WO2017163732A1 - Cooling device and thermal treatment device - Google Patents

Cooling device and thermal treatment device Download PDF

Info

Publication number
WO2017163732A1
WO2017163732A1 PCT/JP2017/006551 JP2017006551W WO2017163732A1 WO 2017163732 A1 WO2017163732 A1 WO 2017163732A1 JP 2017006551 W JP2017006551 W JP 2017006551W WO 2017163732 A1 WO2017163732 A1 WO 2017163732A1
Authority
WO
WIPO (PCT)
Prior art keywords
mist
cooling
coolant
particle size
workpiece
Prior art date
Application number
PCT/JP2017/006551
Other languages
French (fr)
Japanese (ja)
Inventor
勝俣 和彦
Original Assignee
株式会社Ihi
株式会社Ihi機械システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi, 株式会社Ihi機械システム filed Critical 株式会社Ihi
Priority to JP2018507149A priority Critical patent/JP6742399B2/en
Priority to CN201780018602.1A priority patent/CN108779507A/en
Priority to DE112017001506.5T priority patent/DE112017001506T5/en
Publication of WO2017163732A1 publication Critical patent/WO2017163732A1/en
Priority to US15/991,079 priority patent/US20180274049A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0233Spray nozzles, Nozzle headers; Spray systems
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • F27B17/0016Chamber type furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/04Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated adapted for treating the charge in vacuum or special atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/06Details, accessories, or equipment peculiar to furnaces of these types
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/22Martempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0062Heat-treating apparatus with a cooling or quenching zone
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • F27D2009/0002Cooling of furnaces
    • F27D2009/001Cooling of furnaces the cooling medium being a fluid other than a gas
    • F27D2009/0013Cooling of furnaces the cooling medium being a fluid other than a gas the fluid being water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • F27D2009/007Cooling of charges therein
    • F27D2009/0089Quenching

Definitions

  • the present disclosure relates to a cooling device and a heat treatment device.
  • This application claims priority on March 23, 2016 based on Japanese Patent Application No. 2016-058930 filed in Japan, the contents of which are incorporated herein by reference.
  • Patent Document 1 As a quenching device, when a component heated to a predetermined temperature is cooled by spraying a mist-like coolant, the ambient pressure is decreased before the component temperature exceeds the martensite transformation temperature. It is described that the boiling point of the coolant is lowered. According to such a quenching device, by suppressing the boiling point of the coolant, the vapor film generated between the surface of the component and the coolant droplets is maintained, thereby suppressing distortion and deformation of the component. Is supposed to be possible.
  • the distortion and deformation of parts are suppressed by maintaining the vapor film.
  • the maintenance of the vapor film involves complicated factors such as the shape of the part that is the object to be treated, during the cooling period of the object to be treated from the start of cooling to the temperature exceeding the martensitic transformation temperature, It is difficult to stably maintain the vapor film only by lowering the boiling point. That is, the method of maintaining the vapor film in order to suppress the distortion and deformation of the components is not always practical, and it is difficult to reliably suppress the distortion and deformation of the workpiece.
  • the present disclosure has been made in view of the above-described circumstances, and an object thereof is to more reliably suppress deformation of an object to be processed when the object to be processed is cooled by a mist-like coolant.
  • a cooling device that cools an object to be processed using a mist-like coolant
  • Heat transfer coefficient switching means for switching the heat transfer coefficient of the mist coolant from a relatively low state to a relatively high state is provided.
  • the deformation of the workpiece is more reliably performed than in the past. Can be suppressed.
  • FIG. 3 is a sectional view taken along line AA in FIG. 2.
  • FIG. 3 is a sectional view taken along line BB in FIG. 2.
  • It is a graph which shows the temperature change of the cooling process in one embodiment of this indication.
  • It is a graph which shows the change of the mist particle size of the mist-like cooling fluid in the cooling process in one embodiment of this indication.
  • It is a graph which shows the heat conductivity of each cooling medium. It is a graph which shows the relationship between the injection quantity for every nozzle in the experimental result of this indication, and a heat transfer rate.
  • the multi-chamber heat treatment apparatus M is a heat treatment apparatus in which a cooling device R, an intermediate transfer device H, and three heating devices are integrated. Since FIG. 1 shows a longitudinal sectional view at the center position in the horizontal direction of the intermediate transfer device H, FIG. 1 shows only two of the three heating devices, that is, the heating device K1 and the heating device K2. Is drawn.
  • the multi-chamber heat treatment apparatus M is a heat treatment apparatus for performing a quenching process on the workpiece X.
  • the to-be-processed object X is various metal parts, and is a part which consists of steel materials, such as die steel (SKD material) and high-speed steel (SKH material).
  • the cooling device R is a device that cools the workpiece X. As shown in FIGS. 1 to 4, the cooling device R includes a cooling chamber 1 and a plurality of first and second cooling nozzles 2a and 2b (first and second injections). Nozzle), a plurality of mist headers 3, a cooling pump 4, a heat exchanger 5, a cooling drain pipe 6, a cooling water tank 7, first and second control valves 8a and 8b, a cooling control unit 9, and the like.
  • the plurality of mist headers 3, the cooling pump 4, the heat exchanger 5, the cooling water tank 7, the first and second control valves 8a and 8b, and the cooling control unit 9 constitute a coolant supply device in the present disclosure.
  • a coolant supply apparatus and the plurality of first and second cooling nozzles 2a and 2b constitute a heat transfer coefficient switching unit in the present disclosure.
  • the cooling chamber 1 is a vertical cylindrical container (a container whose central axis is in the vertical direction) that accommodates the workpiece X, and the internal space is the cooling chamber RS.
  • An intermediate transfer device H is provided on the cooling chamber 1.
  • the cooling chamber 1 is formed with an opening that allows the cooling chamber RS to communicate with the internal space (the transfer chamber HS) of the intermediate transfer device H.
  • the workpiece X is carried into or out of the cooling chamber RS through this opening.
  • the plurality of first and second cooling nozzles 2a and 2b convert a predetermined coolant supplied from the cooling pump 4 through the mist header 3 and the heat exchanger 5 into a mist-like coolant (mist-like coolant).
  • the first cooling nozzle 2a is a first injection nozzle having a relatively small injection hole diameter (first hole diameter)
  • the second cooling nozzle 2b has an injection hole diameter (second hole diameter) that is greater than that of the first cooling nozzle 2a. Is also a large second injection nozzle.
  • the particle size (first mist particle size) of the mist coolant injected from the first cooling nozzle 2a is the particle size (second mist particle size) of the mist coolant injected from the second cooling nozzle 2b. Smaller than.
  • the mist particle size of the mist coolant is changed to the first mist particle size by switching the supply destination of the coolant from the first injection nozzle (first cooling nozzle 2a) to the second injection nozzle (second cooling nozzle 2b).
  • the heat transfer coefficient switching means switches the heat transfer coefficient of the mist cooling liquid by adjusting the mist particle diameter of the mist cooling liquid from a relatively small particle diameter to a relatively large particle diameter.
  • the plurality of first and second cooling nozzles 2a and 2b are distributed around the workpiece X accommodated in the cooling chamber RS as shown in FIGS. . More specifically, the plurality of first and second cooling nozzles 2a and 2b are multistage (specifically, five stages) in the vertical direction around the workpiece X, and the cooling chamber 1 (cooling room RS). In a state of being spaced apart in the circumferential direction, the workpieces X are distributed and arranged so as to surround the workpiece X as a whole and so that the distance from the workpiece X is as equal as possible.
  • the plurality of first and second cooling nozzles 2a and 2b are grouped into a predetermined number. That is, the plurality of first and second cooling nozzles 2a and 2b are grouped for each stage in the vertical direction of the cooling chamber RS, and are also grouped into a plurality in the circumferential direction of the cooling chamber 1 (cooling chamber RS). Yes. In such a plurality of groups (nozzle groups), as shown in FIGS. 3 and 4, mist headers 3 are individually provided.
  • the mist headers 3 are arranged in five stages in the vertical direction, and two mist headers 3 are arranged around the workpiece X as shown in FIG. Is provided in an arc shape so as to surround. Further, in the four stages from the second stage to the lowest stage from the top, as shown in FIG. 4, three mist headers 3 are provided in an arc shape so as to surround the periphery of the workpiece X.
  • the plurality of second cooling nozzles 2 b are provided in the uppermost stage, the third stage from the top, and the lowest stage mist header 3, and the plurality of first cooling nozzles 2 a It is provided in the second and fourth mist headers 3 from the top.
  • the plurality of first and second cooling nozzles 2 a and 2 b are adjusted such that the direction of the nozzle shaft is directed to the workpiece X and the cooling supplied from the pump 4 via the mist header 3. The liquid is sprayed toward the workpiece X.
  • the plurality of second cooling nozzles 2b belonging to the uppermost stage are arranged at a position higher than the upper end of the workpiece X in the vertical direction, as shown in FIG.
  • the plurality of second cooling nozzles 2b belonging to the lowest stage are arranged at a height substantially equal to the lower end of the workpiece X.
  • the plurality of second cooling nozzles 2b belonging to the uppermost stage are located inside the first and second cooling nozzles 2a and 2b in the other stages, that is, from the first and second cooling nozzles 2a and 2b in the other stages. Is also arranged away from the inner surface of the cooling chamber RS.
  • the cooling liquid is a liquid having a lower viscosity than the cooling oil generally used for cooling the heat treatment, for example, water.
  • the injection holes of the plurality of first and second cooling nozzles 2a and 2b are shaped so that a cooling liquid such as water becomes droplets having a uniform and constant particle diameter at a predetermined injection angle.
  • the injection angles of the plurality of first and second cooling nozzles 2a and 2b and the interval between the first and second cooling nozzles 2a and 2b adjacent to each other are as shown in FIGS.
  • the droplets located on the outer peripheral side intersect or collide with the adjacent outer peripheral droplets ejected from the first and second cooling nozzles 2a and 2b. It is set to be.
  • the plurality of first and second cooling nozzles 2a and 2b are configured to supply the mist-like cooling liquid so as to totally surround the workpiece X with the aggregate of cooling liquid droplets, that is, the mist-like cooling liquid. It injects toward the to-be-processed object X.
  • the particle size of the droplets in the mist cooling liquid is, for example, 20 to 700 ⁇ m.
  • the positions and angles of the plurality of first and second cooling nozzles 2a and 2b are appropriately set so that the mist-like cooling liquid around the workpiece X has a uniform particle diameter and a uniform density.
  • the cooling device R of the present embodiment is a device that cools the workpiece X using the mist-like coolant, that is, a device that mist-cools the workpiece X.
  • the cooling conditions such as the cooling temperature and cooling time in the cooling device R are appropriately set according to the purpose of the heat treatment in the workpiece X, the material of the workpiece X, and the like.
  • the plurality of mist headers 3 described above are arc-shaped pipes communicating with the plurality of first and second cooling nozzles 2a and 2b, and the coolant taken in from the supply port is supplied to the plurality of first and second cooling nozzles 2a, Distribute to 2b.
  • the positions of the supply ports are set so that the pressure loss is substantially uniform for the plurality of first and second cooling nozzles 2a and 2b, and the coolant is supplied to the plurality of first and second cooling nozzles 2a. 2b is distributed almost uniformly.
  • the heat transfer coefficient of the mist-like coolant sprayed from the plurality of first and second cooling nozzles 2a, 2b toward the workpiece X is the particle size (mist particle size) of the mist-like coolant.
  • the mist particle size is determined by the hole diameters (first and second hole diameters) of the injection holes of the first and second cooling nozzles 2a and 2b. That is, the mist-like cooling liquid having the first mist particle size sprayed from the first cooling nozzle 2a having the first hole diameter has a relatively low mist particle size and thus has a relatively low heat transfer coefficient (first heat transfer coefficient).
  • mist-like cooling liquid having the second mist particle size ejected from the second cooling nozzle 2b having the second hole diameter has a mist particle size larger than the first mist particle size, it is higher than the first heat transfer coefficient. It has a high heat transfer coefficient (second heat transfer coefficient).
  • the cooling pump 4 pumps the coolant in the cooling water tank 7 to the mist header 3.
  • the heat exchanger 5 is a temperature adjuster that adjusts (maintains) the temperature of the coolant supplied from the cooling pump 4 to the mist header 3 based on a temperature instruction input from the cooling control unit 9. That is, the temperature of the coolant supplied from the cooling pump 4 to the mist header 3 is managed by the cooling control unit 9.
  • the cooling drain pipe 6 is a pipe that communicates the lower part of the cooling chamber 1 with the cooling water tank 7, and a drain valve (not shown) is provided in the middle of the pipe.
  • the cooling water tank 7 is a liquid container for storing the cooling liquid drained from the cooling chamber 1 through the cooling drain pipe 6 or the cooling circulation pipe (not shown).
  • the cooling circulation pipe is a pipe that connects the upper part of the cooling chamber 1 and the upper part of the cooling water tank 7 in order to return the cooling liquid overflowing from the cooling chamber 1 to the cooling water tank 7 during the immersion cooling.
  • the first and second control valves 8 a and 8 b are open / close valves provided between the plurality of mist headers 3 and the heat exchanger 5.
  • the second control valve 8b is the uppermost, third and lowermost mist header 3 provided with the second cooling nozzle 2b, and the heat exchanger 5.
  • the first control valve 8a is provided between the second and fourth mist headers 3 and the heat exchanger 5 from the top where the first cooling nozzle 2a is provided. That is, the first control valve 8a switches supply / non-supply of the coolant to the plurality of first cooling nozzles 2a based on the first opening / closing signal input from the cooling control unit 8.
  • the second control valve 8 b switches supply / non-supply of the coolant to the plurality of second cooling nozzles 2 b based on the second opening / closing signal input from the cooling control unit 8.
  • the cooling control unit 9 controls the overall operation of the cooling device R by operating the heat exchanger 5, the first and second control valves 8a and 8b, the drain valve, and the like described above. As part of the control of the cooling device R, the cooling controller 9 controls the first and second control valves 8a and 8b to supply / not supply the coolant to the plurality of first and second cooling nozzles 2a and 2b. Switch supply. Accordingly, during the cooling of the workpiece X, the heat transfer coefficient of the mist coolant is switched from a relatively low state to a relatively high state. The details of the switching process of the heat transfer coefficient of the mist coolant by the cooling controller 9 will be described later.
  • the intermediate transfer device H includes a transfer chamber 10, a transfer chamber mounting table 11, a cooling chamber lifting table 12, a cooling chamber lifting cylinder 13, a pair of transfer rails 14, a pair of pusher cylinders (a pusher cylinder 15 and a pusher cylinder 16), and a heating chamber.
  • a lift 17 and a heating chamber lift cylinder 18 are provided.
  • the transfer chamber 10 is a container provided between the cooling device R and three heating devices including the heating device K1 and the heating device K2, and the internal space is the transfer chamber HS.
  • the workpiece X is loaded into the transfer chamber 10 from a loading / unloading port (not shown) by an external transfer device while being accommodated in a container such as a basket.
  • the transfer chamber mounting table 11 is a support table that closes the delivery port between the cooling chamber 1 and the transfer chamber 10 when the processing object X is cooled by the cooling device R, and is capable of mounting another processing object X.
  • the cooling chamber lift 12 is a support table on which the workpiece X is placed when the workpiece X is cooled by the cooling device R, and supports the workpiece X so that the bottom of the workpiece X is exposed as much as possible. To do.
  • the cooling chamber lifting platform 12 is fixed to the tip of the movable rod of the cooling chamber lifting cylinder 13.
  • the cooling chamber elevating cylinder 13 is an actuator that moves the cooling chamber elevating platform 12 up and down (up and down). That is, the cooling chamber elevating cylinder 13 and the cooling chamber elevating platform 12 are dedicated conveying devices for the cooling device R, and the workpiece X placed on the cooling chamber elevating platform 12 is transferred from the conveying area HS to the cooling chamber RS. The workpiece X is transferred from the cooling chamber RS to the transfer chamber HS while being transferred.
  • the pair of transfer rails 14 are laid on the floor in the transfer chamber 10 so as to extend in the horizontal direction. These transport rails 14 are guide members when transporting the workpiece X between the cooling device R and the heating device K1.
  • the pusher cylinder 15 is an actuator that presses the workpiece X when the workpiece X in the transfer chamber 10 is transferred toward the heating device K1.
  • the pusher cylinder 16 is an actuator that presses the workpiece X when the workpiece X is transported from the heating device K1 to the cooling device R.
  • the pair of transport rails 14, the pusher cylinder 15, and the pusher cylinder 16 are dedicated transport devices that transport the workpiece X between the heating device K1 and the cooling device R.
  • FIG. 1 shows a pair of transport rails 14, a pusher cylinder 15 and a pusher cylinder 16
  • an actual intermediate transport device H includes a total of three pairs of transport rails 14, a pusher cylinder 15 and a pusher cylinder 16. I have. That is, the conveyance rail 14, the pusher cylinder 15 and the pusher cylinder 16 are provided not only for the heating device K1 but also for the other two heating devices.
  • the heating chamber lift 17 is a support table on which the workpiece X is placed when the workpiece X is transferred from the intermediate transfer device H to the heating device K1. That is, the workpiece X is conveyed right above the heating chamber lifting platform 17 by being pressed rightward in FIG. 1 by the pusher cylinder 15.
  • the heating chamber elevating cylinder 18 is an actuator that moves the workpiece X on the heating chamber elevating platform 17 up and down (up and down). That is, the heating chamber elevating table 17 and the heating chamber elevating cylinder 18 are dedicated conveying devices for the heating device K1, and the workpiece X placed on the heating chamber elevating table 17 is transferred from the conveying chamber HS to the inside of the heating device K1.
  • the workpiece X is transferred from the heating chamber KS to the transfer chamber HS while being transferred to the (heating chamber KS).
  • the heating device K1 includes a heating chamber 20, a heat insulating container 21, a plurality of heaters 22, a vacuum exhaust pipe 23, a vacuum pump 24, a stirring blade 25, a stirring motor 26, and the like.
  • the heating chamber 20 is a container provided on the transfer chamber 10, and the internal space is the heating chamber KS.
  • the heating chamber 20 is a vertical cylindrical container (a container whose central axis is in the vertical direction), similar to the cooling chamber 1 described above, but is smaller than the cooling chamber 1.
  • the heat insulating container 21 is a vertical cylindrical container provided in the heating chamber 20 and is formed of a heat insulating material having a predetermined heat insulating performance.
  • the plurality of heaters 22 are rod-shaped heating elements, and are provided at predetermined intervals in the circumferential direction in the heat insulating container 21 in a vertical posture.
  • the plurality of heaters 22 heats the workpiece X accommodated in the heating chamber KS to a desired temperature (heating temperature).
  • the heating conditions such as the heating temperature and the heating time are appropriately set according to the purpose of the heat treatment for the workpiece X, the material of the workpiece X, and the like.
  • the heating condition includes the degree of vacuum (pressure) of the heating chamber KS.
  • the vacuum exhaust pipe 23 is a pipe that communicates with the heating chamber KS, and has one end connected to the upper part of the heat insulating container 21 and the other end connected to the vacuum pump 24.
  • the vacuum pump 24 is an exhaust pump that sucks air in the heating chamber KS through the vacuum exhaust pipe 23.
  • the degree of vacuum in the heating chamber KS is determined by the amount of air exhausted by the vacuum pump 24.
  • the stirring blade 25 is a rotating blade provided in an upper portion in the heat insulating container 21 in a posture in which the direction of the rotation axis is a vertical direction (vertical direction).
  • the stirring blade 25 is driven by the stirring motor 26 to stir the air in the heating chamber KS.
  • the stirring motor 26 is a rotational drive source provided on the heating chamber 20 so that the output shaft is in the vertical direction (vertical direction).
  • the output shaft of the stirring motor 26 positioned on the heating chamber 20 is coupled to the rotating shaft of the stirring blade 25 positioned in the heating chamber 20 so as not to impair the airtightness (sealability) of the heating chamber 20. Yes.
  • the multi-chamber heat treatment apparatus M includes a control panel (not shown).
  • the control panel includes an operation unit for a user to set and input various conditions in the heat treatment, various conditions input from the operation unit, and a control program stored in advance in the cooling device R, intermediate transfer devices H and 3. And a controller that operates the two heating devices in cooperation with each other. That is, the multi-chamber heat treatment apparatus M performs the quenching process on the workpiece X by automatically controlling the cooling device R, the intermediate transfer device H, and the three heating devices by the control panel.
  • the above-described cooling control unit 8 is a functional component that performs cooling control of the workpiece X by the cooling device R among the control functions of the control panel. That is, in addition to the cooling control of the workpiece X by the cooling device R, the control panel performs the conveyance control of the workpiece X by the intermediate transfer device H and the heating control of the workpiece X by the three heating devices.
  • the workpiece X is heated to a predetermined temperature T1 (heating temperature), and then first cooled to a temperature T2 (cooling temperature) and then rapidly cooled to a martensite transformation point. Secondary cooling is performed.
  • T1 heating temperature
  • T2 cooling temperature
  • Secondary cooling is performed.
  • the intermediate transfer device H operates the pusher cylinder 15 to place the workpiece X on the heating chamber lifting platform 17. Move. Further, the intermediate transfer device H operates the heating chamber elevating cylinder 18 to accommodate the workpiece X in the heating chamber KS of the heating device K1.
  • the heating device K1 operates the heater 22 to heat the workpiece X to the temperature T1.
  • the intermediate conveyance apparatus H will move the to-be-processed object X on the cooling chamber raising / lowering stand 12 by operating the heating chamber raising / lowering cylinder 18 and the pusher cylinder 16, if the said heating is completed.
  • the intermediate transfer device H moves the workpiece X to the cooling chamber RS by operating the cooling chamber elevating cylinder 13, and further blocks the delivery port between the transfer chamber 10 and the cooling chamber 1 by the transfer chamber mounting table 11. .
  • the cooling device R operates the cooling pump 4 to inject the mist-like cooling liquid from the plurality of first and second cooling nozzles 2a and 2b toward the workpiece X.
  • the workpiece X is primarily cooled (mist cooling) from the temperature T1 to the temperature T2.
  • the workpiece X at temperature T1 that is, the workpiece X having an austenite structure, avoids the transformation point Ps (so-called pearlite nose) to the pearlite structure and reaches the temperature T2. It is cooled rapidly. That is, the workpiece X is rapidly cooled from the temperature T1 to the temperature T2 by the injection of mist-like cooling liquid from the plurality of first and second cooling nozzles 2a and 2b between time t1 and time t2 in FIG. 5A.
  • the surface temperature history of the workpiece X is indicated by a solid line
  • the internal temperature history of the workpiece X is indicated by a broken line.
  • the cooling control unit 9 sets the first control valve 8a to the open state and the second control valve 8b to the closed state in the period from the time t1 to the time ta (preliminary cooling period S1).
  • a mist-like cooling liquid having a first mist particle size C1 is sprayed toward the workpiece X from the first cooling nozzle 2a. That is, in the first cooling period S1, the workpiece X is cooled by the mist cooling liquid having the first heat transfer coefficient.
  • the cooling control unit 8 sets the first control valve 8a to the closed state and the second control valve 8b to the open state, that is, the coolant Is switched from the first cooling nozzle 2a to the second cooling nozzle 2b, so that the mist-like cooling liquid having the second mist particle size C2 is supplied from the second cooling nozzle 2b to the workpiece X as shown in FIG. 5B. Inject toward. That is, in the latter cooling period S2, the workpiece X is cooled by the mist cooling liquid having the second heat transfer coefficient higher than the first heat transfer coefficient in the first cooling period S1.
  • the first heat transfer coefficient of the mist coolant in the first cooling period S1 that is, the first mist particle size C1
  • the first mist particle size C1 is determined for each material and shape of the workpiece X through experiments performed in advance.
  • the previous cooling period S1 that is, the time ta is also determined for each material and shape of the workpiece X through experiments and the like performed in advance.
  • the parts are deformed.
  • the present embodiment instead of maintaining the vapor film, by setting the first mist particle size C1 in the high temperature period of the workpiece X in which deformation can occur in the workpiece X, that is, the previous cooling period S1. Reduce the heat transfer coefficient of the mist coolant. As a result, the deformation of the workpiece X is suppressed by suppressing the cooling efficiency of the workpiece X.
  • mist cooling is performed with the mist-like coolant having the first mist particle size C1 in the late cooling period S2 as in the previous cooling period S1, the transformation point Ps to the pearlite structure should be avoided in the primary cooling. May not be possible. Therefore, in the present embodiment, mist cooling is performed in the late cooling period S2 with a mist-like coolant having a second mist particle size C2 having a particle size larger than the first mist particle size C1. Therefore, the cooling efficiency in the late cooling period S2 is improved more than the cooling efficiency in the previous cooling period S1, thereby realizing primary cooling avoiding the transformation point Ps to the pearlite structure.
  • FIG. 6 a quenching silver cylinder in tap water, oil (JIS Japanese Industrial Standard C 2320-1999 Type 1 No. 2 oil), nitrogen (10 bar 15 m / s), which is a typical coolant.
  • the surface heat transfer characteristic curve of each coolant calculated by the concentrated heat capacity method is known from the data of the cooling curve of the specimen (10 mm diameter, 30 mm length).
  • FIG. 6 it can be seen that in the high temperature region where the surface temperature of the silver cylindrical specimen is about 600 ° C. or higher, 30 ° C. tap water has a larger surface heat transfer coefficient than the 80 ° C. oil.
  • a cooling device consists of a water tank, predetermined piping, and a nozzle.
  • the water tank has a capacity of 60 L and stores water used for cooling.
  • the water tank is pressurized with nitrogen gas and connected to a predetermined pipe.
  • Two types of nozzles were adopted: a one-fluid nozzle that injects only water and a two-fluid nozzle that injects gas by using water to make it finer.
  • the one-fluid nozzle 1-1 has a 1 / 4M JJXP 060 HTPVC manufactured by Ikeuchi Co., Ltd.
  • the one-fluid nozzle 1-3 has a 1/4 KSFHS 0865 manufactured by Everloy
  • the one-fluid nozzle 1-4 has a A 1/4 KSAMF 1875-1 / 4 A24 1/4 W20 manufactured by Everloy Co., Ltd. was used for the M1 / 4 EX438 manufactured by Arakura Kogyo Co., Ltd. and the two-fluid nozzle 2-2, respectively.
  • the nozzle is provided at an end of a predetermined pipe opposite to the end where the water tank is attached.
  • the tip of the nozzle is installed at a position spaced 200 mm from the surface of the test body.
  • a test body disc-shaped stainless steel (JIS Japanese Industrial Standard SUS304) having a thickness of 50 mm and a diameter of 100 mm was used.
  • the specimen is inserted into an electric furnace and heated to 1000 ° C.
  • the water stored in the water tank is pressurized with nitrogen gas, and the pressurized water is sprayed from the nozzle to the test specimen heated to 1000 ° C. Further, water is jetted from each nozzle so that the jet fluid pressure is 0.03 to 0.5 MPa.
  • thermocouple is 180 in the circumferential direction at four positions of 2 mm, 6 mm, 10 mm, and 25 mm in the depth direction from the surface at the center position of the test body, and 25 mm from the upper end and 2 mm from the surface on the side surface of the test body. It is installed at a total of 6 locations, 2 ° shifted. And the temperature change until the test body heated to 1000 degreeC is mist-cooled and becomes normal temperature is measured.
  • FIG. 7 shows the result of calculating the average heat transfer coefficient from the time change of the temperature of the thermocouple inserted into the test body after performing the mist cooling test.
  • FIG. 7 shows the average heat transfer coefficient when the surface temperature of the specimen corresponds to a range of 600 to 1000 ° C.
  • the dotted line in FIG. 7 indicates the value when oil cooling is performed.
  • the mist cooling using water is not possible.
  • almost the same heat transfer coefficient as oil cooling was achieved. That is, according to the cooling device using the mist cooling, the heat transfer coefficient of the mist cooling liquid can be reduced substantially equal to that of oil cooling.
  • transformation of the to-be-processed object X can be suppressed by suppressing the cooling efficiency of the to-be-processed object X.
  • FIG. 7 shows the result of calculating the average heat transfer coefficient from the time change of the temperature of the thermocouple inserted into the test body after performing the mist cooling test.
  • FIG. 7 shows the average heat transfer coefficient when the surface temperature of the specimen
  • the period during which the workpiece X is relatively high that is, the first cooling period S1
  • the period when the workpiece X is relatively low that is, the latter cooling period S2. Since the mist particle size of the mist cooling liquid is adjusted from the first mist particle size C1 to the second mist particle size C2, deformation of the workpiece X is suppressed in the primary cooling and the transformation point Ps to the pearlite structure is avoided. It is possible.
  • the heat transfer coefficient of the mist coolant is adjusted by adjusting the mist particle size of the mist coolant from the second mist particle size C1 to the first mist particle size C2. Is switched from the first heat transfer coefficient to the second heat transfer coefficient, but the present disclosure is not limited to this.
  • the thermal conductivity may be switched from the first heat transfer coefficient to the second heat transfer coefficient by switching the density of the mist coolant (mist density).
  • the heat transfer coefficient of the mist coolant may be switched by adjusting the density of the mist coolant from a relatively low density to a relatively high density.
  • a gas-liquid two-phase flow of a coolant and a predetermined gas is sprayed from the spray nozzle onto the workpiece X as a mist coolant, and the mist density is adjusted to the first mist density by adjusting the mixing ratio of the gas to the coolant.
  • the heat transfer rate is switched from the first heat transfer rate to the second heat transfer rate by adjusting from to the second mist density.
  • the mist density may be switched by adjusting the flow rate of the coolant supplied to the injection nozzle.
  • the present disclosure is not limited to this.
  • the mist-like coolant having the first mist particle size C1 and the mist-like coolant having the second mist particle size C2 are supplied from the first and second cooling nozzles 2a and 2b over a predetermined period (overlap period) from the time ta.
  • the mist-like coolant having the second mist particle size C2 may be injected from the second cooling nozzle 2b after the overlap period has elapsed.
  • the mist particle size of the mist coolant is changed from the first mist particle size to the second mist particle through a state in which the mist coolant solution having the first mist particle size and the mist coolant solution having the second mist particle size are mixed.
  • the diameter may be adjusted.
  • the overlap period is a period in which the mist coolant with the first mist particle size C1 and the mist coolant with the second mist particle size C2 coexist. That is, it is a period in which a mist-like coolant having a heat transfer coefficient located between the first heat transfer coefficient and the second heat transfer coefficient exists.
  • the mist-like cooling liquid having the first mist particle size C1 is injected in the first cooling period S1, and the mist-like cooling liquid having the second mist particle size C2 is injected in the latter cooling period S2.
  • the disclosure is not limited to this.
  • the mist coolant having the second mist particle size C2 in addition to the mist coolant having the second mist particle size C2, the mist coolant having the first mist particle size C1 may be injected. In this case, not only the mist particle size is increased and the heat transfer rate is increased, but also the mist density can be increased, so that the heat transfer rate can be further increased.
  • the multi-chamber heat treatment apparatus M heat treatment apparatus in which the cooling device R, the intermediate transfer device H, and the three heating devices are integrated has been described.
  • the present disclosure is not limited to this.
  • the necessary minimum components of the heat treatment apparatus are a heating apparatus and a cooling apparatus, as long as the heat treatment apparatus includes a heating apparatus that heats the workpiece and a cooling apparatus that cools the workpiece heated by the heating apparatus,
  • the transport device such as the intermediate transport device H may be a separate body.
  • the cooling device and the heat treatment device of the present disclosure since a method of switching the heat transfer coefficient of the mist-like coolant from a relatively low state to a relatively high state during the cooling of the workpiece, deformation of the workpiece is performed. Can be suppressed more reliably than before.
  • Cooling device X Object 1 Cooling chamber 2a, 2b First and second cooling nozzles (first and second injection nozzles) 3 Mist Header 4 Cooling Pump 5 Heat Exchanger 6 Cooling Drain Pipe 7 Cooling Water Tank 8a, 8b First and Second Control Valves 9 Cooling Control Unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

This cooling device (R) cools an object (X) to be treated using a mist-like cooling liquid and is provided with a heat transfer coefficient switching means for switching the heat transfer coefficient of the mist-like cooling liquid from a relatively low state to a relatively high state during cooling of the object (X).

Description

冷却装置及び熱処理装置Cooling device and heat treatment device
 本開示は、冷却装置及び熱処理装置に関する。
 本願は、2016年3月23日に、日本に出願された特願2016-058930号に基づき優先権を主張し、その内容をここに援用する。
The present disclosure relates to a cooling device and a heat treatment device.
This application claims priority on March 23, 2016 based on Japanese Patent Application No. 2016-058930 filed in Japan, the contents of which are incorporated herein by reference.
 例えば、特許文献1には、焼入れ装置として、所定温度に加熱された部品にミスト状の冷却材を吹き付けて冷却するに際して、部品の温度がマルテンサイト変態温度を超える前に雰囲気圧力を低下させて上記冷却材の沸点を低下させることが記載されている。このような焼入れ装置によれば、冷却材の沸点を低下させることにより部品の表面と冷却材の液滴との間に発生する蒸気膜を維持することにより、部品の歪みや変形を抑制することが可能であるとされている。 For example, in Patent Document 1, as a quenching device, when a component heated to a predetermined temperature is cooled by spraying a mist-like coolant, the ambient pressure is decreased before the component temperature exceeds the martensite transformation temperature. It is described that the boiling point of the coolant is lowered. According to such a quenching device, by suppressing the boiling point of the coolant, the vapor film generated between the surface of the component and the coolant droplets is maintained, thereby suppressing distortion and deformation of the component. Is supposed to be possible.
日本国特開2013-181226号公報Japanese Unexamined Patent Publication No. 2013-181226
 上記焼入れ装置では蒸気膜を維持することによって部品の歪みや変形を抑制するとされている。しかしながら、蒸気膜の維持には被処理物である部品の形状等、複雑な要因が関係しているので、冷却開始からマルテンサイト変態温度を超えるまでの被処理物の冷却期間において、冷却材の沸点を低下させることのみによって蒸気膜を安定的に維持することは困難である。すなわち、部品の歪みや変形を抑制するために蒸気膜を維持する手法は、必ずしも現実的ではなく、被処理物の歪みや変形を確実に抑制することが困難である。 In the above quenching apparatus, it is said that the distortion and deformation of parts are suppressed by maintaining the vapor film. However, since the maintenance of the vapor film involves complicated factors such as the shape of the part that is the object to be treated, during the cooling period of the object to be treated from the start of cooling to the temperature exceeding the martensitic transformation temperature, It is difficult to stably maintain the vapor film only by lowering the boiling point. That is, the method of maintaining the vapor film in order to suppress the distortion and deformation of the components is not always practical, and it is difficult to reliably suppress the distortion and deformation of the workpiece.
 本開示は、上述した事情に鑑みてなされ、ミスト状冷却液による被処理物の冷却に際して被処理物の変形を従来よりも確実に抑制することを目的とする。 The present disclosure has been made in view of the above-described circumstances, and an object thereof is to more reliably suppress deformation of an object to be processed when the object to be processed is cooled by a mist-like coolant.
 上記目的を達成するために、本開示では、冷却装置に係る第1の解決手段として、ミスト状冷却液を用いて被処理物を冷却する冷却装置であって、被処理物の冷却の途中でミスト状冷却液の熱伝達率を比較的低い状態から比較的高い状態に切り換える熱伝達率切換手段を備える。 In order to achieve the above object, in the present disclosure, as a first solving means related to a cooling device, a cooling device that cools an object to be processed using a mist-like coolant, Heat transfer coefficient switching means for switching the heat transfer coefficient of the mist coolant from a relatively low state to a relatively high state is provided.
 本開示によれば、被処理物の冷却の途中でミスト状冷却液の熱伝達率を比較的低い状態から比較的高い状態に切り換える手法を用いるので、被処理物の変形を従来よりも確実に抑制することができる。 According to the present disclosure, since the method of switching the heat transfer coefficient of the mist coolant from a relatively low state to a relatively high state during the cooling of the workpiece, the deformation of the workpiece is more reliably performed than in the past. Can be suppressed.
本開示の一実施形態に係る冷却装置及び多室型熱処理装置の全体構成を示す第1の縦断面図である。It is a 1st longitudinal cross-sectional view which shows the whole structure of the cooling device and multi-chamber type heat processing apparatus which concern on one Embodiment of this indication. 本開示の一実施形態に係る冷却装置及び多室型熱処理装置の全体構成を示す第2の縦断面図である。It is a 2nd longitudinal cross-sectional view which shows the whole structure of the cooling device which concerns on one Embodiment of this indication, and a multi-chamber type heat processing apparatus. 図2におけるA-A線断面図である。FIG. 3 is a sectional view taken along line AA in FIG. 2. 図2におけるB-B線断面図である。FIG. 3 is a sectional view taken along line BB in FIG. 2. 本開示の一実施形態における冷却処理の温度変化を示すグラフである。It is a graph which shows the temperature change of the cooling process in one embodiment of this indication. 本開示の一実施形態における冷却処理におけるミスト状冷却液のミスト粒径の変化を示すグラフである。It is a graph which shows the change of the mist particle size of the mist-like cooling fluid in the cooling process in one embodiment of this indication. 各冷却媒体の熱伝導率を示すグラフである。It is a graph which shows the heat conductivity of each cooling medium. 本開示の実験結果におけるノズル毎の噴量と熱伝達率の関係を示すグラフである。It is a graph which shows the relationship between the injection quantity for every nozzle in the experimental result of this indication, and a heat transfer rate.
 以下、図面を参照して、本開示の一実施形態に係る冷却装置R及び多室型熱処理装置Mについて説明する。 Hereinafter, a cooling device R and a multi-chamber heat treatment device M according to an embodiment of the present disclosure will be described with reference to the drawings.
 多室型熱処理装置Mは、図1に示すように、冷却装置R、中間搬送装置H及び3つの加熱装置を一体化させた熱処理装置である。なお、図1では中間搬送装置Hの水平方向の中心位置における縦断面図を示しているので、図1には3つの加熱装置の中の2つの加熱装置、つまり加熱装置K1及び加熱装置K2のみが描かれている。 As shown in FIG. 1, the multi-chamber heat treatment apparatus M is a heat treatment apparatus in which a cooling device R, an intermediate transfer device H, and three heating devices are integrated. Since FIG. 1 shows a longitudinal sectional view at the center position in the horizontal direction of the intermediate transfer device H, FIG. 1 shows only two of the three heating devices, that is, the heating device K1 and the heating device K2. Is drawn.
 この多室型熱処理装置Mは、被処理物Xに対して焼入れ処理を行うための熱処理装置である。被処理物Xは、各種の金属部品であり、ダイス鋼(SKD材)やハイス鋼(SKH材)等の鋼材からなる部品である。 The multi-chamber heat treatment apparatus M is a heat treatment apparatus for performing a quenching process on the workpiece X. The to-be-processed object X is various metal parts, and is a part which consists of steel materials, such as die steel (SKD material) and high-speed steel (SKH material).
 冷却装置Rは、被処理物Xを冷却処理する装置であり、図1~図4に示すように、冷却チャンバー1、複数の第1、第2冷却ノズル2a、2b(第1、第2噴射ノズル)、複数のミストヘッダー3、冷却ポンプ4、熱交換器5、冷却排水管6、冷却水槽7、第1、第2制御弁8a、8b及び冷却制御部9等を備えている。 The cooling device R is a device that cools the workpiece X. As shown in FIGS. 1 to 4, the cooling device R includes a cooling chamber 1 and a plurality of first and second cooling nozzles 2a and 2b (first and second injections). Nozzle), a plurality of mist headers 3, a cooling pump 4, a heat exchanger 5, a cooling drain pipe 6, a cooling water tank 7, first and second control valves 8a and 8b, a cooling control unit 9, and the like.
 複数のミストヘッダー3、冷却ポンプ4、熱交換器5、冷却水槽7、第1、第2制御弁8a、8b及び冷却制御部9が、本開示における冷却液供給装置を構成する。また、このような冷却液供給装置と複数の第1、第2冷却ノズル2a、2bが、本開示における熱伝達率切換手段を構成する。 The plurality of mist headers 3, the cooling pump 4, the heat exchanger 5, the cooling water tank 7, the first and second control valves 8a and 8b, and the cooling control unit 9 constitute a coolant supply device in the present disclosure. Moreover, such a coolant supply apparatus and the plurality of first and second cooling nozzles 2a and 2b constitute a heat transfer coefficient switching unit in the present disclosure.
 冷却チャンバー1は、被処理物Xを収容する縦型円筒形の容器(中心軸線が鉛直方向となる容器)であり、内部空間が冷却室RSである。この冷却チャンバー1の上には中間搬送装置Hが設けられている。冷却チャンバー1には冷却室RSを中間搬送装置Hの内部空間(搬送室HS)に連通させる開口が形成されている。冷却室RSには、この開口を介して被処理物Xが搬入あるいは搬出される。 The cooling chamber 1 is a vertical cylindrical container (a container whose central axis is in the vertical direction) that accommodates the workpiece X, and the internal space is the cooling chamber RS. An intermediate transfer device H is provided on the cooling chamber 1. The cooling chamber 1 is formed with an opening that allows the cooling chamber RS to communicate with the internal space (the transfer chamber HS) of the intermediate transfer device H. The workpiece X is carried into or out of the cooling chamber RS through this opening.
 複数の第1、第2冷却ノズル2a、2bは、ミストヘッダー3及び熱交換器5を介して冷却ポンプ4から供給される所定の冷却液を、ミスト状の冷却液(ミスト状冷却液)に変換して被処理物Xに噴射する第1、第2噴射ノズルである。第1冷却ノズル2aは、噴射孔の孔径(第1孔径)が比較的小さい第1噴射ノズルであり、第2冷却ノズル2bは、噴射孔の孔径(第2孔径)が第1冷却ノズル2aよりも大きい第2噴射ノズルである。すなわち、第1冷却ノズル2aから噴射されるミスト状冷却液の粒径(第1ミスト粒径)は、第2冷却ノズル2bから噴射されるミスト状冷却液の粒径(第2ミスト粒径)よりも小さい。そして、冷却液の供給先を第1噴射ノズル(第1冷却ノズル2a)から第2噴射ノズル(第2冷却ノズル2b)に切り換えることにより、ミスト状冷却液のミスト粒径を第1ミスト粒径から第2ミスト粒径に調節する。また、熱伝達率切換手段は、ミスト状冷却液のミスト粒径を比較的小さい粒径から比較的大きい粒径に調節することによりミスト状冷却液の熱伝達率を切り換える。 The plurality of first and second cooling nozzles 2a and 2b convert a predetermined coolant supplied from the cooling pump 4 through the mist header 3 and the heat exchanger 5 into a mist-like coolant (mist-like coolant). These are first and second injection nozzles that convert and inject them onto the workpiece X. The first cooling nozzle 2a is a first injection nozzle having a relatively small injection hole diameter (first hole diameter), and the second cooling nozzle 2b has an injection hole diameter (second hole diameter) that is greater than that of the first cooling nozzle 2a. Is also a large second injection nozzle. That is, the particle size (first mist particle size) of the mist coolant injected from the first cooling nozzle 2a is the particle size (second mist particle size) of the mist coolant injected from the second cooling nozzle 2b. Smaller than. Then, the mist particle size of the mist coolant is changed to the first mist particle size by switching the supply destination of the coolant from the first injection nozzle (first cooling nozzle 2a) to the second injection nozzle (second cooling nozzle 2b). To the second mist particle size. The heat transfer coefficient switching means switches the heat transfer coefficient of the mist cooling liquid by adjusting the mist particle diameter of the mist cooling liquid from a relatively small particle diameter to a relatively large particle diameter.
 このような複数の第1、第2冷却ノズル2a、2bは、図1~図4に示されているように、冷却室RS内に収容された被処理物Xの周囲に分散配置されている。より具体的には、複数の第1、第2冷却ノズル2a、2bは、被処理物Xの周囲において、鉛直方向に多段(具体的には5段)かつ冷却チャンバー1(冷却室RS)の周方向に一定間隔を隔てた状態で、被処理物Xを全体として取り囲むように、かつ、被処理物Xとの距離が極力等距離となるように分散配置されている。 The plurality of first and second cooling nozzles 2a and 2b are distributed around the workpiece X accommodated in the cooling chamber RS as shown in FIGS. . More specifically, the plurality of first and second cooling nozzles 2a and 2b are multistage (specifically, five stages) in the vertical direction around the workpiece X, and the cooling chamber 1 (cooling room RS). In a state of being spaced apart in the circumferential direction, the workpieces X are distributed and arranged so as to surround the workpiece X as a whole and so that the distance from the workpiece X is as equal as possible.
 また、複数の第1、第2冷却ノズル2a、2bは、所定数にグループ分けされている。すなわち、複数の第1、第2冷却ノズル2a、2bは、冷却室RSの鉛直方向における段毎にグループ化され、また冷却チャンバー1(冷却室RS)の周方向においても複数にグループ分けされている。このような複数のグループ(ノズルグループ)には、図3及び図4に示すように、ミストヘッダー3が個別に設けられている。 The plurality of first and second cooling nozzles 2a and 2b are grouped into a predetermined number. That is, the plurality of first and second cooling nozzles 2a and 2b are grouped for each stage in the vertical direction of the cooling chamber RS, and are also grouped into a plurality in the circumferential direction of the cooling chamber 1 (cooling chamber RS). Yes. In such a plurality of groups (nozzle groups), as shown in FIGS. 3 and 4, mist headers 3 are individually provided.
 より具体的には、図1に示すようにミストヘッダー3は、上下方向において5段に配置されており、最上段には図3に示すように2つのミストヘッダー3が被処理物Xの周囲を取り囲むように円弧状に設けられている。また、上から2段目~最下段の4段については図4に示すように3つのミストヘッダー3が被処理物Xの周囲を取り囲むように円弧状に設けられている。このような5段構成のミストヘッダー3のうち、上記複数の第2冷却ノズル2bは最上段、上から3段目及び最下段のミストヘッダー3に設けられ、また複数の第1冷却ノズル2aは上から2段目及び4段目のミストヘッダー3に設けられている。このような複数の第1、第2冷却ノズル2a、2bは、ノズル軸の向きが被処理物Xの方向を向くように調節されており、ミストヘッダー3を介してポンプ4から供給された冷却液を被処理物Xに向けて噴射する。 More specifically, as shown in FIG. 1, the mist headers 3 are arranged in five stages in the vertical direction, and two mist headers 3 are arranged around the workpiece X as shown in FIG. Is provided in an arc shape so as to surround. Further, in the four stages from the second stage to the lowest stage from the top, as shown in FIG. 4, three mist headers 3 are provided in an arc shape so as to surround the periphery of the workpiece X. Among the five-stage mist headers 3, the plurality of second cooling nozzles 2 b are provided in the uppermost stage, the third stage from the top, and the lowest stage mist header 3, and the plurality of first cooling nozzles 2 a It is provided in the second and fourth mist headers 3 from the top. The plurality of first and second cooling nozzles 2 a and 2 b are adjusted such that the direction of the nozzle shaft is directed to the workpiece X and the cooling supplied from the pump 4 via the mist header 3. The liquid is sprayed toward the workpiece X.
 また、最上段に属する複数の第2冷却ノズル2bは、図1に示すように、鉛直方向において被処理物Xの上端よりも高い位置に配置されている。一方、最下段に属する複数の第2冷却ノズル2bは、被処理物Xの下端と略同等な高さに配置されている。さらには、最上段に属する複数の第2冷却ノズル2bは、他の段の第1、第2冷却ノズル2a、2bよりも内側、つまり他の段の第1、第2冷却ノズル2a、2bよりも冷却室RSの内面から離れて配置される。 Further, the plurality of second cooling nozzles 2b belonging to the uppermost stage are arranged at a position higher than the upper end of the workpiece X in the vertical direction, as shown in FIG. On the other hand, the plurality of second cooling nozzles 2b belonging to the lowest stage are arranged at a height substantially equal to the lower end of the workpiece X. Furthermore, the plurality of second cooling nozzles 2b belonging to the uppermost stage are located inside the first and second cooling nozzles 2a and 2b in the other stages, that is, from the first and second cooling nozzles 2a and 2b in the other stages. Is also arranged away from the inner surface of the cooling chamber RS.
 ここで、上記冷却液は、熱処理の冷却用に一般的に用いられる冷却油よりも粘性が低い液体であり、例えば水である。上記複数の第1、第2冷却ノズル2a、2bの噴射孔は、水等の冷却液が所定の噴射角で均一かつ一定粒径の液滴となるように形状設定されている。また、複数の第1、第2冷却ノズル2a、2bの噴射角及び互いに隣り合う第1、第2冷却ノズル2a、2bの間隔は、図1~図4に示されているように、第1、第2冷却ノズル2a、2bから噴き出た液滴のうち、外周側に位置する液滴が隣接する第1、第2冷却ノズル2a、2bから噴き出た外周側の液滴と交差あるいは衝突するように設定されている。 Here, the cooling liquid is a liquid having a lower viscosity than the cooling oil generally used for cooling the heat treatment, for example, water. The injection holes of the plurality of first and second cooling nozzles 2a and 2b are shaped so that a cooling liquid such as water becomes droplets having a uniform and constant particle diameter at a predetermined injection angle. In addition, the injection angles of the plurality of first and second cooling nozzles 2a and 2b and the interval between the first and second cooling nozzles 2a and 2b adjacent to each other are as shown in FIGS. Among the droplets ejected from the second cooling nozzles 2a and 2b, the droplets located on the outer peripheral side intersect or collide with the adjacent outer peripheral droplets ejected from the first and second cooling nozzles 2a and 2b. It is set to be.
 また、このような複数の第1、第2冷却ノズル2a、2bは、被処理物Xを冷却液の液滴の集合体つまりミスト状冷却液で全体的に包囲するようにミスト状冷却液を被処理物Xに向けて噴射する。上記ミスト状冷却液における液滴の粒径は、例えば20~700μmである。複数の第1、第2冷却ノズル2a、2bの位置や角度は、被処理物Xの周囲のミスト状冷却液が均一な粒径かつ均一な密度となるように適宜設定される。 Further, the plurality of first and second cooling nozzles 2a and 2b are configured to supply the mist-like cooling liquid so as to totally surround the workpiece X with the aggregate of cooling liquid droplets, that is, the mist-like cooling liquid. It injects toward the to-be-processed object X. The particle size of the droplets in the mist cooling liquid is, for example, 20 to 700 μm. The positions and angles of the plurality of first and second cooling nozzles 2a and 2b are appropriately set so that the mist-like cooling liquid around the workpiece X has a uniform particle diameter and a uniform density.
 本実施形態の冷却装置Rは、上記ミスト状冷却液を用いて被処理物Xを冷却する装置、つまり被処理物Xをミスト冷却する装置である。なお、この冷却装置Rにおける冷却温度や冷却時間等の冷却条件は、被処理物Xにおける熱処理の目的や被処理物Xの材質等に応じて適宜設定される。 The cooling device R of the present embodiment is a device that cools the workpiece X using the mist-like coolant, that is, a device that mist-cools the workpiece X. The cooling conditions such as the cooling temperature and cooling time in the cooling device R are appropriately set according to the purpose of the heat treatment in the workpiece X, the material of the workpiece X, and the like.
 上述した複数のミストヘッダー3は、複数の第1、第2冷却ノズル2a、2bに連通する円弧状の配管であり、供給口から取り込んだ冷却液を複数の第1、第2冷却ノズル2a、2bに分配する。これらミストヘッダー3は、圧損が複数の第1、第2冷却ノズル2a、2bについて略均等となるように供給口の位置が設定されており、冷却液を複数の第1、第2冷却ノズル2a、2bに対して略均一に分配する。 The plurality of mist headers 3 described above are arc-shaped pipes communicating with the plurality of first and second cooling nozzles 2a and 2b, and the coolant taken in from the supply port is supplied to the plurality of first and second cooling nozzles 2a, Distribute to 2b. In these mist headers 3, the positions of the supply ports are set so that the pressure loss is substantially uniform for the plurality of first and second cooling nozzles 2a and 2b, and the coolant is supplied to the plurality of first and second cooling nozzles 2a. 2b is distributed almost uniformly.
 ここで、複数の第1、第2冷却ノズル2a、2bから被処理物Xに向けて噴射されるミスト状冷却液の熱伝達率は、上記ミスト状冷却液の粒径(ミスト粒径)に依存する。また、このミスト粒径は、第1、第2冷却ノズル2a、2bの噴射孔の孔径(第1、第2孔径)によって決定される。すなわち、第1孔径の第1冷却ノズル2aから噴射される第1ミスト粒径のミスト状冷却液は、ミスト粒径が比較的小さいので熱伝達率(第1熱伝達率)が比較的低く、これに対して第2孔径の第2冷却ノズル2bから噴射される第2ミスト粒径のミスト状冷却液は、ミスト粒径が第1ミスト粒径よりも大きいので上記第1熱伝達率よりも高い熱伝達率(第2熱伝達率)を有する。 Here, the heat transfer coefficient of the mist-like coolant sprayed from the plurality of first and second cooling nozzles 2a, 2b toward the workpiece X is the particle size (mist particle size) of the mist-like coolant. Dependent. The mist particle size is determined by the hole diameters (first and second hole diameters) of the injection holes of the first and second cooling nozzles 2a and 2b. That is, the mist-like cooling liquid having the first mist particle size sprayed from the first cooling nozzle 2a having the first hole diameter has a relatively low mist particle size and thus has a relatively low heat transfer coefficient (first heat transfer coefficient). On the other hand, since the mist-like cooling liquid having the second mist particle size ejected from the second cooling nozzle 2b having the second hole diameter has a mist particle size larger than the first mist particle size, it is higher than the first heat transfer coefficient. It has a high heat transfer coefficient (second heat transfer coefficient).
 冷却ポンプ4は、冷却水槽7の冷却液をミストヘッダー3に圧送する。熱交換器5は、冷却制御部9から入力される温度指示に基づいて、冷却ポンプ4からミストヘッダー3に供給される冷却液の温度を所定温度に調節(維持)する温度調節器である。すなわち、冷却ポンプ4からミストヘッダー3に供給される冷却液は、温度が冷却制御部9によって管理される。 The cooling pump 4 pumps the coolant in the cooling water tank 7 to the mist header 3. The heat exchanger 5 is a temperature adjuster that adjusts (maintains) the temperature of the coolant supplied from the cooling pump 4 to the mist header 3 based on a temperature instruction input from the cooling control unit 9. That is, the temperature of the coolant supplied from the cooling pump 4 to the mist header 3 is managed by the cooling control unit 9.
 冷却排水管6は、冷却チャンバー1の下部と冷却水槽7とを連通させる配管であり、途中部位に排水弁(図示略)が設けられている。冷却水槽7は、上記冷却排水管6あるいは冷却循環管(図示略)を介して冷却チャンバー1から排水された冷却液を貯留する液体容器である。なお、上記冷却循環管は、浸漬冷却時において冷却チャンバー1からオーバーフローした冷却液を冷却水槽7に戻すために、冷却チャンバー1の上部と冷却水槽7の上部とを連通させる配管である。 The cooling drain pipe 6 is a pipe that communicates the lower part of the cooling chamber 1 with the cooling water tank 7, and a drain valve (not shown) is provided in the middle of the pipe. The cooling water tank 7 is a liquid container for storing the cooling liquid drained from the cooling chamber 1 through the cooling drain pipe 6 or the cooling circulation pipe (not shown). The cooling circulation pipe is a pipe that connects the upper part of the cooling chamber 1 and the upper part of the cooling water tank 7 in order to return the cooling liquid overflowing from the cooling chamber 1 to the cooling water tank 7 during the immersion cooling.
 第1、第2制御弁8a、8bは、複数のミストヘッダー3と熱交換器5との間に設けられた開閉弁である。第1、第2制御弁8a、8bのうち、第2制御弁8bは、第2冷却ノズル2bが設けられた最上段、上から3段目及び最下段のミストヘッダー3と熱交換器5との間に設けられ、第1制御弁8aは、第1冷却ノズル2aが設けられた上から2段目及び4段目のミストヘッダー3と熱交換器5との間に設けられている。すなわち、第1制御弁8aは、冷却制御部8から入力される第1開閉信号に基づいて複数の第1冷却ノズル2aへの冷却液の供給/非供給を切り換える。一方、第2制御弁8bは、冷却制御部8から入力される第2開閉信号に基づいて複数の第2冷却ノズル2bへの冷却液の供給/非供給を切り換える。 The first and second control valves 8 a and 8 b are open / close valves provided between the plurality of mist headers 3 and the heat exchanger 5. Of the first and second control valves 8a and 8b, the second control valve 8b is the uppermost, third and lowermost mist header 3 provided with the second cooling nozzle 2b, and the heat exchanger 5. The first control valve 8a is provided between the second and fourth mist headers 3 and the heat exchanger 5 from the top where the first cooling nozzle 2a is provided. That is, the first control valve 8a switches supply / non-supply of the coolant to the plurality of first cooling nozzles 2a based on the first opening / closing signal input from the cooling control unit 8. On the other hand, the second control valve 8 b switches supply / non-supply of the coolant to the plurality of second cooling nozzles 2 b based on the second opening / closing signal input from the cooling control unit 8.
 冷却制御部9は、上述した熱交換器5、第1、第2制御弁8a、8b及び排水弁等を作動させることにより冷却装置Rの全体動作を制御する。この冷却制御部9は、冷却装置Rの制御の一環として、第1、第2制御弁8a、8bを制御して複数の第1、第2冷却ノズル2a,2bへの冷却液の供給/非供給を切り換える。したがって、被処理物Xの冷却の途中でミスト状冷却液の熱伝達率を比較的低い状態から比較的高い状態に切り換える。なお、冷却制御部9によるミスト状冷却液の熱伝達率の切換処理については詳細を後述する。 The cooling control unit 9 controls the overall operation of the cooling device R by operating the heat exchanger 5, the first and second control valves 8a and 8b, the drain valve, and the like described above. As part of the control of the cooling device R, the cooling controller 9 controls the first and second control valves 8a and 8b to supply / not supply the coolant to the plurality of first and second cooling nozzles 2a and 2b. Switch supply. Accordingly, during the cooling of the workpiece X, the heat transfer coefficient of the mist coolant is switched from a relatively low state to a relatively high state. The details of the switching process of the heat transfer coefficient of the mist coolant by the cooling controller 9 will be described later.
 中間搬送装置Hは、搬送チャンバー10、搬送室載置台11、冷却室昇降台12、冷却室昇降シリンダー13、一対の搬送レール14、一対のプッシャーシリンダー(プッシャーシリンダー15及びプッシャーシリンダー16)、加熱室昇降台17及び加熱室昇降シリンダー18等々を備えている。搬送チャンバー10は、冷却装置Rと、加熱装置K1及び加熱装置K2を含む3つの加熱装置との間に設けられた容器であり、内部空間が搬送室HSである。被処理物Xは、バスケット等の容器内に収容された状態で、外部の搬送装置によって搬入/搬出口(図示略)から搬送チャンバー10内に搬入される。 The intermediate transfer device H includes a transfer chamber 10, a transfer chamber mounting table 11, a cooling chamber lifting table 12, a cooling chamber lifting cylinder 13, a pair of transfer rails 14, a pair of pusher cylinders (a pusher cylinder 15 and a pusher cylinder 16), and a heating chamber. A lift 17 and a heating chamber lift cylinder 18 are provided. The transfer chamber 10 is a container provided between the cooling device R and three heating devices including the heating device K1 and the heating device K2, and the internal space is the transfer chamber HS. The workpiece X is loaded into the transfer chamber 10 from a loading / unloading port (not shown) by an external transfer device while being accommodated in a container such as a basket.
 搬送室載置台11は、冷却装置Rで被処理物Xを冷却する際に冷却チャンバー1と搬送チャンバー10との受渡口を塞ぐ支持台であり、他の被処理物Xを載置可能とされている。冷却室昇降台12は、冷却装置Rで被処理物Xを冷却する際に被処理物Xを載せる支持台であり、被処理物Xの底部が極力広く露出するように被処理物Xを支持する。この冷却室昇降台12は、冷却室昇降シリンダー13の可動ロッドの先端に固定されている。 The transfer chamber mounting table 11 is a support table that closes the delivery port between the cooling chamber 1 and the transfer chamber 10 when the processing object X is cooled by the cooling device R, and is capable of mounting another processing object X. ing. The cooling chamber lift 12 is a support table on which the workpiece X is placed when the workpiece X is cooled by the cooling device R, and supports the workpiece X so that the bottom of the workpiece X is exposed as much as possible. To do. The cooling chamber lifting platform 12 is fixed to the tip of the movable rod of the cooling chamber lifting cylinder 13.
 冷却室昇降シリンダー13は、上記冷却室昇降台12を上下動(昇降)させるアクチュエータである。すなわち、冷却室昇降シリンダー13及び上記冷却室昇降台12は、冷却装置Rの専用搬送装置であり、冷却室昇降台12上に載置された被処理物Xを搬送領域HSから冷却室RSに搬送すると共に冷却室RSから搬送室HSに被処理物Xを搬送する。 The cooling chamber elevating cylinder 13 is an actuator that moves the cooling chamber elevating platform 12 up and down (up and down). That is, the cooling chamber elevating cylinder 13 and the cooling chamber elevating platform 12 are dedicated conveying devices for the cooling device R, and the workpiece X placed on the cooling chamber elevating platform 12 is transferred from the conveying area HS to the cooling chamber RS. The workpiece X is transferred from the cooling chamber RS to the transfer chamber HS while being transferred.
 一対の搬送レール14は、搬送チャンバー10内の床部に水平方向に延びるように敷設されている。これら搬送レール14は、冷却装置Rと加熱装置K1との間で被処理物Xを搬送させる際のガイド部材である。プッシャーシリンダー15は、搬送チャンバー10内の被処理物Xを加熱装置K1に向けて搬送する際に、被処理物Xを押圧するアクチュエータである。プッシャーシリンダー16は、被処理物Xを加熱装置K1から冷却装置Rに搬送する際に、被処理物Xを押圧するアクチュエータである。 The pair of transfer rails 14 are laid on the floor in the transfer chamber 10 so as to extend in the horizontal direction. These transport rails 14 are guide members when transporting the workpiece X between the cooling device R and the heating device K1. The pusher cylinder 15 is an actuator that presses the workpiece X when the workpiece X in the transfer chamber 10 is transferred toward the heating device K1. The pusher cylinder 16 is an actuator that presses the workpiece X when the workpiece X is transported from the heating device K1 to the cooling device R.
 すなわち、一対の搬送レール14、プッシャーシリンダー15及びプッシャーシリンダー16は、被処理物Xを加熱装置K1と冷却装置Rとの間に搬送する専用搬送装置である。なお、図1には一対の搬送レール14、プッシャーシリンダー15及びプッシャーシリンダー16が示されているが、実際の中間搬送装置Hは、合計三対の搬送レール14、プッシャーシリンダー15及びプッシャーシリンダー16を備えている。すなわち、搬送レール14、プッシャーシリンダー15及びプッシャーシリンダー16は、加熱装置K1用だけではなく、他の2つの加熱装置用にも設けられている。 That is, the pair of transport rails 14, the pusher cylinder 15, and the pusher cylinder 16 are dedicated transport devices that transport the workpiece X between the heating device K1 and the cooling device R. Although FIG. 1 shows a pair of transport rails 14, a pusher cylinder 15 and a pusher cylinder 16, an actual intermediate transport device H includes a total of three pairs of transport rails 14, a pusher cylinder 15 and a pusher cylinder 16. I have. That is, the conveyance rail 14, the pusher cylinder 15 and the pusher cylinder 16 are provided not only for the heating device K1 but also for the other two heating devices.
 加熱室昇降台17は、被処理物Xを中間搬送装置Hから加熱装置K1に搬送する際に被処理物Xが載置される支持台である。すなわち、被処理物Xは、上記プッシャーシリンダー15によって図1の右方向に押圧されることにより、加熱室昇降台17の直上に搬送される。加熱室昇降シリンダー18は、上記加熱室昇降台17上の被処理物Xを上下動(昇降)させるアクチュエータである。すなわち、加熱室昇降台17及び加熱室昇降シリンダー18は、加熱装置K1の専用搬送装置であり、加熱室昇降台17上に載置された被処理物Xを搬送室HSから加熱装置K1の内部(加熱室KS)に搬送すると共に被処理物Xを加熱室KSから搬送室HSに搬送する。 The heating chamber lift 17 is a support table on which the workpiece X is placed when the workpiece X is transferred from the intermediate transfer device H to the heating device K1. That is, the workpiece X is conveyed right above the heating chamber lifting platform 17 by being pressed rightward in FIG. 1 by the pusher cylinder 15. The heating chamber elevating cylinder 18 is an actuator that moves the workpiece X on the heating chamber elevating platform 17 up and down (up and down). That is, the heating chamber elevating table 17 and the heating chamber elevating cylinder 18 are dedicated conveying devices for the heating device K1, and the workpiece X placed on the heating chamber elevating table 17 is transferred from the conveying chamber HS to the inside of the heating device K1. The workpiece X is transferred from the heating chamber KS to the transfer chamber HS while being transferred to the (heating chamber KS).
 3つの加熱装置は基本的に同一構成を有するので、以下では代表して加熱装置K1の構成について説明する。加熱装置K1は、加熱チャンバー20、断熱容器21、複数の加熱ヒータ22、真空排気管23、真空ポンプ24、攪拌翼25及び攪拌モータ26等々を備えている。 Since the three heating devices basically have the same configuration, the configuration of the heating device K1 will be described below as a representative. The heating device K1 includes a heating chamber 20, a heat insulating container 21, a plurality of heaters 22, a vacuum exhaust pipe 23, a vacuum pump 24, a stirring blade 25, a stirring motor 26, and the like.
 加熱チャンバー20は、搬送チャンバー10上に設けられた容器であり、内部空間が加熱室KSである。この加熱チャンバー20は、上述した冷却チャンバー1と同様に縦型円筒形の容器(中心軸線が鉛直方向となる容器)であるが、冷却チャンバー1よりも小型に形成されている。断熱容器21は、上記加熱チャンバー20内に設けられた縦型円筒形の容器であり、所定の断熱性能を有する断熱材から形成されている。 The heating chamber 20 is a container provided on the transfer chamber 10, and the internal space is the heating chamber KS. The heating chamber 20 is a vertical cylindrical container (a container whose central axis is in the vertical direction), similar to the cooling chamber 1 described above, but is smaller than the cooling chamber 1. The heat insulating container 21 is a vertical cylindrical container provided in the heating chamber 20 and is formed of a heat insulating material having a predetermined heat insulating performance.
 複数の加熱ヒータ22は、棒状の発熱体であり、垂直姿勢で断熱容器21の内側かつ周方向に所定間隔で設けられている。これら複数の加熱ヒータ22は、加熱室KS内に収容された被処理物Xを所望温度(加熱温度)まで加熱する。なお、この加熱温度や加熱時間等の加熱条件は、被処理物Xに関する熱処理の目的や被処理物Xの材質等に応じて適宜設定される。 The plurality of heaters 22 are rod-shaped heating elements, and are provided at predetermined intervals in the circumferential direction in the heat insulating container 21 in a vertical posture. The plurality of heaters 22 heats the workpiece X accommodated in the heating chamber KS to a desired temperature (heating temperature). The heating conditions such as the heating temperature and the heating time are appropriately set according to the purpose of the heat treatment for the workpiece X, the material of the workpiece X, and the like.
 ここで、上記加熱条件には加熱室KSの真空度(圧力)が含まれる。真空排気管23は、加熱室KSに連通する配管であり、一端が断熱容器21の上部に接続され、他端が真空ポンプ24に接続されている。真空ポンプ24は、このような真空排気管23を介して加熱室KS内の空気を吸引する排気ポンプである。加熱室KS内の真空度は、真空ポンプ24による空気の排気量によって決定される。 Here, the heating condition includes the degree of vacuum (pressure) of the heating chamber KS. The vacuum exhaust pipe 23 is a pipe that communicates with the heating chamber KS, and has one end connected to the upper part of the heat insulating container 21 and the other end connected to the vacuum pump 24. The vacuum pump 24 is an exhaust pump that sucks air in the heating chamber KS through the vacuum exhaust pipe 23. The degree of vacuum in the heating chamber KS is determined by the amount of air exhausted by the vacuum pump 24.
 攪拌翼25は、断熱容器21内の上部に、回転軸の方向が鉛直方向(上下方向)となる姿勢で設けられた回転翼である。この攪拌翼25は、攪拌モータ26によって駆動されることによって、加熱室KS内の空気を攪拌する。攪拌モータ26は、出力軸が鉛直方向(上下方向)となるように加熱チャンバー20上に設けられた回転駆動源である。加熱チャンバー20上に位置する攪拌モータ26の出力軸は、加熱チャンバー20内に位置する攪拌翼25の回転軸に対して、加熱チャンバー20の気密性(シール性)を損なわないように結合している。 The stirring blade 25 is a rotating blade provided in an upper portion in the heat insulating container 21 in a posture in which the direction of the rotation axis is a vertical direction (vertical direction). The stirring blade 25 is driven by the stirring motor 26 to stir the air in the heating chamber KS. The stirring motor 26 is a rotational drive source provided on the heating chamber 20 so that the output shaft is in the vertical direction (vertical direction). The output shaft of the stirring motor 26 positioned on the heating chamber 20 is coupled to the rotating shaft of the stirring blade 25 positioned in the heating chamber 20 so as not to impair the airtightness (sealability) of the heating chamber 20. Yes.
 なお、本実施形態に係る多室型熱処理装置Mは、不図示の制御盤を備えている。この制御盤は、ユーザが熱処理における各種条件を設定入力する操作部と、上記操作部から入力される各種条件及び内部に予め記憶された制御プログラムに基づいて冷却装置R、中間搬送装置H及び3つの加熱装置を連携して作動させる制御部とを備えている。すなわち、この多室型熱処理装置Mは、制御盤によって冷却装置R、中間搬送装置H及び3つの加熱装置が自動制御されることによって被処理物Xに焼入れ処理を行う。 Note that the multi-chamber heat treatment apparatus M according to this embodiment includes a control panel (not shown). The control panel includes an operation unit for a user to set and input various conditions in the heat treatment, various conditions input from the operation unit, and a control program stored in advance in the cooling device R, intermediate transfer devices H and 3. And a controller that operates the two heating devices in cooperation with each other. That is, the multi-chamber heat treatment apparatus M performs the quenching process on the workpiece X by automatically controlling the cooling device R, the intermediate transfer device H, and the three heating devices by the control panel.
 ここで、上述した冷却制御部8は、上記制御盤の制御機能のうち、冷却装置Rによる被処理物Xの冷却制御を担う機能構成要素である。すなわち、制御盤は、冷却装置Rによる被処理物Xの冷却制御の他に、中間搬送装置Hによる被処理物Xの搬送制御、3つの加熱装置による被処理物Xの加熱制御を行う。 Here, the above-described cooling control unit 8 is a functional component that performs cooling control of the workpiece X by the cooling device R among the control functions of the control panel. That is, in addition to the cooling control of the workpiece X by the cooling device R, the control panel performs the conveyance control of the workpiece X by the intermediate transfer device H and the heating control of the workpiece X by the three heating devices.
 次に、本実施形態に係る多室型熱処理装置Mの動作(焼入れ処理)について、図5A、図5Bをも参照して詳しく説明する。 Next, the operation (quenching process) of the multi-chamber heat treatment apparatus M according to this embodiment will be described in detail with reference to FIGS. 5A and 5B.
 多室型熱処理装置Mによる焼入れ処理は、被処理物Xを所定の温度T1(加熱温度)に加熱した後に温度T2(冷却温度)まで一次冷却(急速冷却)した後にマルテンサイト変態点の温度まで二次冷却することにより行われる。このような被処理物Xの焼入れ処理に際して、被処理物Xは、作業者によって搬入/搬出口から中間搬送装置H内に収容される。そして、上記搬入/搬出口が作業者によって閉じられて搬送室HS内が密閉空間となると、中間搬送装置Hは、プッシャ―シリンダー15を作動させて被処理物Xを加熱室昇降台17上に移動させる。さらに、中間搬送装置Hは、加熱室昇降シリンダー18を作動させて被処理物Xを加熱装置K1の加熱室KS内に収容させる。 In the quenching treatment by the multi-chamber heat treatment apparatus M, the workpiece X is heated to a predetermined temperature T1 (heating temperature), and then first cooled to a temperature T2 (cooling temperature) and then rapidly cooled to a martensite transformation point. Secondary cooling is performed. When quenching the workpiece X, the workpiece X is accommodated in the intermediate transfer device H from the loading / unloading port by the operator. When the loading / unloading port is closed by the operator and the inside of the transfer chamber HS becomes a sealed space, the intermediate transfer device H operates the pusher cylinder 15 to place the workpiece X on the heating chamber lifting platform 17. Move. Further, the intermediate transfer device H operates the heating chamber elevating cylinder 18 to accommodate the workpiece X in the heating chamber KS of the heating device K1.
 そして、加熱装置K1は、被処理物Xが加熱室KS内に収容されると、加熱ヒータ22を作動させて被処理物Xを温度T1に加熱する。そして、中間搬送装置Hは、上記加熱が完了すると、加熱室昇降シリンダー18及びプッシャーシリンダー16を作動させることによって被処理物Xを冷却室昇降台12上に移動させる。また、中間搬送装置Hは、冷却室昇降シリンダー13を作動させることによって被処理物Xを冷却室RSに移動させ、さらに搬送室載置台11によって搬送チャンバー10と冷却チャンバー1との受渡口を塞ぐ。そして、冷却装置Rは、冷却ポンプ4を作動させることによってミスト状冷却液を複数の第1、第2冷却ノズル2a、2bから被処理物Xに向けて噴射させる。この結果、被処理物Xは、温度T1から温度T2まで一次冷却(ミスト冷却)される。 Then, when the workpiece X is accommodated in the heating chamber KS, the heating device K1 operates the heater 22 to heat the workpiece X to the temperature T1. And the intermediate conveyance apparatus H will move the to-be-processed object X on the cooling chamber raising / lowering stand 12 by operating the heating chamber raising / lowering cylinder 18 and the pusher cylinder 16, if the said heating is completed. Further, the intermediate transfer device H moves the workpiece X to the cooling chamber RS by operating the cooling chamber elevating cylinder 13, and further blocks the delivery port between the transfer chamber 10 and the cooling chamber 1 by the transfer chamber mounting table 11. . Then, the cooling device R operates the cooling pump 4 to inject the mist-like cooling liquid from the plurality of first and second cooling nozzles 2a and 2b toward the workpiece X. As a result, the workpiece X is primarily cooled (mist cooling) from the temperature T1 to the temperature T2.
 この一次冷却(ミスト冷却)では、図5Aに示すように温度T1の被処理物Xつまりオーステナイト組織を有する被処理物Xがパーライト組織への変態点Ps(所謂パーライトノーズ)を避けて温度T2に至るように急冷される。すなわち、被処理物Xは、図5Aの時刻t1~時刻t2の間において、複数の第1、第2冷却ノズル2a、2bからのミスト状冷却液の噴射によって温度T1から温度T2まで急冷される。なお、図5Aでは、被処理物Xの表面温度履歴を実線で示し、被処理物Xの内部温度履歴を破線で示している。 In this primary cooling (mist cooling), as shown in FIG. 5A, the workpiece X at temperature T1, that is, the workpiece X having an austenite structure, avoids the transformation point Ps (so-called pearlite nose) to the pearlite structure and reaches the temperature T2. It is cooled rapidly. That is, the workpiece X is rapidly cooled from the temperature T1 to the temperature T2 by the injection of mist-like cooling liquid from the plurality of first and second cooling nozzles 2a and 2b between time t1 and time t2 in FIG. 5A. . In FIG. 5A, the surface temperature history of the workpiece X is indicated by a solid line, and the internal temperature history of the workpiece X is indicated by a broken line.
 ここで、本実施形態における一次冷却(ミスト冷却)では、時刻t1~時刻t2の途中時刻である時刻taにおいてミスト状冷却液の熱伝達率が比較的低い状態から比較的高い状態への切り替え動作が1度行われる。すなわち、冷却制御部9は、時刻t1~時刻taに亘る期間(前期冷却期間S1)では、第1制御弁8aを開状態かつ第2制御弁8bを閉状態に設定することにより、図5Bに示すように、第1冷却ノズル2aから第1ミスト粒径C1のミスト状冷却液を被処理物Xに向けて噴射させる。すなわち、この前期冷却期間S1では、第1熱伝達率のミスト状冷却液によって被処理物Xが冷却される。 Here, in the primary cooling (mist cooling) in the present embodiment, the switching operation from the state in which the heat transfer coefficient of the mist-like coolant is relatively low to the state in which it is relatively high at time ta, which is an intermediate time between time t1 and time t2. Is performed once. That is, the cooling control unit 9 sets the first control valve 8a to the open state and the second control valve 8b to the closed state in the period from the time t1 to the time ta (preliminary cooling period S1). As shown, a mist-like cooling liquid having a first mist particle size C1 is sprayed toward the workpiece X from the first cooling nozzle 2a. That is, in the first cooling period S1, the workpiece X is cooled by the mist cooling liquid having the first heat transfer coefficient.
 そして、冷却制御部8は、時刻ta~時刻t2に亘る期間(後期冷却期間S2)では、第1制御弁8aを閉状態かつ第2制御弁8bを開状態に設定することにより、つまり冷却液の供給先を第1冷却ノズル2aから第2冷却ノズル2bに切り換えることにより、図5Bに示すように、第2冷却ノズル2bから第2ミスト粒径C2のミスト状冷却液を被処理物Xに向けて噴射させる。すなわち、この後期冷却期間S2では、前期冷却期間S1の第1熱伝達率よりも高い第2熱伝達率のミスト状冷却液によって被処理物Xが冷却される。 In the period from time ta to time t2 (late cooling period S2), the cooling control unit 8 sets the first control valve 8a to the closed state and the second control valve 8b to the open state, that is, the coolant Is switched from the first cooling nozzle 2a to the second cooling nozzle 2b, so that the mist-like cooling liquid having the second mist particle size C2 is supplied from the second cooling nozzle 2b to the workpiece X as shown in FIG. 5B. Inject toward. That is, in the latter cooling period S2, the workpiece X is cooled by the mist cooling liquid having the second heat transfer coefficient higher than the first heat transfer coefficient in the first cooling period S1.
 ここで、前期冷却期間S1におけるミスト状冷却液の第1熱伝達率つまり第1ミスト粒径C1は、一次冷却(ミスト冷却)に起因する被処理物Xの変形を最大限に抑制し得るように設定されている。すなわち、第1ミスト粒径C1は、予め行われる実験等によって被処理物Xの材質や形状毎に決定される。また、前期冷却期間S1つまり時刻taについても、予め行われる実験等によって被処理物Xの材質や形状毎に決定される。 Here, the first heat transfer coefficient of the mist coolant in the first cooling period S1, that is, the first mist particle size C1, can suppress the deformation of the workpiece X due to the primary cooling (mist cooling) to the maximum. Is set to That is, the first mist particle size C1 is determined for each material and shape of the workpiece X through experiments performed in advance. Further, the previous cooling period S1, that is, the time ta is also determined for each material and shape of the workpiece X through experiments and the like performed in advance.
 背景技術でも説明したように、ミスト冷却では蒸気膜を維持することができないために部品(被処理物)に変形が発生する。しかしながら、本実施形態では、蒸気膜を維持するのではなく、被処理物Xに変形が発生し得る被処理物Xの高温期間つまり前期冷却期間S1に第1ミスト粒径C1を設定することによって、ミスト状冷却液の熱伝達率を低下させる。そして、この結果として被処理物Xの冷却能率を抑制することによって被処理物Xの変形を抑制する。 As explained in the background art, since the vapor film cannot be maintained by mist cooling, the parts (objects to be processed) are deformed. However, in the present embodiment, instead of maintaining the vapor film, by setting the first mist particle size C1 in the high temperature period of the workpiece X in which deformation can occur in the workpiece X, that is, the previous cooling period S1. Reduce the heat transfer coefficient of the mist coolant. As a result, the deformation of the workpiece X is suppressed by suppressing the cooling efficiency of the workpiece X.
 このような前期冷却期間S1における被処理物Xのミスト冷却は被処理物Xの温度低下が比較的緩やかになる。したがって、仮に後期冷却期間S2においても前期冷却期間S1と同様に第1ミスト粒径C1のミスト状冷却液でミスト冷却を行った場合には、一次冷却においてパーライト組織への変態点Psを避けることができない可能性がある。そこで、本実施形態では、第1ミスト粒径C1よりも粒径が大きい第2ミスト粒径C2のミスト状冷却液で後期冷却期間S2におけるミスト冷却を行う。よって、後期冷却期間S2における冷却能率を前期冷却期間S1における冷却能率よりも向上させ、以ってパーライト組織への変態点Psを避けた一次冷却を実現している。 In such mist cooling of the workpiece X during the previous cooling period S1, the temperature drop of the workpiece X is relatively slow. Therefore, if the mist cooling is performed with the mist-like coolant having the first mist particle size C1 in the late cooling period S2 as in the previous cooling period S1, the transformation point Ps to the pearlite structure should be avoided in the primary cooling. May not be possible. Therefore, in the present embodiment, mist cooling is performed in the late cooling period S2 with a mist-like coolant having a second mist particle size C2 having a particle size larger than the first mist particle size C1. Therefore, the cooling efficiency in the late cooling period S2 is improved more than the cooling efficiency in the previous cooling period S1, thereby realizing primary cooling avoiding the transformation point Ps to the pearlite structure.
 ここで、図6に示すように、代表的な冷却剤である水道水、油(JIS 日本工業規格 C 2320-1999 1種2号油)、窒素(10bar 15m/s)中の焼入れした銀円柱試片(10mm径、30mm長)の冷却曲線のデータから、集中熱容量法によって算出された各々の冷却剤の表面熱伝達特性曲線が知られている。
 図6によると、銀円柱試片の表面温度が約600℃以上の高温領域において、30℃の水道水は80℃の上記油に対して、表面熱伝達率が大きいことがわかる。
Here, as shown in FIG. 6, a quenching silver cylinder in tap water, oil (JIS Japanese Industrial Standard C 2320-1999 Type 1 No. 2 oil), nitrogen (10 bar 15 m / s), which is a typical coolant. The surface heat transfer characteristic curve of each coolant calculated by the concentrated heat capacity method is known from the data of the cooling curve of the specimen (10 mm diameter, 30 mm length).
According to FIG. 6, it can be seen that in the high temperature region where the surface temperature of the silver cylindrical specimen is about 600 ° C. or higher, 30 ° C. tap water has a larger surface heat transfer coefficient than the 80 ° C. oil.
 そこで、上記実施形態を模擬した、例えば以下のような冷却装置を用いて、試験体(被処理物)のミスト状冷却液として水を使用したミスト冷却実験を行った。
 冷却装置は、水タンク、所定の配管及びノズルから成る。
 水タンクは容量60Lであり、冷却に使用する水が貯留されている。また、上記水タンクは窒素ガスで加圧されており、所定の配管と接続されている。
 ノズルには、水のみを噴射する一流体ノズルと、ガスを使用して水を微細化させて噴射する二流体ノズルの2種類のノズルを採用した。より詳細には、一流体ノズル1-1には、いけうち社製 1/4M JJXP 060 HTPVC、一流体ノズル1-3には、エバーロイ社製 1/4KSFHS 0865、一流体ノズル1-4には、新倉工業社製 M1/4 EX438、二流体ノズル2-2には、エバーロイ社製 1/4 KSAMF 1875-1/4 A24 1/4 W20をそれぞれ使用した。尚、上記ノズルは、所定の配管の、水タンクが取り付けられている端部とは反対側の端部に設けられている。また、ノズルの先端は、試験体表面から200mm離間した位置に設置される。
 試験体としては、厚さ50mm、直径100mmの円盤形状のステンレス鋼(JIS 日本工業規格 SUS304)を使用した。試験体は、電気炉に挿入され、1000℃まで加熱される。
 水タンクに貯留された水は、窒素ガスで加圧され、加圧された水がノズルから、1000℃まで加熱された試験体に対して噴射される。また、各ノズルからは、噴射液圧が0.03~0.5MPaになるように、水が噴射される。
Therefore, a mist cooling experiment was performed using water as a mist-like cooling liquid of the test body (object to be processed), for example, using the following cooling device simulating the above embodiment.
A cooling device consists of a water tank, predetermined piping, and a nozzle.
The water tank has a capacity of 60 L and stores water used for cooling. The water tank is pressurized with nitrogen gas and connected to a predetermined pipe.
Two types of nozzles were adopted: a one-fluid nozzle that injects only water and a two-fluid nozzle that injects gas by using water to make it finer. More specifically, the one-fluid nozzle 1-1 has a 1 / 4M JJXP 060 HTPVC manufactured by Ikeuchi Co., Ltd., the one-fluid nozzle 1-3 has a 1/4 KSFHS 0865 manufactured by Everloy, and the one-fluid nozzle 1-4 has a A 1/4 KSAMF 1875-1 / 4 A24 1/4 W20 manufactured by Everloy Co., Ltd. was used for the M1 / 4 EX438 manufactured by Arakura Kogyo Co., Ltd. and the two-fluid nozzle 2-2, respectively. The nozzle is provided at an end of a predetermined pipe opposite to the end where the water tank is attached. The tip of the nozzle is installed at a position spaced 200 mm from the surface of the test body.
As a test body, disc-shaped stainless steel (JIS Japanese Industrial Standard SUS304) having a thickness of 50 mm and a diameter of 100 mm was used. The specimen is inserted into an electric furnace and heated to 1000 ° C.
The water stored in the water tank is pressurized with nitrogen gas, and the pressurized water is sprayed from the nozzle to the test specimen heated to 1000 ° C. Further, water is jetted from each nozzle so that the jet fluid pressure is 0.03 to 0.5 MPa.
 次に、温度測定方法について説明する。
 熱電対は、試験体の中心位置において、表面から深さ方向に2mm、6mm、10mm、25mmの4箇所、及び、試験体の側面に上端から25mm及び表面から2mmの位置に互いに周方向に180°ずらした2箇所の合計6箇所に設置される。
 そして、1000℃まで加熱された試験体がミスト冷却されて常温になるまでの温度変化が測定される。
Next, a temperature measurement method will be described.
The thermocouple is 180 in the circumferential direction at four positions of 2 mm, 6 mm, 10 mm, and 25 mm in the depth direction from the surface at the center position of the test body, and 25 mm from the upper end and 2 mm from the surface on the side surface of the test body. It is installed at a total of 6 locations, 2 ° shifted.
And the temperature change until the test body heated to 1000 degreeC is mist-cooled and becomes normal temperature is measured.
 上記ミスト冷却試験を行い、試験体に挿入した熱電対の温度の時間変化から、平均熱伝達率を算出した結果を図7に示す。尚、図7には、試験体の表面温度が600~1000℃の範囲に対応する場合の平均熱伝達率が示されている。
 図7の点線が、油冷却をした場合の値を示しており、一流体ノズルである1-3や、二流体ノズルである2-2のノズルを使用すると、水を使用したミスト冷却であっても油冷却とほぼ同様の熱伝達率を実現できた。つまり、本ミスト冷却を使用した冷却装置によれば、ミスト状冷却液の熱伝達率を油冷却と略同等に低下させることができる。そして、被処理物Xの冷却能率を抑制することによって被処理物Xの変形を抑制することができる。
FIG. 7 shows the result of calculating the average heat transfer coefficient from the time change of the temperature of the thermocouple inserted into the test body after performing the mist cooling test. FIG. 7 shows the average heat transfer coefficient when the surface temperature of the specimen corresponds to a range of 600 to 1000 ° C.
The dotted line in FIG. 7 indicates the value when oil cooling is performed. When the one-fluid nozzle 1-3 or the two-fluid nozzle 2-2 is used, the mist cooling using water is not possible. However, almost the same heat transfer coefficient as oil cooling was achieved. That is, according to the cooling device using the mist cooling, the heat transfer coefficient of the mist cooling liquid can be reduced substantially equal to that of oil cooling. And deformation | transformation of the to-be-processed object X can be suppressed by suppressing the cooling efficiency of the to-be-processed object X. FIG.
 以上説明したように、本実施形態における冷却装置Rによれば、被処理物Xが比較的高温な期間つまり前期冷却期間S1と被処理物Xが比較的低温な期間つまり後期冷却期間S2とでミスト状冷却液のミスト粒径を第1ミスト粒径C1から第2ミスト粒径C2に調節するので、一次冷却において被処理物Xの変形を抑制し、かつパーライト組織への変態点Psを避けることが可能である。 As described above, according to the cooling device R in the present embodiment, the period during which the workpiece X is relatively high, that is, the first cooling period S1, and the period when the workpiece X is relatively low, that is, the latter cooling period S2. Since the mist particle size of the mist cooling liquid is adjusted from the first mist particle size C1 to the second mist particle size C2, deformation of the workpiece X is suppressed in the primary cooling and the transformation point Ps to the pearlite structure is avoided. It is possible.
 なお、本開示は上記実施形態に限定されず、例えば以下のような変形例が考えられる。
(1)上記実施形態では、図5Bに示すように、ミスト状冷却液のミスト粒径を第2ミスト粒径C1から第1ミスト粒径C2に調節することによりミスト状冷却液の熱伝達率を第1熱伝達率から第2熱伝達率に切り換えたが、本開示はこれに限定されない。ミスト状冷却液の密度(ミスト密度)を切り替えることにより熱伝導率を第1熱伝達率から第2熱伝達率に切り換えてもよい。例えば、ミスト状冷却液の密度を比較的低い密度から比較的高い密度に調節することにより、ミスト状冷却液の熱伝達率を切り換えてもよい。
In addition, this indication is not limited to the said embodiment, For example, the following modifications can be considered.
(1) In the above embodiment, as shown in FIG. 5B, the heat transfer coefficient of the mist coolant is adjusted by adjusting the mist particle size of the mist coolant from the second mist particle size C1 to the first mist particle size C2. Is switched from the first heat transfer coefficient to the second heat transfer coefficient, but the present disclosure is not limited to this. The thermal conductivity may be switched from the first heat transfer coefficient to the second heat transfer coefficient by switching the density of the mist coolant (mist density). For example, the heat transfer coefficient of the mist coolant may be switched by adjusting the density of the mist coolant from a relatively low density to a relatively high density.
 例えば冷却液と所定のガスとの気液二相流をミスト状冷却液として噴射ノズルから被処理物Xに噴射し、かつ冷却液に対するガスの混合比を調節してミスト密度を第1ミスト密度から第2ミスト密度に調節することにより、熱伝達率を第1熱伝達率から第2熱伝達率に切り換える。なお、このようなミスト密度の調節に代えて、噴射ノズルに供給する冷却液の流量を調節することによりミスト密度を切り換えてもよい。 For example, a gas-liquid two-phase flow of a coolant and a predetermined gas is sprayed from the spray nozzle onto the workpiece X as a mist coolant, and the mist density is adjusted to the first mist density by adjusting the mixing ratio of the gas to the coolant. The heat transfer rate is switched from the first heat transfer rate to the second heat transfer rate by adjusting from to the second mist density. Instead of such adjustment of the mist density, the mist density may be switched by adjusting the flow rate of the coolant supplied to the injection nozzle.
(2)上記実施形態では、図5Bに示すように時刻taにおいて、第1ミスト粒径C1と第2ミスト粒径C2とを切り替えたが、本開示はこれに限定されない。例えば時刻taから所定期間(オーバーラップ期間)に亘って第1ミスト粒径C1のミスト状冷却液と第2ミスト粒径C2のミスト状冷却液とを第1、第2冷却ノズル2a,2bから噴射し、上記オーバーラップ期間の経過後に第2ミスト粒径C2のミスト状冷却液のみを第2冷却ノズル2bから噴射してもよい。
つまり、ミスト状冷却液のミスト粒径を、第1ミスト粒径のミスト状冷却液と第2ミスト粒径のミスト状冷却液とが混在する状態を経て第1ミスト粒径から第2ミスト粒径に調節してもよい。
(2) Although the first mist particle size C1 and the second mist particle size C2 are switched at the time ta as shown in FIG. 5B in the above embodiment, the present disclosure is not limited to this. For example, the mist-like coolant having the first mist particle size C1 and the mist-like coolant having the second mist particle size C2 are supplied from the first and second cooling nozzles 2a and 2b over a predetermined period (overlap period) from the time ta. Alternatively, only the mist-like coolant having the second mist particle size C2 may be injected from the second cooling nozzle 2b after the overlap period has elapsed.
That is, the mist particle size of the mist coolant is changed from the first mist particle size to the second mist particle through a state in which the mist coolant solution having the first mist particle size and the mist coolant solution having the second mist particle size are mixed. The diameter may be adjusted.
 上記オーバーラップ期間は、第1ミスト粒径C1のミスト状冷却液と第2ミスト粒径C2のミスト状冷却液とが混在する期間である。つまり、第1熱伝達率と第2熱伝達率との中間に位置する熱伝達率を有するミスト状冷却液が存在する期間である。このようなオーバーラップ期間を経てミスト状冷却液のミスト粒径を第1ミスト粒径C1から第2ミスト粒径C2に調節することにより、第1熱伝達率から第2熱伝達率への切換を緩やかにすることが可能である。よって、上記構成によれば、被処理物X内の熱応力の蓄積を抑制することができる。 The overlap period is a period in which the mist coolant with the first mist particle size C1 and the mist coolant with the second mist particle size C2 coexist. That is, it is a period in which a mist-like coolant having a heat transfer coefficient located between the first heat transfer coefficient and the second heat transfer coefficient exists. By switching the mist particle size of the mist coolant from the first mist particle size C1 to the second mist particle size C2 through such an overlap period, switching from the first heat transfer coefficient to the second heat transfer coefficient. Can be relaxed. Therefore, according to the said structure, accumulation | storage of the thermal stress in the to-be-processed object X can be suppressed.
(3)上記実施形態では、前期冷却期間S1において第1ミスト粒径C1のミスト状冷却液を噴射し、後期冷却期間S2において第2ミスト粒径C2のミスト状冷却液を噴射したが、本開示はこれに限定されない。後期冷却期間S2において第2ミスト粒径C2のミスト状冷却液に加えて第1ミスト粒径C1のミスト状冷却液を噴射してもよい。この場合には、ミスト粒径が大きくなって熱伝達率が上昇するだけではなく、ミスト密度を上昇させることができるので、熱伝達率をさらに上昇させることができる。 (3) In the above embodiment, the mist-like cooling liquid having the first mist particle size C1 is injected in the first cooling period S1, and the mist-like cooling liquid having the second mist particle size C2 is injected in the latter cooling period S2. The disclosure is not limited to this. In the late cooling period S2, in addition to the mist coolant having the second mist particle size C2, the mist coolant having the first mist particle size C1 may be injected. In this case, not only the mist particle size is increased and the heat transfer rate is increased, but also the mist density can be increased, so that the heat transfer rate can be further increased.
(4)上記実施形態では、は、図1に示すように、冷却装置R、中間搬送装置H及び3つの加熱装置を一体化させた多室型熱処理装置M(熱処理装置)について説明したが、本開示はこれに限定されない。熱処理装置の必要最小構成要素は加熱装置及び冷却装置であり、被処理物を加熱する加熱装置と、加熱装置で加熱された被処理物を冷却する冷却装置とを備える熱処理装置であればよく、中間搬送装置Hのような搬送装置については別体としてもよい。 (4) In the above embodiment, as shown in FIG. 1, the multi-chamber heat treatment apparatus M (heat treatment apparatus) in which the cooling device R, the intermediate transfer device H, and the three heating devices are integrated has been described. The present disclosure is not limited to this. The necessary minimum components of the heat treatment apparatus are a heating apparatus and a cooling apparatus, as long as the heat treatment apparatus includes a heating apparatus that heats the workpiece and a cooling apparatus that cools the workpiece heated by the heating apparatus, The transport device such as the intermediate transport device H may be a separate body.
 本開示における冷却装置及び熱処理装置によれば、被処理物の冷却の途中でミスト状冷却液の熱伝達率を比較的低い状態から比較的高い状態に切り換える手法を用いるので、被処理物の変形を従来よりも確実に抑制することができる。 According to the cooling device and the heat treatment device of the present disclosure, since a method of switching the heat transfer coefficient of the mist-like coolant from a relatively low state to a relatively high state during the cooling of the workpiece, deformation of the workpiece is performed. Can be suppressed more reliably than before.
 K1、K2 加熱装置
 M 多室型熱処理装置
 R 冷却装置
 X 被処理物
 1 冷却チャンバー
 2a、2b 第1、第2冷却ノズル(第1、第2噴射ノズル)
 3 ミストヘッダー
 4 冷却ポンプ
 5 熱交換器
 6 冷却排水管
 7 冷却水槽
 8a、8b 第1、第2制御弁
 9 冷却制御部
K1, K2 Heating device M Multi-chamber heat treatment device R Cooling device X Object 1 Cooling chamber 2a, 2b First and second cooling nozzles (first and second injection nozzles)
3 Mist Header 4 Cooling Pump 5 Heat Exchanger 6 Cooling Drain Pipe 7 Cooling Water Tank 8a, 8b First and Second Control Valves 9 Cooling Control Unit

Claims (7)

  1.  ミスト状冷却液を用いて被処理物を冷却する冷却装置であって、
     前記被処理物の冷却の途中で前記ミスト状冷却液の熱伝達率を比較的低い状態から比較的高い状態に切り換える熱伝達率切換手段を備える冷却装置。
    A cooling device for cooling an object to be processed using a mist-like coolant,
    A cooling device comprising heat transfer coefficient switching means for switching the heat transfer coefficient of the mist-like coolant from a relatively low state to a relatively high state during cooling of the workpiece.
  2.  前記熱伝達率切換手段は、前記ミスト状冷却液のミスト粒径を比較的小さい粒径から比較的大きい粒径に調節することにより前記ミスト状冷却液の熱伝達率を切り換える請求項1記載の冷却装置。 The heat transfer coefficient switching means switches the heat transfer coefficient of the mist coolant by adjusting the mist particle size of the mist coolant from a relatively small particle size to a relatively large particle size. Cooling system.
  3.  前記熱伝達率切換手段は、
     第1孔径の噴射孔を備え、冷却液を前記ミスト状冷却液のミスト粒径を比較的小さい第1ミスト粒径の前記ミスト状冷却液に変換する第1噴射ノズルと、
     前記第1孔径よりも大きな第2孔径の噴射孔を備え、前記冷却液を前記第1ミスト粒径よりも大きな第2ミスト粒径の前記ミスト状冷却液に変換する第2噴射ノズルと、
     前記第1噴射ノズル及び前記第2噴射ノズルに前記冷却液を供給する冷却液供給装置とを備え、
     前記冷却液の供給先を第1噴射ノズルから第2噴射ノズルに切り換えることにより、前記ミスト状冷却液のミスト粒径を前記第1ミスト粒径から前記第2ミスト粒径に調節する請求項2記載の冷却装置。
    The heat transfer coefficient switching means is
    A first injection nozzle that includes an injection hole having a first hole diameter, and that converts the mist particle size of the mist coolant into the mist coolant having a relatively small first mist particle size;
    A second injection nozzle that has an injection hole having a second hole diameter larger than the first hole diameter, and converts the cooling liquid into the mist-like cooling liquid having a second mist particle diameter larger than the first mist particle diameter;
    A coolant supply device for supplying the coolant to the first spray nozzle and the second spray nozzle;
    3. The mist particle size of the mist-like coolant is adjusted from the first mist particle size to the second mist particle size by switching the supply destination of the coolant from the first injection nozzle to the second injection nozzle. The cooling device as described.
  4.  前記熱伝達率切換手段は、前記ミスト状冷却液のミスト粒径を、前記第1ミスト粒径の前記ミスト状冷却液と前記第2ミスト粒径の前記ミスト状冷却液とが混在する状態を経て前記第1ミスト粒径から前記第2ミスト粒径に調節する請求項2記載の冷却装置。 The heat transfer coefficient switching means is configured such that the mist particle size of the mist coolant is a mixture of the mist coolant having the first mist particle size and the mist coolant having the second mist particle size. The cooling device according to claim 2, wherein the first mist particle size is adjusted to the second mist particle size via the first mist particle size.
  5.  前記熱伝達率切換手段は、前記ミスト状冷却液のミスト粒径を、前記第1ミスト粒径の前記ミスト状冷却液と前記第2ミスト粒径の前記ミスト状冷却液とが混在する状態を経て前記第1ミスト粒径から前記第2ミスト粒径に調節する請求項3記載の冷却装置。 The heat transfer coefficient switching means is configured such that the mist particle size of the mist coolant is a mixture of the mist coolant having the first mist particle size and the mist coolant having the second mist particle size. The cooling device according to claim 3, wherein the first mist particle size is adjusted to the second mist particle size.
  6.  前記熱伝達率切換手段は、前記ミスト状冷却液の密度を比較的低い密度から比較的高い密度に調節することにより前記ミスト状冷却液の熱伝達率を切り換える請求項1記載の冷却装置。 The cooling device according to claim 1, wherein the heat transfer coefficient switching means switches the heat transfer coefficient of the mist coolant by adjusting the density of the mist coolant from a relatively low density to a relatively high density.
  7.  前記被処理物を加熱する加熱装置と、
     該加熱装置で加熱された前記被処理物を冷却する請求項1~6のいずれか一項に記載の冷却装置と
     を備える熱処理装置。
    A heating device for heating the workpiece;
    A heat treatment apparatus comprising: the cooling apparatus according to any one of claims 1 to 6 that cools the workpiece heated by the heating apparatus.
PCT/JP2017/006551 2016-03-23 2017-02-22 Cooling device and thermal treatment device WO2017163732A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018507149A JP6742399B2 (en) 2016-03-23 2017-02-22 Cooling device and heat treatment device
CN201780018602.1A CN108779507A (en) 2016-03-23 2017-02-22 Cooling device and annealing device
DE112017001506.5T DE112017001506T5 (en) 2016-03-23 2017-02-22 Cooling device and heat treatment device
US15/991,079 US20180274049A1 (en) 2016-03-23 2018-05-29 Cooling device and thermal treatment device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-058930 2016-03-23
JP2016058930 2016-03-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/991,079 Continuation US20180274049A1 (en) 2016-03-23 2018-05-29 Cooling device and thermal treatment device

Publications (1)

Publication Number Publication Date
WO2017163732A1 true WO2017163732A1 (en) 2017-09-28

Family

ID=59901130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006551 WO2017163732A1 (en) 2016-03-23 2017-02-22 Cooling device and thermal treatment device

Country Status (5)

Country Link
US (1) US20180274049A1 (en)
JP (1) JP6742399B2 (en)
CN (1) CN108779507A (en)
DE (1) DE112017001506T5 (en)
WO (1) WO2017163732A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019203186A (en) * 2018-05-25 2019-11-28 光洋サーモシステム株式会社 Heat treatment device, and manufacturing method of metal component
WO2021079806A1 (en) * 2019-10-21 2021-04-29 日本製鋼所M&E株式会社 Cooling method and cooling device for member to be cooled

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11014148B2 (en) * 2016-09-23 2021-05-25 Afc-Holcroft, Llc Method for measuring and continuously monitoring the heat transfer characteristics of a fluid in a system
CN111850268B (en) * 2020-07-06 2022-03-01 海盐金牛机械科技股份有限公司 Heat treatment device and heat treatment process for high-hardness stainless steel screw

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224714A (en) * 1984-04-19 1985-11-09 Toyota Motor Corp Method for cooling member to be induction-hardened
JP2001262220A (en) * 2000-03-23 2001-09-26 Kawasaki Steel Corp Method for cooling steel material
JP2011122211A (en) * 2009-12-11 2011-06-23 Ihi Corp Mist cooling apparatus, heat treatment apparatus and mist cooling method
JP2012514694A (en) * 2009-01-09 2012-06-28 フイブ・スタン Method and section for cooling a moving metal belt by spraying liquid
JP2014141747A (en) * 2009-02-10 2014-08-07 Ihi Corp Heat treatment apparatus and heat treatment method
WO2015182554A1 (en) * 2014-05-29 2015-12-03 株式会社Ihi Cooling device and multi-chamber heat treatment device
US20160083813A1 (en) * 2014-09-18 2016-03-24 Consolidated Engineering Company, Inc. System and method for quenching castings

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4140302A (en) * 1978-02-27 1979-02-20 Lynch Roland H Jet impingement cooling device
JPS5565318A (en) * 1978-11-09 1980-05-16 Mitsubishi Heavy Ind Ltd Water hardening method
US7255153B2 (en) * 2005-05-25 2007-08-14 International Business Machines Corporation High performance integrated MLC cooling device for high power density ICS and method for manufacturing
JP5906005B2 (en) * 2010-03-25 2016-04-20 株式会社Ihi Heat treatment method
KR20140009907A (en) * 2011-01-10 2014-01-23 에스씨아이브이에이엑스 가부시키가이샤 Temperature adjusting device, and imprinting device using same
JP2016058930A (en) 2014-09-11 2016-04-21 キヤノンマーケティングジャパン株式会社 Mobile terminal, imaging control method in the same, and program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224714A (en) * 1984-04-19 1985-11-09 Toyota Motor Corp Method for cooling member to be induction-hardened
JP2001262220A (en) * 2000-03-23 2001-09-26 Kawasaki Steel Corp Method for cooling steel material
JP2012514694A (en) * 2009-01-09 2012-06-28 フイブ・スタン Method and section for cooling a moving metal belt by spraying liquid
JP2014141747A (en) * 2009-02-10 2014-08-07 Ihi Corp Heat treatment apparatus and heat treatment method
JP2011122211A (en) * 2009-12-11 2011-06-23 Ihi Corp Mist cooling apparatus, heat treatment apparatus and mist cooling method
WO2015182554A1 (en) * 2014-05-29 2015-12-03 株式会社Ihi Cooling device and multi-chamber heat treatment device
US20160083813A1 (en) * 2014-09-18 2016-03-24 Consolidated Engineering Company, Inc. System and method for quenching castings

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019203186A (en) * 2018-05-25 2019-11-28 光洋サーモシステム株式会社 Heat treatment device, and manufacturing method of metal component
WO2021079806A1 (en) * 2019-10-21 2021-04-29 日本製鋼所M&E株式会社 Cooling method and cooling device for member to be cooled
JP2021066915A (en) * 2019-10-21 2021-04-30 日本製鋼所M&E株式会社 Method and device for cooling member to be cooled
JP7350441B2 (en) 2019-10-21 2023-09-26 日本製鋼所M&E株式会社 Cooling method and cooling device for cooled components

Also Published As

Publication number Publication date
US20180274049A1 (en) 2018-09-27
JPWO2017163732A1 (en) 2018-08-09
DE112017001506T5 (en) 2019-01-03
CN108779507A (en) 2018-11-09
JP6742399B2 (en) 2020-08-19

Similar Documents

Publication Publication Date Title
WO2017163732A1 (en) Cooling device and thermal treatment device
JP6238498B2 (en) Heat treatment device and cooling device
JP5821987B2 (en) Heat treatment apparatus and heat treatment method
US10072315B2 (en) Device for individual quench hardening of technical equipment components
WO2015182554A1 (en) Cooling device and multi-chamber heat treatment device
US10648050B2 (en) Heat treatment apparatus
JP2008170116A (en) Heat treating facility
WO2016013424A1 (en) Cooling device and multi-chamber heat treatment device
JP6776214B2 (en) Heat treatment equipment
US10273553B2 (en) Cooling device and multi-chamber heat treatment device
JP6271096B2 (en) Heat treatment equipment
WO2018123246A1 (en) Heat treatment apparatus
CN113088646A (en) Heat treatment apparatus
JP6414959B2 (en) Heat treatment equipment
WO2019131451A1 (en) Heat treatment device and heat treatment method
WO2019111591A1 (en) Heat treatment device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018507149

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769778

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17769778

Country of ref document: EP

Kind code of ref document: A1