WO2017164029A1 - Electronic switch device and electronic switch system - Google Patents

Electronic switch device and electronic switch system Download PDF

Info

Publication number
WO2017164029A1
WO2017164029A1 PCT/JP2017/010338 JP2017010338W WO2017164029A1 WO 2017164029 A1 WO2017164029 A1 WO 2017164029A1 JP 2017010338 W JP2017010338 W JP 2017010338W WO 2017164029 A1 WO2017164029 A1 WO 2017164029A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
power supply
switch
electronic switch
voltage
Prior art date
Application number
PCT/JP2017/010338
Other languages
French (fr)
Japanese (ja)
Inventor
賢吾 宮本
後藤 潔
智裕 三宅
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2017164029A1 publication Critical patent/WO2017164029A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • G01V8/12Detecting, e.g. by using light barriers using one transmitter and one receiver
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/18Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using Zener diodes

Definitions

  • the present invention generally relates to an electronic switch device and an electronic switch system, and more particularly to an electronic switch device and an electronic switch system including a switch unit that is electrically connected between an AC power supply and a load.
  • an electronic switch device (automatic switch with a heat ray sensor) that detects a heat ray radiated from a human body and turns on / off a load is known (for example, see Patent Document 1).
  • the electronic switch device described in Patent Document 1 includes a load control circuit having a primary winding of a current transformer, a full-wave rectifier, and a bidirectional thyristor that controls on / off of power supply to a load between connection terminals. Are connected in series.
  • a power supply circuit is connected between the DC output terminals of the full-wave rectifier.
  • the power supply circuit supplies power to a constant voltage circuit that generates a control power supply (operation power supply) for a control IC (Integrated Circuit) when the load is not energized.
  • the auxiliary power supply circuit supplies power to the constant voltage circuit by the current flowing through the secondary winding of the current transformer.
  • Patent Document 1 has a problem that it is difficult to reduce the size because a current transformer is required to secure a control power supply when a load is energized.
  • the present invention has been made in view of the above reasons, and an object thereof is to provide an electronic switch device and an electronic switch system that can be miniaturized.
  • An electronic switch device includes a switch unit, a power supply unit, a control unit, and a power feeding circuit.
  • the switch unit is electrically connected between an AC power source and a load, and switches between conduction and non-conduction between the AC power source and the load.
  • the power supply unit is electrically connected between both ends of the switch unit, and generates a control voltage by power supplied from the AC power supply.
  • the control unit operates by receiving the control voltage from the power supply unit, and controls the switch unit.
  • the power feeding circuit is electrically connected between both ends of the switch unit, and serves as a single path for the supplied power between the switch unit and the power supply unit.
  • the power supply circuit is configured to supply the supply power to the power supply unit when the magnitude of the voltage between the both ends of the switch unit exceeds a predetermined value.
  • An electronic switch system includes a plurality of the electronic switch devices, and the plurality of switch units included in the plurality of electronic switch devices are electrically connected in parallel between an AC power supply and a load. .
  • FIG. 1 is a schematic circuit diagram showing a configuration of an electronic switch device according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic circuit diagram showing the configuration of the electronic switch system according to the first embodiment of the present invention.
  • FIG. 3 is a circuit diagram showing a configuration of a power generation block of the above electronic switch device.
  • FIG. 4 is a timing chart showing the operation of the above electronic switch system.
  • FIG. 5 is a schematic circuit diagram showing a configuration of an electronic switch system according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic circuit diagram showing the configuration of the electronic switch device according to the third embodiment of the present invention.
  • the electronic switch devices 1 ⁇ / b> A and 1 ⁇ / b> B according to the first embodiment are electrically connected between an AC power supply 11 and a load 12, and are energized from the AC power supply 11 to the load 12. Is a wiring device for switching between.
  • the electronic switch devices 1A and 1B are attached to a wall of a house, for example.
  • the AC power supply 11 is, for example, a single-phase 100 [V], 60 [Hz] commercial power supply.
  • the load 12 is, for example, a lighting device including a light source having an LED (Light Emitting Diode) and a lighting circuit that turns on the light source. In the load 12, the light source is turned on when power is supplied from the AC power supply 11.
  • the electronic switch system 10 is configured by two electronic switch devices 1A and 1B. That is, the electronic switch system 10 includes a plurality (here, two) of electronic switch devices 1A and 1B.
  • the two electronic switch devices 1A and 1B adopt a common configuration.
  • each of the two electronic switch devices 1A and 1B is referred to as an “electronic switch device 1”.
  • the electronic switch device 1 includes a switch unit Q1 including a semiconductor switch such as a bidirectional thyristor and a transistor.
  • the electronic switch device 1 electronically switches between conduction and non-conduction between the AC power supply 11 and the load 12 by electronically controlling the switch unit Q1.
  • the electronic switch device 1 is a so-called three-way switch that can connect three wires.
  • the electronic switch device 1 includes three connection terminals 101, 102, and 103. Therefore, in the electronic switch system 10 in which the two electronic switch devices 1A and 1B are combined, it is possible to switch the energization state to the load 12 at, for example, two places, the upper floor portion and the lower floor portion of the stairs in the building. is there.
  • connection terminal 101 of the electronic switch device 1 ⁇ / b> A (hereinafter also referred to as “first electronic switch device 1 ⁇ / b> A”) is connected to the load 12.
  • a connection terminal 101 of the electronic switch device 1 ⁇ / b> B (hereinafter also referred to as “second electronic switch device 1 ⁇ / b> B”) is connected to the AC power supply 11.
  • the connection terminal 102 of the electronic switch device 1A is connected to the connection terminal 103 of the electronic switch device 1B.
  • the connection terminal 103 of the electronic switch device 1A is connected to the connection terminal 102 of the electronic switch device 1B.
  • the connection terminal 101 and the connection terminal 102 are connected inside the electronic switch device 1.
  • each electronic switch device 1 the switch part Q 1 is connected between the connection terminal 101 and the connection terminal 103. Therefore, in each electronic switch device 1, in a state where the switch portion Q1 is conductive (ON), the connection terminal 101, the connection terminal 102, and the connection terminal 103 are electrically connected via the switch portion Q1. Further, in each electronic switch device 1, the connection terminal 101, the connection terminal 102, and the connection terminal 103 are non-conductive when the switch portion Q ⁇ b> 1 is non-conductive (off).
  • the plurality of switch parts Q1 provided in each of the plurality (two in this case) of electronic switch devices 1A and 1B are electrically connected in parallel between the AC power supply 11 and the load 12. Therefore, in the electronic switch system 10, if one of the switch portions Q1 of the two electronic switch devices 1A and 1B is conductive, the AC power supply 11 and the load 12 are conductive, and the two electronic switch devices 1A, 1A, Power is supplied from the AC power supply 11 to the load 12 via 1B. Therefore, in the electronic switch system 10, it is possible to switch the energization state to the load 12 in both the switch unit Q1 of the electronic switch device 1A and the switch unit Q1 of the electronic switch device 1B.
  • the electronic switch device 1 includes a rectifier 2 and a circuit unit 3 in addition to the switch unit Q1 and the three connection terminals 101, 102, and 103, as shown in FIG.
  • the switch part Q1, the three connection terminals 101, 102, 103, the rectifier 2 and the circuit part 3 are housed in one housing, and the housing is fixed to a wall or the like, whereby the electronic switch device 1 Is attached to a wall or the like.
  • the switch unit Q1 is electrically connected between the AC power supply 11 and the load 12, and switches between conduction and non-conduction between the AC power supply 11 and the load 12.
  • the switch part Q1 is configured by a three-terminal bidirectional thyristor (triac).
  • the switch part Q ⁇ b> 1 is electrically connected between the connection terminal 101 and the connection terminal 103, and switches bidirectional current passage / cutoff between the connection terminal 101 and the connection terminal 103.
  • the control terminal of the switch unit Q1 (the gate terminal of the bidirectional thyristor) is electrically connected to the circuit unit 3. Thereby, the switch part Q1 is controlled by the control part 5 mentioned later.
  • the switch portion Q1 is represented by a circuit symbol similar to that of a mechanical switch having a contact.
  • connection terminal 101, 102, 103 is a component to which wiring is electrically and mechanically connected.
  • the switch portion Q1 is connected between the first connection terminal 101 and the third connection terminal 103.
  • the second connection terminal 102 is a feed terminal of the first connection terminal 101 and is electrically connected to the first connection terminal 101.
  • Rectifier 2 consists of a diode bridge.
  • the rectifier 2 performs full-wave rectification on the voltage applied between both ends of the switch unit Q ⁇ b> 1 (hereinafter also referred to as “inter-switch voltage Vsw”) and outputs the rectified voltage to the circuit unit 3. Therefore, the circuit unit 3 is connected between the DC output terminals of the rectifier 2.
  • the circuit unit 3 uses the electric power after full-wave rectification input from the rectifier 2 to generate a “control voltage” necessary for controlling the switch unit Q1 and driving the sensor unit 31, for example.
  • the switch part Q1 of the two electronic switch devices 1A and 1B is in a non-conductive state, and the AC voltage Vac is applied from the AC power supply 11 to the switch part Q1. That is, if both the two electronic switch devices 1A and 1B are in the OFF state, the inter-switch voltage Vsw is equal to the AC voltage Vac from the AC power supply 11.
  • the circuit unit 3 includes a power generation block 4, a control unit 5, a sensor unit 31, and a voltage monitoring unit 32.
  • the power supply generation block 4 includes a power supply circuit 41 and a power supply unit 42.
  • the power supply unit 42 is electrically connected between both ends of the switch unit Q1.
  • the power supply unit 42 is configured to generate a control voltage using power supplied from the AC power supply 11.
  • the power feeding circuit 41 is electrically connected between both ends of the switch unit Q1.
  • the power feeding circuit 41 serves as a single path of power supplied from the AC power supply 11 to the power supply unit 42 between the switch unit Q1 and the power supply unit 42.
  • “single” means that there is only one. That is, the power feeding circuit 41 forms a unique path as a path of power supplied to the power supply section 42 between the switch section Q1 and the power supply section 42. In other words, there is only one path of power supplied from the AC power supply 11 to the power supply unit 42 between the switch unit Q1 and the power supply unit 42. There is no supply power path.
  • the power feeding circuit 41 and the power supply unit 42 are electrically connected in series between the DC output terminals of the rectifier 2.
  • the power input terminal 401 corresponds to the input terminal of the power feeding circuit 41 and is electrically connected to the positive DC output terminal of the rectifier 2. Therefore, when the switch unit Q1 is in the off state, the full-wave rectified inter-switch voltage Vsw, that is, the pulsating voltage output from the rectifier 2 is between the power input terminal 401 and the ground (reference potential point). Will be applied.
  • the power supply output terminal 402 corresponds to the output terminal of the power supply unit 42 and is electrically connected to the control unit 5.
  • the power supply circuit 41 is configured to supply power to the power supply unit 42 when the magnitude (absolute value) of the inter-switch voltage Vsw becomes equal to or greater than a predetermined value.
  • the power feeding circuit 41 is, for example, a dropper circuit that steps down the input voltage (inter-switch voltage Vsw) and outputs it to the power supply unit 42.
  • the specific configuration of the power generation block 4 will be described in the section “(2.2) Configuration of the power generation block”.
  • the “terminal” such as “power input terminal” in the present embodiment may not be a component (terminal) for connecting an electric wire or the like, for example, a lead of an electronic component or a part of a conductor included in a circuit board. It may be.
  • the control unit 5 operates by receiving a control voltage from the power generation block 4.
  • the control unit 5 has a function of controlling the switch unit Q1. Specifically, the control unit 5 outputs a control signal to the control terminal of the switch unit Q1 (the gate terminal of the bidirectional thyristor) based on the detection result of the sensor unit 31, thereby making the switch unit Q1 conductive and non-conductive.
  • the switch unit Q1 is controlled to switch between conduction. Further, when the switch unit Q1 is turned on, the control unit 5 determines the timing for outputting the control signal based on the monitoring signal output from the voltage monitoring unit 32.
  • the control unit 5 includes a drive circuit for driving the switch unit Q1, and the control unit 5 directly controls the switch unit Q1.
  • the control unit 5 includes, for example, a microcomputer as a main configuration.
  • the microcomputer realizes a function as the control unit 5 by executing a program recorded in the memory of the microcomputer by a CPU (Central Processing Unit).
  • the program may be recorded in advance in a memory of a microcomputer, may be provided by being recorded on a recording medium such as a memory card, or may be provided through an electric communication line.
  • the program is a program for causing the microcomputer to function as the control unit 5.
  • the sensor unit 31 detects whether or not a person is present in the detection area.
  • the sensor unit 31 includes, for example, a pyroelectric element, and determines whether there is a person in the detection area by detecting infrared rays emitted from the human body.
  • the sensor unit 31 outputs to the control unit 5 an on control instruction for turning on the switch unit Q1.
  • the voltage monitoring unit 32 is configured to monitor (detect) the magnitude of the inter-switch voltage Vsw.
  • the voltage monitoring unit 32 is electrically connected between the DC output terminals of the rectifier 2 and monitors the magnitude of the inter-switch voltage Vsw after full-wave rectification.
  • the voltage monitoring unit 32 compares the magnitude (absolute value) of the inter-switch voltage Vsw with a reference value, and outputs a monitoring signal indicating the comparison result to the control unit 5.
  • the control unit 5 When receiving the ON control instruction from the sensor unit 31, the control unit 5 outputs a control signal to the switch unit Q1 based on the monitoring signal from the voltage monitoring unit 32. Specifically, based on the monitoring signal from the voltage monitoring unit 32, the control unit 5 causes the switch unit Q1 to conduct when the magnitude (absolute value) of the inter-switch voltage Vsw is greater than or equal to a reference value. Since the switch unit Q1 is composed of a bidirectional thyristor as described above, the switch unit Q1 becomes conductive when a control signal is input, and becomes non-conductive near the zero cross point (0 [V]) of the AC voltage Vac from the AC power supply 11.
  • the switch portion Q1 when the current flowing through the switch portion Q1 becomes 0 [A] after the switch portion Q1 is turned on, the switch portion Q1 becomes non-conductive. Therefore, depending on the type of the load 12, it is earlier than the zero cross point of the AC voltage Vac.
  • the switch part Q1 may become non-conductive at the timing. Therefore, the control unit 5 conducts the switch unit Q1 by outputting a control signal every half cycle of the AC voltage Vac. That is, the ON state of the switch part Q1 here includes not only the state in which the switch part Q1 is continuously conducted but also the state in which the switch part Q1 is intermittently conducted. Moreover, the control part 5 maintains the switch part Q1 non-conducting by not outputting a control signal to the switch part Q1, when making the switch part Q1 into an OFF state.
  • the power feeding circuit 41 includes a Zener diode ZD1, an active element Q10, a first resistor R1, a second resistor R2, a diode D1, and a current limiting unit 43.
  • the power supply unit 42 includes a capacitor C ⁇ b> 1 and a regulator 44.
  • the power feeding circuit 41 is a dropper circuit that steps down the voltage input from the power input terminal 401 and outputs the voltage to the power supply unit 42.
  • a resistor R1, an active element Q10, a diode D1, and a capacitor C1 are electrically connected in series.
  • the series circuit of the resistor R1, the active element Q10, and the diode D1 constitutes a part of the path of power supplied to the power supply unit 42, that is, a part of the charging path 40 of the capacitor C1.
  • the third resistor R3 of the current limiting unit 43 is interposed between the active element Q10 and the diode D1, but here the current limiting unit 43 is omitted first (that is, the active element Q10 and the diode D1 are directly connected).
  • the active element Q10 is a voltage-driven active element that is provided on the charging path 40 of the capacitor C1 between both ends of the switch unit Q1 and is turned on when the magnitude of the inter-switch voltage Vsw is a predetermined value or more.
  • the active element Q10 is composed of, for example, an enhancement type n-channel MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor).
  • the drain terminal of the active element Q10 is electrically connected to the power input terminal 401 through the resistor R1.
  • a source terminal serving as an output terminal of the active element Q10 is electrically connected to an anode terminal of the diode D1.
  • the cathode terminal of the diode D1 is electrically connected to the ground via the capacitor C1.
  • the “output terminal of the active element Q10” means a terminal that outputs a constant voltage when the active element Q10 is used as a constant voltage circuit in combination with the Zener diode ZD1.
  • a transistor has a pair of main terminals (a drain terminal and a source terminal in the case of a MOSFET) and a control terminal (a gate terminal in the case of a MOSFET), so that one of the pair of main terminals is active. This corresponds to the output terminal of the element Q10.
  • the resistor R2 and the Zener diode ZD1 are electrically connected in series between the power input terminal 401 and the ground.
  • the cathode terminal of the Zener diode ZD1 is electrically connected to the power input terminal 401 via the resistor R2.
  • the anode terminal of the Zener diode ZD1 is electrically connected to the ground.
  • the gate terminal (control terminal) of the active element Q10 is electrically connected to the cathode terminal of the Zener diode ZD1.
  • the regulator 44 is a three-terminal regulator (series regulator).
  • the input terminal of the regulator 44 is electrically connected to the high potential side terminal of the capacitor C1, that is, the cathode terminal of the diode D1.
  • the output terminal of the regulator 44 is electrically connected to the power supply output terminal 402.
  • the power supply circuit 41 receives power supplied from the AC power supply 11 and charges the capacitor C1 with a constant voltage based on the Zener voltage (breakdown voltage) of the Zener diode ZD1. That is, when a gate voltage higher than the threshold voltage of the active element Q10 is applied between the gate terminal and the source terminal of the active element Q10 by a series circuit of the resistor R2 and the Zener diode ZD1, a constant voltage is generated from the source terminal of the active element Q10. Is output. At this time, the voltage between the gate terminal of the active element Q10 and the ground is clamped to the Zener voltage of the Zener diode ZD1. Therefore, a voltage obtained by subtracting the gate voltage of the active element Q10 and the forward voltage of the diode D1 from the Zener voltage is applied between both ends of the capacitor C1.
  • the active element Q10 when the voltage across the switch Q1, that is, the voltage applied between the power supply input terminal 401 and the ground exceeds a predetermined value, the active element Q10 is turned on and the power supplied to the power supply 42 is supplied. Supplied.
  • the predetermined value here is a voltage obtained by adding the Zener voltage of the Zener diode ZD1, the gate voltage of the active element Q10, and the forward voltage of the diode D1 to the voltage across the capacitor C1 (hereinafter referred to as “minimum charging voltage”).
  • minimum charging voltage a voltage obtained by adding the Zener voltage of the Zener diode ZD1, the gate voltage of the active element Q10, and the forward voltage of the diode D1 to the voltage across the capacitor C1 (hereinafter referred to as “minimum charging voltage”).
  • the active element Q10 of the power supply circuit 41 is turned on, so that the input impedance of the power supply circuit 41 is in a low impedance state. Therefore, supply power is supplied to the power supply unit 42, and a control voltage is generated in the power supply unit 42. However, when the capacitor C1 is in a fully charged state, no current flows from the power supply circuit 41 to the power supply unit 42, so the input impedance of the power supply circuit 41 is in a high impedance state.
  • the minimum charging voltage (predetermined value) here is a voltage value necessary for the power feeding circuit 41 to supply power to the power supply unit 42, and depends on, for example, a circuit constant such as a Zener voltage of the Zener diode ZD1. It can be set arbitrarily.
  • the active element Q10 of the power feeding circuit 41 is a MOSFET, the minimum charging voltage is suppressed lower than the configuration in which the active element Q10 is a bipolar transistor (hereinafter referred to as “comparative example”). It is possible. The reason will be briefly described below.
  • the current path passing through the resistor R2 is required to have a relatively high impedance in order to suppress the occurrence of leakage current.
  • the leakage current here is a relatively large current that flows through the power feeding circuit 41 when the switch portion Q1 is non-conductive, and is a current that can cause a malfunction of the load 12.
  • the load 12 is a lighting device
  • a leak current occurs, a so-called flash phenomenon may occur in which the light source of the load 12 is temporarily turned on.
  • the inter-switch voltage Vsw necessary for flowing the base current to the bipolar transistor is relatively large.
  • the active element Q10 is a MOSFET, the active element Q10 is not limited as long as a predetermined gate voltage is applied to the active element Q10 regardless of the impedance of the current path passing through the resistor R2.
  • the power is turned on to supply power to the power supply unit 42. Therefore, in the electronic switch device 1 of the present embodiment, the minimum charging voltage can be suppressed lower (about 10 [V] as an example) as compared with the comparative example.
  • the current limiting unit 43 is provided on the path of power supplied to the power supply unit 42 including the active element Q10, that is, on the charging path 40 of the capacitor C1.
  • the current limiting unit 43 stops the supply of supply power to the power source unit 42 when a current of a specified value or more flows from the AC power source 11 to the power source unit 42.
  • the current limiting unit 43 stops the supply of supply power to the power supply unit 42 by turning off the active element Q10 when a current of a specified value or more flows through the active element Q10 of the power feeding circuit 41.
  • the current limiting unit 43 includes a third resistor R3, a fourth resistor R4, and a switch element Q11.
  • the resistor R3 is a shunt resistor that is electrically connected to the output terminal (source terminal) of the active element Q10 and functions as a detection resistor that detects a current flowing through the active element Q10.
  • the resistor R3 is electrically connected between the source terminal of the active element Q10 and the anode terminal of the diode D1 in the power feeding circuit 41.
  • the switch element Q11 is electrically connected between the output terminal (source terminal) and the control terminal (gate terminal) of the active element Q10.
  • the switch element Q11 is formed of an npn-type bipolar transistor.
  • the emitter terminal of the switch element Q11 is electrically connected to the source terminal of the active element Q10 via the resistor R3.
  • the collector terminal of the switch element Q11 is electrically connected to the gate terminal of the active element Q10.
  • the base terminal of the switch element Q11 is electrically connected to the source terminal of the active element Q10 via the resistor R4.
  • a series circuit of the resistor R3 and the resistor R4 is electrically connected between the base terminal and the emitter terminal of the switch element Q11.
  • the current limiting unit 43 turns on the switch element Q11 with the voltage across the resistor R3, thereby turning off the active element Q10. To. That is, when a current of a specified value or more flows through the active element Q10 through the resistor R3, the switch element Q11 is biased by the voltage generated in the resistor R3 due to this current, and the current flows into the base terminal of the switch element Q11 through the resistor R4. . At this time, when the switch element Q11 is turned on, the gate terminal and the source terminal of the active element Q10 are short-circuited, and the active element Q10 is turned off.
  • the charging path 40 of the capacitor C1 is cut off, and the generation of the control voltage in the power supply unit 42 is stopped.
  • the capacitor C ⁇ b> 1 is electrically disconnected from the power supply input terminal 401 by the current limiting unit 43, and the supply power to the power supply unit 42 is supplied. Stop.
  • the specified value here is a current value of the power feeding circuit 41 when the current limiting unit 43 is operated, and can be arbitrarily set by a circuit constant such as a resistance value of the resistor R3, for example.
  • a value obtained by adding a predetermined margin to the rated current value of the power feeding circuit 41 is set as the specified value.
  • FIG. 4 shows the AC voltage “Vac”, the inter-switch voltage “Vsw”, the monitoring signal “S1a” of the first electronic switching device 1A, the monitoring signal “S1b” of the second electronic switching device 1B, and the second electronic
  • the state (conduction / non-conduction) of the switch part Q1 of the switch apparatus 1B is shown.
  • Q1 representing the state of the switch part Q1
  • “ON” represents conduction and “OFF” represents non-conduction.
  • the signal levels of the monitoring signals S1a and S1b are L level (Low level) when the absolute value of the inter-switch voltage Vsw is greater than or equal to the reference value Vth1, and the absolute value of the inter-switch voltage Vsw is less than the reference value Vth1. Is at the H level (High level).
  • the inter-switch voltage Vsw is the same voltage as the AC voltage Vac.
  • FIG. 4 shows the voltage across the switch unit Q1 in the first electronic switch device 1A, but the voltage across the switch unit Q1 in the second electronic switch device 1B is also the voltage across the switch unit Q1 in the first electronic switch device 1A. Same as voltage.
  • the inter-switch voltage Vsw becomes sufficiently large in most of the period of one cycle of the AC voltage Vac. Therefore, in both of the two electronic switch devices 1A and 1B, the inter-switch voltage Vsw becomes equal to or higher than the minimum charging voltage during most of one cycle of the AC voltage Vac, and the power is supplied to the power source unit 42 to supply power.
  • the control voltage can be generated by the unit 42.
  • monitoring signals S1a and S1b are at the H level, but the magnitude (absolute value) of the inter-switch voltage Vsw is the reference value Vth1. If it becomes above, monitoring signal S1a, S1b will be L level. Therefore, in the example of FIG. 4, the monitoring signals S1a and S1b are at the H level during a period until the time point t3 when the magnitude (absolute value) of the inter-switch voltage Vsw reaches the reference value Vth1, and the monitoring signal S1a, S1b becomes L level.
  • the control unit 5 of the second electronic switch device 1B makes the switch unit Q1 conductive. Therefore, at time point t4 immediately after time point t3, the switch part Q1 of the second electronic switch device 1B becomes conductive, and the inter-switch voltage Vsw becomes substantially 0 [V]. Therefore, at time t4, the monitoring signals S1a and S1b become H level. While the switch part Q1 of the second electronic switch device 1B is in the ON state, the second electronic switch device 1B repeats the above-described operation, so that the inter-switch voltage Vsw is intermittent during the period from the time point t2 to the time point t4. Will occur.
  • the control voltage is generated by the power source unit 42 during the period from the time point t2 to the time point t4 in one cycle of the AC voltage Vac. Is possible. Also in the second electronic switch device 1B in which the switch unit Q1 is in the ON state, in the same manner as the first electronic switch device 1A, in the period from the time point t2 to the time point t4 in one cycle of the AC voltage Vac, The generation of the control voltage at 42 is possible.
  • the electronic switch device 1 if the inter-switch voltage Vsw is equal to or higher than the minimum charging voltage as described above, supply power is supplied from the power supply circuit 41 to the power supply unit 42, and a control voltage can be generated in the power supply unit 42. It is. Therefore, even when the inter-switch voltage Vsw is relatively low, the control voltage can be generated in the power supply unit 42 as long as the inter-switch voltage Vsw equal to or higher than the minimum charging voltage is generated.
  • the control voltage can be generated by the power supply unit. That is, if the reference value Vth1 is equal to or higher than the minimum charge voltage, the inter-switch voltage Vsw is always equal to or higher than the minimum charge voltage after the switch portion Q1 is turned off and before the switch portion Q1 is turned on again.
  • the control voltage can be generated by the power supply unit 42.
  • the electronic switch device 1 includes the switch unit Q1, the power supply unit 42, the control unit 5, and the power feeding circuit 41.
  • the switch unit Q1 is electrically connected between the AC power supply 11 and the load 12, and switches between conduction and non-conduction between the AC power supply 11 and the load 12.
  • the power supply unit 42 is electrically connected between both ends of the switch unit Q ⁇ b> 1 and generates a control voltage by power supplied from the AC power supply 11.
  • the control unit 5 operates by receiving the control voltage from the power supply unit 42, and controls the switch unit Q1.
  • the power feeding circuit 41 is electrically connected between both ends of the switch unit Q1, and serves as a single path for the supplied power between the switch unit Q1 and the power supply unit.
  • the power feeding circuit 41 is configured to supply the supplied power to the power source unit 42 when the voltage across the switch unit Q1 exceeds a predetermined value.
  • the supply power is supplied to the power supply unit 42 that generates the control voltage by the supply power from the AC power supply 11 through the single path including the power feeding circuit 41.
  • the power feeding circuit 41 supplies the power supply 42 to the power supply unit 42 when the magnitude of the voltage across the switch unit Q1 exceeds a predetermined value (minimum charging voltage). Therefore, the power feeding circuit 41 always has the same path to the power supply unit 42 regardless of whether the switch unit Q1 is in the on state or the off state without switching the power supply path to the power supply unit 42. Supply power is supplied.
  • the electronic switch device 1 does not require a current transformer to secure a control voltage when the load 12 is energized, and can be downsized. Furthermore, since the electronic switch device 1 does not require a configuration for switching the path of power supplied to the power supply unit 42 and complicated control for switching the path of power supplied to the power supply unit 42, the electronic switch device 1 can be further downsized. Is possible.
  • the power supply unit 42 includes the capacitor C1.
  • the power feeding circuit 41 preferably includes a voltage-driven active element Q10.
  • the active element Q10 is provided in the charging path 40 of the capacitor C1 between both ends of the switch unit Q1, and is turned on when the magnitude of the voltage between both ends of the switch unit Q1 is a predetermined value or more.
  • the capacitor C1 is charged and the control voltage is secured even when the voltage Vsw between the switches is lower than in the configuration in which the bipolar transistor is applied to the power supply circuit 41. Is possible.
  • this configuration is not an essential configuration for the electronic switch device 1.
  • the active element Q10 may not be a voltage-driven element.
  • the active element Q10 is preferably a field effect transistor (FET).
  • FET field effect transistor
  • the power feeding circuit 41 can be realized without using special parts.
  • the active element Q10 may be, for example, an IGBT (Insulated Gate Bipolar Transistor).
  • the power supply circuit 41 causes the power supply section 42 to flow when a current of a specified value or more flows from the AC power supply 11 to the power supply section 42. It is preferable to have a current limiting unit 43 that stops the supply of power supplied to the. According to this configuration, since the current flowing through the power feeding circuit 41 is limited, the stress applied to the components of the power feeding circuit 41 can be reduced, and the current capacity required for the power feeding circuit 41 can be reduced. Furthermore, according to the current limiting unit 43, it is possible to suppress malfunction of the load 12 (for example, occurrence of a flash phenomenon) by suppressing an inrush current flowing through the power supply circuit 41 when the AC power supply 11 is turned on, for example.
  • this configuration is not an essential configuration for the electronic switch device 1. For example, by applying an element having a large current capacity to the active element Q10 or applying an element having a small capacitance to the capacitor C1, the current can be reduced.
  • the restriction unit 43 may be omitted.
  • the electronic switch device 1 further includes a sensor unit 31 in any one of the first to fourth aspects, and the control unit 5 controls the switch unit Q1 based on the output of the sensor unit 31. It is preferable that it is comprised. According to this configuration, the sensor unit 31 can be driven by the control voltage generated by the power supply unit 42, and the switch unit Q1 can be automatically controlled by the output of the sensor unit 31. However, this configuration is not essential for the electronic switch device 1, and the sensor unit 31 is omitted as appropriate.
  • the electronic switch system 10 includes a plurality of electronic switch devices 1 according to any one of the first to fifth aspects, and the plurality of switch units Q1 included in the plurality of electronic switch devices 1 includes an AC power supply 11 and a load 12. They are electrically connected in parallel.
  • the electronic switch system 10 includes a plurality of electronic switch devices 1, and each of the plurality of electronic switch devices 1 includes a switch unit Q1, a power supply unit 42, a control unit 5, and a power feeding circuit 41.
  • the switch unit Q1 is electrically connected between the AC power supply 11 and the load 12, and switches between conduction and non-conduction between the AC power supply 11 and the load 12.
  • the power supply unit 42 is electrically connected between both ends of the switch unit Q ⁇ b> 1 and generates a control voltage by power supplied from the AC power supply 11.
  • the control unit 5 operates by receiving the control voltage from the power supply unit 42, and controls the switch unit Q1.
  • the power feeding circuit 41 is electrically connected between both ends of the switch unit Q1, and serves as a single path for the supplied power between the switch unit Q1 and the power supply unit.
  • the power feeding circuit 41 is configured to supply the supplied power to the power source unit 42 when the voltage across the switch unit Q1 exceeds a predetermined value.
  • the plurality of switch portions Q1 included in each of the plurality of electronic switch devices 1 are electrically connected in parallel between the AC power supply 11 and the load 12.
  • each of the plurality of electronic switch devices 1 does not switch the supply power path to the power supply unit 42, regardless of whether the switch unit Q1 is in the on state or the off state.
  • the power supply unit 42 is always supplied with supplied power through the same path.
  • each electronic switch device 1 does not need a current transformer to secure a control voltage when the load 12 is energized, and can be downsized.
  • each electronic switch device 1 does not require a configuration for switching a path of power supplied to the power supply unit 42 and a complicated control for switching a path of power supplied to the power supply unit 42, so that the electronic switch device 1 is further downsized. Is possible.
  • both the electronic switch device 1A in which the switch unit Q1 is in the off state and the electronic switch device 1B in which the switch unit Q1 is in the on state can be secured.
  • the electronic switch device 1 according to the first embodiment is merely an example of the present invention, and the present invention is not limited to the first embodiment, and the present invention is not limited to the first embodiment.
  • Various modifications can be made in accordance with the design and the like as long as they do not depart from the technical idea of the above. Below, the modification of Embodiment 1 is enumerated.
  • the load 12 is not limited to the lighting device, and may be, for example, an electric device such as a ventilation fan and a security device. Further, the load 12 is not limited to one electrical device, and may be a plurality of electrical devices electrically connected in series or in parallel.
  • the switch unit Q1 is not limited to the bidirectional thyristor, but may be other semiconductor switches.
  • the switch part Q1 may be two MOSFETs electrically connected in series between the first connection terminal 101 and the third connection terminal 103, for example.
  • the two MOSFETs are switched between bidirectional current passing / cut-off by connecting the source terminals to each other, that is, by connecting them in a so-called reverse series.
  • the switch portion Q1 may be a semiconductor device having a double gate (dual gate) structure using a wide band gap semiconductor material such as GaN (gallium nitride).
  • a drive circuit for driving the switch unit Q1 may be provided separately from the control unit 5.
  • the control voltage is also used for the operation of the drive circuit.
  • the sensor unit 31 is not limited to a human sensor that detects whether or not a person is present, and may be a brightness sensor, for example. Or the sensor part 31 may have both a human sensor and a brightness sensor.
  • the electronic switch device 1 is not limited to the configuration in which the switch unit Q1 is controlled based on the detection result of the sensor unit 31, and is, for example, an electronic switch device with a remote operation function, a timer function, or a dimming function. Also good. For example, if it is the electronic switch apparatus 1 with a remote operation function, the control part 5 will control switch part Q1 based on the wireless signal from a remote controller.
  • the electronic switch device 1 may be configured such that the switch unit Q1 is controlled based on a human operation on an operation unit such as a push button switch or a touch switch.
  • the voltage monitoring unit 32 may be configured to monitor the magnitude of the inter-switch voltage Vsw before full-wave rectification, not the inter-switch voltage Vsw after full-wave rectification. In this case, the voltage monitoring unit 32 is electrically connected between the AC input terminals of the rectifier 2. Furthermore, the voltage monitoring unit 32 may also be used as a zero cross detection unit for detecting the zero cross point of the AC voltage Vac. The zero-cross detection unit detects the zero-cross point when the inter-switch voltage Vsw shifts from less than the reference value (absolute value) set near 0 [V] to more than the reference value.
  • the voltage monitoring unit 32 is not an essential component for the electronic switch device 1 and may be omitted.
  • the control unit 5 may control the switch unit Q1 based on the detection result of the voltage across the capacitor C1, for example. Specifically, the control unit 5 causes the switch unit Q1 to conduct when the voltage across the capacitor C1 reaches a predetermined threshold.
  • the threshold here is the voltage across the capacitor C1 when the capacitor C1 is charged to such an extent that the operation of the control unit 5 and the like until the next time when the active element Q10 is turned on can be secured.
  • the specific circuits of the power feeding circuit 41 and the power supply unit 42 are not limited to the circuit shown in FIG. 3 and can be changed as appropriate.
  • the power feeding circuit 41 may be a constant voltage circuit having an operational amplifier in addition to the Zener diode ZD1 and the active element Q10, or the active element Q10 may be omitted.
  • the switch element Q11 of the current limiting unit 43 is not limited to a bipolar transistor, and may be, for example, an enhancement type n-channel MOSFET.
  • the capacitor C1 may be connected to the output of the regulator 44, or a capacitor other than the capacitor C1 may be connected to the output of the regulator 44.
  • the regulator 44 in the power supply unit 42 is not essential for the electronic switch device 1, and the regulator 44 may be omitted.
  • “more than” is the case where the two values are equal and the case where one of the two values exceeds the other. Including both.
  • “more than” here may be synonymous with “greater than” including only when one of the binary values exceeds the other. That is, whether or not the case where the two values are equal can be arbitrarily changed depending on the setting of the reference value or the like, so there is no technical difference between “greater than” or “greater than”.
  • “less than” may be synonymous with “below”.
  • the electronic switch system 10A As shown in FIG. 5, the electronic switch system 10A according to the second embodiment includes a combination of three electronic switch devices 1A, 1B, and 1C.
  • the same configurations as those of the first embodiment are denoted by common reference numerals, and description thereof is omitted as appropriate.
  • the electronic switch devices 1A and 1B are so-called three-way switches as in the first embodiment.
  • the electronic switch device 1C is a so-called four-way switch that can connect four wires.
  • the electronic switch device 1C includes a fourth connection terminal 104 in addition to the three connection terminals 101, 102, 103 similar to the electronic switch devices 1A, 1B.
  • connection terminal 103 and the connection terminal 104 are connected inside the electronic switch device 1C.
  • the connection terminal 102 of the electronic switch device 1A is connected to the connection terminal 101 of the electronic switch device 1C.
  • the connection terminal 103 of the electronic switch device 1A is connected to the connection terminal 104 of the electronic switch device 1C.
  • the connection terminal 102 of the electronic switch device 1B is connected to the connection terminal 103 of the electronic switch device 1C.
  • the connection terminal 103 of the electronic switch device 1B is connected to the connection terminal 102 of the electronic switch device 1C.
  • the plurality of switch units Q1 included in each of the plurality (here, three) of electronic switch devices 1A, 1B, and 1C are electrically connected in parallel between the AC power supply 11 and the load 12. Is done. Therefore, if any one of the switch units Q1 of the three electronic switch devices 1A, 1B, and 1C is conductive, the AC power source 11 and the load 12 are conductive, and the three electronic switch devices 1A, 1B, and 1C are connected. The power is supplied from the AC power supply 11 to the load 12.
  • the energization state to the load 12 can be switched in all of the switch unit Q1 of the electronic switch device 1A, the switch unit Q1 of the electronic switch device 1B, and the switch unit Q1 of the electronic switch device 1C. It is. Therefore, in the electronic switch system 10A in which the three electronic switch devices 1A, 1B, and 1C are combined, the energization state to the load 12 can be switched at three locations.
  • a current transformer is not required to secure a control voltage when the load 12 is energized, and the electronic switch device 1 can be downsized. There is an advantage that there is.
  • the electronic switch system 10A may include two or more electronic switch devices 1C (so-called four-way switches), and may include a total of four or more electronic switch devices 1A, 1B, and 1C. Good.
  • the plurality of switch units Q1 included in each of the plurality of electronic switch devices 1A, 1B, and 1C are electrically connected in parallel between the AC power supply 11 and the load 12, so that the load 12 is energized. Can be switched at four or more locations.
  • the configuration of the second embodiment (including the modification) can be applied in combination with the configuration of the first embodiment (including the modification) as appropriate.
  • the electronic switch device 1D according to the third embodiment is a so-called one-sided switch that can connect two wires as shown in FIG.
  • the same configurations as those of the first embodiment are denoted by common reference numerals, and description thereof is omitted as appropriate.
  • the electronic switch device 1D includes two connection terminals 101 and 103.
  • the electronic switch device 1D has a configuration in which the connection terminal 102 of the three connection terminals 101, 102, 103 is omitted from the electronic switch device 1A of Embodiment 1 (see FIG. 2).
  • connection terminal 101 of the electronic switch device 1D is connected to the load 12, and the connection terminal 103 of the electronic switch device 1D is connected to the AC power source 11.
  • the switch unit Q1 of the electronic switch device 1D is electrically connected between the AC power supply 11 and the load 12. Therefore, if the switch part Q1 of the electronic switch device 1D is conductive, the AC power source 11 and the load 12 are conductive, and power is supplied from the AC power source 11 to the load 12 via the electronic switch device 1D.
  • Embodiment 3 can be applied in combination with the configuration of Embodiment 1 (including modifications) as appropriate.

Abstract

Provided are an electronic switch device and an electronic switch system that can be miniaturized. An electronic switch device (1) that comprises a switch part (Q1), a power source part (42), a control part (5), and a power supply circuit (41). The power source part (42) is electrically connected between the ends of the switch part (Q1) and generates a control voltage using supplied power from an alternating current power source. The control part (5) operates by receiving a supply of the control voltage from the power source part (42) and controls the switch part (Q1). The power supply circuit (41) is electrically connected between the ends of the switch part (Q1) and is the only route for the supplied power between the switch part (Q1) and the power source part (42). The power supply circuit (41) is configured to supply the supplied power to the power source part (42) when the voltage between the ends of the switch part (Q1) is at or above a prescribed value.

Description

電子スイッチ装置及び電子スイッチシステムElectronic switch device and electronic switch system
 本発明は、一般に電子スイッチ装置及び電子スイッチシステムに関し、より詳細には、交流電源と負荷との間に電気的に接続されるスイッチ部を備える電子スイッチ装置及び電子スイッチシステムに関する。 The present invention generally relates to an electronic switch device and an electronic switch system, and more particularly to an electronic switch device and an electronic switch system including a switch unit that is electrically connected between an AC power supply and a load.
 従来、人体から放射される熱線を検出して、負荷をオン/オフさせる電子スイッチ装置(熱線センサ付自動スイッチ)が知られている(例えば、特許文献1参照)。特許文献1に記載の電子スイッチ装置は、接続端子間に、カレントトランスの1次巻線と、全波整流器と、負荷への電源供給をオン/オフ制御する双方向サイリスタを有する負荷制御回路とが直列に接続されている。 2. Description of the Related Art Conventionally, an electronic switch device (automatic switch with a heat ray sensor) that detects a heat ray radiated from a human body and turns on / off a load is known (for example, see Patent Document 1). The electronic switch device described in Patent Document 1 includes a load control circuit having a primary winding of a current transformer, a full-wave rectifier, and a bidirectional thyristor that controls on / off of power supply to a load between connection terminals. Are connected in series.
 また、特許文献1に記載の電子スイッチ装置では、全波整流器の直流出力端子間には、電源回路が接続される。電源回路は、制御用IC(Integrated Circuit)用の制御電源(動作電源)を生成する定電圧回路に、負荷の非通電時に電源供給する。また、負荷の通電時には、カレントトランスの2次巻線に流れる電流により、補助電源回路が定電圧回路に電源供給する。 In the electronic switch device described in Patent Document 1, a power supply circuit is connected between the DC output terminals of the full-wave rectifier. The power supply circuit supplies power to a constant voltage circuit that generates a control power supply (operation power supply) for a control IC (Integrated Circuit) when the load is not energized. When the load is energized, the auxiliary power supply circuit supplies power to the constant voltage circuit by the current flowing through the secondary winding of the current transformer.
 特許文献1に記載の電子スイッチ装置は、負荷の通電時に制御電源を確保するためにカレントトランスが必要であるから、小型化が困難であるという問題がある。 The electronic switch device described in Patent Document 1 has a problem that it is difficult to reduce the size because a current transformer is required to secure a control power supply when a load is energized.
特開2000-131456号公報JP 2000-131456 A
 本発明は上記事由に鑑みてなされており、小型化が可能な電子スイッチ装置及び電子スイッチシステムを提供することを目的とする。 The present invention has been made in view of the above reasons, and an object thereof is to provide an electronic switch device and an electronic switch system that can be miniaturized.
 本発明の一態様に係る電子スイッチ装置は、スイッチ部と、電源部と、制御部と、給電回路と、を備えている。前記スイッチ部は、交流電源と負荷との間に電気的に接続され、前記交流電源と前記負荷との間の導通と非導通とを切り替える。前記電源部は、前記スイッチ部の両端間に電気的に接続され、前記交流電源からの供給電力により制御電圧を生成する。前記制御部は、前記電源部から前記制御電圧の供給を受けて動作し、前記スイッチ部を制御する。前記給電回路は、前記スイッチ部の両端間に電気的に接続され、前記スイッチ部と前記電源部との間における前記供給電力の単一の経路となる。前記給電回路は、前記スイッチ部の前記両端間の電圧の大きさが所定値以上になれば前記電源部に前記供給電力を供給するように構成されている。 An electronic switch device according to an aspect of the present invention includes a switch unit, a power supply unit, a control unit, and a power feeding circuit. The switch unit is electrically connected between an AC power source and a load, and switches between conduction and non-conduction between the AC power source and the load. The power supply unit is electrically connected between both ends of the switch unit, and generates a control voltage by power supplied from the AC power supply. The control unit operates by receiving the control voltage from the power supply unit, and controls the switch unit. The power feeding circuit is electrically connected between both ends of the switch unit, and serves as a single path for the supplied power between the switch unit and the power supply unit. The power supply circuit is configured to supply the supply power to the power supply unit when the magnitude of the voltage between the both ends of the switch unit exceeds a predetermined value.
 本発明の一態様に係る電子スイッチシステムは、前記電子スイッチ装置を複数備え、前記複数の電子スイッチ装置が備える複数のスイッチ部は、交流電源と負荷との間に電気的に並列に接続される。 An electronic switch system according to an aspect of the present invention includes a plurality of the electronic switch devices, and the plurality of switch units included in the plurality of electronic switch devices are electrically connected in parallel between an AC power supply and a load. .
図1は、本発明の実施形態1に係る電子スイッチ装置の構成を示す概略回路図である。FIG. 1 is a schematic circuit diagram showing a configuration of an electronic switch device according to Embodiment 1 of the present invention. 図2は、本発明の実施形態1に係る電子スイッチシステムの構成を示す概略回路図である。FIG. 2 is a schematic circuit diagram showing the configuration of the electronic switch system according to the first embodiment of the present invention. 図3は、同上の電子スイッチ装置の電源生成ブロックの構成を示す回路図である。FIG. 3 is a circuit diagram showing a configuration of a power generation block of the above electronic switch device. 図4は、同上の電子スイッチシステムの動作を示すタイミングチャートである。FIG. 4 is a timing chart showing the operation of the above electronic switch system. 図5は、本発明の実施形態2に係る電子スイッチシステムの構成を示す概略回路図である。FIG. 5 is a schematic circuit diagram showing a configuration of an electronic switch system according to Embodiment 2 of the present invention. 図6は、本発明の実施形態3に係る電子スイッチ装置の構成を示す概略回路図である。FIG. 6 is a schematic circuit diagram showing the configuration of the electronic switch device according to the third embodiment of the present invention.
 (実施形態1)
 (1)概要
 実施形態1に係る電子スイッチ装置1A,1Bは、図2に示すように、交流電源11と負荷12との間に電気的に接続され、交流電源11から負荷12への通電状態を切り替える配線器具である。電子スイッチ装置1A,1Bは、例えば住宅の壁等に取り付けられる。交流電源11は、例えば、単相100〔V〕、60〔Hz〕の商用電源である。負荷12は、例えば、LED(Light Emitting Diode)を有する光源と、光源を点灯させる点灯回路とを備える照明装置である。この負荷12では、交流電源11からの電力供給時に光源が点灯する。
(Embodiment 1)
(1) Outline As shown in FIG. 2, the electronic switch devices 1 </ b> A and 1 </ b> B according to the first embodiment are electrically connected between an AC power supply 11 and a load 12, and are energized from the AC power supply 11 to the load 12. Is a wiring device for switching between. The electronic switch devices 1A and 1B are attached to a wall of a house, for example. The AC power supply 11 is, for example, a single-phase 100 [V], 60 [Hz] commercial power supply. The load 12 is, for example, a lighting device including a light source having an LED (Light Emitting Diode) and a lighting circuit that turns on the light source. In the load 12, the light source is turned on when power is supplied from the AC power supply 11.
 図2に示す例では、2つの電子スイッチ装置1A,1Bにて、電子スイッチシステム10が構成されている。つまり、電子スイッチシステム10は、複数(ここでは2つ)の電子スイッチ装置1A,1Bを備えている。2つの電子スイッチ装置1A,1Bは、互いに共通の構成を採用している。以下、2つの電子スイッチ装置1A,1Bをとくに区別しない場合には、2つの電子スイッチ装置1A,1Bの各々を「電子スイッチ装置1」という。 In the example shown in FIG. 2, the electronic switch system 10 is configured by two electronic switch devices 1A and 1B. That is, the electronic switch system 10 includes a plurality (here, two) of electronic switch devices 1A and 1B. The two electronic switch devices 1A and 1B adopt a common configuration. Hereinafter, when the two electronic switch devices 1A and 1B are not particularly distinguished, each of the two electronic switch devices 1A and 1B is referred to as an “electronic switch device 1”.
 電子スイッチ装置1は、例えば、双方向サイリスタ及びトランジスタ等の半導体スイッチからなるスイッチ部Q1を備えている。電子スイッチ装置1は、スイッチ部Q1を電子的に制御することにより、交流電源11と負荷12との間の導通と非導通とを電子的に切り替える。 The electronic switch device 1 includes a switch unit Q1 including a semiconductor switch such as a bidirectional thyristor and a transistor. The electronic switch device 1 electronically switches between conduction and non-conduction between the AC power supply 11 and the load 12 by electronically controlling the switch unit Q1.
 本実施形態では、電子スイッチ装置1は、3本の配線を接続可能な、いわゆる三路スイッチである。電子スイッチ装置1は、3つの接続端子101,102,103を備えている。そのため、2つの電子スイッチ装置1A,1Bを組み合わせた電子スイッチシステム10では、負荷12への通電状態を、例えば、建物における階段の上階部分と下階部分との2箇所で切り替えることが可能である。 In this embodiment, the electronic switch device 1 is a so-called three-way switch that can connect three wires. The electronic switch device 1 includes three connection terminals 101, 102, and 103. Therefore, in the electronic switch system 10 in which the two electronic switch devices 1A and 1B are combined, it is possible to switch the energization state to the load 12 at, for example, two places, the upper floor portion and the lower floor portion of the stairs in the building. is there.
 図2の例では、電子スイッチ装置1A(以下、「第1電子スイッチ装置1A」ともいう)の接続端子101は、負荷12に接続されている。電子スイッチ装置1B(以下、「第2電子スイッチ装置1B」ともいう)の接続端子101は、交流電源11に接続されている。また、電子スイッチ装置1Aの接続端子102は、電子スイッチ装置1Bの接続端子103に接続されている。電子スイッチ装置1Aの接続端子103は、電子スイッチ装置1Bの接続端子102に接続されている。各電子スイッチ装置1において、接続端子101と接続端子102とは電子スイッチ装置1の内部で接続されている。 In the example of FIG. 2, the connection terminal 101 of the electronic switch device 1 </ b> A (hereinafter also referred to as “first electronic switch device 1 </ b> A”) is connected to the load 12. A connection terminal 101 of the electronic switch device 1 </ b> B (hereinafter also referred to as “second electronic switch device 1 </ b> B”) is connected to the AC power supply 11. The connection terminal 102 of the electronic switch device 1A is connected to the connection terminal 103 of the electronic switch device 1B. The connection terminal 103 of the electronic switch device 1A is connected to the connection terminal 102 of the electronic switch device 1B. In each electronic switch device 1, the connection terminal 101 and the connection terminal 102 are connected inside the electronic switch device 1.
 さらに、各電子スイッチ装置1において、スイッチ部Q1は、接続端子101と接続端子103との間に接続されている。したがって、各電子スイッチ装置1において、スイッチ部Q1が導通(オン)した状態では、接続端子101及び接続端子102と、接続端子103との間がスイッチ部Q1を介して導通する。また、各電子スイッチ装置1において、スイッチ部Q1が非導通(オフ)の状態では、接続端子101及び接続端子102と、接続端子103との間が非導通となる。 Furthermore, in each electronic switch device 1, the switch part Q 1 is connected between the connection terminal 101 and the connection terminal 103. Therefore, in each electronic switch device 1, in a state where the switch portion Q1 is conductive (ON), the connection terminal 101, the connection terminal 102, and the connection terminal 103 are electrically connected via the switch portion Q1. Further, in each electronic switch device 1, the connection terminal 101, the connection terminal 102, and the connection terminal 103 are non-conductive when the switch portion Q <b> 1 is non-conductive (off).
 すなわち、複数(ここでは2つ)の電子スイッチ装置1A,1Bがそれぞれ備える複数のスイッチ部Q1は、交流電源11と負荷12との間に電気的に並列に接続される。そのため、電子スイッチシステム10では、2つの電子スイッチ装置1A,1Bのいずれかのスイッチ部Q1が導通していれば、交流電源11と負荷12との間が導通し、2つの電子スイッチ装置1A,1Bを介して、交流電源11から負荷12に電力供給される。したがって、電子スイッチシステム10では、電子スイッチ装置1Aのスイッチ部Q1、及び電子スイッチ装置1Bのスイッチ部Q1の両方において、負荷12への通電状態を切り替えることが可能である。 That is, the plurality of switch parts Q1 provided in each of the plurality (two in this case) of electronic switch devices 1A and 1B are electrically connected in parallel between the AC power supply 11 and the load 12. Therefore, in the electronic switch system 10, if one of the switch portions Q1 of the two electronic switch devices 1A and 1B is conductive, the AC power supply 11 and the load 12 are conductive, and the two electronic switch devices 1A, 1A, Power is supplied from the AC power supply 11 to the load 12 via 1B. Therefore, in the electronic switch system 10, it is possible to switch the energization state to the load 12 in both the switch unit Q1 of the electronic switch device 1A and the switch unit Q1 of the electronic switch device 1B.
 (2)詳細
 (2.1)電子スイッチ装置の全体構成
 以下、本実施形態の電子スイッチ装置の構成について、図1及び図2を参照して説明する。
(2) Details (2.1) Overall Configuration of Electronic Switch Device Hereinafter, the configuration of the electronic switch device of the present embodiment will be described with reference to FIGS. 1 and 2.
 電子スイッチ装置1は、図2に示すように、スイッチ部Q1及び3つの接続端子101,102,103に加えて、整流器2及び回路部3を備えている。これらのスイッチ部Q1、3つの接続端子101,102,103、整流器2及び回路部3は、1つの筐体に収納されており、筐体が壁等に固定されることで、電子スイッチ装置1は壁等に取り付けられる。 The electronic switch device 1 includes a rectifier 2 and a circuit unit 3 in addition to the switch unit Q1 and the three connection terminals 101, 102, and 103, as shown in FIG. The switch part Q1, the three connection terminals 101, 102, 103, the rectifier 2 and the circuit part 3 are housed in one housing, and the housing is fixed to a wall or the like, whereby the electronic switch device 1 Is attached to a wall or the like.
 スイッチ部Q1は、交流電源11と負荷12との間に電気的に接続され、交流電源11と負荷12との間の導通と非導通とを切り替える。本実施形態では、スイッチ部Q1は、3端子の双方向サイリスタ(トライアック)にて構成されている。スイッチ部Q1は、接続端子101と接続端子103との間に電気的に接続されており、接続端子101と接続端子103との間における双方向の電流の通過/遮断を切り替える。スイッチ部Q1の制御端子(双方向サイリスタのゲート端子)は、回路部3に電気的に接続されている。これにより、スイッチ部Q1は、後述する制御部5にて制御される。図1及び図2等では、スイッチ部Q1を、接点を有するメカニカルスイッチと同様の回路記号で表記している。 The switch unit Q1 is electrically connected between the AC power supply 11 and the load 12, and switches between conduction and non-conduction between the AC power supply 11 and the load 12. In the present embodiment, the switch part Q1 is configured by a three-terminal bidirectional thyristor (triac). The switch part Q <b> 1 is electrically connected between the connection terminal 101 and the connection terminal 103, and switches bidirectional current passage / cutoff between the connection terminal 101 and the connection terminal 103. The control terminal of the switch unit Q1 (the gate terminal of the bidirectional thyristor) is electrically connected to the circuit unit 3. Thereby, the switch part Q1 is controlled by the control part 5 mentioned later. In FIG. 1 and FIG. 2, etc., the switch portion Q1 is represented by a circuit symbol similar to that of a mechanical switch having a contact.
 3つの接続端子101,102,103の各々は、配線が電気的かつ機械的に接続される部品である。第1の接続端子101と第3の接続端子103との間には、上述したようにスイッチ部Q1が接続されている。第2の接続端子102は、第1の接続端子101の送り端子であり、第1の接続端子101と電気的に接続されている。 Each of the three connection terminals 101, 102, 103 is a component to which wiring is electrically and mechanically connected. As described above, the switch portion Q1 is connected between the first connection terminal 101 and the third connection terminal 103. The second connection terminal 102 is a feed terminal of the first connection terminal 101 and is electrically connected to the first connection terminal 101.
 整流器2は、ダイオードブリッジからなる。整流器2は、スイッチ部Q1の両端間に印加される電圧(以下、「スイッチ間電圧Vsw」ともいう)を、全波整流して、回路部3に出力する。そのため、回路部3は、整流器2の直流出力端子間に接続されている。回路部3は、整流器2から入力される、全波整流後の電力を用いて、例えばスイッチ部Q1の制御及びセンサ部31の駆動等に必要な「制御電圧」を生成する。 Rectifier 2 consists of a diode bridge. The rectifier 2 performs full-wave rectification on the voltage applied between both ends of the switch unit Q <b> 1 (hereinafter also referred to as “inter-switch voltage Vsw”) and outputs the rectified voltage to the circuit unit 3. Therefore, the circuit unit 3 is connected between the DC output terminals of the rectifier 2. The circuit unit 3 uses the electric power after full-wave rectification input from the rectifier 2 to generate a “control voltage” necessary for controlling the switch unit Q1 and driving the sensor unit 31, for example.
 以下では、2つの電子スイッチ装置1A,1Bのいずれのスイッチ部Q1も非導通の状態で、スイッチ部Q1には交流電源11から交流電圧Vacが印加されることと仮定する。つまり、2つの電子スイッチ装置1A,1Bがいずれもオフ状態であれば、スイッチ間電圧Vswは交流電源11からの交流電圧Vacと等しくなる。 Hereinafter, it is assumed that the switch part Q1 of the two electronic switch devices 1A and 1B is in a non-conductive state, and the AC voltage Vac is applied from the AC power supply 11 to the switch part Q1. That is, if both the two electronic switch devices 1A and 1B are in the OFF state, the inter-switch voltage Vsw is equal to the AC voltage Vac from the AC power supply 11.
 次に、回路部3の詳細について、図1を参照して説明する。回路部3は、電源生成ブロック4と、制御部5と、センサ部31と、電圧監視部32とを備えている。 Next, details of the circuit unit 3 will be described with reference to FIG. The circuit unit 3 includes a power generation block 4, a control unit 5, a sensor unit 31, and a voltage monitoring unit 32.
 電源生成ブロック4は、給電回路41と、電源部42とを有している。電源部42は、スイッチ部Q1の両端間に電気的に接続されている。電源部42は、交流電源11からの供給電力により制御電圧を生成するように構成されている。給電回路41は、スイッチ部Q1の両端間に電気的に接続されている。給電回路41は、スイッチ部Q1と電源部42との間における、交流電源11から電源部42への供給電力の単一の経路となる。ここでいう「単一」とは、ただ一つであることを意味する。つまり、給電回路41は、スイッチ部Q1と電源部42との間に、電源部42への供給電力の経路として、唯一の経路を形成する。言い換えれば、交流電源11から電源部42への供給電力の経路は、スイッチ部Q1と電源部42との間に一つだけ存在するのであって、給電回路41以外には、電源部42への供給電力の経路は存在しない。 The power supply generation block 4 includes a power supply circuit 41 and a power supply unit 42. The power supply unit 42 is electrically connected between both ends of the switch unit Q1. The power supply unit 42 is configured to generate a control voltage using power supplied from the AC power supply 11. The power feeding circuit 41 is electrically connected between both ends of the switch unit Q1. The power feeding circuit 41 serves as a single path of power supplied from the AC power supply 11 to the power supply unit 42 between the switch unit Q1 and the power supply unit 42. Here, “single” means that there is only one. That is, the power feeding circuit 41 forms a unique path as a path of power supplied to the power supply section 42 between the switch section Q1 and the power supply section 42. In other words, there is only one path of power supplied from the AC power supply 11 to the power supply unit 42 between the switch unit Q1 and the power supply unit 42. There is no supply power path.
 すなわち、給電回路41と電源部42とは、整流器2の直流出力端子間において、電気的に直列に接続されている。電源入力端子401は、給電回路41の入力端子に相当し、整流器2の正極の直流出力端子に電気的に接続される。そのため、スイッチ部Q1がオフ状態にある場合、電源入力端子401とグランド(基準電位点)との間には、全波整流されたスイッチ間電圧Vsw、つまり整流器2から出力される脈流電圧が印加されることになる。電源出力端子402は、電源部42の出力端子に相当し、制御部5に電気的に接続される。これにより、電源部42が制御電圧を生成するときには、電源部42への供給電力は、必ず給電回路41を介して電源部42に供給されることになる。給電回路41は、スイッチ間電圧Vswの大きさ(絶対値)が所定値以上になれば電源部42に供給電力を供給するように構成されている。給電回路41は、例えば、入力電圧(スイッチ間電圧Vsw)を降圧して電源部42に出力するドロッパ回路である。電源生成ブロック4の具体的な構成については、「(2.2)電源生成ブロックの構成」の欄で説明する。 That is, the power feeding circuit 41 and the power supply unit 42 are electrically connected in series between the DC output terminals of the rectifier 2. The power input terminal 401 corresponds to the input terminal of the power feeding circuit 41 and is electrically connected to the positive DC output terminal of the rectifier 2. Therefore, when the switch unit Q1 is in the off state, the full-wave rectified inter-switch voltage Vsw, that is, the pulsating voltage output from the rectifier 2 is between the power input terminal 401 and the ground (reference potential point). Will be applied. The power supply output terminal 402 corresponds to the output terminal of the power supply unit 42 and is electrically connected to the control unit 5. Thus, when the power supply unit 42 generates the control voltage, the power supplied to the power supply unit 42 is always supplied to the power supply unit 42 via the power feeding circuit 41. The power supply circuit 41 is configured to supply power to the power supply unit 42 when the magnitude (absolute value) of the inter-switch voltage Vsw becomes equal to or greater than a predetermined value. The power feeding circuit 41 is, for example, a dropper circuit that steps down the input voltage (inter-switch voltage Vsw) and outputs it to the power supply unit 42. The specific configuration of the power generation block 4 will be described in the section “(2.2) Configuration of the power generation block”.
 本実施形態における「電源入力端子」等の「端子」は、電線等を接続するための部品(端子)でなくてもよく、例えば、電子部品のリード、又は回路基板に含まれる導体の一部であってもよい。 The “terminal” such as “power input terminal” in the present embodiment may not be a component (terminal) for connecting an electric wire or the like, for example, a lead of an electronic component or a part of a conductor included in a circuit board. It may be.
 制御部5は、電源生成ブロック4から、制御電圧の供給を受けて動作する。制御部5は、スイッチ部Q1を制御する機能を備えている。具体的には、制御部5は、センサ部31の検知結果に基づいて、スイッチ部Q1の制御端子(双方向サイリスタのゲート端子)に制御信号を出力することにより、スイッチ部Q1の導通と非導通とを切り替えるように、スイッチ部Q1を制御する。さらに、制御部5は、スイッチ部Q1をオン状態とする場合には、電圧監視部32から出力される監視信号に基づいて、制御信号を出力するタイミングを決定する。制御部5にはスイッチ部Q1を駆動するための駆動回路が含まれており、制御部5は直接的にスイッチ部Q1を制御する。 The control unit 5 operates by receiving a control voltage from the power generation block 4. The control unit 5 has a function of controlling the switch unit Q1. Specifically, the control unit 5 outputs a control signal to the control terminal of the switch unit Q1 (the gate terminal of the bidirectional thyristor) based on the detection result of the sensor unit 31, thereby making the switch unit Q1 conductive and non-conductive. The switch unit Q1 is controlled to switch between conduction. Further, when the switch unit Q1 is turned on, the control unit 5 determines the timing for outputting the control signal based on the monitoring signal output from the voltage monitoring unit 32. The control unit 5 includes a drive circuit for driving the switch unit Q1, and the control unit 5 directly controls the switch unit Q1.
 制御部5は、例えば、マイクロコンピュータを主構成として備えている。マイクロコンピュータは、マイクロコンピュータのメモリに記録されているプログラムをCPU(Central Processing Unit)で実行することにより、制御部5としての機能を実現する。プログラムは、予めマイコンのメモリに記録されていてもよいし、メモリカードのような記録媒体に記録されて提供されたり、電気通信回線を通して提供されたりしてもよい。言い換えれば、上記プログラムは、マイクロコンピュータを、制御部5として機能させるためのプログラムである。 The control unit 5 includes, for example, a microcomputer as a main configuration. The microcomputer realizes a function as the control unit 5 by executing a program recorded in the memory of the microcomputer by a CPU (Central Processing Unit). The program may be recorded in advance in a memory of a microcomputer, may be provided by being recorded on a recording medium such as a memory card, or may be provided through an electric communication line. In other words, the program is a program for causing the microcomputer to function as the control unit 5.
 センサ部31は、検知エリアに人が存在するか否かを検知する。センサ部31は、例えば、焦電素子を含んでおり、人体から放出される赤外線を検出することによって、検知エリアに人が存在するか否かを判断する。センサ部31は、検知エリアに人が存在することを検知すると、スイッチ部Q1をオン状態とするためのオン制御指示を、制御部5に出力する。 The sensor unit 31 detects whether or not a person is present in the detection area. The sensor unit 31 includes, for example, a pyroelectric element, and determines whether there is a person in the detection area by detecting infrared rays emitted from the human body. When the sensor unit 31 detects that a person is present in the detection area, the sensor unit 31 outputs to the control unit 5 an on control instruction for turning on the switch unit Q1.
 電圧監視部32は、スイッチ間電圧Vswの大きさを監視(検出)するように構成されている。本実施形態では、電圧監視部32は、整流器2の直流出力端子間に電気的に接続されており、全波整流後のスイッチ間電圧Vswの大きさを監視する。電圧監視部32は、スイッチ間電圧Vswの大きさ(絶対値)と基準値とを比較し、比較結果を表す監視信号を制御部5に出力する。 The voltage monitoring unit 32 is configured to monitor (detect) the magnitude of the inter-switch voltage Vsw. In the present embodiment, the voltage monitoring unit 32 is electrically connected between the DC output terminals of the rectifier 2 and monitors the magnitude of the inter-switch voltage Vsw after full-wave rectification. The voltage monitoring unit 32 compares the magnitude (absolute value) of the inter-switch voltage Vsw with a reference value, and outputs a monitoring signal indicating the comparison result to the control unit 5.
 制御部5は、センサ部31からオン制御指示を受けると、電圧監視部32からの監視信号に基づいて、スイッチ部Q1に制御信号を出力する。具体的には、制御部5は、電圧監視部32からの監視信号に基づいて、スイッチ間電圧Vswの大きさ(絶対値)が基準値以上になった際に、スイッチ部Q1を導通させる。スイッチ部Q1は、上述したように双方向サイリスタからなるので、制御信号が入力されると導通し、交流電源11からの交流電圧Vacのゼロクロス点(0〔V〕)付近で非導通となる。厳密には、スイッチ部Q1が導通後、スイッチ部Q1を流れる電流が0〔A〕になるとスイッチ部Q1が非導通となるので、負荷12の種類によっては、交流電圧Vacのゼロクロス点よりも早いタイミングでスイッチ部Q1が非導通となることもある。そこで、制御部5は、交流電圧Vacの半周期ごとに制御信号を出力することにより、スイッチ部Q1を導通する。つまり、ここでいうスイッチ部Q1のオン状態とは、スイッチ部Q1が連続的に導通している状態だけではなく、スイッチ部Q1が間欠的に導通している状態を含む。また、制御部5は、スイッチ部Q1をオフ状態とする場合、スイッチ部Q1に制御信号を出力しないことにより、スイッチ部Q1を非導通に維持する。 When receiving the ON control instruction from the sensor unit 31, the control unit 5 outputs a control signal to the switch unit Q1 based on the monitoring signal from the voltage monitoring unit 32. Specifically, based on the monitoring signal from the voltage monitoring unit 32, the control unit 5 causes the switch unit Q1 to conduct when the magnitude (absolute value) of the inter-switch voltage Vsw is greater than or equal to a reference value. Since the switch unit Q1 is composed of a bidirectional thyristor as described above, the switch unit Q1 becomes conductive when a control signal is input, and becomes non-conductive near the zero cross point (0 [V]) of the AC voltage Vac from the AC power supply 11. Strictly speaking, when the current flowing through the switch portion Q1 becomes 0 [A] after the switch portion Q1 is turned on, the switch portion Q1 becomes non-conductive. Therefore, depending on the type of the load 12, it is earlier than the zero cross point of the AC voltage Vac. The switch part Q1 may become non-conductive at the timing. Therefore, the control unit 5 conducts the switch unit Q1 by outputting a control signal every half cycle of the AC voltage Vac. That is, the ON state of the switch part Q1 here includes not only the state in which the switch part Q1 is continuously conducted but also the state in which the switch part Q1 is intermittently conducted. Moreover, the control part 5 maintains the switch part Q1 non-conducting by not outputting a control signal to the switch part Q1, when making the switch part Q1 into an OFF state.
 (2.2)電源生成ブロック
 次に、電源生成ブロック4の詳細について、図3を参照して説明する。
(2.2) Power Generation Block Next, details of the power generation block 4 will be described with reference to FIG.
 給電回路41は、ツェナダイオードZD1と、能動素子Q10と、第1の抵抗R1と、第2の抵抗R2と、ダイオードD1と、電流制限部43とを有している。電源部42は、コンデンサC1と、レギュレータ44とを有している。給電回路41は、電源入力端子401から入力される電圧を降圧して電源部42に出力するドロッパ回路である。 The power feeding circuit 41 includes a Zener diode ZD1, an active element Q10, a first resistor R1, a second resistor R2, a diode D1, and a current limiting unit 43. The power supply unit 42 includes a capacitor C <b> 1 and a regulator 44. The power feeding circuit 41 is a dropper circuit that steps down the voltage input from the power input terminal 401 and outputs the voltage to the power supply unit 42.
 電源入力端子401とグランドとの間においては、抵抗R1、能動素子Q10、ダイオードD1及びコンデンサC1が、電気的に直列に接続されている。これにより、抵抗R1、能動素子Q10及びダイオードD1の直列回路は、電源部42への供給電力の経路の一部、つまりコンデンサC1の充電経路40の一部を構成する。能動素子Q10とダイオードD1との間には電流制限部43の第3の抵抗R3が介在するが、ここではまず電流制限部43が省略(つまり能動素子Q10とダイオードD1とが直接接続)されていることとして、給電回路41の構成を説明する。 Between the power input terminal 401 and the ground, a resistor R1, an active element Q10, a diode D1, and a capacitor C1 are electrically connected in series. As a result, the series circuit of the resistor R1, the active element Q10, and the diode D1 constitutes a part of the path of power supplied to the power supply unit 42, that is, a part of the charging path 40 of the capacitor C1. The third resistor R3 of the current limiting unit 43 is interposed between the active element Q10 and the diode D1, but here the current limiting unit 43 is omitted first (that is, the active element Q10 and the diode D1 are directly connected). The structure of the power feeding circuit 41 will be described.
 能動素子Q10は、スイッチ部Q1の両端間における、コンデンサC1の充電経路40上に設けられ、スイッチ間電圧Vswの大きさが所定値以上のときにオンする電圧駆動型の能動素子である。能動素子Q10は、一例として、エンハンスメント形のnチャネルMOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)からなる。 The active element Q10 is a voltage-driven active element that is provided on the charging path 40 of the capacitor C1 between both ends of the switch unit Q1 and is turned on when the magnitude of the inter-switch voltage Vsw is a predetermined value or more. The active element Q10 is composed of, for example, an enhancement type n-channel MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor).
 能動素子Q10のドレイン端子は、抵抗R1を介して電源入力端子401に電気的に接続されている。能動素子Q10の出力端子となるソース端子は、ダイオードD1のアノード端子に電気的に接続されている。ダイオードD1のカソード端子は、コンデンサC1を介してグランドに電気的に接続されている。「能動素子Q10の出力端子」は、能動素子Q10をツェナダイオードZD1との組み合わせで定電圧回路として用いた場合に、定電圧を出力する端子を意味している。一般的にトランジスタは一対の主端子(MOSFETであればドレイン端子及びソース端子)と制御端子(MOSFETであればゲート端子)とを有しているので、一対の主端子のうちの一方が、能動素子Q10の出力端子に相当する。 The drain terminal of the active element Q10 is electrically connected to the power input terminal 401 through the resistor R1. A source terminal serving as an output terminal of the active element Q10 is electrically connected to an anode terminal of the diode D1. The cathode terminal of the diode D1 is electrically connected to the ground via the capacitor C1. The “output terminal of the active element Q10” means a terminal that outputs a constant voltage when the active element Q10 is used as a constant voltage circuit in combination with the Zener diode ZD1. Generally, a transistor has a pair of main terminals (a drain terminal and a source terminal in the case of a MOSFET) and a control terminal (a gate terminal in the case of a MOSFET), so that one of the pair of main terminals is active. This corresponds to the output terminal of the element Q10.
 抵抗R2及びツェナダイオードZD1は、電源入力端子401とグランドとの間において電気的に直列に接続されている。ツェナダイオードZD1のカソード端子は、抵抗R2を介して電源入力端子401に電気的に接続されている。ツェナダイオードZD1のアノード端子はグランドに電気的に接続されている。能動素子Q10のゲート端子(制御端子)は、ツェナダイオードZD1のカソード端子に電気的に接続されている。 The resistor R2 and the Zener diode ZD1 are electrically connected in series between the power input terminal 401 and the ground. The cathode terminal of the Zener diode ZD1 is electrically connected to the power input terminal 401 via the resistor R2. The anode terminal of the Zener diode ZD1 is electrically connected to the ground. The gate terminal (control terminal) of the active element Q10 is electrically connected to the cathode terminal of the Zener diode ZD1.
 レギュレータ44は、三端子レギュレータ(シリーズレギュレータ)である。レギュレータ44の入力端子は、コンデンサC1の高電位側の端子、つまりダイオードD1のカソード端子に電気的に接続されている。レギュレータ44の出力端子は、電源出力端子402に電気的に接続されている。 The regulator 44 is a three-terminal regulator (series regulator). The input terminal of the regulator 44 is electrically connected to the high potential side terminal of the capacitor C1, that is, the cathode terminal of the diode D1. The output terminal of the regulator 44 is electrically connected to the power supply output terminal 402.
 上記構成により、給電回路41は、交流電源11からの電力供給を受けて、ツェナダイオードZD1のツェナ電圧(降伏電圧)に基づく定電圧にて、コンデンサC1を充電する。すなわち、抵抗R2及びツェナダイオードZD1の直列回路により、能動素子Q10の閾値電圧以上のゲート電圧が能動素子Q10のゲート端子-ソース端子間に印加されると、能動素子Q10のソース端子から定電圧が出力される。このとき、能動素子Q10のゲート端子とグランドとの間の電圧は、ツェナダイオードZD1のツェナ電圧にクランプされる。そのため、コンデンサC1の両端間には、ツェナ電圧から、能動素子Q10のゲート電圧及びダイオードD1の順方向電圧を差し引いた電圧が、印加されることになる。 With the above configuration, the power supply circuit 41 receives power supplied from the AC power supply 11 and charges the capacitor C1 with a constant voltage based on the Zener voltage (breakdown voltage) of the Zener diode ZD1. That is, when a gate voltage higher than the threshold voltage of the active element Q10 is applied between the gate terminal and the source terminal of the active element Q10 by a series circuit of the resistor R2 and the Zener diode ZD1, a constant voltage is generated from the source terminal of the active element Q10. Is output. At this time, the voltage between the gate terminal of the active element Q10 and the ground is clamped to the Zener voltage of the Zener diode ZD1. Therefore, a voltage obtained by subtracting the gate voltage of the active element Q10 and the forward voltage of the diode D1 from the Zener voltage is applied between both ends of the capacitor C1.
 言い換えれば、スイッチ部Q1の両端間の電圧、つまり電源入力端子401及びグランド間に印加される電圧の大きさが、所定値以上になると、能動素子Q10がオンして電源部42に供給電力が供給される。ここでいう所定値は、コンデンサC1の両端電圧に、ツェナダイオードZD1のツェナ電圧と、能動素子Q10のゲート電圧と、ダイオードD1の順方向電圧とを加算した電圧(以下、「最低充電電圧」ともいう)である。これにより、スイッチ部Q1の両端間の電圧が最低充電電圧以上であるときに、コンデンサC1は定電圧にて充電される。コンデンサC1の両端電圧は、レギュレータ44にて降圧され、電源出力端子402から出力される。このようにして、電源部42は、電源出力端子402から定電圧の制御電圧を出力する。 In other words, when the voltage across the switch Q1, that is, the voltage applied between the power supply input terminal 401 and the ground exceeds a predetermined value, the active element Q10 is turned on and the power supplied to the power supply 42 is supplied. Supplied. The predetermined value here is a voltage obtained by adding the Zener voltage of the Zener diode ZD1, the gate voltage of the active element Q10, and the forward voltage of the diode D1 to the voltage across the capacitor C1 (hereinafter referred to as “minimum charging voltage”). Say). Thereby, when the voltage between both ends of the switch part Q1 is more than the minimum charging voltage, the capacitor C1 is charged with a constant voltage. The voltage across the capacitor C1 is stepped down by the regulator 44 and output from the power output terminal 402. In this way, the power supply unit 42 outputs a constant control voltage from the power supply output terminal 402.
 要するに、スイッチ間電圧Vswが最低充電電圧以上であれば、給電回路41の能動素子Q10がオンするため、給電回路41の入力インピーダンスは低インピーダンス状態になる。したがって、電源部42に供給電力が供給されて、電源部42にて制御電圧が生成される。ただし、コンデンサC1が満充電状態になれば、給電回路41から電源部42に電流が流れなくなるので、給電回路41の入力インピーダンスは、高インピーダンス状態になる。 In short, if the inter-switch voltage Vsw is equal to or higher than the minimum charging voltage, the active element Q10 of the power supply circuit 41 is turned on, so that the input impedance of the power supply circuit 41 is in a low impedance state. Therefore, supply power is supplied to the power supply unit 42, and a control voltage is generated in the power supply unit 42. However, when the capacitor C1 is in a fully charged state, no current flows from the power supply circuit 41 to the power supply unit 42, so the input impedance of the power supply circuit 41 is in a high impedance state.
 ところで、ここでいう最低充電電圧(所定値)は、給電回路41が電源部42に供給電力を供給するために必要な電圧値であって、例えば、ツェナダイオードZD1のツェナ電圧などの回路定数により任意に設定可能である。 By the way, the minimum charging voltage (predetermined value) here is a voltage value necessary for the power feeding circuit 41 to supply power to the power supply unit 42, and depends on, for example, a circuit constant such as a Zener voltage of the Zener diode ZD1. It can be set arbitrarily.
 ここで、本実施形態では、給電回路41の能動素子Q10がMOSFETであることで、能動素子Q10がバイポーラトランジスタである構成(以下、「比較例」という)に比べて、最低充電電圧を低く抑えることが可能である。その理由について、以下に簡単に説明する。 Here, in the present embodiment, since the active element Q10 of the power feeding circuit 41 is a MOSFET, the minimum charging voltage is suppressed lower than the configuration in which the active element Q10 is a bipolar transistor (hereinafter referred to as “comparative example”). It is possible. The reason will be briefly described below.
 抵抗R2を通る電流経路は、リーク電流の発生を抑制するために、比較的、高インピーダンスを持つことが要求される。ここでいうリーク電流は、スイッチ部Q1が非導通であるときに、給電回路41を通して流れる比較的大きな電流であって、負荷12の誤動作の原因となり得る電流である。例えば、負荷12が照明装置である場合、リーク電流が発生すると、負荷12の光源が一時的に点灯する、いわゆるフラッシュ現象が発生する可能性がある。 The current path passing through the resistor R2 is required to have a relatively high impedance in order to suppress the occurrence of leakage current. The leakage current here is a relatively large current that flows through the power feeding circuit 41 when the switch portion Q1 is non-conductive, and is a current that can cause a malfunction of the load 12. For example, when the load 12 is a lighting device, when a leak current occurs, a so-called flash phenomenon may occur in which the light source of the load 12 is temporarily turned on.
 抵抗R2を通る電流経路が高インピーダンスであると、能動素子Q10がバイポーラトランジスタである比較例では、バイポーラトランジスタにベース電流を流すために必要なスイッチ間電圧Vswは比較的大きくなる。これに対して、本実施形態では、能動素子Q10がMOSFETであるので、抵抗R2を通る電流経路のインピーダンスに関わらず、能動素子Q10に所定のゲート電圧が印加されさえすれば、能動素子Q10がオンして電源部42に供給電力が供給される。したがって、本実施形態の電子スイッチ装置1では、比較例に比べて、最低充電電圧を低く(一例として10〔V〕程度)抑えることができる。 When the current path passing through the resistor R2 has a high impedance, in the comparative example in which the active element Q10 is a bipolar transistor, the inter-switch voltage Vsw necessary for flowing the base current to the bipolar transistor is relatively large. On the other hand, in the present embodiment, since the active element Q10 is a MOSFET, the active element Q10 is not limited as long as a predetermined gate voltage is applied to the active element Q10 regardless of the impedance of the current path passing through the resistor R2. The power is turned on to supply power to the power supply unit 42. Therefore, in the electronic switch device 1 of the present embodiment, the minimum charging voltage can be suppressed lower (about 10 [V] as an example) as compared with the comparative example.
 次に、電流制限部43の構成について説明する。本実施形態では、電流制限部43は、能動素子Q10を含む電源部42への供給電力の経路、つまりコンデンサC1の充電経路40上に設けられている。電流制限部43は、交流電源11から電源部42に規定値以上の電流が流れると、電源部42への供給電力の供給を停止させる。本実施形態では、電流制限部43は、給電回路41の能動素子Q10に規定値以上の電流が流れると、能動素子Q10をオフすることで、電源部42への供給電力の供給を停止させる。 Next, the configuration of the current limiting unit 43 will be described. In the present embodiment, the current limiting unit 43 is provided on the path of power supplied to the power supply unit 42 including the active element Q10, that is, on the charging path 40 of the capacitor C1. The current limiting unit 43 stops the supply of supply power to the power source unit 42 when a current of a specified value or more flows from the AC power source 11 to the power source unit 42. In the present embodiment, the current limiting unit 43 stops the supply of supply power to the power supply unit 42 by turning off the active element Q10 when a current of a specified value or more flows through the active element Q10 of the power feeding circuit 41.
 具体的には、電流制限部43は、第3の抵抗R3と、第4の抵抗R4と、スイッチ素子Q11とを有している。抵抗R3は、能動素子Q10の出力端子(ソース端子)に電気的に接続され、能動素子Q10に流れる電流を検出する検出抵抗として機能する、シャント抵抗である。ここでは、抵抗R3は、給電回路41における能動素子Q10のソース端子とダイオードD1のアノード端子との間に、電気的に接続されている。 Specifically, the current limiting unit 43 includes a third resistor R3, a fourth resistor R4, and a switch element Q11. The resistor R3 is a shunt resistor that is electrically connected to the output terminal (source terminal) of the active element Q10 and functions as a detection resistor that detects a current flowing through the active element Q10. Here, the resistor R3 is electrically connected between the source terminal of the active element Q10 and the anode terminal of the diode D1 in the power feeding circuit 41.
 スイッチ素子Q11は、能動素子Q10の出力端子(ソース端子)と制御端子(ゲート端子)との間に電気的に接続されている。スイッチ素子Q11は、一例として、npn形のバイポーラトランジスタからなる。スイッチ素子Q11のエミッタ端子は、抵抗R3を介して能動素子Q10のソース端子に電気的に接続されている。スイッチ素子Q11のコレクタ端子は、能動素子Q10のゲート端子に電気的に接続されている。スイッチ素子Q11のベース端子は、抵抗R4を介して能動素子Q10のソース端子に電気的に接続されている。言い換えれば、スイッチ素子Q11のベース端子-エミッタ端子間には、抵抗R3及び抵抗R4の直列回路が電気的に接続されている。 The switch element Q11 is electrically connected between the output terminal (source terminal) and the control terminal (gate terminal) of the active element Q10. For example, the switch element Q11 is formed of an npn-type bipolar transistor. The emitter terminal of the switch element Q11 is electrically connected to the source terminal of the active element Q10 via the resistor R3. The collector terminal of the switch element Q11 is electrically connected to the gate terminal of the active element Q10. The base terminal of the switch element Q11 is electrically connected to the source terminal of the active element Q10 via the resistor R4. In other words, a series circuit of the resistor R3 and the resistor R4 is electrically connected between the base terminal and the emitter terminal of the switch element Q11.
 上記構成によれば、電流制限部43は、能動素子Q10を流れる電流(ドレイン電流)が規定値以上になると、抵抗R3の両端電圧にてスイッチ素子Q11がオンし、これにより能動素子Q10をオフにする。すなわち、能動素子Q10を通して抵抗R3に規定値以上の電流が流れると、この電流により抵抗R3に発生する電圧にてスイッチ素子Q11にバイアスがかかり、抵抗R4を通してスイッチ素子Q11のベース端子に電流が流れ込む。このとき、スイッチ素子Q11がオンすることで能動素子Q10のゲート端子-ソース端子間が短絡し、能動素子Q10がオフする。これにより、コンデンサC1の充電経路40が遮断され、電源部42での制御電圧の生成が停止する。言い換えれば、交流電源11から電源部42に規定値以上の電流が流れると、電流制限部43にて電源入力端子401からコンデンサC1が電気的に切り離され、電源部42への供給電力の供給が停止する。 According to the above configuration, when the current (drain current) flowing through the active element Q10 exceeds the specified value, the current limiting unit 43 turns on the switch element Q11 with the voltage across the resistor R3, thereby turning off the active element Q10. To. That is, when a current of a specified value or more flows through the active element Q10 through the resistor R3, the switch element Q11 is biased by the voltage generated in the resistor R3 due to this current, and the current flows into the base terminal of the switch element Q11 through the resistor R4. . At this time, when the switch element Q11 is turned on, the gate terminal and the source terminal of the active element Q10 are short-circuited, and the active element Q10 is turned off. Thereby, the charging path 40 of the capacitor C1 is cut off, and the generation of the control voltage in the power supply unit 42 is stopped. In other words, when a current of a specified value or more flows from the AC power supply 11 to the power supply unit 42, the capacitor C <b> 1 is electrically disconnected from the power supply input terminal 401 by the current limiting unit 43, and the supply power to the power supply unit 42 is supplied. Stop.
 ところで、ここでいう規定値は、電流制限部43を作動させるときの給電回路41の電流値であって、例えば、抵抗R3の抵抗値などの回路定数により任意に設定可能である。本実施形態では、一例として、給電回路41の定格電流値に所定のマージンを加えた値を規定値とする。 Incidentally, the specified value here is a current value of the power feeding circuit 41 when the current limiting unit 43 is operated, and can be arbitrarily set by a circuit constant such as a resistance value of the resistor R3, for example. In the present embodiment, as an example, a value obtained by adding a predetermined margin to the rated current value of the power feeding circuit 41 is set as the specified value.
 (2.3)動作
 次に、電子スイッチ装置1及び電子スイッチシステム10の動作について、図4を参照して説明する。
(2.3) Operation Next, operations of the electronic switch device 1 and the electronic switch system 10 will be described with reference to FIG.
 図4では、第1電子スイッチ装置1A及び第2電子スイッチ装置1Bの両方のスイッチ部Q1がオフ状態にある状態から、時点t1にて、第2電子スイッチ装置1Bのスイッチ部Q1がオン状態に移行する場合の動作を例示する。図4は、上段から順に、交流電圧「Vac」、スイッチ間電圧「Vsw」、第1電子スイッチ装置1Aの監視信号「S1a」、第2電子スイッチ装置1Bの監視信号「S1b」、第2電子スイッチ装置1Bのスイッチ部Q1の状態(導通/非導通)を示している。スイッチ部Q1の状態を表す「Q1」については、「ON」が導通を表し、「OFF」が非導通を表す。図4の例では、監視信号S1a,S1bの信号レベルは、スイッチ間電圧Vswの絶対値が基準値Vth1以上のときにLレベル(Low level)、スイッチ間電圧Vswの絶対値が基準値Vth1未満のときにHレベル(High level)である。 In FIG. 4, the switch part Q1 of the second electronic switch device 1B is turned on at the time point t1 from the state where both the switch parts Q1 of the first electronic switch device 1A and the second electronic switch device 1B are turned off. The operation | movement in the case of transfer is illustrated. FIG. 4 shows the AC voltage “Vac”, the inter-switch voltage “Vsw”, the monitoring signal “S1a” of the first electronic switching device 1A, the monitoring signal “S1b” of the second electronic switching device 1B, and the second electronic The state (conduction / non-conduction) of the switch part Q1 of the switch apparatus 1B is shown. As for “Q1” representing the state of the switch part Q1, “ON” represents conduction and “OFF” represents non-conduction. In the example of FIG. 4, the signal levels of the monitoring signals S1a and S1b are L level (Low level) when the absolute value of the inter-switch voltage Vsw is greater than or equal to the reference value Vth1, and the absolute value of the inter-switch voltage Vsw is less than the reference value Vth1. Is at the H level (High level).
 まず、第1電子スイッチ装置1A及び第2電子スイッチ装置1Bの両方のスイッチ部Q1がオフ状態であるときの動作について説明する。 First, the operation when both the switch parts Q1 of the first electronic switch device 1A and the second electronic switch device 1B are in the off state will be described.
 この状態では、第1電子スイッチ装置1A及び第2電子スイッチ装置1Bの両方のスイッチ部Q1がオフ状態であるので、スイッチ間電圧Vswは、交流電圧Vacと同電圧となる。図4では、第1電子スイッチ装置1Aにおけるスイッチ部Q1の両端電圧を示しているが、第2電子スイッチ装置1Bにおけるスイッチ部Q1の両端電圧も、第1電子スイッチ装置1Aにおけるスイッチ部Q1の両端電圧と同じである。 In this state, since both the switch portions Q1 of the first electronic switch device 1A and the second electronic switch device 1B are in the OFF state, the inter-switch voltage Vsw is the same voltage as the AC voltage Vac. FIG. 4 shows the voltage across the switch unit Q1 in the first electronic switch device 1A, but the voltage across the switch unit Q1 in the second electronic switch device 1B is also the voltage across the switch unit Q1 in the first electronic switch device 1A. Same as voltage.
 この状態においては、2つの電子スイッチ装置1A,1Bのいずれでも、交流電圧Vacの1周期のうちの殆どの期間において、スイッチ間電圧Vswが十分に大きくなる。そのため、2つの電子スイッチ装置1A,1Bのいずれでも、交流電圧Vacの1周期のうちの殆どの期間において、スイッチ間電圧Vswが最低充電電圧以上となり、電源部42に供給電力が供給されて電源部42での制御電圧の生成が可能となる。 In this state, in both of the two electronic switch devices 1A and 1B, the inter-switch voltage Vsw becomes sufficiently large in most of the period of one cycle of the AC voltage Vac. Therefore, in both of the two electronic switch devices 1A and 1B, the inter-switch voltage Vsw becomes equal to or higher than the minimum charging voltage during most of one cycle of the AC voltage Vac, and the power is supplied to the power source unit 42 to supply power. The control voltage can be generated by the unit 42.
 次に、第2電子スイッチ装置1Bのスイッチ部Q1がオン状態であるときの動作について説明する。第1電子スイッチ装置1Aのスイッチ部Q1はオフ状態を維持している。 Next, the operation when the switch part Q1 of the second electronic switch device 1B is in the on state will be described. The switch part Q1 of the first electronic switch device 1A is maintained in the off state.
 時点t1にて、第2電子スイッチ装置1Bのスイッチ部Q1がオン状態に移行すると、第2電子スイッチ装置1Bのスイッチ部Q1が導通している間は、スイッチ部Q1の両端間が短絡されるのでスイッチ間電圧Vswが略0〔V〕となる。第2電子スイッチ装置1Bのスイッチ部Q1は、交流電圧Vacのゼロクロス点(0〔V〕)付近、つまり時点t2で非導通となる。その後、スイッチ間電圧Vswの大きさ(絶対値)が基準値Vth1未満である間は、監視信号S1a,S1bはHレベルであるが、スイッチ間電圧Vswの大きさ(絶対値)が基準値Vth1以上になると、監視信号S1a,S1bはLレベルになる。そのため、図4の例では、スイッチ間電圧Vswの大きさ(絶対値)が基準値Vth1に達する時点t3までの期間は監視信号S1a,S1bはHレベルであって、時点t3で監視信号S1a,S1bはLレベルになる。 When the switch part Q1 of the second electronic switch device 1B shifts to the ON state at the time point t1, both ends of the switch part Q1 are short-circuited while the switch part Q1 of the second electronic switch device 1B is conductive. Therefore, the inter-switch voltage Vsw becomes approximately 0 [V]. The switch part Q1 of the second electronic switch device 1B becomes non-conductive near the zero cross point (0 [V]) of the AC voltage Vac, that is, at the time point t2. Thereafter, while the magnitude (absolute value) of the inter-switch voltage Vsw is less than the reference value Vth1, the monitoring signals S1a and S1b are at the H level, but the magnitude (absolute value) of the inter-switch voltage Vsw is the reference value Vth1. If it becomes above, monitoring signal S1a, S1b will be L level. Therefore, in the example of FIG. 4, the monitoring signals S1a and S1b are at the H level during a period until the time point t3 when the magnitude (absolute value) of the inter-switch voltage Vsw reaches the reference value Vth1, and the monitoring signal S1a, S1b becomes L level.
 監視信号S1bがLレベルになると、第2電子スイッチ装置1Bの制御部5は、スイッチ部Q1を導通させる。そのため、時点t3の直後の時点t4においては、第2電子スイッチ装置1Bのスイッチ部Q1は導通し、スイッチ間電圧Vswが略0〔V〕となる。よって、時点t4にて、監視信号S1a,S1bはHレベルになる。第2電子スイッチ装置1Bのスイッチ部Q1がオン状態である間は、第2電子スイッチ装置1Bは上述の動作を繰り返すことにより、スイッチ間電圧Vswは、時点t2から時点t4までの期間に、間欠的に発生する。 When the monitoring signal S1b becomes L level, the control unit 5 of the second electronic switch device 1B makes the switch unit Q1 conductive. Therefore, at time point t4 immediately after time point t3, the switch part Q1 of the second electronic switch device 1B becomes conductive, and the inter-switch voltage Vsw becomes substantially 0 [V]. Therefore, at time t4, the monitoring signals S1a and S1b become H level. While the switch part Q1 of the second electronic switch device 1B is in the ON state, the second electronic switch device 1B repeats the above-described operation, so that the inter-switch voltage Vsw is intermittent during the period from the time point t2 to the time point t4. Will occur.
 この状態においては、スイッチ部Q1がオフ状態にある第1電子スイッチ装置1Aでは、交流電圧Vacの1周期のうちの時点t2から時点t4までの期間に、電源部42での制御電圧の生成が可能である。また、スイッチ部Q1がオン状態にある第2電子スイッチ装置1Bにおいても、第1電子スイッチ装置1Aと同様に、交流電圧Vacの1周期のうちの時点t2から時点t4までの期間に、電源部42での制御電圧の生成が可能である。つまり、電子スイッチ装置1では、上述したようにスイッチ間電圧Vswが最低充電電圧以上であれば、給電回路41から電源部42に供給電力が供給され、電源部42での制御電圧の生成が可能である。したがって、スイッチ間電圧Vswが比較的低い場合でも、最低充電電圧以上のスイッチ間電圧Vswが生じてさえいれば、電源部42での制御電圧の生成が可能である。 In this state, in the first electronic switch device 1A in which the switch unit Q1 is in the OFF state, the control voltage is generated by the power source unit 42 during the period from the time point t2 to the time point t4 in one cycle of the AC voltage Vac. Is possible. Also in the second electronic switch device 1B in which the switch unit Q1 is in the ON state, in the same manner as the first electronic switch device 1A, in the period from the time point t2 to the time point t4 in one cycle of the AC voltage Vac, The generation of the control voltage at 42 is possible. That is, in the electronic switch device 1, if the inter-switch voltage Vsw is equal to or higher than the minimum charging voltage as described above, supply power is supplied from the power supply circuit 41 to the power supply unit 42, and a control voltage can be generated in the power supply unit 42. It is. Therefore, even when the inter-switch voltage Vsw is relatively low, the control voltage can be generated in the power supply unit 42 as long as the inter-switch voltage Vsw equal to or higher than the minimum charging voltage is generated.
 一例として、電圧監視部32にてスイッチ間電圧Vswの大きさ(絶対値)と比較される基準値Vth1が、最低充電電圧以上であれば、交流電圧Vacの1周期のうちの時点t2から時点t4までの期間に、電源部42での制御電圧の生成が可能となる。つまり、基準値Vth1が最低充電電圧以上であれば、スイッチ部Q1が非導通になった後、スイッチ部Q1が再び導通するまでの間に、スイッチ間電圧Vswは必ず最低充電電圧以上となるので、電源部42での制御電圧の生成が可能である。 As an example, if the reference value Vth1 compared with the magnitude (absolute value) of the inter-switch voltage Vsw in the voltage monitoring unit 32 is equal to or higher than the minimum charging voltage, the time point from the time point t2 in one cycle of the AC voltage Vac. During the period up to t4, the control voltage can be generated by the power supply unit. That is, if the reference value Vth1 is equal to or higher than the minimum charge voltage, the inter-switch voltage Vsw is always equal to or higher than the minimum charge voltage after the switch portion Q1 is turned off and before the switch portion Q1 is turned on again. The control voltage can be generated by the power supply unit 42.
 (3)利点
 以上説明したように、第1の態様に係る電子スイッチ装置1は、スイッチ部Q1と、電源部42と、制御部5と、給電回路41と、を備えている。スイッチ部Q1は、交流電源11と負荷12との間に電気的に接続され、交流電源11と負荷12との間の導通と非導通とを切り替える。電源部42は、スイッチ部Q1の両端間に電気的に接続され、交流電源11からの供給電力により制御電圧を生成する。制御部5は、電源部42から上記制御電圧の供給を受けて動作し、スイッチ部Q1を制御する。給電回路41は、スイッチ部Q1の両端間に電気的に接続され、スイッチ部Q1と電源部42との間における上記供給電力の単一の経路となる。給電回路41は、スイッチ部Q1の両端間の電圧の大きさが所定値以上になれば電源部42に上記供給電力を供給するように構成されている。
(3) Advantages As described above, the electronic switch device 1 according to the first aspect includes the switch unit Q1, the power supply unit 42, the control unit 5, and the power feeding circuit 41. The switch unit Q1 is electrically connected between the AC power supply 11 and the load 12, and switches between conduction and non-conduction between the AC power supply 11 and the load 12. The power supply unit 42 is electrically connected between both ends of the switch unit Q <b> 1 and generates a control voltage by power supplied from the AC power supply 11. The control unit 5 operates by receiving the control voltage from the power supply unit 42, and controls the switch unit Q1. The power feeding circuit 41 is electrically connected between both ends of the switch unit Q1, and serves as a single path for the supplied power between the switch unit Q1 and the power supply unit. The power feeding circuit 41 is configured to supply the supplied power to the power source unit 42 when the voltage across the switch unit Q1 exceeds a predetermined value.
 この構成によれば、交流電源11からの供給電力により制御電圧を生成する電源部42には、給電回路41からなる単一の経路を通して、供給電力が供給される。すなわち、交流電源11から電源部42への供給電力の経路は、スイッチ部Q1と電源部42との間に一つだけ存在するのであって、給電回路41以外には、電源部42への供給電力の経路は存在しない。しかも、給電回路41は、スイッチ部Q1の両端間の電圧の大きさが所定値(最低充電電圧)以上になれば電源部42に上記供給電力を供給する。よって、給電回路41は、電源部42への供給電力の経路を切り替えることなく、スイッチ部Q1がオン状態及びオフ状態のいずれにあっても、電源部42には、常に同一の経路にて、供給電力が供給される。結果的に、電子スイッチ装置1では、負荷12の通電時に制御電圧を確保するためにカレントトランスが必要でなく、小型化が可能である。さらに、電子スイッチ装置1では、電源部42への供給電力の経路を切り替えるための構成、及び電源部42への供給電力の経路を切り替えるための複雑な制御も不要であるから、より小型化が可能である。 According to this configuration, the supply power is supplied to the power supply unit 42 that generates the control voltage by the supply power from the AC power supply 11 through the single path including the power feeding circuit 41. In other words, there is only one path of power supplied from the AC power supply 11 to the power supply unit 42 between the switch unit Q1 and the power supply unit 42. There is no power path. In addition, the power feeding circuit 41 supplies the power supply 42 to the power supply unit 42 when the magnitude of the voltage across the switch unit Q1 exceeds a predetermined value (minimum charging voltage). Therefore, the power feeding circuit 41 always has the same path to the power supply unit 42 regardless of whether the switch unit Q1 is in the on state or the off state without switching the power supply path to the power supply unit 42. Supply power is supplied. As a result, the electronic switch device 1 does not require a current transformer to secure a control voltage when the load 12 is energized, and can be downsized. Furthermore, since the electronic switch device 1 does not require a configuration for switching the path of power supplied to the power supply unit 42 and complicated control for switching the path of power supplied to the power supply unit 42, the electronic switch device 1 can be further downsized. Is possible.
 また、第2の態様に係る電子スイッチ装置1では、第1の態様において、電源部42はコンデンサC1を有することが好ましい。この場合、給電回路41は、電圧駆動型の能動素子Q10を有することが好ましい。能動素子Q10は、スイッチ部Q1の両端間におけるコンデンサC1の充電経路40に設けられ、スイッチ部Q1の両端間の電圧の大きさが所定値以上のときにオンする。この構成によれば、上述した比較例のように、給電回路41にバイポーラトランジスタを適用した構成に比べて、スイッチ間電圧Vswがより低い電圧でも、コンデンサC1を充電して制御電圧を確保することが可能である。ただし、この構成は電子スイッチ装置1に必須の構成ではなく、例えば、能動素子Q10は電圧駆動型の素子でなくてもよい。 Further, in the electronic switch device 1 according to the second aspect, in the first aspect, it is preferable that the power supply unit 42 includes the capacitor C1. In this case, the power feeding circuit 41 preferably includes a voltage-driven active element Q10. The active element Q10 is provided in the charging path 40 of the capacitor C1 between both ends of the switch unit Q1, and is turned on when the magnitude of the voltage between both ends of the switch unit Q1 is a predetermined value or more. According to this configuration, as in the comparative example described above, the capacitor C1 is charged and the control voltage is secured even when the voltage Vsw between the switches is lower than in the configuration in which the bipolar transistor is applied to the power supply circuit 41. Is possible. However, this configuration is not an essential configuration for the electronic switch device 1. For example, the active element Q10 may not be a voltage-driven element.
 また、第3の態様に係る電子スイッチ装置1では、第2の態様において、能動素子Q10は電界効果トランジスタ(FET)であることが好ましい。この構成によれば、特殊な部品を用いることなく、給電回路41を実現することが可能である。ただし、この構成は電子スイッチ装置1に必須の構成ではなく、能動素子Q10は例えばIGBT(Insulated Gate Bipolar Transistor)などであってもよい。 In the electronic switch device 1 according to the third aspect, in the second aspect, the active element Q10 is preferably a field effect transistor (FET). According to this configuration, the power feeding circuit 41 can be realized without using special parts. However, this configuration is not essential for the electronic switch device 1, and the active element Q10 may be, for example, an IGBT (Insulated Gate Bipolar Transistor).
 また、第4の態様に係る電子スイッチ装置1では、第1~3のいずれかの態様において、給電回路41は、交流電源11から電源部42に規定値以上の電流が流れると、電源部42への供給電力の供給を停止させる電流制限部43を有することが好ましい。この構成によれば、給電回路41に流れる電流が制限されることにより、給電回路41の構成部品に掛かるストレスを低減でき、給電回路41に要求される電流容量を小さくできる。さらに、電流制限部43によれば、例えば交流電源11の投入時などに給電回路41に流れる突入電流を抑制することにより、負荷12が誤動作(例えばフラッシュ現象の発生など)することも抑制可能である。ただし、この構成は電子スイッチ装置1に必須の構成ではなく、例えば、能動素子Q10に電流容量の大きな素子を適用したり、コンデンサC1に静電容量の小さな素子を適用したりすることで、電流制限部43は省略されていてもよい。 In the electronic switch device 1 according to the fourth aspect, in any one of the first to third aspects, the power supply circuit 41 causes the power supply section 42 to flow when a current of a specified value or more flows from the AC power supply 11 to the power supply section 42. It is preferable to have a current limiting unit 43 that stops the supply of power supplied to the. According to this configuration, since the current flowing through the power feeding circuit 41 is limited, the stress applied to the components of the power feeding circuit 41 can be reduced, and the current capacity required for the power feeding circuit 41 can be reduced. Furthermore, according to the current limiting unit 43, it is possible to suppress malfunction of the load 12 (for example, occurrence of a flash phenomenon) by suppressing an inrush current flowing through the power supply circuit 41 when the AC power supply 11 is turned on, for example. is there. However, this configuration is not an essential configuration for the electronic switch device 1. For example, by applying an element having a large current capacity to the active element Q10 or applying an element having a small capacitance to the capacitor C1, the current can be reduced. The restriction unit 43 may be omitted.
 また、第5の態様に係る電子スイッチ装置1は、第1~4のいずれかの態様において、センサ部31を更に備え、制御部5は、センサ部31の出力に基づいてスイッチ部Q1を制御するように構成されていることが好ましい。この構成によれば、電源部42で生成される制御電圧にてセンサ部31を駆動でき、センサ部31の出力によってスイッチ部Q1を自動的に制御することが可能である。ただし、この構成は電子スイッチ装置1に必須の構成ではなく、センサ部31は適宜省略される。 The electronic switch device 1 according to the fifth aspect further includes a sensor unit 31 in any one of the first to fourth aspects, and the control unit 5 controls the switch unit Q1 based on the output of the sensor unit 31. It is preferable that it is comprised. According to this configuration, the sensor unit 31 can be driven by the control voltage generated by the power supply unit 42, and the switch unit Q1 can be automatically controlled by the output of the sensor unit 31. However, this configuration is not essential for the electronic switch device 1, and the sensor unit 31 is omitted as appropriate.
 また、電子スイッチシステム10は、第1~5のいずれかの態様に係る電子スイッチ装置1を複数備え、複数の電子スイッチ装置1が備える複数のスイッチ部Q1は、交流電源11と負荷12との間に電気的に並列に接続される。 The electronic switch system 10 includes a plurality of electronic switch devices 1 according to any one of the first to fifth aspects, and the plurality of switch units Q1 included in the plurality of electronic switch devices 1 includes an AC power supply 11 and a load 12. They are electrically connected in parallel.
 言い換えれば、電子スイッチシステム10は、複数の電子スイッチ装置1を備え、これら複数の電子スイッチ装置1の各々は、スイッチ部Q1と、電源部42と、制御部5と、給電回路41と、を備えている。スイッチ部Q1は、交流電源11と負荷12との間に電気的に接続され、交流電源11と負荷12との間の導通と非導通とを切り替える。電源部42は、スイッチ部Q1の両端間に電気的に接続され、交流電源11からの供給電力により制御電圧を生成する。制御部5は、電源部42から上記制御電圧の供給を受けて動作し、スイッチ部Q1を制御する。給電回路41は、スイッチ部Q1の両端間に電気的に接続され、スイッチ部Q1と電源部42との間における上記供給電力の単一の経路となる。給電回路41は、スイッチ部Q1の両端間の電圧の大きさが所定値以上になれば電源部42に上記供給電力を供給するように構成されている。複数の電子スイッチ装置1がそれぞれ備える複数のスイッチ部Q1は、交流電源11と負荷12との間に電気的に並列に接続される。 In other words, the electronic switch system 10 includes a plurality of electronic switch devices 1, and each of the plurality of electronic switch devices 1 includes a switch unit Q1, a power supply unit 42, a control unit 5, and a power feeding circuit 41. I have. The switch unit Q1 is electrically connected between the AC power supply 11 and the load 12, and switches between conduction and non-conduction between the AC power supply 11 and the load 12. The power supply unit 42 is electrically connected between both ends of the switch unit Q <b> 1 and generates a control voltage by power supplied from the AC power supply 11. The control unit 5 operates by receiving the control voltage from the power supply unit 42, and controls the switch unit Q1. The power feeding circuit 41 is electrically connected between both ends of the switch unit Q1, and serves as a single path for the supplied power between the switch unit Q1 and the power supply unit. The power feeding circuit 41 is configured to supply the supplied power to the power source unit 42 when the voltage across the switch unit Q1 exceeds a predetermined value. The plurality of switch portions Q1 included in each of the plurality of electronic switch devices 1 are electrically connected in parallel between the AC power supply 11 and the load 12.
 この構成によれば、複数の電子スイッチ装置1の各々において、給電回路41は、電源部42への供給電力の経路を切り替えることなく、スイッチ部Q1がオン状態及びオフ状態のいずれにあっても、電源部42には、常に同一の経路にて、供給電力が供給される。結果的に、各電子スイッチ装置1では、負荷12の通電時に制御電圧を確保するためにカレントトランスが必要でなく、小型化が可能である。さらに、各電子スイッチ装置1では、電源部42への供給電力の経路を切り替えるための構成、及び電源部42への供給電力の経路を切り替えるための複雑な制御も不要であるから、より小型化が可能である。とくに、三路スイッチからなる電子スイッチ装置1を2つ組み合わせた電子スイッチシステム10では、スイッチ部Q1がオフ状態の電子スイッチ装置1Aと、スイッチ部Q1がオン状態の電子スイッチ装置1Bとのいずれでも、制御電圧を確保可能である。 According to this configuration, in each of the plurality of electronic switch devices 1, the power feeding circuit 41 does not switch the supply power path to the power supply unit 42, regardless of whether the switch unit Q1 is in the on state or the off state. The power supply unit 42 is always supplied with supplied power through the same path. As a result, each electronic switch device 1 does not need a current transformer to secure a control voltage when the load 12 is energized, and can be downsized. Further, each electronic switch device 1 does not require a configuration for switching a path of power supplied to the power supply unit 42 and a complicated control for switching a path of power supplied to the power supply unit 42, so that the electronic switch device 1 is further downsized. Is possible. In particular, in an electronic switch system 10 in which two electronic switch devices 1 each including a three-way switch are combined, both the electronic switch device 1A in which the switch unit Q1 is in the off state and the electronic switch device 1B in which the switch unit Q1 is in the on state. The control voltage can be secured.
 (4)変形例
 実施形態1に係る電子スイッチ装置1は、本発明の一例に過ぎず、本発明は、実施形態1に限定されることはなく、実施形態1以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。以下に、実施形態1の変形例を列挙する。
(4) Modification The electronic switch device 1 according to the first embodiment is merely an example of the present invention, and the present invention is not limited to the first embodiment, and the present invention is not limited to the first embodiment. Various modifications can be made in accordance with the design and the like as long as they do not depart from the technical idea of the above. Below, the modification of Embodiment 1 is enumerated.
 負荷12は照明装置に限らず、例えば、換気扇及び防犯機器等の電気機器であってもよい。また、負荷12は、1台の電気機器に限らず、電気的に直列又は並列に接続された複数台の電気機器であってもよい。 The load 12 is not limited to the lighting device, and may be, for example, an electric device such as a ventilation fan and a security device. Further, the load 12 is not limited to one electrical device, and may be a plurality of electrical devices electrically connected in series or in parallel.
 また、スイッチ部Q1は双方向サイリスタに限らず、その他の半導体スイッチであってもよい。スイッチ部Q1は、例えば、第1の接続端子101と第3の接続端子103との間に電気的に直列に接続された、2つのMOSFETであってもよい。2つのMOSFETは、ソース端子同士が互いに接続される、つまり、いわゆる逆直列に接続されることにより、双方向の電流の通過/遮断を切り替える。さらにまた、スイッチ部Q1は、例えば、GaN(窒化ガリウム)などのワイドバンドギャップの半導体材料を用いたダブルゲート(デュアルゲート)構造の半導体素子であってもよい。 Further, the switch unit Q1 is not limited to the bidirectional thyristor, but may be other semiconductor switches. The switch part Q1 may be two MOSFETs electrically connected in series between the first connection terminal 101 and the third connection terminal 103, for example. The two MOSFETs are switched between bidirectional current passing / cut-off by connecting the source terminals to each other, that is, by connecting them in a so-called reverse series. Furthermore, the switch portion Q1 may be a semiconductor device having a double gate (dual gate) structure using a wide band gap semiconductor material such as GaN (gallium nitride).
 また、スイッチ部Q1を駆動するための駆動回路が、制御部5とは別に設けられていてもよい。この場合、制御電圧は、駆動回路の動作にも使用される。 Further, a drive circuit for driving the switch unit Q1 may be provided separately from the control unit 5. In this case, the control voltage is also used for the operation of the drive circuit.
 また、センサ部31は、人が存在するか否かを検知する人感センサに限らず、例えば、明るさセンサであってもよい。又は、センサ部31は、人感センサと明るさセンサとの両方を有していてもよい。さらに、電子スイッチ装置1は、センサ部31の検知結果に基づいてスイッチ部Q1が制御される構成に限らず、例えば、遠隔操作機能、タイマ機能、又は調光機能付きの電子スイッチ装置であってもよい。例えば遠隔操作機能付きの電子スイッチ装置1であれば、制御部5は、リモートコントローラからのワイヤレス信号に基づいて、スイッチ部Q1を制御する。さらにまた、電子スイッチ装置1は、例えば、押ボタンスイッチ又はタッチスイッチ等の操作部に対する人の操作に基づいて、スイッチ部Q1が制御される構成であってもよい。 The sensor unit 31 is not limited to a human sensor that detects whether or not a person is present, and may be a brightness sensor, for example. Or the sensor part 31 may have both a human sensor and a brightness sensor. Furthermore, the electronic switch device 1 is not limited to the configuration in which the switch unit Q1 is controlled based on the detection result of the sensor unit 31, and is, for example, an electronic switch device with a remote operation function, a timer function, or a dimming function. Also good. For example, if it is the electronic switch apparatus 1 with a remote operation function, the control part 5 will control switch part Q1 based on the wireless signal from a remote controller. Furthermore, the electronic switch device 1 may be configured such that the switch unit Q1 is controlled based on a human operation on an operation unit such as a push button switch or a touch switch.
 また、電圧監視部32は、全波整流後のスイッチ間電圧Vswではなく、全波整流前のスイッチ間電圧Vswの大きさを監視する構成であってもよい。この場合、電圧監視部32は、整流器2の交流入力端子間に電気的に接続される。さらに、電圧監視部32は、交流電圧Vacのゼロクロス点を検出するためのゼロクロス検出部と兼用されていてもよい。ゼロクロス検出部は、スイッチ間電圧Vswが、0〔V〕付近に設定された基準値(絶対値)未満から基準値以上に移行したことをもって、ゼロクロス点を検出する。 The voltage monitoring unit 32 may be configured to monitor the magnitude of the inter-switch voltage Vsw before full-wave rectification, not the inter-switch voltage Vsw after full-wave rectification. In this case, the voltage monitoring unit 32 is electrically connected between the AC input terminals of the rectifier 2. Furthermore, the voltage monitoring unit 32 may also be used as a zero cross detection unit for detecting the zero cross point of the AC voltage Vac. The zero-cross detection unit detects the zero-cross point when the inter-switch voltage Vsw shifts from less than the reference value (absolute value) set near 0 [V] to more than the reference value.
 また、電圧監視部32は、電子スイッチ装置1に必須の構成ではなく、省略されていてもよい。この場合、制御部5は、例えば、コンデンサC1の両端電圧の検出結果に基づいて、スイッチ部Q1を制御してもよい。具体的には、制御部5は、コンデンサC1の両端電圧が所定の閾値に達した際に、スイッチ部Q1を導通させる。ここでいう閾値は、少なくとも次に能動素子Q10がオンする時点までの制御部5等の動作を確保できる程度に、コンデンサC1が充電されたときのコンデンサC1の両端電圧である。 Further, the voltage monitoring unit 32 is not an essential component for the electronic switch device 1 and may be omitted. In this case, the control unit 5 may control the switch unit Q1 based on the detection result of the voltage across the capacitor C1, for example. Specifically, the control unit 5 causes the switch unit Q1 to conduct when the voltage across the capacitor C1 reaches a predetermined threshold. The threshold here is the voltage across the capacitor C1 when the capacitor C1 is charged to such an extent that the operation of the control unit 5 and the like until the next time when the active element Q10 is turned on can be secured.
 また、給電回路41及び電源部42の具体回路は、図3に示す回路に限らず、適宜変更が可能である。例えば、給電回路41は、ツェナダイオードZD1及び能動素子Q10に加え、オペアンプを有する定電圧回路であってもよいし、能動素子Q10が省略されていてもよい。電流制限部43のスイッチ素子Q11は、バイポーラトランジスタに限らず、例えばエンハンスメント形のnチャネルMOSFETなどであってもよい。電源部42については、例えば、コンデンサC1はレギュレータ44の出力に接続されていてもよいし、コンデンサC1とは別のコンデンサがレギュレータ44の出力に接続されていてもよい。さらに、電源部42におけるレギュレータ44は電子スイッチ装置1に必須の構成ではなく、レギュレータ44は省略されてもよい。 Further, the specific circuits of the power feeding circuit 41 and the power supply unit 42 are not limited to the circuit shown in FIG. 3 and can be changed as appropriate. For example, the power feeding circuit 41 may be a constant voltage circuit having an operational amplifier in addition to the Zener diode ZD1 and the active element Q10, or the active element Q10 may be omitted. The switch element Q11 of the current limiting unit 43 is not limited to a bipolar transistor, and may be, for example, an enhancement type n-channel MOSFET. For the power supply unit 42, for example, the capacitor C1 may be connected to the output of the regulator 44, or a capacitor other than the capacitor C1 may be connected to the output of the regulator 44. Furthermore, the regulator 44 in the power supply unit 42 is not essential for the electronic switch device 1, and the regulator 44 may be omitted.
 また、実施形態1にて、スイッチ間電圧及び基準値等の2値間の比較において、「以上」としているところは、2値が等しい場合、及び2値の一方が他方を超えている場合との両方を含む。ただし、これに限らず、ここでいう「以上」は、2値の一方が他方を超えている場合のみを含む「より大きい」と同義であってもよい。つまり、2値が等しい場合を含むか否かは、基準値等の設定次第で任意に変更できるので、「以上」か「より大きい」かに技術上の差異はない。同様に、「未満」においても「以下」と同義であってもよい。 In the first embodiment, in the comparison between the two values such as the voltage between the switches and the reference value, “more than” is the case where the two values are equal and the case where one of the two values exceeds the other. Including both. However, the present invention is not limited to this, and “more than” here may be synonymous with “greater than” including only when one of the binary values exceeds the other. That is, whether or not the case where the two values are equal can be arbitrarily changed depending on the setting of the reference value or the like, so there is no technical difference between “greater than” or “greater than”. Similarly, “less than” may be synonymous with “below”.
 (実施形態2)
 実施形態2に係る電子スイッチシステム10Aは、図5に示すように、3つの電子スイッチ装置1A,1B,1Cの組み合わせからなる。以下、実施形態1と同様の構成については、共通の符号を付して適宜説明を省略する。
(Embodiment 2)
As shown in FIG. 5, the electronic switch system 10A according to the second embodiment includes a combination of three electronic switch devices 1A, 1B, and 1C. Hereinafter, the same configurations as those of the first embodiment are denoted by common reference numerals, and description thereof is omitted as appropriate.
 電子スイッチ装置1A,1Bは、実施形態1と同様、いわゆる三路スイッチである。一方、電子スイッチ装置1Cは、4本の配線を接続可能な、いわゆる四路スイッチである。電子スイッチ装置1Cは、電子スイッチ装置1A,1Bと同様の3つの接続端子101,102,103に加えて、第4の接続端子104を備えている。 The electronic switch devices 1A and 1B are so-called three-way switches as in the first embodiment. On the other hand, the electronic switch device 1C is a so-called four-way switch that can connect four wires. The electronic switch device 1C includes a fourth connection terminal 104 in addition to the three connection terminals 101, 102, 103 similar to the electronic switch devices 1A, 1B.
 電子スイッチ装置1Cにおいて、接続端子103と接続端子104とは電子スイッチ装置1Cの内部で接続されている。電子スイッチ装置1Aの接続端子102は、電子スイッチ装置1Cの接続端子101に接続されている。電子スイッチ装置1Aの接続端子103は、電子スイッチ装置1Cの接続端子104に接続されている。電子スイッチ装置1Bの接続端子102は、電子スイッチ装置1Cの接続端子103に接続されている。電子スイッチ装置1Bの接続端子103は、電子スイッチ装置1Cの接続端子102に接続されている。 In the electronic switch device 1C, the connection terminal 103 and the connection terminal 104 are connected inside the electronic switch device 1C. The connection terminal 102 of the electronic switch device 1A is connected to the connection terminal 101 of the electronic switch device 1C. The connection terminal 103 of the electronic switch device 1A is connected to the connection terminal 104 of the electronic switch device 1C. The connection terminal 102 of the electronic switch device 1B is connected to the connection terminal 103 of the electronic switch device 1C. The connection terminal 103 of the electronic switch device 1B is connected to the connection terminal 102 of the electronic switch device 1C.
 上述の接続関係によれば、複数(ここでは3つ)の電子スイッチ装置1A,1B,1Cがそれぞれ備える複数のスイッチ部Q1は、交流電源11と負荷12との間に電気的に並列に接続される。そのため、3つの電子スイッチ装置1A,1B,1Cのいずれかのスイッチ部Q1が導通していれば、交流電源11と負荷12との間が導通し、3つの電子スイッチ装置1A,1B,1Cを介して、交流電源11から負荷12に電力供給される。したがって、電子スイッチシステム10Aでは、電子スイッチ装置1Aのスイッチ部Q1、電子スイッチ装置1Bのスイッチ部Q1、及び電子スイッチ装置1Cのスイッチ部Q1の全てにおいて、負荷12への通電状態を切り替えることが可能である。よって、3つの電子スイッチ装置1A,1B,1Cを組み合わせた電子スイッチシステム10Aでは、負荷12への通電状態を、3箇所で切り替えることが可能である。 According to the connection relation described above, the plurality of switch units Q1 included in each of the plurality (here, three) of electronic switch devices 1A, 1B, and 1C are electrically connected in parallel between the AC power supply 11 and the load 12. Is done. Therefore, if any one of the switch units Q1 of the three electronic switch devices 1A, 1B, and 1C is conductive, the AC power source 11 and the load 12 are conductive, and the three electronic switch devices 1A, 1B, and 1C are connected. The power is supplied from the AC power supply 11 to the load 12. Therefore, in the electronic switch system 10A, the energization state to the load 12 can be switched in all of the switch unit Q1 of the electronic switch device 1A, the switch unit Q1 of the electronic switch device 1B, and the switch unit Q1 of the electronic switch device 1C. It is. Therefore, in the electronic switch system 10A in which the three electronic switch devices 1A, 1B, and 1C are combined, the energization state to the load 12 can be switched at three locations.
 以上説明した本実施形態の電子スイッチシステム10Aにおいても、実施形態1と同様に、負荷12の通電時に制御電圧を確保するためにカレントトランスが必要でなく、電子スイッチ装置1の小型化が可能である、という利点がある。 Also in the electronic switch system 10A of the present embodiment described above, as in the first embodiment, a current transformer is not required to secure a control voltage when the load 12 is energized, and the electronic switch device 1 can be downsized. There is an advantage that there is.
 また、実施形態2の変形例として、電子スイッチシステム10Aは、電子スイッチ装置1C(いわゆる四路スイッチ)を2つ以上備え、計4つ以上の電子スイッチ装置1A,1B,1Cを備えていてもよい。この場合、複数の電子スイッチ装置1A,1B,1Cがそれぞれ備える複数のスイッチ部Q1が、交流電源11と負荷12との間に電気的に並列に接続されることで、負荷12への通電状態を、4箇所以上で切り替えることが可能である。 As a modification of the second embodiment, the electronic switch system 10A may include two or more electronic switch devices 1C (so-called four-way switches), and may include a total of four or more electronic switch devices 1A, 1B, and 1C. Good. In this case, the plurality of switch units Q1 included in each of the plurality of electronic switch devices 1A, 1B, and 1C are electrically connected in parallel between the AC power supply 11 and the load 12, so that the load 12 is energized. Can be switched at four or more locations.
 実施形態2の構成(変形例を含む)は、実施形態1の構成(変形例を含む)と適宜組み合わせて適用可能である。 The configuration of the second embodiment (including the modification) can be applied in combination with the configuration of the first embodiment (including the modification) as appropriate.
 (実施形態3)
 実施形態3に係る電子スイッチ装置1Dは、図6に示すように、2本の配線を接続可能な、いわゆる片切スイッチである。以下、実施形態1と同様の構成については、共通の符号を付して適宜説明を省略する。
(Embodiment 3)
The electronic switch device 1D according to the third embodiment is a so-called one-sided switch that can connect two wires as shown in FIG. Hereinafter, the same configurations as those of the first embodiment are denoted by common reference numerals, and description thereof is omitted as appropriate.
 電子スイッチ装置1Dは、2つの接続端子101,103を備えている。言い換えれば、電子スイッチ装置1Dは、実施形態1の電子スイッチ装置1A(図2参照)から、3つの接続端子101,102,103のうちの接続端子102が省略された構成である。 The electronic switch device 1D includes two connection terminals 101 and 103. In other words, the electronic switch device 1D has a configuration in which the connection terminal 102 of the three connection terminals 101, 102, 103 is omitted from the electronic switch device 1A of Embodiment 1 (see FIG. 2).
 図6の例では、電子スイッチ装置1Dの接続端子101は負荷12に接続され、電子スイッチ装置1Dの接続端子103は交流電源11に接続されている。この接続関係によれば、電子スイッチ装置1Dのスイッチ部Q1は、交流電源11と負荷12との間に電気的に接続される。そのため、電子スイッチ装置1Dのスイッチ部Q1が導通していれば、交流電源11と負荷12との間が導通し、電子スイッチ装置1Dを介して、交流電源11から負荷12に電力供給される。 6, the connection terminal 101 of the electronic switch device 1D is connected to the load 12, and the connection terminal 103 of the electronic switch device 1D is connected to the AC power source 11. According to this connection relationship, the switch unit Q1 of the electronic switch device 1D is electrically connected between the AC power supply 11 and the load 12. Therefore, if the switch part Q1 of the electronic switch device 1D is conductive, the AC power source 11 and the load 12 are conductive, and power is supplied from the AC power source 11 to the load 12 via the electronic switch device 1D.
 以上説明した本実施形態の電子スイッチ装置1Dにおいても、実施形態1と同様に、負荷12の通電時に制御電圧を確保するためにカレントトランスが必要でなく、小型化が可能である、という利点がある。 Also in the electronic switch device 1D of the present embodiment described above, as in the first embodiment, there is an advantage that a current transformer is not required to secure a control voltage when the load 12 is energized, and the size can be reduced. is there.
 実施形態3の構成は、実施形態1の構成(変形例を含む)と適宜組み合わせて適用可能である。 The configuration of Embodiment 3 can be applied in combination with the configuration of Embodiment 1 (including modifications) as appropriate.
 1,1A,1B,1C,1D 電子スイッチ装置
 5 制御部
 10,10A 電子スイッチシステム
 11 交流電源
 12 負荷
 31 センサ部
 40 充電経路
 41 給電回路
 42 電源部
 43 電流制限部
 C1 コンデンサ
 Q1 スイッチ部
 Q10 能動素子
1, 1A, 1B, 1C, 1D Electronic switch device 5 Control unit 10, 10A Electronic switch system 11 AC power supply 12 Load 31 Sensor unit 40 Charging path 41 Power supply circuit 42 Power supply unit 43 Current limiting unit C1 Capacitor Q1 Switch unit Q10 Active element

Claims (6)

  1.  交流電源と負荷との間に電気的に接続され、前記交流電源と前記負荷との間の導通と非導通とを切り替えるスイッチ部と、
     前記スイッチ部の両端間に電気的に接続され、前記交流電源からの供給電力により制御電圧を生成する電源部と、
     前記電源部から前記制御電圧の供給を受けて動作し、前記スイッチ部を制御する制御部と、
     前記スイッチ部の両端間に電気的に接続され、前記スイッチ部と前記電源部との間における前記供給電力の単一の経路となる給電回路と、を備え、
     前記給電回路は、前記スイッチ部の前記両端間の電圧の大きさが所定値以上になれば前記電源部に前記供給電力を供給するように構成されている
     電子スイッチ装置。
    A switch unit that is electrically connected between an AC power source and a load, and switches between conduction and non-conduction between the AC power source and the load;
    A power supply unit that is electrically connected between both ends of the switch unit and generates a control voltage by power supplied from the AC power supply;
    A control unit that operates by receiving the supply of the control voltage from the power supply unit, and controls the switch unit;
    A power supply circuit that is electrically connected between both ends of the switch unit and serves as a single path of the supplied power between the switch unit and the power supply unit,
    The power supply circuit is configured to supply the supply power to the power supply unit when the voltage across the switch unit reaches a predetermined value or more.
  2.  前記電源部はコンデンサを有し、
     前記給電回路は、前記スイッチ部の前記両端間における前記コンデンサの充電経路に設けられ、前記スイッチ部の前記両端間の電圧の大きさが前記所定値以上のときにオンする電圧駆動型の能動素子を有する
     請求項1に記載の電子スイッチ装置。
    The power supply unit has a capacitor,
    The power supply circuit is provided in a charging path of the capacitor between the both ends of the switch unit, and is turned on when a voltage magnitude between the both ends of the switch unit is equal to or greater than the predetermined value. The electronic switch device according to claim 1.
  3.  前記能動素子は電界効果トランジスタである
     請求項2に記載の電子スイッチ装置。
    The electronic switch device according to claim 2, wherein the active element is a field effect transistor.
  4.  前記給電回路は、前記交流電源から前記電源部に規定値以上の電流が流れると、前記電源部への前記供給電力の供給を停止させる電流制限部を有する
     請求項1~請求項3のいずれか1項に記載の電子スイッチ装置。
    The power supply circuit includes a current limiting unit that stops supply of the supplied power to the power supply unit when a current of a specified value or more flows from the AC power supply to the power supply unit. The electronic switch device according to item 1.
  5.  センサ部を更に備え、
     前記制御部は、前記センサ部の出力に基づいて前記スイッチ部を制御するように構成されている
     請求項1~請求項4のいずれか1項に記載の電子スイッチ装置。
    A sensor unit;
    The electronic switch device according to any one of claims 1 to 4, wherein the control unit is configured to control the switch unit based on an output of the sensor unit.
  6.  請求項1~請求項5のいずれか1項に記載の電子スイッチ装置を複数備え、
     前記複数の電子スイッチ装置が備える複数のスイッチ部は、交流電源と負荷との間に電気的に並列に接続される
     電子スイッチシステム。
    A plurality of electronic switch devices according to any one of claims 1 to 5,
    The plurality of switch units included in the plurality of electronic switch devices are electrically connected in parallel between an AC power source and a load.
PCT/JP2017/010338 2016-03-25 2017-03-15 Electronic switch device and electronic switch system WO2017164029A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016062510A JP6635301B2 (en) 2016-03-25 2016-03-25 Electronic switch device and electronic switch system
JP2016-062510 2016-03-25

Publications (1)

Publication Number Publication Date
WO2017164029A1 true WO2017164029A1 (en) 2017-09-28

Family

ID=59900446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010338 WO2017164029A1 (en) 2016-03-25 2017-03-15 Electronic switch device and electronic switch system

Country Status (3)

Country Link
JP (1) JP6635301B2 (en)
TW (1) TWI627831B (en)
WO (1) WO2017164029A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019071608A (en) * 2017-10-10 2019-05-09 イクシス・リミテッド・ライアビリティ・カンパニーIxys, Llc Self-powered electronic fuse

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10177645B2 (en) * 2017-06-12 2019-01-08 Semiconductor Components Industries, Llc Synchronous rectifier turn-on enable
KR101885308B1 (en) 2018-03-20 2018-08-03 손성민 DC Adapter for Magnetic Contactor Drive

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269761A (en) * 1985-09-21 1987-03-31 Nec Corp Automatic re-build-up device for electronic switching system
WO2014188711A1 (en) * 2013-05-20 2014-11-27 パナソニックIpマネジメント株式会社 Direct current power supply circuit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101760276B1 (en) * 2010-11-16 2017-07-21 삼성전자주식회사 Apparaus and Method for Switch Mode Power Supply
CN202004651U (en) * 2011-02-17 2011-10-05 昂宝电子(上海)有限公司 Switching power supply circuit for flyback structure
CN102195492B (en) * 2011-05-24 2014-04-16 成都芯源系统有限公司 Synchronous rectification switching power supply and control circuit and control method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269761A (en) * 1985-09-21 1987-03-31 Nec Corp Automatic re-build-up device for electronic switching system
WO2014188711A1 (en) * 2013-05-20 2014-11-27 パナソニックIpマネジメント株式会社 Direct current power supply circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019071608A (en) * 2017-10-10 2019-05-09 イクシス・リミテッド・ライアビリティ・カンパニーIxys, Llc Self-powered electronic fuse
US10763662B2 (en) 2017-10-10 2020-09-01 Littelfuse, Inc. Self-powered electronic fuse
TWI797171B (en) * 2017-10-10 2023-04-01 美商艾賽斯股份有限公司 Self-powered electronic fuse

Also Published As

Publication number Publication date
TW201735538A (en) 2017-10-01
JP6635301B2 (en) 2020-01-22
TWI627831B (en) 2018-06-21
JP2017174765A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
TWI580183B (en) Switch device and load control system ???including the same
TWI584693B (en) Dimming device
WO2017164029A1 (en) Electronic switch device and electronic switch system
TW201720233A (en) Dimming device
JP6751908B2 (en) Electronic switch device and electronic switch system
TWI618451B (en) Protection circuit and wiring device
US10708989B2 (en) Protection circuit for dimmer, and dimmer
TWI565363B (en) Switch device
JP6741880B2 (en) Reversible polarity wiring system
JP7026320B2 (en) Electronic switch device
JP7390589B2 (en) Switching control device and switching control system
JP6830224B2 (en) Electronic switch device and electronic switch system
WO2017164028A1 (en) Electronic switch device and electronic switch system
CN111384937B (en) Load control circuit, load control method, and storage medium
JP6796805B2 (en) Electronic switch device and electronic switch system
TW202114470A (en) Load control device
TWM582262U (en) Sensing type power supply control device
JP5773180B2 (en) Load control device
TWM584055U (en) Inductive power supply control device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17770072

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17770072

Country of ref document: EP

Kind code of ref document: A1