WO2017163894A1 - Tetracarboxylic dianhydride, polyamic acid, and polyimide - Google Patents

Tetracarboxylic dianhydride, polyamic acid, and polyimide Download PDF

Info

Publication number
WO2017163894A1
WO2017163894A1 PCT/JP2017/009400 JP2017009400W WO2017163894A1 WO 2017163894 A1 WO2017163894 A1 WO 2017163894A1 JP 2017009400 W JP2017009400 W JP 2017009400W WO 2017163894 A1 WO2017163894 A1 WO 2017163894A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
above formula
tetracarboxylic dianhydride
represented
polyamic acid
Prior art date
Application number
PCT/JP2017/009400
Other languages
French (fr)
Japanese (ja)
Inventor
舜祐 石田
芳範 河村
Original Assignee
田岡化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田岡化学工業株式会社 filed Critical 田岡化学工業株式会社
Priority to KR1020187021889A priority Critical patent/KR102335654B1/en
Priority to CN201780009391.5A priority patent/CN108602792B/en
Publication of WO2017163894A1 publication Critical patent/WO2017163894A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/87Benzo [c] furans; Hydrogenated benzo [c] furans
    • C07D307/89Benzo [c] furans; Hydrogenated benzo [c] furans with two oxygen atoms directly attached in positions 1 and 3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a novel tetracarboxylic dianhydride having a fluorenyl group, an ether group and an ester group, which are useful as raw materials for polyimide resins and the like, and a polyamic acid and a polyimide obtained from the tetracarboxylic dianhydride.
  • a resin material having a high refractive index has high workability compared with a conventional glass material
  • a lens such as an eyeglass lens, a camera, an optical disk lens, an f ⁇ lens, and an optical system for an image display medium
  • a wide range of applications are being studied for elements, optical films, films, substrates, various optical filters, prisms, optical elements for communication, etc., and polyesters, polycarbonates, polyimides, etc. have been proposed as resins exhibiting a high refractive index.
  • polyimide is known as a resin excellent in heat resistance, and a polyimide having a high refractive index and excellent heat resistance is required in the field where heat resistance is particularly required among the above uses.
  • a polyimide obtained from an aromatic diamine compound having a naphthalene skeleton has been proposed as a polyimide having excellent solvent solubility and high refractive index [Japanese Patent Laid-Open No. 2010-070513 (Patent Document 1)].
  • the polyimide described in this document is soluble in a solvent and has a high refractive index of about 1.63.
  • further improvement of the refractive index is required. It was done.
  • An object of the present invention is to provide a polyimide having excellent solvent solubility and high refractive index.
  • tetracarboxylic dianhydride and diamine which are polyimide raw materials, in order to solve the above-mentioned problems.
  • tetracarboxylic acid having a fluorene skeleton represented by the following formula (1) is obtained. It has been found that a polyimide produced using a dianhydride has excellent solvent solubility and a high refractive index.
  • the present invention includes the following.
  • Z represents a diamine residue.
  • the polyamic acid which has a repeating unit represented by these.
  • Z represents a diamine residue.
  • the polyimide produced using the tetracarboxylic dianhydride having a fluorene skeleton of the present invention has excellent solvent solubility and a high refractive index. Furthermore, since it has a characteristic of excellent toughness despite having a rigid structure like a fluorene skeleton, glasses lenses, lenses such as cameras, optical disk lenses, f ⁇ lenses, image display
  • 1 is a 1 H-NMR spectrum of a tetracarboxylic dianhydride represented by the formula (1).
  • 3 is a 13 C-NMR spectrum of a tetracarboxylic dianhydride represented by the formula (1). It is a mass spectrometry chart of the tetracarboxylic dianhydride represented by Formula (1).
  • the acid halide method involves reacting BPOPF with trimellitic anhydride acid halide represented by the following formula (5) in the presence of a deoxidizing agent, and then reacting the tetrahalide represented by the above formula (1).
  • This indicates a reaction for obtaining a carboxylic dianhydride hereinafter, this reaction may be referred to as an esterification reaction.
  • BPOPF used as a raw material may be a commercially available product, and can also be produced by a known method (for example, International Publication No. 2006/052001, Japanese Patent Application Laid-Open No. 2015-182970). Specifically, it can be obtained by reacting fluorenone with p-phenoxyphenol in the presence of an acid.
  • the acid halide of trimellitic anhydride used in the esterification reaction is represented by the following formula (5):
  • Y represents a halogen atom. It has the structure represented by these.
  • Y is preferably a chlorine atom since trimellitic anhydride acid chloride is available at low cost.
  • the amount of trimellitic anhydride acid halide represented by the above formula (5) used in the esterification reaction is usually 2 to 4 times mol, preferably 2 to 3 times mol for 1 mol of BPOPF. It is. A sufficient reaction rate can be obtained by setting the amount of trimellitic anhydride acid halide to be 2 times mol or more. By setting the amount to be 4 times mol or less, the unreacted formula (5) It is possible to reduce the acid halide of trimellitic anhydride represented by the formula, and as a result, it is possible to improve the purity of the tetracarboxylic dianhydride represented by the above formula (1). Become.
  • Examples of the deoxidizer used in the esterification reaction include organic tertiary amines such as pyridine, triethylamine, N, N-dimethylaniline, epoxies such as propylene oxide and allyl glycidyl ether, potassium carbonate, sodium hydroxide and the like. An inorganic base is mentioned. These deoxidizers may be used alone or in combination of two or more if necessary. Among these deoxidizers, pyridine is preferably used because it is inexpensive and can be easily separated and removed after the reaction.
  • the amount of the deoxidizing agent used is usually 2 to 4 times mol, preferably 2 to 3 times mol for 1 mol of BPOPF. The reaction rate is improved by setting the amount of the deoxidizer used to be twice or more mol, and the generation of impurities can be suppressed by setting the amount to be 4 times mol or less.
  • organic solvent When carrying out the esterification reaction, an organic solvent can be used if necessary.
  • organic solvents include, for example, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, ethers such as 1,2-dimethoxyethane, tetrahydrofuran and cyclopentyl methyl ether, aromatic hydrocarbons such as benzene, toluene and xylene, Illustrative are halogenated aromatic hydrocarbons such as chlorobenzene and dichlorobenzene, and nitriles such as acetonitrile, propanonitrile, butyronitrile, isobutyronitrile, valeronitrile, isovaleronitrile, and benzonitrile.
  • ethers, aromatic hydrocarbons, and nitriles are preferred, and these organic solvents may be used alone or in admixture of two or more.
  • the amount of these solvents used is usually 1 to 30 times by weight, preferably 1 to 5 times by weight with respect to 1 time by weight of BPOPF.
  • the esterification reaction is usually carried out at ⁇ 10 ° C. to 110 ° C., preferably ⁇ 5 ° C. to 80 ° C., more preferably 20 ° C. to 70 ° C.
  • By-products can be reduced by setting the reaction temperature to 110 ° C. or lower, and a sufficient reaction rate can be obtained by setting the reaction temperature to ⁇ 10 ° C. or higher.
  • an esterification reaction for example, separately prepared BPOPF and a deoxidizing agent are used as a solvent in a solution obtained by mixing a trimellitic anhydride acid halide represented by the above formula (5) and a solvent while stirring the solution.
  • the mixed solution is added intermittently or continuously so as to be in the above temperature range, and then the reaction is further continued in the above temperature range.
  • the temperature range is reached after a deoxidizer is mixed with a solvent in which a trimellitic anhydride acid halide represented by the above formula (5) is mixed with BPOPF in a solvent.
  • the reaction may be added intermittently or continuously, and after the addition, the reaction may be further continued in the above temperature range.
  • a tetracarboxylic dianhydride represented by the above formula (1) can be obtained (hereinafter, this step may be referred to as a crystallization step).
  • the resulting tetracarboxylic dianhydride represented by the above formula (1) can be subjected to general purification such as adsorption treatment and recrystallization as required.
  • tetracarboxylic dianhydride represented by the above formula (1) is extracted into the organic solvent layer by the following (sometimes referred to as a water washing step), and an excess of deoxidizer and trimellitic anhydride acid
  • the hydrolyzate of halide and the halogenated salt of the deoxidizing agent were distributed and removed in the aqueous layer, and then the ring-opened product (tetracarboxylic dianhydride represented by the above formula (1)) formed as a by-product in the washing step.
  • the product may be subjected to a ring-closing reaction in the presence of an organic solvent and acetic anhydride to form a tetracarboxylic dianhydride represented by the above formula (1) again.
  • the tetracarboxylic dianhydride represented by the above formula (1) obtained by the above method is not only used as a polyimide raw material, but also a resin raw material such as polyester, an additive, an epoxy resin, a curing agent for a polyurethane resin, etc. You may use for.
  • the purity of the tetracarboxylic dianhydride represented by the above formula (1) is likely to improve the degree of polymerization of the polyamic acid represented by the above formula (2) or the polyimide represented by the above formula (3). From the above, the HPLC purity measured by the method described later is preferably 95% or more, particularly preferably 99% or more.
  • the polyamic acid of the present invention has a repeating unit represented by the above formula (2), and the diamine residue represented by Z in the above formula (2) is represented by the above formula (1).
  • the molecular weight of the polyamic acid of the present invention is preferably 10,000 to 700,000, and more preferably 20,000 to 600,000 in terms of the weight average molecular weight obtained by the measurement method described later. If the molecular weight of the polyamic acid is 10,000 or more, molding is possible and it is easy to maintain good mechanical properties. If the molecular weight of the polyamic acid is 700,000 or less, it is easy to control the molecular weight in the synthesis, and it is easy to obtain a solution having an appropriate viscosity, and the handling is often easy. The molecular weight of the polyamic acid can be based on the viscosity of the polyamic acid solution.
  • the polyamic acid of the present invention is prepared by, for example, dissolving a diamine described later in a polymerization solvent described later, and then adding a tetracarboxylic dianhydride powder represented by the above formula (1) usually at 10 to 20 ° C. By stirring at 10 to 100 ° C., preferably 10 to 30 ° C., it can be obtained as a polyamic acid solution (hereinafter sometimes referred to as a polyamic acid solution).
  • diamines include 1,4-diaminobenzene, 1,3-diaminobenzene, 2,4-diaminotoluene, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether (also known as 4,4 ' -Oxydianiline), 3,3'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl ether, 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,2'-dimethyl-4,4'- Diaminobiphenyl, 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl (also known as 2,2′-bis (triflu
  • diamines such as 3,3′-diaminodiphenylsulfone, bicyclo [2.2.1] heptanebis (methylamine), trans-1,4-cyclohexanediamine are used.
  • the transparency of polyimide is further improved, and fluorine-containing diamines such as 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane and 2,2′-bis (trifluoromethyl) benzidine are added.
  • fluorine-containing diamines such as 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane and 2,2′-bis (trifluoromethyl) benzidine are added.
  • the solvent solubility of the resulting polyimide can be more significantly improved, and at the same time, the dielectric of the obtained polyimide can be reduced.
  • a general acid dianhydride can be used together as a copolymerization component if necessary.
  • acid dianhydrides that can be used in combination include pyromellitic anhydride, oxydiphthalic dianhydride, biphenyl-3,4,3 ′, 4′-tetracarboxylic dianhydride, benzophenone-3,4,3 ′, 4 '-Tetracarboxylic dianhydride, diphenylsulfone-3,4,3', 4'-tetracarboxylic dianhydride, 4,4 '-(2,2-hexafluoroisopropylidene) diphthalic dianhydride, m-tert-phenyl-3,4,3 ′, 4′-tetracarboxylic dianhydride, p-tert-phenyl-3,4,3 ′, 4′-tetracarboxylic dianhydride, cyclobutane-1, 2,3,4-tetracarboxylic dian
  • the amount of other acid dianhydrides used in the total acid dianhydride is preferably 10% by weight or more, more preferably 30% by weight or more, Preferably it is 90 weight% or less, More preferably, it is 70 weight% or less.
  • the characteristic derived from the structure of the tetracarboxylic dianhydride represented by said Formula (1) is fully exhibited by making the usage-amount of another acid dianhydride or less into 90 weight% or less.
  • a polyimide obtained by using fluorine-containing dianhydrides such as 4,4 ′-(2,2-hexafluoroisopropylidene) diphthalic dianhydride together The dielectric constant can be reduced.
  • an acid dianhydride such as pyromellitic anhydride having a rigid skeleton is used in combination, the heat resistance of the resulting polyimide can be improved.
  • the usable solvent is a raw material monomer, which can dissolve the tetracarboxylic dianhydride represented by the above formula (1) and the diamine, and these raw materials and the polyamic acid to be produced If it is inactive with respect to it, it will not specifically limit.
  • solvents examples include amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methyl-2-pyrrolidone, chain ester solvents such as butyl acetate, ethyl acetate and isobutyl acetate, ⁇ -Cyclic ester solvents such as butyrolactone, ⁇ -caprolactone, ⁇ -caprolactone, carbonate solvents such as ethylene carbonate, propylene carbonate, triethylene glycol, ethyl cellosolve, butyl cellosolve, propylene glycol methyl acetate, 2-methyl cellosolve acetate, ethyl cellosolve acetate, Glycol solvents such as butyl cellosolve acetate, dimethoxyethane, diethoxyethane, diethylene glycol, phenol, o-cresol, m-cresol, p-cresol, 3-chloro Phenolic solvents
  • Alcohol solvents aromatic solvents such as xylene, toluene and chlorobenzene, sulfone solvents such as sulfolane, dimethyl sulfoxide and the like can be used.
  • aromatic solvents such as xylene, toluene and chlorobenzene
  • sulfone solvents such as sulfolane, dimethyl sulfoxide and the like
  • Preferable examples include amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, and N-methyl-pyrrolidone. These solvents may be used alone or as a mixture of two or more if necessary.
  • the amount of the solvent used is such that the total concentration (monomer concentration) of the monomer components (tetracarboxylic dianhydride + diamine) in the reaction system is usually 5 to 40% by weight, preferably 8 to 25% by weight.
  • the monomer When the polymerization is carried out, the monomer may not be sufficiently dissolved or the reaction solution may become non-uniform and gel may occur.
  • the solution of the polyamic acid having the repeating unit represented by the above formula (2) obtained by the above method is usually used as it is in the polyimide formation step described later.
  • the polyimide having the repeating unit represented by the above formula (3) of the present invention is obtained by subjecting the polyamic acid having the repeating unit represented by the above formula (2) obtained by the above method to a dehydration ring closure reaction (imidation reaction). ).
  • imidation reaction examples include a thermal imidization method and a chemical imidization method.
  • the thermal imidization method is carried out by first casting a polymer solution of polyamic acid on a glass plate and heating in vacuum, an inert gas such as nitrogen, or in air to obtain a polyamic acid film.
  • a film of polyamic acid can be obtained by drying in an oven usually at 50 to 190 ° C., preferably 100 to 180 ° C.
  • the obtained polyamic acid film is heated on a glass plate at 200 to 400 ° C., preferably 250 to 350 ° C.
  • the heating temperature is preferably 200 ° C. or higher from the viewpoint of sufficiently performing the imidization reaction, and preferably 400 ° C. or lower from the viewpoint of the thermal stability of the produced polyimide film.
  • the imidation reaction is desirably performed in a vacuum or in an inert gas, but if the imidization reaction temperature is not too high, it may be performed in air.
  • the chemical imidization method will be described in detail.
  • an appropriate solution viscosity that is easy to stir by adding the same solvent as in the polymerization to the polyamic acid solution having the repeating unit represented by the above formula (2) of the present invention obtained by the above method.
  • an organic acid anhydride and a dehydrating ring-closing agent (these two types are sometimes referred to as chemical imidizing agents) are added, and the temperature is 0 to 100 ° C., preferably 10 to 50 ° C.
  • the imidization can be completed chemically by stirring for 72 hours.
  • Examples of organic acid anhydrides that can be used for chemical imidization include acetic anhydride and propionic anhydride. Among these organic acid anhydrides, acetic anhydride is preferable because of easy handling and separation.
  • As the dehydrating ring-closing agent pyridine, triethylamine, quinoline and the like can be used. Among these dehydrating ring-closing agents, pyridine is preferable because of easy handling and separation.
  • the amount of the organic acid anhydride in the chemical imidizing agent is preferably in the range of 1 to 10 times mol, more preferably 2 to 10 times mol of the theoretical dehydration amount of the polyamic acid.
  • the amount of the dehydrating ring-closing agent is preferably in the range of 0.1 to 5 times mol, more preferably in the range of 1 to 5 times mol with respect to the amount of the organic acid anhydride.
  • reaction solution obtained by the above chemical imidization method unreacted chemical imidizing agent and by-products such as organic acids (hereinafter referred to as impurities) are mixed. It may be isolated and purified.
  • a known method can be used for purification. For example, after dropping the imidized reaction solution into a poor solvent to deposit polyimide, the polyimide powder is recovered, washed repeatedly until impurities are removed, and dried to obtain polyimide powder. it can.
  • a solvent that can be used as a poor solvent any solvent can be used as long as it can precipitate polyimide, efficiently remove impurities, and can be easily dried.
  • water, alcohols such as methanol, ethanol, and isopropanol are suitable. May be used in combination.
  • the concentration of the polyimide solution when dropping into a poor solvent to deposit is preferably 20% by weight or less, more preferably 10% by weight or less.
  • the amount of the poor solvent used is preferably at least 1 times by weight, more preferably 1.5 to 10 times by weight of the polyimide solution.
  • the temperature at which the obtained polyimide powder is recovered and the residual solvent is removed by vacuum drying, hot air drying, or the like is not limited as long as the polyimide does not deteriorate, and is, for example, 30 to 150 ° C.
  • the polyimide powder having the repeating unit represented by the above formula (3) is used as a polyimide film
  • the polyimide powder having the repeating unit represented by the above formula (3) is once dissolved in a solvent
  • a solvent in which the polyimide powder is appropriately dissolved may be used according to the intended use and processing conditions.
  • N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl- Amide solvents such as 2-pyrrolidone, ester solvents such as ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -caprolactone, ⁇ -methyl- ⁇ -butyrolactone, butyl acetate, ethyl acetate, and isobutyl acetate
  • Carbonate solvents such as ethylene carbonate and propylene carbonate, glycol solvents such as diethylene glycol dimethyl ether, triethylene glycol and triethylene glycol dimethyl ether, phenol, m-cresol, p-cresol, o-cresol, 3-chlorophenol , Phenol solvents such as 4-chlorophenol, ketone solvents such as cyclopentanone, cyclohexanone, acetone, methyl ethyl ketone
  • a polyimide film can be obtained by casting the polyimide solution thus obtained on, for example, a glass plate and removing the solvent by heating in a vacuum, an inert gas such as nitrogen, or in the air.
  • a polyimide film can be obtained by drying in an oven usually at 200 to 400 ° C., preferably 250 to 350 ° C.
  • the polyimide film is preferably produced in a vacuum or in an inert gas, but if the temperature is not too high, it may be carried out in air.
  • the molecular weight of the polyimide having the repeating unit represented by the above formula (3) obtained by the method described above is preferably 10,000 to 600,000 in terms of the weight average molecular weight obtained by the measurement method described later. More preferably, it is 500,000, more preferably 40,000 to 400,000. If the molecular weight of the polyimide is 10,000 or more, molding is possible and it is easy to maintain good mechanical properties. If the molecular weight of the polyimide is 400,000 or less, it is easy to control the molecular weight during synthesis, and it is easy to obtain a solution having an appropriate viscosity and is easy to handle. The molecular weight of the polyimide can be based on the viscosity of the polyimide solution.
  • the polyimide having the repeating unit represented by the above formula (3) of the present invention obtained by the method described above has excellent solvent solubility, a high refractive index of 1.65 or more, and a glass transition temperature. Excellent heat resistance at 260 ° C or higher. Furthermore, depending on the combination with the diamine to be used, it becomes a polyimide having characteristics such as low dielectric constant and high transparency.
  • each physical property value shown in each example / comparative example is a result of measurement using a measuring apparatus and conditions.
  • HPLC purity The area percentage value when high performance liquid chromatography (HPLC) measurement was performed under the following measurement conditions was defined as the purity of each compound.
  • ⁇ Device L-2130, manufactured by Hitachi, Ltd.
  • B liquid tetrahydrofuran
  • -Mobile phase flow rate 1.0 ml / min
  • Mobile phase gradient Solution A concentration: 85% (0 minutes) ⁇ 60% (after 35 minutes) ⁇ 0% (after 40 minutes).
  • Tg glass transition temperature
  • T 400 Measurement of light transmittance (T 400 ) Using a spectrophotometer (“UV-2450” manufactured by Shimadzu Corporation), the transmittance of the polyimide film at 400 nm was measured. The higher the transmittance, the better the transparency of the polyimide film.
  • n av (2n in + n out ) / 3
  • dielectric constant
  • FIG. 1 shows a 1 H-NMR (DMSO-d 6 ) chart of the obtained tetracarboxylic dianhydride represented by the above formula (1).
  • the peak from 8.26 to 8.64 ppm is hydrogen on the benzene ring derived from trimellitic acid
  • the peak from 7.35 to 7.96 ppm is hydrogen on the benzene ring of the fluorenone skeleton
  • 6.95 to 7 Peaks up to .43 ppm are attributed to hydrogen on the benzene ring of the 4- (4-hydroxyphenyloxy) phenyl group.
  • the peak observed at 2.5 ppm is derived from DMSO, which is a solvent
  • the peak observed at 3.3 ppm is derived from water contained in DMSO.
  • a 13 C-NMR (DMSO-d 6 ) chart is shown in FIG.
  • 164.0 to 168.9 ppm and 139.95 to 156.02 ppm are carbons derived from trimellitic anhydride skeleton, and 118.8 to 138.83 ppm are 9,9-bis (4- (4-hydroxy Carbon derived from the benzene ring of phenyloxy) phenyl) fluorene, the 64.4 ppm peak is attributed to the 9th carbon of fluorenone.
  • the peak observed at 39.2 to 40.5 ppm is derived from the solvent DMSO.
  • the mass spectral value and melting point of the obtained tetracarboxylic dianhydride represented by the above formula (1) are as follows.
  • the tetracarboxylic dianhydride 5.0 g (5.66 mmol) represented by the above formula (1) obtained in Example 1 and FDA 2.0 g (5.66 mmol) were mixed with N, N-dimethylacetamide 80 at room temperature. After dissolving in 2 g and raising the temperature to 100 ° C., it was confirmed that the solution became homogeneous, and after allowing to cool, the mixture was allowed to react at room temperature for 24 hours to repeat the reaction represented by the above formula (2-A).
  • a polyamic acid having a unit was synthesized. The weight average molecular weight (Mw) of the polyamic acid was 335,368.
  • N, N-dimethylacetamide solution of polyimide having the repeating unit represented by the above formula (3-A) is dropped into 250 g of methanol, whereby the repeating unit represented by the above formula (3-A) is obtained.
  • a polyimide having units was deposited.
  • the precipitated polyimide was separated by filtration, washed with methanol, and dried to obtain 7.2 g of pale yellow polyimide powder.
  • N, N-dimethylacetamide By adding 28.3 g of N, N-dimethylacetamide to 5.0 g of the obtained polyimide powder and stirring until uniform, N, N of polyimide having a repeating unit represented by the above formula (3-A) is obtained.
  • -A dimethylacetamide solution was obtained. This solution was applied on a glass plate and then heated at 150 ° C. for 1 hour and at 250 ° C. for 1 hour to obtain a polyimide thin film having a repeating unit represented by the above formula (3-A). The thickness of the thin film was about 19 ⁇ m.
  • Table 1 shows the glass transition temperature (Tg), cutoff wavelength, transmittance at 400 nm (T 400 ), refractive index (n in ), dielectric constant ( ⁇ ), and tensile elongation of the polyimide thin film obtained.
  • Table 2 shows the solubility in various solvents.
  • the tetracarboxylic dianhydride 5.0 g (5.66 mmol) represented by the above formula (1) and 1.8 g (5.66 mmol) of TFMB obtained in Example 1 were combined with N, N-dimethylacetamide at room temperature. After dissolving in 16.8 g, the mixture was stirred at room temperature. Since the viscosity increased as the reaction proceeded, the reaction was expressed by the above formula (2-B) by stirring for 25 hours at room temperature while adding N, N-dimethylacetamide as appropriate (total additional amount: 52.0 g). An N, N-dimethylacetamide solution of polyamic acid having a repeating unit was synthesized. The weight average molecular weight (Mw) of the polyamic acid was 537,315.
  • N, N-dimethylacetamide solution of polyimide having the repeating unit represented by the above formula (3-B) is dropped into 250 g of methanol, whereby the repeating unit represented by the above formula (3-B) is obtained.
  • the deposited polyimide was separated by filtration, washed with methanol and dried to obtain 6.8 g of white polyimide powder.
  • N, N-dimethylacetamide By adding 45.0 g of N, N-dimethylacetamide to 5.0 g of the obtained polyimide powder and stirring until uniform, N, N of polyimide having a repeating unit represented by the above formula (3-B) is obtained.
  • -A dimethylacetamide solution was obtained.
  • the obtained solution was applied on a glass plate and then heated at 150 ° C. for 1 hour and at 250 ° C. for 1 hour to obtain a polyimide thin film having a repeating unit represented by the above formula (3-B).
  • the thickness of the thin film was about 14 ⁇ m.
  • Table 1 shows the measurement results of the glass transition temperature (Tg), cutoff wavelength, transmittance at 400 nm (T 400 ), refractive index (n in ) dielectric constant ( ⁇ ), and tensile elongation of the polyimide thin film obtained.
  • Table 2 shows the solubility in various solvents.
  • a tetracarboxylic dianhydride (5.0 g, 6.88 mmol) and TFMB (2.2 g, 6.88 mmol) are dissolved in 17.8 g of N, N-dimethylacetamide at room temperature and reacted at room temperature for 24 hours. Then, an N, N-dimethylacetamide solution of polyamic acid was synthesized. The weight average molecular weight (Mw) of the polyamic acid was 66,029.
  • the obtained polyimide having a repeating unit represented by the above formula (7) is dropped into 250 g of methanol in a N, N-dimethylacetamide solution of the polyimide having the repeating unit represented by the above formula (7). Precipitated.
  • the deposited polyimide was filtered, washed with methanol, and dried to obtain 6.6 g of white polyimide powder.
  • polyimide N, N-dimethyl having a repeating unit represented by the above formula (7) is obtained.
  • An acetamide solution was obtained. After apply
  • the thickness of the thin film was about 25 ⁇ m.
  • Table 1 shows the measurement results of the glass transition temperature (Tg), cutoff wavelength, transmittance at 400 nm (T 400 ), refractive index (n in ) dielectric constant ( ⁇ ), and tensile elongation of the polyimide thin film obtained.

Abstract

Provided are: a tetracarboxylic dianhydride represented by formula (1) and a method for producing the tetracarboxylic dianhydride; and a polyamic acid and a polyimide each produced from the tetracarboxylic dianhydride.

Description

テトラカルボン酸二無水物、ポリアミック酸及びポリイミドTetracarboxylic dianhydride, polyamic acid and polyimide
 本発明は、ポリイミド樹脂等の原料として有用なフルオレニル基、エーテル基及びエステル基を有する新規なテトラカルボン酸二無水物、並びに該テトラカルボン酸二無水物から得られるポリアミック酸及びポリイミドに関する。 The present invention relates to a novel tetracarboxylic dianhydride having a fluorenyl group, an ether group and an ester group, which are useful as raw materials for polyimide resins and the like, and a polyamic acid and a polyimide obtained from the tetracarboxylic dianhydride.
 高屈折率を有する樹脂材料は、従来のガラス材料と比較して高い加工性を有していることなどから、メガネレンズ、カメラ等のレンズ、光ディスク用レンズ、fθレンズ、画像表示媒体の光学系素子、光学膜、フィルム、基板、各種光学フィルター、プリズム、通信用光学素子等に幅広く応用が検討されており、これら高屈折率を発現する樹脂として例えば、ポリエステル、ポリカーボネート、ポリイミド等が提案されている。この中でもポリイミドは耐熱性に優れる樹脂として知られており、上記用途の中でも特に耐熱性が求められる分野において高屈折率かつ耐熱性に優れたポリイミドが求められている。 Since a resin material having a high refractive index has high workability compared with a conventional glass material, a lens such as an eyeglass lens, a camera, an optical disk lens, an fθ lens, and an optical system for an image display medium A wide range of applications are being studied for elements, optical films, films, substrates, various optical filters, prisms, optical elements for communication, etc., and polyesters, polycarbonates, polyimides, etc. have been proposed as resins exhibiting a high refractive index. Yes. Among these, polyimide is known as a resin excellent in heat resistance, and a polyimide having a high refractive index and excellent heat resistance is required in the field where heat resistance is particularly required among the above uses.
 しかしながら、耐熱性の高いポリイミドはたいてい有機溶剤に不溶であり、ポリイミドそのものを成形加工することは通常容易ではない。そのため、ポリイミドは前駆体のポリアミック酸溶液で膜などを成形し、250~350℃といった高温で加熱脱水閉環(イミド化)することによりポリイミドフィルムを得る必要がある。しかしながら、ポリアミック酸の溶液で膜などを成形した後、イミド化することによりポリイミドフィルムを得るという方法は、イミド化温度(250~350℃)から室温へ冷却する過程で発生する熱応力により、往々にしてカーリング、膜の剥離、割れ等の問題を引き起こすため、均一なポリイミドフィルムが得られないという問題があると同時に、イミド化時に300℃以上の高温炉が必要となり製造コストが高くなるという欠点もあった。 However, highly heat-resistant polyimide is usually insoluble in organic solvents, and it is usually not easy to mold the polyimide itself. Therefore, it is necessary to obtain a polyimide film by forming a film or the like with a polyamic acid solution of a precursor and heating and dehydrating and ring-closing (imidization) at a high temperature of 250 to 350 ° C. However, the method of obtaining a polyimide film by imidizing after forming a film or the like with a polyamic acid solution is often caused by thermal stress generated during cooling from the imidization temperature (250 to 350 ° C.) to room temperature. In addition, there is a problem that a uniform polyimide film cannot be obtained because it causes problems such as curling, film peeling and cracking, and at the same time, a high temperature furnace of 300 ° C. or higher is required at the time of imidization, resulting in a high manufacturing cost. There was also.
 そこで溶媒溶解性に優れ、かつ高屈折率を発現するポリイミドとして例えば、ナフタレン骨格を有する芳香族ジアミン化合物から得られるポリイミドが提案されている〔特開2010-070513号公報(特許文献1)〕。該文献に記載されるポリイミドは溶媒に可溶であり、屈折率が約1.63と高屈折率であるが、昨今の樹脂材料に対する高屈折率化の要求から、さらなる屈折率の向上が求められていた。 Therefore, for example, a polyimide obtained from an aromatic diamine compound having a naphthalene skeleton has been proposed as a polyimide having excellent solvent solubility and high refractive index [Japanese Patent Laid-Open No. 2010-070513 (Patent Document 1)]. The polyimide described in this document is soluble in a solvent and has a high refractive index of about 1.63. However, due to the recent demand for a higher refractive index for resin materials, further improvement of the refractive index is required. It was done.
特開2010-070513号公報JP 2010-070513 A
 本発明の目的は、溶媒溶解性に優れ、かつ高屈折率を示すポリイミドを提供することにある。 An object of the present invention is to provide a polyimide having excellent solvent solubility and high refractive index.
 発明者らは、上記課題を解決すべくポリイミド原料であるテトラカルボン酸二無水物及びジアミンの構造を種々検討していたところ、下記式(1)で表される、フルオレン骨格を有するテトラカルボン酸二無水物を用いて製造されるポリイミドが溶媒溶解性に優れ、高屈折率を示すことを見出した。具体的には、本発明は以下のものを含む。 The inventors have studied various structures of tetracarboxylic dianhydride and diamine, which are polyimide raw materials, in order to solve the above-mentioned problems. As a result, tetracarboxylic acid having a fluorene skeleton represented by the following formula (1) is obtained. It has been found that a polyimide produced using a dianhydride has excellent solvent solubility and a high refractive index. Specifically, the present invention includes the following.
 〔1〕
 下記式(1):
[1]
Following formula (1):
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
で表されるテトラカルボン酸二無水物。
 〔2〕
 下記式(2):
Tetracarboxylic dianhydride represented by
[2]
Following formula (2):
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式中、Zはジアミン残基を示す。)
で表される繰り返し単位を有するポリアミック酸。
(In the formula, Z represents a diamine residue.)
The polyamic acid which has a repeating unit represented by these.
 〔3〕
 下記式(3):
[3]
Following formula (3):
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式中、Zはジアミン残基を示す。)
で表される繰り返し単位を有するポリイミド。
(In the formula, Z represents a diamine residue.)
The polyimide which has a repeating unit represented by these.
 〔4〕
 無水トリメリット酸ハライドと、下記式(4):
[4]
Trimellitic anhydride and the following formula (4):
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
で表されるビスフェノール類とを反応させる、〔1〕に記載のテトラカルボン酸二無水物の製造方法。 The process for producing a tetracarboxylic dianhydride according to [1], wherein the bisphenol represented by the formula (1) is reacted.
 本発明のフルオレン骨格を有するテトラカルボン酸二無水物を用いて製造されるポリイミドは、溶媒溶解性に優れ、かつ高屈折率であるという特性を有する。さらには、フルオレン骨格のような剛直な構造を有しているにもかかわらず靱性に優れるという特徴を有していることから、メガネレンズ、カメラ等のレンズ、光ディスク用レンズ、fθレンズ、画像表示媒体の光学系素子、光学膜、フィルム、各種光学フィルター、プリズム、通信用光学素子等といった光学系分野での利用は勿論のこと、フレキシブルプリント配線回路基板、半導体素子の保護膜、集積回路の層間絶縁膜等の電子材料や、液晶ディスプレー、電子ペーパー、太陽電池等で一般的に使用されるガラス基板を代替するフレキシブル基板といった用途にも好適に用いることができる。 The polyimide produced using the tetracarboxylic dianhydride having a fluorene skeleton of the present invention has excellent solvent solubility and a high refractive index. Furthermore, since it has a characteristic of excellent toughness despite having a rigid structure like a fluorene skeleton, glasses lenses, lenses such as cameras, optical disk lenses, fθ lenses, image display The optical system element of the medium, optical film, film, various optical filters, prism, optical element for communication, etc., as well as flexible printed wiring circuit boards, semiconductor element protective films, integrated circuit layers It can also be suitably used for applications such as an electronic material such as an insulating film, a flexible substrate that replaces a glass substrate generally used in liquid crystal displays, electronic paper, solar cells, and the like.
式(1)で表わされるテトラカルボン酸二無水物のH-NMRスペクトルである。1 is a 1 H-NMR spectrum of a tetracarboxylic dianhydride represented by the formula (1). 式(1)で表わされるテトラカルボン酸二無水物の13C-NMRスペクトルである。3 is a 13 C-NMR spectrum of a tetracarboxylic dianhydride represented by the formula (1). 式(1)で表わされるテトラカルボン酸二無水物の質量分析チャートである。It is a mass spectrometry chart of the tetracarboxylic dianhydride represented by Formula (1).
 <式(1)で表されるテトラカルボン酸二無水物の製造方法>
 上記式(1)で表されるテトラカルボン酸二無水物を得る方法としては公知の方法を適宜適用することができる。例えば、脱酸剤(塩基)の存在下、上記式(4)で表される化合物(9,9-ビス(4-(4-ヒドロキシフェニルオキシ)フェニル)フルオレン、以下、BPOPFと略すことがある)とトリメリット酸無水物の酸ハライドとを反応させる方法(酸ハライド法)、BPOPFとトリメリット酸無水物との直接脱水反応による方法、BPOPFのジアセテート体とトリメリット酸無水物とを高温で脱酢酸反応する方法、ジシクロヘキシルカルボジイミド等の脱水剤を用いてBPOPFとトリメリット酸無水物とを脱水縮合させる方法、トシルクロリド/N,N-ジメチルホルムアミド/ピリジン混合物を用いてトリメリット酸無水物を活性化してBPOPFをエステル化する方法が挙げられる。その中でも、原料であるトリメリット酸ハライドを安価に入手可能であることから、酸ハライド法が好ましい。以下、酸ハライド法について詳述する。
<The manufacturing method of the tetracarboxylic dianhydride represented by Formula (1)>
As a method for obtaining the tetracarboxylic dianhydride represented by the above formula (1), a known method can be appropriately applied. For example, in the presence of a deoxidizer (base), the compound represented by the above formula (4) (9,9-bis (4- (4-hydroxyphenyloxy) phenyl) fluorene, hereinafter abbreviated as BPOPF) ) And trimellitic anhydride acid halide (acid halide method), direct dehydration reaction of BPOP and trimellitic anhydride, BPOP diacetate and trimellitic anhydride at high temperature A method of deaceticating with B, BPOF and trimellitic anhydride using a dehydrating agent such as dicyclohexylcarbodiimide, trimellitic anhydride using a tosyl chloride / N, N-dimethylformamide / pyridine mixture The method of activating BPOPF and activating BPOPF is mentioned. Among them, the acid halide method is preferable because trimellitic acid halide as a raw material can be obtained at low cost. Hereinafter, the acid halide method will be described in detail.
 酸ハライド法とは具体的には、脱酸剤存在下、BPOPFと下記式(5)で表されるトリメリット酸無水物の酸ハライドとを反応させ、上記式(1)で表されるテトラカルボン酸二無水物を得る反応のことを示す(以下、本反応をエステル化反応と称することもある)。 Specifically, the acid halide method involves reacting BPOPF with trimellitic anhydride acid halide represented by the following formula (5) in the presence of a deoxidizing agent, and then reacting the tetrahalide represented by the above formula (1). This indicates a reaction for obtaining a carboxylic dianhydride (hereinafter, this reaction may be referred to as an esterification reaction).
 原料として使用するBPOPFは市販品を用いてもよく、公知の方法(例えば、国際公開第2006/052001号、特開2015-182970公報)で製造することも可能である。具体的には、酸存在下、フルオレノンとp-フェノキシフェノールとを反応させることにより得ることができる。 BPOPF used as a raw material may be a commercially available product, and can also be produced by a known method (for example, International Publication No. 2006/052001, Japanese Patent Application Laid-Open No. 2015-182970). Specifically, it can be obtained by reacting fluorenone with p-phenoxyphenol in the presence of an acid.
 エステル化反応に用いられるトリメリット酸無水物の酸ハライドは下記式(5): The acid halide of trimellitic anhydride used in the esterification reaction is represented by the following formula (5):
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式中、Yはハロゲン原子を表す。)
で表される構造を有する。これらトリメリット酸無水物の酸ハライドの中でも、トリメリット酸無水物の酸クロリドが安価で入手可能であることから、Yは塩素原子が望ましい。
(In the formula, Y represents a halogen atom.)
It has the structure represented by these. Among these acid halides of trimellitic anhydride, Y is preferably a chlorine atom since trimellitic anhydride acid chloride is available at low cost.
 エステル化反応に用いられる上記式(5)で表されるトリメリット酸無水物の酸ハライドの使用量は通常、BPOPF1モルに対して、2~4倍モルであり、好ましくは2~3倍モルである。トリメリット酸無水物の酸ハライドの使用量を2倍モル以上とすることにより十分な反応速度を得ることができ、使用量を4倍モル以下とすることによって、未反応の上記式(5)で表されるトリメリット酸無水物の酸ハライドを低減させることが可能であり、その結果、得られる上記式(1)で表されるテトラカルボン酸二無水物の純度を向上させることが可能となる。 The amount of trimellitic anhydride acid halide represented by the above formula (5) used in the esterification reaction is usually 2 to 4 times mol, preferably 2 to 3 times mol for 1 mol of BPOPF. It is. A sufficient reaction rate can be obtained by setting the amount of trimellitic anhydride acid halide to be 2 times mol or more. By setting the amount to be 4 times mol or less, the unreacted formula (5) It is possible to reduce the acid halide of trimellitic anhydride represented by the formula, and as a result, it is possible to improve the purity of the tetracarboxylic dianhydride represented by the above formula (1). Become.
 エステル化反応で用いられる脱酸剤として、例えば、ピリジン、トリエチルアミン、N,N-ジメチルアニリン等の有機3級アミン類、プロピレンオキサイド、アリルグリシジルエーテル等のエポキシ類、炭酸カリウム、水酸化ナトリウム等の無機塩基が挙げられる。これら脱酸剤は1種、あるいは必要に応じ2種以上併用してもよい。これら脱酸剤の中でも、安価であり、かつ反応後、分離除去が容易であることからピリジンが好適に用いられる。脱酸剤の使用量は、BPOPF1モルに対して、通常2~4倍モル、好ましくは2~3倍モルである。脱酸剤の使用量を2倍モル以上とすることにより反応速度が向上し、4倍モル以下とすることにより不純物の生成を抑制することが可能となる。 Examples of the deoxidizer used in the esterification reaction include organic tertiary amines such as pyridine, triethylamine, N, N-dimethylaniline, epoxies such as propylene oxide and allyl glycidyl ether, potassium carbonate, sodium hydroxide and the like. An inorganic base is mentioned. These deoxidizers may be used alone or in combination of two or more if necessary. Among these deoxidizers, pyridine is preferably used because it is inexpensive and can be easily separated and removed after the reaction. The amount of the deoxidizing agent used is usually 2 to 4 times mol, preferably 2 to 3 times mol for 1 mol of BPOPF. The reaction rate is improved by setting the amount of the deoxidizer used to be twice or more mol, and the generation of impurities can be suppressed by setting the amount to be 4 times mol or less.
 エステル化反応を実施する際、必要に応じ有機溶媒を使用することができる。使用可能な有機溶媒として例えば、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン類、1,2-ジメトキシエタン、テトラヒドロフラン、シクロペンチルメチルエーテルなどのエーテル類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、クロロベンゼン、ジクロロベンゼンなどのハロゲン化芳香族炭化水素、アセトニトリル、プロパノニトリル、ブチロニトリル、イソブチロニトリル、バレロニトリル、イソバレロニトリル、ベンゾニトリル等のニトリル類が例示される。入手性及び取扱性の点から、好ましくは、エーテル類、芳香族炭化水素類、ニトリル類であり、これら有機溶媒は1種、あるいは必要に応じ2種以上混合させて使用してもよい。これら溶媒を使用する際の使用量は通常、BPOPF1重量倍に対し、1~30重量倍、好ましくは1~5重量倍である。 When carrying out the esterification reaction, an organic solvent can be used if necessary. Usable organic solvents include, for example, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, ethers such as 1,2-dimethoxyethane, tetrahydrofuran and cyclopentyl methyl ether, aromatic hydrocarbons such as benzene, toluene and xylene, Illustrative are halogenated aromatic hydrocarbons such as chlorobenzene and dichlorobenzene, and nitriles such as acetonitrile, propanonitrile, butyronitrile, isobutyronitrile, valeronitrile, isovaleronitrile, and benzonitrile. From the viewpoints of availability and handleability, ethers, aromatic hydrocarbons, and nitriles are preferred, and these organic solvents may be used alone or in admixture of two or more. The amount of these solvents used is usually 1 to 30 times by weight, preferably 1 to 5 times by weight with respect to 1 time by weight of BPOPF.
 エステル化反応は通常、-10℃~110℃、好ましくは-5℃~80℃、さらに好ましくは20℃~70℃で実施する。反応温度を110℃以下とすることにより副生成物の低減が可能となり、反応温度を-10℃以上とすることにより十分な反応速度を得ることができる。 The esterification reaction is usually carried out at −10 ° C. to 110 ° C., preferably −5 ° C. to 80 ° C., more preferably 20 ° C. to 70 ° C. By-products can be reduced by setting the reaction temperature to 110 ° C. or lower, and a sufficient reaction rate can be obtained by setting the reaction temperature to −10 ° C. or higher.
 エステル化反応として例えば、上記式(5)で表されるトリメリット酸無水物の酸ハライドと溶媒とを混合させた溶液に、該溶液を撹拌しながら、別途調製したBPOPF及び脱酸剤を溶媒に混合した溶液を、上記した温度範囲となるよう間欠的あるいは連続的に添加した後、上記した温度範囲にてさらに反応を継続する方法がある。また、上記式(5)で表されるトリメリット酸無水物の酸ハライドとBPOPFとを溶媒に混合させた溶液に、脱酸剤をそのまま、あるいは溶媒に混合させた後、上記温度範囲となるよう間欠的あるいは連続的に添加し、添加後、上記した温度範囲でさらに反応を継続する方法であってもよい。 As an esterification reaction, for example, separately prepared BPOPF and a deoxidizing agent are used as a solvent in a solution obtained by mixing a trimellitic anhydride acid halide represented by the above formula (5) and a solvent while stirring the solution. There is a method in which the mixed solution is added intermittently or continuously so as to be in the above temperature range, and then the reaction is further continued in the above temperature range. Further, the temperature range is reached after a deoxidizer is mixed with a solvent in which a trimellitic anhydride acid halide represented by the above formula (5) is mixed with BPOPF in a solvent. Alternatively, the reaction may be added intermittently or continuously, and after the addition, the reaction may be further continued in the above temperature range.
 エステル化反応終了後、反応マスを15℃~35℃に冷却することにより結晶を析出させ、析出した結晶をろ別し得られた結晶を、さらに前述の反応で使用し得る溶媒で洗浄することにより、上記式(1)で表されるテトラカルボン酸二無水物を得ることができる(以下、本工程を晶析工程と称することもある)。得られた上記式(1)で表されるテトラカルボン酸二無水物に対して、必要に応じ、吸着処理、再晶析等の一般的な精製を行うこともできる。 After completion of the esterification reaction, the reaction mass is cooled to 15 ° C. to 35 ° C. to precipitate crystals, and the crystals obtained by filtering the precipitated crystals are further washed with a solvent that can be used in the aforementioned reaction. Thus, a tetracarboxylic dianhydride represented by the above formula (1) can be obtained (hereinafter, this step may be referred to as a crystallization step). The resulting tetracarboxylic dianhydride represented by the above formula (1) can be subjected to general purification such as adsorption treatment and recrystallization as required.
 また、エステル化反応終了後、上述の晶析工程を実施する前に、必要に応じて、反応マスに、水及び水と分離する有機溶媒とを加えた後、撹拌、水層を分離すること(以下、水洗工程と称することがある)によって、上記式(1)で表されるテトラカルボン酸二無水物を有機溶媒層に抽出し、過剰分の脱酸剤とトリメリット酸無水物の酸ハライドの加水分解体、及び脱酸剤のハロゲン塩を水層に分配して除去した後、さらに水洗工程にて副生した開環体(上記式(1)で表されるテトラカルボン酸二無水物の加水分解体)を有機溶媒及び無水酢酸存在下で閉環反応させ、再度上記式(1)で表されるテトラカルボン酸二無水物とする工程を実施してもよい。 In addition, after completion of the esterification reaction and before carrying out the above-described crystallization step, if necessary, water and an organic solvent that separates from water are added to the reaction mass, followed by stirring and separation of the aqueous layer. The tetracarboxylic dianhydride represented by the above formula (1) is extracted into the organic solvent layer by the following (sometimes referred to as a water washing step), and an excess of deoxidizer and trimellitic anhydride acid The hydrolyzate of halide and the halogenated salt of the deoxidizing agent were distributed and removed in the aqueous layer, and then the ring-opened product (tetracarboxylic dianhydride represented by the above formula (1)) formed as a by-product in the washing step. The product may be subjected to a ring-closing reaction in the presence of an organic solvent and acetic anhydride to form a tetracarboxylic dianhydride represented by the above formula (1) again.
 上記の方法で得られる、上記式(1)で表されるテトラカルボン酸二無水物は、ポリイミド原料として用いるだけでなく、ポリエステル等の樹脂原料、添加剤やエポキシ樹脂、ポリウレタン樹脂の硬化剤などに用いてもよい。また、上記式(1)で表わされるテトラカルボン酸二無水物の純度は、上記式(2)で表されるポリアミック酸又は上記式(3)で表されるポリイミドの重合度を向上させやすい点から、後述する方法で測定されるHPLC純度で、好ましくは95%以上、特に好ましくは99%以上である。 The tetracarboxylic dianhydride represented by the above formula (1) obtained by the above method is not only used as a polyimide raw material, but also a resin raw material such as polyester, an additive, an epoxy resin, a curing agent for a polyurethane resin, etc. You may use for. Moreover, the purity of the tetracarboxylic dianhydride represented by the above formula (1) is likely to improve the degree of polymerization of the polyamic acid represented by the above formula (2) or the polyimide represented by the above formula (3). From the above, the HPLC purity measured by the method described later is preferably 95% or more, particularly preferably 99% or more.
 <上記式(2)で表される繰り返し単位を有するポリアミック酸及びその製造方法>
 上記式(2)で表される繰り返し単位を有するポリアミック酸(以下、本発明のポリアミック酸と称することもある)について詳述する。
<Polyamic acid having a repeating unit represented by the above formula (2) and method for producing the same>
The polyamic acid having the repeating unit represented by the above formula (2) (hereinafter sometimes referred to as the polyamic acid of the present invention) will be described in detail.
 本発明のポリアミック酸は、上記式(2)で表される繰り返し単位を有しており、上記式(2)中のZで表されるジアミン残基とは、上記式(1)で表されるテトラカルボン酸二無水物と、後述するジアミン類とを反応させた際に得られる、ジアミンのアミノ基(-NH)以外の構造部分を表す。 The polyamic acid of the present invention has a repeating unit represented by the above formula (2), and the diamine residue represented by Z in the above formula (2) is represented by the above formula (1). Represents a structural portion other than the amino group (—NH 2 ) of the diamine, which is obtained by reacting a tetracarboxylic dianhydride with a diamine described later.
 本発明のポリアミック酸の分子量は、後述する測定方法により得られる重量平均分子量で1万~70万であることが好ましく、2万~60万であることがより好ましい。ポリアミック酸の分子量が1万以上であれば、成形可能であり、また良好な力学特性を維持しやすい。またポリアミック酸の分子量が70万以下であれば、合成する場合に分子量をコントロールしやすく、また適度な粘度の溶液が得られやすく取扱いが容易である場合が多い。なお、ポリアミック酸の分子量は、ポリアミック酸溶液の粘度を目安にすることができる。 The molecular weight of the polyamic acid of the present invention is preferably 10,000 to 700,000, and more preferably 20,000 to 600,000 in terms of the weight average molecular weight obtained by the measurement method described later. If the molecular weight of the polyamic acid is 10,000 or more, molding is possible and it is easy to maintain good mechanical properties. If the molecular weight of the polyamic acid is 700,000 or less, it is easy to control the molecular weight in the synthesis, and it is easy to obtain a solution having an appropriate viscosity, and the handling is often easy. The molecular weight of the polyamic acid can be based on the viscosity of the polyamic acid solution.
 本発明のポリアミック酸は、例えば、後述するジアミン類を後述する重合溶媒に溶解後、通常10~20℃で上記式(1)で表されるテトラカルボン酸二無水物の粉末を添加した後、10~100℃、好ましくは10~30℃で撹拌することで、ポリアミック酸溶液(以下、ポリアミック酸溶液と称することもある)として得ることができる。 The polyamic acid of the present invention is prepared by, for example, dissolving a diamine described later in a polymerization solvent described later, and then adding a tetracarboxylic dianhydride powder represented by the above formula (1) usually at 10 to 20 ° C. By stirring at 10 to 100 ° C., preferably 10 to 30 ° C., it can be obtained as a polyamic acid solution (hereinafter sometimes referred to as a polyamic acid solution).
 本発明で使用可能なジアミン類としては、ポリイミドの製造に用いられる、一般的な芳香族ジアミン類、脂肪族ジアミン類、脂環式ジアミン類等を使用することができる。このようなジアミン類として例えば、1,4-ジアミノベンゼン、1,3-ジアミノベンゼン、2,4-ジアミノトルエン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル(別名4,4’-オキシジアニリン)、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルエーテル、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル(別名2,2’-ビス(トリフルオロメチル)ベンジジン)、3,7-ジアミノ-ジメチルジベンゾチオフェン-5,5-ジオキシド、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、4,4’-ビス(4-アミノフェニル)スルフィド、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノベンズアニリド、1,3-ビス(4-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,3-ビス(4-アミノフェノキシ)-2,2-ジメチルプロパン、1,2-ビス[2-(4-アミノフェノキシ)エトキシ]エタン、9,9-ビス(4-アミノフェニル)フルオレン、5(6)-アミノ-1-(4-アミノメチル)-1,3,3-トリメチルインダン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、3,3’-ジカルボキシ-4,4’-ジアミノジフェニルメタン、4,6-ジヒドロキシ-1,3-フェニレンジアミン、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、3,3’,4,4’-テトラアミノビフェニル、1,6-ジアミノヘキサン、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン、1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン、4,4’-メチレンビス(4-シクロヘキシルアミン)、トランス-1,4-シクロヘキサンジアミン、ビシクロ[2.2.1]ヘプタンビス(メチルアミン)、トリシクロ[3.3.1.13,7]デカン-1,3-ジアミン(別名アダマンタン-1,3-ジアミン)、4-アミノ安息香酸-4-アミノフェニルエステル、2-(4-アミノフェニル)アミノベンゾオキサゾール、9,9-ビス[4-(4-アミノフェノキシ)フェニル]フルオレン、2,2’-ビス(3-スルホプロポキシ)―4,4’-ジアミノビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル―3,3’-ジスルホン酸、3,3’-ジアミノジフェニルスルホン等が挙げられる。また、これらジアミン類は2種類以上併用することもできる。 As the diamines that can be used in the present invention, general aromatic diamines, aliphatic diamines, alicyclic diamines, and the like used in the production of polyimide can be used. Examples of such diamines include 1,4-diaminobenzene, 1,3-diaminobenzene, 2,4-diaminotoluene, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether (also known as 4,4 ' -Oxydianiline), 3,3'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl ether, 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,2'-dimethyl-4,4'- Diaminobiphenyl, 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl (also known as 2,2′-bis (trifluoromethyl) benzidine), 3,7-diamino-dimethyldibenzothiophene-5 5-dioxide, 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 4,4'-bis 4-aminophenyl) sulfide, 4,4′-diaminodiphenylsulfone, 4,4′-diaminobenzanilide, 1,3-bis (4-aminophenoxy) propane, 1,4-bis (4-aminophenoxy) butane 1,5-bis (4-aminophenoxy) pentane, 1,3-bis (4-aminophenoxy) -2,2-dimethylpropane, 1,2-bis [2- (4-aminophenoxy) ethoxy] ethane 9,9-bis (4-aminophenyl) fluorene, 5 (6) -amino-1- (4-aminomethyl) -1,3,3-trimethylindane, 1,4-bis (4-aminophenoxy) Benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 4,4′-bis (4-aminophenoxy) bi Enyl, 4,4′-bis (3-aminophenoxy) biphenyl, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [ 4- (3-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 3,3′-dicarboxy-4,4′-diaminodiphenylmethane, 4, 6-dihydroxy-1,3-phenylenediamine, 3,3′-dihydroxy-4,4′-diaminobiphenyl, 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane, 3,3 ′, 4,4'-tetraaminobiphenyl, 1,6-diaminohexane, 1,3-bis (3-aminopropyl) tetramethyldisiloxy Sun, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, 4,4'-methylenebis (4-cyclohexylamine), trans-1,4-cyclohexanediamine, bicyclo [2.2.1] Heptanebis (methylamine), tricyclo [3.3.1.13,7] decane-1,3-diamine (also known as adamantane-1,3-diamine), 4-aminobenzoic acid-4-aminophenyl ester, 2- (4-aminophenyl) aminobenzoxazole, 9,9-bis [4- (4-aminophenoxy) phenyl] fluorene, 2,2′-bis (3-sulfopropoxy) -4,4′-diaminobiphenyl, 4 , 4′-bis (4-aminophenoxy) biphenyl-3,3′-disulfonic acid, 3,3′-diaminodiphenylsulfone, etc. It is below. Two or more of these diamines can be used in combination.
 上記ジアミン類の中でも、3,3’-ジアミノジフェニルスルホン、ビシクロ[2.2.1]ヘプタンビス(メチルアミン)、トランス-1,4-シクロヘキサンジアミン等の脂環式ジアミンを使用した場合、得られるポリイミドの透明性がより向上され、また、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2、2’-ビス(トリフルオロメチル)ベンジジンなどのフッ素含有ジアミン類を使用した場合、得られるポリイミドの溶媒溶解性がより顕著に改善可能となると同時に、得られるポリイミドの低誘電化が可能となる。これらジアミン類は、上記式(1)で表されるテトラカルボン酸二無水物、及び他の酸二無水物を併用する場合は他の酸二無水物も含めた全酸二無水物1モルに対し通常0.9~1.1モル、重合度を高める観点から好ましくは0.95~1.05モル使用する。 Among the above diamines, it is obtained when alicyclic diamines such as 3,3′-diaminodiphenylsulfone, bicyclo [2.2.1] heptanebis (methylamine), trans-1,4-cyclohexanediamine are used. The transparency of polyimide is further improved, and fluorine-containing diamines such as 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane and 2,2′-bis (trifluoromethyl) benzidine are added. When used, the solvent solubility of the resulting polyimide can be more significantly improved, and at the same time, the dielectric of the obtained polyimide can be reduced. When these diamines are used in combination with the tetracarboxylic dianhydride represented by the above formula (1) and other acid dianhydrides, 1 mol of all acid dianhydrides including other acid dianhydrides is used. The amount is usually 0.9 to 1.1 mol, and preferably 0.95 to 1.05 mol from the viewpoint of increasing the degree of polymerization.
 また、必要に応じ一般的な酸二無水物を共重合成分として併用することができる。併用可能な酸二無水物として例えば、無水ピロメリット酸、オキシジフタル酸二無水物、ビフェニル-3,4,3’,4’-テトラカルボン酸二無水物、ベンゾフェノン-3,4,3’,4’-テトラカルボン酸二無水物、ジフェニルスルホン-3,4,3’,4’-テトラカルボン酸二無水物、4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、m-タ-フェニル-3,4,3’,4’-テトラカルボン酸二無水物、p-タ-フェニル-3,4,3’,4’-テトラカルボン酸二無水物、シクロブタン-1,2,3,4-テトラカルボン酸二無水物、1-カルボキシメチル-2,3,5-シクロペンタントリカルボン酸-2,6:3,5-二酸無水物、シクロヘキサン-1,2,4,5-テトラカルボン酸二無水物、ブタン-1,2,3,4-テトラカルボン酸二無水物、4-フェニルエチニルフタル酸無水物、ナフタレン-1,4,5,8-テトラカルボン酸二無水物、ビス(1,3-ジオキソ-1,3-ジヒドロイソベンゾフラン-5-カルボン酸)1,4-フェニレン等が例示され、これら酸二無水物は2種類以上併用することもできる。他の酸二無水物を併用する場合、全酸二無水物中の他の酸二無水物の使用量は、好ましくは10重量%以上であり、より好ましくは30重量%以上であり、一方、好ましくは90重量%以下であり、より好ましくは70重量%以下である。他の酸二無水物を10重量%以上使用することにより、後述する、他の酸二無水物を併用することによる物性向上効果を十分に得ることができる。一方、他の酸二無水物の使用量を90重量%以下とすることにより、上記式(1)で表されるテトラカルボン酸二無水物の構造に由来する特性が十分に発揮される。 Moreover, a general acid dianhydride can be used together as a copolymerization component if necessary. Examples of acid dianhydrides that can be used in combination include pyromellitic anhydride, oxydiphthalic dianhydride, biphenyl-3,4,3 ′, 4′-tetracarboxylic dianhydride, benzophenone-3,4,3 ′, 4 '-Tetracarboxylic dianhydride, diphenylsulfone-3,4,3', 4'-tetracarboxylic dianhydride, 4,4 '-(2,2-hexafluoroisopropylidene) diphthalic dianhydride, m-tert-phenyl-3,4,3 ′, 4′-tetracarboxylic dianhydride, p-tert-phenyl-3,4,3 ′, 4′-tetracarboxylic dianhydride, cyclobutane-1, 2,3,4-tetracarboxylic dianhydride, 1-carboxymethyl-2,3,5-cyclopentanetricarboxylic acid-2,6: 3,5-dioic anhydride, cyclohexane-1,2,4 5-tetracarboxylic acid , Butane-1,2,3,4-tetracarboxylic dianhydride, 4-phenylethynylphthalic anhydride, naphthalene-1,4,5,8-tetracarboxylic dianhydride, bis (1,3 -Dioxo-1,3-dihydroisobenzofuran-5-carboxylic acid) 1,4-phenylene and the like, and two or more of these acid dianhydrides can be used in combination. When other acid dianhydrides are used in combination, the amount of other acid dianhydrides used in the total acid dianhydride is preferably 10% by weight or more, more preferably 30% by weight or more, Preferably it is 90 weight% or less, More preferably, it is 70 weight% or less. By using other acid dianhydrides in an amount of 10% by weight or more, the effect of improving physical properties by using other acid dianhydrides, which will be described later, can be sufficiently obtained. On the other hand, the characteristic derived from the structure of the tetracarboxylic dianhydride represented by said Formula (1) is fully exhibited by making the usage-amount of another acid dianhydride or less into 90 weight% or less.
 他の酸二無水物を併用する効果として例えば、4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物などの含フッ素酸二無水物を併用することにより、得られるポリイミドの低誘電率化が可能となる。また、剛直な骨格を有する無水ピロメリット酸などの酸二無水物を併用した場合、得られるポリイミドの耐熱性向上が可能となる。 As an effect of using other acid dianhydrides in combination, for example, a polyimide obtained by using fluorine-containing dianhydrides such as 4,4 ′-(2,2-hexafluoroisopropylidene) diphthalic dianhydride together The dielectric constant can be reduced. Further, when an acid dianhydride such as pyromellitic anhydride having a rigid skeleton is used in combination, the heat resistance of the resulting polyimide can be improved.
 ポリアミック酸を製造する際、使用可能な溶媒としては、原料モノマーである、上記式(1)で表されるテトラカルボン酸二無水物とジアミン類とを溶解でき、かつこれら原料や生成するポリアミック酸に対し不活性であれば特に限定されない。このような溶媒として例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド溶媒、酢酸ブチル、酢酸エチル、酢酸イソブチル等の鎖状エステル系溶媒、γ-ブチロラクトン、γ-カプロラクトン、ε-カプロラクトン等の環状エステル溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート溶媒、トリエチレングリコール、エチルセロソルブ、ブチルセロソルブ、プロピレングリコールメチルアセテート、2-メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、ジメトキシエタン、ジエトキシエタン、ジエチレングリコール等のグリコール系溶媒、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、3-クロロフェノール、4-クロロフェノール等のフェノール系溶媒、テトラヒドロフラン、ジブチルエーテル、ジエチルエーテル等のエーテル系溶媒、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン、メチルエチルケトン、アセトン、アセトフェノン等のケトン系溶媒、ブタノール、エタノール等のアルコール系溶媒、キシレン、トルエン、クロロベンゼン等の芳香族系溶媒、スルホラン等のスルホン系溶媒、ジメチルスルホキシド等が使用可能である。好ましくはN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-ピロリドン等のアミド溶媒が例示される。これら溶媒は1種、あるいは必要に応じ2種以上混合して使用してもよい。 When the polyamic acid is produced, the usable solvent is a raw material monomer, which can dissolve the tetracarboxylic dianhydride represented by the above formula (1) and the diamine, and these raw materials and the polyamic acid to be produced If it is inactive with respect to it, it will not specifically limit. Examples of such solvents include amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methyl-2-pyrrolidone, chain ester solvents such as butyl acetate, ethyl acetate and isobutyl acetate, γ -Cyclic ester solvents such as butyrolactone, γ-caprolactone, ε-caprolactone, carbonate solvents such as ethylene carbonate, propylene carbonate, triethylene glycol, ethyl cellosolve, butyl cellosolve, propylene glycol methyl acetate, 2-methyl cellosolve acetate, ethyl cellosolve acetate, Glycol solvents such as butyl cellosolve acetate, dimethoxyethane, diethoxyethane, diethylene glycol, phenol, o-cresol, m-cresol, p-cresol, 3-chloro Phenolic solvents such as rophenol and 4-chlorophenol, ether solvents such as tetrahydrofuran, dibutyl ether and diethyl ether, ketone solvents such as methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, methyl ethyl ketone, acetone and acetophenone, butanol, ethanol, etc. Alcohol solvents, aromatic solvents such as xylene, toluene and chlorobenzene, sulfone solvents such as sulfolane, dimethyl sulfoxide and the like can be used. Preferable examples include amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, and N-methyl-pyrrolidone. These solvents may be used alone or as a mixture of two or more if necessary.
 溶媒の使用量は反応系中のモノマー成分(テトラカルボン酸二無水物+ジアミン類)の合計濃度(モノマー濃度)が通常5~40重量%、好ましくは8~25重量%となるようにする。前述したモノマー濃度範囲で重合を行うことにより、均一で高重合度のポリアミック酸溶液を得ることができる。なお、上記モノマー濃度範囲よりも低濃度で重合を行うと、ポリアミック酸の重合度が十分高くならず、最終的に得られるポリイミド膜が脆弱になる場合があり、上記モノマー濃度範囲よりも高濃度で重合を行うとモノマーが十分溶解しない場合や反応溶液が不均一になりゲル化する場合がある。上記の方法で得られた上記式(2)で表される繰り返し単位を有するポリアミック酸の溶液は通常、溶液のまま、後述するポリイミド化工程にて使用される。 The amount of the solvent used is such that the total concentration (monomer concentration) of the monomer components (tetracarboxylic dianhydride + diamine) in the reaction system is usually 5 to 40% by weight, preferably 8 to 25% by weight. By carrying out the polymerization in the monomer concentration range described above, a polyamic acid solution having a uniform and high degree of polymerization can be obtained. If polymerization is performed at a concentration lower than the above monomer concentration range, the degree of polymerization of the polyamic acid may not be sufficiently high, and the finally obtained polyimide film may become brittle, with a concentration higher than the above monomer concentration range. When the polymerization is carried out, the monomer may not be sufficiently dissolved or the reaction solution may become non-uniform and gel may occur. The solution of the polyamic acid having the repeating unit represented by the above formula (2) obtained by the above method is usually used as it is in the polyimide formation step described later.
 <上記式(3)で表される繰り返し単位を有するポリイミド及びその製造方法>
 本発明の上記式(3)で表される繰り返し単位を有するポリイミドは、上記の方法で得られた、上記式(2)で表される繰り返し単位を有するポリアミック酸を脱水閉環反応(イミド化反応)に供することで製造することができる。イミド化反応の方法として例えば、熱イミド化法や化学イミド化法が例示される。
<Polyimide having a repeating unit represented by the above formula (3) and its production method>
The polyimide having the repeating unit represented by the above formula (3) of the present invention is obtained by subjecting the polyamic acid having the repeating unit represented by the above formula (2) obtained by the above method to a dehydration ring closure reaction (imidation reaction). ). Examples of the imidation reaction method include a thermal imidization method and a chemical imidization method.
 まず、熱イミド化法について詳述する。熱イミド化法はまず、ポリアミック酸の重合溶液をガラス板上に流延し、真空中、あるいは窒素等の不活性ガス中、又は空気中で加熱を行い、ポリアミック酸フィルムを得ることにより実施される。具体的に、例えば、オーブン中、通常50~190℃、好ましくは100~180℃で乾燥することにより、ポリアミック酸のフィルムを得ることができる。 First, the thermal imidization method will be described in detail. The thermal imidization method is carried out by first casting a polymer solution of polyamic acid on a glass plate and heating in vacuum, an inert gas such as nitrogen, or in air to obtain a polyamic acid film. The Specifically, for example, a film of polyamic acid can be obtained by drying in an oven usually at 50 to 190 ° C., preferably 100 to 180 ° C.
 続いて、得られたポリアミック酸のフィルムをガラス板上で通常200~400℃、好ましくは250~350℃で加熱する。これにより、イミド化反応が起こり、ポリイミドフィルムを得ることができる。加熱温度は、イミド化反応を十分に行う観点から200℃以上が好ましく、生成したポリイミドフィルムの熱安定性の観点から400℃以下が好ましい。 Subsequently, the obtained polyamic acid film is heated on a glass plate at 200 to 400 ° C., preferably 250 to 350 ° C. Thereby, imidation reaction occurs and a polyimide film can be obtained. The heating temperature is preferably 200 ° C. or higher from the viewpoint of sufficiently performing the imidization reaction, and preferably 400 ° C. or lower from the viewpoint of the thermal stability of the produced polyimide film.
 イミド化反応は真空中あるいは不活性ガス中で行うことが望ましいが、イミド化反応温度が高すぎなければ空気中で行っても、差し支えない。 The imidation reaction is desirably performed in a vacuum or in an inert gas, but if the imidization reaction temperature is not too high, it may be performed in air.
 続いて、化学イミド化法について詳述する。化学イミド化法はまず、上記の方法で得られた本発明の上記式(2)で表される繰り返し単位を有するポリアミック酸溶液に重合時と同一の溶媒を加えて撹拌し易い適度な溶液粘度とし、撹拌しながら、有機酸無水物及び脱水閉環剤(これら2種を合わせて化学イミド化剤と称することもある)を添加し、温度0~100℃、好ましくは10~50℃で1~72時間撹拌することで化学的にイミド化を完結させることができる。 Subsequently, the chemical imidization method will be described in detail. In the chemical imidization method, first, an appropriate solution viscosity that is easy to stir by adding the same solvent as in the polymerization to the polyamic acid solution having the repeating unit represented by the above formula (2) of the present invention obtained by the above method. With stirring, an organic acid anhydride and a dehydrating ring-closing agent (these two types are sometimes referred to as chemical imidizing agents) are added, and the temperature is 0 to 100 ° C., preferably 10 to 50 ° C. The imidization can be completed chemically by stirring for 72 hours.
 化学イミド化に使用可能な有機酸無水物としては無水酢酸、無水プロピオン酸等が挙げられる。これら有機酸無水物の中でも、取り扱い、及び分離のし易さから無水酢酸が好ましい。また脱水閉環剤としては、ピリジン、トリエチルアミン、キノリン等が使用できる。これら脱水閉環剤の中でも、取り扱い、及び分離のし易さからピリジンが好ましい。化学イミド化剤中の有機酸無水物量は、好ましくはポリアミック酸の理論脱水量の1~10倍モルの範囲であり、より好ましくは2~10倍モルである。また脱水閉環剤の量は、好ましくは有機酸無水物量に対して0.1~5倍モルの範囲であり、より好ましくは1~5倍モルの範囲である。 Examples of organic acid anhydrides that can be used for chemical imidization include acetic anhydride and propionic anhydride. Among these organic acid anhydrides, acetic anhydride is preferable because of easy handling and separation. As the dehydrating ring-closing agent, pyridine, triethylamine, quinoline and the like can be used. Among these dehydrating ring-closing agents, pyridine is preferable because of easy handling and separation. The amount of the organic acid anhydride in the chemical imidizing agent is preferably in the range of 1 to 10 times mol, more preferably 2 to 10 times mol of the theoretical dehydration amount of the polyamic acid. The amount of the dehydrating ring-closing agent is preferably in the range of 0.1 to 5 times mol, more preferably in the range of 1 to 5 times mol with respect to the amount of the organic acid anhydride.
 上記化学イミド化法で得られた反応溶液中には、未反応の化学イミド化剤、有機酸などの副生成物(以下、不純物という)が混入しているため、これらを除去してポリイミドを単離・精製してもよい。精製は公知の方法が利用できる。例えば、イミド化した反応溶液を、貧溶媒中に滴下してポリイミドを析出させた後、ポリイミド粉末を回収して不純物が除去されるまで繰返し洗浄し、乾燥して、ポリイミド粉末を得る方法が適用できる。貧溶媒として使用可能な溶媒としては、ポリイミドを析出させ、不純物を効率よく除去でき、乾燥し易い溶媒であれば良く、例えば、水やメタノール、エタノール、イソプロパノールなどのアルコール類が好適であり、これらを混合して用いてもよい。 In the reaction solution obtained by the above chemical imidization method, unreacted chemical imidizing agent and by-products such as organic acids (hereinafter referred to as impurities) are mixed. It may be isolated and purified. A known method can be used for purification. For example, after dropping the imidized reaction solution into a poor solvent to deposit polyimide, the polyimide powder is recovered, washed repeatedly until impurities are removed, and dried to obtain polyimide powder. it can. As a solvent that can be used as a poor solvent, any solvent can be used as long as it can precipitate polyimide, efficiently remove impurities, and can be easily dried. For example, water, alcohols such as methanol, ethanol, and isopropanol are suitable. May be used in combination.
 貧溶媒中に滴下して析出させる際のポリイミド溶液の濃度は、高すぎると析出するポリイミドが粒塊となり、その粒塊中に不純物が残留する場合や、得られたポリイミド粉末を溶媒に再溶解する際に長時間を要する場合がある。したがって、貧溶媒中に滴下する際のポリイミド溶液の濃度は、好ましくは20重量%以下、より好ましくは10重量%以下である。また、貧溶媒の使用量はポリイミド溶液に対し1重量倍以上が好ましく、1.5~10重量倍がより好ましい。 When the concentration of the polyimide solution when dropping into a poor solvent to deposit is too high, the deposited polyimide becomes agglomerates, and impurities remain in the agglomerates, or the obtained polyimide powder is redissolved in the solvent It may take a long time to do. Therefore, the concentration of the polyimide solution when dripped in the poor solvent is preferably 20% by weight or less, more preferably 10% by weight or less. The amount of the poor solvent used is preferably at least 1 times by weight, more preferably 1.5 to 10 times by weight of the polyimide solution.
 得られたポリイミド粉末を回収し、残留溶媒を真空乾燥や熱風乾燥などで除去する際の温度は、ポリイミドが変質しない温度であれば制限はなく、例えば30~150℃である。 The temperature at which the obtained polyimide powder is recovered and the residual solvent is removed by vacuum drying, hot air drying, or the like is not limited as long as the polyimide does not deteriorate, and is, for example, 30 to 150 ° C.
 こうして得られた上記式(3)で表される繰り返し単位を有するポリイミド粉末をポリイミドフィルムとする場合、一旦上記式(3)で表される繰り返し単位を有するポリイミド粉末を溶媒に溶解させポリイミド溶液とする必要がある。使用可能な溶媒としては、使用用途や加工条件に合わせて適宜ポリイミド粉末が溶解する溶媒を用いれば良く、具体的に例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド溶媒、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン、α-メチル-γ-ブチロラクトン、酢酸ブチル、酢酸エチル、酢酸イソブチル等のエステル溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート溶媒、ジエチレングリコールジメチルエーテル、トリエチレングリコール、トリエチレングリコールジメチルエーテル等のグリコール系溶媒、フェノール、m-クレゾール、p-クレゾール、o-クレゾール、3-クロロフェノール、4-クロロフェノール等のフェノール系溶媒、シクロペンタノン、シクロヘキサノン、アセトン、メチルエチルケトン、ジイソブチルケトン、メチルイソブチルケトン等のケトン系溶媒、テトラヒドロフラン、1,4-ジオキサン、ジメトキシエタン、ジエトキシエタン、ジブチルエーテル等のエーテル系溶媒の他、アセトフェノン、1,3-ジメチル-2-イミダゾリジノン、スルホラン、ジメチルスルホキシド、プロピレングリコールメチルアセテート、エチルセロソルブ、ブチルセロソルブ、2-メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、ブタノール、エタノール、キシレン、トルエン、クロロベンゼン、ターペン、ミネラルスピリット、石油ナフサ系といった汎用溶媒なども使用可能であり、これら溶媒は1種、あるいは2種類以上混合して用いてもよい。ポリイミド粉末の溶解方法は、空気中、または不活性ガス中で室温~溶媒の沸点以下の温度範囲で溶解させ、ポリイミド溶液とすることができる。 When the polyimide powder having the repeating unit represented by the above formula (3) thus obtained is used as a polyimide film, the polyimide powder having the repeating unit represented by the above formula (3) is once dissolved in a solvent, There is a need to. As the solvent that can be used, a solvent in which the polyimide powder is appropriately dissolved may be used according to the intended use and processing conditions. Specifically, for example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl- Amide solvents such as 2-pyrrolidone, ester solvents such as γ-butyrolactone, γ-valerolactone, δ-valerolactone, γ-caprolactone, ε-caprolactone, α-methyl-γ-butyrolactone, butyl acetate, ethyl acetate, and isobutyl acetate Carbonate solvents such as ethylene carbonate and propylene carbonate, glycol solvents such as diethylene glycol dimethyl ether, triethylene glycol and triethylene glycol dimethyl ether, phenol, m-cresol, p-cresol, o-cresol, 3-chlorophenol , Phenol solvents such as 4-chlorophenol, ketone solvents such as cyclopentanone, cyclohexanone, acetone, methyl ethyl ketone, diisobutyl ketone, methyl isobutyl ketone, tetrahydrofuran, 1,4-dioxane, dimethoxyethane, diethoxyethane, di In addition to ether solvents such as butyl ether, acetophenone, 1,3-dimethyl-2-imidazolidinone, sulfolane, dimethyl sulfoxide, propylene glycol methyl acetate, ethyl cellosolve, butyl cellosolve, 2-methyl cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate General-purpose solvents such as butanol, ethanol, xylene, toluene, chlorobenzene, terpenes, mineral spirits, and petroleum naphtha These solvents may be used alone or in combination of two or more. The polyimide powder can be dissolved in air or in an inert gas at a temperature ranging from room temperature to the boiling point of the solvent to obtain a polyimide solution.
 こうして得られたポリイミド溶液を、例えばガラス板上に流延し、真空中、あるいは窒素等の不活性ガス中、または空気中で加熱し溶媒を除去することによりポリイミドフィルムを得ることができる。例えば、オーブン中、通常200~400℃、好ましくは250~350℃で乾燥することにより、ポリイミドフィルムを得ることができる。ポリイミドフィルム作成は真空中あるいは不活性ガス中で行うことが望ましいが、温度が高すぎなければ空気中で行っても、差し支えない。 A polyimide film can be obtained by casting the polyimide solution thus obtained on, for example, a glass plate and removing the solvent by heating in a vacuum, an inert gas such as nitrogen, or in the air. For example, a polyimide film can be obtained by drying in an oven usually at 200 to 400 ° C., preferably 250 to 350 ° C. The polyimide film is preferably produced in a vacuum or in an inert gas, but if the temperature is not too high, it may be carried out in air.
 上述した方法によって得られた上記式(3)で表される繰り返し単位を有するポリイミドの分子量は、後述する測定方法により得られる重量平均分子量で1万~60万であることが好ましく、2万~50万であることがより好ましく、4万~40万であることがさらに好ましい。ポリイミドの分子量が1万以上であれば、成形可能であり、また良好な力学特性を維持しやすい。またポリイミドの分子量が40万以下であれば、合成する場合に分子量をコントロールしやすく、また適度な粘度の溶液が得られやすく取扱いが容易である場合が多い。なお、ポリイミドの分子量はポリイミド溶液の粘度を目安にすることができる。 The molecular weight of the polyimide having the repeating unit represented by the above formula (3) obtained by the method described above is preferably 10,000 to 600,000 in terms of the weight average molecular weight obtained by the measurement method described later. More preferably, it is 500,000, more preferably 40,000 to 400,000. If the molecular weight of the polyimide is 10,000 or more, molding is possible and it is easy to maintain good mechanical properties. If the molecular weight of the polyimide is 400,000 or less, it is easy to control the molecular weight during synthesis, and it is easy to obtain a solution having an appropriate viscosity and is easy to handle. The molecular weight of the polyimide can be based on the viscosity of the polyimide solution.
 上述した方法によって得られた本発明の上記式(3)で表される繰り返し単位を有するポリイミドは、溶媒溶解性に優れ、屈折率も1.65以上と高屈折率を示し、ガラス転移温度も260℃以上と耐熱性に優れる。さらには、使用するジアミンとの組み合わせによっては、低誘電率・高透明性といった特徴をも兼ね備えるポリイミドとなる。 The polyimide having the repeating unit represented by the above formula (3) of the present invention obtained by the method described above has excellent solvent solubility, a high refractive index of 1.65 or more, and a glass transition temperature. Excellent heat resistance at 260 ° C or higher. Furthermore, depending on the combination with the diamine to be used, it becomes a polyimide having characteristics such as low dielectric constant and high transparency.
 以下に本発明の実施例を示すが、本発明はこれらに限定されるものではない。各実施例・比較例に示した各物性値は、以下測定装置、条件にて測定した結果である。 Examples of the present invention are shown below, but the present invention is not limited to these. Each physical property value shown in each example / comparative example is a result of measurement using a measuring apparatus and conditions.
 〔1〕NMR測定
 H-NMR、13C-NMRは、内部標準としてテトラメチルシランを用い、溶媒として重DMSOを用いて、JEOL-ESC400分光計によって記録した。
[1] NMR measurement 1 H-NMR and 13 C-NMR were recorded with a JEOL-ESC400 spectrometer using tetramethylsilane as an internal standard and deuterated DMSO as a solvent.
 〔2〕LC-MS測定
 次の測定条件で分離、質量分析し、目的物を同定した。
[2] LC-MS measurement Separation and mass spectrometry were performed under the following measurement conditions to identify the target product.
 ・装置:(株)Waters製「Xevo G2 Q-Tof」、
 ・カラム:ACQUITY UPLC BEHC18、
      (1.7μm、2.1mmφ×100mm)、
 ・カラム温度:40℃、
 ・検出波長:UV 220-500nm、
 ・移動相:A液=0.1%ギ酸水、B液=アセトニトリル、
 ・移動相流量:0.3mL/分、
 ・移動相グラジエント:B液濃度:80%(0分)→80%(10分後)→100%(15分後)、
 ・検出法:Q-Tof、
 ・イオン化法:APCI(-)法、
 ・Ion Source:温度120℃、
 ・Sampling Cone :電圧 50V、ガスフロー50L/h、
 ・Desolvation Gas:温度500℃、ガスフロー1000L/h。
・ Device: “Xevo G2 Q-Tof” manufactured by Waters Co., Ltd.
Column: ACQUITY UPLC BEHC18,
(1.7 μm, 2.1 mmφ × 100 mm),
Column temperature: 40 ° C
・ Detection wavelength: UV 220-500 nm,
Mobile phase: Liquid A = 0.1% aqueous formic acid, Liquid B = acetonitrile
-Mobile phase flow rate: 0.3 mL / min,
Mobile phase gradient: B solution concentration: 80% (0 minutes) → 80% (after 10 minutes) → 100% (after 15 minutes)
・ Detection method: Q-Tof,
-Ionization method: APCI (-) method,
-Ion Source: temperature 120 ° C,
Sampling Cone: voltage 50V, gas flow 50L / h,
Desolvation Gas: temperature 500 ° C., gas flow 1000 L / h.
 〔3〕HPLC純度
 次の測定条件で高速液体クロマトグラフィー(HPLC)測定を行ったときの面積百分率値を各化合物の純度とした。
・装置:日立製作所社製 L-2130、
・カラム:ZORBAX CN(5μm、4.5mmφ×250mm)、
・カラム温度:40℃、
・検出波長:UV 254nm、
・移動相:A液=ヘキサン、B液=テトラヒドロフラン、
・移動相流量:1.0ml/分、
・移動相グラジエント:A液濃度:85%(0分)→60%(35分後)→0%(40分後)。
[3] HPLC purity The area percentage value when high performance liquid chromatography (HPLC) measurement was performed under the following measurement conditions was defined as the purity of each compound.
・ Device: L-2130, manufactured by Hitachi, Ltd.
Column: ZORBAX CN (5 μm, 4.5 mmφ × 250 mm),
Column temperature: 40 ° C
・ Detection wavelength: UV 254 nm,
-Mobile phase: A liquid = hexane, B liquid = tetrahydrofuran,
-Mobile phase flow rate: 1.0 ml / min,
Mobile phase gradient: Solution A concentration: 85% (0 minutes) → 60% (after 35 minutes) → 0% (after 40 minutes).
 〔4〕ポリアミック酸の重量平均分子量
 次の測定条件で、重量平均分子量を測定した。(ポリスチレン換算)
 ・装置:東ソー(株)製 HLC-8320GPC、
 ・カラム:TSK-GEL Super AWM―H (6.0 mmI.D.×15cm)、
 ・移動相:N,N-ジメチルホルムアミド、流量:0.6ml/min、
 ・カラム温度:40℃。
[4] Weight average molecular weight of polyamic acid The weight average molecular weight was measured under the following measurement conditions. (Polystyrene conversion)
-Equipment: HLC-8320GPC manufactured by Tosoh Corporation
Column: TSK-GEL Super AWM-H (6.0 mm ID × 15 cm),
Mobile phase: N, N-dimethylformamide, flow rate: 0.6 ml / min,
Column temperature: 40 ° C.
 〔5〕融点の測定
 示差走査熱量計(エスアイアイナノテクノロジー(株)製「EXSTAR DSC 7020C」)を用いて、昇温速度10℃/分で測定した際に検出された融解吸熱最大温度を融点とした。
[5] Measurement of melting point Using a differential scanning calorimeter ("EXSTAR DSC 7020C" manufactured by SII Nano Technology Co., Ltd.) It was.
 〔6〕ガラス転移温度(Tg)の測定
 示差走査熱量計(エスアイアイナノテクノロジー(株)製「EXSTAR DSC 7020」)を用いて、昇温速度30℃/分で測定し、変曲点の接線の交点をガラス転移温度とした。
[6] Measurement of glass transition temperature (Tg) Using a differential scanning calorimeter (“EXSTAR DSC 7020” manufactured by SII Nano Technology Co., Ltd.), measured at a heating rate of 30 ° C./min. The crossing point was defined as the glass transition temperature.
 〔7〕カットオフ波長の測定
 分光光度計((株)島津製作所製「UV-2450」)を用いて、ポリイミド膜の200~800nmの透過率を測定した。透過率が0.5%以下となる波長をカットオフ波長とした。カットオフ波長が短いほど、ポリイミド膜の透明性が良好である。
[7] Measurement of cut-off wavelength Using a spectrophotometer (“UV-2450” manufactured by Shimadzu Corporation), the transmittance of the polyimide film at 200 to 800 nm was measured. The wavelength at which the transmittance was 0.5% or less was taken as the cutoff wavelength. The shorter the cutoff wavelength, the better the transparency of the polyimide film.
 〔8〕光透過率(T400)の測定
 分光光度計((株)島津製作所製「UV-2450」)を用いて、ポリイミド膜の400nmの透過率を測定した。透過率が高いほど、ポリイミド膜の透明性が良好である。
[8] Measurement of light transmittance (T 400 ) Using a spectrophotometer (“UV-2450” manufactured by Shimadzu Corporation), the transmittance of the polyimide film at 400 nm was measured. The higher the transmittance, the better the transparency of the polyimide film.
 〔9〕屈折率(nin)、誘電率(ε)の測定
 アッベ屈折計((株)アタゴ製「多波長アッベ屈折計 DR-M2」)を用いて、ポリイミド膜に平行な方向(nin)と垂直な方向(nout)の屈折率(波長:589nm)を測定し、ポリイミド膜の平均屈折率(nav)を次式で求めた。
[9] Measurement of refractive index (n in ) and dielectric constant (ε) Using an Abbe refractometer (“Multi-wavelength Abbe refractometer DR-M2” manufactured by Atago Co., Ltd.), the direction parallel to the polyimide film (n in ) In the direction perpendicular to (n out ) (wavelength: 589 nm) was measured, and the average refractive index (n av ) of the polyimide film was determined by the following equation.
 nav=(2nin+nout)/3
 この平均屈折率(nav)に基づいて、次式より1MHzにおけるポリイミド膜の誘電率(ε)を次式により算出した。
n av = (2n in + n out ) / 3
Based on this average refractive index (n av ), the dielectric constant (ε) of the polyimide film at 1 MHz was calculated from the following equation using the following equation.
 ε=1.1×nav
 〔10〕引張伸度の測定
 引張試験機((株)島津製作所製「オートグラフAGS-X」を用いて、ポリイミド膜の試験片(ダンベル型試験片 平行部5mm×20mm)について引張試験(引張速度10mm/分)を実施し、膜の引張伸度(%)を求めた。引張伸度が高いほど膜の靱性が高いことを意味する。
ε = 1.1 × n av 2
[10] Measurement of tensile elongation Using a tensile tester ("Autograph AGS-X" manufactured by Shimadzu Corporation), a tensile test (tensile test) on a polyimide film test piece (dumbbell-type test piece parallel part 5 mm x 20 mm) The tensile elongation (%) of the film was determined at a speed of 10 mm / min .. The higher the tensile elongation, the higher the toughness of the film.
 〔11〕溶媒溶解性
 得られたポリイミド膜または粉末20mgをN,N-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン(NMP)、テトラヒドロフラン(THF)、シクロペンタノン(CPN)、γ-ブチロラクトン(GBL)1mLに入れ、溶解性を試験した。下記の基準で溶媒溶解性を評価した。
〇:室温で溶解する。
△:加温すると溶解し、室温に冷却しても析出しない。
×:不溶。
[11] Solvent solubility 20 mg of the obtained polyimide film or powder was added to N, N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), tetrahydrofuran (THF), cyclopentanone (CPN), γ- It was put into 1 mL of butyrolactone (GBL) and tested for solubility. The solvent solubility was evaluated according to the following criteria.
○: Dissolved at room temperature.
(Triangle | delta): It melt | dissolves when it heats and does not precipitate even if it cools to room temperature.
X: Insoluble.
 1.上記式(1)で表される酸二無水物の製造例
 <実施例1>
 温度計、滴下ロート、攪拌棒を備えた1Lの4つ口フラスコに、無水トリメリット酸クロリド11.0g(52.2mmol)、アセトニトリル20.0g、トルエン10.0g、9,9-ビス(4-(4-ヒドロキシフェニルオキシ)フェニル)フルオレン(BPOPF)10.0g(18.7mmol)を仕込み、撹拌後、2℃まで冷却した。冷却後、さらにピリジン4.1g(51.8mmol)を2℃~7℃で滴下した。滴下後、25℃まで昇温し、昇温後、同温度で1時間撹拌を行った時点で結晶が析出しはじめたため、アセトニトリル10.0g、トルエン5.0gを加え、さらに1時間撹拌を行った。
1. Production example of acid dianhydride represented by the above formula (1) <Example 1>
Into a 1 L four-necked flask equipped with a thermometer, a dropping funnel and a stirring rod, 11.0 g (52.2 mmol) of trimellitic anhydride chloride, 20.0 g of acetonitrile, 10.0 g of toluene, 9,9-bis (4 10.0 g (18.7 mmol) of-(4-hydroxyphenyloxy) phenyl) fluorene (BPOPF) was charged, and the mixture was stirred and cooled to 2 ° C. After cooling, 4.1 g (51.8 mmol) of pyridine was further added dropwise at 2 to 7 ° C. After the dropwise addition, the temperature was raised to 25 ° C., and after the temperature was raised, stirring started at the same temperature for 1 hour, so that crystals began to precipitate. Therefore, 10.0 g of acetonitrile and 5.0 g of toluene were added, and the mixture was further stirred for 1 hour. It was.
 撹拌終了後、25℃で結晶をろ別し、さらに結晶をアセトニトリルで洗浄することにより黄色結晶を得た。黄色結晶を80℃で真空乾燥し、上記式(1)のテトラカルボン酸二無水物11.6g(収率70.2%、純度99.4%)を得た。 After completion of stirring, the crystals were filtered off at 25 ° C., and the crystals were further washed with acetonitrile to obtain yellow crystals. The yellow crystals were vacuum dried at 80 ° C. to obtain 11.6 g (yield 70.2%, purity 99.4%) of tetracarboxylic dianhydride of the above formula (1).
 図1に示すH-NMRスペクトル、図2に示す13C-NMRスペクトル及び図3に示す質量分析チャートより、得られた生成物は上記式(1)で表されるテトラカルボン酸二無水物であることを確認した。以下、得られた上記式(1)で表されるテトラカルボン酸二無水物のH-NMR及び13C-NMRについて詳述する。 From the 1 H-NMR spectrum shown in FIG. 1, the 13 C-NMR spectrum shown in FIG. 2, and the mass spectrometry chart shown in FIG. 3, the resulting product was a tetracarboxylic dianhydride represented by the above formula (1). It was confirmed that. Hereinafter, 1 H-NMR and 13 C-NMR of the tetracarboxylic dianhydride represented by the above formula (1) will be described in detail.
 得られた上記式(1)で表されるテトラカルボン酸二無水物のH-NMR(DMSO-d)チャートを図1に示す。ここで、8.26~8.64ppmまでのピークはトリメリット酸に由来するベンゼン環上の水素、7.35~7.96ppmまでのピークはフルオレノン骨格のベンゼン環の水素、6.95~7.43ppmまでのピークは4-(4-ヒドロキシフェニルオキシ)フェニル基のベンゼン環上の水素に帰属される。なお、2.5ppmに観測されているピークは溶媒であるDMSO、3.3ppmに観測されているピークはDMSOに含まれる水に由来するものである。 FIG. 1 shows a 1 H-NMR (DMSO-d 6 ) chart of the obtained tetracarboxylic dianhydride represented by the above formula (1). Here, the peak from 8.26 to 8.64 ppm is hydrogen on the benzene ring derived from trimellitic acid, the peak from 7.35 to 7.96 ppm is hydrogen on the benzene ring of the fluorenone skeleton, and 6.95 to 7 Peaks up to .43 ppm are attributed to hydrogen on the benzene ring of the 4- (4-hydroxyphenyloxy) phenyl group. Note that the peak observed at 2.5 ppm is derived from DMSO, which is a solvent, and the peak observed at 3.3 ppm is derived from water contained in DMSO.
 13C-NMR(DMSO-d)チャートを図2に示す。ここで、164.0~168.9ppm及び139.95~156.02ppmまではトリメリット酸無水物骨格由来の炭素、118.8~138.83ppmは9,9-ビス(4-(4-ヒドロキシフェニルオキシ)フェニル)フルオレンのベンゼン環由来の炭素、64.4ppmのピークはフルオレノンの9位の炭素に帰属される。なお、39.2~40.5ppmに観測されているピークは溶媒のDMSO由来のものである。 A 13 C-NMR (DMSO-d 6 ) chart is shown in FIG. Here, 164.0 to 168.9 ppm and 139.95 to 156.02 ppm are carbons derived from trimellitic anhydride skeleton, and 118.8 to 138.83 ppm are 9,9-bis (4- (4-hydroxy Carbon derived from the benzene ring of phenyloxy) phenyl) fluorene, the 64.4 ppm peak is attributed to the 9th carbon of fluorenone. The peak observed at 39.2 to 40.5 ppm is derived from the solvent DMSO.
 得られた上記式(1)で表されるテトラカルボン酸二無水物のマススペクトル値及び融点は下記の通り。 The mass spectral value and melting point of the obtained tetracarboxylic dianhydride represented by the above formula (1) are as follows.
 マススペクトル値(M-・):882.17、
 融点(DSC):193℃。
Mass spectrum value (M− ·): 882.17,
Melting point (DSC): 193 ° C.
 2.上記式(2)で表される繰り返し単位を有するポリアミック酸及び上記式(3)で表される繰り返し単位を有するポリイミドの製造例
 <実施例2>
(上記式(2)で表されるポリアミック酸の内、上記式(1)で表されるテトラカルボン酸二無水物と9,9-ビス(4-アミノフェニル)フルオレン(以下、FDAと称することもある)との反応から得られるポリアミック酸(下記式(2-A)で表される繰り返し単位を有するポリアミック酸と称する)の製造例)
2. Production Example of Polyamic Acid Having Repeating Unit Represented by Formula (2) and Polyimide Having Repeating Unit Represented by Formula (3) <Example 2>
(Of the polyamic acids represented by the above formula (2), tetracarboxylic dianhydride represented by the above formula (1) and 9,9-bis (4-aminophenyl) fluorene (hereinafter referred to as FDA) Example of production of polyamic acid obtained by reaction with (also referred to as polyamic acid having a repeating unit represented by the following formula (2-A)))
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 実施例1で得られた上記式(1)で表されるテトラカルボン酸二無水物5.0g(5.66mmol)及びFDA2.0g(5.66mmol)とを室温でN,N-ジメチルアセトアミド80.2gに溶解し、100℃まで昇温した後、溶液が均一になったことを確認し、放冷後、室温で24時間反応させることにより、上記式(2-A)で表される繰り返し単位を有するポリアミック酸を合成した。ポリアミック酸の重量平均分子量(Mw)は、335,368であった。 The tetracarboxylic dianhydride 5.0 g (5.66 mmol) represented by the above formula (1) obtained in Example 1 and FDA 2.0 g (5.66 mmol) were mixed with N, N-dimethylacetamide 80 at room temperature. After dissolving in 2 g and raising the temperature to 100 ° C., it was confirmed that the solution became homogeneous, and after allowing to cool, the mixture was allowed to react at room temperature for 24 hours to repeat the reaction represented by the above formula (2-A). A polyamic acid having a unit was synthesized. The weight average molecular weight (Mw) of the polyamic acid was 335,368.
 <実施例3>
(上記式(3)で表されるポリイミドの内、上記式(2-A)で表される繰り返し単位を有するポリアミック酸の化学イミド化による、下記式(3-A)で表される繰り返し単位を有するポリイミドの製造)
<Example 3>
(Of the polyimide represented by the above formula (3), the repeating unit represented by the following formula (3-A) by chemical imidation of the polyamic acid having the repeating unit represented by the above formula (2-A) Of polyimide having
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 実施例2で得られた、上記式(2-A)で表される繰り返し単位を有するポリアミック酸のN,N-ジメチルアセトアミド溶液87.2gに無水酢酸5.8g及びピリジン2.2gを加え、室温で24時間撹拌することにより、上記式(3-A)で表される繰り返し単位を有するポリイミドのN,N-ジメチルアセトアミド溶液を得た。 5.8 g of acetic anhydride and 2.2 g of pyridine were added to 87.2 g of an N, N-dimethylacetamide solution of polyamic acid having a repeating unit represented by the above formula (2-A) obtained in Example 2, By stirring at room temperature for 24 hours, an N, N-dimethylacetamide solution of polyimide having a repeating unit represented by the above formula (3-A) was obtained.
 得られた上記式(3-A)で表される繰り返し単位を有するポリイミドのN,N-ジメチルアセトアミド溶液を、メタノール250g中へ滴下することで、上記式(3-A)で表される繰り返し単位を有するポリイミドを析出させた。析出したポリイミドをろ別し、メタノールで洗浄後、乾燥させ、淡黄色のポリイミド粉末7.2gを得た。 The obtained N, N-dimethylacetamide solution of polyimide having the repeating unit represented by the above formula (3-A) is dropped into 250 g of methanol, whereby the repeating unit represented by the above formula (3-A) is obtained. A polyimide having units was deposited. The precipitated polyimide was separated by filtration, washed with methanol, and dried to obtain 7.2 g of pale yellow polyimide powder.
 得られたポリイミド粉末5.0gにN,N-ジメチルアセトアミド28.3gを加えて均一になるまで撹拌することで、上記式(3-A)で表される繰り返し単位を有するポリイミドのN,N-ジメチルアセトアミド溶液を得た。この溶液をガラス板上に塗布した後、150℃で1時間、250℃で1時間加熱して上記式(3-A)で表される繰り返し単位を有するポリイミドの薄膜を得た。薄膜の膜厚は約19μmであった。 By adding 28.3 g of N, N-dimethylacetamide to 5.0 g of the obtained polyimide powder and stirring until uniform, N, N of polyimide having a repeating unit represented by the above formula (3-A) is obtained. -A dimethylacetamide solution was obtained. This solution was applied on a glass plate and then heated at 150 ° C. for 1 hour and at 250 ° C. for 1 hour to obtain a polyimide thin film having a repeating unit represented by the above formula (3-A). The thickness of the thin film was about 19 μm.
 表1に得られたポリイミド薄膜のガラス転移温度(Tg)、カットオフ波長、400nmにおける透過率(T400)、屈折率(nin)、誘電率(ε)、引張伸度の測定結果を示す。また、表2に各種溶媒への溶解性を示す。 Table 1 shows the glass transition temperature (Tg), cutoff wavelength, transmittance at 400 nm (T 400 ), refractive index (n in ), dielectric constant (ε), and tensile elongation of the polyimide thin film obtained. . Table 2 shows the solubility in various solvents.
 <実施例4>
(上記式(2)で表されるポリアミック酸の内、上記式(1)で表されるテトラカルボン酸二無水物と2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル(別名2,2’-ビス(トリフルオロメチル)ベンジジン)(以下、TFMBと称することがある)との反応から得られるポリアミック酸(以下式(2-B)で表される繰り返し単位を有するポリアミック酸)の製造)
<Example 4>
(Of the polyamic acids represented by the above formula (2), the tetracarboxylic dianhydride represented by the above formula (1) and 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl A polyamic acid obtained from a reaction with (alias 2,2′-bis (trifluoromethyl) benzidine) (hereinafter sometimes referred to as TFMB) (hereinafter, a polyamic having a repeating unit represented by the formula (2-B)) Acid) production)
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 実施例1で得られた、上記式(1)で表されるテトラカルボン酸二無水物5.0g(5.66mmol)及びTFMB1.8g(5.66mmol)とを室温でN,N-ジメチルアセトアミド16.8gに溶解した後、室温で撹拌を行った。反応が進行するにつれて粘度が上昇してきたので、適宜N,N-ジメチルアセトアミドを追加(合計追加量:52.0g)しながら室温で25時間撹拌することにより、上記式(2-B)で表される繰り返し単位を有するポリアミック酸のN,N-ジメチルアセトアミド溶液を合成した。ポリアミック酸の重量平均分子量(Mw)は、537,315であった。 The tetracarboxylic dianhydride 5.0 g (5.66 mmol) represented by the above formula (1) and 1.8 g (5.66 mmol) of TFMB obtained in Example 1 were combined with N, N-dimethylacetamide at room temperature. After dissolving in 16.8 g, the mixture was stirred at room temperature. Since the viscosity increased as the reaction proceeded, the reaction was expressed by the above formula (2-B) by stirring for 25 hours at room temperature while adding N, N-dimethylacetamide as appropriate (total additional amount: 52.0 g). An N, N-dimethylacetamide solution of polyamic acid having a repeating unit was synthesized. The weight average molecular weight (Mw) of the polyamic acid was 537,315.
 <実施例5>
(上記式(3)で表されるポリイミドの内、上記式(2-B)で表される繰り返し単位を有するポリアミック酸の化学イミド化による、下記式(3-B)で表される繰り返し単位を有するポリイミドの製造)
<Example 5>
(Of the polyimide represented by the above formula (3), a repeating unit represented by the following formula (3-B) by chemical imidation of a polyamic acid having a repeating unit represented by the above formula (2-B) Of polyimide having
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 実施例4で得た、上記式(2-B)で表される繰り返し単位を有するポリアミック酸のN,N-ジメチルアセトアミド溶液92.3gに無水酢酸5.8g及びピリジン2.2gを加えて室温で24時間撹拌することにより、上記式(3-B)で表される繰り返し単位を有するポリイミドのN,N-ジメチルアセトアミド溶液を得た。 5.8 g of acetic anhydride and 2.2 g of pyridine were added to 92.3 g of an N, N-dimethylacetamide solution of polyamic acid having a repeating unit represented by the above formula (2-B) obtained in Example 4 at room temperature. Was stirred for 24 hours to obtain an N, N-dimethylacetamide solution of polyimide having a repeating unit represented by the above formula (3-B).
 得られた上記式(3-B)で表される繰り返し単位を有するポリイミドのN,N-ジメチルアセトアミド溶液をメタノール250g中へ滴下することで、上記式(3-B)で表される繰り返し単位を有するポリイミドを析出させた。析出したポリイミドをろ別し、メタノールで洗浄後、乾燥させ、白色のポリイミド粉末6.8gを得た。 The obtained N, N-dimethylacetamide solution of polyimide having the repeating unit represented by the above formula (3-B) is dropped into 250 g of methanol, whereby the repeating unit represented by the above formula (3-B) is obtained. The polyimide which has was deposited. The deposited polyimide was separated by filtration, washed with methanol and dried to obtain 6.8 g of white polyimide powder.
 得られたポリイミド粉末5.0gにN,N-ジメチルアセトアミド45.0gを加えて均一になるまで撹拌することで、上記式(3-B)で表される繰り返し単位を有するポリイミドのN,N-ジメチルアセトアミド溶液を得た。得られた溶液をガラス板上に塗布した後、150℃で1時間、250℃で1時間加熱して上記式(3-B)で表される繰り返し単位を有するポリイミドの薄膜を得た。薄膜の膜厚は約14μmであった。 By adding 45.0 g of N, N-dimethylacetamide to 5.0 g of the obtained polyimide powder and stirring until uniform, N, N of polyimide having a repeating unit represented by the above formula (3-B) is obtained. -A dimethylacetamide solution was obtained. The obtained solution was applied on a glass plate and then heated at 150 ° C. for 1 hour and at 250 ° C. for 1 hour to obtain a polyimide thin film having a repeating unit represented by the above formula (3-B). The thickness of the thin film was about 14 μm.
 表1に得られたポリイミド薄膜のガラス転移温度(Tg)、カットオフ波長、400nmにおける透過率(T400)、屈折率(nin)誘電率(ε)、引張伸度の測定結果を示す。また、表2に各種溶媒への溶解性を示す。 Table 1 shows the measurement results of the glass transition temperature (Tg), cutoff wavelength, transmittance at 400 nm (T 400 ), refractive index (n in ) dielectric constant (ε), and tensile elongation of the polyimide thin film obtained. Table 2 shows the solubility in various solvents.
 3.他のフルオレン骨格を有する酸二無水物から誘導されるポリイミドの製造例、及び該ポリイミドの物性について
 <参考例1>
(下記式(6)で表される酸二無水物とTFMBとから得られる、下記式(7)で表される繰り返し単位を有するポリイミドの製造例)
3. About the example of manufacture of the polyimide induced | guided | derived from the acid dianhydride which has another fluorene frame | skeleton, and the physical property of this polyimide <Reference example 1>
(Production example of polyimide having a repeating unit represented by the following formula (7) obtained from an acid dianhydride represented by the following formula (6) and TFMB)
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 下記式(6): The following formula (6):
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
で表されるテトラカルボン酸二無水物5.0g(6.88mmol)及びTFMB2.2g(6.88mmol)を室温でN,N-ジメチルアセトアミド17.8gに溶解し、室温で24時間反応させて、ポリアミック酸のN,N-ジメチルアセトアミド溶液を合成した。ポリアミック酸の重量平均分子量(Mw)は、66,029であった。 A tetracarboxylic dianhydride (5.0 g, 6.88 mmol) and TFMB (2.2 g, 6.88 mmol) are dissolved in 17.8 g of N, N-dimethylacetamide at room temperature and reacted at room temperature for 24 hours. Then, an N, N-dimethylacetamide solution of polyamic acid was synthesized. The weight average molecular weight (Mw) of the polyamic acid was 66,029.
 得られたポリアミック酸のN,N-ジメチルアセトアミド溶液25.0gに、N,N-ジメチルアセトアミド11.0g、無水酢酸7.0g及びピリジン2.7gを加えて室温で22時間撹拌することにより、上記式(7)で表される繰り返し単位を有するポリイミドのN,N-ジメチルアセトアミド溶液を得た。 By adding 11.0 g of N, N-dimethylacetamide, 7.0 g of acetic anhydride and 2.7 g of pyridine to 25.0 g of the N, N-dimethylacetamide solution of the obtained polyamic acid, the mixture was stirred at room temperature for 22 hours. An N, N-dimethylacetamide solution of polyimide having a repeating unit represented by the above formula (7) was obtained.
 得られた上記式(7)で表される繰り返し単位を有するポリイミドのN,N-ジメチルアセトアミド溶液をメタノール250g中へ滴下することで、上記式(7)で表される繰り返し単位を有するポリイミドを析出させた。析出したポリイミドを濾過し、メタノールで洗浄後、乾燥させ、白色のポリイミド粉末6.6gを得た。 The obtained polyimide having a repeating unit represented by the above formula (7) is dropped into 250 g of methanol in a N, N-dimethylacetamide solution of the polyimide having the repeating unit represented by the above formula (7). Precipitated. The deposited polyimide was filtered, washed with methanol, and dried to obtain 6.6 g of white polyimide powder.
 得られたポリイミド粉末5.0gにN,N-ジメチルアセトアミド20.0gを加えて均一になるまで撹拌することで、上記式(7)で表される繰り返し単位を有するポリイミドのN,N-ジメチルアセトアミド溶液を得た。得られた溶液をガラス板上に塗布した後、150℃で1時間、250℃で1時間加熱して上記式(7)で表される繰り返し単位を有するポリイミドの薄膜を得た。薄膜の膜厚は約25μmであった。 By adding 20.0 g of N, N-dimethylacetamide to 5.0 g of the obtained polyimide powder and stirring until uniform, polyimide N, N-dimethyl having a repeating unit represented by the above formula (7) is obtained. An acetamide solution was obtained. After apply | coating the obtained solution on a glass plate, it heated at 150 degreeC for 1 hour and 250 degreeC for 1 hour, and obtained the thin film of the polyimide which has a repeating unit represented by the said Formula (7). The thickness of the thin film was about 25 μm.
 表1に得られたポリイミド薄膜のガラス転移温度(Tg)、カットオフ波長、400nmにおける透過率(T400)、屈折率(nin)誘電率(ε)、引張伸度の測定結果を示す。 Table 1 shows the measurement results of the glass transition temperature (Tg), cutoff wavelength, transmittance at 400 nm (T 400 ), refractive index (n in ) dielectric constant (ε), and tensile elongation of the polyimide thin film obtained.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017

Claims (4)

  1.  下記式(1):
    Figure JPOXMLDOC01-appb-C000001
    で表されるテトラカルボン酸二無水物。
    Following formula (1):
    Figure JPOXMLDOC01-appb-C000001
    Tetracarboxylic dianhydride represented by
  2.  下記式(2):
    Figure JPOXMLDOC01-appb-C000002
    (式中、Zはジアミン残基を示す。)
    で表される繰り返し単位を有するポリアミック酸。
    Following formula (2):
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, Z represents a diamine residue.)
    The polyamic acid which has a repeating unit represented by these.
  3.  下記式(3):
    Figure JPOXMLDOC01-appb-C000003
    (式中、Zはジアミン残基を示す。)
    で表される繰り返し単位を有するポリイミド。
    Following formula (3):
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, Z represents a diamine residue.)
    The polyimide which has a repeating unit represented by these.
  4.  無水トリメリット酸ハライドと、下記式(4):
    Figure JPOXMLDOC01-appb-C000004
    で表されるビスフェノール類とを反応させる、請求項1に記載のテトラカルボン酸二無水物の製造方法。
    Trimellitic anhydride and the following formula (4):
    Figure JPOXMLDOC01-appb-C000004
    The manufacturing method of the tetracarboxylic dianhydride of Claim 1 with which bisphenol represented by these is made to react.
PCT/JP2017/009400 2016-03-24 2017-03-09 Tetracarboxylic dianhydride, polyamic acid, and polyimide WO2017163894A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187021889A KR102335654B1 (en) 2016-03-24 2017-03-09 Tetracarboxylic dianhydride, polyamic acid and polyimide
CN201780009391.5A CN108602792B (en) 2016-03-24 2017-03-09 Tetracarboxylic dianhydride, polyamic acid, and polyimide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016060485 2016-03-24
JP2016-060485 2016-03-24

Publications (1)

Publication Number Publication Date
WO2017163894A1 true WO2017163894A1 (en) 2017-09-28

Family

ID=59900166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009400 WO2017163894A1 (en) 2016-03-24 2017-03-09 Tetracarboxylic dianhydride, polyamic acid, and polyimide

Country Status (5)

Country Link
JP (1) JP6793434B2 (en)
KR (1) KR102335654B1 (en)
CN (1) CN108602792B (en)
TW (1) TWI691491B (en)
WO (1) WO2017163894A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111656184A (en) * 2018-09-27 2020-09-11 株式会社Lg化学 Dianhydride analysis method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110156990B (en) * 2019-05-30 2020-12-08 武汉华星光电半导体显示技术有限公司 Polyimide compound, preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005306983A (en) * 2004-04-21 2005-11-04 Fuji Photo Film Co Ltd Optical film and image display device
JP2007091701A (en) * 2005-08-31 2007-04-12 Jfe Chemical Corp Tetracarboxylic acid containing fluorenyl group and ester group, polyester imide precursor containing fluorenyl group, polyester imide containing fluorenyl group and method for producing the same
JP2015182970A (en) * 2014-03-24 2015-10-22 田岡化学工業株式会社 Method of producing fluorenone derivative

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI390023B (en) * 2004-11-11 2013-03-21 Sumitomo Chemical Co Optical film
JP2010070513A (en) 2008-09-19 2010-04-02 Canon Inc Aromatic diamine compound, polyamic acid, polyimide resin and optical element
US9416229B2 (en) * 2014-05-28 2016-08-16 Industrial Technology Research Institute Dianhydride and polyimide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005306983A (en) * 2004-04-21 2005-11-04 Fuji Photo Film Co Ltd Optical film and image display device
JP2007091701A (en) * 2005-08-31 2007-04-12 Jfe Chemical Corp Tetracarboxylic acid containing fluorenyl group and ester group, polyester imide precursor containing fluorenyl group, polyester imide containing fluorenyl group and method for producing the same
JP2015182970A (en) * 2014-03-24 2015-10-22 田岡化学工業株式会社 Method of producing fluorenone derivative

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG, CHIN-PING ET AL.: "Synthesis and properties of alternating copolyamide-imides based on 2, 6-bis (4-aminophenoxy) naphthalene and comparison with its related isomeric polymers", JOURNAL OF POLYMER SCIENCE , PART A: POLYMER CHEMISTRY, vol. 39, no. 15, 2001, pages 2591 - 2601, XP001019502, ISSN: 0887-624X *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111656184A (en) * 2018-09-27 2020-09-11 株式会社Lg化学 Dianhydride analysis method
US11639917B2 (en) 2018-09-27 2023-05-02 Lg Chem, Ltd. Dianhydride analysis method
CN111656184B (en) * 2018-09-27 2023-05-02 株式会社Lg化学 Dianhydride analysis method

Also Published As

Publication number Publication date
TW201803861A (en) 2018-02-01
KR102335654B1 (en) 2021-12-03
JP6793434B2 (en) 2020-12-02
JP2017178928A (en) 2017-10-05
KR20180128391A (en) 2018-12-03
TWI691491B (en) 2020-04-21
CN108602792A (en) 2018-09-28
CN108602792B (en) 2021-12-17

Similar Documents

Publication Publication Date Title
US7795370B2 (en) Tetracarboxylic acid compound, polyimide thereof, and production method thereof
JP5320668B2 (en) Tetracarboxylic acid compound, polyimide thereof, and production method thereof
JP5182886B2 (en) NOVEL DIAMINE, POLYIMIDE PRECURSOR, POLYIMIDE, COATING OPTICAL COMPENSATION FILM COMPRISING THE SAME, AND METHOD FOR PRODUCING THE SAME
TWI694989B (en) Tetracarboxylic dianhydride having cyclic hydrocarbon skeleton and ester group
JP6796163B2 (en) Polyimide manufacturing method
JP2007091701A (en) Tetracarboxylic acid containing fluorenyl group and ester group, polyester imide precursor containing fluorenyl group, polyester imide containing fluorenyl group and method for producing the same
JP6086139B2 (en) Polyimide precursor and polyimide
JP6353931B2 (en) Polyimide and film using the same
JP6635506B2 (en) Diamine having fluorene skeleton, polyamic acid, and polyimide
KR20190005851A (en) Polyimide resin
JP2008297362A (en) Ester group-containing tetracarboxylic acid dianhydride, polyimide having high toughness, and its precursor
JP7134584B2 (en) Polyimide with fluorene skeleton
JP6793434B2 (en) Tetracarboxylic dianhydride, polyamic acid and polyimide
JP6584011B2 (en) Diamine compound having fluorene skeleton, polyamic acid, and polyimide
JP2008163088A (en) Ester group-containing alicyclic tetracarboxylic acid anhydride and method for producing the same
JP2008074769A (en) Tetracarboxylic acid, polyimide of the same, and method for producing the same
WO2016190170A1 (en) Tetracarboxylic acid dianhydride having cyclic hydrocarbon skeleton and ester group, polyamic acid and polyimide
JP2008163090A (en) Tetracarboxylic acid dianhydride, method for producing the same and polymer
CN114133563A (en) Polyimide precursor, polyimide precursor composition, polyimide film, method for producing same, and use thereof
JP7128587B2 (en) Tetracarboxylic dianhydride, polyamic acid and polyimide
CN113993931A (en) Polymers for use in electronic devices
JP2010070513A (en) Aromatic diamine compound, polyamic acid, polyimide resin and optical element
CN113348200A (en) Method for producing polyimide resin powder
JP2008163089A (en) Copolymer containing at least alicyclic polyester imide unit and aromatic polyimide unit and polyimide film
JP2009067745A (en) New diamine compound, and polyamic acid and imidized polymer produced by using the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187021889

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769939

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17769939

Country of ref document: EP

Kind code of ref document: A1