中に浸漬して凝固させる湿式凝固が好ましく、また、ポリウレタン系エラストマーが水分散型のポリウレタンの場合には湿熱凝固が好ましく用いられる。ポリウレタン系エラストマーが水分散型の場合は、感熱凝固性を示すものが好ましく用いられる。水分散型ポリウレタン系エラストマーにおいて、感熱凝固性を示さない場合、ポリウレタン系エラストマー液は乾式凝固の際に繊維絡合体の表層に集中するマイグレーション現象が発生し、ポリウレタン系エラストマーを含有したシート状物は、硬化する傾向にある。
(4) When the polyurethane elastomer is of a solvent type, wet coagulation in which the polyurethane elastomer is immersed in water for coagulation is preferable, and when the polyurethane elastomer is a water-dispersed polyurethane, wet heat coagulation is preferably used. When the polyurethane-based elastomer is of a water-dispersed type, those exhibiting heat-sensitive coagulation properties are preferably used. In the case of the water-dispersed polyurethane elastomer, when the thermosetting property is not exhibited, the polyurethane elastomer liquid undergoes a migration phenomenon that concentrates on the surface layer of the fiber entangled body during dry coagulation, and the sheet material containing the polyurethane elastomer is , Tend to harden.
ここで感熱凝固性とは、ポリウレタン系エラストマー液を加熱した際に、ある温度(感熱凝固温度)に達するとポリウレタン系エラストマー液の流動性が減少し、凝固する性質のことを言う。
熱 Here, the thermosetting property refers to a property that when the polyurethane elastomer liquid is heated, when a certain temperature (thermal coagulation temperature) is reached, the fluidity of the polyurethane elastomer liquid decreases and solidifies.
水分散型ポリウレタン系エラストマーの感熱凝固温度は、40℃以上90℃以下であることが好ましい。感熱凝固温度を40℃以上とすることにより、ポリウレタン系エラストマー液の貯蔵時の安定性が良好となり、操業時のマシンへのポリウレタン系エラストマーの付着等を抑制することができる。また、感熱凝固温度を90℃以下とすることにより、繊維絡合体中でのポリウレタン系エラストマーのマイグレーション現象を抑制することができ、内部に偏在させることができる。
(4) The heat-sensitive coagulation temperature of the water-dispersed polyurethane-based elastomer is preferably 40 ° C. or more and 90 ° C. or less. By setting the heat-sensitive coagulation temperature to 40 ° C. or higher, the stability of the polyurethane elastomer liquid during storage is improved, and adhesion of the polyurethane elastomer to the machine during operation can be suppressed. Further, by setting the heat-sensitive coagulation temperature to 90 ° C. or less, the migration phenomenon of the polyurethane elastomer in the fiber entangled body can be suppressed, and the polyurethane elastomer can be unevenly distributed.
感熱凝固温度を前記のとおりとするために、適宜感熱凝固剤を添加することができる。感熱凝固剤としては、例えば、硫酸ナトリウム、硫酸マグネシウム、硫酸カルシウムおよび塩化カルシウム等の無機塩や、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム、アゾビスイソブチロニトリルおよび過酸化ベンゾイル等のラジカル反応開始剤が挙げられる。
(4) In order to set the heat-sensitive coagulation temperature as described above, a heat-sensitive coagulant can be appropriately added. Examples of the heat-sensitive coagulant include inorganic salts such as sodium sulfate, magnesium sulfate, calcium sulfate and calcium chloride, and radical reactions such as sodium persulfate, potassium persulfate, ammonium persulfate, azobisisobutyronitrile and benzoyl peroxide. Initiators.
湿式凝固の温度は、溶剤系ポリウレタン系エラストマーの場合は、特に限定はない。また、水分散型ポリウレタン系エラストマーの場合は、ポリウレタン系エラストマーの感熱凝固温度以上であればよく、例えば、40℃以上100℃以下であることが好ましい。熱水中での湿式凝固の温度を40℃以上、より好ましくは80℃以上とすることにより、ポリウレタン系エラストマーの凝固までの時間を短くしてマイグレーション現象をより抑制することができる。
The wet coagulation temperature is not particularly limited in the case of a solvent-based polyurethane elastomer. In the case of a water-dispersed polyurethane elastomer, the temperature may be at least the thermosensitive coagulation temperature of the polyurethane elastomer, for example, preferably from 40 ° C to 100 ° C. By setting the temperature of wet coagulation in hot water to 40 ° C. or higher, more preferably 80 ° C. or higher, the time until solidification of the polyurethane elastomer can be shortened, and the migration phenomenon can be further suppressed.
湿熱凝固の温度は、水分散型ポリウレタン系エラストマーの感熱凝固温度以上であればよく、例えば、40℃以上200℃以下であることが好ましい。湿熱凝固の温度を40℃以上、より好ましくは80℃以上とすることにより、ポリウレタン系エラストマーの凝固までの時間を短くしてマイグレーション現象をより抑制することができる。一方、湿熱凝固の温度を200℃以下、より好ましくは160℃以下とすることにより、ポリウレタン系エラストマーの熱劣化を防ぐことができる。
(4) The temperature of the wet heat coagulation may be at least the heat-sensitive coagulation temperature of the water-dispersed polyurethane elastomer, and is preferably, for example, 40 ° C or more and 200 ° C or less. By setting the temperature of the wet heat coagulation at 40 ° C. or higher, more preferably at 80 ° C. or higher, the time until the coagulation of the polyurethane elastomer is shortened and the migration phenomenon can be further suppressed. On the other hand, by setting the temperature of the wet heat coagulation to 200 ° C. or lower, more preferably 160 ° C. or lower, the thermal deterioration of the polyurethane elastomer can be prevented.
本発明で用いられるポリウレタン系エラストマーとしては、ポリマージオールと有機ジイソシアネートと鎖伸長剤との反応により得られるポリウレタン系エラストマーが好ましく用いられる。
ポ リ ウ レ タ ン As the polyurethane elastomer used in the present invention, a polyurethane elastomer obtained by reacting a polymer diol, an organic diisocyanate, and a chain extender is preferably used.
上記のポリマージオールとしては、例えば、ポリカーボネート系ジオール、ポリエステル系ジオール、ポリエーテル系ジオール、シリコーン系ジオールおよびフッ素系ジオールを採用することができ、これらを組み合わせた共重合体を用いることもできる。中でも、耐加水分解性観点からは、ポリカーボネート系ジオールおよびポリエーテル系ジオールを用いることが好ましく、また耐摩耗性の観点からは、ポリカーボネート系ジオールがより好ましい態様である。
ポ リ カ ー ボ ネ ー ト As the above polymer diol, for example, a polycarbonate diol, a polyester diol, a polyether diol, a silicone diol, and a fluorine diol can be adopted, and a copolymer obtained by combining these can also be used. Above all, it is preferable to use a polycarbonate diol and a polyether diol from the viewpoint of hydrolysis resistance, and a more preferable embodiment is a polycarbonate diol from the viewpoint of abrasion resistance.
上記のポリカーボネート系ジオールは、アルキレングリコールと炭酸エステルのエステル交換反応、あるいはホスゲンまたはクロル蟻酸エステルとアルキレングリコールとの反応などによって製造することができる。
The above polycarbonate diol can be produced by a transesterification reaction between an alkylene glycol and a carbonate, or a reaction between phosgene or chloroformate and an alkylene glycol.
また、アルキレングリコールとしては、例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、1,10-デカンジオールなどの直鎖アルキレングリコールや、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオールおよび2-メチル-1,8-オクタンジオールなどの分岐アルキレングリコール、1,4-シクロヘキサンジオールなどの脂環族ジオール、ビスフェノールAなどの芳香族ジオール、グリセリン、トリメチロールプロパン、およびペンタエリスリトールなどが挙げられる。本発明では、それぞれ単独のアルキレングリコールから得られるポリカーボネート系ジオールでも、2種類以上のアルキレングリコールから得られる共重合ポリカーボネート系ジオールのいずれも採用することができる。
Examples of the alkylene glycol include ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, and 1,10-decanediol. Linear alkylene glycols and branched alkylene glycols such as neopentyl glycol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol and 2-methyl-1,8-octanediol And alicyclic diols such as 1,4-cyclohexanediol, aromatic diols such as bisphenol A, glycerin, trimethylolpropane, and pentaerythritol. In the present invention, either a polycarbonate diol obtained from a single alkylene glycol or a copolymerized polycarbonate diol obtained from two or more alkylene glycols can be used.
また、ポリエステル系ジオールとしては、各種低分子量ポリオールと多塩基酸とを縮合させて得られるポリエステルジオールを挙げることができる。
ポ リ エ ス テ ル Examples of the polyester diol include polyester diols obtained by condensing various low-molecular-weight polyols with polybasic acids.
低分子量ポリオールとしては、例えば、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、2,2-ジメチル-1,3-プロパンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,8-オクタンジオール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、シクロヘキサン-1,4-ジオール、およびシクロヘキサン-1,4-ジメタノールから選ばれる一種または二種以上を使用することができる。
Examples of the low molecular weight polyol include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butanediol, 1,4-butanediol, and 2,2-dimethyl-1,3-propane. Diols, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,8-octanediol, diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol, cyclohexane-1,4-diol, and One or more selected from cyclohexane-1,4-dimethanol can be used.
また、ビスフェノールAに各種アルキレンオキサイドを付加させた付加物も使用可能である。
付 加 Also, adducts obtained by adding various alkylene oxides to bisphenol A can be used.
また、多塩基酸としては、例えば、コハク酸、マレイン酸、アジピン酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、フタル酸、イソフタル酸、テレフタル酸、およびヘキサヒドロイソフタル酸から選ばれる一種または二種以上が挙げられる。
Examples of polybasic acids include, for example, succinic acid, maleic acid, adipic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, phthalic acid, isophthalic acid, terephthalic acid, and hexahydroacid One type or two or more types selected from isophthalic acid can be mentioned.
本発明で用いられるポリエーテル系ジオールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、およびそれらを組み合わせた共重合ジオールを挙げることができる。
ポ リ Examples of the polyether diol used in the present invention include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and a copolymerized diol obtained by combining them.
ポリマージオールの数平均分子量は、ポリウレタン系エラトマーの分子量が一定の場合、500以上4000以下の範囲であることが好ましい。数平均分子量を好ましくは500以上、より好ましくは1500以上とすることにより、シート状物が硬くなることを防ぐことができる。また、数平均分子量を4000以下、より好ましくは3000以下とすることにより、ポリウレタン系エラストマーとしての強度を維持することができる。
数 The number average molecular weight of the polymer diol is preferably in the range of 500 or more and 4000 or less when the molecular weight of the polyurethane-based elastomer is constant. By setting the number average molecular weight to preferably 500 or more, more preferably 1500 or more, it is possible to prevent the sheet from becoming hard. Further, by setting the number average molecular weight to 4000 or less, more preferably 3000 or less, the strength as a polyurethane elastomer can be maintained.
本発明で用いられる有機ジイソシアネートとしては、例えば、ヘキサメチレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、イソフォロンジイソシアネート、キシリレンジイソシアネート等の脂肪族系ジイソシアネートや、ジフェニルメタンジイソシアネート、およびトリレンジイソシアネート等の芳香族系ジイソシアネートが挙げられ、またこれらを組み合わせて用いることもできる。
Examples of the organic diisocyanate used in the present invention include an aliphatic diisocyanate such as hexamethylene diisocyanate, dicyclohexylmethane diisocyanate, isophorone diisocyanate, and xylylene diisocyanate, and an aromatic diisocyanate such as diphenylmethane diisocyanate and tolylene diisocyanate. And these can be used in combination.
鎖伸長剤としては、好ましくはエチレンジアミンやメチレンビスアニリン等のアミン系の鎖伸長剤、およびエチレングリコール等のジオール系の鎖伸長剤を用いることができる。また、ポリイソシアネートと水を反応させて得られるポリアミンを鎖伸長剤として用いることもできる。
As the chain extender, amine chain extenders such as ethylenediamine and methylenebisaniline and diol chain extenders such as ethylene glycol can be preferably used. Further, a polyamine obtained by reacting a polyisocyanate with water can be used as a chain extender.
本発明で用いられるポリウレタンは、耐水性、耐摩耗性および耐加水分解性等を向上させる目的で架橋剤を併用することができる。架橋剤は、ポリウレタン系エラストマーに対し、第3成分として添加する外部架橋剤でもよく、またポリウレタン分子構造内に予め架橋構造となる反応点を導入する内部架橋剤も用いることができる。ポリウレタン分子構造内により均一に架橋点を形成することができ、柔軟性の減少を軽減できるという観点から、内部架橋剤を用いることが好ましい。
ポ リ ウ レ タ ン The polyurethane used in the present invention may be used in combination with a crosslinking agent for the purpose of improving water resistance, abrasion resistance, hydrolysis resistance and the like. The cross-linking agent may be an external cross-linking agent added as a third component to the polyurethane-based elastomer, or an internal cross-linking agent that introduces a reaction point to be a cross-linked structure in the polyurethane molecular structure in advance. It is preferable to use an internal cross-linking agent from the viewpoint that a cross-linking point can be formed more uniformly in the polyurethane molecular structure and a decrease in flexibility can be reduced.
架橋剤としては、イソシアネート基、オキサゾリン基、カルボジイミド基、エポキシ基、メラミン樹脂、およびシラノール基などを有する化合物を用いることができる。
化合物 As the crosslinking agent, a compound having an isocyanate group, an oxazoline group, a carbodiimide group, an epoxy group, a melamine resin, a silanol group, or the like can be used.
(f)シリコーン系滑剤の付与工程
前記の(b)水溶性樹脂の付与工程、すなわち、高分子弾性体が前記の繊維絡合体の内部に含有されてなるシート状物を得る場合においては、繊維絡合体に高分子弾性体を含浸凝固した後のシートに、シリコーン系滑剤をシート状物の質量に対し0.01質量%以上3.0質量%以下付与することが好ましい。0.01質量%以上付与することで、高分子弾性体凝固物の表面をシリコーン系滑剤で覆うことにより、後述する立毛層の形成工程時に高分子弾性体と極細繊維の離型性を向上し、極細繊維を分散させ、均一な立毛層を形成しやすくなる。一方、3.0質量%を超えるとシリコーンの滑り効果により立毛を形成し難くなる。シリコーン系滑剤のより好ましい範囲は、シート状物の質量に対し、0.1質量%以上2.0質量%以下である。シリコーン系滑剤は、例えば、東レコーテックス社製“SM7036EX”を用いることができる。 (F) Step of Applying Silicone-Based Lubricant In the step (b) of applying a water-soluble resin, that is, in the case of obtaining a sheet-like material in which a polymer elastic body is contained inside the fiber entangled body, fibers The sheet after impregnating and solidifying the entangled body with the elastic polymer is preferably provided with a silicone-based lubricant in an amount of 0.01% by mass or more and 3.0% by mass or less based on the mass of the sheet. By giving 0.01% by mass or more, the surface of the coagulated polymer elastic body is covered with a silicone-based lubricant, thereby improving the releasability of the polymer elastic body and the microfiber during the step of forming the raised layer described below. The fine fibers are dispersed, and a uniform nap layer is easily formed. On the other hand, when the content exceeds 3.0% by mass, it is difficult to form nap due to the sliding effect of silicone. A more preferable range of the silicone-based lubricant is 0.1% by mass or more and 2.0% by mass or less based on the mass of the sheet material. As the silicone-based lubricant, for example, “SM7036EX” manufactured by Toray Cortex Co., Ltd. can be used.
前記の(b)水溶性樹脂の付与工程、すなわち、高分子弾性体が前記の繊維絡合体の内部に含有されてなるシート状物を得る場合においては、繊維絡合体に高分子弾性体を含浸凝固した後のシートに、シリコーン系滑剤をシート状物の質量に対し0.01質量%以上3.0質量%以下付与することが好ましい。0.01質量%以上付与することで、高分子弾性体凝固物の表面をシリコーン系滑剤で覆うことにより、後述する立毛層の形成工程時に高分子弾性体と極細繊維の離型性を向上し、極細繊維を分散させ、均一な立毛層を形成しやすくなる。一方、3.0質量%を超えるとシリコーンの滑り効果により立毛を形成し難くなる。シリコーン系滑剤のより好ましい範囲は、シート状物の質量に対し、0.1質量%以上2.0質量%以下である。シリコーン系滑剤は、例えば、東レコーテックス社製“SM7036EX”を用いることができる。 (F) Step of Applying Silicone-Based Lubricant In the step (b) of applying a water-soluble resin, that is, in the case of obtaining a sheet-like material in which a polymer elastic body is contained inside the fiber entangled body, fibers The sheet after impregnating and solidifying the entangled body with the elastic polymer is preferably provided with a silicone-based lubricant in an amount of 0.01% by mass or more and 3.0% by mass or less based on the mass of the sheet. By giving 0.01% by mass or more, the surface of the coagulated polymer elastic body is covered with a silicone-based lubricant, thereby improving the releasability of the polymer elastic body and the microfiber during the step of forming the raised layer described below. The fine fibers are dispersed, and a uniform nap layer is easily formed. On the other hand, when the content exceeds 3.0% by mass, it is difficult to form nap due to the sliding effect of silicone. A more preferable range of the silicone-based lubricant is 0.1% by mass or more and 2.0% by mass or less based on the mass of the sheet material. As the silicone-based lubricant, for example, “SM7036EX” manufactured by Toray Cortex Co., Ltd. can be used.
シリコーン系滑剤の付与方法は、シリコーンオイル液にシートを含浸する方法や、スプレーによって噴射して付与する方法があるが、より均一に付与するためにはシリコーンオイル液にシートを含浸して付与する方法が好ましい。
As a method of applying the silicone-based lubricant, there is a method of impregnating the sheet with a silicone oil liquid or a method of spraying and applying by spraying. For more uniform application, the sheet is impregnated with the silicone oil liquid and applied. The method is preferred.
シリコーンオイルは高分子弾性体の凝固後、すぐに付与することが好ましい。たとえば、水中でポリウレタンを凝固した場合は、水分を乾燥するための加熱前にシリコーンオイルを付与することが好ましい。
It is preferable to apply the silicone oil immediately after the solidification of the elastic polymer. For example, when polyurethane is coagulated in water, it is preferable to apply silicone oil before heating to dry the water.
(g)半裁工程
前記の極細繊維発現工程の後、繊維絡合体に対して高分子弾性体および/またはシリコーン系滑剤を付与した場合にはその工程の後、シート状物を厚み方向に半裁し、ないしは数枚に分割することもできる。このようにすることで、シート状物をより効率的に得ることができるため、好ましい。 (G) Half-cutting step After the ultrafine fiber developing step, when a polymer elastic body and / or a silicone-based lubricant is applied to the fiber entangled body, the sheet is cut in half in the thickness direction after the step. Or, it can be divided into several pieces. This is preferable because a sheet-like material can be obtained more efficiently.
前記の極細繊維発現工程の後、繊維絡合体に対して高分子弾性体および/またはシリコーン系滑剤を付与した場合にはその工程の後、シート状物を厚み方向に半裁し、ないしは数枚に分割することもできる。このようにすることで、シート状物をより効率的に得ることができるため、好ましい。 (G) Half-cutting step After the ultrafine fiber developing step, when a polymer elastic body and / or a silicone-based lubricant is applied to the fiber entangled body, the sheet is cut in half in the thickness direction after the step. Or, it can be divided into several pieces. This is preferable because a sheet-like material can be obtained more efficiently.
(h)立毛層の形成工程
本発明のシート状物は、前記のとおり基材層と立毛層からなり、前記立毛層は、前記シート状物の少なくとも一面に前記極細繊維のみからなる立毛を有するものである。 (H) Step of Forming a Napped Layer The sheet-like material of the present invention includes the base layer and the napped layer as described above, and the napped layer has the napped only of the ultrafine fibers on at least one surface of the sheet-shaped material. Things.
本発明のシート状物は、前記のとおり基材層と立毛層からなり、前記立毛層は、前記シート状物の少なくとも一面に前記極細繊維のみからなる立毛を有するものである。 (H) Step of Forming a Napped Layer The sheet-like material of the present invention includes the base layer and the napped layer as described above, and the napped layer has the napped only of the ultrafine fibers on at least one surface of the sheet-shaped material. Things.
この立毛は一般的にはバフィング処理により得られるが、ここでいうバフィング処理とは、サンドペーパーやロールサンダーなどを用いて極細繊維不織布のシート表面を研削する方法などにより施すことが好ましい。とりわけ、シート表面を、サンドペーパーを使用して起毛処理することにより、均一で緻密な立毛を形成することができる。
立 The nap is generally obtained by buffing treatment, but the buffing treatment is preferably performed by a method of grinding the sheet surface of the ultrafine fiber nonwoven fabric using a sandpaper or a roll sander. In particular, by raising the sheet surface using sandpaper, a uniform and dense nap can be formed.
前記のとおり、起毛処理の前にシート状物にシリコーン系滑剤を付与することにより、高分子弾性体と極細繊維の離型性を向上し、光沢感ある長い立毛を発現させる。また、極細繊維表面を保護し融着抑制の効果を発現させ、潤滑効果によって繊維の開繊性も向上する。また、シート状物の起毛処理の前に帯電防止剤を付与することは、研削によってシート状物から発生した研削粉がサンドペーパー上に堆積しにくくする上で好ましい態様である。
と お り As described above, by applying a silicone-based lubricant to the sheet-like material before the raising treatment, the releasability of the elastic polymer and the microfiber is improved, and a long glossy nap is developed. In addition, the surface of the ultrafine fiber is protected, the effect of suppressing fusion is exhibited, and the fiber opening property is improved by the lubricating effect. In addition, applying an antistatic agent before the raising treatment of the sheet-like material is a preferable embodiment in that grinding powder generated from the sheet-like material by grinding is less likely to be deposited on sandpaper.
立毛面により均一で緻密な立毛を立毛被覆率が高い状態で存在させるには、不織布等の繊維絡合体の表面または繊維絡合体全体を、水や薬品で湿潤状態として処理する方法があるが、起毛処理時にはシートが乾燥状態であることが好ましい態様である。シートを湿潤状態とすることにより、サンドペーパーも湿潤状態となり、連続加工時に破れるなどペーパーライフが短くなる。また、起毛処理後に乾燥により水を除去する必要があるため、生産効率に劣り好ましくない態様である。
There is a method in which the surface of the fiber entangled body such as a nonwoven fabric or the entire fiber entangled body is treated in a wet state with water or a chemical in order to make the nap surface more uniform and dense nap in a state of high nap coverage. In a preferred embodiment, the sheet is in a dry state during the raising process. When the sheet is in a wet state, the sandpaper is also in a wet state, and the paper life is shortened, such as breakage during continuous processing. Further, since it is necessary to remove water by drying after the raising process, the production efficiency is inferior and this is an unfavorable aspect.
シート表面に均一な立毛を形成させるためには、研削負荷を小さくすることが好ましい。研削負荷を小さくするためには、バフィング処理回数を少なくとも2回以上、好ましくは3回以上の多段バフィングであり、さらに各段に使用するサンドペーパーの番手を段階的に細かくするか、または少なくとも同じにすることにより、立毛を均一に仕上げることができる。また、サンドペーパーの番手は、JIS R6252:2006「研磨紙」で規定される粒度Pが120番以上600番以下の範囲とすることが好ましい態様である。
研 削 In order to form a uniform nap on the sheet surface, it is preferable to reduce the grinding load. In order to reduce the grinding load, the number of times of buffing is at least two times, preferably three or more times, and the number of sandpapers used in each step is further reduced stepwise or at least the same. By doing so, the nap can be finished uniformly. In addition, the count of the sandpaper is a preferred embodiment in which the particle size P specified in JIS R6252: 2006 “Abrasive paper” is in the range of 120 to 600.
シート表面の立毛層における極細繊維の平均繊維長のCV値を30%以下とするためには、バフィング処理した際の研削量を20g/m2以上250g/m2以下、好ましくは30g/m2以上100g/m2以下とすることが好ましい態様である。研削量を20g/m2未満では、立毛層を構成する繊維長のバラツキが大きく、立毛表面に照射される光が乱反射する割合が大きくなり、光沢感が不十分となる。また、ポリウレタンが表面に露出するなどの欠点が発生する。
In order to make the average fiber length CV value of the ultrafine fibers in the napped layer on the sheet surface 30% or less, the grinding amount at the time of buffing treatment is 20 g / m 2 or more and 250 g / m 2 or less, preferably 30 g / m 2. In a preferred embodiment, the concentration is at least 100 g / m 2 . When the grinding amount is less than 20 g / m 2 , the fiber length constituting the nap layer has large variation, the rate of irregular reflection of light applied to the nap surface increases, and the glossiness becomes insufficient. Further, disadvantages such as exposure of the polyurethane to the surface occur.
(i)染色工程
シート状物は、用途に応じて染色することができる。シート状物の染色方法としては、シート状物を染色すると同時に揉み効果を与えてシート状物を柔軟化することができることから、液流染色機を用いることが好ましい。シート状物の染色温度は、高すぎると高分子弾性体が劣化する場合があり、逆に低すぎると繊維への染着が不十分となるため、繊維の種類により設定することが好ましい。染色温度は、一般に80℃以上150℃以下であることが好ましく、より好ましくは110℃以上130℃以下である。 (I) Dyeing step The sheet can be dyed according to the application. As a method for dyeing the sheet-like material, it is preferable to use a liquid jet dyeing machine since the sheet-like material can be softened by imparting a kneading effect at the same time as dyeing the sheet-like material. If the dyeing temperature of the sheet-like material is too high, the polymer elastic body may be deteriorated. On the other hand, if the temperature is too low, the dyeing to the fiber becomes insufficient. Generally, the dyeing temperature is preferably from 80 ° C to 150 ° C, more preferably from 110 ° C to 130 ° C.
シート状物は、用途に応じて染色することができる。シート状物の染色方法としては、シート状物を染色すると同時に揉み効果を与えてシート状物を柔軟化することができることから、液流染色機を用いることが好ましい。シート状物の染色温度は、高すぎると高分子弾性体が劣化する場合があり、逆に低すぎると繊維への染着が不十分となるため、繊維の種類により設定することが好ましい。染色温度は、一般に80℃以上150℃以下であることが好ましく、より好ましくは110℃以上130℃以下である。 (I) Dyeing step The sheet can be dyed according to the application. As a method for dyeing the sheet-like material, it is preferable to use a liquid jet dyeing machine since the sheet-like material can be softened by imparting a kneading effect at the same time as dyeing the sheet-like material. If the dyeing temperature of the sheet-like material is too high, the polymer elastic body may be deteriorated. On the other hand, if the temperature is too low, the dyeing to the fiber becomes insufficient. Generally, the dyeing temperature is preferably from 80 ° C to 150 ° C, more preferably from 110 ° C to 130 ° C.
染料は、シート状物を構成する繊維の種類にあわせて、選択することができる。例えば、ポリエステル系繊維であれば分散染料を用い、ポリアミド系繊維であれば酸性染料や含金染料を用い、更にそれらの組み合わせを用いることができる。
The dye can be selected according to the type of fiber constituting the sheet. For example, a disperse dye is used for polyester fibers, and an acid dye or a gold-containing dye is used for polyamide fibers, and a combination thereof can be used.
また、シート状物の染色時に染色助剤を使用することも好ましい態様である。染色助剤を用いることにより、染色の均一性や再現性を向上させることができる。また、染色と同浴または染色後に、シリコーン等の柔軟剤、帯電防止剤、撥水剤、難燃剤、耐光剤および抗菌剤等を用いた仕上げ剤処理を施すことができる。
好 ま し い It is also a preferred embodiment to use a dyeing aid at the time of dyeing the sheet. By using the dyeing aid, the uniformity and reproducibility of the dyeing can be improved. Further, a finishing agent treatment using a softening agent such as silicone, an antistatic agent, a water repellent, a flame retardant, a light resistant agent, an antibacterial agent, or the like can be performed in the same bath or after the dyeing.
なお、本発明のシート状物は、立毛面に部分的な圧着部や樹脂コーティング部を有さないことが好ましい態様である。ここで、部分的な圧着とは、熱エンボスによる処理等を含む。部分圧着処理や樹脂コーティングによっても、シート状物の表面に凹凸を付与することは可能であるが、このような処理を行った箇所には表面に立毛のない部位が生じる。立毛のない部位では、本発明の目的としているような、緻密感と光沢感が得られない場合がある。ただし、部分的に良好な触感を有していれば十分である用途においては、必要に応じてこれらの処理を施しても構わない。
In a preferred embodiment, the sheet-like material of the present invention does not have a partially crimped portion or a resin-coated portion on the raised surface. Here, the partial pressure bonding includes processing by hot embossing and the like. Although it is possible to impart irregularities to the surface of the sheet-like material by partial pressure bonding or resin coating, there are portions with no nap on the surface where such treatment is performed. In a part without piloerection, a dense feeling and a glossy feeling as the object of the present invention may not be obtained. However, in applications where it is sufficient to have a partially good tactile sensation, these treatments may be performed as necessary.
本発明のシート状物の見かけ密度は、0.100g/cm3以上0.900g/cm3以下であることが好ましく、より好ましくは0.200g/cm3以上0.700g/cm3以下である。見かけ密度が0.100g/cm3以上になると、シート状物の緻密感や機械物性が良好であり、0.900g/cm3以下であると、風合いが硬くなることを避けることができる。
Apparent density of the sheet of the present invention, it is preferably, more preferably 0.200 g / cm 3 or more 0.700 g / cm 3 or less or less 0.100 g / cm 3 or more 0.900 g / cm 3 . When the apparent density is 0.100 g / cm 3 or more, the denseness and mechanical properties of the sheet material are good, and when the apparent density is 0.900 g / cm 3 or less, it is possible to prevent the texture from becoming hard.
なお、本発明において、シート状物の見かけ密度は、以下のように測定される値のことを指す。
(A)シート状物の目付として、JIS L 1096:2010「織物及び編物の生地試験方法」 8.3.2に準じた方法で測定する。すなわち、20cm×20cmの試験片を2枚採取し、それぞれの質量(g)を量り、その算術平均値を1m2当たりの質量(g/m2)で表した。
(B)シート状物の厚みとして、0.01mm目盛りの厚さ計(ディスク直径9mm以上)を用い、10kPa荷重下で、シート幅方向等間隔に5点測定し、その算術平均値を求める。
(C)(A)、(B)で求めたシート状物の目付、厚みを用いて、下式にて見かけ密度を算出し、値を小数点以下第4位で四捨五入する。
・見かけ密度(g/cm3)=目付(g/m2)÷厚み(mm)÷1000
シート状物の厚みは、0.1mm以上7mm以下であることが好ましい。この厚さを0.1mm以上、好ましくは0.3mm以上とすることにより、シート状物の形態安定性と寸法安定性に優れる。一方、厚さを7mm以下、より好ましくは5mm以下とすることにより、シート状物の成形性に優れる。 In addition, in this invention, the apparent density of a sheet-shaped thing points out the value measured as follows.
(A) The basis weight of the sheet is measured by a method according to JIS L 1096: 2010 “Test method for fabrics and knitted fabrics” 8.3.2. That is, two test pieces of 20 cm × 20 cm were sampled, their mass (g) was weighed, and the arithmetic average value was expressed as mass per 1 m 2 (g / m 2 ).
(B) As a thickness of a sheet-like material, five points are measured at equal intervals in the sheet width direction under a load of 10 kPa using a thickness gauge (disc diameter of 9 mm or more) with a scale of 0.01 mm, and the arithmetic average value is obtained.
(C) The apparent density is calculated by the following formula using the basis weight and thickness of the sheet obtained in (A) and (B), and the value is rounded to four decimal places.
Apparent density (g / cm 3 ) = weight (g / m 2 ) thickness (mm) ÷ 1000
The thickness of the sheet is preferably 0.1 mm or more and 7 mm or less. By setting the thickness to 0.1 mm or more, preferably 0.3 mm or more, the sheet-like material is excellent in morphological stability and dimensional stability. On the other hand, by setting the thickness to 7 mm or less, more preferably 5 mm or less, the formability of the sheet is excellent.
(A)シート状物の目付として、JIS L 1096:2010「織物及び編物の生地試験方法」 8.3.2に準じた方法で測定する。すなわち、20cm×20cmの試験片を2枚採取し、それぞれの質量(g)を量り、その算術平均値を1m2当たりの質量(g/m2)で表した。
(B)シート状物の厚みとして、0.01mm目盛りの厚さ計(ディスク直径9mm以上)を用い、10kPa荷重下で、シート幅方向等間隔に5点測定し、その算術平均値を求める。
(C)(A)、(B)で求めたシート状物の目付、厚みを用いて、下式にて見かけ密度を算出し、値を小数点以下第4位で四捨五入する。
・見かけ密度(g/cm3)=目付(g/m2)÷厚み(mm)÷1000
シート状物の厚みは、0.1mm以上7mm以下であることが好ましい。この厚さを0.1mm以上、好ましくは0.3mm以上とすることにより、シート状物の形態安定性と寸法安定性に優れる。一方、厚さを7mm以下、より好ましくは5mm以下とすることにより、シート状物の成形性に優れる。 In addition, in this invention, the apparent density of a sheet-shaped thing points out the value measured as follows.
(A) The basis weight of the sheet is measured by a method according to JIS L 1096: 2010 “Test method for fabrics and knitted fabrics” 8.3.2. That is, two test pieces of 20 cm × 20 cm were sampled, their mass (g) was weighed, and the arithmetic average value was expressed as mass per 1 m 2 (g / m 2 ).
(B) As a thickness of a sheet-like material, five points are measured at equal intervals in the sheet width direction under a load of 10 kPa using a thickness gauge (disc diameter of 9 mm or more) with a scale of 0.01 mm, and the arithmetic average value is obtained.
(C) The apparent density is calculated by the following formula using the basis weight and thickness of the sheet obtained in (A) and (B), and the value is rounded to four decimal places.
Apparent density (g / cm 3 ) = weight (g / m 2 ) thickness (mm) ÷ 1000
The thickness of the sheet is preferably 0.1 mm or more and 7 mm or less. By setting the thickness to 0.1 mm or more, preferably 0.3 mm or more, the sheet-like material is excellent in morphological stability and dimensional stability. On the other hand, by setting the thickness to 7 mm or less, more preferably 5 mm or less, the formability of the sheet is excellent.
本発明のシート状物は、優美な外観と非常に滑らかなタッチを有し、また耐摩耗性も有するので、シャツ、ジャケット、カジュアルシューズ、スポーツシューズ、紳士靴および婦人靴等の靴のアッパー、トリム等、鞄、ベルト、財布等の衣料、あるいは、ボタン、ポケット等、衣料の付属品に、好適に用いることができる。
Since the sheet-like material of the present invention has an elegant appearance and a very smooth touch, and also has abrasion resistance, it can be used for uppers of shoes such as shirts, jackets, casual shoes, sports shoes, men's shoes and women's shoes, It can be suitably used for clothing such as trims, bags, belts, wallets, and accessories for clothing such as buttons and pockets.
次に、実施例を用いて本発明のシート状物についてさらに具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。次に、実施例で用いた評価法とその測定条件について説明する。ただし、各物性の測定において、特段の記載がないものは、前記の方法に基づいて測定を行った。
Next, the sheet-like material of the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. Next, the evaluation method used in the examples and the measurement conditions will be described. However, in the measurement of each physical property, unless otherwise specified, the measurement was performed based on the method described above.
<評価方法>
(1)平均単糸直径
前記平均単糸直径の測定において、走査型電子顕微鏡として、キーエンス社製VE-7800型を用いた。 <Evaluation method>
(1) Average Single Yarn Diameter In the measurement of the average single yarn diameter, VE-7800 manufactured by KEYENCE CORPORATION was used as a scanning electron microscope.
(1)平均単糸直径
前記平均単糸直径の測定において、走査型電子顕微鏡として、キーエンス社製VE-7800型を用いた。 <Evaluation method>
(1) Average Single Yarn Diameter In the measurement of the average single yarn diameter, VE-7800 manufactured by KEYENCE CORPORATION was used as a scanning electron microscope.
(2)ポリマーの固有粘度(IV)
オルソクロロフェノール(以下、OCPと略記することがある。)10mL中に試料ポリマーを0.8g溶かし、25℃の温度においてオストワルド粘度計を用いて相対粘度ηrを下式により求め、固有粘度(IV)を算出した。
・ηr=η/η0=(t×d)/(t0×d0)
・固有粘度(IV)=0.0242ηr+0.2634
(ここで、ηはポリマー溶液の粘度、η0はOCPの粘度、tは溶液の落下時間(秒)、dは溶液の密度(g/cm3)、t0はOCPの落下時間(秒)、d0はOCPの密度(g/cm3)を、それぞれ表す。)。 (2) Intrinsic viscosity of polymer (IV)
0.8 g of a sample polymer is dissolved in 10 mL of orthochlorophenol (hereinafter sometimes abbreviated as OCP), and the relative viscosity η r is determined by the following equation using an Ostwald viscometer at a temperature of 25 ° C., and the intrinsic viscosity ( IV) was calculated.
Η r = η / η 0 = (t × d) / (t 0 × d 0 )
-Intrinsic viscosity (IV) = 0.0242 η r + 0.2634
(Where η is the viscosity of the polymer solution, η 0 is the viscosity of the OCP, t is the falling time of the solution (seconds), d is the density of the solution (g / cm 3 ), and t 0 is the falling time of the OCP (seconds) , d 0 is the density of OCP a (g / cm 3), representing respectively.).
オルソクロロフェノール(以下、OCPと略記することがある。)10mL中に試料ポリマーを0.8g溶かし、25℃の温度においてオストワルド粘度計を用いて相対粘度ηrを下式により求め、固有粘度(IV)を算出した。
・ηr=η/η0=(t×d)/(t0×d0)
・固有粘度(IV)=0.0242ηr+0.2634
(ここで、ηはポリマー溶液の粘度、η0はOCPの粘度、tは溶液の落下時間(秒)、dは溶液の密度(g/cm3)、t0はOCPの落下時間(秒)、d0はOCPの密度(g/cm3)を、それぞれ表す。)。 (2) Intrinsic viscosity of polymer (IV)
0.8 g of a sample polymer is dissolved in 10 mL of orthochlorophenol (hereinafter sometimes abbreviated as OCP), and the relative viscosity η r is determined by the following equation using an Ostwald viscometer at a temperature of 25 ° C., and the intrinsic viscosity ( IV) was calculated.
Η r = η / η 0 = (t × d) / (t 0 × d 0 )
-Intrinsic viscosity (IV) = 0.0242 η r + 0.2634
(Where η is the viscosity of the polymer solution, η 0 is the viscosity of the OCP, t is the falling time of the solution (seconds), d is the density of the solution (g / cm 3 ), and t 0 is the falling time of the OCP (seconds) , d 0 is the density of OCP a (g / cm 3), representing respectively.).
(3)ポリマーのメルトフローレイト(MFR)
ISO 1133:2005「Plastics -Determination of the melt mass-flow rate(MFR) and the melt volume-flow rate(MVR) of thermoplastics」に規定されているMFR測定方法に準じ、10分間に押し出される樹脂の量(g)を測定した。同様の測定を3回繰り返し、その算術平均値をMFR(g/10分)とした。 (3) Polymer melt flow rate (MFR)
ISO 1133: 2005 "Plastics-Determination of the melt mass-flow rate (MFR) and the melt volume-flow rate (MVR)" (G) was measured. The same measurement was repeated three times, and the arithmetic average value was defined as MFR (g / 10 minutes).
ISO 1133:2005「Plastics -Determination of the melt mass-flow rate(MFR) and the melt volume-flow rate(MVR) of thermoplastics」に規定されているMFR測定方法に準じ、10分間に押し出される樹脂の量(g)を測定した。同様の測定を3回繰り返し、その算術平均値をMFR(g/10分)とした。 (3) Polymer melt flow rate (MFR)
ISO 1133: 2005 "Plastics-Determination of the melt mass-flow rate (MFR) and the melt volume-flow rate (MVR)" (G) was measured. The same measurement was repeated three times, and the arithmetic average value was defined as MFR (g / 10 minutes).
(4)立毛層における極細繊維の平均繊維長(μm)、極細繊維の平均繊維長のCV値(%)
極細繊維の平均繊維長(μm)および平均繊維長のCV値(%)の測定において、走査型電子顕微鏡として、キーエンス社製VE-7800型を用いた。 (4) Average fiber length of microfibers in the nap layer (μm), CV value of average fiber length of microfibers (%)
In the measurement of the average fiber length (μm) of the ultrafine fibers and the CV value (%) of the average fiber length, VE-7800 manufactured by KEYENCE CORPORATION was used as a scanning electron microscope.
極細繊維の平均繊維長(μm)および平均繊維長のCV値(%)の測定において、走査型電子顕微鏡として、キーエンス社製VE-7800型を用いた。 (4) Average fiber length of microfibers in the nap layer (μm), CV value of average fiber length of microfibers (%)
In the measurement of the average fiber length (μm) of the ultrafine fibers and the CV value (%) of the average fiber length, VE-7800 manufactured by KEYENCE CORPORATION was used as a scanning electron microscope.
(5)立毛層における極細繊維の表面被覆率(%)
表面被覆率の測定において、走査型電子顕微鏡として、キーエンス社製VE-7800型を、画像分析ソフトウェアとして、「ImageJ」を用いた。 (5) Surface coverage of microfibers in the nap layer (%)
In the measurement of the surface coverage, VE-7800 manufactured by KEYENCE CORPORATION was used as a scanning electron microscope, and "ImageJ" was used as image analysis software.
表面被覆率の測定において、走査型電子顕微鏡として、キーエンス社製VE-7800型を、画像分析ソフトウェアとして、「ImageJ」を用いた。 (5) Surface coverage of microfibers in the nap layer (%)
In the measurement of the surface coverage, VE-7800 manufactured by KEYENCE CORPORATION was used as a scanning electron microscope, and "ImageJ" was used as image analysis software.
(6)外観品位
健康な成人男性と成人女性各10名ずつ、計20名を評価者として、目視と官能評価によって、下記のA、B、Cのように評価し、最も多かった評価を外観品位とした。本発明において良好なレベルは、「A」である。
A:繊維の分散状態が良好で、高い緻密感、光沢感を有する。
B:繊維の分散状態は良好であるが、やや緻密感、光沢感に劣る。
C:全体的に繊維の分散状態が非常に悪く、また、緻密感、光沢感に劣る。 (6) Appearance Grade A total of 20 healthy adult men and 10 adult females were evaluated by visual and sensory evaluations as shown below in A, B, and C, and the most evaluated was the appearance. And dignity. A good level in the present invention is "A".
A: The dispersion state of the fibers is good, and the fibers have a high density and glossiness.
B: The dispersion state of the fibers is good, but slightly inferior in denseness and gloss.
C: The dispersion state of the fibers is very poor as a whole, and the fineness and glossiness are poor.
健康な成人男性と成人女性各10名ずつ、計20名を評価者として、目視と官能評価によって、下記のA、B、Cのように評価し、最も多かった評価を外観品位とした。本発明において良好なレベルは、「A」である。
A:繊維の分散状態が良好で、高い緻密感、光沢感を有する。
B:繊維の分散状態は良好であるが、やや緻密感、光沢感に劣る。
C:全体的に繊維の分散状態が非常に悪く、また、緻密感、光沢感に劣る。 (6) Appearance Grade A total of 20 healthy adult men and 10 adult females were evaluated by visual and sensory evaluations as shown below in A, B, and C, and the most evaluated was the appearance. And dignity. A good level in the present invention is "A".
A: The dispersion state of the fibers is good, and the fibers have a high density and glossiness.
B: The dispersion state of the fibers is good, but slightly inferior in denseness and gloss.
C: The dispersion state of the fibers is very poor as a whole, and the fineness and glossiness are poor.
<化学物質の表記>
・PU:ポリウレタン
・DMF:N,N-ジメチルホルムアミド
・PET:ポリエチレンテレフタレート
・PVA:ポリビニルアルコール 。 <Notation of chemical substances>
-PU: polyurethane-DMF: N, N-dimethylformamide-PET: polyethylene terephthalate-PVA: polyvinyl alcohol
・PU:ポリウレタン
・DMF:N,N-ジメチルホルムアミド
・PET:ポリエチレンテレフタレート
・PVA:ポリビニルアルコール 。 <Notation of chemical substances>
-PU: polyurethane-DMF: N, N-dimethylformamide-PET: polyethylene terephthalate-PVA: polyvinyl alcohol
[実施例1]
島成分として固有粘度(IV)が0.718のポリエチレンテレフタレート(PET)を用い、また海成分としてMFRが18g/10分のポリスチレンを用い、島数が36島の海島型複合用口金を用いて、島/海質量比率55/45で溶融紡糸した後、延伸、捲縮し、その後、51mmにカットし、単繊維繊度3.1dtexの海島型複合繊維の原綿を得た。 [Example 1]
Polyethylene terephthalate (PET) having an intrinsic viscosity (IV) of 0.718 is used as an island component, polystyrene having an MFR of 18 g / 10 minutes is used as a sea component, and a sea-island type composite mouthpiece having 36 islands is used. After melt-spinning at an island / sea mass ratio of 55/45, the fiber was drawn and crimped, and then cut into 51 mm to obtain a raw cotton of sea-island type composite fiber having a single fiber fineness of 3.1 dtex.
島成分として固有粘度(IV)が0.718のポリエチレンテレフタレート(PET)を用い、また海成分としてMFRが18g/10分のポリスチレンを用い、島数が36島の海島型複合用口金を用いて、島/海質量比率55/45で溶融紡糸した後、延伸、捲縮し、その後、51mmにカットし、単繊維繊度3.1dtexの海島型複合繊維の原綿を得た。 [Example 1]
Polyethylene terephthalate (PET) having an intrinsic viscosity (IV) of 0.718 is used as an island component, polystyrene having an MFR of 18 g / 10 minutes is used as a sea component, and a sea-island type composite mouthpiece having 36 islands is used. After melt-spinning at an island / sea mass ratio of 55/45, the fiber was drawn and crimped, and then cut into 51 mm to obtain a raw cotton of sea-island type composite fiber having a single fiber fineness of 3.1 dtex.
この海島型複合繊維の原綿を用いて、カード、クロスラッパー工程を経て積層ウェブを形成し、600本/cm2のパンチ本数でニードルパンチした後に、2900本/cm2のパンチ本数でニードルパンチを施してシートを得た。
Using the raw cotton of this sea-island type composite fiber, a laminated web is formed through a card and a cross wrapper process, needle punched at a punch count of 600 / cm 2 , and then needle punched at a punch count of 2900 / cm 2. To give a sheet.
このシートを96℃の熱水で収縮させた後、10%のPVA水溶液を含浸し、温度110℃の熱風で10分間乾燥することで、シートの質量に対するPVA質量が30質量%のシートを得た。このシートをトリクロロエチレン中で海成分を溶解除去し、極細繊維と織物が絡合してなる脱海シートを得た。脱海シート断面のSEM観察で、平均単糸直径は2.1μmであった。
After shrinking this sheet with hot water at 96 ° C., the sheet is impregnated with a 10% aqueous PVA solution and dried with hot air at 110 ° C. for 10 minutes to obtain a sheet having a PVA weight of 30% by weight based on the weight of the sheet. Was. The sea component was dissolved and removed from the sheet in trichlorethylene to obtain a desealed sheet in which the ultrafine fibers and the woven fabric were entangled. SEM observation of the cross section of the sea-removed sheet revealed that the average single yarn diameter was 2.1 μm.
この極細繊維からなる脱海シートを、固形分濃度12%に調整したポリカーボネート系ポリウレタンのDMF溶液に含浸し、DMF濃度30%の水溶液中でポリウレタンを凝固せしめた。その後、PVAおよびDMFを熱水で除去し、濃度1質量%に調整したシリコーンオイルエマルジョン液を含浸し、繊維質量とポリウレタン質量の合計質量に対し、シリコーン系滑剤付与量が0.5質量%になるように付与した。続いて、110℃の熱風で10分間乾燥することで、シートの島成分質量(極細繊維と前記織編物の合計質量)に対するポリウレタン質量が30質量%のシートを得た。
(4) The desealed sheet made of the ultrafine fibers was impregnated with a DMF solution of a polycarbonate-based polyurethane adjusted to a solid concentration of 12%, and the polyurethane was coagulated in an aqueous solution having a DMF concentration of 30%. Thereafter, PVA and DMF were removed with hot water and impregnated with a silicone oil emulsion adjusted to a concentration of 1% by mass, and the silicone-based lubricant applied amount was reduced to 0.5% by mass with respect to the total mass of the fiber mass and the polyurethane mass. It was given to be. Subsequently, the sheet was dried with hot air at 110 ° C. for 10 minutes to obtain a sheet having a polyurethane content of 30% by mass relative to the island component mass of the sheet (the total mass of the ultrafine fibers and the woven or knitted fabric).
そして、得られたシートを厚さ方向に半裁し、半裁面をサンドペーパー番手180番手、180番手、240番手のエンドレスサンドペーパーで製品面を100g/m2研削し、立毛面を形成した。
Then, the obtained sheet was cut in half in the thickness direction, and the cut surface was ground at 100 g / m 2 with endless sandpaper of 180, 180 and 240 sandpaper counts to form a raised surface.
こうして得られたシートを液流染色機にて、110℃の条件下で、染色を行ったのちに、乾燥機にて乾燥を行い、厚み0.5mm、見かけ密度0.360g/cm3のシート状物を得た。
The sheet thus obtained was dyed with a jet dyeing machine at 110 ° C., and then dried with a drier to obtain a sheet having a thickness of 0.5 mm and an apparent density of 0.360 g / cm 3 . A product was obtained.
得られたシート状物は、立毛層における極細繊維の平均繊維長が370μm、平均繊維長のCV値が15%、立毛層における極細繊維の表面被覆率が80%で、シーファー摩耗破れ回数が65回/0.10mm、外観品位はAであった。
The obtained sheet-like material had an average fiber length of the ultrafine fibers in the nap layer of 370 μm, a CV value of the average fiber length of 15%, a surface coverage of the ultrafine fibers in the nap layer of 80%, and a seafar wear breakage of 65%. Times / 0.10 mm, and the appearance quality was A.
[実施例2]
島成分として固有粘度(IV)が0.718のポリエチレンテレフタレート(PET)を用い、また海成分としてMFRが18g/10分のポリスチレンを用い、島数が36島の海島型複合用口金を用いて、島/海質量比率55/45で溶融紡糸した後、延伸、捲縮し、その後、51mmにカットし、単繊維繊度3.1dtexの海島型複合繊維の原綿を得た。 [Example 2]
Polyethylene terephthalate (PET) having an intrinsic viscosity (IV) of 0.718 is used as an island component, polystyrene having an MFR of 18 g / 10 minutes is used as a sea component, and a sea-island type composite mouthpiece having 36 islands is used. After melt-spinning at an island / sea mass ratio of 55/45, the fiber was drawn and crimped, and then cut into 51 mm to obtain a raw cotton of sea-island type composite fiber having a single fiber fineness of 3.1 dtex.
島成分として固有粘度(IV)が0.718のポリエチレンテレフタレート(PET)を用い、また海成分としてMFRが18g/10分のポリスチレンを用い、島数が36島の海島型複合用口金を用いて、島/海質量比率55/45で溶融紡糸した後、延伸、捲縮し、その後、51mmにカットし、単繊維繊度3.1dtexの海島型複合繊維の原綿を得た。 [Example 2]
Polyethylene terephthalate (PET) having an intrinsic viscosity (IV) of 0.718 is used as an island component, polystyrene having an MFR of 18 g / 10 minutes is used as a sea component, and a sea-island type composite mouthpiece having 36 islands is used. After melt-spinning at an island / sea mass ratio of 55/45, the fiber was drawn and crimped, and then cut into 51 mm to obtain a raw cotton of sea-island type composite fiber having a single fiber fineness of 3.1 dtex.
この海島型複合繊維の原綿を用いて、カード、クロスラッパー工程を経て積層ウェブを形成し、600本/cm2のパンチ本数でニードルパンチした後に、2900本/cm2のパンチ本数でニードルパンチを施してシートを得た。
Using the raw cotton of this sea-island type composite fiber, a laminated web is formed through a card and a cross wrapper process, needle punched at a punch count of 600 / cm 2 , and then needle punched at a punch count of 2900 / cm 2. To give a sheet.
このシートを96℃の熱水で収縮させた後、10%のPVA水溶液を含浸し、温度110℃の熱風で10分間乾燥することで、シートの質量に対するPVA質量が25質量%のシートを得た。このシートをトリクロロエチレン中で海成分を溶解除去し、極細繊維と織物が絡合してなる脱海シートを得た。脱海シート断面のSEM観察で、平均単糸直径は2.1μmであった。
After shrinking the sheet with hot water at 96 ° C., the sheet is impregnated with a 10% aqueous PVA solution and dried with hot air at a temperature of 110 ° C. for 10 minutes to obtain a sheet having a PVA weight of 25% by weight based on the weight of the sheet. Was. The sea component was dissolved and removed from the sheet in trichlorethylene to obtain a desealed sheet in which the ultrafine fibers and the woven fabric were entangled. SEM observation of the cross section of the sea-removed sheet revealed that the average single yarn diameter was 2.1 μm.
この極細繊維からなる脱海シートを、固形分濃度10%に調整したポリカーボネート系ポリウレタンのDMF溶液に含浸し、DMF濃度30%の水溶液中でポリウレタンを凝固せしめた。その後、PVAおよびDMFを熱水で除去し、濃度1質量%に調整したシリコーンオイルエマルジョン液を含浸し、繊維質量とポリウレタン質量の合計質量に対し、シリコーン系滑剤付与量が0.2質量%になるように付与した。続いて、110℃の熱風で10分間乾燥することで、シートの島成分質量(極細繊維と前記織編物の合計質量)に対するポリウレタン質量が25質量%のシートを得た。
(4) The desealed sheet made of the ultrafine fibers was impregnated with a DMF solution of a polycarbonate-based polyurethane adjusted to a solid concentration of 10%, and the polyurethane was coagulated in an aqueous solution having a DMF concentration of 30%. Thereafter, PVA and DMF were removed with hot water, and a silicone oil emulsion adjusted to a concentration of 1% by mass was impregnated, so that the amount of the silicone-based lubricant applied was 0.2% by mass based on the total mass of the fiber mass and the polyurethane mass. It was given to be. Subsequently, the sheet was dried with hot air of 110 ° C. for 10 minutes to obtain a sheet having a polyurethane content of 25% by mass relative to the island component mass (the total mass of the ultrafine fibers and the woven or knitted fabric).
そして、得られたシートを厚さ方向に半裁し、半裁面をサンドペーパー番手180番手、180番手、240番手のエンドレスサンドペーパーで製品面を60g/m2研削し、立毛面を形成した。
Then, the obtained sheet was cut in half in the thickness direction, and the cut surface was ground at 60 g / m 2 with endless sandpaper of 180th, 180th, and 240th counts of sandpaper to form a raised surface.
こうして得られたシートを液流染色機にて、110℃の条件下で、染色を行ったのちに、乾燥機にて乾燥を行い、厚み0.5mm、見かけ密度0.360g/cm3のシート状物を得た。
The sheet thus obtained was dyed with a jet dyeing machine at 110 ° C., and then dried with a drier to obtain a sheet having a thickness of 0.5 mm and an apparent density of 0.360 g / cm 3 . A product was obtained.
得られたシート状物は、立毛層における極細繊維の平均繊維長が260μm、平均繊維長のCV値が20%、立毛層における極細繊維の表面被覆率が73%で、シーファー摩耗破れ回数が40回/0.10mm、外観品位はAであった。
The obtained sheet-like material had an average fiber length of the microfibers in the nap layer of 260 μm, a CV value of the average fiber length of 20%, a surface coverage of the microfiber in the nap layer of 73%, and a number of seafar wear tears of 40. Times / 0.10 mm, and the appearance quality was A.
[実施例3]
島成分として固有粘度(IV)が0.718のポリエチレンテレフタレート(PET)を用い、また海成分としてMFRが18g/10分のポリスチレンを用い、島数が36島の海島型複合用口金を用いて、島/海質量比率55/45で溶融紡糸した後、延伸、捲縮し、その後、51mmにカットし、単繊維繊度3.1dtexの海島型複合繊維の原綿を得た。 [Example 3]
Polyethylene terephthalate (PET) having an intrinsic viscosity (IV) of 0.718 is used as an island component, polystyrene having an MFR of 18 g / 10 minutes is used as a sea component, and a sea-island type composite mouthpiece having 36 islands is used. After melt-spinning at an island / sea mass ratio of 55/45, the fiber was drawn and crimped, and then cut into 51 mm to obtain a raw cotton of sea-island type composite fiber having a single fiber fineness of 3.1 dtex.
島成分として固有粘度(IV)が0.718のポリエチレンテレフタレート(PET)を用い、また海成分としてMFRが18g/10分のポリスチレンを用い、島数が36島の海島型複合用口金を用いて、島/海質量比率55/45で溶融紡糸した後、延伸、捲縮し、その後、51mmにカットし、単繊維繊度3.1dtexの海島型複合繊維の原綿を得た。 [Example 3]
Polyethylene terephthalate (PET) having an intrinsic viscosity (IV) of 0.718 is used as an island component, polystyrene having an MFR of 18 g / 10 minutes is used as a sea component, and a sea-island type composite mouthpiece having 36 islands is used. After melt-spinning at an island / sea mass ratio of 55/45, the fiber was drawn and crimped, and then cut into 51 mm to obtain a raw cotton of sea-island type composite fiber having a single fiber fineness of 3.1 dtex.
この海島型複合繊維の原綿を用いて、カード、クロスラッパー工程を経て積層ウェブを形成し、600本/cm2のパンチ本数でニードルパンチした後に、2900本/cm2のパンチ本数でニードルパンチを施してシートを得た。
Using the raw cotton of this sea-island type composite fiber, a laminated web is formed through a card and a cross wrapper process, needle punched at a punch count of 600 / cm 2 , and then needle punched at a punch count of 2900 / cm 2. To give a sheet.
このシートを96℃の熱水で収縮させた後、15%のPVA水溶液を含浸し、温度110℃の熱風で10分間乾燥することで、シートの質量に対するPVA質量が40質量%のシートを得た。このシートをトリクロロエチレン中で海成分を溶解除去し、極細繊維と織物が絡合してなる脱海シートを得た。脱海シート断面のSEM観察で、平均単糸直径は2.1μmであった。
After shrinking the sheet with hot water at 96 ° C., the sheet is impregnated with a 15% aqueous PVA solution and dried with hot air at a temperature of 110 ° C. for 10 minutes to obtain a sheet having a PVA weight of 40% by weight based on the weight of the sheet. Was. The sea component was dissolved and removed from the sheet in trichlorethylene to obtain a desealed sheet in which the ultrafine fibers and the woven fabric were entangled. SEM observation of the cross section of the sea-removed sheet revealed that the average single yarn diameter was 2.1 μm.
この極細繊維からなる脱海シートを、固形分濃度9.5%に調整したポリカーボネート/ポリエステル系ポリウレタンのDMF溶液に含浸し、DMF濃度30%の水溶液中でポリウレタンを凝固せしめた。その後、PVAおよびDMFを熱水で除去し、濃度1質量%に調整したシリコーンオイルエマルジョン液を含浸し、繊維質量とポリウレタン質量の合計質量に対し、シリコーン系滑剤付与量が0.6質量%になるように付与した。続いて、110℃の熱風で10分間乾燥することで、シートの島成分質量(極細繊維と前記織編物の合計質量)に対するポリウレタン質量が23質量%のシートを得た。
(4) The desealed sheet made of this ultrafine fiber was impregnated with a DMF solution of a polycarbonate / polyester polyurethane adjusted to a solid content of 9.5%, and the polyurethane was coagulated in an aqueous solution having a DMF concentration of 30%. Thereafter, the PVA and DMF were removed with hot water and impregnated with a silicone oil emulsion adjusted to a concentration of 1% by mass, and the silicone-based lubricant applied amount was reduced to 0.6% by mass based on the total mass of the fiber mass and the polyurethane mass. It was given to be. Subsequently, the sheet was dried with hot air of 110 ° C. for 10 minutes to obtain a sheet having a polyurethane content of 23% by mass relative to the island component mass (the total mass of the ultrafine fibers and the woven or knitted fabric) of the sheet.
そして、得られたシートを厚さ方向に半裁し、半裁面をサンドペーパー番手180番手、180番手、240番手のエンドレスサンドペーパーで製品面を70g/m2研削し、立毛面を形成した。
Then, the obtained sheet was cut in half in the thickness direction, and the cut surface was ground at 70 g / m 2 with endless sandpaper of 180 count, 180 count, and 240 count of sandpaper to form a napped surface.
こうして得られたシートを液流染色機にて、110℃の条件下で、染色を行ったのちに、乾燥機にて乾燥を行い、厚み0.5mm、見かけ密度0.360g/cm3のシート状物を得た。
The sheet thus obtained was dyed with a jet dyeing machine at 110 ° C., and then dried with a drier to obtain a sheet having a thickness of 0.5 mm and an apparent density of 0.360 g / cm 3 . A product was obtained.
得られたシート状物は、立毛層における極細繊維の平均繊維長が400μm、平均繊維長のCV値が10%、立毛層における極細繊維の表面被覆率が90%で、シーファー摩耗破れ回数が45回/0.10mm、外観品位はAであった。
The obtained sheet-like material has an average fiber length of 400 µm of the ultrafine fibers in the nap layer, a CV value of the average fiber length of 10%, a surface coverage of the ultrafine fibers in the nap layer of 90%, and a number of sifter wear tears of 45. Times / 0.10 mm, and the appearance quality was A.
[実施例4]
島成分としてMFRが58.3g/10分のナイロン6を用い、また海成分としてMFRが300g/10分のアクリル酸2-エチルへキシルを22mol%共重合したポリスチレン(Co-PSt)を用い、島数が36島の海島型複合用口金を用いて、島/海質量比率30/70で溶融紡糸した後、延伸、捲縮し、その後、51mmにカットし、単繊維繊度24μmの海島型複合繊維の原綿を得た。 [Example 4]
Nylon 6 having an MFR of 58.3 g / 10 min was used as an island component, and polystyrene (Co-PSt) obtained by copolymerizing 22 mol% of 2-ethylhexyl acrylate having a MFR of 300 g / 10 min as a sea component was used. Using a sea-island composite mouthpiece with 36 islands, melt-spun at an island / sea mass ratio of 30/70, stretched and crimped, then cut to 51 mm, and a single fiber fineness of 24 μm is used. Fiber raw cotton was obtained.
島成分としてMFRが58.3g/10分のナイロン6を用い、また海成分としてMFRが300g/10分のアクリル酸2-エチルへキシルを22mol%共重合したポリスチレン(Co-PSt)を用い、島数が36島の海島型複合用口金を用いて、島/海質量比率30/70で溶融紡糸した後、延伸、捲縮し、その後、51mmにカットし、単繊維繊度24μmの海島型複合繊維の原綿を得た。 [Example 4]
Nylon 6 having an MFR of 58.3 g / 10 min was used as an island component, and polystyrene (Co-PSt) obtained by copolymerizing 22 mol% of 2-ethylhexyl acrylate having a MFR of 300 g / 10 min as a sea component was used. Using a sea-island composite mouthpiece with 36 islands, melt-spun at an island / sea mass ratio of 30/70, stretched and crimped, then cut to 51 mm, and a single fiber fineness of 24 μm is used. Fiber raw cotton was obtained.
この海島型複合繊維の原綿を用いて、カード、クロスラッパー工程を経て積層ウェブを形成し、600本/cm2のパンチ本数でニードルパンチした後に、2900本/cm2のパンチ本数でニードルパンチを施してシートを得た。このシートを85℃の熱水で収縮させた後、15%のPVA水溶液を含浸し、温度110℃の熱風で10分間乾燥することで、シートの質量に対するPVA質量が50質量%のシートを得た。このシートをトリクロロエチレン中で海成分を溶解除去し、極細繊維と織物が絡合してなる脱海シートを得た。脱海シート断面のSEM、平均単糸直径は1.0μmであった。
Using the raw cotton of this sea-island type composite fiber, a laminated web is formed through a card and a cross wrapper process, needle punched at a punch count of 600 / cm 2 , and then needle punched at a punch count of 2900 / cm 2. To give a sheet. After shrinking this sheet with 85 ° C. hot water, the sheet is impregnated with a 15% PVA aqueous solution and dried with hot air at a temperature of 110 ° C. for 10 minutes to obtain a sheet having a PVA weight of 50% by weight based on the weight of the sheet. Was. The sea component was dissolved and removed from the sheet in trichlorethylene to obtain a desealed sheet in which the ultrafine fibers and the woven fabric were entangled. The cross section of the desealed sheet was SEM, and the average single yarn diameter was 1.0 μm.
この極細繊維からなる脱海シートを、固形分濃度9%に調整したポリエーテル/ポリエステル系ポリウレタンのDMF溶液に含浸し、DMF濃度30%の水溶液中でポリウレタンを凝固せしめた。その後、PVAおよびDMFを熱水で除去し、濃度0.5質量%に調整したシリコーンオイルエマルジョン液を含浸し、繊維質量とポリウレタン質量の合計質量に対し、シリコーン系滑剤付与量が0.1質量%になるように付与した。続いて、100℃の熱風で10分間乾燥することで、シートの島成分質量(極細繊維と前記織編物の合計質量)に対するポリウレタン質量が20質量%のシートを得た。
脱 The desealed sheet made of the ultrafine fibers was impregnated with a polyether / polyester polyurethane DMF solution adjusted to a solid content of 9%, and the polyurethane was coagulated in an aqueous solution having a DMF concentration of 30%. Thereafter, PVA and DMF were removed with hot water and impregnated with a silicone oil emulsion solution adjusted to a concentration of 0.5% by mass, and the silicone-based lubricant applied amount was 0.1% by mass based on the total mass of the fiber mass and polyurethane mass. %. Subsequently, the sheet was dried with hot air at 100 ° C. for 10 minutes to obtain a sheet having a polyurethane content of 20% by mass relative to the island component mass (the total mass of the ultrafine fibers and the woven or knitted fabric) of the sheet.
そして、得られたシートを厚さ方向に半裁し、半裁面をサンドペーパー番手150番手、180番手、180番手のエンドレスサンドペーパーで製品面を30g/m2研削し、立毛面を形成した。
Then, the obtained sheet was cut in half in the thickness direction, and the cut surface was ground at 30 g / m 2 with endless sandpaper of 150-, 180-, and 180-th sandpaper to form a napped surface.
こうして得られたシートを液流染色機にて、85℃の条件下で、染色を行ったのちに、乾燥機にて乾燥を行い、厚み0.5mm、見かけ密度0.300g/cm3のシート状物を得た。
The sheet thus obtained was dyed with a jet dyeing machine at 85 ° C., and then dried with a drier to obtain a sheet having a thickness of 0.5 mm and an apparent density of 0.300 g / cm 3 . A product was obtained.
得られたシート状物は、立毛層における極細繊維の平均繊維長が280μm、平均繊維長のCV値が28%、立毛層における極細繊維の表面被覆率が62%で、シーファー摩耗破れ回数が20回/0.10mm、外観品位はAであった。
The obtained sheet-like material has an average fiber length of the ultrafine fibers in the nap layer of 280 μm, a CV value of the average fiber length of 28%, a surface coverage of the ultrafine fibers in the nap layer of 62%, and a number of sifter abrasion breakage of 20. Times / 0.10 mm, and the appearance quality was A.
[実施例5]
島成分としてMFRが58.3g/10分のナイロン6を用い、また海成分としてMFRが300g/10分のアクリル酸2-エチルへキシルを22mol%共重合したポリスチレン(Co-PSt)を用い、島数が280島の海島型複合用口金を用いて、島/海質量比率30/70で溶融紡糸した後、延伸、捲縮し、その後、51mmにカットし、単繊維繊度24μmの海島型複合繊維の原綿を得た。 [Example 5]
Nylon 6 having an MFR of 58.3 g / 10 min was used as an island component, and polystyrene (Co-PSt) obtained by copolymerizing 22 mol% of 2-ethylhexyl acrylate having a MFR of 300 g / 10 min as a sea component was used. Using a sea-island-type composite die with 280 islands, melt-spun at an island / sea mass ratio of 30/70, stretched and crimped, then cut to 51 mm, and single-fiber fineness of 24 μm was used for the sea-island composite. Fiber raw cotton was obtained.
島成分としてMFRが58.3g/10分のナイロン6を用い、また海成分としてMFRが300g/10分のアクリル酸2-エチルへキシルを22mol%共重合したポリスチレン(Co-PSt)を用い、島数が280島の海島型複合用口金を用いて、島/海質量比率30/70で溶融紡糸した後、延伸、捲縮し、その後、51mmにカットし、単繊維繊度24μmの海島型複合繊維の原綿を得た。 [Example 5]
Nylon 6 having an MFR of 58.3 g / 10 min was used as an island component, and polystyrene (Co-PSt) obtained by copolymerizing 22 mol% of 2-ethylhexyl acrylate having a MFR of 300 g / 10 min as a sea component was used. Using a sea-island-type composite die with 280 islands, melt-spun at an island / sea mass ratio of 30/70, stretched and crimped, then cut to 51 mm, and single-fiber fineness of 24 μm was used for the sea-island composite. Fiber raw cotton was obtained.
この海島型複合繊維の原綿を用いて、カード、クロスラッパー工程を経て積層ウェブを形成し、600本/cm2のパンチ本数でニードルパンチした後に、2900本/cm2のパンチ本数でニードルパンチを施してシートを得た。このシートを85℃の熱水で収縮させた後、12%のPVA水溶液を含浸し、温度100℃の熱風で10分間乾燥することで、シートの質量に対するPVA質量が40質量%のシートを得た。このシートをトリクロロエチレン中で海成分を溶解除去し、極細繊維と織物が絡合してなる脱海シートを得た。脱海シート断面のSEM観察で、平均単糸直径は1.0μmであった。
Using the raw cotton of this sea-island type composite fiber, a laminated web is formed through a card and a cross wrapper process, needle punched at a punch count of 600 / cm 2 , and then needle punched at a punch count of 2900 / cm 2. To give a sheet. After shrinking the sheet with hot water at 85 ° C, the sheet is impregnated with a 12% PVA aqueous solution and dried with hot air at a temperature of 100 ° C for 10 minutes to obtain a sheet having a PVA weight of 40% by weight based on the sheet weight. Was. The sea component was dissolved and removed from the sheet in trichlorethylene to obtain a desealed sheet in which the ultrafine fibers and the woven fabric were entangled. SEM observation of the cross section of the sea-removed sheet revealed that the average single yarn diameter was 1.0 μm.
この極細繊維からなる脱海シートを、固形分濃度10%に調整したポリエーテル/ポリエステル系ポリウレタンのDMF溶液に含浸し、DMF濃度30%の水溶液中でポリウレタンを凝固せしめた。その後、PVAおよびDMFを熱水で除去し、濃度0.1質量%に調整したシリコーンオイルエマルジョン液を含浸し、繊維質量とポリウレタン質量の合計質量に対し、シリコーン系滑剤付与量が0.01質量%になるように付与した。続いて、110℃の熱風で10分間乾燥することで、シートの島成分質量(極細繊維と前記織編物の合計質量)に対するポリウレタン質量が35質量%のシートを得た。
(5) The desealed sheet made of the ultrafine fibers was impregnated with a polyether / polyester-based polyurethane DMF solution adjusted to a solid concentration of 10%, and the polyurethane was coagulated in an aqueous solution having a DMF concentration of 30%. Thereafter, PVA and DMF were removed with hot water and impregnated with a silicone oil emulsion adjusted to a concentration of 0.1% by mass, and the silicone-based lubricant applied amount was 0.01% by mass based on the total mass of the fiber mass and polyurethane mass. %. Subsequently, the sheet was dried with hot air at 110 ° C. for 10 minutes to obtain a sheet having a polyurethane content of 35% by mass relative to the island component mass (the total mass of the ultrafine fibers and the woven or knitted fabric) of the sheet.
そして、得られたシートを厚さ方向に半裁し、半裁面をサンドペーパー番手150番手、180番手、180番手のエンドレスサンドペーパーで製品面を40g/m2研削し、立毛面を形成した。
Then, the obtained sheet was cut in half in the thickness direction, and the cut surface was ground at 40 g / m 2 with endless sandpaper of 150-, 180-, and 180-th sandpaper to form a napped surface.
こうして得られたシートを液流染色機にて、85℃の条件下で、染色を行ったのちに、乾燥機にて乾燥を行い、厚み0.5mm、見かけ密度0.300g/cm3のシート状物を得た。
The sheet thus obtained was dyed with a jet dyeing machine at 85 ° C., and then dried with a drier to obtain a sheet having a thickness of 0.5 mm and an apparent density of 0.300 g / cm 3 . A product was obtained.
得られたシート状物は、立毛層における極細繊維の平均繊維長が260μm、平均繊維長のCV値が10%、立毛層における極細繊維の表面被覆率が70%で、シーファー摩耗破れ回数が30回/0.10mm、外観品位はAであった。
In the obtained sheet-like material, the average fiber length of the microfibers in the nap layer was 260 μm, the CV value of the average fiber length was 10%, the surface coverage of the microfibers in the nap layer was 70%, and the number of sifter abrasion was 30. Times / 0.10 mm, and the appearance quality was A.
[実施例6]
島成分として固有粘度(IV)が0.718のポリエチレンテレフタレート(PET)を用い、また海成分としてMFRが18g/10分のポリスチレンを用い、島数が50島の海島型複合用口金を用いて、島/海質量比率80/20で溶融紡糸した後、延伸、捲縮し、その後、51mmにカットし、単繊維繊度3.1dtexの海島型複合繊維の原綿を得た。 [Example 6]
Polyethylene terephthalate (PET) having an intrinsic viscosity (IV) of 0.718 is used as an island component, polystyrene having an MFR of 18 g / 10 minutes is used as a sea component, and a sea-island type compound mouthpiece having 50 islands is used. After melt-spinning at an island / sea mass ratio of 80/20, it was stretched and crimped, and then cut into 51 mm to obtain a raw cotton of sea-island composite fiber having a single fiber fineness of 3.1 dtex.
島成分として固有粘度(IV)が0.718のポリエチレンテレフタレート(PET)を用い、また海成分としてMFRが18g/10分のポリスチレンを用い、島数が50島の海島型複合用口金を用いて、島/海質量比率80/20で溶融紡糸した後、延伸、捲縮し、その後、51mmにカットし、単繊維繊度3.1dtexの海島型複合繊維の原綿を得た。 [Example 6]
Polyethylene terephthalate (PET) having an intrinsic viscosity (IV) of 0.718 is used as an island component, polystyrene having an MFR of 18 g / 10 minutes is used as a sea component, and a sea-island type compound mouthpiece having 50 islands is used. After melt-spinning at an island / sea mass ratio of 80/20, it was stretched and crimped, and then cut into 51 mm to obtain a raw cotton of sea-island composite fiber having a single fiber fineness of 3.1 dtex.
この海島型複合繊維の原綿を用いて、カード、クロスラッパー工程を経て積層ウェブを形成し、600本/cm2のパンチ本数でニードルパンチした後に、2900本/cm2のパンチ本数でニードルパンチを施してシートを得た。このシートを96℃の熱水で収縮させた後、5%のPVA水溶液を含浸し、温度110℃の熱風で10分間乾燥することで、シートの質量に対するPVA質量が30質量%のシートを得た。このシートをトリクロロエチレン中で海成分を溶解除去し、極細繊維と織物が絡合してなる脱海シートを得た。脱海シート断面のSEM観察で、平均単糸直径は7.0μmであった。
Using the raw cotton of this sea-island type composite fiber, a laminated web is formed through a card and a cross wrapper process, needle punched at a punch count of 600 / cm 2 , and then needle punched at a punch count of 2900 / cm 2. To give a sheet. After shrinking the sheet with hot water of 96 ° C., the sheet is impregnated with a 5% PVA aqueous solution and dried with hot air at a temperature of 110 ° C. for 10 minutes to obtain a sheet having a PVA weight of 30% by weight based on the weight of the sheet. Was. The sea component was dissolved and removed from the sheet in trichlorethylene to obtain a desealed sheet in which the ultrafine fibers and the woven fabric were entangled. SEM observation of the cross section of the sea-removed sheet revealed that the average single yarn diameter was 7.0 μm.
この極細繊維からなる脱海シートを、固形分濃度11%に調整したポリカーボネート系ポリウレタンのDMF溶液に含浸し、DMF濃度30%の水溶液中でポリウレタンを凝固せしめた。その後、PVAおよびDMFを熱水で除去し、濃度5質量%に調整したシリコーンオイルエマルジョン液を含浸し、繊維質量とポリウレタン質量の合計質量に対し、シリコーン系滑剤付与量が2.0質量%になるように付与した。続いて、110℃の熱風で10分間乾燥することで、シートの島成分質量(極細繊維と前記織編物の合計質量)に対するポリウレタン質量が40質量%のシートを得た。
(4) The desealed sheet made of the ultrafine fibers was impregnated with a DMF solution of a polycarbonate-based polyurethane adjusted to a solid concentration of 11%, and the polyurethane was coagulated in an aqueous solution having a DMF concentration of 30%. Thereafter, PVA and DMF were removed with hot water and impregnated with a silicone oil emulsion adjusted to a concentration of 5% by mass, so that the silicone-based lubricant applied amount became 2.0% by mass based on the total mass of the fiber mass and polyurethane mass. It was given to be. Subsequently, the sheet was dried with hot air at 110 ° C. for 10 minutes to obtain a sheet in which the polyurethane content was 40% by mass relative to the island component mass (the total mass of the ultrafine fibers and the woven or knitted fabric).
そして、得られたシートを厚さ方向に半裁し、半裁面をサンドペーパー番手120番手、150番手、180番手のエンドレスサンドペーパーで製品面を160g/m2研削し、立毛面を形成した。
Then, the obtained sheet was cut in half in the thickness direction, and the cut surface was ground at 160 g / m 2 with endless sandpaper of sand paper counts 120, 150, and 180 to form a raised surface.
こうして得られたシートを液流染色機にて、110℃の条件下で、染色を行ったのちに、乾燥機にて乾燥を行い、厚み1.0mm、見かけ密度0.400g/cm3のシート状物を得た。
The sheet thus obtained was dyed with a jet dyeing machine at 110 ° C., and then dried with a drier to obtain a sheet having a thickness of 1.0 mm and an apparent density of 0.400 g / cm 3 . A product was obtained.
得られたシート状物は、立毛層における極細繊維の平均繊維長が350μm、平均繊維長のCV値が25%、立毛層における極細繊維の表面被覆率が65%で、シーファー摩耗破れ回数が80回/0.10mm、外観品位はAであった。
The obtained sheet-like material had an average fiber length of the microfibers in the nap layer of 350 μm, a CV value of the average fiber length of 25%, a surface coverage of the microfiber in the nap layer of 65%, and a number of tears of 80 stiffener abrasion. Times / 0.10 mm, and the appearance quality was A.
[実施例7]
島成分としてMFRが58.3g/10分のナイロン6を用い、また海成分としてMFRが300g/10分のアクリル酸2-エチルへキシルを22mol%共重合したポリスチレン(Co-PSt)を用い、島数が100島の海島型複合用口金を用いて、島/海質量比率30/70で溶融紡糸した後、延伸、捲縮し、その後、51mmにカットし、単繊維繊度24μmの海島型複合繊維の原綿を得た。 [Example 7]
Nylon 6 having an MFR of 58.3 g / 10 min was used as an island component, and polystyrene (Co-PSt) obtained by copolymerizing 22 mol% of 2-ethylhexyl acrylate having a MFR of 300 g / 10 min as a sea component was used. Using a sea-island type composite die with 100 islands, melt-spun at an island / sea mass ratio of 30/70, stretched and crimped, then cut into 51 mm, and a single fiber fineness of 24 μm is used. Fiber raw cotton was obtained.
島成分としてMFRが58.3g/10分のナイロン6を用い、また海成分としてMFRが300g/10分のアクリル酸2-エチルへキシルを22mol%共重合したポリスチレン(Co-PSt)を用い、島数が100島の海島型複合用口金を用いて、島/海質量比率30/70で溶融紡糸した後、延伸、捲縮し、その後、51mmにカットし、単繊維繊度24μmの海島型複合繊維の原綿を得た。 [Example 7]
Nylon 6 having an MFR of 58.3 g / 10 min was used as an island component, and polystyrene (Co-PSt) obtained by copolymerizing 22 mol% of 2-ethylhexyl acrylate having a MFR of 300 g / 10 min as a sea component was used. Using a sea-island type composite die with 100 islands, melt-spun at an island / sea mass ratio of 30/70, stretched and crimped, then cut into 51 mm, and a single fiber fineness of 24 μm is used. Fiber raw cotton was obtained.
この海島型複合繊維の原綿を用いて、カード、クロスラッパー工程を経て積層ウェブを形成し、600本/cm2のパンチ本数でニードルパンチした後に、2900本/cm2のパンチ本数でニードルパンチを施してシートを得た。このシートを85℃の熱水で収縮させた後、20%のPVA水溶液を含浸し、温度100℃の熱風で10分間乾燥することで、シートの質量に対するPVA質量が60質量%のシートを得た。このシートをトリクロロエチレン中で海成分を溶解除去し、極細繊維と織物が絡合してなる脱海シートを得た。脱海シート断面のSEM観察で、平均単糸直径は1.0μmであった。
Using the raw cotton of this sea-island type composite fiber, a laminated web is formed through a card and a cross wrapper process, needle punched at a punch count of 600 / cm 2 , and then needle punched at a punch count of 2900 / cm 2. To give a sheet. After shrinking the sheet with hot water at 85 ° C., the sheet is impregnated with a 20% aqueous PVA solution and dried with hot air at a temperature of 100 ° C. for 10 minutes to obtain a sheet having a PVA weight of 60% by weight based on the weight of the sheet. Was. The sea component was dissolved and removed from the sheet in trichlorethylene to obtain a desealed sheet in which the ultrafine fibers and the woven fabric were entangled. SEM observation of the cross section of the sea-removed sheet revealed that the average single yarn diameter was 1.0 μm.
この極細繊維からなる脱海シートを、固形分濃度9%に調整したポリエーテル/ポリエステル系ポリウレタンのDMF溶液に含浸し、DMF濃度30%の水溶液中でポリウレタンを凝固せしめた。その後、PVAおよびDMFを熱水で除去し、濃度3質量%に調整したシリコーンオイルエマルジョン液を含浸し、繊維質量とポリウレタン質量の合計質量に対し、シリコーン系滑剤付与量が1.0質量%になるように付与した。続いて、110℃の熱風で10分間乾燥することで、シートの島成分質量(極細繊維と前記織編物の合計質量)に対するポリウレタン質量が5質量%のシートを得た。
脱 The desealed sheet made of the ultrafine fibers was impregnated with a polyether / polyester polyurethane DMF solution adjusted to a solid content of 9%, and the polyurethane was coagulated in an aqueous solution having a DMF concentration of 30%. Thereafter, PVA and DMF were removed with hot water and impregnated with a silicone oil emulsion solution adjusted to a concentration of 3% by mass, and the silicone-based lubricant applied amount was reduced to 1.0% by mass based on the total mass of the fiber mass and the polyurethane mass. It was given to be. Subsequently, the sheet was dried with hot air at 110 ° C. for 10 minutes to obtain a sheet having a polyurethane content of 5% by mass relative to the island component mass (the total mass of the ultrafine fibers and the woven or knitted fabric) of the sheet.
そして、得られたシートを厚さ方向に半裁し、半裁面をサンドペーパー番手150番手、180番手のエンドレスサンドペーパーで製品面を50g/m2研削し、立毛面を形成した。
Then, the obtained sheet was cut in half in the thickness direction, and the cut surface was ground at 50 g / m 2 with endless sandpaper of 150th and 180th counts of sandpaper to form a raised surface.
こうして得られたシートを液流染色機にて、85℃の条件下で、染色を行ったのちに、乾燥機にて乾燥を行い、厚み0.5mm、見かけ密度0.300g/cm3のシート状物を得た。
The sheet thus obtained was dyed with a jet dyeing machine at 85 ° C., and then dried with a drier to obtain a sheet having a thickness of 0.5 mm and an apparent density of 0.300 g / cm 3 . A product was obtained.
得られたシート状物は、立毛層における極細繊維の平均繊維長が400μm、平均繊維長のCV値が25%、立毛層における極細繊維の表面被覆率が99%で、シーファー摩耗破れ回数が10回/0.10mm、外観品位はAであった。
The obtained sheet-like material has an average fiber length of 400 µm of the ultrafine fibers in the nap layer, a CV value of the average fiber length of 25%, a surface coverage of the ultrafine fibers of the nap layer of 99%, and a number of sifter abrasion breakage of 10%. Times / 0.10 mm, and the appearance quality was A.
[実施例8]
島成分として固有粘度(IV)が0.718のポリエチレンテレフタレート(PET)を用い、また海成分としてMFRが18g/10分のポリスチレンを用い、島数が36島の海島型複合用口金を用いて、島/海質量比率55/45で溶融紡糸した後、延伸、捲縮し、その後、51mmにカットし、単繊維繊度3.1dtexの海島型複合繊維の原綿を得た。 Example 8
Polyethylene terephthalate (PET) having an intrinsic viscosity (IV) of 0.718 is used as an island component, polystyrene having an MFR of 18 g / 10 minutes is used as a sea component, and a sea-island type composite mouthpiece having 36 islands is used. After melt-spinning at an island / sea mass ratio of 55/45, the fiber was drawn and crimped, and then cut into 51 mm to obtain a raw cotton of sea-island type composite fiber having a single fiber fineness of 3.1 dtex.
島成分として固有粘度(IV)が0.718のポリエチレンテレフタレート(PET)を用い、また海成分としてMFRが18g/10分のポリスチレンを用い、島数が36島の海島型複合用口金を用いて、島/海質量比率55/45で溶融紡糸した後、延伸、捲縮し、その後、51mmにカットし、単繊維繊度3.1dtexの海島型複合繊維の原綿を得た。 Example 8
Polyethylene terephthalate (PET) having an intrinsic viscosity (IV) of 0.718 is used as an island component, polystyrene having an MFR of 18 g / 10 minutes is used as a sea component, and a sea-island type composite mouthpiece having 36 islands is used. After melt-spinning at an island / sea mass ratio of 55/45, the fiber was drawn and crimped, and then cut into 51 mm to obtain a raw cotton of sea-island type composite fiber having a single fiber fineness of 3.1 dtex.
この海島型複合繊維の原綿を用いて、カード、クロスラッパー工程を経て積層ウェブを形成し、600本/cm2のパンチ本数でニードルパンチした後に、2900本/cm2のパンチ本数でニードルパンチを施してシートを得た。
Using the raw cotton of this sea-island type composite fiber, a laminated web is formed through a card and a cross wrapper process, needle punched at a punch count of 600 / cm 2 , and then needle punched at a punch count of 2900 / cm 2. To give a sheet.
このシートを96℃の熱水で収縮させた後、トリクロロエチレン中で海成分を溶解除去し、極細繊維と織物が絡合してなる脱海シートを得た。脱海シート断面のSEM観察で、平均単糸直径は2.1μmであった。
収縮 After the sheet was shrunk with hot water at 96 ° C, the sea component was dissolved and removed in trichlorethylene to obtain a desealed sheet in which ultrafine fibers and a woven fabric were entangled. SEM observation of the cross section of the sea-removed sheet revealed that the average single yarn diameter was 2.1 μm.
そして、得られたシートを厚さ方向に半裁し、半裁面をサンドペーパー番手180番手、180番手、240番手のエンドレスサンドペーパーで製品面を20g/m2研削し、立毛面を形成した。
Then, the obtained sheet was cut in half in the thickness direction, and the cut surface was ground at 20 g / m 2 with endless sandpaper of 180th, 180th and 240th counts of sandpaper to form a napped surface.
こうして得られたシートを液流染色機にて、110℃の条件下で、染色を行ったのちに、乾燥機にて乾燥を行い、厚み0.5mm、見かけ密度0.360g/cm3のシート状物を得た。
The sheet thus obtained was dyed with a jet dyeing machine at 110 ° C., and then dried with a drier to obtain a sheet having a thickness of 0.5 mm and an apparent density of 0.360 g / cm 3 . A product was obtained.
得られたシート状物は、立毛層における極細繊維の平均繊維長が250μm、平均繊維長のCV値が29%、立毛層における極細繊維の表面被覆率が62%で、シーファー摩耗破れ回数が7回/0.10mm、外観品位はAであった。
The obtained sheet-like material had an average fiber length of the fine fibers in the nap layer of 250 μm, a CV value of the average fiber length of 29%, a surface coverage of the ultra-fine fibers in the nap layer of 62%, and a number of sifter abrasion breakage of 7. Times / 0.10 mm, and the appearance quality was A.
[実施例9]
島成分として固有粘度(IV)が0.718のポリエチレンテレフタレート(PET)を用い、また海成分としてMFRが18g/10分のポリスチレンを用い、島数が16島の海島型複合用口金を用いて、島/海質量比率80/20で溶融紡糸した後、延伸、捲縮し、その後、51mmにカットし、単繊維繊度3.1dtexの海島型複合繊維の原綿を得た。 [Example 9]
Polyethylene terephthalate (PET) having an intrinsic viscosity (IV) of 0.718 is used as an island component, polystyrene having an MFR of 18 g / 10 minutes is used as a sea component, and a sea-island type composite mouthpiece having 16 islands is used. After melt-spinning at an island / sea mass ratio of 80/20, it was stretched and crimped, and then cut into 51 mm to obtain a raw cotton of sea-island composite fiber having a single fiber fineness of 3.1 dtex.
島成分として固有粘度(IV)が0.718のポリエチレンテレフタレート(PET)を用い、また海成分としてMFRが18g/10分のポリスチレンを用い、島数が16島の海島型複合用口金を用いて、島/海質量比率80/20で溶融紡糸した後、延伸、捲縮し、その後、51mmにカットし、単繊維繊度3.1dtexの海島型複合繊維の原綿を得た。 [Example 9]
Polyethylene terephthalate (PET) having an intrinsic viscosity (IV) of 0.718 is used as an island component, polystyrene having an MFR of 18 g / 10 minutes is used as a sea component, and a sea-island type composite mouthpiece having 16 islands is used. After melt-spinning at an island / sea mass ratio of 80/20, it was stretched and crimped, and then cut into 51 mm to obtain a raw cotton of sea-island composite fiber having a single fiber fineness of 3.1 dtex.
この海島型複合繊維の原綿を用いて、カード、クロスラッパー工程を経て積層ウェブを形成し、600本/cm2のパンチ本数でニードルパンチした後に、2900本/cm2のパンチ本数でニードルパンチを施してウェブと平織物(固有粘度(IV)0.65の単成分からなる単糸で、撚数2500T/mからなるマルチフィラメント(84dtex、72フィラメント)を経糸、緯糸として用い、織密度が経97本/2.54cm、緯76本/2.54cm)を貼り合わせ、シートを得た。このシートを96℃の熱水で収縮させた後、5%のPVA水溶液を含浸し、温度110℃の熱風で10分間乾燥することで、シートの質量に対するPVA質量が20質量%のシートを得た。このシートをトリクロロエチレン中で海成分を溶解除去し、極細繊維と織物が絡合してなる脱海シートを得た。脱海シート断面のSEM観察で、平均単糸直径は4.4μmであった。
Using the raw cotton of this sea-island type composite fiber, a laminated web is formed through a card and a cross wrapper process, needle punched at a punch count of 600 / cm 2 , and then needle punched at a punch count of 2900 / cm 2. The web and plain weave (single yarn consisting of a single component having an intrinsic viscosity (IV) of 0.65, multifilaments (84 dtex, 72 filaments) having a twist number of 2500 T / m are used as warp and weft, and the weaving density is reduced. 97 pieces / 2.54 cm, 76 pieces / 2.54 cm) to obtain a sheet. After shrinking the sheet with hot water of 96 ° C., the sheet is impregnated with a 5% aqueous solution of PVA and dried with hot air at a temperature of 110 ° C. for 10 minutes to obtain a sheet having a PVA weight of 20% by weight based on the weight of the sheet. Was. The sea component was dissolved and removed from the sheet in trichlorethylene to obtain a desealed sheet in which the ultrafine fibers and the woven fabric were entangled. SEM observation of the cross section of the sea-removed sheet revealed that the average single yarn diameter was 4.4 μm.
この極細繊維からなる脱海シートを、固形分濃度11%に調整したポリカーボネート系ポリウレタンのDMF溶液に含浸し、DMF濃度30%の水溶液中でポリウレタンを凝固せしめた。その後、PVAおよびDMFを熱水で除去し、濃度1質量%に調整したシリコーンオイルエマルジョン液を含浸し、繊維質量とポリウレタン質量の合計質量に対し、シリコーン系滑剤付与量が0.2質量%になるように付与した。続いて、110℃の熱風で10分間乾燥することで、シートの島成分質量(極細繊維と前記織編物の合計質量)に対するポリウレタン質量が27質量%のシートを得た。
(4) The desealed sheet made of the ultrafine fibers was impregnated with a DMF solution of a polycarbonate-based polyurethane adjusted to a solid concentration of 11%, and the polyurethane was coagulated in an aqueous solution having a DMF concentration of 30%. Thereafter, PVA and DMF were removed with hot water, and a silicone oil emulsion adjusted to a concentration of 1% by mass was impregnated, so that the amount of the silicone-based lubricant applied was 0.2% by mass based on the total mass of the fiber mass and the polyurethane mass. It was given to be. Subsequently, the sheet was dried with hot air at 110 ° C. for 10 minutes to obtain a sheet having a polyurethane content of 27% by mass relative to the island component mass of the sheet (the total mass of the ultrafine fibers and the woven or knitted fabric).
そして、得られたシートを厚さ方向に半裁し、半裁面をサンドペーパー番手120番手、150番手、180番手のエンドレスサンドペーパーで製品面を60g/m2研削し、立毛面を形成した。
Then, the obtained sheet was cut in half in the thickness direction, and the cut surface was ground at 60 g / m 2 with an endless sandpaper of sand paper counts 120, 150 and 180 to form a raised surface.
こうして得られたシートを液流染色機にて、110℃の条件下で、染色を行ったのちに、乾燥機にて乾燥を行い、厚み1.0mm、見かけ密度0.400g/cm3のシート状物を得た。
The sheet thus obtained was dyed with a jet dyeing machine at 110 ° C., and then dried with a drier to obtain a sheet having a thickness of 1.0 mm and an apparent density of 0.400 g / cm 3 . A product was obtained.
得られたシート状物は、立毛層における極細繊維の平均繊維長が450μm、平均繊維長のCV値が20%、立毛層における極細繊維の表面被覆率が80%で、シーファー摩耗破れ回数が55回/0.10mm外観品位はAであった。
The obtained sheet-like material had an average fiber length of 450 µm of the ultrafine fibers in the nap layer, a CV value of the average fiber length of 20%, a surface coverage of the ultrafine fibers in the nap layer of 80%, and a number of 55 times of seafar abrasion. The number of times / 0.10 mm appearance quality was A.
[実施例10]
島成分として固有粘度(IV)が0.718のポリエチレンテレフタレート(PET)を用い、また海成分としてMFRが18g/10分のポリスチレンを用い、島数が16島の海島型複合用口金を用いて、島/海質量比率80/20で溶融紡糸した後、延伸、捲縮し、その後、51mmにカットし、単繊維繊度3.1dtexの海島型複合繊維の原綿を得た。 [Example 10]
Polyethylene terephthalate (PET) having an intrinsic viscosity (IV) of 0.718 is used as an island component, polystyrene having an MFR of 18 g / 10 minutes is used as a sea component, and a sea-island type composite mouthpiece having 16 islands is used. After melt-spinning at an island / sea mass ratio of 80/20, it was stretched and crimped, and then cut into 51 mm to obtain a raw cotton of sea-island composite fiber having a single fiber fineness of 3.1 dtex.
島成分として固有粘度(IV)が0.718のポリエチレンテレフタレート(PET)を用い、また海成分としてMFRが18g/10分のポリスチレンを用い、島数が16島の海島型複合用口金を用いて、島/海質量比率80/20で溶融紡糸した後、延伸、捲縮し、その後、51mmにカットし、単繊維繊度3.1dtexの海島型複合繊維の原綿を得た。 [Example 10]
Polyethylene terephthalate (PET) having an intrinsic viscosity (IV) of 0.718 is used as an island component, polystyrene having an MFR of 18 g / 10 minutes is used as a sea component, and a sea-island type composite mouthpiece having 16 islands is used. After melt-spinning at an island / sea mass ratio of 80/20, it was stretched and crimped, and then cut into 51 mm to obtain a raw cotton of sea-island composite fiber having a single fiber fineness of 3.1 dtex.
この海島型複合繊維の原綿を用いて、カード、クロスラッパー工程を経て積層ウェブを形成し、600本/cm2のパンチ本数でニードルパンチした後に、2900本/cm2のパンチ本数でニードルパンチを施してウェブと平織物(固有粘度(IV)0.65の単成分からなる単糸で、撚数2500T/mからなるマルチフィラメント(84dtex、72フィラメント)を経糸、緯糸として用い、織密度が経97本/2.54cm、緯76本/2.54cm)を貼り合わせ、シートを得た。このシートを96℃の熱水で収縮させた後、5%のPVA水溶液を含浸し、温度110℃の熱風で10分間乾燥することで、シートの質量に対するPVA質量が20質量%のシートを得た。このシートをトリクロロエチレン中で海成分を溶解除去し、極細繊維と織物が絡合してなる脱海シートを得た。脱海シート断面のSEM観察で、平均単糸直径は4.4μmであった。
Using the raw cotton of this sea-island type composite fiber, a laminated web is formed through a card and a cross wrapper process, needle punched at a punch count of 600 / cm 2 , and then needle punched at a punch count of 2900 / cm 2. The web and plain weave (single yarn consisting of a single component having an intrinsic viscosity (IV) of 0.65, multifilaments (84 dtex, 72 filaments) having a twist number of 2500 T / m are used as warp and weft, and the weaving density is reduced. 97 pieces / 2.54 cm, 76 pieces / 2.54 cm) to obtain a sheet. After shrinking the sheet with hot water of 96 ° C., the sheet is impregnated with a 5% aqueous solution of PVA and dried with hot air at a temperature of 110 ° C. for 10 minutes to obtain a sheet having a PVA weight of 20% by weight based on the weight of the sheet. Was. The sea component was dissolved and removed from the sheet in trichlorethylene to obtain a desealed sheet in which the ultrafine fibers and the woven fabric were entangled. SEM observation of the cross section of the sea-removed sheet revealed that the average single yarn diameter was 4.4 μm.
この極細繊維からなる脱海シートを、固形分濃度11%に調整したポリカーボネート系ポリウレタンのDMF溶液に含浸し、DMF濃度30%の水溶液中でポリウレタンを凝固せしめた。その後、PVAおよびDMFを熱水で除去し、濃度1質量%に調整したシリコーンオイルエマルジョン液を含浸し、繊維質量とポリウレタン質量の合計質量に対し、シリコーン系滑剤付与量が0.05質量%になるように付与した。続いて、110℃の熱風で10分間乾燥することで、シートの島成分質量(極細繊維と前記織編物の合計質量)に対するポリウレタン質量が27質量%のシートを得た。
(4) The desealed sheet made of the ultrafine fibers was impregnated with a DMF solution of a polycarbonate-based polyurethane adjusted to a solid concentration of 11%, and the polyurethane was coagulated in an aqueous solution having a DMF concentration of 30%. Thereafter, PVA and DMF were removed with hot water and impregnated with a silicone oil emulsion solution adjusted to a concentration of 1% by mass, and the silicone-based lubricant applied amount was reduced to 0.05% by mass with respect to the total mass of the fiber mass and the polyurethane mass. It was given to be. Subsequently, the sheet was dried with hot air at 110 ° C. for 10 minutes to obtain a sheet having a polyurethane content of 27% by mass relative to the island component mass of the sheet (the total mass of the ultrafine fibers and the woven or knitted fabric).
そして、得られたシートを厚さ方向に半裁し、半裁面をサンドペーパー番手120番手、120番手、150番手のエンドレスサンドペーパーで製品面を80g/m2研削し、立毛面を形成した。
Then, cut in half and the resulting sheet in the thickness direction, sandpaper count 120 fastest the half-cut surface, 120 fastest, the product surface at 150 fastest endless sandpaper 80 g / m 2 by grinding to form a napped surface.
こうして得られたシートを液流染色機にて、110℃の条件下で、染色を行ったのちに、乾燥機にて乾燥を行い、厚み1.0mm、見かけ密度0.400g/cm3のシート状物を得た。
The sheet thus obtained was dyed with a jet dyeing machine at 110 ° C., and then dried with a drier to obtain a sheet having a thickness of 1.0 mm and an apparent density of 0.400 g / cm 3 . A product was obtained.
得られたシート状物は、立毛層における極細繊維の平均繊維長が300μm、平均繊維長のCV値が28%、立毛層における極細繊維の表面被覆率が63%で、シーファー摩耗破れ回数が50回/0.10mm、外観品位はAであった。
The obtained sheet-like material had an average fiber length of 300 µm of the ultrafine fibers in the nap layer, a CV value of the average fiber length of 28%, a surface coverage of the ultrafine fibers of the nap layer of 63%, and a number of seafar wear tears of 50%. Times / 0.10 mm, and the appearance quality was A.
[比較例1]
島成分としてMFRが58.3g/10分のナイロン6を用い、また海成分としてMFRが300g/10分のアクリル酸2-エチルへキシルを22mol%共重合したポリスチレン(Co-PSt)を用い、島数が500島の海島型複合用口金を用いて、島/海質量比率30/70で溶融紡糸した後、延伸、捲縮し、その後、51mmにカットし、単繊維繊度24μmの海島型複合繊維の原綿を得た。 [Comparative Example 1]
Nylon 6 having an MFR of 58.3 g / 10 min was used as an island component, and polystyrene (Co-PSt) obtained by copolymerizing 22 mol% of 2-ethylhexyl acrylate having a MFR of 300 g / 10 min as a sea component was used. Using a sea-island composite nozzle with 500 islands, melt-spun at an island / sea mass ratio of 30/70, stretched and crimped, then cut to 51 mm, and a single fiber fineness of 24 μm Fiber raw cotton was obtained.
島成分としてMFRが58.3g/10分のナイロン6を用い、また海成分としてMFRが300g/10分のアクリル酸2-エチルへキシルを22mol%共重合したポリスチレン(Co-PSt)を用い、島数が500島の海島型複合用口金を用いて、島/海質量比率30/70で溶融紡糸した後、延伸、捲縮し、その後、51mmにカットし、単繊維繊度24μmの海島型複合繊維の原綿を得た。 [Comparative Example 1]
Nylon 6 having an MFR of 58.3 g / 10 min was used as an island component, and polystyrene (Co-PSt) obtained by copolymerizing 22 mol% of 2-ethylhexyl acrylate having a MFR of 300 g / 10 min as a sea component was used. Using a sea-island composite nozzle with 500 islands, melt-spun at an island / sea mass ratio of 30/70, stretched and crimped, then cut to 51 mm, and a single fiber fineness of 24 μm Fiber raw cotton was obtained.
この海島型複合繊維の原綿を用いて、カード、クロスラッパー工程を経て積層ウェブを形成し、600本/cm2のパンチ本数でニードルパンチした後に、2900本/cm2のパンチ本数でニードルパンチを施してシートを得た。このシートを85℃の熱水で収縮させた後、12%のPVA水溶液を含浸し、温度100℃の熱風で10分間乾燥することで、シートの質量に対するPVA質量が45質量%のシートを得た。このシートをトリクロロエチレン中で海成分を溶解除去し、極細繊維と織物が絡合してなる脱海シートを得た。脱海シート断面のSEM観察で、平均単糸直径は0.5μmであった。
Using the raw cotton of this sea-island type composite fiber, a laminated web is formed through a card and a cross wrapper process, needle punched at a punch count of 600 / cm 2 , and then needle punched at a punch count of 2900 / cm 2. To give a sheet. After shrinking the sheet with hot water at 85 ° C., the sheet is impregnated with a 12% aqueous PVA solution and dried with hot air at a temperature of 100 ° C. for 10 minutes to obtain a sheet having a PVA weight of 45% by weight based on the weight of the sheet. Was. The sea component was dissolved and removed from the sheet in trichlorethylene to obtain a desealed sheet in which the ultrafine fibers and the woven fabric were entangled. SEM observation of the cross section of the sea-removed sheet revealed that the average single yarn diameter was 0.5 μm.
この極細繊維からなる脱海シートを、固形分濃度9%に調整したポリエーテル/ポリエステル系ポリウレタンのDMF溶液に含浸し、DMF濃度30%の水溶液中でポリウレタンを凝固せしめた。その後、PVAおよびDMFを熱水で除去し、濃度1.0質量%に調整したシリコーンオイルエマルジョン液を含浸し、繊維質量とポリウレタン質量の合計質量に対し、シリコーン系滑剤付与量が0.2質量%になるように付与した。続いて、110℃の熱風で10分間乾燥することで、シートの島成分質量(極細繊維と前記織編物の合計質量)に対するポリウレタン質量が25質量%のシートを得た。
脱 The desealed sheet made of the ultrafine fibers was impregnated with a polyether / polyester polyurethane DMF solution adjusted to a solid content of 9%, and the polyurethane was coagulated in an aqueous solution having a DMF concentration of 30%. Thereafter, PVA and DMF were removed with hot water and impregnated with a silicone oil emulsion solution adjusted to a concentration of 1.0% by mass, and the silicone-based lubricant applied amount was 0.2% by mass based on the total mass of the fiber mass and polyurethane mass. %. Subsequently, the sheet was dried with hot air of 110 ° C. for 10 minutes to obtain a sheet having a polyurethane content of 25% by mass relative to the island component mass (the total mass of the ultrafine fibers and the woven or knitted fabric).
そして、得られたシートを厚さ方向に半裁し、半裁面をサンドペーパー番手150番手、180番手のエンドレスサンドペーパーで製品面を15g/m2研削し、立毛面を形成した。
Then, the obtained sheet was cut in half in the thickness direction, and the cut surface was ground at 15 g / m 2 with endless sandpaper of 150th and 180th counts of sandpaper to form a raised surface.
こうして得られたシートを液流染色機にて、85℃の条件下で、染色を行ったのちに、乾燥機にて乾燥を行い、厚み0.5mm、見かけ密度0.300g/cm3のシート状物を得た。
The sheet thus obtained was dyed with a jet dyeing machine at 85 ° C., and then dried with a drier to obtain a sheet having a thickness of 0.5 mm and an apparent density of 0.300 g / cm 3 . A product was obtained.
得られたシート状物は、立毛層における極細繊維の平均繊維長が200μm、平均繊維長のCV値が35%、立毛層における極細繊維の表面被覆率が70%で、シーファー摩耗破れ回数が23回/0.10mm、外観品位はBであった。
The obtained sheet-like material had an average fiber length of 200 µm of the ultrafine fibers in the nap layer, a CV value of the average fiber length of 35%, a surface coverage of the ultrafine fibers in the nap layer of 70%, and a number of sifter abrasion breaks of 23. Times / 0.10 mm, and the appearance quality was B.
[比較例2]
島成分としてMFRが58.3g/10分のナイロン6を用い、また海成分としてMFRが300g/10分のアクリル酸2-エチルへキシルを22mol%共重合したポリスチレン(Co-PSt)を用い、島数が300島の海島型複合用口金を用いて、島/海質量比率30/70で溶融紡糸した後、延伸、捲縮し、その後、51mmにカットし、単繊維繊度24μmの海島型複合繊維の原綿を得た。 [Comparative Example 2]
Nylon 6 having an MFR of 58.3 g / 10 min was used as an island component, and polystyrene (Co-PSt) obtained by copolymerizing 22 mol% of 2-ethylhexyl acrylate having a MFR of 300 g / 10 min as a sea component was used. Using a sea-island-type composite die with 300 islands, melt-spun at an island / sea mass ratio of 30/70, stretched and crimped, then cut to 51 mm, and single-fiber fineness of 24 μm Fiber raw cotton was obtained.
島成分としてMFRが58.3g/10分のナイロン6を用い、また海成分としてMFRが300g/10分のアクリル酸2-エチルへキシルを22mol%共重合したポリスチレン(Co-PSt)を用い、島数が300島の海島型複合用口金を用いて、島/海質量比率30/70で溶融紡糸した後、延伸、捲縮し、その後、51mmにカットし、単繊維繊度24μmの海島型複合繊維の原綿を得た。 [Comparative Example 2]
Nylon 6 having an MFR of 58.3 g / 10 min was used as an island component, and polystyrene (Co-PSt) obtained by copolymerizing 22 mol% of 2-ethylhexyl acrylate having a MFR of 300 g / 10 min as a sea component was used. Using a sea-island-type composite die with 300 islands, melt-spun at an island / sea mass ratio of 30/70, stretched and crimped, then cut to 51 mm, and single-fiber fineness of 24 μm Fiber raw cotton was obtained.
この海島型複合繊維の原綿を用いて、カード、クロスラッパー工程を経て積層ウェブを形成し、600本/cm2のパンチ本数でニードルパンチした後に、2900本/cm2のパンチ本数でニードルパンチを施してシートを得た。このシートを85℃の熱水で収縮させた後、12%のPVA水溶液を含浸し、温度100℃の熱風で10分間乾燥することで、シートの質量に対するPVA質量が40質量%のシートを得た。このシートをトリクロロエチレン中で海成分を溶解除去し、極細繊維と織物が絡合してなる脱海シートを得た。脱海シート断面のSEMで、平均単糸直径は1.0μmであった。
Using the raw cotton of this sea-island type composite fiber, a laminated web is formed through a card and a cross wrapper process, needle punched at a punch count of 600 / cm 2 , and then needle punched at a punch count of 2900 / cm 2. To give a sheet. After shrinking the sheet with hot water at 85 ° C, the sheet is impregnated with a 12% PVA aqueous solution and dried with hot air at a temperature of 100 ° C for 10 minutes to obtain a sheet having a PVA weight of 40% by weight based on the sheet weight. Was. The sea component was dissolved and removed from the sheet in trichlorethylene to obtain a desealed sheet in which the ultrafine fibers and the woven fabric were entangled. The average single yarn diameter was 1.0 μm by SEM of the cross section of the sea-removed sheet.
この極細繊維からなる脱海シートを、固形分濃度9%に調整したポリエーテル/ポリエステル系ポリウレタンのDMF溶液に含浸し、DMF濃度30%の水溶液中でポリウレタンを凝固せしめた。その後、PVAおよびDMFを熱水で除去し、110℃の熱風で10分間乾燥することで、シートの島成分質量(極細繊維と前記織編物の合計質量)に対するポリウレタン質量が30質量%のシートを得た。
脱 The desealed sheet made of the ultrafine fibers was impregnated with a polyether / polyester polyurethane DMF solution adjusted to a solid content of 9%, and the polyurethane was coagulated in an aqueous solution having a DMF concentration of 30%. Thereafter, PVA and DMF were removed with hot water, and dried with hot air at 110 ° C. for 10 minutes to obtain a sheet having a polyurethane content of 30% by mass relative to the island component mass (total mass of the ultrafine fibers and the woven or knitted fabric) of the sheet. Obtained.
そして、得られたシートを厚さ方向に半裁し、半裁したシートを、水を含むシートの質量が乾燥質量に対して200%となるように水を浸透させ搾液した後に、半裁面をサンドペーパー番手150番手、180番手、180番手のエンドレスサンドペーパーで製品面を15g/m2研削し、立毛面を形成した。
Then, the obtained sheet is cut in half in the thickness direction, and the cut sheet is impregnated with water so that the mass of the sheet containing water becomes 200% of the dry mass, and then squeezed. The product surface was ground at 15 g / m 2 with endless sandpaper of 150 count, 180 count, and 180 count of paper to form a napped surface.
こうして得られたシートを液流染色機にて、85℃の条件下で、染色を行ったのちに、乾燥機にて乾燥を行い、厚み0.5mm、見かけ密度0.300g/cm3のシート状物を得た。
The sheet thus obtained was dyed with a jet dyeing machine at 85 ° C., and then dried with a drier to obtain a sheet having a thickness of 0.5 mm and an apparent density of 0.300 g / cm 3 . A product was obtained.
得られたシート状物は、立毛層における極細繊維の平均繊維長が150μm、平均繊維長のCV値が40%、立毛層における極細繊維の表面被覆率が80%で、シーファー摩耗破れ回数が25回/0.10mm、外観品位はCであった。
In the obtained sheet-like material, the average fiber length of the microfibers in the nap layer was 150 μm, the CV value of the average fiber length was 40%, the surface coverage of the microfibers in the nap layer was 80%, and the number of tears of seafar abrasion was 25. Times / 0.10 mm, and the appearance quality was C.
[比較例3]
島成分として固有粘度(IV)が0.718のポリエチレンテレフタレート(PET)を用い、また海成分としてMFRが18g/10分のポリスチレンを用い、島数が25島の海島型複合用口金を用いて、島/海質量比率80/20で溶融紡糸した後、延伸、捲縮し、その後、51mmにカットし、単繊維繊度3.1dtexの海島型複合繊維の原綿を得た。 [Comparative Example 3]
Polyethylene terephthalate (PET) having an intrinsic viscosity (IV) of 0.718 is used as an island component, polystyrene having an MFR of 18 g / 10 min is used as a sea component, and a sea-island type compound mouthpiece having 25 islands is used. After melt-spinning at an island / sea mass ratio of 80/20, it was stretched and crimped, and then cut into 51 mm to obtain a raw cotton of sea-island composite fiber having a single fiber fineness of 3.1 dtex.
島成分として固有粘度(IV)が0.718のポリエチレンテレフタレート(PET)を用い、また海成分としてMFRが18g/10分のポリスチレンを用い、島数が25島の海島型複合用口金を用いて、島/海質量比率80/20で溶融紡糸した後、延伸、捲縮し、その後、51mmにカットし、単繊維繊度3.1dtexの海島型複合繊維の原綿を得た。 [Comparative Example 3]
Polyethylene terephthalate (PET) having an intrinsic viscosity (IV) of 0.718 is used as an island component, polystyrene having an MFR of 18 g / 10 min is used as a sea component, and a sea-island type compound mouthpiece having 25 islands is used. After melt-spinning at an island / sea mass ratio of 80/20, it was stretched and crimped, and then cut into 51 mm to obtain a raw cotton of sea-island composite fiber having a single fiber fineness of 3.1 dtex.
この海島型複合繊維の原綿を用いて、カード、クロスラッパー工程を経て積層ウェブを形成し、600本/cm2のパンチ本数でニードルパンチした後に、2900本/cm2のパンチ本数でニードルパンチを施してシートを得た。このシートを96℃の熱水で収縮させた後、5%のPVA水溶液を含浸し、温度110℃の熱風で10分間乾燥することで、シートの質量に対するPVA質量が35質量%のシートを得た。このシートをトリクロロエチレン中で海成分を溶解除去し、極細繊維と織物が絡合してなる脱海シートを得た。脱海シート断面のSEM観察で、平均単糸直径は5.0μmであった。
Using the raw cotton of this sea-island type composite fiber, a laminated web is formed through a card and a cross wrapper process, needle punched at a punch count of 600 / cm 2 , and then needle punched at a punch count of 2900 / cm 2. To give a sheet. After shrinking the sheet with hot water of 96 ° C., the sheet is impregnated with a 5% aqueous PVA solution and dried with hot air at a temperature of 110 ° C. for 10 minutes to obtain a sheet having a PVA weight of 35% by weight based on the weight of the sheet. Was. The sea component was dissolved and removed from the sheet in trichlorethylene to obtain a desealed sheet in which the ultrafine fibers and the woven fabric were entangled. SEM observation of the cross section of the sea-removed sheet revealed that the average single yarn diameter was 5.0 μm.
この極細繊維からなる脱海シートを、固形分濃度10%に調整したポリカーボネート系ポリウレタンのDMF溶液に含浸し、DMF濃度30%の水溶液中でポリウレタンを凝固せしめた。その後、PVAおよびDMFを熱水で除去した。続いて、110℃の熱風で10分間乾燥することで、シートの島成分質量(極細繊維と前記織編物の合計質量)に対するポリウレタン質量が15質量%のシートを得た。
(4) The desealed sheet made of the ultrafine fibers was impregnated with a DMF solution of a polycarbonate-based polyurethane adjusted to a solid concentration of 10%, and the polyurethane was coagulated in an aqueous solution having a DMF concentration of 30%. Thereafter, PVA and DMF were removed with hot water. Subsequently, the sheet was dried with hot air at 110 ° C. for 10 minutes to obtain a sheet having a polyurethane content of 15% by mass relative to the island component mass (the total mass of the ultrafine fibers and the woven or knitted fabric) of the sheet.
そして、得られたシートを厚さ方向に半裁し、半裁面をサンドペーパー番手120番手のエンドレスサンドペーパーで製品面を15g/m2研削し、立毛面を形成した。
Then, the obtained sheet was cut in half in the thickness direction, and the cut surface was ground at 15 g / m 2 with endless sandpaper having a sandpaper count of 120 to form a napped surface.
こうして得られたシートを液流染色機にて、110℃の条件下で、染色を行ったのちに、乾燥機にて乾燥を行い、厚み1.0mm、見かけ密度0.400g/cm3のシート状物を得た。その後、染色された繊維基材の起毛処理された面に、天然皮革の毛穴に沿って浅いシュリンク皺を有する模様のエンボスロールを用いてエンボス処理を実施した。エンボスロールの突起部分の巾は220μmで、彫深さは750μm、突起部分の面積割合は13%であった。エンボス処理の条件は、エンボスロールの表面温度140℃、0.3MPaの圧力、エンボスロール速度1.5m/分で行い、シート状物を得た。
The sheet thus obtained was dyed with a jet dyeing machine at 110 ° C., and then dried with a drier to obtain a sheet having a thickness of 1.0 mm and an apparent density of 0.400 g / cm 3 . A product was obtained. Thereafter, the raised surface of the dyed fiber base material was embossed using an embossing roll having a pattern having shallow shrink wrinkles along the pores of natural leather. The width of the projections of the embossing roll was 220 μm, the engraving depth was 750 μm, and the area ratio of the projections was 13%. The conditions of the embossing treatment were performed at a surface temperature of the embossing roll of 140 ° C., a pressure of 0.3 MPa, and an embossing roll speed of 1.5 m / min to obtain a sheet.
得られたシート状物は、立毛層における極細繊維の平均繊維長が300μm、平均繊維長のCV値が40%、立毛層における極細繊維の表面被覆率が50%で、シーファー摩耗破れ回数が16回/0.10mm、外観品位はCであった。
The obtained sheet-like material has an average fiber length of 300 µm of the ultrafine fibers in the nap layer, a CV value of the average fiber length of 40%, a surface coverage of the ultrafine fibers in the nap layer of 50%, and a number of sifter abrasion breakage of 16. Times / 0.10 mm, and the appearance quality was C.
[比較例4]
島成分として固有粘度(IV)が0.718のポリエチレンテレフタレート(PET)を用い、また海成分としてMFRが18g/10分のポリスチレンを用い、島数が25島の海島型複合用口金を用いて、島/海質量比率55/45で溶融紡糸した後、延伸、捲縮し、その後、51mmにカットし、単繊維繊度3.1dtexの海島型複合繊維の原綿を得た。 [Comparative Example 4]
Polyethylene terephthalate (PET) having an intrinsic viscosity (IV) of 0.718 is used as an island component, polystyrene having an MFR of 18 g / 10 min is used as a sea component, and a sea-island type compound mouthpiece having 25 islands is used. After melt-spinning at an island / sea mass ratio of 55/45, the fiber was drawn and crimped, and then cut into 51 mm to obtain a raw cotton of sea-island type composite fiber having a single fiber fineness of 3.1 dtex.
島成分として固有粘度(IV)が0.718のポリエチレンテレフタレート(PET)を用い、また海成分としてMFRが18g/10分のポリスチレンを用い、島数が25島の海島型複合用口金を用いて、島/海質量比率55/45で溶融紡糸した後、延伸、捲縮し、その後、51mmにカットし、単繊維繊度3.1dtexの海島型複合繊維の原綿を得た。 [Comparative Example 4]
Polyethylene terephthalate (PET) having an intrinsic viscosity (IV) of 0.718 is used as an island component, polystyrene having an MFR of 18 g / 10 min is used as a sea component, and a sea-island type compound mouthpiece having 25 islands is used. After melt-spinning at an island / sea mass ratio of 55/45, the fiber was drawn and crimped, and then cut into 51 mm to obtain a raw cotton of sea-island type composite fiber having a single fiber fineness of 3.1 dtex.
この海島型複合繊維の原綿を用いて、カード、クロスラッパー工程を経て積層ウェブを形成し、600本/cm2のパンチ本数でニードルパンチした後に、2900本/cm2のパンチ本数でニードルパンチを施してシートを得た。このシートを96℃の熱水で収縮させた後、10%のPVA水溶液を含浸し、温度110℃の熱風で10分間乾燥することで、シートの質量に対するPVA質量が30質量%のシートを得た。このシートをトリクロロエチレン中で海成分を溶解除去し、極細繊維と織物が絡合してなる脱海シートを得た。脱海シート断面のSEM観察で、平均単糸直径は2.0μmであった。
Using the raw cotton of this sea-island type composite fiber, a laminated web is formed through a card and a cross wrapper process, needle punched at a punch count of 600 / cm 2 , and then needle punched at a punch count of 2900 / cm 2. To give a sheet. After shrinking this sheet with hot water at 96 ° C., the sheet is impregnated with a 10% aqueous PVA solution and dried with hot air at 110 ° C. for 10 minutes to obtain a sheet having a PVA weight of 30% by weight based on the weight of the sheet. Was. The sea component was dissolved and removed from the sheet in trichlorethylene to obtain a desealed sheet in which the ultrafine fibers and the woven fabric were entangled. SEM observation of the cross section of the sea-removed sheet revealed that the average single yarn diameter was 2.0 μm.
この極細繊維からなる脱海シートを、固形分濃度10%に調整したポリカーボネート系ポリウレタンのDMF溶液に含浸し、DMF濃度30%の水溶液中でポリウレタンを凝固せしめた。その後、PVAおよびDMFを熱水で除去し、濃度10質量%に調整したシリコーンオイルエマルジョン液を含浸し、繊維質量とポリウレタン質量の合計質量に対し、シリコーン系滑剤付与量が6.0質量%になるように付与した。続いて、110℃の熱風で10分間乾燥することで、シートの島成分質量(極細繊維と前記織編物の合計質量)に対するポリウレタン質量が20質量%のシートを得た。
(4) The desealed sheet made of the ultrafine fibers was impregnated with a DMF solution of a polycarbonate-based polyurethane adjusted to a solid concentration of 10%, and the polyurethane was coagulated in an aqueous solution having a DMF concentration of 30%. Thereafter, PVA and DMF were removed with hot water and impregnated with a silicone oil emulsion adjusted to a concentration of 10% by mass, so that the silicone-based lubricant applied amount was 6.0% by mass based on the total mass of the fiber mass and polyurethane mass. It was given to be. Subsequently, the sheet was dried with hot air at 110 ° C. for 10 minutes to obtain a sheet having a polyurethane content of 20% by mass relative to the island component mass of the sheet (the total mass of the ultrafine fibers and the woven or knitted fabric).
そして、得られたシートを厚さ方向に半裁し、半裁面をサンドペーパー番手180番手、180番手のエンドレスサンドペーパーで製品面を20g/m2研削し、立毛面を形成した。
Then, the obtained sheet was cut in half in the thickness direction, and the cut surface was sanded with sandpaper count 180 and endless sandpaper to grind the product surface by 20 g / m 2 to form a raised surface.
こうして得られたシートを液流染色機にて、110℃の条件下で、染色を行ったのちに、乾燥機にて乾燥を行い、厚み0.5mm、見かけ密度0.360g/cm3のシート状物を得た。
The sheet thus obtained was dyed with a jet dyeing machine at 110 ° C., and then dried with a drier to obtain a sheet having a thickness of 0.5 mm and an apparent density of 0.360 g / cm 3 . A product was obtained.
得られたシート状物は、立毛層における極細繊維の平均繊維長が600μm、平均繊維長のCV値が40%、立毛層における極細繊維の表面被覆率が45%で、シーファー摩耗破れ回数が28回/0.10mm、外観品位はCであった。
The obtained sheet-like material had an average fiber length of 600 μm of the ultrafine fibers in the nap layer, a CV value of the average fiber length of 40%, a surface coverage of the ultrafine fibers of the nap layer of 45%, and a number of 28 times of tearing abrasions. Times / 0.10 mm, and the appearance quality was C.
[比較例5]
島成分として固有粘度(IV)が0.718のポリエチレンテレフタレート(PET)を用い、また海成分としてMFRが18g/10分のポリスチレンを用い、島数が25島の海島型複合用口金を用いて、島/海質量比率55/45で溶融紡糸した後、延伸、捲縮し、その後、51mmにカットし、単繊維繊度3.1dtexの海島型複合繊維の原綿を得た。 [Comparative Example 5]
Polyethylene terephthalate (PET) having an intrinsic viscosity (IV) of 0.718 is used as an island component, polystyrene having an MFR of 18 g / 10 min is used as a sea component, and a sea-island type compound mouthpiece having 25 islands is used. After melt-spinning at an island / sea mass ratio of 55/45, the fiber was drawn and crimped, and then cut into 51 mm to obtain a raw cotton of sea-island type composite fiber having a single fiber fineness of 3.1 dtex.
島成分として固有粘度(IV)が0.718のポリエチレンテレフタレート(PET)を用い、また海成分としてMFRが18g/10分のポリスチレンを用い、島数が25島の海島型複合用口金を用いて、島/海質量比率55/45で溶融紡糸した後、延伸、捲縮し、その後、51mmにカットし、単繊維繊度3.1dtexの海島型複合繊維の原綿を得た。 [Comparative Example 5]
Polyethylene terephthalate (PET) having an intrinsic viscosity (IV) of 0.718 is used as an island component, polystyrene having an MFR of 18 g / 10 min is used as a sea component, and a sea-island type compound mouthpiece having 25 islands is used. After melt-spinning at an island / sea mass ratio of 55/45, the fiber was drawn and crimped, and then cut into 51 mm to obtain a raw cotton of sea-island type composite fiber having a single fiber fineness of 3.1 dtex.
この海島型複合繊維の原綿を用いて、カード、クロスラッパー工程を経て積層ウェブを形成し、600本/cm2のパンチ本数でニードルパンチした後に、2900本/cm2のパンチ本数でニードルパンチを施してシートを得た。このシートを96℃の熱水で収縮させた後、3%のPVA水溶液を含浸し、温度110℃の熱風で10分間乾燥することで、シートの質量に対するPVA質量が10質量%のシートを得た。このシートをトリクロロエチレン中で海成分を溶解除去し、極細繊維と織物が絡合してなる脱海シートを得た。脱海シート断面のSEM観察で、平均単糸直径は2.0μmであった。
Using the raw cotton of this sea-island type composite fiber, a laminated web is formed through a card and a cross wrapper process, needle punched at a punch count of 600 / cm 2 , and then needle punched at a punch count of 2900 / cm 2. To give a sheet. After shrinking this sheet with hot water of 96 ° C., the sheet is impregnated with a 3% aqueous solution of PVA, and dried with hot air at a temperature of 110 ° C. for 10 minutes to obtain a sheet having a PVA weight of 10% by weight based on the weight of the sheet. Was. The sea component was dissolved and removed from the sheet in trichlorethylene to obtain a desealed sheet in which the ultrafine fibers and the woven fabric were entangled. SEM observation of the cross section of the sea-removed sheet revealed that the average single yarn diameter was 2.0 μm.
この極細繊維からなる脱海シートを、固形分濃度10%に調整したポリカーボネート系ポリウレタンのDMF溶液に含浸し、DMF濃度30%の水溶液中でポリウレタンを凝固せしめた。その後、PVAおよびDMFを熱水で除去し、濃度5質量%に調整したシリコーンオイルエマルジョン液を含浸し、繊維質量とポリウレタン質量の合計質量に対し、シリコーン系滑剤付与量が2.0質量%になるように付与した。続いて、110℃の熱風で10分間乾燥することで、シートの島成分質量(極細繊維と前記織編物の合計質量)に対するポリウレタン質量が65質量%のシートを得た。
(4) The desealed sheet made of the ultrafine fibers was impregnated with a DMF solution of a polycarbonate-based polyurethane adjusted to a solid concentration of 10%, and the polyurethane was coagulated in an aqueous solution having a DMF concentration of 30%. Thereafter, PVA and DMF were removed with hot water and impregnated with a silicone oil emulsion adjusted to a concentration of 5% by mass, so that the silicone-based lubricant applied amount became 2.0% by mass based on the total mass of the fiber mass and the polyurethane mass. It was given to be. Subsequently, the sheet was dried with hot air of 110 ° C. for 10 minutes to obtain a sheet having a polyurethane content of 65% by mass relative to the island component mass of the sheet (the total mass of the ultrafine fibers and the woven or knitted fabric).
そして、得られたシートを厚さ方向に半裁し、半裁面をサンドペーパー番手150番手、180番手、240番手、320番手、600番手のエンドレスサンドペーパーで製品面を20g/m2研削し、立毛面を形成した。
Then, the obtained sheet is cut in half in the thickness direction, and the cut surface is ground at 20 g / m 2 with endless sandpaper of 150-, 180-, 240-, 320-, and 600-th sandpaper. Surface formed.
こうして得られたシートを液流染色機にて、110℃の条件下で、染色を行ったのちに、乾燥機にて乾燥を行い、厚み0.5mm、見かけ密度0.360g/cm3のシート状物を得た。
The sheet thus obtained was dyed with a jet dyeing machine at 110 ° C., and then dried with a drier to obtain a sheet having a thickness of 0.5 mm and an apparent density of 0.360 g / cm 3 . A product was obtained.
得られたシート状物は、立毛層における極細繊維の平均繊維長が330μm、平均繊維長のCV値が40%、立毛層における極細繊維の表面被覆率が45%で、シーファー摩耗破れ回数が100回/0.10mm、外観品位はCであった。
The obtained sheet-like product had an average fiber length of 330 µm of the ultrafine fibers in the nap layer, a CV value of the average fiber length of 40%, a surface coverage of the ultrafine fibers in the nap layer of 45%, and a number of sifter abrasion breakage of 100. Times / 0.10 mm, and the appearance quality was C.
本発明のシート状物は、優美な外観と非常に滑らかなタッチを有しながら高い成形加工性を有し、家具、椅子および壁材や、自動車、電車および航空機などの車輛室内における座席、天井および内装などの表皮材として非常に優美な外観を有する内装材、シャツ、ジャケット、カジュアルシューズ、スポーツシューズ、紳士靴および婦人靴等の靴のアッパー、トリム等、鞄、ベルト、財布等、およびそれらの一部に使用した衣料用資材、ワイピングクロス、フィルター関連およびCDカーテン等の工業用資材として好適に用いることができる。
The sheet-shaped article of the present invention has high formability while having an elegant appearance and a very smooth touch, and is used for furniture, chairs and wall materials, and seats and ceilings in vehicle interiors such as automobiles, trains and aircraft. Interior materials with a very elegant appearance as skin materials for interiors, shirts, jackets, casual shoes, sports shoes, uppers for shoes such as men's shoes and women's shoes, trims, etc., bags, belts, wallets, etc. Can be suitably used as an industrial material such as a clothing material, a wiping cloth, a filter-related material, and a CD curtain used as a part of the material.
Claims (9)
- 熱可塑性樹脂からなる極細繊維が複数本合わせられてなる極細繊維束を含むシート状物であって、前記シート状物が基材層と立毛層からなり、前記基材層は前記極細繊維束からなる繊維絡合体であって、前記立毛層は前記シート状物の少なくとも一面に前記極細繊維のみからなる立毛を有するものであって、以下の条件(1)~(3)の全てを満足する、シート状物。
(1)前記極細繊維の平均単糸直径が0.1μm以上10μm以下であること。
(2)前記極細繊維のうち、立毛層における極細繊維の平均繊維長が250μm以上500μm以下であること。
(3)立毛層における極細繊維の表面被覆率が60%以上100%以下であること。 A sheet-like material including an ultrafine fiber bundle formed by combining a plurality of ultrafine fibers made of a thermoplastic resin, wherein the sheet-like material includes a base layer and a napped layer, and the base layer is formed from the ultrafine fiber bundle. A fiber entangled body, wherein the nap layer has nap made of only the ultrafine fibers on at least one surface of the sheet-like material, and satisfies all of the following conditions (1) to (3): Sheets.
(1) The average single yarn diameter of the ultrafine fibers is 0.1 μm or more and 10 μm or less.
(2) Among the ultrafine fibers, the average fiber length of the ultrafine fibers in the nap layer is 250 μm or more and 500 μm or less.
(3) The surface coverage of the ultrafine fibers in the nap layer is 60% or more and 100% or less. - 前記シート状物が、前記極細繊維束とさらに高分子弾性体とから構成され、該高分子弾性体は前記繊維絡合体の内部に含有されてなる、請求項1に記載のシート状物。 The sheet according to claim 1, wherein the sheet comprises the ultrafine fiber bundle and a polymer elastic body, and the polymer elastic body is contained inside the fiber entangled body.
- 前記極細繊維束は、10本/束以上400本/束以下の極細繊維から構成される、請求項1または2に記載のシート状物。 The sheet-like material according to claim 1 or 2, wherein the ultrafine fiber bundle is composed of 10 to 400 ultrafine fibers.
- 前記立毛層における極細繊維の平均繊維長のCV値が、30%以下である、請求項1から3のいずれかに記載のシート状物。 The sheet according to any one of claims 1 to 3, wherein the CV value of the average fiber length of the ultrafine fibers in the nap layer is 30% or less.
- 前記極細繊維に対する前記高分子弾性体の付量が0質量%より多く60質量%以下である、請求項2~4のいずれかに記載のシート状物。 (5) The sheet according to any one of (2) to (4), wherein the amount of the elastic polymer added to the ultrafine fibers is more than 0% by mass and 60% by mass or less.
- 請求項1~5のいずれかのシート状物を製造する方法であって、シリコーン系滑剤を前記シート状物の質量に対し0.01質量%以上3.0質量%以下付与させた後、シート状物が乾燥した状態で製品面のバフィング処理を施すシート状物の製造方法。 The method for producing a sheet according to any one of claims 1 to 5, wherein the silicone-based lubricant is applied in an amount of 0.01% by mass or more and 3.0% by mass or less based on the mass of the sheet, and then the sheet is produced. A method for producing a sheet-like material, wherein buffing treatment is performed on a product surface in a state where the material is dried.
- 前記製品面をバフィング処理した際の研削量を20g/m2以上250g/m2以下である、請求項6に記載のシート状物の製造方法。 Method for producing a grinding amount at the time of the product surface was buffed at 20 g / m 2 or more 250 g / m 2 or less, the sheet-like product according to claim 6.
- 前記製品面のバフィング処理回数を少なくとも2回以上の多段階で行い、さらにサンドペーパーの番手を段階的に細かくするか、または同じにする、請求項7に記載のシート状物の製造方法。 8. The method for producing a sheet-like material according to claim 7, wherein the number of buffing treatments of the product surface is performed in multiple stages of at least two or more, and the count of the sandpaper is gradually reduced or equalized.
- ASTM D4158-08(2016)「Standard Guide for Abrasion Resistance of Textile Fabrics (Uniform Abrasion)」(耐摩耗性評価方法)のうち、サンドペーパーの番手が180番、荷重2ポンドで測定したシーファー摩耗破れ回数が、シート状物の厚み0.10mm当たり20回以上である、請求項2から5のいずれかに記載のシート状物。 Of ASTM D4158-08 (2016) "Standard Guide for For Abrasion Resistance of Textile Fabrics (Uniform Abrasion)" (abrasion resistance evaluation method), the number of times of sandpaper was 180 and the load was 2 lbs. The sheet according to any one of claims 2 to 5, wherein the thickness of the sheet is at least 20 times per 0.10 mm of the sheet.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980036992.4A CN112218982A (en) | 2018-06-29 | 2019-05-29 | Sheet-like article and method for producing same |
KR1020207034250A KR20210022551A (en) | 2018-06-29 | 2019-05-29 | Sheet-like material and its manufacturing method |
JP2020527305A JPWO2020003866A1 (en) | 2018-06-29 | 2019-05-29 | Sheet-shaped material and its manufacturing method |
EP19824962.5A EP3816340A4 (en) | 2018-06-29 | 2019-05-29 | Sheet-shaped item and manufacturing method therefor |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018124129 | 2018-06-29 | ||
JP2018-124129 | 2018-06-29 | ||
JP2018124130 | 2018-06-29 | ||
JP2018-124130 | 2018-06-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020003866A1 true WO2020003866A1 (en) | 2020-01-02 |
Family
ID=68984814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/021238 WO2020003866A1 (en) | 2018-06-29 | 2019-05-29 | Sheet-shaped item and manufacturing method therefor |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP3816340A4 (en) |
JP (1) | JPWO2020003866A1 (en) |
KR (1) | KR20210022551A (en) |
CN (1) | CN112218982A (en) |
TW (1) | TW202016386A (en) |
WO (1) | WO2020003866A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024009907A1 (en) * | 2022-07-05 | 2024-01-11 | 株式会社クラレ | Napped artificial leather and manufacturing method therefor |
JP7567300B2 (en) | 2020-09-07 | 2024-10-16 | 東レ株式会社 | Artificial Leather |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230013205A1 (en) * | 2021-07-14 | 2023-01-19 | Raytheon Technologies Corporation | Method of fabric processing for improved cmc infiltration |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008280643A (en) * | 2007-05-11 | 2008-11-20 | Kuraray Co Ltd | Suede-like artificial leather and method for producing the same |
WO2011027732A1 (en) * | 2009-09-03 | 2011-03-10 | 東レ株式会社 | Pilling-resistant artificial leather |
WO2013129388A1 (en) * | 2012-02-29 | 2013-09-06 | 株式会社クラレ | Elastic artificial leather and production method therefor |
JP2014163026A (en) * | 2013-02-27 | 2014-09-08 | Toray Ind Inc | Production method of sheet-like article, and sheet-like material |
JP2015209594A (en) | 2014-04-23 | 2015-11-24 | 東レ株式会社 | Sheet-like product and method for producing the same |
WO2016051711A1 (en) | 2014-09-29 | 2016-04-07 | 株式会社クラレ | Suede-like sheet and method for producing same |
JP2016047560A (en) | 2014-08-27 | 2016-04-07 | 東レ株式会社 | Sheet-like product |
WO2017082273A1 (en) * | 2015-11-10 | 2017-05-18 | 株式会社クラレ | Artificial leather substrate, artificial leather, and method for manufacturing same |
JP2017133134A (en) * | 2016-01-29 | 2017-08-03 | 東レ株式会社 | Sheet-formed article, and method of producing the same |
JP2019112744A (en) * | 2017-12-25 | 2019-07-11 | 東レ株式会社 | Artificial leather, and method of producing the same |
-
2019
- 2019-05-29 CN CN201980036992.4A patent/CN112218982A/en not_active Withdrawn
- 2019-05-29 JP JP2020527305A patent/JPWO2020003866A1/en active Pending
- 2019-05-29 KR KR1020207034250A patent/KR20210022551A/en unknown
- 2019-05-29 WO PCT/JP2019/021238 patent/WO2020003866A1/en active Application Filing
- 2019-05-29 EP EP19824962.5A patent/EP3816340A4/en not_active Withdrawn
- 2019-06-26 TW TW108122398A patent/TW202016386A/en unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008280643A (en) * | 2007-05-11 | 2008-11-20 | Kuraray Co Ltd | Suede-like artificial leather and method for producing the same |
WO2011027732A1 (en) * | 2009-09-03 | 2011-03-10 | 東レ株式会社 | Pilling-resistant artificial leather |
WO2013129388A1 (en) * | 2012-02-29 | 2013-09-06 | 株式会社クラレ | Elastic artificial leather and production method therefor |
JP2014163026A (en) * | 2013-02-27 | 2014-09-08 | Toray Ind Inc | Production method of sheet-like article, and sheet-like material |
JP2015209594A (en) | 2014-04-23 | 2015-11-24 | 東レ株式会社 | Sheet-like product and method for producing the same |
JP2016047560A (en) | 2014-08-27 | 2016-04-07 | 東レ株式会社 | Sheet-like product |
WO2016051711A1 (en) | 2014-09-29 | 2016-04-07 | 株式会社クラレ | Suede-like sheet and method for producing same |
WO2017082273A1 (en) * | 2015-11-10 | 2017-05-18 | 株式会社クラレ | Artificial leather substrate, artificial leather, and method for manufacturing same |
JP2017133134A (en) * | 2016-01-29 | 2017-08-03 | 東レ株式会社 | Sheet-formed article, and method of producing the same |
JP2019112744A (en) * | 2017-12-25 | 2019-07-11 | 東レ株式会社 | Artificial leather, and method of producing the same |
Non-Patent Citations (1)
Title |
---|
See also references of EP3816340A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7567300B2 (en) | 2020-09-07 | 2024-10-16 | 東レ株式会社 | Artificial Leather |
WO2024009907A1 (en) * | 2022-07-05 | 2024-01-11 | 株式会社クラレ | Napped artificial leather and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
KR20210022551A (en) | 2021-03-03 |
CN112218982A (en) | 2021-01-12 |
EP3816340A1 (en) | 2021-05-05 |
JPWO2020003866A1 (en) | 2021-07-08 |
EP3816340A4 (en) | 2021-11-17 |
TW202016386A (en) | 2020-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6733673B2 (en) | Leather cloth | |
TWI649477B (en) | Artificial leather and its manufacturing method | |
WO2020003866A1 (en) | Sheet-shaped item and manufacturing method therefor | |
KR102337556B1 (en) | Sheet-like article and manufacturing method thereof | |
JP6613764B2 (en) | Artificial leather and method for producing the same | |
JP2018003181A (en) | Grained artificial leather and method for producing the same | |
JP7049267B2 (en) | Fleece-like artificial leather, polyester fiber, and non-woven fabric | |
CN113597485B (en) | Sheet-like article | |
JP2022038822A (en) | Fiber sheet and manufacturing method of artificial leather using the fiber sheet | |
JP2012136801A (en) | Artificial leather having novel pattern and method for producing the same | |
JP6354337B2 (en) | Sheet | |
JP2020051003A (en) | Grained artificial leather and method for producing the same | |
WO2024004475A1 (en) | Synthetic leather and method for producing same | |
JP7156559B1 (en) | Artificial leather | |
JP2016141903A (en) | Method for producing sheet-like material with textured surface | |
JP7193036B1 (en) | Artificial leather and its manufacturing method | |
WO2022044945A1 (en) | Artificial leather | |
JP2018003191A (en) | Sheet-like product and method for producing the same and grained artificial leather | |
WO2023120584A1 (en) | Artificial leather and method for manufacturing same | |
JP2022048994A (en) | Artificial leather | |
JP2011179127A (en) | Method for producing sheet-like material | |
JP2018123443A (en) | Fabric and manufacturing method thereof | |
JP2023048983A (en) | Composite artificial leather and manufacturing method thereof | |
JP2022147992A (en) | Artificial leather | |
JP2024099270A (en) | Artificial leather and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19824962 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020527305 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2019824962 Country of ref document: EP |