WO2017164151A1 - Terminal box - Google Patents

Terminal box Download PDF

Info

Publication number
WO2017164151A1
WO2017164151A1 PCT/JP2017/011127 JP2017011127W WO2017164151A1 WO 2017164151 A1 WO2017164151 A1 WO 2017164151A1 JP 2017011127 W JP2017011127 W JP 2017011127W WO 2017164151 A1 WO2017164151 A1 WO 2017164151A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
diode
housing
terminal box
box
Prior art date
Application number
PCT/JP2017/011127
Other languages
French (fr)
Japanese (ja)
Inventor
康敏 森
裕幸 神納
康博 日高
柴田 哲司
優 小宮山
信之 森田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2017164151A1 publication Critical patent/WO2017164151A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a terminal box for a solar cell module.
  • the solar cell module is provided with a plurality of strings in which solar cells are connected in series.
  • a terminal box is provided to connect an output lead wire for outputting generated power from each string and an external connection cable.
  • Patent Document 1 discloses a configuration of a terminal box including a plurality of terminal plates for relaying output lead wires and external connection cables, and an axial lead type diode bridged between the terminal plates. ing. More specifically, a part of the terminal board is cut and raised in an L shape, and the sandwiching piece rises from the tip of the standing piece. As a result, smooth solderability between the diode and the terminal plate can be realized by fitting the lead leg of the diode into the holding piece and soldering the lead leg along the flat surface of the standing piece.
  • the present invention has been made to solve such a problem, and an object thereof is to provide a terminal box having improved heat dissipation while suppressing the amount of material used.
  • one aspect of a terminal box according to the present invention is a terminal box for a solar cell module, and includes a casing, a plurality of terminal plates disposed inside the casing, and a terminal box.
  • a bypass diode disposed between the matching terminal plates, and each of the plurality of terminal plates is a diode connection portion connected to a lead terminal of the bypass diode, and both ends of the diode connection portion, A pair of first terminal portions and second terminal portions extending from each of both end portions in a first direction intersecting with an arrangement direction of the plurality of terminal plates.
  • FIG. 1 is a perspective view schematically showing a terminal box provided in a solar cell module according to an embodiment.
  • FIG. 2 is a front view illustrating a state in which the lid of the terminal box according to the embodiment is removed.
  • FIG. 3 is a perspective view illustrating a state in which the lid of the terminal box according to the embodiment is removed.
  • FIG. 4 is an exploded perspective view of the terminal box according to the embodiment.
  • FIG. 5 is a diagram illustrating a state in which the terminal box cover according to the embodiment is attached.
  • FIG. 6 is a perspective view of the terminal board according to the embodiment.
  • FIG. 7 is a front view and a side view of the terminal board according to the embodiment.
  • FIG. 8 is a cross-sectional view of the terminal board according to the embodiment taken along line VIII-VIII in FIG.
  • FIG. 9 is a perspective view of a terminal board used in a conventional terminal box.
  • FIG. 10 is a perspective view of a terminal board according to Modification 1 of the embodiment.
  • FIG. 11 is a perspective view of a terminal board according to Modification 2 of the embodiment.
  • FIG. 12 is a perspective view of a terminal board according to Modification 3 of the embodiment.
  • FIG. 13A is a front view illustrating a state in which a cover of a terminal box according to Modification 4 of the embodiment is removed.
  • FIG. 13B is a front view showing a state in which a terminal box cover according to Modification 5 of the embodiment is removed.
  • FIG. 13A is a front view illustrating a state in which a cover of a terminal box according to Modification 4 of the embodiment is removed.
  • FIG. 13B is a front view showing a state in which a terminal box cover according
  • FIG. 13C is a front view illustrating a state in which a terminal box cover according to Modification 6 of the embodiment is removed.
  • FIG. 14 is a diagram comparing temperature distributions of the terminal boxes according to the example and the comparative example.
  • FIG. 15 is a graph showing the temperature distribution of the bypass diode according to the example and the comparative example.
  • FIG. 16A is a diagram for explaining the dimensions of the terminal plate when the surface area ratio of the first terminal portion and the second terminal portion is changed.
  • FIG. 16B is a graph showing the heat dissipation characteristics of the terminal board when the surface area ratio of the terminal board according to the embodiment is changed.
  • the X axis, the Y axis, and the Z axis represent the three axes of the three-dimensional orthogonal coordinate system.
  • the X axis and the Y axis are orthogonal to each other, and are both orthogonal to the Z axis.
  • FIG. 1 is a perspective view schematically showing a terminal box 1 provided in a solar cell module 100 according to an embodiment.
  • a plurality of solar cell modules 100 are installed on the roof of a facility such as a house to constitute a solar power generation system.
  • a terminal box 1 is provided in each of the plurality of solar cell modules 100.
  • the terminal box 1 is an intermediate member disposed in a power path between the solar cell module 100 and the storage battery.
  • the terminal box 1 is being fixed to the back surface of the solar cell module 100, for example with the adhesive material or the adhesive tape.
  • each solar cell module 100 is provided with a plurality of solar cells arranged in a matrix on the same surface. A plurality of solar cells arranged in the row direction are connected in series to form a string. Each solar cell module 100 is provided with a plurality of strings.
  • the plurality of solar cell modules 100 are electrically connected to each other in series or in parallel via the terminal box 1. That is, the terminal box 1 electrically connects two adjacent solar cell modules 100 to other solar cell modules 100.
  • the terminal box 1 electrically connects the output lead wire 2 and the external connection cable 3. That is, the output lead 2 and the external connection cable 3 are connected via the terminal box 1.
  • the output lead wire 2 is an electrode wire drawn from each string in order to output the electric power generated by the solar battery cell of the solar battery module 100. For example, five output lead wires are provided.
  • the external connection cable 3 is a cable for outputting the power generated by the solar cell module 100 from the terminal box 1 to the outside.
  • the external connection cable 3 is a connection cable for connecting two adjacent solar cell modules 100 via the terminal box 1. Specifically, two external connection cables 3 are connected to the terminal box 1, and each external connection cable 3 has one end connected to the terminal box 1 and the other end adjacent to the solar cell module. 100 terminal boxes 1 are electrically connected.
  • FIGS. 2 to 4 are views showing the inside of the terminal box 1 according to the embodiment and showing a state in which the lid 32 is removed.
  • FIG. 5 is a view showing a state where the lid 32 of the terminal box 1 is attached.
  • 2 to 4 are a front view, a perspective view, and an exploded perspective view of the terminal box 1, respectively.
  • the terminal box 1 is a terminal box for a solar cell module, and as shown in FIGS. 2 to 4, a plurality of terminal plates 10, one or more bypass diodes 20, a plurality of terminal plates 10 and a bypass diode 20 are provided. And a housing 30 for housing the container.
  • the plurality of terminal boards 10 are arranged inside the housing 30.
  • the plurality of terminal boards 10 are arranged adjacent to each other so that their longitudinal (Y-axis direction) axes are substantially parallel to each other.
  • each of the plurality of terminal plates 10 extends from each of the diode connection portion 11 connected to the lead terminal 21 connected to the bypass diode 20 and both ends of the diode connection portion 11. A pair of first terminal portion 12a and second terminal portion 12b.
  • the number of terminal boards 10 corresponding to the number of strings of solar cell modules 100 is arranged, and five terminal boards 10 are arranged in the present embodiment.
  • the output lead wires 2 drawn from the strings of the solar cell modules 100 are connected to the first terminal portions 12 a of the five terminal plates 10.
  • the bypass diode 20 can bypass the string including the one or more solar cells and output power generated by another string without generating a so-called hot spot in the string. .
  • the five terminal boards 10 include output terminal boards that are electrically connected to the external connection cables 3.
  • the terminal boards 10 located at both ends of the five terminal boards 10 are output terminal boards.
  • the terminal plate 10 which is an output terminal plate is a terminal plate for relaying the output lead wire 2 and the external connection cable 3.
  • the terminal plate 10 includes the output lead wire 2.
  • the output lead wire 2 is electrically and mechanically connected to the first terminal portion 12a
  • the external connection cable 3 is electrically connected to the second terminal portion 12b. And mechanically connected.
  • the first terminal portion 12a of the terminal plate 10 that is an output terminal plate and the output lead wire 2 are connected at the first terminal portion 12a of the terminal plate 10.
  • one end of the output lead 2 is introduced from the outside of the housing 30 through an opening 31 a provided at the bottom of the housing 30 (box body 31).
  • the exposed core wire (conductive wire) at one end of the output lead wire 2 introduced into the housing 30 is bent toward the surface of the first terminal portion 12a so that the portion protruding from the opening portion 31a is formed. It is connected to the first terminal portion 12a by solder.
  • the output lead wire 2 connected to each terminal plate 10 and the region (solder region) where the output lead wire 2 is soldered to the terminal plate 10 (first terminal portion 12a) are indicated by broken lines. Yes.
  • the second terminal portion 12b of the terminal plate 10 that is an output terminal plate and the external connection cable 3 are connected by a crimp joint portion 17 formed on the second terminal portion 12b of the terminal plate 10.
  • one end of the external connection cable 3 extends from the outside of the housing 30 (box 31) to the inside through a through hole 31 b provided in a side portion of the housing 30 (box 31).
  • An exposed core wire (conductive wire) at one end of the external connection cable 3 introduced into the housing 30 is crimped and bonded at a crimping bonding portion 17 formed on the second terminal portion 12b of the terminal plate 10 which is an output terminal plate.
  • the terminal board 10 is fixed.
  • the core wire of the external connection cable 3 connected to each terminal board 10 is indicated by a broken line.
  • non-output terminal boards Of the five terminal boards 10, other than the output terminal board are non-output terminal boards.
  • the terminal plates 10 arranged between the terminal plates 10 (output terminal plates) located at both ends are non-output terminal plates.
  • the non-output terminal plate is a terminal plate 10 to which the external connection cable 3 is not connected, and only the output lead wire 2 of the output lead wire 2 and the external connection cable 3 is connected.
  • connection method of the 1st terminal part 12a of the terminal board 10 which is a non-output terminal board, and the output lead wire 2 is the same as that of the terminal board 10 which is an output terminal board.
  • the first terminal portion 12a of the terminal board 10 which is a non-output terminal board and the output lead wire 2 are connected by solder.
  • the bypass diode 20 is a backflow prevention diode and is disposed between adjacent terminal plates 10. As shown in FIGS. 2 to 4, in the present embodiment, the bypass diode 20 is disposed between the terminal boards 10. Specifically, four bypass diodes 20 are arranged. In the present embodiment, the four bypass diodes 20 are connected in a straight line via the diode connection portion 11 so as to be connected in series by the lead terminal 21. Each bypass diode 20 is arranged in a state of being bridged between the terminal boards 10 by the lead terminals 21. Each bypass diode 20 is sandwiched between a pair of claw pieces provided at the bottom of the box 31.
  • the lead terminal 21 connected to the bypass diode 20 is electrically and mechanically connected to the diode connection portion 11 of the terminal plate 10.
  • the lead terminal 21 is connected to the diode connection portion 11 by solder.
  • a region (solder region) in which the lead terminal 21 is solder-connected to the diode connecting portion 11 is indicated by a broken line.
  • the casing 30 constitutes the outline of the terminal box 1, and as shown in FIGS. 2 to 5, a box-shaped box 31 having one surface opened and a closed surface of the box 31 closed. And a lid 32 (see FIG. 5) fitted in the box 31.
  • the lid 32 is fixed to the box 31 after the inside of the box 31 is sealed with a sealing member such as a potting material.
  • the box body 31 and the lid 32 are formed of, for example, a resin having flame resistance and weather resistance.
  • the opening 31 a is formed at the bottom of the box 31, and the through hole 31 b is formed at the side of the box 31.
  • a pair of protruding pieces 31 c and a pair of protruding pieces 31 d are formed on the bottom of the box 31 so as to protrude from the bottom toward the open surface.
  • the pair of protrusion pieces 31c are formed so as to face each other along the Y-axis direction, and the pair of protrusion pieces 31d are formed so as to face each other along the X-axis direction.
  • a pair of insertion holes 15 provided in each terminal plate 10 are inserted into the pair of protrusion pieces 31c, and a pair of protrusion pieces 31d are provided in the pair of protrusion pieces 31c.
  • the insertion hole 16 is inserted.
  • FIG. 6 is a perspective view of the terminal board 10 according to the embodiment.
  • FIG. 7A is a front view of the terminal board 10
  • FIG. 7B is a side view of the terminal board 10.
  • FIG. 8 is a cross-sectional view of the terminal board 10 taken along the line VIII-VIII in FIG.
  • the terminal board 10 shown in FIGS. 6 to 8 is a non-output terminal board, but the output terminal board is also used for non-output except that the crimp joint 17 of the second terminal part 12b is formed.
  • the configuration is the same as that of the terminal board.
  • the terminal plate 10 is a terminal plate used in the terminal box 1 for a solar cell module, and as described above, the diode connection portion 11 and the pair of first terminal portions 12 a and And a second terminal portion 12b.
  • the diode connection part 11 is a diode terminal part (terminal base) which is a part connected to the lead terminal 21 connected to the bypass diode 20, and is positioned between the first terminal part 12a and the second terminal part 12b. is doing.
  • each of the pair of first terminal portion 12a and second terminal portion 12b extends from both ends of the diode connecting portion 11 in the Y-axis direction.
  • the Y-axis direction is defined as a first direction that intersects with the arrangement direction (X-axis direction) of the plurality of terminal boards 10.
  • the first terminal portion 12a extends from one end portion of the diode connection portion 11 in the Y-axis direction
  • the second terminal portion 12b extends from the other end portion of the diode connection portion 11 in the Y-axis direction. It is extended from.
  • the diode connection part 11 has a bridge structure connected to both the pair of first terminal parts 12a and second terminal parts 12b.
  • the surface area A1 of the first terminal portion 12a and the surface area A2 of the second terminal portion 12b are substantially equal.
  • the ratio of the surface areas of the first terminal portion 12a and the second terminal portion 12b will be described in detail in examples described later.
  • each of the first terminal portion 12a and the second terminal portion 12b has a ceiling of the housing 30 at a position facing the terminal plate 10 adjacent in the second direction (X-axis direction) that is the arrangement direction of the terminal plates 10. It has the folding
  • the folded portion 14 is formed so as to be bent from both ends in the second direction of each of the first terminal portion 12a and the second terminal portion 12b.
  • the folded portion 14 functions as a heat radiating fin.
  • the terminal board 10 can be increased by forming the folded portion 14, the heat dissipation of the terminal board 10 can be improved. Moreover, since it can suppress that the terminal board 10 becomes large in a horizontal direction by bending and forming a radiation fin (folding part 14), the terminal board 10 can be reduced in size. Therefore, the terminal box 1 can also be reduced in size.
  • the height Hc of the folded portion 14 included in one terminal plate 10 is the terminal plate 10 disposed outside the one terminal plate 10 in the housing 30. It becomes more than the height Ht of the folding
  • the height Hc of the folded portion 14 of the terminal plate 10 disposed on the center side in the X-axis direction inside the housing 30 is the terminal plate 10 disposed on the end side in the X-axis direction inside the housing 30. Is the height Ht or more of the folded portion 14.
  • the diode connecting portion 11 has a substantially U-shaped side surface and cross-sectional shape, and the first terminal portion 12a and the second terminal portion 12b. It is formed so as to be stepped. That is, the surface of the diode connection portion 11 and the surfaces of the first terminal portion 12a and the second terminal portion 12b are located on different surfaces.
  • the first terminal portion 12a and the second terminal portion 12b are in contact with the inner surface of the bottom portion of the housing 30 (box body 31).
  • the contact surfaces of the first terminal portion 12 a and the second terminal portion 12 b that are in contact with the housing 30 are different from the connection surfaces that are connected to the lead terminals 21.
  • the second direction (X-axis) is a direction orthogonal to the first direction (Y-axis direction) that is the arrangement direction of the diode connection part 11, the first terminal part 12a, and the second terminal part 12b.
  • the minimum width in the direction) is larger than the maximum width in the second direction (X-axis direction) in the diode connection portion 11.
  • the shapes of the diode connecting portion 11, the first terminal portion 12a, and the second terminal portion 12b are substantially rectangular in a plan view when viewed from the Z-axis direction.
  • the terminal plate 10 is made of, for example, aluminum.
  • the material of the terminal plate 10 is not limited to this, and may be any material having high thermal conductivity, for example, oxygen-free copper, tough pitch, etc. Pure copper such as copper, phosphor bronze, brass and the like, and copper alloys thereof may be used.
  • At least one material of nickel (Ni), tin (Sn), copper (Cu), silver (Ag), and gold (Au) is formed on the surface of the diode connection portion 11.
  • the plating layer 13 comprised by these may be formed.
  • the plating layer 13 is formed on at least one of the front surface and the back surface of the diode connection portion 11.
  • the first plating layer 13a made of nickel plating and the second plating layer 13b made of tin plating are formed on the surface (surface to which the lead terminal 21 is connected) of the aluminum plate constituting the diode connection portion 11.
  • a plating layer 13 having a laminated structure is formed.
  • the plating layer 13 may be formed only on the back surface of the diode connection portion 11, or may be formed on both the front surface and the back surface of the diode connection portion 11. Further, the plating layer 13 may be formed on the entire aluminum plate constituting the entire terminal board 10. Moreover, the plating layer 13 is not limited to two layers, and may be only one layer or three or more layers.
  • the terminal plate 10 is formed with a pair of insertion holes 15 and a pair of insertion holes 16.
  • the pair of insertion holes 16 are formed so as to sandwich the solder connection portion between the output lead wire 2 and the first terminal portion 12a. Therefore, by forming the pair of insertion holes 16, the solder can be blocked by the pair of insertion holes 16 when the solder is applied and spreads wet.
  • the output terminal plate and the non-output terminal plate can be formed by sheet-metal processing of an aluminum plate having the same shape, and the output terminal plate is crimped to the non-output terminal plate 17. Is a shape further formed.
  • FIG. 9 is a perspective view of a terminal board 10X used in a conventional terminal box.
  • the diode connection part 11X of the conventional terminal board 10X is connected only to one terminal part among the terminal parts on both sides in the Y-axis direction of the diode connection part 11X.
  • the heat flow conducted from the bypass diode 20 to the diode connection portion 11X via the lead terminal 21 is only in one direction (Y-axis positive direction). That is, the heat of the diode connection part 11X is conducted only in the direction of the terminal part connected to the diode connection part 11X.
  • the pair of first terminal portions 12 a and the second terminal portions 12 b are provided from both ends of the diode connecting portion 11 in the Y-axis direction. It has been extended.
  • the diode connection part 11 has a bridge structure connected to both of the pair of first terminal parts 12a and second terminal parts 12b. Thereby, the heat of the diode connection part 11 can be conducted to both the 1st terminal part 12a side and the 2nd terminal part 12b side.
  • the diode connection portion 11 connected to the lead terminal 21 becomes a heat source in the terminal plate 10.
  • route from the diode connection part 11 is the 1st terminal part from the diode connection part 11.
  • Two paths, a path to 12a and a path from the diode connection portion 11 to the second terminal portion 12b, can be secured. For this reason, compared with the conventional terminal board 10X which has only one heat transfer path from the diode connection part 11, heat retention in the diode connection part 11 can be suppressed, and rapid heat conduction is performed. Can do.
  • the heat dissipation of the terminal board 10 can be remarkably improved. Furthermore, from the viewpoint that the heat dissipation efficiency of the terminal board 10 is improved by the heat dissipation from the first terminal portion 12a and the second terminal portion 12b, the amount of material used for the heat dissipation of the terminal box 1 can be suppressed, thereby realizing cost reduction. it can.
  • the surface area A1 of the first terminal portion 12a and the surface area A2 of the second terminal portion 12b are substantially equal.
  • the heat radiation distribution of the terminal board 10 is symmetric with respect to the diode connection portion 11. Therefore, since the heat radiation of the terminal board 10 can be made uniform in the Y axis positive direction and the negative direction, the heat radiation efficiency can be optimized.
  • each of the plurality of terminal plates 10 is a folded portion that extends in the top surface direction or the bottom surface direction (Z-axis direction) of the housing 30 at a position facing the terminal plate 10 adjacent in the second direction (X-axis direction).
  • the height of the folded portion 14 included in one terminal plate 10 is the height of the folded portion 14 included in the terminal plate 10 disposed outside the one terminal plate 10 in the housing 30. It may be more than that.
  • One bypass diode 20 is connected to the terminal plate 10 arranged at the end in the housing 30, whereas two bypass diodes 20 are connected to the terminal plate 10 arranged inside the housing 30. Are connected. For this reason, the amount of heat flowing into the inner terminal plate 10 is approximately twice the amount of heat flowing into the end terminal plate 10.
  • the heat dissipation efficiency of the inner terminal plate 10 is further increased. It can be made high, and heat retention at the central part of the housing can be suppressed.
  • the arrangement pitch in the X-axis direction of the terminal plate 10 at the center portion of the housing can be reduced.
  • the size of the terminal box 1 can be reduced.
  • casing can be made lower, the material reduction of the terminal board 10 can be achieved.
  • FIG. 10 is a perspective view of a terminal board 10A according to Modification 1 of the embodiment.
  • the terminal plate 10 ⁇ / b> A is a folded portion that extends in the top surface direction or the bottom surface direction (Z-axis direction) of the housing 30 at a position facing a terminal plate adjacent in the second direction (X-axis direction).
  • the folded portion 14A may have a plurality of cut shapes at the end of the folded portion 14A.
  • FIG. 11 is a perspective view of a terminal board 10B according to the second modification of the embodiment.
  • the terminal plate 10 ⁇ / b> B is a folded portion that extends in the top surface direction or the bottom surface direction (Z-axis direction) of the housing 30 at a position facing a terminal plate adjacent in the second direction (X-axis direction).
  • the heights of the turn-back portions 14 and 18 may be so low that they are separated from the center point of the diode connection portion 11 in the first direction (Y-axis direction) in the first direction (Y-axis direction).
  • the folded portion 18 is higher than the folded portion 14.
  • the folded portion 14 extends from the first terminal portion 12a and the second terminal portion 12b, and the folded portion 18 extends from the diode connection portion 11, and the height of the folded portion 18 is increased.
  • the present invention is not limited to this configuration example, and the folded portion 14 extended from the first terminal portion 12a and the second terminal portion 12b is separated from the center point of the diode connection portion 11 in the first direction (Y-axis direction). The structure which becomes low may be sufficient.
  • FIG. 12 is a perspective view of a terminal board 10C according to Modification 3 of the embodiment.
  • the terminal board 10 ⁇ / b> C may have a bent portion 14 ⁇ / b> C that contacts the bypass diode 20 and holds the bypass diode 20 by elasticity.
  • the bent portion 14C is, for example, continuous with the folded portion 14 and has a structure that can move in the Y-axis direction.
  • bypass diode 20 can be temporarily held on the terminal plate 10C, the workability of the connection (soldering) process between the lead terminal 21 of the bypass diode 20 and the diode connecting portion 11 can be improved. Furthermore, since the heat transfer path from the bypass diode 20 via the bent portion 14C is formed, the heat dissipation path can be increased, and the heat dissipation efficiency can be further increased.
  • FIG. 13A is a front view showing a state in which a terminal box cover according to Modification 4 of the embodiment is removed.
  • the housing 30A may have a recess 33 that is recessed toward the center of the housing 30A.
  • FIG. 13B is a front view illustrating a state in which the terminal box cover according to the fifth modification of the embodiment is removed.
  • the housing 30B may have heat radiation fins 34 on the outer surface facing the center of the housing 30B.
  • the cooling fins 34 are formed on the outer surface of the casing facing away from the central portion of the terminal box where heat generation is most concentrated, thereby increasing the contact area with the outside air of the terminal box. Efficient heat dissipation to the outside can be realized.
  • the radiation fin 34 is formed in the recessed part depressed toward the center part of the housing
  • FIG. 13C is a front view illustrating a state in which a terminal box cover according to Modification 6 of the embodiment is removed.
  • the terminal box may further include a convex structure 35 that is disposed between the plurality of terminal plates 10 to maintain the interval between adjacent terminal plates.
  • the terminal boards 10 having the same shape can be used together, so that the molding die of the terminal board 10 and the types of the terminal boards 10 can be reduced.
  • the convex structure 35 disposed between the plurality of terminal boards 10 has higher thermal conductivity than the sealing member filled in the housing. Therefore, the filling amount of the sealing member can be reduced and the heat radiation efficiency can be improved.
  • FIG. 14 is a diagram comparing temperature distributions of the terminal boxes according to the example and the comparative example.
  • the comparative example is a terminal box in which five conventional terminal boards 10X shown in FIG. 9 are arranged
  • Example 1 is a terminal board 10 according to the present embodiment shown in FIG. Is a terminal box 1 in which five are arranged.
  • the terminal board 10X according to the comparative example and the terminal board 10 according to the first embodiment are set to have substantially the same weight.
  • Example 2 is a terminal box in which five terminal boards according to the present embodiment are arranged.
  • the length of the second terminal portion 12b is 5.4 mm shorter than that of Example 1, and the folded back.
  • the height of the part 14 is 3 mm lower.
  • the surface area of the terminal board according to Example 2 is smaller than the surface area of the terminal board according to Comparative Example and Example 1.
  • the weight of the terminal board according to the second embodiment is reduced by 37% compared to the weight of the terminal board 10X according to the comparative example.
  • the lower part of FIG. 14 shows the junction temperature of each bypass diode 20 as a parameter indicating the temperature distribution in the terminal box.
  • the junction temperatures T D2 and T D3 of the bypass diodes D2 and D3 disposed on the center side are the junction temperatures T D1 of the bypass diodes D1 and D4 disposed on the end side. And higher than TD4 .
  • the junction temperatures T D1 to T D4 of the terminal box 1 according to the first embodiment are lower than the junction temperatures T D1 to T D4 of the terminal box according to the comparative example and the second embodiment.
  • FIG. 15 is a graph showing the temperature distribution of the bypass diode 20 according to the example and the comparative example.
  • the graph shown in FIG. 15 is a plot of the junction temperatures T D1 to T D4 of the bypass diodes D1 to D4 shown in FIG.
  • the terminal box 1 according to the first embodiment can reduce the junction temperature of the bypass diode 20 as a whole as compared with the terminal box according to the comparative example.
  • the difference in temperature distribution is that, in the terminal box according to the comparative example, the diode connection portion 11X is connected only to the first terminal portion, whereas in the terminal box 1 according to the first embodiment, the first terminal portion 12a. It can be considered that both the second terminal portion 12 b and the second terminal portion 12 b are connected to the diode connection portion 11. That is, in the terminal box 1 according to the first embodiment, the heat transfer path from the heat source includes the path from the diode connection part 11 to the first terminal part 12a and the path from the diode connection part 11 to the second terminal part 12b.
  • the terminal box according to Example 2 is compared with the terminal box according to Example 2 and the surface area of the terminal plate according to Example 2 is reduced by 37%, but the terminal box according to Example 2 is compared. It can be seen that the temperature distribution of the bypass diode 20 similar to the terminal box according to the comparative example can be maintained.
  • both the first terminal portion 12a and the second terminal portion 12b are connected to the diode connection portion 11, and therefore, transmission from the heat source is performed. Two heat paths can be secured. For this reason, compared with the terminal board 10X which concerns on a comparative example, since the residence of the heat
  • FIG. 16A is a diagram illustrating dimensions of the terminal plate 10D when the surface area ratio of the first terminal portion 12a and the second terminal portion 12b is changed.
  • terminal plate 10D is assumed to have a structure in which diode connection portion 11 is flush with first terminal portion 12a and second terminal portion 12b (positions in the Z-axis direction are equal).
  • the ratio with LR was changed. By changing this ratio, the maximum temperature in the terminal box was calculated by the same method as in the simulation described above.
  • the width W 30 in the X-axis direction of the housing 30 is 30 mm
  • the length L 30 in the Y-axis direction of the housing 30 is 50 mm
  • the thickness W f and t 30 of the housing 30 is 5 mm
  • the size of the heat source was assumed to be 1 mm ⁇ 1 mm.
  • FIG. 16B is a graph showing the heat dissipation characteristics of the terminal board when the surface area ratio of the terminal board according to the embodiment is changed.
  • the horizontal axis of the figure represents the heating element position X
  • the vertical axis represents the maximum temperature of the heating element in the housing 30.
  • the heating element position X is the distance between the center point of the diode connection portion 11 and the reference point when the end of the terminal plate 10D on the Y axis positive direction side is used as the reference point.
  • the maximum temperature of the heating element is the lowest.
  • the surface area A1 of the first terminal portion 12a and the surface area A2 of the second terminal portion 12b are preferably substantially equal. This is because the surface area of each terminal portion that contributes to heat dissipation is substantially the same for each heat dissipation path, so that the heat dissipation distribution in the Y-axis direction of the terminal plate 10D is relative to the center point (diode connection portion 11) of the terminal plate 10D. This is thought to be due to symmetry. Thereby, the thermal radiation efficiency of terminal board 10D can be optimized.
  • the heating element position X is preferably 12.5 mm or more and 22.5 mm or less. In other words, the heating element position X is preferably within a range of ⁇ 5 mm from the center point of the terminal board 10D. That is, the distance between the center point of the diode connection portion 11 in the first direction (Y-axis direction) and the center point of the terminal plate 10D in the first direction (Y-axis direction) is the terminal plate in the first direction (Y-axis direction). the length L 10 of 10D, which is preferably arranged within a range of ⁇ 15%.
  • the surface area of the terminal board 10D that contributes to heat dissipation becomes substantially equal for each path, and the heat dissipation distribution can be made uniform.
  • the maximum temperature of the bypass diode 20 can be suppressed to 200 ° C. or lower. Therefore, the heat dissipation efficiency of the terminal board 10D can be optimized while ensuring the operation of the bypass diode 20.
  • the diode connection portion 11 is flush with the first terminal portion 12a and the second terminal portion 12b in FIGS. 16A and 16B. (A position in the Z-axis direction is equal) was assumed (see terminal board 10B in FIG. 11).
  • the examination result of the ratio of the surface areas of the first terminal portion 12a and the second terminal portion 12b described above is that the diode connection portion 11 as shown in FIGS. 6 and 7 is the first terminal portion 12a and the second terminal portion. It is applicable also to the terminal board 10 which has a structure which is not flush with 12b (the position in the Z-axis direction is different).
  • the diode connection part 11 and the first terminal part 12a and the second terminal part 12b are not flush with each other, the diode connection part 11 and the first terminal part 12a, and the diode connection part 11 Connection portions extending in the Z-axis direction exist between the second terminal portions 12b, and these connection portions become a part of the heat dissipation path. Therefore, in this case, the heat radiation path length in the first direction can be regarded not as the distance in the first direction viewed from the Z-axis direction but as the development distance in the first direction.
  • the terminal plate 10D has a structure in which the diode connection portion 11 is flush with the first terminal portion 12a and the second terminal portion 12b, and the diode connection portion 11 faces the first terminal portion 12a and the second terminal portion 12b.
  • the development distance between the center point of the diode connection part 11 in the first direction (Y-axis direction) and the center point of the terminal plate 10 in the first direction (Y-axis direction) is against developed length L 10 of the terminal plate 10 in a first direction (Y axis direction), which is preferably arranged within a range of ⁇ 15%.
  • the number of the terminal boards 10, 10A, 10B, and 10C arranged in the terminal box 1 is five, but the present invention is not limited to this.
  • the number of terminal boards 10 to 10C may be two, three or four, or may be six or more. That is, the number of terminal plates 10 to 10C arranged in the terminal box 1 may be plural.
  • the second terminal portion 12b of the terminal plate 10 that is the output terminal plate and the external connection cable 3 are connected by the crimp bonding portion 17, but the present invention is not limited to this.
  • the second terminal portion 12b and the external connection cable 3 may be connected by solder in the same manner as the connection mode between the first terminal portion 12a and the output lead wire 2.
  • the connection between the first terminal portion 12a and the output lead wire 2 is not limited to the solder connection.
  • the plating layer 13 is formed on the terminal board 10, but the plating layer 13 is not necessarily formed.

Abstract

This terminal box (1) for a solar battery module is provided with a casing (30), a plurality of terminal plates (10) disposed inside the casing (30), and bypass diodes (20) disposed between adjacent terminal plates (10). Each of the terminal plates (10) has a diode connection part (11) connected to a lead terminal (21) of the bypass diode (20), and a pair of a first terminal part (12a) and a second terminal part (12b) that respectively extend from both ends of the diode connecting part (11) in a first direction.

Description

端子ボックスTerminal box
 本発明は、太陽電池モジュール用の端子ボックスに関する。 The present invention relates to a terminal box for a solar cell module.
 太陽電池モジュールには、太陽電池セルが直列接続されたストリングが複数設けられている。太陽電池モジュールにおいては、各ストリングから発電電力を出力するための出力リード線と外部接続用ケーブルとを接続するために端子ボックスが設けられている。 The solar cell module is provided with a plurality of strings in which solar cells are connected in series. In the solar cell module, a terminal box is provided to connect an output lead wire for outputting generated power from each string and an external connection cable.
 特許文献1には、出力リード線と外部接続用ケーブルとを中継するための複数の端子板と、端子板間に架け渡されたアキシャルリード型のダイオードとを備えた端子ボックスの構成が開示されている。より具体的には、端子板の一部をL字状に切り起こし、その立片の先端部分から挟持片が立ち上がっている。これにより、ダイオードのリード足を挟持片に嵌め込むと共にリード足を立片のフラット面に沿わせて半田付けを行うことにより、ダイオードと端子板との円滑な半田付け性が実現される。 Patent Document 1 discloses a configuration of a terminal box including a plurality of terminal plates for relaying output lead wires and external connection cables, and an axial lead type diode bridged between the terminal plates. ing. More specifically, a part of the terminal board is cut and raised in an L shape, and the sandwiching piece rises from the tip of the standing piece. As a result, smooth solderability between the diode and the terminal plate can be realized by fitting the lead leg of the diode into the holding piece and soldering the lead leg along the flat surface of the standing piece.
特開2013-229424号公報JP 2013-229424 A
 しかしながら、特許文献1に開示された従来の端子ボックスでは、ダイオードのリード足と立片との半田付け性を確保すべく、L字状に切り起こされた立片から端子板への放熱を制限している。このため、ダイオードに電流が流れた場合に、ダイオードおよび立片での熱の滞留が起こるので、材料使用量を抑えつつ端子ボックスの十分な放熱性を確保することができないという問題を有している。 However, in the conventional terminal box disclosed in Patent Document 1, in order to ensure solderability between the diode lead legs and the standing pieces, heat dissipation from the standing pieces cut and raised in an L shape is limited. is doing. For this reason, when current flows through the diode, heat stays in the diode and the vertical piece, so that there is a problem that sufficient heat dissipation of the terminal box cannot be secured while suppressing the amount of material used. Yes.
 本発明は、このような問題を解決するためになされたものであり、材料使用量を抑えつつ放熱性が向上した端子ボックスを提供することを目的とする。 The present invention has been made to solve such a problem, and an object thereof is to provide a terminal box having improved heat dissipation while suppressing the amount of material used.
 上記目的を達成するために、本発明に係る端子ボックスの一態様は、太陽電池モジュール用の端子ボックスであって、筐体と、前記筐体の内部に配置された複数の端子板と、隣り合う前記端子板間に配置されたバイパスダイオードと、を備え、前記複数の端子板のそれぞれは、前記バイパスダイオードのリード端子に接続されたダイオード接続部と、前記ダイオード接続部の両端部であって前記複数の端子板の並び方向と交差する第1方向の両端部の各々から延出された一対の第1端子部および第2端子部と、を有する。 In order to achieve the above object, one aspect of a terminal box according to the present invention is a terminal box for a solar cell module, and includes a casing, a plurality of terminal plates disposed inside the casing, and a terminal box. A bypass diode disposed between the matching terminal plates, and each of the plurality of terminal plates is a diode connection portion connected to a lead terminal of the bypass diode, and both ends of the diode connection portion, A pair of first terminal portions and second terminal portions extending from each of both end portions in a first direction intersecting with an arrangement direction of the plurality of terminal plates.
 本発明によれば、材料使用量を抑えつつ放熱性が向上した端子ボックスを実現することができる。 According to the present invention, it is possible to realize a terminal box with improved heat dissipation while suppressing the amount of material used.
図1は、実施の形態に係る太陽電池モジュールに設けられた端子ボックスを模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing a terminal box provided in a solar cell module according to an embodiment. 図2は、実施の形態に係る端子ボックスの蓋を外した状態を示す正面図である。FIG. 2 is a front view illustrating a state in which the lid of the terminal box according to the embodiment is removed. 図3は、実施の形態に係る端子ボックスの蓋を外した状態を示す斜視図である。FIG. 3 is a perspective view illustrating a state in which the lid of the terminal box according to the embodiment is removed. 図4は、実施の形態に係る端子ボックスの分解斜視図である。FIG. 4 is an exploded perspective view of the terminal box according to the embodiment. 図5は、実施の形態に係る端子ボックスの蓋を取り付けた状態を示す図である。FIG. 5 is a diagram illustrating a state in which the terminal box cover according to the embodiment is attached. 図6は、実施の形態に係る端子板の斜視図である。FIG. 6 is a perspective view of the terminal board according to the embodiment. 図7は、実施の形態に係る端子板の正面図および側面図である。FIG. 7 is a front view and a side view of the terminal board according to the embodiment. 図8は、図7のVIII-VIII線における実施の形態に係る端子板の断面図である。FIG. 8 is a cross-sectional view of the terminal board according to the embodiment taken along line VIII-VIII in FIG. 図9は、従来の端子ボックスに用いられる端子板の斜視図である。FIG. 9 is a perspective view of a terminal board used in a conventional terminal box. 図10は、実施の形態の変形例1に係る端子板の斜視図である。FIG. 10 is a perspective view of a terminal board according to Modification 1 of the embodiment. 図11は、実施の形態の変形例2に係る端子板の斜視図である。FIG. 11 is a perspective view of a terminal board according to Modification 2 of the embodiment. 図12は、実施の形態の変形例3に係る端子板の斜視図である。FIG. 12 is a perspective view of a terminal board according to Modification 3 of the embodiment. 図13Aは、実施の形態の変形例4に係る端子ボックスの蓋を外した状態を示す正面図である。FIG. 13A is a front view illustrating a state in which a cover of a terminal box according to Modification 4 of the embodiment is removed. 図13Bは、実施の形態の変形例5に係る端子ボックスの蓋を外した状態を示す正面図である。FIG. 13B is a front view showing a state in which a terminal box cover according to Modification 5 of the embodiment is removed. 図13Cは、実施の形態の変形例6に係る端子ボックスの蓋を外した状態を示す正面図である。FIG. 13C is a front view illustrating a state in which a terminal box cover according to Modification 6 of the embodiment is removed. 図14は、実施例および比較例に係る端子ボックスの温度分布を比較した図である。FIG. 14 is a diagram comparing temperature distributions of the terminal boxes according to the example and the comparative example. 図15は、実施例および比較例に係るバイパスダイオードの温度分布を表すグラフである。FIG. 15 is a graph showing the temperature distribution of the bypass diode according to the example and the comparative example. 図16Aは、第1端子部および第2端子部の表面積比率を変える場合の端子板の寸法を説明する図である。FIG. 16A is a diagram for explaining the dimensions of the terminal plate when the surface area ratio of the first terminal portion and the second terminal portion is changed. 図16Bは、実施の形態に係る端子板の表面積比率を変化させた場合の端子板の放熱特性を表すグラフである。FIG. 16B is a graph showing the heat dissipation characteristics of the terminal board when the surface area ratio of the terminal board according to the embodiment is changed.
 以下、本発明の実施の形態について、図面を参照しながら説明する。以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態等は、一例であって本発明を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Each of the embodiments described below shows a preferred specific example of the present invention. Therefore, numerical values, shapes, materials, components, arrangement positions of components, connection forms, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims showing the highest concept of the present invention are described as optional constituent elements.
 各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化する。 Each figure is a schematic diagram and is not necessarily shown strictly. Moreover, in each figure, the same code | symbol is attached | subjected to the substantially same structure, The overlapping description is abbreviate | omitted or simplified.
 なお、本明細書および図面において、X軸、Y軸およびZ軸は、三次元直交座標系の三軸を表している。X軸およびY軸は、互いに直交し、かつ、いずれもZ軸に直交する軸である。 In the present specification and drawings, the X axis, the Y axis, and the Z axis represent the three axes of the three-dimensional orthogonal coordinate system. The X axis and the Y axis are orthogonal to each other, and are both orthogonal to the Z axis.
 (実施の形態)
 [1.端子ボックスの構成]
 まず、実施の形態に係る端子ボックス1について説明する。
(Embodiment)
[1. Terminal box configuration]
First, the terminal box 1 according to the embodiment will be described.
 図1は、実施の形態に係る太陽電池モジュール100に設けられた端子ボックス1を模式的に示す斜視図である。 FIG. 1 is a perspective view schematically showing a terminal box 1 provided in a solar cell module 100 according to an embodiment.
 太陽電池モジュール100は、例えば住宅等の施設の屋根の上に複数設置されて太陽光発電システムを構成している。図1に示すように、複数の太陽電池モジュール100の各々には端子ボックス1が設けられている。端子ボックス1は、例えば施設に蓄電池が設置されている場合、太陽電池モジュール100と蓄電池との間の電力経路に配置される中間部材である。なお、端子ボックス1は、例えば接着材または接着テープ等によって太陽電池モジュール100の裏面に固定されている。 A plurality of solar cell modules 100 are installed on the roof of a facility such as a house to constitute a solar power generation system. As shown in FIG. 1, a terminal box 1 is provided in each of the plurality of solar cell modules 100. For example, when a storage battery is installed in a facility, the terminal box 1 is an intermediate member disposed in a power path between the solar cell module 100 and the storage battery. In addition, the terminal box 1 is being fixed to the back surface of the solar cell module 100, for example with the adhesive material or the adhesive tape.
 図示しないが、各太陽電池モジュール100には、同一面上にマトリクス状に配置された複数の太陽電池セルが設けられている。行方向に配列された複数の太陽電池セルは、直列接続されてストリングを構成している。各太陽電池モジュール100には、複数のストリングが設けられている。 Although not shown, each solar cell module 100 is provided with a plurality of solar cells arranged in a matrix on the same surface. A plurality of solar cells arranged in the row direction are connected in series to form a string. Each solar cell module 100 is provided with a plurality of strings.
 複数の太陽電池モジュール100は、端子ボックス1を介して互いに電気的に直列または並列に接続される。つまり、端子ボックス1は、隣り合う2つの太陽電池モジュール100を他の太陽電池モジュール100に電気的に接続している。 The plurality of solar cell modules 100 are electrically connected to each other in series or in parallel via the terminal box 1. That is, the terminal box 1 electrically connects two adjacent solar cell modules 100 to other solar cell modules 100.
 図1に示すように、端子ボックス1は、出力リード線2と外部接続用ケーブル3とを電気的に接続している。つまり、出力リード線2と外部接続用ケーブル3とは、端子ボックス1を介して接続されている。 As shown in FIG. 1, the terminal box 1 electrically connects the output lead wire 2 and the external connection cable 3. That is, the output lead 2 and the external connection cable 3 are connected via the terminal box 1.
 出力リード線2は、太陽電池モジュール100の太陽電池セルで発電した電力を出力するために各ストリングから引き出された電極線であり、例えば5本設けられている。 The output lead wire 2 is an electrode wire drawn from each string in order to output the electric power generated by the solar battery cell of the solar battery module 100. For example, five output lead wires are provided.
 外部接続用ケーブル3は、太陽電池モジュール100で発電した電力を端子ボックス1から外部に出力するためのケーブルである。また、外部接続用ケーブル3は、端子ボックス1を介して隣り合う2つの太陽電池モジュール100を連結するための連結ケーブルである。具体的には、端子ボックス1には、2本の外部接続用ケーブル3が接続されており、各外部接続用ケーブル3は、一端が端子ボックス1に接続され、他端が隣の太陽電池モジュール100の端子ボックス1と電気的に接続される。 The external connection cable 3 is a cable for outputting the power generated by the solar cell module 100 from the terminal box 1 to the outside. The external connection cable 3 is a connection cable for connecting two adjacent solar cell modules 100 via the terminal box 1. Specifically, two external connection cables 3 are connected to the terminal box 1, and each external connection cable 3 has one end connected to the terminal box 1 and the other end adjacent to the solar cell module. 100 terminal boxes 1 are electrically connected.
 次に、実施の形態に係る端子ボックス1の詳細な構成について、図2~図5を用いて説明する。図2~図4は、実施の形態に係る端子ボックス1の内部を示す図であり、蓋32を取り外した状態を示している。図5は、同端子ボックス1の蓋32を取り付けた状態を示す図である。なお、図2~図4はそれぞれ、同端子ボックス1の正面図、斜視図および分解斜視図である。 Next, a detailed configuration of the terminal box 1 according to the embodiment will be described with reference to FIGS. 2 to 4 are views showing the inside of the terminal box 1 according to the embodiment and showing a state in which the lid 32 is removed. FIG. 5 is a view showing a state where the lid 32 of the terminal box 1 is attached. 2 to 4 are a front view, a perspective view, and an exploded perspective view of the terminal box 1, respectively.
 端子ボックス1は、太陽電池モジュール用の端子ボックスであり、図2~図4に示すように、複数の端子板10と、1つ以上のバイパスダイオード20と、複数の端子板10およびバイパスダイオード20を収容する筐体30とを備える。 The terminal box 1 is a terminal box for a solar cell module, and as shown in FIGS. 2 to 4, a plurality of terminal plates 10, one or more bypass diodes 20, a plurality of terminal plates 10 and a bypass diode 20 are provided. And a housing 30 for housing the container.
 図2および図3に示すように、複数の端子板10は、筐体30の内部に配置されている。複数の端子板10は、その長手方向(Y軸方向)の軸が互いに略平行となるように隣接して配置されている。 As shown in FIGS. 2 and 3, the plurality of terminal boards 10 are arranged inside the housing 30. The plurality of terminal boards 10 are arranged adjacent to each other so that their longitudinal (Y-axis direction) axes are substantially parallel to each other.
 図2および図4に示すように、複数の端子板10の各々は、バイパスダイオード20に接続されたリード端子21に接続されたダイオード接続部11と、ダイオード接続部11の両端の各々から延出された一対の第1端子部12aおよび第2端子部12bとを有する。 As shown in FIGS. 2 and 4, each of the plurality of terminal plates 10 extends from each of the diode connection portion 11 connected to the lead terminal 21 connected to the bypass diode 20 and both ends of the diode connection portion 11. A pair of first terminal portion 12a and second terminal portion 12b.
 端子板10は、太陽電池モジュール100のストリングの数に対応した数が配置されており、本実施の形態では、5つ配置されている。図2に示すように、5つの端子板10の各々の第1端子部12aには、太陽電池モジュール100のストリングから引き出された出力リード線2が接続される。上記接続により、1以上の太陽電池セルが遮光または汚れの付着により高抵抗となり逆バイアス状態となった場合には、当該1以上の太陽電池セルを含むストリングに接続されたバイパスダイオード20に定格電流が流れる。つまり、バイパスダイオード20により、上記1以上の太陽電池セルを含むストリングをバイパスさせて当該ストリングに、いわゆるホットスポットを発生させることなく、他のストリングで生成される電力を出力させることが可能となる。 The number of terminal boards 10 corresponding to the number of strings of solar cell modules 100 is arranged, and five terminal boards 10 are arranged in the present embodiment. As shown in FIG. 2, the output lead wires 2 drawn from the strings of the solar cell modules 100 are connected to the first terminal portions 12 a of the five terminal plates 10. When one or more solar cells have a high resistance and become a reverse bias state due to light shielding or contamination due to the above connection, the rated current is supplied to the bypass diode 20 connected to the string including the one or more solar cells. Flows. That is, the bypass diode 20 can bypass the string including the one or more solar cells and output power generated by another string without generating a so-called hot spot in the string. .
 5つの端子板10には、外部接続用ケーブル3に電気的に接続される出力用端子板が含まれている。本実施の形態では、5つの端子板10のうち両端部に位置する端子板10が出力用端子板である。図2に示すように、出力用端子板である端子板10は、出力リード線2と外部接続用ケーブル3とを中継するための端子板であり、この端子板10には、出力リード線2と外部接続用ケーブル3とが接続される。具体的には、出力用端子板である端子板10では、第1端子部12aに出力リード線2が電気的および機械的に接続され、第2端子部12bに外部接続用ケーブル3が電気的および機械的に接続される。 The five terminal boards 10 include output terminal boards that are electrically connected to the external connection cables 3. In the present embodiment, the terminal boards 10 located at both ends of the five terminal boards 10 are output terminal boards. As shown in FIG. 2, the terminal plate 10 which is an output terminal plate is a terminal plate for relaying the output lead wire 2 and the external connection cable 3. The terminal plate 10 includes the output lead wire 2. Are connected to the external connection cable 3. Specifically, in the terminal plate 10 that is an output terminal plate, the output lead wire 2 is electrically and mechanically connected to the first terminal portion 12a, and the external connection cable 3 is electrically connected to the second terminal portion 12b. And mechanically connected.
 出力用端子板である端子板10の第1端子部12aと出力リード線2とは、端子板10の第1端子部12aにおいて接続される。図2に示すように、出力リード線2の一端は、筐体30(箱体31)の底部に設けられた開口部31aを介して筐体30の外部から内部に導入されている。筐体30に導入された出力リード線2の一端における露出した芯線(導電線)は、開口部31aから突出した部分を第1端子部12aの表面に向けて折り曲げられて、各端子板10の第1端子部12aと半田によって接続される。図2において、各端子板10に接続される出力リード線2と、出力リード線2を端子板10(第1端子部12a)に半田接続する領域(半田領域)とは、破線で示されている。 The first terminal portion 12a of the terminal plate 10 that is an output terminal plate and the output lead wire 2 are connected at the first terminal portion 12a of the terminal plate 10. As shown in FIG. 2, one end of the output lead 2 is introduced from the outside of the housing 30 through an opening 31 a provided at the bottom of the housing 30 (box body 31). The exposed core wire (conductive wire) at one end of the output lead wire 2 introduced into the housing 30 is bent toward the surface of the first terminal portion 12a so that the portion protruding from the opening portion 31a is formed. It is connected to the first terminal portion 12a by solder. In FIG. 2, the output lead wire 2 connected to each terminal plate 10 and the region (solder region) where the output lead wire 2 is soldered to the terminal plate 10 (first terminal portion 12a) are indicated by broken lines. Yes.
 出力用端子板である端子板10の第2端子部12bと外部接続用ケーブル3とは、端子板10の第2端子部12bに形成された圧着接合部17で接続される。図2に示すように、外部接続用ケーブル3の一端は、筐体30(箱体31)の側部に設けられた貫通孔31bを介して筐体30(箱体31)の外部から内部に導入されている。筐体30に導入された外部接続用ケーブル3の一端における露出した芯線(導電線)は、出力用端子板である端子板10の第2端子部12bに形成された圧着接合部17において圧着接合されることで端子板10に固定されている。図2において、各端子板10に接続される外部接続用ケーブル3の芯線は、破線で示されている。 The second terminal portion 12b of the terminal plate 10 that is an output terminal plate and the external connection cable 3 are connected by a crimp joint portion 17 formed on the second terminal portion 12b of the terminal plate 10. As shown in FIG. 2, one end of the external connection cable 3 extends from the outside of the housing 30 (box 31) to the inside through a through hole 31 b provided in a side portion of the housing 30 (box 31). Has been introduced. An exposed core wire (conductive wire) at one end of the external connection cable 3 introduced into the housing 30 is crimped and bonded at a crimping bonding portion 17 formed on the second terminal portion 12b of the terminal plate 10 which is an output terminal plate. As a result, the terminal board 10 is fixed. In FIG. 2, the core wire of the external connection cable 3 connected to each terminal board 10 is indicated by a broken line.
 また、5つの端子板10のうち出力用端子板以外は、非出力用端子板である。本実施の形態では、両端部に位置する端子板10(出力用端子板)の間に配置された端子板10が非出力用端子板である。非出力用端子板は、外部接続用ケーブル3が接続されていない端子板10であり、出力リード線2および外部接続用ケーブル3のうち出力リード線2のみが接続される。 Of the five terminal boards 10, other than the output terminal board are non-output terminal boards. In the present embodiment, the terminal plates 10 arranged between the terminal plates 10 (output terminal plates) located at both ends are non-output terminal plates. The non-output terminal plate is a terminal plate 10 to which the external connection cable 3 is not connected, and only the output lead wire 2 of the output lead wire 2 and the external connection cable 3 is connected.
 なお、非出力用端子板である端子板10の第1端子部12aと出力リード線2との接続方法は、出力用端子板である端子板10と同様である。具体的には、非出力用端子板である端子板10の第1端子部12aと出力リード線2とは半田によって接続されている。 In addition, the connection method of the 1st terminal part 12a of the terminal board 10 which is a non-output terminal board, and the output lead wire 2 is the same as that of the terminal board 10 which is an output terminal board. Specifically, the first terminal portion 12a of the terminal board 10 which is a non-output terminal board and the output lead wire 2 are connected by solder.
 バイパスダイオード20は、逆流防止用ダイオードであり、隣り合う端子板10の間に配置されている。図2~図4に示すように、本実施の形態において、バイパスダイオード20は、端子板10間ごとに配置されている。具体的には、4つのバイパスダイオード20が配置されている。本実施の形態において、4つのバイパスダイオード20は、リード端子21によって直列接続となるように、ダイオード接続部11を介して一直線状に連結されている。各バイパスダイオード20は、リード端子21によって端子板10間に架け渡された状態で配置されている。各バイパスダイオード20は、箱体31の底部に設けられた一対の爪片によって挟持されている。 The bypass diode 20 is a backflow prevention diode and is disposed between adjacent terminal plates 10. As shown in FIGS. 2 to 4, in the present embodiment, the bypass diode 20 is disposed between the terminal boards 10. Specifically, four bypass diodes 20 are arranged. In the present embodiment, the four bypass diodes 20 are connected in a straight line via the diode connection portion 11 so as to be connected in series by the lead terminal 21. Each bypass diode 20 is arranged in a state of being bridged between the terminal boards 10 by the lead terminals 21. Each bypass diode 20 is sandwiched between a pair of claw pieces provided at the bottom of the box 31.
 図2および図3に示すように、バイパスダイオード20に接続されたリード端子21は、端子板10のダイオード接続部11に電気的および機械的に接続されている。リード端子21は、ダイオード接続部11と半田によって接続されている。図2において、リード端子21をダイオード接続部11に半田接続する領域(半田領域)は、破線で示されている。 2 and 3, the lead terminal 21 connected to the bypass diode 20 is electrically and mechanically connected to the diode connection portion 11 of the terminal plate 10. The lead terminal 21 is connected to the diode connection portion 11 by solder. In FIG. 2, a region (solder region) in which the lead terminal 21 is solder-connected to the diode connecting portion 11 is indicated by a broken line.
 筐体30は、端子ボックス1の外郭を構成しており、図2~図5に示すように、一面が開放された箱状の箱体31と、箱体31の開放面を閉塞するように箱体31に嵌め込まれた蓋32(図5参照)とを有する。蓋32は、箱体31の内部をポッティング材等の封止部材で封止した後に箱体31に固定される。箱体31と蓋32とは、例えば、難燃性および耐候性を有する樹脂等によって形成されている。 The casing 30 constitutes the outline of the terminal box 1, and as shown in FIGS. 2 to 5, a box-shaped box 31 having one surface opened and a closed surface of the box 31 closed. And a lid 32 (see FIG. 5) fitted in the box 31. The lid 32 is fixed to the box 31 after the inside of the box 31 is sealed with a sealing member such as a potting material. The box body 31 and the lid 32 are formed of, for example, a resin having flame resistance and weather resistance.
 上述のとおり、箱体31の底部には開口部31aが形成され、箱体31の側部には貫通孔31bが形成されている。 As described above, the opening 31 a is formed at the bottom of the box 31, and the through hole 31 b is formed at the side of the box 31.
 また、図2および図4に示すように、箱体31の底部には、底部から開放面に向かって突出する一対の突起片31cおよび一対の突起片31dが形成されている。一対の突起片31cは、Y軸方向に沿って対向するように形成されており、一対の突起片31dは、X軸方向に沿って対向するように形成されている。図2に示すように、一対の突起片31cには、各端子板10に設けられた一対の挿通孔15が挿通され、一対の突起片31dには、各端子板10に設けられた一対の挿通孔16が挿通される。これにより、各端子板10は、箱体31の所定の位置に配置されて、水平方向(XY平面方向)の位置が規制される。 Further, as shown in FIGS. 2 and 4, a pair of protruding pieces 31 c and a pair of protruding pieces 31 d are formed on the bottom of the box 31 so as to protrude from the bottom toward the open surface. The pair of protrusion pieces 31c are formed so as to face each other along the Y-axis direction, and the pair of protrusion pieces 31d are formed so as to face each other along the X-axis direction. As shown in FIG. 2, a pair of insertion holes 15 provided in each terminal plate 10 are inserted into the pair of protrusion pieces 31c, and a pair of protrusion pieces 31d are provided in the pair of protrusion pieces 31c. The insertion hole 16 is inserted. Thereby, each terminal board 10 is arrange | positioned in the predetermined position of the box 31, and the position of a horizontal direction (XY plane direction) is controlled.
 [2.端子板の構成]
 次に、図2~図4を参照しながら、実施の形態に係る端子板10の詳細な構成について、図6~図8を用いて説明する。図6は、実施の形態に係る端子板10の斜視図である。図7の(a)は、同端子板10の正面図であり、図7の(b)は、同端子板10の側面図である。図8は、図7のVIII-VIII線における同端子板10の断面図である。なお、図6~図8に示される端子板10は、非出力用端子板であるが、第2端子部12bの圧着接合部17が形成されている以外は、出力用端子板も非出力用端子板と同様の構成である。
[2. Terminal board configuration]
Next, a detailed configuration of the terminal board 10 according to the embodiment will be described with reference to FIGS. 6 to 8 with reference to FIGS. FIG. 6 is a perspective view of the terminal board 10 according to the embodiment. FIG. 7A is a front view of the terminal board 10, and FIG. 7B is a side view of the terminal board 10. FIG. 8 is a cross-sectional view of the terminal board 10 taken along the line VIII-VIII in FIG. The terminal board 10 shown in FIGS. 6 to 8 is a non-output terminal board, but the output terminal board is also used for non-output except that the crimp joint 17 of the second terminal part 12b is formed. The configuration is the same as that of the terminal board.
 図6および図7に示すように、端子板10は、太陽電池モジュール用の端子ボックス1に用いられる端子板であって、上述のとおり、ダイオード接続部11と、一対の第1端子部12aおよび第2端子部12bとを有する。 As shown in FIGS. 6 and 7, the terminal plate 10 is a terminal plate used in the terminal box 1 for a solar cell module, and as described above, the diode connection portion 11 and the pair of first terminal portions 12 a and And a second terminal portion 12b.
 ダイオード接続部11は、バイパスダイオード20に接続されたリード端子21と接続される部分であるダイオード端子部(端子基台)であり、第1端子部12aと第2端子部12bとの間に位置している。 The diode connection part 11 is a diode terminal part (terminal base) which is a part connected to the lead terminal 21 connected to the bypass diode 20, and is positioned between the first terminal part 12a and the second terminal part 12b. is doing.
 一対の第1端子部12aおよび第2端子部12bの各々は、ダイオード接続部11のY軸方向の両端の各々から延出されている。ここで、Y軸方向は、複数の端子板10の並び方向(X軸方向)と交差する第1方向と定義される。具体的には、第1端子部12aは、Y軸方向におけるダイオード接続部11の一方の端部から延出され、第2端子部12bは、Y軸方向におけるダイオード接続部11の他方の端部から延出されている。このように、ダイオード接続部11は、一対の第1端子部12aおよび第2端子部12bの両方に連結されたブリッジ構造を有している。 Each of the pair of first terminal portion 12a and second terminal portion 12b extends from both ends of the diode connecting portion 11 in the Y-axis direction. Here, the Y-axis direction is defined as a first direction that intersects with the arrangement direction (X-axis direction) of the plurality of terminal boards 10. Specifically, the first terminal portion 12a extends from one end portion of the diode connection portion 11 in the Y-axis direction, and the second terminal portion 12b extends from the other end portion of the diode connection portion 11 in the Y-axis direction. It is extended from. Thus, the diode connection part 11 has a bridge structure connected to both the pair of first terminal parts 12a and second terminal parts 12b.
 また、本実施の形態において、第1端子部12aの表面積A1と第2端子部12bの表面積A2とは、略等しい。第1端子部12aおよび第2端子部12bの表面積の比率については、後述する実施例にて詳述する。 In the present embodiment, the surface area A1 of the first terminal portion 12a and the surface area A2 of the second terminal portion 12b are substantially equal. The ratio of the surface areas of the first terminal portion 12a and the second terminal portion 12b will be described in detail in examples described later.
 また、第1端子部12aおよび第2端子部12bのそれぞれは、端子板10の並び方向である第2方向(X軸方向)に隣り合う端子板10と対向する位置に、筐体30の天面方向または底面方向(Z軸方向)に延びる折り返し部14を有している。つまり、第1端子部12aおよび第2端子部12bの各々には、折り返し部14が連結されている。折り返し部14は、第1端子部12aおよび第2端子部12bの各々の第2方向の両端部から折り曲げるようにして形成されている。折り返し部14は、放熱フィンとして機能する。つまり、折り返し部14を形成することによって、端子板10の体積および表面積を大きくできるので、端子板10の放熱性を向上させることができる。また、折り曲げて放熱フィン(折り返し部14)を形成することで端子板10が水平方向に大きくなることを抑制できるので、端子板10を小型化できる。したがって、端子ボックス1も小型化できる。 In addition, each of the first terminal portion 12a and the second terminal portion 12b has a ceiling of the housing 30 at a position facing the terminal plate 10 adjacent in the second direction (X-axis direction) that is the arrangement direction of the terminal plates 10. It has the folding | returning part 14 extended in a surface direction or a bottom face direction (Z-axis direction). That is, the folded portion 14 is connected to each of the first terminal portion 12a and the second terminal portion 12b. The folded portion 14 is formed so as to be bent from both ends in the second direction of each of the first terminal portion 12a and the second terminal portion 12b. The folded portion 14 functions as a heat radiating fin. That is, since the volume and surface area of the terminal board 10 can be increased by forming the folded portion 14, the heat dissipation of the terminal board 10 can be improved. Moreover, since it can suppress that the terminal board 10 becomes large in a horizontal direction by bending and forming a radiation fin (folding part 14), the terminal board 10 can be reduced in size. Therefore, the terminal box 1 can also be reduced in size.
 本実施の形態では、図4に示すように、一の端子板10が有する折り返し部14の高さHcは、筐体30内において当該一の端子板10よりも外側に配置された端子板10が有する折り返し部14の高さHt以上となっている。言い換えると、筐体30内のX軸方向の中央側に配置された端子板10の折り返し部14の高さHcは、筐体30内のX軸方向の端部側に配置された端子板10の折り返し部14の高さHt以上である。 In the present embodiment, as shown in FIG. 4, the height Hc of the folded portion 14 included in one terminal plate 10 is the terminal plate 10 disposed outside the one terminal plate 10 in the housing 30. It becomes more than the height Ht of the folding | turning part 14 which has. In other words, the height Hc of the folded portion 14 of the terminal plate 10 disposed on the center side in the X-axis direction inside the housing 30 is the terminal plate 10 disposed on the end side in the X-axis direction inside the housing 30. Is the height Ht or more of the folded portion 14.
 また、本実施の形態において、ダイオード接続部11は、図7の(b)に示すように、側面形状および断面形状が略コの字状であり、第1端子部12aおよび第2端子部12bに対して段違いとなるように形成されている。つまり、ダイオード接続部11の表面と、第1端子部12aおよび第2端子部12bの表面とは、異なる面に位置している。 In the present embodiment, as shown in FIG. 7B, the diode connecting portion 11 has a substantially U-shaped side surface and cross-sectional shape, and the first terminal portion 12a and the second terminal portion 12b. It is formed so as to be stepped. That is, the surface of the diode connection portion 11 and the surfaces of the first terminal portion 12a and the second terminal portion 12b are located on different surfaces.
 具体的には、図2~図4に示すように、第1端子部12aおよび第2端子部12bは、筐体30(箱体31)の底部の内面に当接している。そして、第1端子部12aおよび第2端子部12bにおける筐体30に当接する当接面と、リード端子21に接続する接続面とは、段違いになっている。 Specifically, as shown in FIGS. 2 to 4, the first terminal portion 12a and the second terminal portion 12b are in contact with the inner surface of the bottom portion of the housing 30 (box body 31). The contact surfaces of the first terminal portion 12 a and the second terminal portion 12 b that are in contact with the housing 30 are different from the connection surfaces that are connected to the lead terminals 21.
 また、図2に示すように、ダイオード接続部11、第1端子部12aおよび第2端子部12bの並び方向である第1方向(Y軸方向)に直交する方向である第2方向(X軸方向)の最小幅は、ダイオード接続部11における第2方向(X軸方向)の最大幅より大きくなっている。なお、本実施の形態において、Z軸方向から見たときの平面視において、ダイオード接続部11、第1端子部12aおよび第2端子部12bの形状は、略矩形である。 In addition, as shown in FIG. 2, the second direction (X-axis) is a direction orthogonal to the first direction (Y-axis direction) that is the arrangement direction of the diode connection part 11, the first terminal part 12a, and the second terminal part 12b. The minimum width in the direction) is larger than the maximum width in the second direction (X-axis direction) in the diode connection portion 11. In the present embodiment, the shapes of the diode connecting portion 11, the first terminal portion 12a, and the second terminal portion 12b are substantially rectangular in a plan view when viewed from the Z-axis direction.
 本実施の形態では、端子板10は、例えば、アルミニウムによって構成されるが、端子板10の材料はこれに限定されず、熱伝導率の高い材料であればよく、例えば、無酸素銅、タフピッチ銅等の純銅、りん青銅、および黄銅等、ならびにこれらの銅合金などであってもよい。 In the present embodiment, the terminal plate 10 is made of, for example, aluminum. However, the material of the terminal plate 10 is not limited to this, and may be any material having high thermal conductivity, for example, oxygen-free copper, tough pitch, etc. Pure copper such as copper, phosphor bronze, brass and the like, and copper alloys thereof may be used.
 また、ダイオード接続部11の表面には、図8に示すように、ニッケル(Ni)、スズ(Sn)、銅(Cu)、銀(Ag)および金(Au)の少なくともいずれかの一つの材料によって構成されためっき層13が形成されていてもよい。めっき層13は、ダイオード接続部11の表面および裏面の少なくとも一方に形成される。本実施の形態では、ダイオード接続部11を構成するアルミニウム板の表面(リード端子21が接続される面)に、ニッケルめっきからなる第1めっき層13aとスズめっきからなる第2めっき層13bとの積層構造を有するめっき層13が形成されている。 Further, as shown in FIG. 8, at least one material of nickel (Ni), tin (Sn), copper (Cu), silver (Ag), and gold (Au) is formed on the surface of the diode connection portion 11. The plating layer 13 comprised by these may be formed. The plating layer 13 is formed on at least one of the front surface and the back surface of the diode connection portion 11. In the present embodiment, the first plating layer 13a made of nickel plating and the second plating layer 13b made of tin plating are formed on the surface (surface to which the lead terminal 21 is connected) of the aluminum plate constituting the diode connection portion 11. A plating layer 13 having a laminated structure is formed.
 なお、めっき層13は、ダイオード接続部11の裏面のみに形成してもよいし、ダイオード接続部11の表面および裏面の両方に形成してもよい。また、めっき層13は、端子板10全体を構成するアルミニウム板の全体に形成されていてもよい。また、めっき層13は、2層に限るものではなく、1層のみまたは3層以上であってもよい。 Note that the plating layer 13 may be formed only on the back surface of the diode connection portion 11, or may be formed on both the front surface and the back surface of the diode connection portion 11. Further, the plating layer 13 may be formed on the entire aluminum plate constituting the entire terminal board 10. Moreover, the plating layer 13 is not limited to two layers, and may be only one layer or three or more layers.
 なお、上述のように、端子板10には、一対の挿通孔15と一対の挿通孔16とが形成されている。一対の挿通孔16は、図2に示すように、出力リード線2と第1端子部12aとの半田接続部を挟むように形成されている。したがって、一対の挿通孔16を形成することで、半田を塗布して濡れ広がったときに一対の挿通孔16で半田をせき止めることができる。 As described above, the terminal plate 10 is formed with a pair of insertion holes 15 and a pair of insertion holes 16. As shown in FIG. 2, the pair of insertion holes 16 are formed so as to sandwich the solder connection portion between the output lead wire 2 and the first terminal portion 12a. Therefore, by forming the pair of insertion holes 16, the solder can be blocked by the pair of insertion holes 16 when the solder is applied and spreads wet.
 また、出力用端子板と非出力用端子板とは、同じ形状のアルミニウム板を板金加工することで形成することができ、出力用端子板は、非出力用端子板に対して圧着接合部17をさらに形成した形状である。 Further, the output terminal plate and the non-output terminal plate can be formed by sheet-metal processing of an aluminum plate having the same shape, and the output terminal plate is crimped to the non-output terminal plate 17. Is a shape further formed.
 [3.効果など]
 図9は、従来の端子ボックスに用いられる端子板10Xの斜視図である。図9に示すように、従来の端子板10Xのダイオード接続部11Xは、ダイオード接続部11XのY軸方向における両側の端子部のうち一方の端子部にしか接続されていない。このため、バイパスダイオード20からリード端子21を介してダイオード接続部11Xに伝導した熱の流れは、一方向(Y軸正方向)のみとなる。つまり、ダイオード接続部11Xの熱は、ダイオード接続部11Xに接続された端子部側の方向のみに伝導する。このため、バイパスダイオード20にバイパス電流が流れた場合に、バイパスダイオード20およびダイオード接続部11Xでの熱の滞留が起こる。よって、筐体30内の材料使用量を抑えつつ、端子ボックスの十分な放熱性を確保することは困難である。
[3. Effect etc.]
FIG. 9 is a perspective view of a terminal board 10X used in a conventional terminal box. As shown in FIG. 9, the diode connection part 11X of the conventional terminal board 10X is connected only to one terminal part among the terminal parts on both sides in the Y-axis direction of the diode connection part 11X. For this reason, the heat flow conducted from the bypass diode 20 to the diode connection portion 11X via the lead terminal 21 is only in one direction (Y-axis positive direction). That is, the heat of the diode connection part 11X is conducted only in the direction of the terminal part connected to the diode connection part 11X. For this reason, when a bypass current flows through the bypass diode 20, heat stays in the bypass diode 20 and the diode connection portion 11X. Therefore, it is difficult to ensure sufficient heat dissipation of the terminal box while suppressing the amount of material used in the housing 30.
 これに対して、本実施の形態に係る端子板10では、図6に示すように、一対の第1端子部12aおよび第2端子部12bがダイオード接続部11におけるY軸方向の両端の各々から延出されている。このように、ダイオード接続部11は、一対の第1端子部12aおよび第2端子部12bの両方に接続されたブリッジ構造を有する。これにより、ダイオード接続部11の熱を、第1端子部12a側および第2端子部12b側の両方に伝導させることができる。 On the other hand, in the terminal plate 10 according to the present embodiment, as shown in FIG. 6, the pair of first terminal portions 12 a and the second terminal portions 12 b are provided from both ends of the diode connecting portion 11 in the Y-axis direction. It has been extended. Thus, the diode connection part 11 has a bridge structure connected to both of the pair of first terminal parts 12a and second terminal parts 12b. Thereby, the heat of the diode connection part 11 can be conducted to both the 1st terminal part 12a side and the 2nd terminal part 12b side.
 バイパスダイオード20が発熱した際、リード端子21に接続されたダイオード接続部11が、端子板10における熱源となる。本構成によれば、第1端子部12aおよび第2端子部12bの双方がダイオード接続部11と繋がっているので、ダイオード接続部11からの伝熱経路は、ダイオード接続部11から第1端子部12aへの経路と、ダイオード接続部11から第2端子部12bへの経路との2経路を確保できる。このため、ダイオード接続部11からの伝熱経路が1経路しか有していない従来の端子板10Xと比較して、ダイオード接続部11での熱の滞留を抑制でき、迅速な熱伝導を行うことができる。この結果、端子板10の放熱性を著しく向上させることができる。さらに、第1端子部12aおよび第2端子部12bからの放熱により端子板10の放熱効率が向上するという観点から、端子ボックス1の放熱に必要な材料使用量を抑制できるので、コスト削減を実現できる。 When the bypass diode 20 generates heat, the diode connection portion 11 connected to the lead terminal 21 becomes a heat source in the terminal plate 10. According to this structure, since both the 1st terminal part 12a and the 2nd terminal part 12b are connected with the diode connection part 11, the heat-transfer path | route from the diode connection part 11 is the 1st terminal part from the diode connection part 11. Two paths, a path to 12a and a path from the diode connection portion 11 to the second terminal portion 12b, can be secured. For this reason, compared with the conventional terminal board 10X which has only one heat transfer path from the diode connection part 11, heat retention in the diode connection part 11 can be suppressed, and rapid heat conduction is performed. Can do. As a result, the heat dissipation of the terminal board 10 can be remarkably improved. Furthermore, from the viewpoint that the heat dissipation efficiency of the terminal board 10 is improved by the heat dissipation from the first terminal portion 12a and the second terminal portion 12b, the amount of material used for the heat dissipation of the terminal box 1 can be suppressed, thereby realizing cost reduction. it can.
 また、第1端子部12aの表面積A1と第2端子部12bの表面積A2とは、略等しいことが好ましい。 Further, it is preferable that the surface area A1 of the first terminal portion 12a and the surface area A2 of the second terminal portion 12b are substantially equal.
 これにより、放熱に寄与する端子板10の表面積は、経路ごとに略同等となるので、端子板10の放熱分布は、ダイオード接続部11に対して対称となる。よって、端子板10の放熱を、Y軸正方向および負方向に均等にできるので、放熱効率を最適化できる。 Thereby, since the surface area of the terminal board 10 contributing to heat radiation becomes substantially equal for each path, the heat radiation distribution of the terminal board 10 is symmetric with respect to the diode connection portion 11. Therefore, since the heat radiation of the terminal board 10 can be made uniform in the Y axis positive direction and the negative direction, the heat radiation efficiency can be optimized.
 また、複数の端子板10のそれぞれは、第2方向(X軸方向)に隣り合う端子板10と対向する位置に、筐体30の天面方向または底面方向(Z軸方向)に延びる折り返し部14を有しており、一の端子板10が有する折り返し部14の高さは、筐体30内において当該一の端子板10よりも外側に配置された端子板10が有する折り返し部14の高さ以上であってもよい。 In addition, each of the plurality of terminal plates 10 is a folded portion that extends in the top surface direction or the bottom surface direction (Z-axis direction) of the housing 30 at a position facing the terminal plate 10 adjacent in the second direction (X-axis direction). 14, and the height of the folded portion 14 included in one terminal plate 10 is the height of the folded portion 14 included in the terminal plate 10 disposed outside the one terminal plate 10 in the housing 30. It may be more than that.
 筐体30内の端部に配置された端子板10にはバイパスダイオード20が1個接続されるのに対して、筐体30内の内側に配置された端子板10にはバイパスダイオード20が2個接続される。このため、内側の端子板10に流れ込む熱量は、端部の端子板10に流れ込む熱量の略2倍となる。これに対して、内側の端子板10が有する折り返し部14の高さを、端部側の端子板10の折り返し部14の高さ以上とすることで、内側の端子板10の放熱効率をより高くすることができ、筐体中央部での熱の滞留を抑制できる。また、第1端子部12aおよび第2端子部12bの表面積を、折り返し部14の高さで調整できるので、筐体中央部での端子板10のX軸方向の配置ピッチを小さくすることができ、端子ボックス1のサイズを低減できる。また、筐体端部側の端子板10の折り返し部14を、より低くできるので、端子板10の材料削減を達成できる。 One bypass diode 20 is connected to the terminal plate 10 arranged at the end in the housing 30, whereas two bypass diodes 20 are connected to the terminal plate 10 arranged inside the housing 30. Are connected. For this reason, the amount of heat flowing into the inner terminal plate 10 is approximately twice the amount of heat flowing into the end terminal plate 10. On the other hand, by making the height of the folded portion 14 of the inner terminal plate 10 equal to or higher than the height of the folded portion 14 of the terminal plate 10 on the end side, the heat dissipation efficiency of the inner terminal plate 10 is further increased. It can be made high, and heat retention at the central part of the housing can be suppressed. Further, since the surface areas of the first terminal portion 12a and the second terminal portion 12b can be adjusted by the height of the folded portion 14, the arrangement pitch in the X-axis direction of the terminal plate 10 at the center portion of the housing can be reduced. The size of the terminal box 1 can be reduced. Moreover, since the folding | returning part 14 of the terminal board 10 by the side of a housing | casing can be made lower, the material reduction of the terminal board 10 can be achieved.
 [4.変形例]
 図10は、実施の形態の変形例1に係る端子板10Aの斜視図である。図10に示すように、端子板10Aは、第2方向(X軸方向)に隣り合う端子板と対向する位置に、筐体30の天面方向または底面方向(Z軸方向)に延びる折り返し部14Aを有している。ここで、折り返し部14Aは、当該折り返し部14Aの端部において、複数の切り込み形状を有していてもよい。
[4. Modified example]
FIG. 10 is a perspective view of a terminal board 10A according to Modification 1 of the embodiment. As illustrated in FIG. 10, the terminal plate 10 </ b> A is a folded portion that extends in the top surface direction or the bottom surface direction (Z-axis direction) of the housing 30 at a position facing a terminal plate adjacent in the second direction (X-axis direction). 14A. Here, the folded portion 14A may have a plurality of cut shapes at the end of the folded portion 14A.
 これにより、折り返し部14Aにおける厚み方向断面の表面積を増加させることが可能となり、折り返し部14Aからの放熱効率を向上させることが可能となる。 This makes it possible to increase the surface area of the cross section in the thickness direction of the folded portion 14A, and to improve the heat dissipation efficiency from the folded portion 14A.
 図11は、実施の形態の変形例2に係る端子板10Bの斜視図である。図11に示すように、端子板10Bは、第2方向(X軸方向)に隣り合う端子板と対向する位置に、筐体30の天面方向または底面方向(Z軸方向)に延びる折り返し部14および18を有している。ここで、折り返し部14および18の高さは、第1方向(Y軸方向)におけるダイオード接続部11の中心点から第1方向(Y軸方向)に離間するほど低くなっていてもよい。本変形例では、折り返し部18が、折り返し部14よりも高い。 FIG. 11 is a perspective view of a terminal board 10B according to the second modification of the embodiment. As shown in FIG. 11, the terminal plate 10 </ b> B is a folded portion that extends in the top surface direction or the bottom surface direction (Z-axis direction) of the housing 30 at a position facing a terminal plate adjacent in the second direction (X-axis direction). 14 and 18. Here, the heights of the turn- back portions 14 and 18 may be so low that they are separated from the center point of the diode connection portion 11 in the first direction (Y-axis direction) in the first direction (Y-axis direction). In the present modification, the folded portion 18 is higher than the folded portion 14.
 これにより、最も発熱量の多いダイオード接続部11付近の折り返し部の高さを高くすることができるので、放熱効率を向上させることが可能となる。 This makes it possible to increase the height of the folded portion in the vicinity of the diode connection portion 11 that generates the largest amount of heat, thereby improving the heat dissipation efficiency.
 なお、本変形例では、折り返し部14は第1端子部12aおよび第2端子部12bから延出されており、折り返し部18はダイオード接続部11から延出されており、折り返し部18の高さが折り返し部14の高さより高い構成を例示した。しかしながら、この構成例に限らず、第1端子部12aおよび第2端子部12bから延出された折り返し部14において、ダイオード接続部11の中心点から第1方向(Y軸方向)に離間するほど低くなるような構成であってもよい。 In the present modification, the folded portion 14 extends from the first terminal portion 12a and the second terminal portion 12b, and the folded portion 18 extends from the diode connection portion 11, and the height of the folded portion 18 is increased. Exemplifies a configuration that is higher than the height of the folded portion 14. However, the present invention is not limited to this configuration example, and the folded portion 14 extended from the first terminal portion 12a and the second terminal portion 12b is separated from the center point of the diode connection portion 11 in the first direction (Y-axis direction). The structure which becomes low may be sufficient.
 図12は、実施の形態の変形例3に係る端子板10Cの斜視図である。図12に示すように、端子板10Cは、バイパスダイオード20に当接し、弾性によりバイパスダイオード20を保持する折り曲げ部14Cを有していてもよい。折り曲げ部14Cは、例えば、折り返し部14と連続しており、Y軸方向に可動する構造を有する。 FIG. 12 is a perspective view of a terminal board 10C according to Modification 3 of the embodiment. As illustrated in FIG. 12, the terminal board 10 </ b> C may have a bent portion 14 </ b> C that contacts the bypass diode 20 and holds the bypass diode 20 by elasticity. The bent portion 14C is, for example, continuous with the folded portion 14 and has a structure that can move in the Y-axis direction.
 これにより、バイパスダイオード20を端子板10Cに仮保持できるので、バイパスダイオード20のリード端子21とダイオード接続部11との接続(半田付け)工程の作業性を向上させることが可能となる。さらに、バイパスダイオード20から折り曲げ部14Cを経由した伝熱経路が形成されるので、放熱経路を増やすことができ、放熱効率をより高めることが可能となる。 Thereby, since the bypass diode 20 can be temporarily held on the terminal plate 10C, the workability of the connection (soldering) process between the lead terminal 21 of the bypass diode 20 and the diode connecting portion 11 can be improved. Furthermore, since the heat transfer path from the bypass diode 20 via the bent portion 14C is formed, the heat dissipation path can be increased, and the heat dissipation efficiency can be further increased.
 図13Aは、実施の形態の変形例4に係る端子ボックスの蓋を外した状態を示す正面図である。図13Aに示すように、筐体30Aは、筐体30Aの中心部へ向けて窪んだ凹部33を有していてもよい。 FIG. 13A is a front view showing a state in which a terminal box cover according to Modification 4 of the embodiment is removed. As illustrated in FIG. 13A, the housing 30A may have a recess 33 that is recessed toward the center of the housing 30A.
 これにより、最も発熱が集中する端子ボックスの中央部と外気との距離を短縮することができるので、端子ボックスの外部への効率的な放熱を実現できる。 This makes it possible to reduce the distance between the central portion of the terminal box where heat generation is most concentrated and the outside air, thus realizing efficient heat dissipation to the outside of the terminal box.
 図13Bは、実施の形態の変形例5に係る端子ボックスの蓋を外した状態を示す正面図である。図13Bに示すように、筐体30Bは、筐体30Bの中心部と対向する外面に、放熱フィン34を有していてもよい。 FIG. 13B is a front view illustrating a state in which the terminal box cover according to the fifth modification of the embodiment is removed. As illustrated in FIG. 13B, the housing 30B may have heat radiation fins 34 on the outer surface facing the center of the housing 30B.
 これにより、最も発熱が集中する端子ボックスの中央部と背向する筐体外面に冷却用の放熱フィン34が形成されることで、端子ボックスの外気との接触面積が増加するので、端子ボックスの外部への効率的な放熱を実現できる。なお、放熱フィン34は、図13Bに示すように、筐体30Bの中心部へ向けて窪んだ凹部内に形成されていることが好ましい。これにより、端子ボックスの外部へのさらなる効率的な放熱を実現できる。 As a result, the cooling fins 34 are formed on the outer surface of the casing facing away from the central portion of the terminal box where heat generation is most concentrated, thereby increasing the contact area with the outside air of the terminal box. Efficient heat dissipation to the outside can be realized. In addition, as shown to FIG. 13B, it is preferable that the radiation fin 34 is formed in the recessed part depressed toward the center part of the housing | casing 30B. Thereby, further efficient heat dissipation to the exterior of a terminal box is realizable.
 図13Cは、実施の形態の変形例6に係る端子ボックスの蓋を外した状態を示す正面図である。図13Cに示すように、端子ボックスは、さらに、複数の端子板10の間に配置された、隣り合う端子板同士の間隔を保持するための凸状構造体35を有していてもよい。 FIG. 13C is a front view illustrating a state in which a terminal box cover according to Modification 6 of the embodiment is removed. As illustrated in FIG. 13C, the terminal box may further include a convex structure 35 that is disposed between the plurality of terminal plates 10 to maintain the interval between adjacent terminal plates.
 これにより、端子ボックス内に配置される端子板10の数が変化した場合でも、同じ形状の端子板10を兼用できるので、端子板10の成形金型および端子板10の種類を削減できる。 Thereby, even when the number of the terminal boards 10 arranged in the terminal box is changed, the terminal boards 10 having the same shape can be used together, so that the molding die of the terminal board 10 and the types of the terminal boards 10 can be reduced.
 なお、複数の端子板10の間に配置された凸状構造体35は、筐体内に充填された封止部材よりも熱伝導性が高いことが好ましい。これにより、封止部材の充填量削減、および、放熱効率の向上が可能となる。 In addition, it is preferable that the convex structure 35 disposed between the plurality of terminal boards 10 has higher thermal conductivity than the sealing member filled in the housing. Thereby, the filling amount of the sealing member can be reduced and the heat radiation efficiency can be improved.
 [5.実施例]
 次に、本実施の形態に係る端子ボックスの内部における伝熱状態を、実施例および比較例に係る端子ボックスにより比較検討した結果を示す。より具体的には、端子ボックス内に配置された各構成要素の熱伝導率を設定することにより、端子ボックス内の温度分布をシミュレーションにより算出した。以下、表1に、本シミュレーションに用いた各構成要素の熱伝導率などのパラメータを示す。
[5. Example]
Next, the result of comparative examination of the heat transfer state inside the terminal box according to the present embodiment using the terminal box according to the example and the comparative example is shown. More specifically, the temperature distribution in the terminal box was calculated by simulation by setting the thermal conductivity of each component arranged in the terminal box. Table 1 below shows parameters such as the thermal conductivity of each component used in this simulation.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図14は、実施例および比較例に係る端子ボックスの温度分布を比較した図である。図14において、比較例は、図9に示された従来の端子板10Xが5つ並べられた端子ボックスであり、実施例1は、図6に示された本実施の形態に係る端子板10が5つ並べられた端子ボックス1である。ここで、比較例に係る端子板10Xと実施例1に係る端子板10とは、ほぼ同じ重量に設定されている。また、実施例2は、本実施の形態に係る端子板が5つ並べられた端子ボックスであり、実施例1に比べて、第2端子部12bの長さが5.4mm短く、かつ、折り返し部14の高さが3mm低くなっている。つまり、実施例2に係る端子板の表面積は、比較例および実施例1に係る端子板の表面積よりも小さくなっている。この結果、実施例2に係る端子板の重量は、比較例に係る端子板10Xの重量と比較して、37%軽量化されている。 FIG. 14 is a diagram comparing temperature distributions of the terminal boxes according to the example and the comparative example. 14, the comparative example is a terminal box in which five conventional terminal boards 10X shown in FIG. 9 are arranged, and Example 1 is a terminal board 10 according to the present embodiment shown in FIG. Is a terminal box 1 in which five are arranged. Here, the terminal board 10X according to the comparative example and the terminal board 10 according to the first embodiment are set to have substantially the same weight. In addition, Example 2 is a terminal box in which five terminal boards according to the present embodiment are arranged. The length of the second terminal portion 12b is 5.4 mm shorter than that of Example 1, and the folded back. The height of the part 14 is 3 mm lower. That is, the surface area of the terminal board according to Example 2 is smaller than the surface area of the terminal board according to Comparative Example and Example 1. As a result, the weight of the terminal board according to the second embodiment is reduced by 37% compared to the weight of the terminal board 10X according to the comparative example.
 図14の下段には、端子ボックス内の温度分布を示すパラメータとして、各バイパスダイオード20のジャンクション温度が示されている。比較例、実施例1および実施例2ともに、中央側に配置されたバイパスダイオードD2およびD3のジャンクション温度TD2およびTD3は、端部側に配置されたバイパスダイオードD1およびD4のジャンクション温度TD1およびTD4よりも高くなっている。また、実施例1に係る端子ボックス1の各ジャンクション温度TD1~TD4は、比較例および実施例2に係る端子ボックスの各ジャンクション温度TD1~TD4よりも低くなっていることが解る。 The lower part of FIG. 14 shows the junction temperature of each bypass diode 20 as a parameter indicating the temperature distribution in the terminal box. In both the comparative example, Example 1 and Example 2, the junction temperatures T D2 and T D3 of the bypass diodes D2 and D3 disposed on the center side are the junction temperatures T D1 of the bypass diodes D1 and D4 disposed on the end side. And higher than TD4 . It can also be seen that the junction temperatures T D1 to T D4 of the terminal box 1 according to the first embodiment are lower than the junction temperatures T D1 to T D4 of the terminal box according to the comparative example and the second embodiment.
 図15は、実施例および比較例に係るバイパスダイオード20の温度分布を表すグラフである。図15に示されたグラフは、図14に示された、バイパスダイオードD1~D4のジャンクション温度TD1~TD4をプロットしたものである。 FIG. 15 is a graph showing the temperature distribution of the bypass diode 20 according to the example and the comparative example. The graph shown in FIG. 15 is a plot of the junction temperatures T D1 to T D4 of the bypass diodes D1 to D4 shown in FIG.
 図14および図15において、実施例1に係る端子ボックス1の方が、比較例に係る端子ボックスに比べて、バイパスダイオード20のジャンクション温度を全体的に低減できている。この温度分布の差異は、比較例に係る端子ボックスでは、ダイオード接続部11Xが第1端子部にしか接続されていないのに対して、実施例1に係る端子ボックス1では、第1端子部12aおよび第2端子部12bの双方がダイオード接続部11と繋がっていることによるものと考えられる。つまり、実施例1に係る端子ボックス1では、熱源からの伝熱経路は、ダイオード接続部11から第1端子部12aへの経路と、ダイオード接続部11から第2端子部12bへの経路との2経路を確保できる。このため、上記熱源からの伝熱経路が1経路しか有していない比較例に係る端子板10Xと比較して、ダイオード接続部11での熱の滞留を抑制でき、迅速な熱伝導を行うことができる。この結果、端子板10の放熱性を著しく向上させることができる。 14 and 15, the terminal box 1 according to the first embodiment can reduce the junction temperature of the bypass diode 20 as a whole as compared with the terminal box according to the comparative example. The difference in temperature distribution is that, in the terminal box according to the comparative example, the diode connection portion 11X is connected only to the first terminal portion, whereas in the terminal box 1 according to the first embodiment, the first terminal portion 12a. It can be considered that both the second terminal portion 12 b and the second terminal portion 12 b are connected to the diode connection portion 11. That is, in the terminal box 1 according to the first embodiment, the heat transfer path from the heat source includes the path from the diode connection part 11 to the first terminal part 12a and the path from the diode connection part 11 to the second terminal part 12b. Two routes can be secured. For this reason, compared with the terminal board 10X which concerns on the comparative example which has only one heat-transfer path | route from the said heat source, the residence of the heat | fever in the diode connection part 11 can be suppressed, and rapid heat conduction is performed. Can do. As a result, the heat dissipation of the terminal board 10 can be remarkably improved.
 また、実施例2に係る端子ボックスと比較例に係る端子ボックスとを比較して、実施例2に係る端子板の表面積を37%削減しているにもかかわらず、実施例2に係る端子ボックスは、比較例に係る端子ボックスと同様のバイパスダイオード20の温度分布を維持できていることが解る。 Further, the terminal box according to Example 2 is compared with the terminal box according to Example 2 and the surface area of the terminal plate according to Example 2 is reduced by 37%, but the terminal box according to Example 2 is compared. It can be seen that the temperature distribution of the bypass diode 20 similar to the terminal box according to the comparative example can be maintained.
 つまり、実施例2に係る端子ボックスでは、実施例1に係る端子ボックスと同様に、第1端子部12aおよび第2端子部12bの双方がダイオード接続部11と繋がっているので、熱源からの伝熱経路を2経路確保できている。このため、比較例に係る端子板10Xと比較して、ダイオード接続部11での熱の滞留を抑制できる分、結果として端子ボックスの放熱に必要な材料使用量を抑制できる。よって、従来の端子板構成を有する端子ボックスと比較して、コスト削減を実現できる。 That is, in the terminal box according to the second embodiment, similarly to the terminal box according to the first embodiment, both the first terminal portion 12a and the second terminal portion 12b are connected to the diode connection portion 11, and therefore, transmission from the heat source is performed. Two heat paths can be secured. For this reason, compared with the terminal board 10X which concerns on a comparative example, since the residence of the heat | fever in the diode connection part 11 can be suppressed, the amount of material usage required for the heat dissipation of a terminal box can be suppressed as a result. Therefore, cost reduction can be realized as compared with a terminal box having a conventional terminal plate configuration.
 次に、本実施の形態に係る端子板10Dにおける、第1端子部12aおよび第2端子部12bの表面積の比率について検討した結果を説明する。 Next, the result of examining the ratio of the surface areas of the first terminal portion 12a and the second terminal portion 12b in the terminal plate 10D according to the present embodiment will be described.
 図16Aは、第1端子部12aおよび第2端子部12bの表面積比率を変える場合の端子板10Dの寸法を説明する図である。なお、端子板10Dは、図16Aに示すように、ダイオード接続部11が第1端子部12aおよび第2端子部12bと面一である(Z軸方向における位置が等しい)構造を想定した。端子板10Dの第1端子部12aおよび第2端子部12bの表面積比率を変化させるにあたり、第1端子部12aのY軸方向の長さLと第2端子部12bのY軸方向の長さLとの比率を変化させた。この比率を変化させて、端子ボックス内の最高温度を、前述したシミュレーションと同様の手法により算出した。なお、筐体30のX軸方向の幅W30を30mm、筐体30のY軸方向の長さL30を50mm、筐体30の厚みWおよびt30を5mm、端子板10DのY軸方向の長さL10を35mm、端子板10DのX軸方向の幅W10を15mm、ダイオード接続部11のX軸方向の幅Wを5mm、筐体30と端子板10DとのX軸方向の間隔Gを2.5mm、筐体30と端子板10DとのY軸方向の間隔Gを2.5mm、筐体30の底面と端子板10DとのZ軸方向の間隔Gを2mm、熱源の大きさを1mm×1mmと仮定した。 FIG. 16A is a diagram illustrating dimensions of the terminal plate 10D when the surface area ratio of the first terminal portion 12a and the second terminal portion 12b is changed. As shown in FIG. 16A, terminal plate 10D is assumed to have a structure in which diode connection portion 11 is flush with first terminal portion 12a and second terminal portion 12b (positions in the Z-axis direction are equal). In changing the surface area ratio of the first terminal portion 12a and the second terminal portion 12b of the terminal plate 10D, the length L L of the first terminal portion 12a in the Y-axis direction and the length of the second terminal portion 12b in the Y-axis direction. The ratio with LR was changed. By changing this ratio, the maximum temperature in the terminal box was calculated by the same method as in the simulation described above. The width W 30 in the X-axis direction of the housing 30 is 30 mm, the length L 30 in the Y-axis direction of the housing 30 is 50 mm, the thickness W f and t 30 of the housing 30 is 5 mm, and the Y-axis of the terminal plate 10D X-axis direction of the direction of the length L 10 35 mm, the width W 10 of the X-axis direction of the terminal board 10D 15 mm, X-axis direction 5mm width W C of the diode connection portion 11, a housing 30 and the terminal plate 10D 2.5mm spacing G X of the housing 30 and the Y-axis direction between G L and 2.5mm between the terminal plate 10D, 2 mm spacing G H in the Z axis direction between the bottom surface and the terminal plate 10D of the housing 30 The size of the heat source was assumed to be 1 mm × 1 mm.
 図16Bは、実施の形態に係る端子板の表面積比率を変化させた場合の端子板の放熱特性を表すグラフである。同図の横軸は、発熱体位置Xを示しており、縦軸は、筐体30内における発熱体の最高温度を示している。ここで、発熱体位置Xは、端子板10DのY軸正方向側の端部を基準点とした場合の、ダイオード接続部11の中心点と当該基準点との距離である。 FIG. 16B is a graph showing the heat dissipation characteristics of the terminal board when the surface area ratio of the terminal board according to the embodiment is changed. The horizontal axis of the figure represents the heating element position X, and the vertical axis represents the maximum temperature of the heating element in the housing 30. Here, the heating element position X is the distance between the center point of the diode connection portion 11 and the reference point when the end of the terminal plate 10D on the Y axis positive direction side is used as the reference point.
 図16Bのグラフより、ダイオード接続部11のY軸方向の中心点が、端子板10DのY軸方向の中央部である場合(X=17.5mm)に、発熱体の最高温度は最も低くなっていることがわかる。つまり、第1端子部12aの表面積A1と第2端子部12bの表面積A2とは、略等しいことが好ましい。これは、放熱に寄与する各端子部の表面積が放熱経路ごとに略同等となるので、端子板10DのY軸方向における放熱分布が、端子板10Dの中心点(ダイオード接続部11)に対して対称となることに起因するものと考えられる。これにより、端子板10Dの放熱効率を最適化できる。 From the graph of FIG. 16B, when the center point in the Y-axis direction of the diode connection portion 11 is the center portion in the Y-axis direction of the terminal board 10D (X = 17.5 mm), the maximum temperature of the heating element is the lowest. You can see that That is, the surface area A1 of the first terminal portion 12a and the surface area A2 of the second terminal portion 12b are preferably substantially equal. This is because the surface area of each terminal portion that contributes to heat dissipation is substantially the same for each heat dissipation path, so that the heat dissipation distribution in the Y-axis direction of the terminal plate 10D is relative to the center point (diode connection portion 11) of the terminal plate 10D. This is thought to be due to symmetry. Thereby, the thermal radiation efficiency of terminal board 10D can be optimized.
 なお、バイパスダイオード20が正常動作するためのジャンクション温度は、200℃以下であることが望ましい。この観点から、図16Bにおいて、発熱体位置Xは、12.5mm以上かつ22.5mm以下であることが好ましい。言い換えると、発熱体位置Xは、端子板10Dの中心点から±5mmの範囲であることが好ましい。つまり、第1方向(Y軸方向)におけるダイオード接続部11の中心点と第1方向(Y軸方向)における端子板10Dの中心点との距離は、第1方向(Y軸方向)における端子板10Dの長さL10に対して、±15%の範囲内に配置されていることが好ましい。 It is desirable that the junction temperature for normal operation of the bypass diode 20 is 200 ° C. or less. From this viewpoint, in FIG. 16B, the heating element position X is preferably 12.5 mm or more and 22.5 mm or less. In other words, the heating element position X is preferably within a range of ± 5 mm from the center point of the terminal board 10D. That is, the distance between the center point of the diode connection portion 11 in the first direction (Y-axis direction) and the center point of the terminal plate 10D in the first direction (Y-axis direction) is the terminal plate in the first direction (Y-axis direction). the length L 10 of 10D, which is preferably arranged within a range of ± 15%.
 これにより、放熱に寄与する端子板10Dの表面積は経路ごとに略同等となり、放熱分布が均等とできる結果、バイパスダイオード20の最高温度を200℃以下に抑制できる。よって、バイパスダイオード20の動作を保証しつつ、端子板10Dの放熱効率を最適化できる。 Thereby, the surface area of the terminal board 10D that contributes to heat dissipation becomes substantially equal for each path, and the heat dissipation distribution can be made uniform. As a result, the maximum temperature of the bypass diode 20 can be suppressed to 200 ° C. or lower. Therefore, the heat dissipation efficiency of the terminal board 10D can be optimized while ensuring the operation of the bypass diode 20.
 なお、上述した、第1端子部12aおよび第2端子部12bの表面積の比率の検討において、図16Aおよび図16Bでは、ダイオード接続部11が第1端子部12aおよび第2端子部12bと面一である(Z軸方向における位置が等しい)構造を想定した(図11の端子板10B参照)。しかしながら、上述した第1端子部12aおよび第2端子部12bの表面積の比率の検討結果は、図6および図7に示されたようなダイオード接続部11が第1端子部12aおよび第2端子部12bと面一でない(Z軸方向における位置が異なる)構造を有する端子板10にも適用できる。ダイオード接続部11と第1端子部12aおよび第2端子部12bとが面一でない構造を有する端子板10では、ダイオード接続部11と第1端子部12aとの間、および、ダイオード接続部11と第2端子部12bとの間には、Z軸方向に延びる接続部が存在し、これらの接続部が放熱経路の一部となる。従って、この場合には、第1方向の放熱経路長を、Z軸方向から見た第1方向の距離とみなすのではなく、第1方向の展開距離とみなすことができる。 In the examination of the surface area ratio of the first terminal portion 12a and the second terminal portion 12b described above, the diode connection portion 11 is flush with the first terminal portion 12a and the second terminal portion 12b in FIGS. 16A and 16B. (A position in the Z-axis direction is equal) was assumed (see terminal board 10B in FIG. 11). However, the examination result of the ratio of the surface areas of the first terminal portion 12a and the second terminal portion 12b described above is that the diode connection portion 11 as shown in FIGS. 6 and 7 is the first terminal portion 12a and the second terminal portion. It is applicable also to the terminal board 10 which has a structure which is not flush with 12b (the position in the Z-axis direction is different). In the terminal plate 10 having a structure in which the diode connection part 11 and the first terminal part 12a and the second terminal part 12b are not flush with each other, the diode connection part 11 and the first terminal part 12a, and the diode connection part 11 Connection portions extending in the Z-axis direction exist between the second terminal portions 12b, and these connection portions become a part of the heat dissipation path. Therefore, in this case, the heat radiation path length in the first direction can be regarded not as the distance in the first direction viewed from the Z-axis direction but as the development distance in the first direction.
 つまり、ダイオード接続部11が第1端子部12aおよび第2端子部12bと面一である構造を有する端子板10D、ならびに、ダイオード接続部11が第1端子部12aおよび第2端子部12bと面一でない構造を有する端子板10の双方において、第1方向(Y軸方向)におけるダイオード接続部11の中心点と第1方向(Y軸方向)における端子板10の中心点との展開距離が、第1方向(Y軸方向)における端子板10の展開長さL10に対して、±15%の範囲内に配置されていることが好ましい。 In other words, the terminal plate 10D has a structure in which the diode connection portion 11 is flush with the first terminal portion 12a and the second terminal portion 12b, and the diode connection portion 11 faces the first terminal portion 12a and the second terminal portion 12b. In both of the terminal plates 10 having a structure that is not one, the development distance between the center point of the diode connection part 11 in the first direction (Y-axis direction) and the center point of the terminal plate 10 in the first direction (Y-axis direction) is against developed length L 10 of the terminal plate 10 in a first direction (Y axis direction), which is preferably arranged within a range of ± 15%.
 これにより、バイパスダイオード20の動作を保証しつつ、端子板10および10Dの放熱効率を最適化できる。 Thereby, the heat dissipation efficiency of the terminal boards 10 and 10D can be optimized while the operation of the bypass diode 20 is guaranteed.
 (その他の実施の形態)
 以上、本発明に係る端子ボックスについて、実施の形態に基づいて説明したが、本発明は、上記実施の形態に限定されるものではない。
(Other embodiments)
As mentioned above, although the terminal box concerning the present invention was explained based on an embodiment, the present invention is not limited to the above-mentioned embodiment.
 例えば、上記実施の形態において、端子ボックス1に配置される端子板10、10A、10Bおよび10Cの個数は、それぞれ5個としたが、これに限るものではない。端子板10~10Cの個数は、2つ、3つまたは4つでもよく、また、6つ以上であってもよい。つまり、端子ボックス1に配置される端子板10~10Cの個数は、複数であればよい。 For example, in the above-described embodiment, the number of the terminal boards 10, 10A, 10B, and 10C arranged in the terminal box 1 is five, but the present invention is not limited to this. The number of terminal boards 10 to 10C may be two, three or four, or may be six or more. That is, the number of terminal plates 10 to 10C arranged in the terminal box 1 may be plural.
 また、上記実施の形態において、出力用端子板である端子板10の第2端子部12bと外部接続用ケーブル3とは圧着接合部17によって接続されているが、これに限るものではない。例えば、第2端子部12bと外部接続用ケーブル3とは、第1端子部12aと出力リード線2との接続態様と同様に、半田によって接続されてもよい。また、第1端子部12aと出力リード線2との接続も半田接続に限るものではい。 In the above-described embodiment, the second terminal portion 12b of the terminal plate 10 that is the output terminal plate and the external connection cable 3 are connected by the crimp bonding portion 17, but the present invention is not limited to this. For example, the second terminal portion 12b and the external connection cable 3 may be connected by solder in the same manner as the connection mode between the first terminal portion 12a and the output lead wire 2. Further, the connection between the first terminal portion 12a and the output lead wire 2 is not limited to the solder connection.
 また、上記実施の形態において、端子板10には、めっき層13が形成されているが、めっき層13は必ずしも形成される必要はない。 In the above embodiment, the plating layer 13 is formed on the terminal board 10, but the plating layer 13 is not necessarily formed.
 その他、上記実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で上記実施の形態における構成要素および機能を任意に組み合わせることで実現される形態も本発明に含まれる。 In addition, it is realized by arbitrarily combining the components and functions in the above-described embodiment without departing from the gist of the present invention, and forms obtained by making various modifications conceived by those skilled in the art. Forms are also included in the present invention.
 1  端子ボックス
 10、10A、10B、10C、10D  端子板
 11  ダイオード接続部
 12a  第1端子部
 12b  第2端子部
 14、14A、18  折り返し部
 14C  折り曲げ部
 20  バイパスダイオード
 21  リード端子
 30、30A、30B  筐体
 33  凹部
 34  放熱フィン(放熱構造)
 35  凸状構造体
 100 太陽電池モジュール
DESCRIPTION OF SYMBOLS 1 Terminal box 10, 10A, 10B, 10C, 10D Terminal board 11 Diode connection part 12a 1st terminal part 12b 2nd terminal part 14, 14A, 18 Folding part 14C Bending part 20 Bypass diode 21 Lead terminal 30, 30A, 30B Body 33 Concavity 34 Radiation fin (heat dissipation structure)
35 Convex structure 100 Solar cell module

Claims (10)

  1.  太陽電池モジュール用の端子ボックスであって、
     筐体と、
     前記筐体の内部に配置された複数の端子板と、
     隣り合う前記端子板間に配置されたバイパスダイオードと、を備え、
     前記複数の端子板のそれぞれは、
     前記バイパスダイオードのリード端子に接続されたダイオード接続部と、
     前記ダイオード接続部の両端部であって前記複数の端子板の並び方向と交差する第1方向の両端部の各々から延出された一対の第1端子部および第2端子部と、を有する
     端子ボックス。
    A terminal box for a solar cell module,
    A housing,
    A plurality of terminal boards disposed inside the housing;
    A bypass diode disposed between adjacent terminal plates, and
    Each of the plurality of terminal boards is
    A diode connection connected to the lead terminal of the bypass diode;
    A terminal having a pair of first and second terminal portions extending from each of both end portions of the diode connecting portion in a first direction intersecting with an arrangement direction of the plurality of terminal plates box.
  2.  前記第1端子部の表面積と前記第2端子部の表面積とは、略等しい
     請求項1に記載の端子ボックス。
    The terminal box according to claim 1, wherein a surface area of the first terminal portion and a surface area of the second terminal portion are substantially equal.
  3.  前記複数の端子板のそれぞれにおいて、
     前記第1方向における前記ダイオード接続部の中心点と前記第1方向における前記端子板の中心点との展開距離は、前記第1方向における前記端子板の展開長さに対して±15%の範囲内に配置されている
     請求項1または2に記載の端子ボックス。
    In each of the plurality of terminal boards,
    The development distance between the center point of the diode connection portion in the first direction and the center point of the terminal plate in the first direction is within a range of ± 15% with respect to the development length of the terminal plate in the first direction. The terminal box of Claim 1 or 2 arrange | positioned in.
  4.  前記複数の端子板のそれぞれは、
     前記並び方向に隣り合う端子板と対向する位置に、前記筐体の天面方向または底面方向に延びる折り返し部を有しており、
     一の端子板が有する前記折り返し部の高さは、前記筐体内において前記一の端子板よりも外側に配置された端子板が有する折り返し部の高さ以上である
     請求項1~3のいずれか1項に記載の端子ボックス。
    Each of the plurality of terminal boards is
    In the position facing the terminal board adjacent in the arrangement direction, it has a folded portion extending in the top surface direction or the bottom surface direction of the housing,
    The height of the folded portion included in one terminal plate is equal to or greater than the height of the folded portion included in the terminal plate disposed outside the one terminal plate in the housing. The terminal box according to item 1.
  5.  前記複数の端子板のそれぞれは、
     前記並び方向に隣り合う端子板と対向する位置に、前記筐体の天面方向または底面方向に延びる折り返し部を有しており、
     前記折り返し部は、当該折り返し部の端部において、複数の切り込み形状を有する
     請求項1~4のいずれか1項に記載の端子ボックス。
    Each of the plurality of terminal boards is
    In the position facing the terminal board adjacent in the arrangement direction, it has a folded portion extending in the top surface direction or the bottom surface direction of the housing,
    The terminal box according to any one of claims 1 to 4, wherein the folded portion has a plurality of cut shapes at an end portion of the folded portion.
  6.  前記複数の端子板のそれぞれは、
     前記並び方向に隣り合う端子板と対向する位置に、前記筐体の天面方向または底面方向に延びる折り返し部を有しており、
     前記折り返し部の高さは、前記第1方向における前記ダイオード接続部の中心点から前記第1方向に離間するほど低くなる
     請求項1~5のいずれか1項に記載の端子ボックス。
    Each of the plurality of terminal boards is
    In the position facing the terminal board adjacent in the arrangement direction, it has a folded portion extending in the top surface direction or the bottom surface direction of the housing,
    The terminal box according to any one of claims 1 to 5, wherein a height of the folded portion decreases as the distance from the center point of the diode connection portion in the first direction increases in the first direction.
  7.  前記複数の端子板のそれぞれは、
     前記バイパスダイオードに当接し、弾性により前記バイパスダイオードを保持する折り曲げ部を有している
     請求項1~6のいずれか1項に記載の端子ボックス。
    Each of the plurality of terminal boards is
    The terminal box according to any one of claims 1 to 6, further comprising a bent portion that contacts the bypass diode and elastically holds the bypass diode.
  8.  前記筐体は、当該筐体の中心部へ向けて窪んだ凹部を有する
     請求項1~7のいずれか1項に記載の端子ボックス。
    The terminal box according to any one of claims 1 to 7, wherein the casing has a concave portion that is recessed toward a central portion of the casing.
  9.  前記筐体は、当該筐体の中心部と背向する外面に、フィン形状の放熱構造を有する
     請求項1~8のいずれか1項に記載の端子ボックス。
    The terminal box according to any one of claims 1 to 8, wherein the casing has a fin-shaped heat dissipation structure on an outer surface facing away from a central portion of the casing.
  10.  さらに、
     前記複数の端子板の間に配置された、隣り合う端子板同士の間隔を保持するための凸状構造体を有する
     請求項1~9のいずれか1項に記載の端子ボックス。
    further,
    The terminal box according to any one of claims 1 to 9, further comprising a convex structure that is disposed between the plurality of terminal plates and maintains an interval between adjacent terminal plates.
PCT/JP2017/011127 2016-03-25 2017-03-21 Terminal box WO2017164151A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016061270A JP2019092234A (en) 2016-03-25 2016-03-25 Terminal box
JP2016-061270 2016-03-25

Publications (1)

Publication Number Publication Date
WO2017164151A1 true WO2017164151A1 (en) 2017-09-28

Family

ID=59899425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011127 WO2017164151A1 (en) 2016-03-25 2017-03-21 Terminal box

Country Status (2)

Country Link
JP (1) JP2019092234A (en)
WO (1) WO2017164151A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005117141A1 (en) * 2004-05-25 2005-12-08 Kitani Electric Co., Ltd. Terminal box for solar cell module
US20100259105A1 (en) * 2009-04-09 2010-10-14 Manfred Schaarschmidt Connecting device for a photovoltaic solar module, method for the production thereof and solar installation with such a connecting device
WO2012000392A1 (en) * 2010-06-30 2012-01-05 Byd Company Limited Junction box for solar battery
JP2012049460A (en) * 2010-08-30 2012-03-08 Hosiden Corp Terminal box
JP2012190835A (en) * 2011-03-08 2012-10-04 Nippon Tanshi Kk Terminal for terminal box
JP2013229424A (en) * 2012-04-25 2013-11-07 Kitani Denki Kk Terminal box for solar cell module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005117141A1 (en) * 2004-05-25 2005-12-08 Kitani Electric Co., Ltd. Terminal box for solar cell module
US20100259105A1 (en) * 2009-04-09 2010-10-14 Manfred Schaarschmidt Connecting device for a photovoltaic solar module, method for the production thereof and solar installation with such a connecting device
WO2012000392A1 (en) * 2010-06-30 2012-01-05 Byd Company Limited Junction box for solar battery
JP2012049460A (en) * 2010-08-30 2012-03-08 Hosiden Corp Terminal box
JP2012190835A (en) * 2011-03-08 2012-10-04 Nippon Tanshi Kk Terminal for terminal box
JP2013229424A (en) * 2012-04-25 2013-11-07 Kitani Denki Kk Terminal box for solar cell module

Also Published As

Publication number Publication date
JP2019092234A (en) 2019-06-13

Similar Documents

Publication Publication Date Title
CN105580151B (en) Thermo-electric conversion module
CN106663773A (en) Electrode member, current collecting plate, and battery block
CN102804396B (en) Terminal box for solar cell module
WO2006117895A1 (en) Terminal box for solar cell module
JP2014534798A (en) Diode cell module
CN213125974U (en) Photovoltaic junction box and photovoltaic module
JP5146406B2 (en) Terminal box for solar cell module
EP3166222B1 (en) Photovoltaic junction box
JP5487405B2 (en) connector
JP2015032672A (en) Terminal box for solar cell module
JP5273075B2 (en) Terminal box for solar cell module
JP2005150277A (en) Terminal box for solar cell module
WO2017164151A1 (en) Terminal box
JP2017135891A (en) Terminal block and terminal box
JP2009246053A (en) Diode having frame board
JP3108179U (en) Terminal box for a solar cell module using a terminal plate having heat radiation fins
JP5561527B2 (en) Circuit assembly and electrical junction box
JP5580723B2 (en) Covering diode and terminal box for solar cell module
WO2006134705A1 (en) Terminal box for solar cell module
CN209766854U (en) Miniaturized semiconductor laser module
CN216773275U (en) LED packaging structure and light source
JP2006013145A (en) Terminal box for solar cell module
CN220895298U (en) Power inductor
JP2008053301A (en) Thermoelectric conversion module
JP6058124B2 (en) Terminal box and solar cell module

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17770193

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17770193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP