WO2017163826A1 - Scroll-type compressor - Google Patents

Scroll-type compressor Download PDF

Info

Publication number
WO2017163826A1
WO2017163826A1 PCT/JP2017/008631 JP2017008631W WO2017163826A1 WO 2017163826 A1 WO2017163826 A1 WO 2017163826A1 JP 2017008631 W JP2017008631 W JP 2017008631W WO 2017163826 A1 WO2017163826 A1 WO 2017163826A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
chamber
back pressure
scroll
valve
Prior art date
Application number
PCT/JP2017/008631
Other languages
French (fr)
Japanese (ja)
Inventor
泰造 佐藤
Original Assignee
サンデン・オートモーティブコンポーネント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブコンポーネント株式会社 filed Critical サンデン・オートモーティブコンポーネント株式会社
Priority to DE112017001535.9T priority Critical patent/DE112017001535B4/en
Priority to CN201780016587.7A priority patent/CN108834423B/en
Publication of WO2017163826A1 publication Critical patent/WO2017163826A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents

Definitions

  • the present invention relates to a scroll compressor that has a fixed scroll and a movable scroll and compresses a fluid such as a refrigerant flowing into a space between both scrolls.
  • This type of scroll compressor includes a scroll unit having a fixed scroll and a movable scroll.
  • the scroll compressor is incorporated in a refrigerant circuit of a vehicle air conditioner and used to compress the refrigerant in the refrigerant circuit.
  • the movable scroll is revolved around the axis of the fixed scroll through the dynamic shaft, thereby gradually reducing the volume of the sealed space between the two scrolls, and the refrigerant gas flowing into the suction chamber Or the like is compressed in a sealed space, and the compressed fluid is discharged through a discharge chamber.
  • a scroll compressor described in Patent Document 1 is known.
  • the scroll compressor described in Patent Document 1 has a back pressure chamber on the back side of the movable scroll.
  • the back pressure chamber communicates with the high pressure region of the compressor through the pressure supply passage, and communicates with the low pressure region of the compressor through the pressure relief passage.
  • the pressure in the back pressure chamber is adjusted to be a predetermined pressure intermediate between the pressure in the suction chamber and the pressure in the discharge chamber by a differential pressure actuated back pressure regulating valve provided in the pressure relief passage.
  • the scroll compressor causes the movable scroll to revolve with respect to the fixed scroll while pressing the movable scroll against the fixed scroll by the pressure in the back pressure chamber. Therefore, in this scroll compressor, it is possible to suppress the movable scroll from moving away from the fixed scroll during the compression operation, and as a result, it is possible to prevent the occurrence of poor compression.
  • a scroll compressor has a fixed scroll and a movable scroll, compresses a fluid that flows in through a suction chamber, and discharges the compressed fluid through a discharge chamber;
  • a back pressure chamber that is formed facing the back side of the movable scroll and communicates with the discharge chamber via a pressure supply passage, and a pressure release that communicates the back pressure chamber and the suction chamber side region of the scroll unit.
  • a differential pressure actuated back pressure regulating valve that is provided in the passage and regulates the pressure in the back pressure chamber.
  • the scroll compressor includes a first throttle portion provided in the pressure supply passage and a second throttle portion provided in the pressure release passage.
  • the back pressure adjusting valve is provided in a portion closer to the suction chamber than the second throttle portion in the pressure release passage, and includes a valve body, a valve seat portion that contacts and separates the valve body, and the valve seat portion.
  • a fluid inlet hole formed and opened and closed by the valve body.
  • the back pressure adjusting valve moves the valve body in a valve opening direction when the differential pressure between the back pressure chamber pressure and the suction chamber pressure exceeds a predetermined differential pressure, and the differential pressure is the predetermined differential pressure.
  • the valve body is configured to move in the valve closing direction.
  • the second throttle part has a cross-sectional area larger than the cross-sectional area of the first throttle part and smaller than the cross-sectional area of the valve body side opening of the fluid inlet hole.
  • the throttle parts (first throttle part and 2 apertures) are provided.
  • the cross-sectional area of the second throttle portion is set to be larger than the cross-sectional area of the first throttle portion and smaller than the cross-sectional area of the valve body side opening of the fluid inlet hole.
  • the second throttle portion which is a throttle portion that restricts the flow of fluid by being throttled from the fluid inlet hole of the back pressure regulating valve, is provided on the upstream side of the fluid inlet hole. Therefore, even if the fluid inlet hole of the back pressure regulating valve is in an open state, it is possible to suppress the outflow of fluid from the back pressure chamber by the second throttle portion.
  • the second throttle portion prevents the fluid from flowing out, so that the amount of decrease in the back pressure chamber pressure can be reduced, and as a result, the back pressure chamber pressure is stabilized. Can be made. In this way, it is possible to provide a scroll compressor that can suppress a decrease in the pressure in the back pressure chamber accompanying the opening operation of the back pressure regulating valve.
  • FIG. 1 is a schematic cross-sectional view of a scroll compressor according to this embodiment.
  • the scroll compressor 100 according to the present embodiment is incorporated in, for example, a refrigerant circuit (also referred to as a refrigeration circuit) of a vehicle air conditioner, and compresses refrigerant (fluid) sucked from a low pressure side (evaporator side) of the refrigerant circuit. To be discharged.
  • a refrigerant circuit also referred to as a refrigeration circuit
  • the scroll compressor 100 includes a scroll unit 1, a housing 10 having a refrigerant suction chamber H ⁇ b> 1 and a discharge chamber H ⁇ b> 2 therein, an electric motor 20 that drives the scroll unit 1, and one end of a drive shaft 21 of the electric motor 20.
  • the bearing holding part 30 for supporting a part (upper end part in FIG. 1) so that rotation is possible, and the inverter 40 for drive control of the electric motor 20 are provided.
  • a carbon dioxide refrigerant (CO 2 refrigerant) is adopted as the refrigerant, and the vehicle is cooled by the refrigerant circuit.
  • the scroll compressor 100 will be described by taking a so-called inverter integrated type as an example.
  • the scroll unit 1 includes a fixed scroll 2 and a movable scroll 3 that are meshed with each other.
  • the fixed scroll 2 has a disk-shaped bottom plate 2a and a spiral wrap 2b integrally formed on the bottom plate 2a.
  • the movable scroll 3 has a disk-shaped bottom plate 3a and a spiral wrap 3b integrally formed on the bottom plate 3a.
  • Both scrolls 2 and 3 are arranged so that both the spiral wraps 2b and 3b mesh.
  • both the scrolls 2 and 3 have a predetermined gap between the end of the protruding side of the spiral wrap 2 b of the fixed scroll 2 and the bottom plate 3 a of the movable scroll 3 so that the spiral wrap 3 b of the movable scroll 3 protrudes.
  • the side edge is disposed so as to have a predetermined gap with the bottom plate 2 a of the fixed scroll 2.
  • This gap that can fluctuate during the compression operation is maintained in an appropriate range during the compression operation, and as a result, the airtightness of the sealed space (compression chamber) S described later is appropriately maintained.
  • the scrolls 2 and 3 are arranged so that the side walls of the spiral wraps 2b and 3b are partially in contact with each other with the circumferential angles of the spiral wraps 2b and 3b shifted from each other. Thereby, a crescent-shaped sealed space (compression chamber) S is formed between the spiral wraps 2b and 3b.
  • the fixed scroll 2 is fixed to a rear housing 12 (to be described later) of the housing 10, and has a groove 2a1 that opens toward the rear housing 12 at the radial center.
  • the groove 2a1 is formed on the back surface of the bottom plate 2a (that is, the end surface opposite to the movable scroll 3).
  • the movable scroll 3 is configured to be capable of revolving orbiting around the axis of the fixed scroll 2 via the drive shaft 21 in a state in which the rotation is prevented.
  • the scroll unit 1 moves the sealed space S formed between the scrolls 2 and 3, more specifically between the spiral wraps 2b and 3b, to the center, and gradually reduces the volume.
  • the housing 10 includes a front housing 11 that houses the scroll unit 1, the electric motor 20, the bearing holding portion 30, and the inverter 40, a rear housing 12, and an inverter cover 13. .
  • the housing 10 is configured by integrally fastening the front housing 11, the rear housing 12, and the inverter cover 13 by fastening means such as bolts 14.
  • the front housing 11 has a substantially annular peripheral wall portion 11a and a partition wall portion 11b.
  • the internal space of the front housing 11 is partitioned by the partition wall portion 11 b into an accommodation space for accommodating the scroll unit 1, the electric motor 20, and the bearing holding portion 30 and an accommodation space for accommodating the inverter 40.
  • the opening on one end side (upper side in FIG. 1) of the peripheral wall portion 11 a is closed by the rear housing 12. Further, the opening on the other end side (the lower side in FIG. 1) of the peripheral wall portion 11 a is closed by the inverter cover 13.
  • a cylindrical support portion 11b1 that holds a bearing 15 that supports the other end portion (the lower end portion in FIG. 1) of the drive shaft 21 protrudes from the radial center portion of the partition wall portion 11b.
  • a refrigerant suction port P1 is formed in the peripheral wall portion 11a.
  • the space in the front housing 11 functions as the suction chamber H1.
  • the refrigerant flows around the electric motor 20 and the like in the suction chamber H1.
  • the upper space of the electric motor 20 communicates with the lower space of the electric motor 20 and constitutes one suction chamber H ⁇ b> 1 together with the lower space of the electric motor 20.
  • the refrigerant flows as a mixed fluid with a small amount of lubricating oil.
  • the rear housing 12 is formed in a disc shape, and its peripheral portion is fastened to one end side end portion (upper end portion in FIG.
  • a peripheral edge portion (in other words, a portion surrounding the groove 2 a 1) of the rear surface of the bottom plate 2 a of the fixed scroll 2 is brought into contact with one end surface of the rear housing 12.
  • the one end face of the rear housing 12 and the groove 2a1 of the bottom plate 2a define a refrigerant discharge chamber H2.
  • a compressed refrigerant discharge passage L2 is formed at the center of the bottom plate 2a.
  • a one-way valve (a check valve for restricting the flow from the discharge chamber H2 to the scroll unit 1) 16 is provided so as to cover the opening of the discharge passage L2.
  • the refrigerant compressed in the sealed space S formed between the spiral wraps 2b and 3b is discharged through the discharge passage L2 and the one-way valve 16.
  • the rear housing 12 is formed with a discharge port P2 that communicates the discharge chamber H2 with the high-pressure side (that is, the condenser) of the refrigerant circuit.
  • the compressed refrigerant in the discharge chamber H2 is discharged to the high pressure side of the refrigerant circuit through the discharge port P2.
  • an appropriate oil separator for separating the lubricating oil from the compressed refrigerant flowing into the discharge port P2 is provided in the discharge port P2.
  • the refrigerant from which the lubricating oil is separated by the oil separator (including the refrigerant in which a small amount of lubricating oil remains) is discharged to the high pressure side of the refrigerant circuit via the discharge port P2.
  • the lubricating oil separated by the oil separator is guided to a pressure supply passage L3, which will be described later, in a state where a compressed refrigerant is appropriately contained, for example.
  • the electric motor 20 includes a drive shaft 21, a rotor 22, and a stator core unit 23 disposed on the radially outer side of the rotor 22. For example, a three-phase AC motor is applied.
  • a direct current from a vehicle battery (not shown) is converted into an alternating current by the inverter 40 and supplied to the electric motor 20.
  • the drive shaft 21 is connected to the movable scroll 3 via a crank mechanism, and transmits the rotational force of the electric motor 20 to the movable scroll 3.
  • One end portion of the drive shaft 21 (that is, the end portion on the movable scroll 3 side) is rotatably supported by the bearing 17 through a through hole formed in the bearing holding portion 30.
  • the other end portion (the end portion on the inverter 40 side) of the drive shaft 21 is rotatably supported by a bearing 15 fitted to the support portion 11b1.
  • the rotor 22 is rotatably supported on the radially inner side of the stator core unit 23 via a drive shaft 21 that is fitted (for example, press-fitted) into a shaft hole formed at the radial center thereof.
  • a magnetic field is generated in the stator core unit 23 by power feeding from the inverter 40, a rotational force is applied to the rotor 22 and the drive shaft 21 is rotationally driven.
  • the bearing holding portion 30 is provided in the front housing 11 and holds the bearing 17 that rotatably supports the end portion of the drive shaft 21 on the movable scroll 3 side.
  • the bearing holding portion 30 is fastened integrally with the fixed scroll 2 and the rear housing 12 by fastening bolts 14 with the fixed scroll 2 sandwiched between the bearing holding portion 30 and the rear housing 12.
  • the bearing holding part 30 is formed in, for example, a bottomed cylindrical shape, and includes a cylindrical part 30a and a bottom wall part 30b located on one end side of the cylindrical part 30a.
  • the cylindrical portion 30a has a shoulder portion 30a3 that is expanded so that the inner diameter on the opening side is larger than the inner diameter on the bottom wall portion 30b side, and connects between the large-diameter portion 30a1 and the small-diameter portion 30a2.
  • the movable scroll 3 is accommodated in a space defined by the large-diameter portion 30a1 and the shoulder portion 30a3.
  • the opening of the bearing holding portion 30 is closed by the fixed scroll 2.
  • the bearing 17 is fitted into the small diameter portion 30a2 of the cylindrical portion 30a.
  • the through-hole for making the movable scroll 3 side edge part of the drive shaft 21 penetrate is opened in the radial direction center part of the bottom wall part 30b.
  • An appropriate seal member 18a is provided between the bearing 17 and the bottom wall portion 30b.
  • An annular thrust plate 19 is disposed between the shoulder 30 a 3 of the bearing holder 30 and the bottom plate 3 a of the movable scroll 3.
  • the shoulder 30 a 3 receives a thrust force from the movable scroll 3 through the thrust plate 19.
  • Sealing members 18b are disposed at portions of the shoulder 30a3 and the bottom plate 3a that are in contact with the thrust plate 19, respectively.
  • a back pressure chamber H3 is defined between the bottom plate 3a and the small diameter portion 30a2.
  • the back pressure chamber H3 is formed so as to face the back side of the movable scroll 3 (the side opposite to the fixed scroll 2).
  • the airtightness of the back pressure chamber H3 is ensured by the seal members 18a and 18b.
  • the seal members 18a and 18b are provided between the inner peripheral surface of the peripheral wall portion 11 a of the front housing 11 and the outer peripheral surface of the cylindrical portion 30 a of the bearing holding portion 30, there is a vicinity of the outer peripheral portion of the spiral wraps 2 b and 3 b of the suction chamber H 1 and the scroll unit 1.
  • a fluid introduction passage L1 communicating with the space H4 is formed.
  • the refrigerant in the suction chamber H1 (specifically, a mixed fluid of the refrigerant and a small amount of lubricating oil) is introduced into the space H4 through the fluid introduction passage L1. Since the space H4 is communicated with the suction chamber H1 by the fluid introduction passage L1, the pressure in the space H4 is equal to the pressure in the suction chamber H1 (suction chamber pressure P s ).
  • the crank mechanism includes a cylindrical boss portion 25 formed to protrude from the back surface (the end surface on the back pressure chamber H3 side) of the bottom plate 3a, and a crank 26 provided on the movable scroll 3 side end portion of the drive shaft 21.
  • FIG. 2 is a block diagram for explaining the refrigerant flow in the scroll compressor 100.
  • the refrigerant from the low-pressure side of the refrigerant circuit is introduced into the suction chamber H1 through the suction port P1, and then guided to the space H4 near the outer end of the scroll unit 1 through the fluid introduction passage L1. And the refrigerant
  • coolant in the space H4 is taken in in the sealed space S between both the spiral wraps 2b and 3b, and is compressed in this sealed space S.
  • This compressed refrigerant (compressed refrigerant) is discharged to the discharge chamber H2 via the discharge passage L2 and the one-way valve 16, and then discharged to the high-pressure side of the refrigerant circuit from the discharge chamber H2 via the discharge port P2.
  • the scroll compressor 100 further includes a differential pressure actuated back pressure adjusting valve 50 that adjusts the pressure in the back pressure chamber H3 (back pressure chamber pressure P m ).
  • the back pressure regulating valve 50 is a check valve of the differential pressure actuated, when the differential pressure between the back pressure chamber pressure P m and the intake chamber pressure P s exceeds a predetermined differential pressure P v operates in the valve opening direction, when the differential pressure is equal to or less than the predetermined pressure difference P v, actuated in the closing direction, the back pressure chamber pressure P m the pressure in the discharge chamber H2 and (discharge chamber pressure P d) and it adjusts to a predetermined pressure (medium pressure) between the suction chamber pressure P s.
  • the arrangement position, structure, and back pressure adjustment operation of the back pressure adjustment valve 50 will be described in detail later.
  • the scroll compressor 100 includes a pressure supply passage L3 and a pressure release passage L4 in addition to the fluid introduction passage L1 and the discharge passage L2, as shown in FIGS.
  • the pressure supply passage L3 is a passage for communicating the discharge chamber H2 and the back pressure chamber H3. That is, the back pressure chamber H3 communicates with the discharge chamber H2 via the pressure supply passage L3.
  • the lubricating oil separated from the compressed refrigerant in the discharge port P2 by the oil separator (not shown) is guided into the back pressure chamber H3 through the pressure supply passage L3, and each sliding portion in the back pressure chamber H3. Used for lubrication.
  • the pressure supply passage L3 has one end opened to the discharge chamber H2 as a high pressure region and the other end opened to the back pressure chamber H3 via the discharge port P2. Further, the rear housing 12, the bottom plate 2 a of the fixed scroll 2, and the cylindrical portion 30 a of the bearing holding portion 30 are formed. In the middle of the pressure supply passage L3, a first throttle portion T1 that restricts the flow of fluid flowing through the pressure supply passage L3 is provided.
  • the first throttle portion T1 is a pore having an inner diameter smaller than that of the other portion of the pressure supply passage L3.
  • the lubricating oil or the like separated from the compressed refrigerant in the discharge chamber H2 is appropriately depressurized by the first throttle portion T1, and is supplied into the back pressure chamber H3 via the pressure supply passage L3. Then, the lubricating oil or the like by being introduced into the back pressure chamber H3, back pressure chamber pressure P m is increased via the pressure supply passage L3.
  • the pressure release passage L4 is a passage for communicating between the back pressure chamber H3 and the suction chamber side region (that is, the low pressure region) of the scroll unit 1. In the present embodiment, specifically, the pressure release passage L4 passes through the small diameter portion 30a2 of the cylindrical portion 30a and extends in a direction orthogonal to the drive shaft 21.
  • One end of the pressure relief passage L4 opens to the back pressure chamber H3, and the other end of the pressure relief passage L4 opens to the fluid introduction passage L1. That is, in this embodiment, the fluid introduction passage L1 is employed as the suction chamber side region, and the pressure release passage L4 communicates between the back pressure chamber H3 and the fluid introduction passage L1. Since one end of the fluid inlet passage L1 is open to the suction chamber H1, the pressure in the fluid inlet passage L1 is equal to the suction chamber pressure P s.
  • a second throttle portion T2 that restricts the flow of fluid flowing through the pressure release passage L4 is provided in the middle of the pressure release passage L4.
  • the second throttle portion T2 is a pore having an inner diameter smaller than that of the other part of the pressure release passage L4.
  • FIG. 3 is an enlarged cross-sectional view of a main part including the back pressure adjusting valve 50.
  • the back pressure adjustment valve 50 is provided in a portion of the pressure release passage L4 that is closer to the suction chamber than the second throttle portion T2 (that is, the downstream side in the flow direction of the second throttle portion T2).
  • the back pressure adjusting valve 50 includes a valve housing 51, a valve seat housing 52, a valve body 53, and a biasing means 54.
  • the back end of the pressure release passage L4 is an opening end on the fluid introduction passage L1 side. And constitutes a part of the pressure release passage L4.
  • the valve housing 51 has a cylindrical portion 51a and a bottom wall portion 51b that closes one end of the cylindrical portion 51a, is formed in a bottomed cylindrical shape as a whole, and has a valve chamber 51c inside.
  • the cylindrical portion 51a and the bottom wall portion 51b are formed with fluid outlet holes 55 that open to the fluid introduction passage L1.
  • two fluid outlet holes 55 are opened in the cylindrical portion 51a and one is opened in the bottom wall portion 51b.
  • the fluid outlet hole 55 communicates the space in the fluid introduction passage L ⁇ b> 1 and the valve chamber 51 c in the valve housing 51.
  • the valve seat housing 52 constitutes one end of the back pressure regulating valve 50 and is fitted to the opening end of the pressure release passage L4 on the fluid introduction passage L1 side.
  • the valve seat housing 52 is formed, for example, in a bottomed cylindrical shape having an outer diameter that matches the inner diameter of the pressure release passage L4, and includes a cylindrical portion 52a and a valve seat portion 52b.
  • One end side of the cylindrical portion 52 a is fixed to the open end side of the valve housing 51.
  • the valve seat part 52b is located on the other end side of the cylindrical part 52a, and has a conical valve seat surface 52b1 to which the valve body 53 comes in contact with and separates from.
  • a fluid inlet hole 56 opened and closed by the valve body 53 is opened in the valve seat portion 52b.
  • the fluid inlet hole 56 is a hole through which the space on the back pressure chamber H3 side of the pressure release passage L4 communicates with the valve chamber 51c and guides a refrigerant containing lubricating oil into the valve chamber 51c.
  • the fluid inlet hole 56 is formed so that the portion of the end portion on the back pressure chamber H3 side is smaller in diameter than the portion on the valve chamber 51c side (valve element 53 side).
  • a portion of the end portion of the fluid inlet hole 56 on the back pressure chamber H3 side is configured as the second throttle portion T2.
  • the second throttle portion T2 is formed integrally with the valve seat portion 52b at the end portion of the fluid inlet hole 56 on the back pressure chamber H3 side.
  • the valve body 53 opens and closes the fluid inlet hole 56, is formed in a ball shape, and is urged toward the valve seat 52 b by the urging means 54.
  • the diameter of the valve body 53 is set to be larger than the inner diameter of the opening of the fluid inlet hole 56 on the valve body 53 side.
  • the biasing means 54 includes a coil spring 54a whose one end is in contact with the bottom wall 51b of the valve housing 51, and a biasing rod which is connected to the other end of the coil spring 54a and biases the valve body 53 in the valve closing direction.
  • the predetermined differential pressure Pv which is the valve-opening set differential pressure of the back pressure adjusting valve 50, is a design value (set value) determined according to the spiral wrap shape of the scroll unit 1 and the like. It is set by selecting a coil spring 54a having power.
  • the back pressure adjusting valve 50 includes a valve housing 51, a valve seat housing 52, a fluid inlet hole 56 formed in the valve seat housing 52 and opened to the back pressure chamber H3 side of the pressure release passage L4, and a fluid A valve body 53 that opens and closes the inlet hole 56; a valve seat portion 52b that is formed in the valve seat housing 52 and contacts and separates; a biasing means 54; a fluid outlet hole 55 that opens to the fluid introduction passage L1;
  • the valve body 53 is moved in the valve opening direction, and the differential pressure becomes the predetermined differential pressure.
  • the valve body 53 When Pv or less, the valve body 53 is configured to move in the valve closing direction.
  • the second throttle portion T2 is greater than the cross-sectional area A in the first throttle portion T1, and has a cross-sectional area A v1 smaller cross-sectional area A out of the valve body side opening of the fluid inlet hole 56.
  • the total cross-sectional area A v2 of the fluid outlet hole 55 is larger than the cross-sectional area A v1 of the fluid inlet hole 56 (that is, A v2 > A v1 > A out > A in ).
  • the minimum flow passage area of the pressure passage L4 release is determined by the cross-sectional area A out of the second aperture portion T2.
  • the back pressure regulating valve 50 as well as in closed state, as back pressure chamber pressure P m is becoming higher, it will be described below.
  • the discharge chamber pressure Pd is stable at a lower limit value (low load state) of a fluctuation range described later.
  • the back pressure adjusting valve 50 presses the valve element 53 against the valve seat surface 52b1 by the urging means 54 to close the opening of the fluid inlet hole 56.
  • valve body 53 a biasing force of the coil spring 54a of the urging means 54, the suction chamber pressure P s traveling through the fluid inlet passage L1 and a fluid outlet hole 55 is acting.
  • the back pressure chamber pressure P m is gradually increased, a predetermined differential pressure P v which pressure difference between the back pressure chamber pressure P m and the intake chamber pressure P s is determined based on the biasing force of the biasing means 54
  • the valve body 53 moves in the valve opening direction against the urging force of the urging means 54.
  • the back pressure adjusting valve 50 When the back pressure adjusting valve 50 is opened, the refrigerant gas or the like in the back pressure chamber H3 is released to the fluid introduction passage L1 side (that is, the low pressure region side) through the pressure release passage L4.
  • the back pressure chamber pressure P m can be reduced.
  • the flow of the fluid such as the refrigerant gas flowing through the pressure release passage L4 is regulated by the second throttle portion T2
  • the outflow of the fluid such as the refrigerant gas from the back pressure chamber H3 is suppressed.
  • the refrigerant gas or the like guided in the middle of the fluid introduction passage L1 through the back pressure adjusting valve 50 is returned to the scroll unit 1 side (space H4 side) along the flow in the fluid introduction passage L1.
  • the valve body 53 moves in the valve closing direction by the urging force of the urging means 54.
  • the back pressure regulating valve 50 thereby boosting the back pressure chamber pressure P m.
  • the external environmental conditions (outside air temperature etc.) of the condenser (high pressure side) of the refrigerant circuit vary. Therefore, the heat exchange capacity of the condenser of the refrigerant circuit also varies. Accordingly, the discharge chamber pressure P d of the scroll type compressor 100 varies by the heat exchange capacity of the condenser. In other words, the load of the scroll compressor 100 varies. On the other hand, the suction pressure of the refrigerant flowing into the scroll compressor 100 from the evaporator (low pressure side) of the refrigerant circuit is controlled to be substantially constant by the vehicle air conditioner.
  • the suction chamber pressure P s is a set value that is set according to the required capacity of the refrigerant circuit (refrigeration circuit). As a result, the suction chamber pressure P s is fixed to a predetermined set value. Strictly speaking, it fluctuates minutely even suction chamber pressure P s. However, the variation width of the suction chamber pressure P s is smaller negligibly compared to the variation range of the discharge chamber pressure P d, the suction chamber pressure P s can be regarded as a fixed value.
  • suction chamber pressure P s is set to 3.5 MPa
  • discharge chamber pressure P d is varied in a range of 5 ⁇ 13 MPa during operation of the compressor
  • the suction chamber pressure P s is a predetermined set value (e.g., 3.5 MPa) is fixed to the discharge chamber pressure P d can vary within the variation range (operating range).
  • the scroll compressor 100 becomes lighter as the discharge chamber pressure Pd is smaller, and becomes heavier as the discharge chamber pressure Pd is larger.
  • the discharge chamber pressure P d further increases. the valve 50 is configured to allow boosting in accordance with back pressure chamber pressure P m to the increase in discharge chamber pressure P d.
  • the valve opening set pressure P c is, for example, the discharge chamber pressure P d within the fluctuation range of the discharge chamber pressure P d in order to eliminate the excessive back pressure state at low load. It is preset to a value between the lower limit value and the set value of the suction chamber pressure P s. Further, in this embodiment, in order to eliminate the back pressure shortage state at the time of high load, the cross-sectional area A out of the second throttle portion T2 varies when the discharge chamber pressure P d varies within the predetermined variation range.
  • the back pressure adjustment valve 50 is opened, the amount of fluid discharged from the back pressure chamber H3 is always smaller than the amount of fluid supplied to the back pressure chamber H3.
  • the back pressure chamber pressure P m varies according to the variation of the discharge chamber pressure P d , and the back pressure chamber pressure P m at the high load is As the pressure Pd increases, the pressure increases.
  • the G in and the G out satisfy the following relational expressions (1) to (3).
  • (rho) d shows the density of the fluid which distribute
  • (rho) m shows the density of the fluid which distribute
  • G in A in ⁇ ⁇ 2 ⁇ (P d ⁇ P m ) ⁇ ⁇ d ⁇ 1/2 Equation (2)
  • G out A out ⁇ ⁇ 2 ⁇ (P m -P s) ⁇ ⁇ m ⁇ 1/2 ... Equation (3)
  • ⁇ m can be expressed by an approximate expression shown by the following expression (4).
  • the pressure supply passage L3 and the pressure release passage L4 are provided with throttle portions (first throttle portion T1 and second throttle portion T2), respectively.
  • the cross-sectional area A out of the second aperture portion T2 is greater than the cross-sectional area A in the first throttle portion T1, and is set to be smaller than the cross-sectional area A v1 of the valve body side opening of the fluid inlet hole 56 ing. Therefore, even if the fluid inlet hole 56 of the back pressure adjustment valve 50 is in the open state, the second throttling portion T2 can suppress the outflow of fluid from the back pressure chamber H3.
  • the cross-sectional area A out of the second aperture portion T2 in the range of variation of the discharge chamber pressure P d, flow rate G out of the fluid flowing through the second aperture portion T2 flows through the first throttle portion T1 It is set to be less than the flow rate G in of the fluid to be used.
  • discharge chamber pressure back pressure chamber pressure P m it can be boosted in accordance with the increase of P d.
  • discharge chamber pressure P d becomes higher fluctuate within the variation range (operating range), even in a high load state, it is possible to back pressure to suppress or eliminate made that insufficient.
  • a in and A out are set so as to satisfy the relationship of the above formula (5) within the fluctuation range of the discharge chamber pressure P d .
  • the set value of the suction chamber pressure P s e.g., 3.5 MPa
  • the back pressure adjusting valve 50 of the back pressure adjusting valve 50 is set so that the back pressure chamber pressure P m becomes a substantially constant pressure lower than that at the high load at the time of low load. It can be adjusted by opening and closing operations.
  • the second throttle portion T2 is integrally formed with the valve seat portion 52b at a portion of the fluid inlet hole 56 at the back pressure chamber side end portion. As a result, the second throttle portion T2 can be easily formed in the downstream side portion of the pressure release passage L4.
  • the diameter of the valve body 53 is usually set so that the valve body 53 comes into contact with the corner of the valve body side opening of the fluid inlet hole 56 to be opened and closed. Therefore, if the inner diameter of the valve body side opening of the fluid inlet hole 56 is small, the diameter of the valve body 53 also needs to be reduced. In this respect, since the valve body side opening of the fluid inlet hole 56 in this embodiment is opened larger than the second throttle portion T2, the valve body 53 having a general diameter can be employed.
  • the second throttle portion T2 may not be formed integrally with the valve seat portion 52b.
  • the present embodiment includes a fluid introduction passage L1 that connects the suction chamber H1 and the space H4 near the outer periphery of the scroll unit 1, and the pressure release passage L4 communicates the back pressure chamber H3 and the fluid introduction passage L1. is doing. Thereby, the lubricating oil that has flowed into the back pressure chamber H3 is returned to the scroll unit 1 along the flow of the fluid introduction passage L1, and the lubricity and airtightness of the sliding portion in the scroll unit 1 can be enhanced.
  • this invention is not restrict
  • the valve opening set pressure P in order to eliminate the back pressure excess state at low load, to a value between the valve opening set pressure P c is the lower limit value of the discharge chamber pressure P d and the set value of the suction chamber pressure P s
  • the valve opening set pressure P is set so as to reliably prevent the back pressure from becoming insufficient at high loads. You may set c high.
  • the wear resistance of the scroll unit 1 may be enhanced by devising the material of the contact portions of the fixed scroll 2 and the movable scroll 3.
  • the pressure relief passage L4 communicates the back pressure chamber H3 and the fluid introduction passage L1. That is, the fluid introduction passage L1 is adopted as the suction chamber side region of the scroll unit 1.
  • the connection destination of the pressure release passage L4 is not limited to this.
  • the suction chamber H ⁇ b> 1 itself may be adopted as the suction chamber side region of the scroll unit 1.
  • the pressure release passage L4 communicates the back pressure chamber H3 and the suction chamber H1.
  • the refrigerant has been assumed to be CO 2 refrigerant is not limited to this, it is possible to apply the appropriate refrigerant.
  • the scroll compressor 100 has been described by taking a so-called inverter-integrated case as an example. However, the present invention is not limited to this, and the scroll compressor 100 may be separate from the inverter 40.

Abstract

In order to suppress reduction in pressure inside a back pressure chamber following the opening action of a back pressure adjustment valve, this scroll-type compressor 100 comprises: a scroll unit 1; a back pressure chamber H3 connected to a discharge chamber H2 via a pressure supply passage L3; and a back pressure adjustment valve 50 provided in a pressure release passage L4. A first throttling section T1 is provided in the pressure supply passage L3 and a second throttling section T2 is provided in the pressure release passage L4. The back pressure adjustment valve 50 is provided in the pressure release passage L4 and operates in the open-valve direction if the pressure difference between the back pressure chamber pressure Pm and the pressure PS in an intake chamber exceeds a prescribed pressure difference Pv. The second throttling section T2 has a cross-sectional area Aout that is larger than the cross-sectional area Ain of the first throttling section T1 and smaller than the cross-sectional area Av1 of the valve-side opening of a fluid entry hole 56 in the back pressure adjustment valve 50.

Description

スクロール型圧縮機Scroll compressor
 本発明は、固定スクロール及び可動スクロールを有し、両スクロール間の空間に流入する冷媒等の流体を圧縮するスクロール型圧縮機に関する。 The present invention relates to a scroll compressor that has a fixed scroll and a movable scroll and compresses a fluid such as a refrigerant flowing into a space between both scrolls.
 この種のスクロール型圧縮機は、固定スクロール及び可動スクロールを有するスクロールユニットを備え、例えば、車両用空調装置の冷媒回路に組み込まれ、冷媒回路の冷媒を圧縮するために用いられる。このスクロールユニットは、動軸を介して可動スクロールが固定スクロールの軸心周りに公転旋回運動されることにより、両スクロール間の密閉空間の容積を徐々に減少させ、吸入室に流入された冷媒ガス等の流体を密閉空間内で圧縮し、この圧縮流体を吐出室を介して吐出するように構成されている。
 この種のスクロール型圧縮機としては、例えば特許文献1に記載のスクロール型圧縮機が知られている。特許文献1に記載のスクロール型圧縮機は、可動スクロールの背面側に背圧室を有する。この背圧室は、圧力供給通路により圧縮機の高圧領域と連通されると共に、放圧通路により圧縮機の低圧領域と連通される。そして、背圧室内圧力は、放圧通路に設けられる差圧作動式の背圧調整弁により、吸入室内圧力と吐出室内圧力の中間の所定圧力になるように調整される。このスクロール型圧縮機は、可動スクロールを背圧室内圧力により固定スクロール側に押し付けつつ、可動スクロールを固定スクロールに対して公転旋回運動させる。したがって、このスクロール型圧縮機では、圧縮運転中に、可動スクロールが固定スクロールから離れることを抑制することができ、その結果、圧縮不良の発生を防止する。
This type of scroll compressor includes a scroll unit having a fixed scroll and a movable scroll. For example, the scroll compressor is incorporated in a refrigerant circuit of a vehicle air conditioner and used to compress the refrigerant in the refrigerant circuit. In this scroll unit, the movable scroll is revolved around the axis of the fixed scroll through the dynamic shaft, thereby gradually reducing the volume of the sealed space between the two scrolls, and the refrigerant gas flowing into the suction chamber Or the like is compressed in a sealed space, and the compressed fluid is discharged through a discharge chamber.
As this type of scroll compressor, for example, a scroll compressor described in Patent Document 1 is known. The scroll compressor described in Patent Document 1 has a back pressure chamber on the back side of the movable scroll. The back pressure chamber communicates with the high pressure region of the compressor through the pressure supply passage, and communicates with the low pressure region of the compressor through the pressure relief passage. The pressure in the back pressure chamber is adjusted to be a predetermined pressure intermediate between the pressure in the suction chamber and the pressure in the discharge chamber by a differential pressure actuated back pressure regulating valve provided in the pressure relief passage. The scroll compressor causes the movable scroll to revolve with respect to the fixed scroll while pressing the movable scroll against the fixed scroll by the pressure in the back pressure chamber. Therefore, in this scroll compressor, it is possible to suppress the movable scroll from moving away from the fixed scroll during the compression operation, and as a result, it is possible to prevent the occurrence of poor compression.
特開2013−148043号公報JP 2013-148043 A
 しかしながら、上記特許文献1に記載されたスクロール型圧縮機においては、背圧調整弁が開弁状態になったときに、背圧室内の冷媒(冷媒ガス)等が急激に流出し、その結果、背圧室内圧力が予想以上に低下するおそれがある。つまり、背圧調整弁が開いた直後に、背圧室内圧力が不安定になるおそれがある。このような現象は、冷媒として二酸化炭素冷媒を採用した場合に発生する可能性が高い。
 本発明は、このような実情に着目してなされたものであり、背圧調整弁の開弁動作に伴う背圧室内圧力の低下を抑制することが可能なスクロール型圧縮機を提供することを目的とする。
However, in the scroll compressor described in Patent Document 1, when the back pressure adjustment valve is opened, refrigerant (refrigerant gas) or the like in the back pressure chamber suddenly flows out, and as a result, There is a risk that the pressure in the back pressure chamber will decrease more than expected. That is, the pressure in the back pressure chamber may become unstable immediately after the back pressure adjustment valve is opened. Such a phenomenon is likely to occur when a carbon dioxide refrigerant is employed as the refrigerant.
The present invention has been made paying attention to such a situation, and provides a scroll compressor capable of suppressing a decrease in the pressure in the back pressure chamber due to the opening operation of the back pressure regulating valve. Objective.
 本発明の一側面によるスクロール型圧縮機は、固定スクロール及び可動スクロールを有し、吸入室を介して流入される流体を圧縮し、この圧縮流体を吐出室を介して吐出するスクロールユニットと、前記可動スクロールの背面側に面して形成されると共に前記吐出室に圧力供給通路を介して連通される背圧室と、前記背圧室と前記スクロールユニットの吸入室側領域とを連通する放圧通路に設けられ、前記背圧室内の圧力を調整する差圧作動式の背圧調整弁と、を備える。そして、前記スクロール型圧縮機は、前記圧力供給通路に設けられる第1絞り部と、前記放圧通路に設けられる第2絞り部と、を含む。前記背圧調整弁は、前記放圧通路のうちの前記第2絞り部より吸入室側の部位に設けられ、弁体と、該弁体が接離する弁座部と、該弁座部に形成されると共に前記弁体により開閉される流体入口孔と、を有する。また、前記背圧調整弁は、背圧室内圧力と吸入室内圧力との差圧が所定差圧を超えた場合に、前記弁体を開弁方向に移動させ、前記差圧が前記所定差圧以下の場合に、前記弁体を閉弁方向に移動させるように構成されている。そして、前記第2絞り部は、前記第1絞り部の断面積より大きく、且つ、前記流体入口孔の弁体側開口部の断面積より小さい断面積を有する。 A scroll compressor according to one aspect of the present invention has a fixed scroll and a movable scroll, compresses a fluid that flows in through a suction chamber, and discharges the compressed fluid through a discharge chamber; A back pressure chamber that is formed facing the back side of the movable scroll and communicates with the discharge chamber via a pressure supply passage, and a pressure release that communicates the back pressure chamber and the suction chamber side region of the scroll unit. A differential pressure actuated back pressure regulating valve that is provided in the passage and regulates the pressure in the back pressure chamber. The scroll compressor includes a first throttle portion provided in the pressure supply passage and a second throttle portion provided in the pressure release passage. The back pressure adjusting valve is provided in a portion closer to the suction chamber than the second throttle portion in the pressure release passage, and includes a valve body, a valve seat portion that contacts and separates the valve body, and the valve seat portion. A fluid inlet hole formed and opened and closed by the valve body. The back pressure adjusting valve moves the valve body in a valve opening direction when the differential pressure between the back pressure chamber pressure and the suction chamber pressure exceeds a predetermined differential pressure, and the differential pressure is the predetermined differential pressure. In the following cases, the valve body is configured to move in the valve closing direction. The second throttle part has a cross-sectional area larger than the cross-sectional area of the first throttle part and smaller than the cross-sectional area of the valve body side opening of the fluid inlet hole.
 前記一側面によるスクロール型圧縮機では、背圧室の上流側及び下流側の通路(つまり、圧力供給通路及び放圧通路)に、それぞれ流体の流通を規制する絞り部(第1絞り部及び第2絞り部)が設けられている。そして、第2絞り部の断面積は、第1絞り部の断面積より大きく、且つ、流体入口孔の弁体側開口部の断面積より小さくなるように設定されている。このように、流体入口孔の上流側に、背圧調整弁の流体入口孔よりも絞られて流体の流通を規制する絞り部である第2絞り部が設けられている。したがって、背圧調整弁の流体入口孔が開状態になったとしても、第2絞り部により背圧室からの流体の流出を抑制することができる。つまり、背圧調整弁が開いたとしても、第2絞り部により流体の流出が抑制されるため、背圧室内圧力の低下量を小さくすることができ、その結果、背圧室内圧力を安定化させることができる。
 このようにして、背圧調整弁の開動作に伴う背圧室内圧力の低下を抑制することが可能なスクロール型圧縮機を提供することができる。
In the scroll compressor according to the one aspect, the throttle parts (first throttle part and 2 apertures) are provided. The cross-sectional area of the second throttle portion is set to be larger than the cross-sectional area of the first throttle portion and smaller than the cross-sectional area of the valve body side opening of the fluid inlet hole. As described above, the second throttle portion, which is a throttle portion that restricts the flow of fluid by being throttled from the fluid inlet hole of the back pressure regulating valve, is provided on the upstream side of the fluid inlet hole. Therefore, even if the fluid inlet hole of the back pressure regulating valve is in an open state, it is possible to suppress the outflow of fluid from the back pressure chamber by the second throttle portion. In other words, even if the back pressure adjustment valve is opened, the second throttle portion prevents the fluid from flowing out, so that the amount of decrease in the back pressure chamber pressure can be reduced, and as a result, the back pressure chamber pressure is stabilized. Can be made.
In this way, it is possible to provide a scroll compressor that can suppress a decrease in the pressure in the back pressure chamber accompanying the opening operation of the back pressure regulating valve.
本発明の一実施形態によるスクロール型圧縮機の概略断面図である。It is a schematic sectional drawing of the scroll compressor by one Embodiment of this invention. 上記スクロール型圧縮機における冷媒流れを説明するためのブロック図である。It is a block diagram for demonstrating the refrigerant | coolant flow in the said scroll compressor. 上記スクロール型圧縮機の要部を示した要部断面図である。It is principal part sectional drawing which showed the principal part of the said scroll compressor.
 以下、本発明の実施形態について、添付図面を参照して詳細に説明する。
 図1は、本実施形態に係るスクロール型圧縮機の概略断面図である。
 本実施形態によるスクロール型圧縮機100は、例えば車両用空調装置の冷媒回路(冷凍回路ともいう)に組み込まれ、冷媒回路の低圧側(蒸発器側)から吸入した冷媒(流体)を圧縮して吐出するものである。このスクロール型圧縮機100は、スクロールユニット1と、冷媒の吸入室H1及び吐出室H2を内部に有するハウジング10と、スクロールユニット1を駆動させる電動モータ20と、電動モータ20の駆動軸21の一端部(図1では上端部)を回動可能に支持するための軸受保持部30と、電動モータ20の駆動制御用のインバータ40と、を備えている。なお、本実施形態においては、前記冷媒として二酸化炭素冷媒(CO冷媒)が採用され、前記冷媒回路により車両内の冷房を行うものとする。また、スクロール型圧縮機100は、いわゆるインバータ一体型の場合を一例に挙げて説明する。
 前記スクロールユニット1は、互いに噛み合わされる固定スクロール2及び可動スクロール3を有する。固定スクロール2は、円盤状の底板2aと、この底板2a上に一体的に形成される渦巻きラップ2bとを有する。可動スクロール3は、円盤状の底板3aと、この底板3a上に一体的に形成される渦巻きラップ3bとを有する。
 両スクロール2,3は、その両渦巻きラップ2b,3bを噛み合わせるように配置される。詳しくは、両スクロール2,3は、固定スクロール2の渦巻きラップ2bの突出側の端縁が可動スクロール3の底板3aとの間に所定の隙間を有し、可動スクロール3の渦巻きラップ3bの突出側の端縁が固定スクロール2の底板2aとの間に所定の隙間を有するように配設される。圧縮運転中に変動し得るこの隙間は圧縮運転中に適切な範囲に維持され、その結果、後述する密閉空間(圧縮室)Sの気密性が適切に維持される。
 また、両スクロール2,3は、両渦巻きラップ2b,3bの周方向の角度が互いにずれた状態で、両渦巻きラップ2b,3bの側壁が互いに部分的に接触するように配設される。これにより、両渦巻きラップ2b,3b間に三日月状の密閉空間(圧縮室)Sが形成される。
 固定スクロール2は、ハウジング10の後述するリアハウジング12に固定されると共に、その径方向中央部に、リアハウジング12側に開口する溝部2a1を有する。詳しくは、この溝部2a1は、底板2aの背面(つまり、可動スクロール3とは反対側の端面)に形成されている。
 可動スクロール3は、その自転が阻止された状態で、駆動軸21を介して固定スクロール2の軸心周りに公転旋回運動可能に構成されている。これにより、スクロールユニット1は、両スクロール2,3間、詳しくは、両渦巻きラップ2b,3b間に形成される密閉空間Sを中央部に移動させ、その容積を徐々に減少させる。その結果、スクロールユニット1は、渦巻きラップ2b,3bの外端部側から密閉空間S内に流入する冷媒を密閉空間S内で圧縮する。
 前記ハウジング10は、図1に示すように、スクロールユニット1、電動モータ20、軸受保持部30及びインバータ40をその内側に収容するフロントハウジング11と、リアハウジング12と、インバータカバー13と、を有する。そして、ハウジング10は、フロントハウジング11、リアハウジング12及びインバータカバー13がボルト14等の締結手段によって一体的に締結されることにより構成される。
 前記フロントハウジング11は、概ね円環状の周壁部11aと仕切壁部11bとを有する。フロントハウジング11の内部空間は、仕切壁部11bにより、スクロールユニット1、電動モータ20及び軸受保持部30を収容するための収容空間とインバータ40を収容するための収容空間とに仕切られる。周壁部11aの一端側(図1では上側)の開口はリアハウジング12によって閉止される。また、周壁部11aの他端側(図1では下側)の開口はインバータカバー13によって閉止される。仕切壁部11bの径方向中央部には、駆動軸21の他端部(図1では下端部)を支持するベアリング15を保持する筒状の支持部11b1が突設されている。
 また、周壁部11aには、冷媒の吸入ポートP1が形成されている。冷媒回路の低圧側(蒸発器側)からの冷媒は、この吸入ポートP1を介してフロントハウジング11内に吸入される。したがって、フロントハウジング11内の空間は吸入室H1として機能している。なお、冷媒が吸入室H1内で電動モータ20の周囲等を流通する。そして、図1において、電動モータ20の上側の空間は、電動モータ20の下側の空間と連通し、電動モータ20の下側の空間と共に一つの吸入室H1を構成する。また、吸入室H1において、冷媒は微量の潤滑油との混合流体として流れている。
 前記リアハウジング12は、円盤状に形成され、ボルト14等の締結手段によって、その周縁部が周壁部11aの一端側端部(図1では、上端部)に締結される。
 また、リアハウジング12の一端面には、固定スクロール2の底板2aの背面のうちの周縁部(言い換えると、溝部2a1を囲む部位)が当接される。このリアハウジング12の一端面と底板2aの溝部2a1とにより、冷媒の吐出室H2が区画される。底板2aの中心部には、圧縮冷媒の吐出通路L2が形成される。そして、この吐出室H2には、一方向弁(吐出室H2からスクロールユニット1側への流れを規制する逆止弁)16が吐出通路L2の開口を覆うように設けられている。吐出室H2内には、両渦巻きラップ2b,3b間に形成される密閉空間Sで圧縮された冷媒が吐出通路L2及び一方向弁16を介して吐出される。また、リアハウジング12には、吐出室H2と冷媒回路の高圧側(つまり、凝縮器)とを連通する吐出ポートP2が形成されている。吐出室H2内の圧縮冷媒は、この吐出ポートP2を介して冷媒回路の高圧側に吐出される。
 なお、図示を省略するが、例えば、吐出ポートP2内には、吐出ポートP2に流入した圧縮冷媒から潤滑油を分離するための適宜のオイルセパレータが設けられる。このオイルセパレータにより潤滑油が分離された冷媒(微量の潤滑油が残存する冷媒を含む)が吐出ポートP2を介して冷媒回路の高圧側に吐出される。一方、オイルセパレータにより分離された潤滑油は、例えば、圧縮された冷媒を適宜に含有させた状態で、後述する圧力供給通路L3へ導かれる。
 前記電動モータ20は、駆動軸21と、ロータ22と、ロータ22の径方向外側に配置されるステータコアユニット23とを備え、例えば、三相交流モータが適用される。例えば、車両のバッテリー(図示省略)からの直流電流が、インバータ40により交流電流に変換され、電動モータ20へ給電される。
 前記駆動軸21は、可動スクロール3にクランク機構を介して連結され、電動モータ20の回転力を可動スクロール3に伝達するものである。駆動軸21の一端部(つまり、可動スクロール3側端部)は、軸受保持部30に形成された貫通孔を挿通して、ベアリング17によって回動可能に支持される。一方、駆動軸21の他端部(インバータ40側端部)は、支持部11b1に嵌合されるベアリング15によって回転可能に支持される。
 前記ロータ22は、その径方向中心に形成された軸孔に嵌合(例えば圧入)される駆動軸21を介して、ステータコアユニット23の径方向内側で回転可能に支持される。インバータ40からの給電によりステータコアユニット23に磁界が発生すると、ロータ22に回転力が作用して駆動軸21が回転駆動される。
 前記軸受保持部30は、フロントハウジング11内に設けられ、駆動軸21の可動スクロール3側端部を回動可能に支持するベアリング17を保持するものである。軸受保持部30は、リアハウジング12との間に固定スクロール2を挟んだ状態で、締結用のボルト14により、固定スクロール2及びリアハウジング12と一体的に締結されている。
 具体的には、軸受保持部30は、例えば、有底筒状に形成され、円筒部30aと、円筒部30aの一端側に位置する底壁部30bとを有する。円筒部30aは、その開口側の内径が底壁部30b側の内径より大きくなるように拡径され、その大径部位30a1と小径部位30a2の間を接続する肩部30a3を有する。大径部位30a1と肩部30a3とによって区画される空間内に、可動スクロール3が収容される。軸受保持部30の開口は、固定スクロール2によって閉止される。また、円筒部30aの小径部位30a2には、ベアリング17が嵌合される。そして、底壁部30bの径方向中央部には、駆動軸21の可動スクロール3側端部を挿通させるための貫通孔が開口されている。ベアリング17と底壁部30bとの間には適宜のシール部材18aが設けられている。
 軸受保持部30の肩部30a3と可動スクロール3の底板3aとの間には、環状のスラストプレート19が配置される。肩部30a3は、スラストプレート19を介して可動スクロール3からのスラスト力を受ける。肩部30a3及び底板3aのスラストプレート19と当接する部位には、それぞれシール部材18bが配置される。
 また、底板3aと小径部位30a2との間に、背圧室H3が区画されている。つまり、背圧室H3は、可動スクロール3の背面側(固定スクロール2とは反対側)に面するように形成される。この背圧室H3の気密性は、シール部材18a,18bにより確保されている。
 また、フロントハウジング11の周壁部11aの内周面と軸受保持部30の円筒部30aの外周面との間には、吸入室H1とスクロールユニット1の両渦巻きラップ2b,3bの外周部付近の空間H4とを連通する流体導入通路L1が形成される。吸入室H1内の冷媒(詳しくは冷媒と微量の潤滑油との混合流体)は、流体導入通路L1を介して空間H4へ導入される。空間H4は流体導入通路L1により吸入室H1と連通されているため、空間H4内の圧力は吸入室H1内の圧力(吸入室内圧力P)と等しい。
 本実施形態では、前記クランク機構は、底板3aの背面(背圧室H3側端面)に突出形成された円筒状のボス部25と、駆動軸21の可動スクロール3側端部に設けたクランク26に偏心状態で取付けられた偏心ブッシュ27と、ボス部25に嵌合されるすべり軸受28と、を備える。偏心ブッシュ27はボス部25内にすべり軸受28を介して回転可能に支持される。なお、駆動軸21の可動スクロール3側端部には、可動スクロール3の動作時の遠心力に対向するバランサウエイト29が取付けられる。また、図示を省略したが、可動スクロール3の自転を阻止する自転阻止機構が適宜に備えられる。これにより、可動スクロール3は、その自転が阻止された状態で、前記クランク機構を介して固定スクロール2の軸心周りに公転旋回運動可能に構成される。
 図2は、スクロール型圧縮機100における冷媒の流れを説明するためのブロック図である。
 冷媒回路の低圧側からの冷媒は、吸入ポートP1を介して吸入室H1に導入され、その後、流体導入通路L1を介してスクロールユニット1の外端部付近の空間H4に導かれる。そして、空間H4内の冷媒は、両渦巻きラップ2b,3b間の密閉空間S内に取り込まれ、この密閉空間S内で圧縮される。この圧縮された冷媒(圧縮冷媒)は、吐出通路L2及び一方向弁16を経由して吐出室H2に吐出され、その後、吐出室H2から吐出ポートP2を介して冷媒回路の高圧側に吐出される。このようにして、吸入ポートP1、吸入室H1、流体導入通路L1を介して空間H4に流入される冷媒を密閉空間S内で圧縮し、この圧縮冷媒を吐出通路L2、吐出室H2、吐出ポートP2を介して外部に吐出するスクロールユニット1が構成される。
 ここで、本実施形態におけるスクロール型圧縮機100は、背圧室H3内の圧力(背圧室内圧力P)を調整する差圧作動式の背圧調整弁50を更に備えている。
 本実施形態において、背圧調整弁50は、差圧作動式の逆止弁であり、背圧室内圧力Pと吸入室内圧力Pとの差圧が所定差圧Pを超えた場合に、開弁方向に作動し、前記差圧が所定差圧P以下の場合に、閉弁方向に作動し、背圧室内圧力Pを吐出室H2内の圧力(吐出室内圧力P)と吸入室内圧力Pとの間の所定圧力(中圧)になるように調整するものである。この背圧調整弁50の配置位置、構造及び背圧調整動作については後に詳述する。
 本実施形態において、スクロール型圧縮機100は、図1及び図2に示すように、流体導入通路L1及び吐出通路L2に加えて、圧力供給通路L3及び放圧通路L4を備える。
 前記圧力供給通路L3は、吐出室H2と背圧室H3とを連通するための通路である。つまり、背圧室H3は、吐出室H2に圧力供給通路L3を介して連通される。前記オイルセパレータ(図示省略)により吐出ポートP2内の圧縮冷媒から分離された潤滑油は、圧力供給通路L3を介して背圧室H3内へ導かれて、背圧室H3内の各摺動部位の潤滑に供される。
 本実施形態では、圧力供給通路L3は、具体的には、その一端部が吐出ポートP2を介して、高圧領域としての吐出室H2に開口し、他端部が背圧室H3に開口するように、リアハウジング12、固定スクロール2の底板2a及び軸受保持部30の円筒部30aを貫通して形成されている。
 圧力供給通路L3の途上には、圧力供給通路L3内を流通する流体の流れを規制する第1絞り部T1が設けられる。第1絞り部T1は、圧力供給通路L3の他の部分より小さい内径を有する細孔なるものである。したがって、吐出室H2内の圧縮冷媒から分離された潤滑オイル等は、第1絞り部T1により適宜に減圧され、圧力供給通路L3を介して背圧室H3内に供給される。そして、圧力供給通路L3を介して潤滑オイル等が背圧室H3内に導入されることにより、背圧室内圧力Pが上昇する。
 前記放圧通路L4は、背圧室H3とスクロールユニット1の吸入室側領域(つまり、低圧領域)との間を連通するための通路である。
 本実施形態では、放圧通路L4は、具体的には、円筒部30aのうちの小径部位30a2を貫通し、駆動軸21と直交する方向に延びている。そして、放圧通路L4の一端部は背圧室H3に開口し、放圧通路L4の他端部は流体導入通路L1に開口している。つまり、本実施形態では、流体導入通路L1が前記吸入室側領域として採用され、放圧通路L4は、背圧室H3と流体導入通路L1との間を連通する。流体導入通路L1の一端部は吸入室H1に開口しているため、流体導入通路L1内の圧力は吸入室内圧力Pと等しい。
 また、放圧通路L4の途上には、放圧通路L4内を流通する流体の流れを規制する第2絞り部T2が設けられている。第2絞り部T2は、放圧通路L4の他の部分より小さい内径を有する細孔なるものである。この第2絞り部T2と前述の第1絞り部T1の断面積については後に詳述する。
 次に、本実施形態における背圧調整弁50の配置位置及び構造を図1及び図3を参照して詳述する。図3は、背圧調整弁50を含む要部拡大断面図である。
 背圧調整弁50は、放圧通路L4のうちの第2絞り部T2より吸入室側(つまり、第2絞り部T2の流れ方向後流側)の部位に設けられている。
 背圧調整弁50は、具体的には、弁ハウジング51と、弁座ハウジング52と、弁体53と、付勢手段54とを備え、例えば、放圧通路L4の流体導入通路L1側開口端に設けられ、放圧通路L4の一部を構成する。
 前記弁ハウジング51は、円筒部51aと、円筒部51aの一端を閉止する底壁部51bとを有し、全体として有底筒状に形成され、内部に弁室51cを有する。
 円筒部51a及び底壁部51bには、流体導入通路L1に開口する流体出口孔55がそれぞれ形成されている。流体出口孔55は、例えば、円筒部51aに二つ開口され、底壁部51bに一つ開口されている。流体出口孔55は、流体導入通路L1内の空間と弁ハウジング51内の弁室51cとを連通する。流体出口孔55の形成位置及び個数は適宜設定することができる。
 前記弁座ハウジング52は、背圧調整弁50の一端部を構成し、放圧通路L4の流体導入通路L1側の開口端部に嵌合等される。弁座ハウジング52は、例えば、放圧通路L4の内径に合わせた外径を有する有底筒状に形成され、円筒部52aと、弁座部52bとを有する。円筒部52aの一端側は弁ハウジング51の開口端側に固定される。弁座部52bは、円筒部52aの他端側に位置し、弁体53が接離する円錐状の弁座面52b1を有する。また、弁座部52bには、弁体53により開閉される流体入口孔56が開口されている。流体入口孔56は、放圧通路L4の背圧室H3側の空間と、弁室51cとを連通し、潤滑オイルを含む冷媒を弁室51c内に導くための孔である。
 また、本実施形態では、流体入口孔56は、その背圧室H3側端部の部位が弁室51c側(弁体53側)の部位より縮径するように形成されている。本実施形態では、この流体入口孔56の背圧室H3側端部の部位が第2絞り部T2として構成される。
 つまり、本実施形態では、第2絞り部T2は、流体入口孔56の背圧室H3側端部の部位に弁座部52bと一体的に形成される。
 前記弁体53は、流体入口孔56を開閉するものであり、ボール状に形成され、付勢手段54により弁座部52b方向に付勢される。弁体53の直径は、流体入口孔56の弁体53側開口部の内径より大きくなるように設定される。
 前記付勢手段54は、一端部が弁ハウジング51の底壁部51bに当接するコイルスプリング54aと、コイルスプリング54aの他端部に接続され弁体53を閉弁方向に付勢する付勢ロッド54bとを有し、弁ハウジング51の弁室51c内に配置される。背圧調整弁50の開弁設定差圧である前記所定差圧Pは、スクロールユニット1の渦巻きラップ形状等に応じて定められる設計値(設定値)であり、この設計値に応じた付勢力を有するコイルスプリング54aを選定することにより設定される。
 本実施形態では、背圧調整弁50は、弁ハウジング51と、弁座ハウジング52と、弁座ハウジング52に形成され放圧通路L4の背圧室H3側に開口する流体入口孔56と、流体入口孔56を開閉する弁体53と、弁座ハウジング52に形成され弁体53が接離する弁座部52bと、付勢手段54と、流体導入通路L1に開口する流体出口孔55と、を有し、背圧室圧力Pと吸入室内圧力Pとの差圧が所定差圧Pを超えた場合に、弁体53を開弁方向に移動させ、前記差圧が所定差圧P以下の場合に、弁体53を閉弁方向に移動させるように構成される。
 次に、第1絞り部T1、第2絞り部T2、及び、背圧調整弁50の流体入口孔56の断面積の大小関係について説明する。
 第2絞り部T2は、第1絞り部T1の断面積Ainより大きく、且つ、流体入口孔56の弁体側開口部の断面積Av1より小さい断面積Aoutを有する。なお、流体出口孔55の断面積の総和Av2は流体入口孔56の断面積Av1より大きい(つまり、Av2>Av1>Aout>Ain)。したがって、放圧通路L4における最小の通路断面積は第2絞り部T2の断面積Aoutにより定まる。
 次に、スクロール型圧縮機100における背圧調整弁50による背圧室内圧力Pの調整動作について概略説明する。なお、背圧調整弁50は、閉弁状態にあると共に、背圧室内圧力Pが高くなりつつあるものとして、以下説明する。また、以下の説明では、吐出室内圧力Pは後述する変動範囲の下限値(低負荷状態)において安定しているものとする。
 まず、背圧調整弁50は、付勢手段54により弁体53を弁座面52b1に押し付けて、流体入口孔56の開口部を閉止しているものとする。この時、弁体53には、付勢手段54のコイルスプリング54aによる付勢力と、流体導入通路L1及び流体出口孔55を介して伝わる吸入室内圧力Pとが作用している。この状態で、背圧室内圧力Pが徐々に高くなり、背圧室内圧力Pと吸入室内圧力Pとの差圧が付勢手段54の付勢力に基づいて定まる所定差圧Pを超えると、弁体53は付勢手段54の付勢力に抗して開弁方向に移動する。背圧調整弁50が開弁状態になったとき、背圧室H3内の冷媒ガス等は、放圧通路L4を介して流体導入通路L1側(つまり、低圧領域側)に放出されるため、背圧室内圧力Pは低下し得る。しかし、放圧通路L4を流通する冷媒ガス等の流体の流れは第2絞り部T2により規制されているため、背圧室H3からの冷媒ガス等の流体の流出は抑制される。背圧調整弁50を介して、流体導入通路L1の途上に導かれた冷媒ガス等は、流体導入通路L1内の流れにのって、スクロールユニット1側(空間H4側)に戻される。そして、前記差圧が所定差圧P以下になると、弁体53は付勢手段54の付勢力により閉弁方向に移動する。これにより、背圧調整弁50は、背圧室内圧力Pを昇圧させる。このように、背圧調整弁50は、低負荷時や運転開始直後においては、所定差圧Pに吸入室内圧力Pを加算して得られる開弁設定圧P(=P+P)を目標圧力として、背圧室内圧力Pがこの目標圧力に近づくように、弁体53を開閉させる。
 ところで、冷媒回路の凝縮器(高圧側)の外部環境条件(外気温度等)は変動する。そのため、冷媒回路の凝縮器の熱交換能力も変動する。したがって、スクロール型圧縮機100の吐出室内圧力Pは凝縮器の熱交換能力により変動する。言い換えると、スクロール型圧縮機100の負荷は変動する。一方、冷媒回路の蒸発器(低圧側)からスクロール型圧縮機100へ流入する冷媒の吸入圧は前記車両用空調装置により略一定になるように制御されている。つまり、吸入室内圧力Pは、冷媒回路(冷凍回路)の要求能力に応じて設定される設定値である。その結果、吸入室内圧力Pは所定の設定値に固定される。厳密には、吸入室内圧力Pも微小に変動している。しかし、吸入室内圧力Pの変動幅は、吐出室内圧力Pの変動幅と比べると無視できるほど小さいため、吸入室内圧力Pは固定値とみなせる。
 冷媒として二酸化炭素冷媒を採用した本実施形態においては、例えば、吸入室内圧力Pが3.5MPaに設定され、吐出室内圧力Pが圧縮機の運転中に5~13MPaの範囲で変動するものとする。したがって、吸入室内圧力Pは所定の設定値(例えば、3.5MPa)に固定され、吐出室内圧力Pはその変動範囲(運転範囲)内で変動し得る。この場合、スクロール型圧縮機100は、吐出室内圧力Pが小さいほど低負荷になり、吐出室内圧力Pが大きいほど高負荷になる。その結果、背圧室内圧力Pの最適な値についても吐出室内圧力Pの変動に応じて変化する。したがって、例えば、低負荷時に背圧過剰状態にならないように、開弁設定圧P(=P+P)が低めに設定された場合、高負荷時に背圧不足状態になり、圧縮機の体積効率が低下することになる。この問題点を解消するための構成について、以下に詳述する。
 本実施形態では、背圧室内圧力Pが開弁設定圧Pに達して、背圧調整弁50が開弁状態になった後に、さらに吐出室内圧力Pが上昇した場合、背圧調整弁50は、背圧室内圧力Pを吐出室内圧力Pの上昇に応じて昇圧できるように構成されている。
 具体的には、本実施形態では、まず、低負荷時の背圧過剰状態を解消すべく、開弁設定圧Pは、例えば、吐出室内圧力Pの変動範囲における吐出室内圧力Pの下限値と吸入室内圧力Pの前記設定値との間の値に予め設定されている。
 また、本実施形態では、高負荷時の背圧不足状態を解消すべく、第2絞り部T2の断面積Aoutは、吐出室内圧力Pが予め定められた前記変動範囲内において変動した場合に、この変動範囲において、第2絞り部T2を流通する流体の流量(質量流量)Goutが第1絞り部T1を流通する流体の流量(質量流量)Ginより少なくなるように設定されている(つまり、Gin>Gout)。これにより、背圧調整弁50が開弁状態になったとしても、背圧室H3からの流体の排出量が、常に、背圧室H3への流体の供給量より小さくなる。その結果、背圧調整弁50が開弁状態であっても、背圧室内圧力Pは吐出室内圧力Pの変動に応じて変動し、高負荷時において背圧室内圧力Pは吐出室内圧力Pの上昇に応じて上昇する。
 より具体的には、前記Gin及び前記Goutは、以下の式(1)~式(3)の関係式を満足する。但し、ρdは第1絞り部T1を流通する流体の密度、ρmは第2絞り部T2を流通する流体の密度を示す。
 Gin>Gout                          …式(1)
 Gin=Ain×{2×(P−P)×ρd}1/2         …式(2)
 Gout=Aout×{2×(P−P)×ρm}1/2       …式(3)
また、ρmは以下の式(4)で示す近似式で表すことができる。
 ρm≒ρd×(P/P)                     …式(4)
ここで、上記式(1)~式(4)、及び、P=P+Pの関係式より、以下の式(5)の関係式が成り立つ。
 Ain/Aout>{(P×(P+P))/((P−(P+P))×P)}1/2…式(5)
 つまり、本実施形態では、吸入室内圧力Pが所定の設定値に固定されると共に、吐出室内圧力Pが前記変動範囲内で変動する場合に、Ain及びAoutが、吐出室内圧力Pの前記変動範囲内において、式(5)の関係を満足するように設定されている。
 本実施形態によるスクロール型圧縮機100によれば、圧力供給通路L3及び放圧通路L4に、それぞれ絞り部(第1絞り部T1、第2絞り部T2)が設けられている。そして、第2絞り部T2の断面積Aoutは、第1絞り部T1の断面積Ainより大きく、且つ、流体入口孔56の弁体側開口部の断面積Av1より小さくなるように設定されている。したがって、背圧調整弁50の流体入口孔56が開状態になったとしても、第2絞り部T2により背圧室H3からの流体の流出を抑制することができる。つまり、背圧調整弁50が開いたとしても、第2絞り部T2により流体の流出が抑制されるため、背圧室内圧力Pの低下量を小さくすることができ、その結果、背圧室内圧力Pを安定化させることができる。
 このようにして、背圧調整弁50の開弁動作に伴う背圧室内圧力Pの低下を抑制することが可能なスクロール型圧縮機100を提供することができる。
 また、本実施形態では、第2絞り部T2の断面積Aoutは、吐出室内圧力Pの変動範囲において、第2絞り部T2を流通する流体の流量Goutが第1絞り部T1を流通する流体の流量Ginより少なくなるように設定されている。このように、第2絞り部T2の断面積Aoutを設定することにより、背圧調整弁50が開弁状態であったとしても、高負荷時において、背圧室内圧力Pを吐出室内圧力Pの上昇に応じて昇圧させることができる。したがって、例えば、吐出室内圧力Pがその変動範囲(運転範囲)内で変動して高くなり、高負荷状態になったとしても、背圧が足りなくなることを抑制又は解消することができる。
 また、本実施形態では、Ain及びAoutが、吐出室内圧力Pの前記変動範囲内において、上記式(5)の関係を満足するように設定されている。これにより、単に、AinとAoutの比率を予め適宜設定することにより、高負荷時において背圧室内圧力Pを確実に上昇させることができる。
 また、本実施形態では、背圧調整弁50の開弁設定圧P(=P+P)は、吐出室内圧力Pの変動範囲における吐出室内圧力Pの下限値(例えば、5MPa)と吸入室内圧力Pの設定値(例えば、3.5MPa)との間の適宜の値に予め設定されている。このように、開弁設定圧Pを設定することにより、低負荷時においては、背圧室内圧力Pを高負荷時よりも低い略一定の圧力になるように、背圧調整弁50の開閉動作により調整することができる。その結果、低負荷時において、背圧が過剰になることを抑制又は解消することができる。
 つまり、本実施形態では、低負荷時の背圧過剰と高負荷時の背圧不足をいずれも解消し得る。その結果、吐出室内圧力Pの前記変動範囲(つまり、圧縮機の運転範囲)において、機械効率及び体積効率のいずれも犠牲にすることなく、良好な圧縮運転を行うことが可能なスクロール型圧縮機100を提供することができる。
 また、本実施形態では、第2絞り部T2は、流体入口孔56の背圧室側端部の部位に弁座部52bと一体的に形成されている。これにより、放圧通路L4の後流側の部位に第2絞り部T2を容易に形成することができる。また、球状の弁体53を採用する場合、弁体53の直径は、通常、弁体53が開閉対象の流体入口孔56の弁体側開口部の角部に当接するように、設定される。したがって、流体入口孔56の弁体側開口部の内径が小さいと、弁体53の直径も小さくする必要がある。この点、本実施形態における流体入口孔56の弁体側開口部は第2絞り部T2よりも大きく開口されるので、弁体53は一般的な直径を有するものを採用することができる。なお、第2絞り部T2は、弁座部52bと一体的に形成しなくてもよい。
 また、本実施形態では、吸入室H1とスクロールユニット1の外周部付近の空間H4とを連通する流体導入通路L1を含み、放圧通路L4は、背圧室H3と流体導入通路L1とを連通している。これにより、背圧室H3内に流入した潤滑オイルを、流体導入通路L1の流れにのせてスクロールユニット1に戻し、スクロールユニット1における摺動部の潤滑性及び気密性を高めることができる。
 以上、本発明の好ましい実施形態について説明したが、本発明は上記実施形態に制限されるものではなく、本発明の技術的思想に基づいて種々の変形及び変更が可能である。
 例えば、本実施形態では、低負荷時の背圧過剰状態を解消すべく、開弁設定圧Pが吐出室内圧力Pの下限値と吸入室内圧力Pの設定値との間の値に設定されている場合を一例に挙げて説明したが、これに限らない。例えば、スクロール型圧縮機100の体積効率の向上を優先し、機械効率の低下が許容される場合には、高負荷時に背圧が足りなくなることを確実に防止できるように、開弁設定圧Pを高めに設定してもよい。この場合、固定スクロール2及び可動スクロール3の接触部分等の材質等を工夫することにより、スクロールユニット1の耐摩耗性を強化すればよい。
 また、本実施形態では、放圧通路L4は、背圧室H3と流体導入通路L1とを連通するものとした。つまり、スクロールユニット1の吸入室側領域として流体導入通路L1を採用した。しかし、放圧通路L4の接続先はこれに限らない。例えば、図示を省略するが、スクロールユニット1の吸入室側領域として吸入室H1自体を採用してもよい。この場合、放圧通路L4は、背圧室H3と吸入室H1とを連通する。
 また、本実施形態では、冷媒はCO冷媒であるものとしたが、これに限らず、適宜の冷媒を適用することができる。
 また、本実施形態では、スクロール型圧縮機100は、いわゆるインバータ一体型の場合を一例に挙げて説明したが、これに限らず、インバータ40と別体であってもよい。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a schematic cross-sectional view of a scroll compressor according to this embodiment.
The scroll compressor 100 according to the present embodiment is incorporated in, for example, a refrigerant circuit (also referred to as a refrigeration circuit) of a vehicle air conditioner, and compresses refrigerant (fluid) sucked from a low pressure side (evaporator side) of the refrigerant circuit. To be discharged. The scroll compressor 100 includes a scroll unit 1, a housing 10 having a refrigerant suction chamber H <b> 1 and a discharge chamber H <b> 2 therein, an electric motor 20 that drives the scroll unit 1, and one end of a drive shaft 21 of the electric motor 20. The bearing holding part 30 for supporting a part (upper end part in FIG. 1) so that rotation is possible, and the inverter 40 for drive control of the electric motor 20 are provided. In the present embodiment, a carbon dioxide refrigerant (CO 2 refrigerant) is adopted as the refrigerant, and the vehicle is cooled by the refrigerant circuit. Further, the scroll compressor 100 will be described by taking a so-called inverter integrated type as an example.
The scroll unit 1 includes a fixed scroll 2 and a movable scroll 3 that are meshed with each other. The fixed scroll 2 has a disk-shaped bottom plate 2a and a spiral wrap 2b integrally formed on the bottom plate 2a. The movable scroll 3 has a disk-shaped bottom plate 3a and a spiral wrap 3b integrally formed on the bottom plate 3a.
Both scrolls 2 and 3 are arranged so that both the spiral wraps 2b and 3b mesh. Specifically, both the scrolls 2 and 3 have a predetermined gap between the end of the protruding side of the spiral wrap 2 b of the fixed scroll 2 and the bottom plate 3 a of the movable scroll 3 so that the spiral wrap 3 b of the movable scroll 3 protrudes. The side edge is disposed so as to have a predetermined gap with the bottom plate 2 a of the fixed scroll 2. This gap that can fluctuate during the compression operation is maintained in an appropriate range during the compression operation, and as a result, the airtightness of the sealed space (compression chamber) S described later is appropriately maintained.
The scrolls 2 and 3 are arranged so that the side walls of the spiral wraps 2b and 3b are partially in contact with each other with the circumferential angles of the spiral wraps 2b and 3b shifted from each other. Thereby, a crescent-shaped sealed space (compression chamber) S is formed between the spiral wraps 2b and 3b.
The fixed scroll 2 is fixed to a rear housing 12 (to be described later) of the housing 10, and has a groove 2a1 that opens toward the rear housing 12 at the radial center. Specifically, the groove 2a1 is formed on the back surface of the bottom plate 2a (that is, the end surface opposite to the movable scroll 3).
The movable scroll 3 is configured to be capable of revolving orbiting around the axis of the fixed scroll 2 via the drive shaft 21 in a state in which the rotation is prevented. Thereby, the scroll unit 1 moves the sealed space S formed between the scrolls 2 and 3, more specifically between the spiral wraps 2b and 3b, to the center, and gradually reduces the volume. As a result, the scroll unit 1 compresses the refrigerant flowing into the sealed space S from the outer end side of the spiral wraps 2b and 3b in the sealed space S.
As shown in FIG. 1, the housing 10 includes a front housing 11 that houses the scroll unit 1, the electric motor 20, the bearing holding portion 30, and the inverter 40, a rear housing 12, and an inverter cover 13. . The housing 10 is configured by integrally fastening the front housing 11, the rear housing 12, and the inverter cover 13 by fastening means such as bolts 14.
The front housing 11 has a substantially annular peripheral wall portion 11a and a partition wall portion 11b. The internal space of the front housing 11 is partitioned by the partition wall portion 11 b into an accommodation space for accommodating the scroll unit 1, the electric motor 20, and the bearing holding portion 30 and an accommodation space for accommodating the inverter 40. The opening on one end side (upper side in FIG. 1) of the peripheral wall portion 11 a is closed by the rear housing 12. Further, the opening on the other end side (the lower side in FIG. 1) of the peripheral wall portion 11 a is closed by the inverter cover 13. A cylindrical support portion 11b1 that holds a bearing 15 that supports the other end portion (the lower end portion in FIG. 1) of the drive shaft 21 protrudes from the radial center portion of the partition wall portion 11b.
A refrigerant suction port P1 is formed in the peripheral wall portion 11a. Refrigerant from the low pressure side (evaporator side) of the refrigerant circuit is sucked into the front housing 11 through the suction port P1. Therefore, the space in the front housing 11 functions as the suction chamber H1. Note that the refrigerant flows around the electric motor 20 and the like in the suction chamber H1. In FIG. 1, the upper space of the electric motor 20 communicates with the lower space of the electric motor 20 and constitutes one suction chamber H <b> 1 together with the lower space of the electric motor 20. In the suction chamber H1, the refrigerant flows as a mixed fluid with a small amount of lubricating oil.
The rear housing 12 is formed in a disc shape, and its peripheral portion is fastened to one end side end portion (upper end portion in FIG. 1) of the peripheral wall portion 11a by fastening means such as a bolt 14 or the like.
Further, a peripheral edge portion (in other words, a portion surrounding the groove 2 a 1) of the rear surface of the bottom plate 2 a of the fixed scroll 2 is brought into contact with one end surface of the rear housing 12. The one end face of the rear housing 12 and the groove 2a1 of the bottom plate 2a define a refrigerant discharge chamber H2. A compressed refrigerant discharge passage L2 is formed at the center of the bottom plate 2a. In the discharge chamber H2, a one-way valve (a check valve for restricting the flow from the discharge chamber H2 to the scroll unit 1) 16 is provided so as to cover the opening of the discharge passage L2. In the discharge chamber H2, the refrigerant compressed in the sealed space S formed between the spiral wraps 2b and 3b is discharged through the discharge passage L2 and the one-way valve 16. Further, the rear housing 12 is formed with a discharge port P2 that communicates the discharge chamber H2 with the high-pressure side (that is, the condenser) of the refrigerant circuit. The compressed refrigerant in the discharge chamber H2 is discharged to the high pressure side of the refrigerant circuit through the discharge port P2.
Although illustration is omitted, for example, an appropriate oil separator for separating the lubricating oil from the compressed refrigerant flowing into the discharge port P2 is provided in the discharge port P2. The refrigerant from which the lubricating oil is separated by the oil separator (including the refrigerant in which a small amount of lubricating oil remains) is discharged to the high pressure side of the refrigerant circuit via the discharge port P2. On the other hand, the lubricating oil separated by the oil separator is guided to a pressure supply passage L3, which will be described later, in a state where a compressed refrigerant is appropriately contained, for example.
The electric motor 20 includes a drive shaft 21, a rotor 22, and a stator core unit 23 disposed on the radially outer side of the rotor 22. For example, a three-phase AC motor is applied. For example, a direct current from a vehicle battery (not shown) is converted into an alternating current by the inverter 40 and supplied to the electric motor 20.
The drive shaft 21 is connected to the movable scroll 3 via a crank mechanism, and transmits the rotational force of the electric motor 20 to the movable scroll 3. One end portion of the drive shaft 21 (that is, the end portion on the movable scroll 3 side) is rotatably supported by the bearing 17 through a through hole formed in the bearing holding portion 30. On the other hand, the other end portion (the end portion on the inverter 40 side) of the drive shaft 21 is rotatably supported by a bearing 15 fitted to the support portion 11b1.
The rotor 22 is rotatably supported on the radially inner side of the stator core unit 23 via a drive shaft 21 that is fitted (for example, press-fitted) into a shaft hole formed at the radial center thereof. When a magnetic field is generated in the stator core unit 23 by power feeding from the inverter 40, a rotational force is applied to the rotor 22 and the drive shaft 21 is rotationally driven.
The bearing holding portion 30 is provided in the front housing 11 and holds the bearing 17 that rotatably supports the end portion of the drive shaft 21 on the movable scroll 3 side. The bearing holding portion 30 is fastened integrally with the fixed scroll 2 and the rear housing 12 by fastening bolts 14 with the fixed scroll 2 sandwiched between the bearing holding portion 30 and the rear housing 12.
Specifically, the bearing holding part 30 is formed in, for example, a bottomed cylindrical shape, and includes a cylindrical part 30a and a bottom wall part 30b located on one end side of the cylindrical part 30a. The cylindrical portion 30a has a shoulder portion 30a3 that is expanded so that the inner diameter on the opening side is larger than the inner diameter on the bottom wall portion 30b side, and connects between the large-diameter portion 30a1 and the small-diameter portion 30a2. The movable scroll 3 is accommodated in a space defined by the large-diameter portion 30a1 and the shoulder portion 30a3. The opening of the bearing holding portion 30 is closed by the fixed scroll 2. The bearing 17 is fitted into the small diameter portion 30a2 of the cylindrical portion 30a. And the through-hole for making the movable scroll 3 side edge part of the drive shaft 21 penetrate is opened in the radial direction center part of the bottom wall part 30b. An appropriate seal member 18a is provided between the bearing 17 and the bottom wall portion 30b.
An annular thrust plate 19 is disposed between the shoulder 30 a 3 of the bearing holder 30 and the bottom plate 3 a of the movable scroll 3. The shoulder 30 a 3 receives a thrust force from the movable scroll 3 through the thrust plate 19. Sealing members 18b are disposed at portions of the shoulder 30a3 and the bottom plate 3a that are in contact with the thrust plate 19, respectively.
A back pressure chamber H3 is defined between the bottom plate 3a and the small diameter portion 30a2. That is, the back pressure chamber H3 is formed so as to face the back side of the movable scroll 3 (the side opposite to the fixed scroll 2). The airtightness of the back pressure chamber H3 is ensured by the seal members 18a and 18b.
Further, between the inner peripheral surface of the peripheral wall portion 11 a of the front housing 11 and the outer peripheral surface of the cylindrical portion 30 a of the bearing holding portion 30, there is a vicinity of the outer peripheral portion of the spiral wraps 2 b and 3 b of the suction chamber H 1 and the scroll unit 1. A fluid introduction passage L1 communicating with the space H4 is formed. The refrigerant in the suction chamber H1 (specifically, a mixed fluid of the refrigerant and a small amount of lubricating oil) is introduced into the space H4 through the fluid introduction passage L1. Since the space H4 is communicated with the suction chamber H1 by the fluid introduction passage L1, the pressure in the space H4 is equal to the pressure in the suction chamber H1 (suction chamber pressure P s ).
In the present embodiment, the crank mechanism includes a cylindrical boss portion 25 formed to protrude from the back surface (the end surface on the back pressure chamber H3 side) of the bottom plate 3a, and a crank 26 provided on the movable scroll 3 side end portion of the drive shaft 21. And an eccentric bush 27 attached in an eccentric state, and a sliding bearing 28 fitted to the boss portion 25. The eccentric bush 27 is rotatably supported in the boss portion 25 via a slide bearing 28. A balancer weight 29 facing the centrifugal force during operation of the movable scroll 3 is attached to the end of the drive shaft 21 on the movable scroll 3 side. Although not shown, a rotation prevention mechanism for preventing the rotation of the movable scroll 3 is appropriately provided. Thus, the movable scroll 3 is configured to be capable of revolving around the axis of the fixed scroll 2 via the crank mechanism in a state in which the rotation is prevented.
FIG. 2 is a block diagram for explaining the refrigerant flow in the scroll compressor 100.
The refrigerant from the low-pressure side of the refrigerant circuit is introduced into the suction chamber H1 through the suction port P1, and then guided to the space H4 near the outer end of the scroll unit 1 through the fluid introduction passage L1. And the refrigerant | coolant in the space H4 is taken in in the sealed space S between both the spiral wraps 2b and 3b, and is compressed in this sealed space S. This compressed refrigerant (compressed refrigerant) is discharged to the discharge chamber H2 via the discharge passage L2 and the one-way valve 16, and then discharged to the high-pressure side of the refrigerant circuit from the discharge chamber H2 via the discharge port P2. The In this way, the refrigerant flowing into the space H4 through the suction port P1, the suction chamber H1, and the fluid introduction passage L1 is compressed in the sealed space S, and this compressed refrigerant is discharged into the discharge passage L2, the discharge chamber H2, and the discharge port. A scroll unit 1 is configured to discharge to the outside via P2.
Here, the scroll compressor 100 according to the present embodiment further includes a differential pressure actuated back pressure adjusting valve 50 that adjusts the pressure in the back pressure chamber H3 (back pressure chamber pressure P m ).
In the present embodiment, the back pressure regulating valve 50 is a check valve of the differential pressure actuated, when the differential pressure between the back pressure chamber pressure P m and the intake chamber pressure P s exceeds a predetermined differential pressure P v operates in the valve opening direction, when the differential pressure is equal to or less than the predetermined pressure difference P v, actuated in the closing direction, the back pressure chamber pressure P m the pressure in the discharge chamber H2 and (discharge chamber pressure P d) and it adjusts to a predetermined pressure (medium pressure) between the suction chamber pressure P s. The arrangement position, structure, and back pressure adjustment operation of the back pressure adjustment valve 50 will be described in detail later.
In the present embodiment, the scroll compressor 100 includes a pressure supply passage L3 and a pressure release passage L4 in addition to the fluid introduction passage L1 and the discharge passage L2, as shown in FIGS.
The pressure supply passage L3 is a passage for communicating the discharge chamber H2 and the back pressure chamber H3. That is, the back pressure chamber H3 communicates with the discharge chamber H2 via the pressure supply passage L3. The lubricating oil separated from the compressed refrigerant in the discharge port P2 by the oil separator (not shown) is guided into the back pressure chamber H3 through the pressure supply passage L3, and each sliding portion in the back pressure chamber H3. Used for lubrication.
In the present embodiment, specifically, the pressure supply passage L3 has one end opened to the discharge chamber H2 as a high pressure region and the other end opened to the back pressure chamber H3 via the discharge port P2. Further, the rear housing 12, the bottom plate 2 a of the fixed scroll 2, and the cylindrical portion 30 a of the bearing holding portion 30 are formed.
In the middle of the pressure supply passage L3, a first throttle portion T1 that restricts the flow of fluid flowing through the pressure supply passage L3 is provided. The first throttle portion T1 is a pore having an inner diameter smaller than that of the other portion of the pressure supply passage L3. Accordingly, the lubricating oil or the like separated from the compressed refrigerant in the discharge chamber H2 is appropriately depressurized by the first throttle portion T1, and is supplied into the back pressure chamber H3 via the pressure supply passage L3. Then, the lubricating oil or the like by being introduced into the back pressure chamber H3, back pressure chamber pressure P m is increased via the pressure supply passage L3.
The pressure release passage L4 is a passage for communicating between the back pressure chamber H3 and the suction chamber side region (that is, the low pressure region) of the scroll unit 1.
In the present embodiment, specifically, the pressure release passage L4 passes through the small diameter portion 30a2 of the cylindrical portion 30a and extends in a direction orthogonal to the drive shaft 21. One end of the pressure relief passage L4 opens to the back pressure chamber H3, and the other end of the pressure relief passage L4 opens to the fluid introduction passage L1. That is, in this embodiment, the fluid introduction passage L1 is employed as the suction chamber side region, and the pressure release passage L4 communicates between the back pressure chamber H3 and the fluid introduction passage L1. Since one end of the fluid inlet passage L1 is open to the suction chamber H1, the pressure in the fluid inlet passage L1 is equal to the suction chamber pressure P s.
A second throttle portion T2 that restricts the flow of fluid flowing through the pressure release passage L4 is provided in the middle of the pressure release passage L4. The second throttle portion T2 is a pore having an inner diameter smaller than that of the other part of the pressure release passage L4. The cross-sectional areas of the second throttle portion T2 and the first throttle portion T1 will be described in detail later.
Next, the arrangement position and structure of the back pressure regulating valve 50 in this embodiment will be described in detail with reference to FIGS. FIG. 3 is an enlarged cross-sectional view of a main part including the back pressure adjusting valve 50.
The back pressure adjustment valve 50 is provided in a portion of the pressure release passage L4 that is closer to the suction chamber than the second throttle portion T2 (that is, the downstream side in the flow direction of the second throttle portion T2).
Specifically, the back pressure adjusting valve 50 includes a valve housing 51, a valve seat housing 52, a valve body 53, and a biasing means 54. For example, the back end of the pressure release passage L4 is an opening end on the fluid introduction passage L1 side. And constitutes a part of the pressure release passage L4.
The valve housing 51 has a cylindrical portion 51a and a bottom wall portion 51b that closes one end of the cylindrical portion 51a, is formed in a bottomed cylindrical shape as a whole, and has a valve chamber 51c inside.
The cylindrical portion 51a and the bottom wall portion 51b are formed with fluid outlet holes 55 that open to the fluid introduction passage L1. For example, two fluid outlet holes 55 are opened in the cylindrical portion 51a and one is opened in the bottom wall portion 51b. The fluid outlet hole 55 communicates the space in the fluid introduction passage L <b> 1 and the valve chamber 51 c in the valve housing 51. The formation position and the number of the fluid outlet holes 55 can be set as appropriate.
The valve seat housing 52 constitutes one end of the back pressure regulating valve 50 and is fitted to the opening end of the pressure release passage L4 on the fluid introduction passage L1 side. The valve seat housing 52 is formed, for example, in a bottomed cylindrical shape having an outer diameter that matches the inner diameter of the pressure release passage L4, and includes a cylindrical portion 52a and a valve seat portion 52b. One end side of the cylindrical portion 52 a is fixed to the open end side of the valve housing 51. The valve seat part 52b is located on the other end side of the cylindrical part 52a, and has a conical valve seat surface 52b1 to which the valve body 53 comes in contact with and separates from. Further, a fluid inlet hole 56 opened and closed by the valve body 53 is opened in the valve seat portion 52b. The fluid inlet hole 56 is a hole through which the space on the back pressure chamber H3 side of the pressure release passage L4 communicates with the valve chamber 51c and guides a refrigerant containing lubricating oil into the valve chamber 51c.
Further, in the present embodiment, the fluid inlet hole 56 is formed so that the portion of the end portion on the back pressure chamber H3 side is smaller in diameter than the portion on the valve chamber 51c side (valve element 53 side). In the present embodiment, a portion of the end portion of the fluid inlet hole 56 on the back pressure chamber H3 side is configured as the second throttle portion T2.
In other words, in the present embodiment, the second throttle portion T2 is formed integrally with the valve seat portion 52b at the end portion of the fluid inlet hole 56 on the back pressure chamber H3 side.
The valve body 53 opens and closes the fluid inlet hole 56, is formed in a ball shape, and is urged toward the valve seat 52 b by the urging means 54. The diameter of the valve body 53 is set to be larger than the inner diameter of the opening of the fluid inlet hole 56 on the valve body 53 side.
The biasing means 54 includes a coil spring 54a whose one end is in contact with the bottom wall 51b of the valve housing 51, and a biasing rod which is connected to the other end of the coil spring 54a and biases the valve body 53 in the valve closing direction. 54b, and is disposed in the valve chamber 51c of the valve housing 51. The predetermined differential pressure Pv , which is the valve-opening set differential pressure of the back pressure adjusting valve 50, is a design value (set value) determined according to the spiral wrap shape of the scroll unit 1 and the like. It is set by selecting a coil spring 54a having power.
In the present embodiment, the back pressure adjusting valve 50 includes a valve housing 51, a valve seat housing 52, a fluid inlet hole 56 formed in the valve seat housing 52 and opened to the back pressure chamber H3 side of the pressure release passage L4, and a fluid A valve body 53 that opens and closes the inlet hole 56; a valve seat portion 52b that is formed in the valve seat housing 52 and contacts and separates; a biasing means 54; a fluid outlet hole 55 that opens to the fluid introduction passage L1; When the differential pressure between the back pressure chamber pressure P m and the suction chamber pressure P s exceeds the predetermined differential pressure P v , the valve body 53 is moved in the valve opening direction, and the differential pressure becomes the predetermined differential pressure. When Pv or less, the valve body 53 is configured to move in the valve closing direction.
Next, the magnitude relationship of the cross-sectional areas of the first throttle part T1, the second throttle part T2, and the fluid inlet hole 56 of the back pressure regulating valve 50 will be described.
The second throttle portion T2 is greater than the cross-sectional area A in the first throttle portion T1, and has a cross-sectional area A v1 smaller cross-sectional area A out of the valve body side opening of the fluid inlet hole 56. The total cross-sectional area A v2 of the fluid outlet hole 55 is larger than the cross-sectional area A v1 of the fluid inlet hole 56 (that is, A v2 > A v1 > A out > A in ). Therefore, the minimum flow passage area of the pressure passage L4 release is determined by the cross-sectional area A out of the second aperture portion T2.
Next, the operation of adjusting the back pressure chamber pressure P m by the back pressure adjusting valve 50 in the scroll compressor 100 will be schematically described. Incidentally, the back pressure regulating valve 50, as well as in closed state, as back pressure chamber pressure P m is becoming higher, it will be described below. In the following description, it is assumed that the discharge chamber pressure Pd is stable at a lower limit value (low load state) of a fluctuation range described later.
First, it is assumed that the back pressure adjusting valve 50 presses the valve element 53 against the valve seat surface 52b1 by the urging means 54 to close the opening of the fluid inlet hole 56. At this time, the valve body 53, a biasing force of the coil spring 54a of the urging means 54, the suction chamber pressure P s traveling through the fluid inlet passage L1 and a fluid outlet hole 55 is acting. In this state, the back pressure chamber pressure P m is gradually increased, a predetermined differential pressure P v which pressure difference between the back pressure chamber pressure P m and the intake chamber pressure P s is determined based on the biasing force of the biasing means 54 When exceeding, the valve body 53 moves in the valve opening direction against the urging force of the urging means 54. When the back pressure adjusting valve 50 is opened, the refrigerant gas or the like in the back pressure chamber H3 is released to the fluid introduction passage L1 side (that is, the low pressure region side) through the pressure release passage L4. The back pressure chamber pressure P m can be reduced. However, since the flow of the fluid such as the refrigerant gas flowing through the pressure release passage L4 is regulated by the second throttle portion T2, the outflow of the fluid such as the refrigerant gas from the back pressure chamber H3 is suppressed. The refrigerant gas or the like guided in the middle of the fluid introduction passage L1 through the back pressure adjusting valve 50 is returned to the scroll unit 1 side (space H4 side) along the flow in the fluid introduction passage L1. When the differential pressure becomes equal to or less than the predetermined differential pressure Pv , the valve body 53 moves in the valve closing direction by the urging force of the urging means 54. Thus, the back pressure regulating valve 50, thereby boosting the back pressure chamber pressure P m. As described above, the back pressure adjusting valve 50 has a valve opening set pressure P c (= P s + P v) obtained by adding the suction chamber pressure P s to the predetermined differential pressure P v at a low load or immediately after the start of operation. ) as a target pressure, back pressure chamber pressure P m is closer to the target pressure, to open and close the valve body 53.
By the way, the external environmental conditions (outside air temperature etc.) of the condenser (high pressure side) of the refrigerant circuit vary. Therefore, the heat exchange capacity of the condenser of the refrigerant circuit also varies. Accordingly, the discharge chamber pressure P d of the scroll type compressor 100 varies by the heat exchange capacity of the condenser. In other words, the load of the scroll compressor 100 varies. On the other hand, the suction pressure of the refrigerant flowing into the scroll compressor 100 from the evaporator (low pressure side) of the refrigerant circuit is controlled to be substantially constant by the vehicle air conditioner. That is, the suction chamber pressure P s is a set value that is set according to the required capacity of the refrigerant circuit (refrigeration circuit). As a result, the suction chamber pressure P s is fixed to a predetermined set value. Strictly speaking, it fluctuates minutely even suction chamber pressure P s. However, the variation width of the suction chamber pressure P s is smaller negligibly compared to the variation range of the discharge chamber pressure P d, the suction chamber pressure P s can be regarded as a fixed value.
In the present embodiment employing carbon dioxide refrigerant as a refrigerant, for example, those suction chamber pressure P s is set to 3.5 MPa, discharge chamber pressure P d is varied in a range of 5 ~ 13 MPa during operation of the compressor And Therefore, the suction chamber pressure P s is a predetermined set value (e.g., 3.5 MPa) is fixed to the discharge chamber pressure P d can vary within the variation range (operating range). In this case, the scroll compressor 100 becomes lighter as the discharge chamber pressure Pd is smaller, and becomes heavier as the discharge chamber pressure Pd is larger. As a result, also changes in accordance with a variation in the discharge chamber pressure P d for the optimal value of the back pressure chamber in the pressure P m. Therefore, for example, when the valve opening set pressure P c (= P s + P v ) is set low so that the back pressure does not become excessive when the load is low, the back pressure becomes insufficient when the load is high. Volumetric efficiency will be reduced. A configuration for solving this problem will be described in detail below.
In this embodiment, after the back pressure chamber pressure P m reaches the valve opening set pressure P c and the back pressure adjustment valve 50 is in the open state, the discharge chamber pressure P d further increases. the valve 50 is configured to allow boosting in accordance with back pressure chamber pressure P m to the increase in discharge chamber pressure P d.
Specifically, in the present embodiment, first, the valve opening set pressure P c is, for example, the discharge chamber pressure P d within the fluctuation range of the discharge chamber pressure P d in order to eliminate the excessive back pressure state at low load. It is preset to a value between the lower limit value and the set value of the suction chamber pressure P s.
Further, in this embodiment, in order to eliminate the back pressure shortage state at the time of high load, the cross-sectional area A out of the second throttle portion T2 varies when the discharge chamber pressure P d varies within the predetermined variation range. , in this variation range, it is set so that the flow rate (mass flow rate) G out of the fluid flowing through the second aperture portion T2 is less than the flow rate (mass flow rate) G in the fluid flowing through the first throttle portion T1 (That is, G in > G out ). As a result, even if the back pressure adjustment valve 50 is opened, the amount of fluid discharged from the back pressure chamber H3 is always smaller than the amount of fluid supplied to the back pressure chamber H3. As a result, even when the back pressure regulating valve 50 is in the open state, the back pressure chamber pressure P m varies according to the variation of the discharge chamber pressure P d , and the back pressure chamber pressure P m at the high load is As the pressure Pd increases, the pressure increases.
More specifically, the G in and the G out satisfy the following relational expressions (1) to (3). However, (rho) d shows the density of the fluid which distribute | circulates the 1st restricting part T1, and (rho) m shows the density of the fluid which distribute | circulates the 2nd restricting part T2.
G in > G out (1)
G in = A in × {2 × (P d −P m ) × ρd} 1/2 Equation (2)
G out = A out × {2 × (P m -P s) × ρm} 1/2 ... Equation (3)
Further, ρm can be expressed by an approximate expression shown by the following expression (4).
ρm≈ρd × (P m / P d ) (4)
Here, the following relational expression (5) is established from the above relational expressions (1) to (4) and the relational expression of P m = P v + P s .
A in / A out> {( P v × (P v + P s)) / ((P d - (P v + P s)) × P d)} 1/2 ... (5)
That is, in the present embodiment, when the suction chamber pressure P s is fixed at a predetermined set value and the discharge chamber pressure P d varies within the variation range, A in and A out become the discharge chamber pressure P. Within the fluctuation range of d , it is set so as to satisfy the relationship of Expression (5).
According to the scroll compressor 100 according to the present embodiment, the pressure supply passage L3 and the pressure release passage L4 are provided with throttle portions (first throttle portion T1 and second throttle portion T2), respectively. The cross-sectional area A out of the second aperture portion T2 is greater than the cross-sectional area A in the first throttle portion T1, and is set to be smaller than the cross-sectional area A v1 of the valve body side opening of the fluid inlet hole 56 ing. Therefore, even if the fluid inlet hole 56 of the back pressure adjustment valve 50 is in the open state, the second throttling portion T2 can suppress the outflow of fluid from the back pressure chamber H3. That is, even back pressure regulating valve 50 is opened, because the outflow of the fluid is suppressed by the second throttle portion T2, it is possible to reduce the amount of reduction in back pressure chamber pressure P m, as a result, the back pressure chamber it is possible to stabilize the pressure P m.
In this way, it is possible to provide a back pressure chamber pressure P m scroll compressor 100 capable of suppressing a reduction in associated with the opening operation of the back pressure regulating valve 50.
Further, in the present embodiment, the cross-sectional area A out of the second aperture portion T2, in the range of variation of the discharge chamber pressure P d, flow rate G out of the fluid flowing through the second aperture portion T2 flows through the first throttle portion T1 It is set to be less than the flow rate G in of the fluid to be used. Thus, by setting the cross-sectional area A out of the second aperture portion T2, even back pressure regulating valve 50 was opened, during a high load, discharge chamber pressure back pressure chamber pressure P m it can be boosted in accordance with the increase of P d. Thus, for example, discharge chamber pressure P d becomes higher fluctuate within the variation range (operating range), even in a high load state, it is possible to back pressure to suppress or eliminate made that insufficient.
In the present embodiment, A in and A out are set so as to satisfy the relationship of the above formula (5) within the fluctuation range of the discharge chamber pressure P d . Thus, simply by preliminarily appropriately set the ratio of A in the A out, it is possible to reliably increase the back pressure chamber pressure P m in the high load.
Further, in the present embodiment, the valve opening set pressure P c (= P v + P s ) of the back pressure regulating valve 50 is the lower limit value (for example, 5 MPa) of the discharge chamber pressure P d in the fluctuation range of the discharge chamber pressure P d. the set value of the suction chamber pressure P s (e.g., 3.5 MPa) is preset to an appropriate value between. In this way, by setting the valve opening set pressure Pc , the back pressure adjusting valve 50 of the back pressure adjusting valve 50 is set so that the back pressure chamber pressure P m becomes a substantially constant pressure lower than that at the high load at the time of low load. It can be adjusted by opening and closing operations. As a result, it is possible to suppress or eliminate the back pressure from becoming excessive at low load.
That is, in this embodiment, both the back pressure excess at the time of low load and the back pressure deficiency at the time of high load can be solved. As a result, the variation range of the discharge chamber pressure P d (i.e., the operation range of the compressor), the mechanical efficiency and without any of the volumetric efficiency at the expense, good compression operation can be performed scroll type compression A machine 100 can be provided.
Further, in the present embodiment, the second throttle portion T2 is integrally formed with the valve seat portion 52b at a portion of the fluid inlet hole 56 at the back pressure chamber side end portion. As a result, the second throttle portion T2 can be easily formed in the downstream side portion of the pressure release passage L4. When the spherical valve body 53 is employed, the diameter of the valve body 53 is usually set so that the valve body 53 comes into contact with the corner of the valve body side opening of the fluid inlet hole 56 to be opened and closed. Therefore, if the inner diameter of the valve body side opening of the fluid inlet hole 56 is small, the diameter of the valve body 53 also needs to be reduced. In this respect, since the valve body side opening of the fluid inlet hole 56 in this embodiment is opened larger than the second throttle portion T2, the valve body 53 having a general diameter can be employed. The second throttle portion T2 may not be formed integrally with the valve seat portion 52b.
Further, in the present embodiment, it includes a fluid introduction passage L1 that connects the suction chamber H1 and the space H4 near the outer periphery of the scroll unit 1, and the pressure release passage L4 communicates the back pressure chamber H3 and the fluid introduction passage L1. is doing. Thereby, the lubricating oil that has flowed into the back pressure chamber H3 is returned to the scroll unit 1 along the flow of the fluid introduction passage L1, and the lubricity and airtightness of the sliding portion in the scroll unit 1 can be enhanced.
As mentioned above, although preferable embodiment of this invention was described, this invention is not restrict | limited to the said embodiment, A various deformation | transformation and change are possible based on the technical idea of this invention.
For example, in this embodiment, in order to eliminate the back pressure excess state at low load, to a value between the valve opening set pressure P c is the lower limit value of the discharge chamber pressure P d and the set value of the suction chamber pressure P s Although the case where it is set has been described as an example, it is not limited thereto. For example, when priority is given to improving the volumetric efficiency of the scroll compressor 100 and a reduction in mechanical efficiency is allowed, the valve opening set pressure P is set so as to reliably prevent the back pressure from becoming insufficient at high loads. You may set c high. In this case, the wear resistance of the scroll unit 1 may be enhanced by devising the material of the contact portions of the fixed scroll 2 and the movable scroll 3.
In the present embodiment, the pressure relief passage L4 communicates the back pressure chamber H3 and the fluid introduction passage L1. That is, the fluid introduction passage L1 is adopted as the suction chamber side region of the scroll unit 1. However, the connection destination of the pressure release passage L4 is not limited to this. For example, although not shown, the suction chamber H <b> 1 itself may be adopted as the suction chamber side region of the scroll unit 1. In this case, the pressure release passage L4 communicates the back pressure chamber H3 and the suction chamber H1.
Further, in the present embodiment, the refrigerant has been assumed to be CO 2 refrigerant is not limited to this, it is possible to apply the appropriate refrigerant.
Further, in the present embodiment, the scroll compressor 100 has been described by taking a so-called inverter-integrated case as an example. However, the present invention is not limited to this, and the scroll compressor 100 may be separate from the inverter 40.
1・・・・・スクロールユニット
2・・・・・固定スクロール
3・・・・・可動スクロール
50・・・・背圧調整弁
55・・・・流体出口孔
56・・・・流体入口孔
52b・・・弁座部
53・・・・弁体
100・・・スクロール型圧縮機
H1・・・・吸入室
H2・・・・吐出室
H3・・・・背圧室
H4・・・・空間
L1・・・・流体導入通路
L3・・・・圧力供給通路
L4・・・・放圧通路
T1・・・・第1絞り部
T2・・・・第2絞り部
DESCRIPTION OF SYMBOLS 1 ... Scroll unit 2 ... Fixed scroll 3 ... Movable scroll 50 ... Back pressure regulating valve 55 ... Fluid outlet hole 56 ... Fluid inlet hole 52b ... Valve seat part 53 ... Valve body 100 ... Scroll compressor H1 ... Suction chamber H2 ... Discharge chamber H3 ... Back pressure chamber H4 ... Space L1 .... Fluid introduction passage L3 ... Pressure supply passage L4 ... Pressure release passage T1 ... First throttling portion T2 ... Second throttling portion

Claims (8)

  1.  固定スクロール及び可動スクロールを有し、吸入室を介して流入される流体を圧縮し、この圧縮流体を吐出室を介して吐出するスクロールユニットと、
     前記可動スクロールの背面側に面して形成されると共に前記吐出室に圧力供給通路を介して連通される背圧室と、
     前記背圧室と前記スクロールユニットの吸入室側領域とを連通する放圧通路に設けられ、前記背圧室内の圧力を調整する差圧作動式の背圧調整弁と、
     を備えるスクロール型圧縮機であって、
     前記圧力供給通路に設けられる第1絞り部と、
     前記放圧通路に設けられる第2絞り部と、
     を含み、
     前記背圧調整弁は、前記放圧通路のうちの前記第2絞り部より吸入室側の部位に設けられ、弁体と、該弁体が接離する弁座部と、該弁座部に形成されると共に前記弁体により開閉される流体入口孔と、を有し、背圧室内圧力と吸入室内圧力との差圧が所定差圧を超えた場合に、前記弁体を開弁方向に移動させ、前記差圧が前記所定差圧以下の場合に、前記弁体を閉弁方向に移動させ、
     前記第2絞り部は、前記第1絞り部の断面積より大きく、且つ、前記流体入口孔の弁体側開口部の断面積より小さい断面積を有する、スクロール型圧縮機。
    A scroll unit having a fixed scroll and a movable scroll, compressing fluid flowing in through the suction chamber, and discharging the compressed fluid through the discharge chamber;
    A back pressure chamber formed facing the back side of the movable scroll and communicated with the discharge chamber via a pressure supply passage;
    A differential pressure actuated back pressure adjustment valve that is provided in a pressure relief passage that communicates the back pressure chamber and the suction chamber side region of the scroll unit, and that adjusts the pressure in the back pressure chamber;
    A scroll type compressor comprising:
    A first throttle portion provided in the pressure supply passage;
    A second throttle portion provided in the pressure relief passage;
    Including
    The back pressure adjusting valve is provided in a portion closer to the suction chamber than the second throttle portion in the pressure release passage, and includes a valve body, a valve seat portion that contacts and separates the valve body, and the valve seat portion. A fluid inlet hole formed and opened and closed by the valve body, and when the pressure difference between the back pressure chamber pressure and the suction chamber pressure exceeds a predetermined pressure difference, the valve body is opened in the valve opening direction. When the differential pressure is less than or equal to the predetermined differential pressure, the valve body is moved in the valve closing direction,
    The scroll type compressor, wherein the second throttle portion has a cross-sectional area larger than a cross-sectional area of the first throttle portion and smaller than a cross-sectional area of a valve body side opening of the fluid inlet hole.
  2.  前記第2絞り部の断面積は、吐出室内圧力が予め定められた変動範囲内において変動した場合に、この変動範囲において、前記第2絞り部を流通する流体の流量が前記第1絞り部を流通する流体の流量より少なくなるように設定されている、請求項1に記載のスクロール型圧縮機。 When the discharge chamber pressure fluctuates within a predetermined fluctuation range, the cross-sectional area of the second throttling portion is such that the flow rate of the fluid flowing through the second throttling portion in the fluctuation range causes the first throttling portion to The scroll compressor according to claim 1, wherein the scroll compressor is set to be smaller than a flow rate of the circulating fluid.
  3.  前記第1絞り部の断面積をAinとし、前記第2絞り部の断面積をAoutとし、前記吸入室内圧力をPとし、前記所定差圧をPとし、前記吐出室内圧力をPとし、前記Pが所定の設定値に固定されると共に、前記Pが前記変動範囲内で変動する場合に、
     前記Ain及び前記Aoutは、前記Pの前記変動範囲内において、下記の式(1)の関係を満足するように設定されている、請求項2に記載のスクロール型圧縮機。
     Ain/Aout>{(P×(P+P))/((P−(P+P))×P)}1/2…式(1)
    The cross-sectional area of the first throttle portion is A in , the cross-sectional area of the second throttle portion is A out , the suction chamber pressure is P s , the predetermined differential pressure is P v , and the discharge chamber pressure is P d, and when the P s is fixed to a predetermined set value and the P d varies within the variation range,
    The scroll compressor according to claim 2, wherein the A in and the A out are set so as to satisfy a relationship of the following expression (1) within the fluctuation range of the P d .
    A in / A out> {( P v × (P v + P s)) / ((P d - (P v + P s)) × P d)} 1/2 ... formula (1)
  4.  前記Pに前記Pの前記設定値を加算して得られる開弁設定圧は、前記変動範囲における前記Pの下限値と前記Pの前記設定値との間の値に予め設定されている、請求項3に記載のスクロール型圧縮機。 Opening set pressure obtained by adding the set value of the P s in the P v is previously set to a value between the set value of the lower limit value and the P s of the P d in the variation range The scroll compressor according to claim 3.
  5.  前記第2絞り部は、前記流体入口孔の背圧室側端部の部位に前記弁座部と一体的に形成される、請求項1~4のいずれか一つに記載のスクロール型圧縮機。 The scroll compressor according to any one of claims 1 to 4, wherein the second throttle portion is formed integrally with the valve seat portion at a portion of a back pressure chamber side end portion of the fluid inlet hole. .
  6.  前記吸入室と前記スクロールユニットの外周部付近の空間とを連通する流体導入通路を含み、
     前記放圧通路は、前記背圧室と前記流体導入通路とを連通する、請求項1~5のいずれか一つに記載のスクロール型圧縮機。
    A fluid introduction passage communicating the suction chamber and a space near the outer periphery of the scroll unit;
    6. The scroll compressor according to claim 1, wherein the pressure release passage communicates the back pressure chamber and the fluid introduction passage.
  7.  前記放圧通路は、前記背圧室と前記吸入室とを連通する、請求項1~5のいずれか一つに記載のスクロール型圧縮機。 6. The scroll compressor according to claim 1, wherein the pressure release passage communicates the back pressure chamber and the suction chamber.
  8.  前記流体は、二酸化炭素冷媒である、請求項1~7のいずれか一つに記載のスクロール型圧縮機。 The scroll compressor according to any one of claims 1 to 7, wherein the fluid is a carbon dioxide refrigerant.
PCT/JP2017/008631 2016-03-25 2017-02-24 Scroll-type compressor WO2017163826A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112017001535.9T DE112017001535B4 (en) 2016-03-25 2017-02-24 scroll compressor
CN201780016587.7A CN108834423B (en) 2016-03-25 2017-02-24 Scroll compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-061727 2016-03-25
JP2016061727A JP6738176B2 (en) 2016-03-25 2016-03-25 Scroll compressor

Publications (1)

Publication Number Publication Date
WO2017163826A1 true WO2017163826A1 (en) 2017-09-28

Family

ID=59901063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008631 WO2017163826A1 (en) 2016-03-25 2017-02-24 Scroll-type compressor

Country Status (4)

Country Link
JP (1) JP6738176B2 (en)
CN (1) CN108834423B (en)
DE (1) DE112017001535B4 (en)
WO (1) WO2017163826A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101955985B1 (en) * 2017-12-29 2019-03-11 엘지전자 주식회사 Motor-operated compressor
DE102019203055A1 (en) * 2019-03-06 2020-09-10 Vitesco Technologies GmbH Method of operating a scroll compressor, device and air conditioning system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013148043A (en) * 2012-01-20 2013-08-01 Toyota Industries Corp Differential pressure regulating valve and motor-driven compressor having differential pressure regulating device
JP2013148020A (en) * 2012-01-19 2013-08-01 Toyota Industries Corp Scroll type fluid machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03202695A (en) * 1989-12-29 1991-09-04 Toyota Autom Loom Works Ltd Variable volume scroll type compressor for air conditioning of vehicle
JP2004301092A (en) 2003-03-31 2004-10-28 Toyota Industries Corp Scroll compressor
JP5201113B2 (en) 2008-12-03 2013-06-05 株式会社豊田自動織機 Scroll compressor
CN103629111B (en) * 2012-08-27 2016-08-24 湖南汤普悦斯压缩机科技有限公司 A kind of semi-closed scroll compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013148020A (en) * 2012-01-19 2013-08-01 Toyota Industries Corp Scroll type fluid machine
JP2013148043A (en) * 2012-01-20 2013-08-01 Toyota Industries Corp Differential pressure regulating valve and motor-driven compressor having differential pressure regulating device

Also Published As

Publication number Publication date
CN108834423A (en) 2018-11-16
CN108834423B (en) 2020-01-14
JP2017172542A (en) 2017-09-28
DE112017001535T5 (en) 2018-12-13
DE112017001535B4 (en) 2023-01-05
JP6738176B2 (en) 2020-08-12

Similar Documents

Publication Publication Date Title
JP5315933B2 (en) Electric scroll compressor
US20100158710A1 (en) Scroll compressor
US6749404B2 (en) Scroll compressors
KR20050008475A (en) Capacity modulated scroll compressor
KR100746896B1 (en) Scroll compressor
WO2017163826A1 (en) Scroll-type compressor
CN108779775B (en) Scroll compressor
CN113994098B (en) Scroll compressor having a rotor with a rotor shaft having a rotor shaft with a
US20220136500A1 (en) Scroll compressor
US8915724B2 (en) Scroll compressor with control valve for controlling cooling capacity based on speed and centrifugal force
WO2017110475A1 (en) Scroll-type compressor
WO2018037917A1 (en) Scroll compressor
JPH05187370A (en) Scroll gas compressor
WO2018173543A1 (en) Scroll compressor
WO2020075474A1 (en) Compressor
WO2018221229A1 (en) Back pressure control valve and scroll compressor
JP2019015188A (en) Scroll type compressor
KR101897776B1 (en) Scroll compressor
JP2021021345A (en) Scroll-type compressor
JP2012225226A (en) Scroll compressor
EP3553317A1 (en) Motor-operated compressor
WO2017150594A1 (en) Scroll compressor
JP5181534B2 (en) Scroll compressor
JP2010168910A (en) Scroll compressor
JP2008075619A (en) Compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769871

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17769871

Country of ref document: EP

Kind code of ref document: A1