WO2017163700A1 - Connection device using magneto-rheological fluid - Google Patents

Connection device using magneto-rheological fluid Download PDF

Info

Publication number
WO2017163700A1
WO2017163700A1 PCT/JP2017/006181 JP2017006181W WO2017163700A1 WO 2017163700 A1 WO2017163700 A1 WO 2017163700A1 JP 2017006181 W JP2017006181 W JP 2017006181W WO 2017163700 A1 WO2017163700 A1 WO 2017163700A1
Authority
WO
WIPO (PCT)
Prior art keywords
yoke housing
magnetorheological fluid
magnetic field
housing
shaft
Prior art date
Application number
PCT/JP2017/006181
Other languages
French (fr)
Japanese (ja)
Inventor
敏明 楠田
Original Assignee
シンフォニアマイクロテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シンフォニアマイクロテック株式会社 filed Critical シンフォニアマイクロテック株式会社
Priority to CN201780019381.XA priority Critical patent/CN109073004A/en
Publication of WO2017163700A1 publication Critical patent/WO2017163700A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D37/00Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive
    • F16D37/02Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive the particles being magnetisable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D63/00Brakes not otherwise provided for; Brakes combining more than one of the types of groups F16D49/00 - F16D61/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/12Devices with one or more rotary vanes turning in the fluid any throttling effect being immaterial, i.e. damping by viscous shear effect only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/53Means for adjusting damping characteristics by varying fluid viscosity, e.g. electromagnetically

Definitions

  • the present invention relates to a coupling device using a magnetorheological fluid.
  • Patent Document 1 As this type of technology, for example, there is one described in Patent Document 1 below.
  • the prior art is configured as follows.
  • the rotating device described in Patent Document 1 includes a rotating body, an annular disk coupled to the rotating body, an electromagnet, and a housing that covers these.
  • the housing is filled with a magnetorheological fluid.
  • a magnetic field is applied to the magnetorheological fluid by energizing the electromagnet, the viscosity of the magnetorheological fluid increases and a braking force is applied to the rotating body via the disk.
  • Patent Document 1 describes plastic as a material of the housing. Forming the housing from a resin material such as plastic is advantageous in terms of reducing the weight of the apparatus. On the other hand, when priority is given to strength, the housing is made of a metal material. When the housing is formed of a metal material with respect to the device described in Patent Document 1, generally, the housing is manufactured by cutting.
  • the housing As a method for solving the above-described problems caused by manufacturing the housing by cutting, for example, it is conceivable to manufacture the housing by pressing a metal plate using a mold. According to the press work, unlike the cutting process, the dimensions of each part of the housing are determined by a mold that needs to be manufactured, so that the variation in the dimensions of the individual housings can be easily reduced.
  • the metal plate material is simply pressed and the conventional machined product is replaced with a simple pressed product, the main part of the housing produced by this, that is, the part filled with the magnetorheological fluid, It is difficult to increase the rigidity. If the rigidity of the main part of the housing becomes low, the main part is likely to be deformed, and there is a concern that the operation of the apparatus becomes unstable.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a magnetorheological fluid including a housing having a structure capable of increasing the rigidity of the main part even if the housing is manufactured by press working or the like. It is providing the coupling device using.
  • the present invention includes a movable shaft formed of a non-magnetic material, a movable member coupled to the movable shaft and moving integrally with the movable shaft, and a magnetic member applied by applying a magnetic field.
  • a magnetorheological fluid having a higher viscosity than before a magnetic field generator for applying a magnetic field to the magnetorheological fluid, a part of the movable shaft, the movable member, the magnetorheological fluid, and the magnetic field generator.
  • a coupling device using a magnetorheological fluid including a yoke housing made of a magnetic material. An opposing portion of the yoke housing that faces the movable member with the magnetorheological fluid sandwiched therebetween has a concave shape that is recessed toward the movable member.
  • the degree of change in the viscosity of the magnetorheological fluid due to the application of the magnetic field and the magnitude of the viscosity are greatly affected by the gap size of the space filled with the magnetorheological fluid that is partitioned and formed at the facing portion. If the gap dimension changes, the magnetic flux density changes, and the magnitude of the viscosity at which the magnetorheological fluid develops also changes. That is, the facing part is a main part of the yoke housing that determines the stability of the operation of the coupling device. According to the said structure, even if a housing is produced by press work etc. by making the said opposing part into a concave shape, the rigidity of the said opposing part can be made high. As a result, the facing portion is not easily deformed, and the operation stability of the coupling device is improved. By improving the stability of the operation of the coupling device, the performance of the coupling device is improved.
  • the concave shape is an annular concave shape, so that a projecting portion that protrudes outward is formed at the center side portion of the annular concave shape, and the magnetic viscous fluid is formed on the projecting portion. It is preferable that a discharge port is formed.
  • the discharge port of the magnetorheological fluid is formed in the protrusion, there is also an advantage that the discharge port can be easily sealed. That is, according to the above-described configuration, workability at the time of assembling the coupling device can be improved. Furthermore, by forming the concave shape into an annular concave shape, a projection that can be used as a portion for providing a discharge port for the magnetorheological fluid is formed in the central portion. That is, by making the concave shape an annular concave shape, it is possible to improve the workability at the time of assembling the coupling device in addition to increasing the rigidity of the main part of the yoke housing.
  • the yoke housing is divided into a first yoke housing and a second yoke housing that are coupled to each other, and an inner surface of the first yoke housing in a direction in which the facing portion faces the movable member. Further, an end surface in the facing direction of the side wall portion of the second yoke housing is brought into contact with the second yoke housing, so that it is formed between the facing portion of the first yoke housing and the facing portion of the second yoke housing. It is preferable that the dimension of the gap to be determined is determined.
  • the accurate dimension of the gap can be easily obtained and the dimension can be easily maintained.
  • the stability of the operation of the coupling device can be further improved.
  • the accurate dimension of the gap can be easily obtained, there is an advantage that the mass productivity of the coupling device can be improved.
  • the magnetic field generating means is housed inside a contact portion where the inner surface of the first yoke housing and the end surface of the second yoke housing abut, and the yoke housing is laterally moved.
  • the side wall portion of the first yoke housing and the side wall portion of the second yoke housing overlap each other from the contact portion to the magnetic field generating means.
  • the portion of the yoke housing surrounding the magnetic field generating means is a passage through which the magnetic flux generated from the magnetic field generating means passes.
  • the side wall portion of the first yoke housing and the side wall portion of the second yoke housing are overlapped from the abutting portion when the yoke housing is viewed from the side to the magnetic field generating means. It is possible to prevent the magnetic flux from being weakened, thereby further improving the stability of the operation of the coupling device. Moreover, the sufficient operating force can be ensured.
  • a coupling device using a magnetorheological fluid including a housing having a structure capable of increasing the rigidity of the main part even if the housing is manufactured by press working or the like.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG. It is a perspective view when the connecting device shown in FIG. 1 is turned over. It is a perspective view when the connecting device shown in FIG. 1 is turned over and a rubber cap is removed.
  • the coupling device using a magnetorheological fluid according to the present invention can be used as a brake device that applies a braking force to a driven component, or a clutch that connects or disconnects a drive shaft and its driven shaft.
  • the magnetorheological fluid is a known fluid having a property that the viscosity becomes higher than that before the magnetic field is applied by applying the magnetic field, and is also called MRF (Magneto-rheological fluid).
  • MRF Magnetic-rheological fluid
  • This magnetorheological fluid is a dispersion of ferromagnetic particles such as carbonyl iron powder in oil.
  • ferromagnetic particles such as carbonyl iron powder in oil.
  • nano-sized extremely fine ferromagnetic particles are dispersed in oil.
  • the viscosity can be controlled by the strength of the applied magnetic field and the viscosity change is responsive.
  • the coupling device 100 using a magnetorheological fluid described below as an embodiment of the present invention is used as a brake device using a magnetorheological fluid.
  • the coupling device 100 of this embodiment includes a shaft 1 as a movable shaft that can rotate around an axis, and a yoke housing 2 that houses a part of the shaft 1.
  • a component (not shown) that is rotationally driven is attached to the tip 1 a of the shaft 1.
  • the coupling device 100 is a brake device that applies a braking force to the rotationally driven component.
  • a disc-shaped disk 8 as a movable member that rotates integrally with the shaft 1 is fixed to a portion of the shaft 1 opposite to the tip 1a.
  • the shaft 1 is formed of a non-magnetic material, and is a plastic shaft 1 in this embodiment. Examples of the material other than the plastic forming the shaft 1 include SUS304.
  • the disk 8 and the yoke housing 2 described above are formed of a magnetic material. Examples of the magnetic material include ferromagnetic materials such as iron, nickel, cobalt, and alloys thereof.
  • the shaft 1 and the disk 8 are fixed with an adhesive, for example.
  • the yoke housing is a housing having a yoke function. By forming the housing from a magnetic material as described above, the housing can have a yoke function.
  • An annular electromagnet 5 as a magnetic field generating means is accommodated in the yoke housing 2.
  • the electromagnet 5 is formed, for example, by winding a copper wire or the like around an outer peripheral recess of a plastic annular bobbin 6.
  • a coil around which a copper wire is wound is shown as a coil 7 in FIG.
  • a current is supplied to the coil 7 via a terminal 14 having an L-shaped cross section.
  • the terminal 14 is protected by a terminal cover 15.
  • the central space in which the disk 8 is accommodated is filled with the magnetorheological fluid 10.
  • the space between the magnetic viscous fluid 10 and the space in which the electromagnet 5 is accommodated is sealed with annular rubber packings 11 and 12 so that the magnetic viscous fluid 10 does not leak to the electromagnet 5 side. Yes.
  • a rubber packing 13 is externally attached to the shaft 1, and the rubber packing 13 prevents the magnetorheological fluid 10 from leaking from the yoke housing 2 to the tip 1 a side of the shaft 1.
  • a rubber cap 9 fitted into a protrusion 4b formed at the center of the first yoke housing 4 of the yoke housing 2 is used to The magnetorheological fluid 10 is prevented from leaking from the housing 2.
  • the yoke housing 2 is divided into a lower first yoke housing 4 and an upper second yoke housing 3 which are coupled to each other.
  • the yoke housing 2 is formed by fitting and fixing the first yoke housing 4 and the second yoke housing 3 together.
  • a caulking fixing portion 17 is provided on the outer edge portion of the bottom surface of the first yoke housing 4.
  • the opposed portion 4a of the first yoke housing 4 that faces the disk 8 with the magnetorheological fluid 10 interposed therebetween is formed in a concave shape that is recessed toward the disk 8 side, that is, the inside of the housing.
  • the same applies to the second yoke housing 3, and the opposing portion 3a of the second yoke housing 3 that faces the disk 8 with the magnetorheological fluid 10 sandwiched therebetween is recessed on the disk 8 side, that is, the inside of the housing. It is made into a shape.
  • the end surface 3c of the side wall 3d of the second yoke housing 3 in the facing direction is brought into contact with the inner surface 4e of the first yoke housing 4 in the facing direction of the facing portions 3a and 4a with respect to the disk 8.
  • the dimension S of the gap formed between the facing portion 3a and the facing portion 4a is determined. That is, the contact portion B where the inner surface 4e of the first yoke housing 4 and the end surface 3c of the side wall portion 3d of the second yoke housing 3 abut is a portion that determines the dimension S of the gap.
  • FIG. 1 The direction when the yoke housing 2 is viewed from the side is shown in FIG.
  • An electromagnet 5 is accommodated immediately inside the contact portion B.
  • the side wall portion 4f of the first yoke housing 4 and the side wall portion 3d of the second yoke housing 3 overlap each other from the contact portion B to the electromagnet 5 when the yoke housing 2 is viewed from the side.
  • the length of overlapping the side wall portion 4f of the first yoke housing 4 and the side wall portion 3d of the second yoke housing 3 is not limited to that shown in FIG.
  • the facing portion 4a of the first yoke housing 4 that faces the disk 8 with the magnetorheological fluid 10 interposed therebetween has a concave shape that is recessed toward the disk 8, that is, the inside of the housing.
  • This concave shape is annular, and since it is an annular concave shape, an outwardly protruding protrusion 4b is formed on the stop side portion.
  • Two discharge holes 4 c are formed in the protrusion 4 b of the first yoke housing 4. These discharge holes 4 c are discharge ports for discharging the magnetorheological fluid 10 in the yoke housing 2.
  • the discharge hole 4 c is also used to fill the magnet viscous fluid 10 into the yoke housing 2.
  • the rubber cap 9 is fitted into the protrusion 4b so that the magnetorheological fluid 10 does not leak from the discharge hole 4c.
  • the rubber cap 9 is prevented from protruding downward from the lower surface of the first yoke housing 4 in a state where the rubber cap 9 is fitted into the protrusion 4b. As a result, almost nothing hits the corners of the rubber cap 9, so that the rubber cap 9 is prevented from coming off. Further, since the rubber cap 9 does not pop out, the connecting device 100 is smaller than when the rubber cap 9 pops out.
  • the shape of the facing portion 3a of the second yoke housing 3 is an annular concave shape, and the center side portion thereof is a convex portion.
  • the convex portion is a portion that accommodates the rubber packing 13 inside and supports and accommodates the shaft 1.
  • the tip portion 3b of the convex portion has a reduced diameter, and the flange portion 1b provided on the shaft 1 hits the inner surface in the axial direction of this portion, so that the shaft 1 does not jump out of the yoke housing 2 It is housed inside.
  • a rotation preventing portion 16 is provided on the outer peripheral portion of the first yoke housing 4.
  • the yoke housing 2 is fixed to a stationary object (not shown) via the rotation stopper 16.
  • the first yoke housing 4 and the second yoke housing 3 constituting the yoke housing 2 are produced by pressing a magnetic metal plate, for example. That is, the facing portions 3a and 4a, the protruding portion 4b, and the tip portion 3b are portions that are drawn by press working.
  • the shaft 1 and the disk 8 may be produced separately and then fixed (bonded) with an adhesive or the like. However, the shaft 1 and the disk 8 may be joined by insert molding. You may produce by the method of.
  • the insert molding is a method in which the disk 1 is put in the mold of the shaft 1 and then the shaft 1 is injection molded to produce the shaft 1 to which the metal disk 8 is coupled.
  • Magnetic field lines (magnetic flux) generated by energizing the coil 7 circulate mainly inside the yoke housing 2 as shown by the magnetic path L in FIG.
  • a magnetic path L (magnetic flux path) through which magnetic flux passes is called a magnetic circuit.
  • the viscosity of the magnetorheological fluid 10 is increased by the generated magnetic field.
  • the ferromagnetic particles in the magnetorheological fluid 10 may be coupled between the facing portion 3 a of the second yoke housing 3 and the disk 8 and between the disk 8 and the facing portion 4 a of the first yoke housing 4. They are lined up along the magnetic path L. Accordingly, when the generated magnetic field is a strong magnetic field, the disk 8 is fixed to the yoke housing 2 via the magnetorheological fluid 10 and the rotation of the shaft 1 is stopped. Thereby, the rotation of components (not shown) attached to the tip 1a of the shaft 1 also stops.
  • a braking force (braking force) is applied to a component (not shown) attached to the tip 1a of the shaft 1. Note that the magnitude of the braking force can be controlled by the magnitude of the current flowing through the coil 7.
  • the response speed of the ferromagnetic particles in the magnetorheological fluid 10 is fast.
  • the braking force is intermittently repeated with a high response speed
  • the component attached to the tip 1a of the shaft 1 (Not shown) repeats, for example, rotation and stop at a high response speed by the intermittent braking force.
  • the electromagnet 5 is used as the magnetic field generating means, but a permanent magnet may be used instead. If a permanent magnet is used as the magnetic field generating means, the connecting device according to the present invention is a brake device that always applies a constant braking force.
  • a permanent magnet and an electromagnet may be used in combination as a magnetic field generating means for applying a magnetic field to the magnetorheological fluid.
  • a magnetic field generating means for applying a magnetic field to the magnetorheological fluid.
  • an electric current is passed through the electromagnet to reduce the viscosity of the magnetorheological fluid.
  • the shaft 1 as the movable shaft constituting the coupling device 100 described above is a rotating shaft
  • the present invention can be applied to a shaft that moves linearly (linearly).
  • the yoke housing 2 (the first yoke housing 4 and the second yoke housing 3) may be produced by a sintering method in which metal powder of magnetic material is consolidated at a high temperature instead of being produced by pressing. .
  • the first yoke housing 4 and the second yoke housing 3 are each made of a single metal plate made of a magnetic material. Instead of this, the first yoke housing 4 may be formed by superimposing a plurality of magnetic metal plates. The same applies to the second yoke housing 3. That is, both or one of the first yoke housing 4 and the second yoke housing 3 may be a laminated plate.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Braking Arrangements (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

A connection device 100 is provided with: a shaft 1 formed from a non-magnetic body; a disc 8 that is formed from a magnetic body, and that is joined to the shaft 1 and rotates integrally with the shaft 1; a magneto-rheological fluid 10; an electromagnet 5 for applying a magnetic field to the magneto-rheological fluid 10; and a yoke housing 2 formed from a magnetic body and containing a part of the shaft 1, the disc 8, the magneto-rheological fluid 10, and the electromagnet 5. Facing parts 3a, 4a, which face the disc 8 and which enclose therebetween the magneto-rheological fluid 10 in the yoke housing 2, are recessed toward the disc 8 side.

Description

磁気粘性流体を用いた連結装置Connecting device using magnetorheological fluid
 本発明は、磁気粘性流体を用いた連結装置に関する。 The present invention relates to a coupling device using a magnetorheological fluid.
 この種の技術として、例えば、下記の特許文献1に記載されたものがある。その従来技術は、次のように構成されている。
 特許文献1に記載の回転装置は、回転体と、回転体と結合された環状のディスクと、電磁石と、これらの周囲を覆うハウジングとを備える。ハウジングの中には磁気粘性流体が充填される。電磁石への通電により磁気粘性流体に磁場が加えられると、磁気粘性流体の粘度が高くなりディスクを介して回転体に制動力が付与される。
As this type of technology, for example, there is one described in Patent Document 1 below. The prior art is configured as follows.
The rotating device described in Patent Document 1 includes a rotating body, an annular disk coupled to the rotating body, an electromagnet, and a housing that covers these. The housing is filled with a magnetorheological fluid. When a magnetic field is applied to the magnetorheological fluid by energizing the electromagnet, the viscosity of the magnetorheological fluid increases and a braking force is applied to the rotating body via the disk.
特開2012-202429号公報JP 2012-202429 A
 ここで、特許文献1には、ハウジングの材質としてプラスチックが記載されている。ハウジングをプラスチックなどの樹脂材料で形成すると、装置の軽量化の点で有利である。一方、強度を優先すると、金属材料でハウジングを形成することになる。特許文献1に記載のような装置に関し、ハウジングを金属材料で形成する場合、一般的に、切削加工によりハウジングが作製されている。 Here, Patent Document 1 describes plastic as a material of the housing. Forming the housing from a resin material such as plastic is advantageous in terms of reducing the weight of the apparatus. On the other hand, when priority is given to strength, the housing is made of a metal material. When the housing is formed of a metal material with respect to the device described in Patent Document 1, generally, the housing is manufactured by cutting.
 ハウジングを切削加工により作製する場合、次のような問題がある。ハウジングを個別に切削加工することになるため、個々のハウジングの寸法のバラツキが大きくなる可能性があり、且つハウジングを大量生産することが難しい。 When manufacturing the housing by cutting, there are the following problems. Since the housings are individually cut, there is a possibility that the dimensional variation of the individual housings becomes large, and it is difficult to mass-produce the housings.
 切削加工によりハウジングを作製することによる上記した問題を解決する方法として、例えば、金型を用いて金属の板材をプレス加工することでハウジングを作製することが考えられる。プレス加工によると、切削加工とは異なり、一つ作製すればよい金型によりハウジングの各部寸法が決まるので、個々のハウジングの寸法のバラツキを容易に小さく抑えることができる。しかしながら、金属の板材を単にプレス加工して、これまでの切削加工品を単なるプレス加工品に置き換えると、これにより作製されたハウジングのうちの要部、すなわち、磁気粘性流体が充填される部分の剛性を高くすることが難しい。ハウジングの上記要部の剛性が低くなってしまうと、その要部は変形しやすくなり、装置の作動が安定しなくなることが懸念される。 As a method for solving the above-described problems caused by manufacturing the housing by cutting, for example, it is conceivable to manufacture the housing by pressing a metal plate using a mold. According to the press work, unlike the cutting process, the dimensions of each part of the housing are determined by a mold that needs to be manufactured, so that the variation in the dimensions of the individual housings can be easily reduced. However, if the metal plate material is simply pressed and the conventional machined product is replaced with a simple pressed product, the main part of the housing produced by this, that is, the part filled with the magnetorheological fluid, It is difficult to increase the rigidity. If the rigidity of the main part of the housing becomes low, the main part is likely to be deformed, and there is a concern that the operation of the apparatus becomes unstable.
 本発明は、上記実情に鑑みてなされたものであり、その目的は、プレス加工などによりハウジングを作製したとしても、その要部の剛性を高くすることができる構造のハウジングを備える、磁気粘性流体を用いた連結装置を提供することである。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a magnetorheological fluid including a housing having a structure capable of increasing the rigidity of the main part even if the housing is manufactured by press working or the like. It is providing the coupling device using.
 本発明は、非磁性体で形成された可動軸と、前記可動軸に結合されて前記可動軸と一体的に動く、磁性体で形成された可動部材と、磁場が加えられることで磁場が加えられる前よりも粘度が高くなる磁気粘性流体と、前記磁気粘性流体に磁場を与えるための磁場発生手段と、前記可動軸の一部、前記可動部材、前記磁気粘性流体、および前記磁場発生手段を収容する、磁性体で形成されたヨークハウジングと、を備える磁気粘性流体を用いた連結装置である。前記ヨークハウジングのうちの前記磁気粘性流体を間に挟んで前記可動部材と対向する対向部が、前記可動部材側に凹んだ凹形状とされている。 The present invention includes a movable shaft formed of a non-magnetic material, a movable member coupled to the movable shaft and moving integrally with the movable shaft, and a magnetic member applied by applying a magnetic field. A magnetorheological fluid having a higher viscosity than before, a magnetic field generator for applying a magnetic field to the magnetorheological fluid, a part of the movable shaft, the movable member, the magnetorheological fluid, and the magnetic field generator. A coupling device using a magnetorheological fluid including a yoke housing made of a magnetic material. An opposing portion of the yoke housing that faces the movable member with the magnetorheological fluid sandwiched therebetween has a concave shape that is recessed toward the movable member.
 磁場が加えられたことによる磁気粘性流体の粘性の変化の程度や粘性の大小は、上記対向部の部分で区画形成される磁気粘性流体が充填される空間の隙間寸法に大きな影響を受ける。この隙間寸法が変化してしまうと、磁束密度が変化し、これにより磁気粘性流体が発現する粘性の大きさも変化してしまう。すなわち、上記対向部は、当該連結装置の作動の安定性を決めるヨークハウジングの要部である。
 上記構成によると、上記対向部が凹形状とされることで、プレス加工などによりハウジングを作製したとしても上記対向部の剛性を高くすることができる。その結果、上記対向部は変形しにくくなり、当該連結装置の作動の安定性が向上する。連結装置の作動の安定性が向上することで、連結装置の性能が向上する。
The degree of change in the viscosity of the magnetorheological fluid due to the application of the magnetic field and the magnitude of the viscosity are greatly affected by the gap size of the space filled with the magnetorheological fluid that is partitioned and formed at the facing portion. If the gap dimension changes, the magnetic flux density changes, and the magnitude of the viscosity at which the magnetorheological fluid develops also changes. That is, the facing part is a main part of the yoke housing that determines the stability of the operation of the coupling device.
According to the said structure, even if a housing is produced by press work etc. by making the said opposing part into a concave shape, the rigidity of the said opposing part can be made high. As a result, the facing portion is not easily deformed, and the operation stability of the coupling device is improved. By improving the stability of the operation of the coupling device, the performance of the coupling device is improved.
 また本発明において、前記凹形状が環状の凹形状とされることで、当該環状の凹形状の中心側部分に外方へ凸の突起部が形成され、前記突起部に、前記磁気粘性流体の排出口が形成されていることが好ましい。 Further, in the present invention, the concave shape is an annular concave shape, so that a projecting portion that protrudes outward is formed at the center side portion of the annular concave shape, and the magnetic viscous fluid is formed on the projecting portion. It is preferable that a discharge port is formed.
 この構成によると、磁気粘性流体の排出口が、例えば凹んだ部分または平らな部分に形成されている場合に比べて、当該排出口から洩れた余剰の磁気粘性流体を拭き取りやすい。また、磁気粘性流体の排出口が突起部に形成されていることで、その排出口の封止が容易になるというメリットもある。すなわち、上記した構成によると、連結装置の組立て時の作業性を改善することができる。
 さらには、前記凹形状が環状の凹形状とされることによりその中心側部分に、磁気粘性流体の排出口を設ける部分として利用できる突起部が形成される。すなわち、前記凹形状が環状の凹形状とされることで、ヨークハウジングの要部の剛性を高くすることに加えて、連結装置の組立て時の作業性を改善させることができる。
According to this configuration, it is easier to wipe off the excess magnetorheological fluid leaking from the discharge port than when the discharge port of the magnetorheological fluid is formed in, for example, a recessed portion or a flat portion. Moreover, since the discharge port of the magnetorheological fluid is formed in the protrusion, there is also an advantage that the discharge port can be easily sealed. That is, according to the above-described configuration, workability at the time of assembling the coupling device can be improved.
Furthermore, by forming the concave shape into an annular concave shape, a projection that can be used as a portion for providing a discharge port for the magnetorheological fluid is formed in the central portion. That is, by making the concave shape an annular concave shape, it is possible to improve the workability at the time of assembling the coupling device in addition to increasing the rigidity of the main part of the yoke housing.
 さらに本発明において、前記ヨークハウジングは、相互に結合される第1ヨークハウジングと第2ヨークハウジングとに分割されており、前記可動部材に対する前記対向部の対向方向における、前記第1ヨークハウジングの内面に、前記第2ヨークハウジングの側壁部の当該対向方向における端面が当接させられることで、前記第1ヨークハウジングの前記対向部と、前記第2ヨークハウジングの前記対向部との間に形成される隙間の寸法が決定することが好ましい。 Further, in the present invention, the yoke housing is divided into a first yoke housing and a second yoke housing that are coupled to each other, and an inner surface of the first yoke housing in a direction in which the facing portion faces the movable member. Further, an end surface in the facing direction of the side wall portion of the second yoke housing is brought into contact with the second yoke housing, so that it is formed between the facing portion of the first yoke housing and the facing portion of the second yoke housing. It is preferable that the dimension of the gap to be determined is determined.
 この構成によると、上記隙間の正確な寸法を容易にだすことができるとともに、その寸法を保持しやすい。その結果、連結装置の作動の安定性をより向上させることができる。また、隙間の正確な寸法を容易にだすことができることで、連結装置の量産性を向上させることができるというメリットもある。 According to this configuration, the accurate dimension of the gap can be easily obtained and the dimension can be easily maintained. As a result, the stability of the operation of the coupling device can be further improved. Further, since the accurate dimension of the gap can be easily obtained, there is an advantage that the mass productivity of the coupling device can be improved.
 さらに本発明において、前記第1ヨークハウジングの前記内面と、前記第2ヨークハウジングの前記端面とが当接する当接部の内側に、前記磁場発生手段が収容されており、前記ヨークハウジングを側方から視た場合の前記当接部から前記磁場発生手段にかけて、前記第1ヨークハウジングの側壁部と前記第2ヨークハウジングの側壁部とが重ね合わせられていることが好ましい。 Further, in the present invention, the magnetic field generating means is housed inside a contact portion where the inner surface of the first yoke housing and the end surface of the second yoke housing abut, and the yoke housing is laterally moved. When viewed from above, it is preferable that the side wall portion of the first yoke housing and the side wall portion of the second yoke housing overlap each other from the contact portion to the magnetic field generating means.
 ヨークハウジングのうちの磁場発生手段を囲む部分は、磁場発生手段から発生した磁束が通る通路となる。上記構成によると、ヨークハウジングを側方から視た場合の上記当接部から磁場発生手段にかけて、第1ヨークハウジングの側壁部と第2ヨークハウジングの側壁部とを重ね合わせることで、この部分で磁束が弱まることを防止でき、これにより、連結装置の作動の安定性をより向上させることができる。また、その十分な作動力を確保することができる。 The portion of the yoke housing surrounding the magnetic field generating means is a passage through which the magnetic flux generated from the magnetic field generating means passes. According to the above configuration, the side wall portion of the first yoke housing and the side wall portion of the second yoke housing are overlapped from the abutting portion when the yoke housing is viewed from the side to the magnetic field generating means. It is possible to prevent the magnetic flux from being weakened, thereby further improving the stability of the operation of the coupling device. Moreover, the sufficient operating force can be ensured.
 本発明によれば、プレス加工などによりハウジングを作製したとしても、その要部の剛性を高くすることができる構造のハウジングを備える、磁気粘性流体を用いた連結装置を提供することができる。 According to the present invention, it is possible to provide a coupling device using a magnetorheological fluid including a housing having a structure capable of increasing the rigidity of the main part even if the housing is manufactured by press working or the like.
本発明の一実施形態に係る連結装置を示す斜視図である。It is a perspective view showing a connecting device concerning one embodiment of the present invention. 図1のA-A断面図である。FIG. 2 is a cross-sectional view taken along the line AA in FIG. 図1に示す連結装置を裏返したときの斜視図である。It is a perspective view when the connecting device shown in FIG. 1 is turned over. 図1に示す連結装置を裏返し、且つゴムキャップを取り外したときの斜視図である。It is a perspective view when the connecting device shown in FIG. 1 is turned over and a rubber cap is removed.
 以下、本発明を実施するための形態について図面を参照しつつ説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
 本発明に係る磁気粘性流体を用いた連結装置は、駆動される部品に制動力を付与するブレーキ装置や、駆動軸とその従動軸とを接続したり切り離したりするクラッチとして用いることができる。 The coupling device using a magnetorheological fluid according to the present invention can be used as a brake device that applies a braking force to a driven component, or a clutch that connects or disconnects a drive shaft and its driven shaft.
 また、磁気粘性流体は、磁場が加えられることで磁場が加えられる前よりも粘度が高くなるという性質を有する公知の流体であり、MRF(Magneto-rheological fluid)とも呼ばれる。この磁気粘性流体は、強磁性粒子である例えばカルボニル鉄粉をオイル中に分散させたものである。磁気粘性流体として、ナノサイズの非常に微小な強磁性粒子をオイル中に分散させてなるものがある。磁気粘性流体の特徴として、加える磁場の強さによってその粘性をコントロールでき、且つその粘性変化の応答性が良いという特徴がある。 Further, the magnetorheological fluid is a known fluid having a property that the viscosity becomes higher than that before the magnetic field is applied by applying the magnetic field, and is also called MRF (Magneto-rheological fluid). This magnetorheological fluid is a dispersion of ferromagnetic particles such as carbonyl iron powder in oil. As a magnetorheological fluid, there is one in which nano-sized extremely fine ferromagnetic particles are dispersed in oil. As a characteristic of the magnetorheological fluid, there is a characteristic that the viscosity can be controlled by the strength of the applied magnetic field and the viscosity change is responsive.
(連結装置の構成)
 本発明の一実施形態として以下に説明する磁気粘性流体を用いた連結装置100は、磁気粘性流体を用いたブレーキ装置として用いられるものである。
(Configuration of connecting device)
The coupling device 100 using a magnetorheological fluid described below as an embodiment of the present invention is used as a brake device using a magnetorheological fluid.
 図1,2等に示すように、本実施形態の連結装置100は、軸心まわりに回転可能な可動軸としてのシャフト1と、シャフト1の一部を収容するヨークハウジング2とを備える。シャフト1の先端部1aには、回転駆動される部品(不図示)が取り付けられる。連結装置100は、この回転駆動される部品に制動力を付与するブレーキ装置である。 As shown in FIGS. 1, 2, etc., the coupling device 100 of this embodiment includes a shaft 1 as a movable shaft that can rotate around an axis, and a yoke housing 2 that houses a part of the shaft 1. A component (not shown) that is rotationally driven is attached to the tip 1 a of the shaft 1. The coupling device 100 is a brake device that applies a braking force to the rotationally driven component.
 シャフト1のうち、その先端部1aと反対側の部分には、当該シャフト1と一体的に回転する可動部材としての円盤形状のディスク8が固定されている。シャフト1は、非磁性体で形成されるものであり、本実施形態ではプラスチック製のシャフト1とされている。シャフト1を形成するプラスチック以外の材料としては、SUS304などを挙げることができる。これに対して、上記したディスク8、およびヨークハウジング2は、磁性体で形成される。磁性体としては、鉄、ニッケル、コバルト、およびこれらの合金などの強磁性体を挙げることができる。 A disc-shaped disk 8 as a movable member that rotates integrally with the shaft 1 is fixed to a portion of the shaft 1 opposite to the tip 1a. The shaft 1 is formed of a non-magnetic material, and is a plastic shaft 1 in this embodiment. Examples of the material other than the plastic forming the shaft 1 include SUS304. On the other hand, the disk 8 and the yoke housing 2 described above are formed of a magnetic material. Examples of the magnetic material include ferromagnetic materials such as iron, nickel, cobalt, and alloys thereof.
 なお、シャフト1とディスク8とは例えば接着剤で固定される。また、ヨークハウジングとは、ヨーク(継鉄)の機能を持たせたハウジングのことである。ハウジングを前記したような磁性体で形成することで、ハウジングにヨーク(継鉄)の機能を持たせることができる。 The shaft 1 and the disk 8 are fixed with an adhesive, for example. The yoke housing is a housing having a yoke function. By forming the housing from a magnetic material as described above, the housing can have a yoke function.
 ヨークハウジング2の内部には、磁場発生手段としての環状の電磁石5が収容されている。電磁石5は、例えば、プラスチック製の環状のボビン6の外周凹部に銅線などを巻き回してなるものである。銅線が巻かれたものをコイル7として図2中に示している。コイル7には、断面L字状の端子14を介して電流が供給される。端子14は、端子カバー15で保護されている。 An annular electromagnet 5 as a magnetic field generating means is accommodated in the yoke housing 2. The electromagnet 5 is formed, for example, by winding a copper wire or the like around an outer peripheral recess of a plastic annular bobbin 6. A coil around which a copper wire is wound is shown as a coil 7 in FIG. A current is supplied to the coil 7 via a terminal 14 having an L-shaped cross section. The terminal 14 is protected by a terminal cover 15.
 ヨークハウジング2の内部空間のうち、前記したディスク8が収容されている中央部の空間には、磁気粘性流体10が充填されている。磁気粘性流体10が充填される空間と、電磁石5が収容される空間との間は、環状のゴムパッキン11,12で封止され、磁気粘性流体10が電磁石5側に漏れないようにされている。また、シャフト1にはゴムパッキン13が外挿されており、このゴムパッキン13により、シャフト1の先端部1a側へヨークハウジング2から磁気粘性流体10が漏れないようにされている。詳しくは後述するが、シャフト1の先端部1aとは反対方向へは、ヨークハウジング2のうちの第1ヨークハウジング4の中央部に形成された突起部4bに嵌め込まれたゴムキャップ9により、ヨークハウジング2から磁気粘性流体10が漏れないようにされている。 Of the internal space of the yoke housing 2, the central space in which the disk 8 is accommodated is filled with the magnetorheological fluid 10. The space between the magnetic viscous fluid 10 and the space in which the electromagnet 5 is accommodated is sealed with annular rubber packings 11 and 12 so that the magnetic viscous fluid 10 does not leak to the electromagnet 5 side. Yes. A rubber packing 13 is externally attached to the shaft 1, and the rubber packing 13 prevents the magnetorheological fluid 10 from leaking from the yoke housing 2 to the tip 1 a side of the shaft 1. As will be described in detail later, in a direction opposite to the tip 1a of the shaft 1, a rubber cap 9 fitted into a protrusion 4b formed at the center of the first yoke housing 4 of the yoke housing 2 is used to The magnetorheological fluid 10 is prevented from leaking from the housing 2.
 ヨークハウジング2は、相互に結合される下側の第1ヨークハウジング4と上側の第2ヨークハウジング3とに分割されている。第1ヨークハウジング4と第2ヨークハウジング3とを嵌めわせてカシメ固定することでヨークハウジング2が形成される。図3,4に示すように、第1ヨークハウジング4の底面の外縁部にカシメ固定部17が設けられている。 The yoke housing 2 is divided into a lower first yoke housing 4 and an upper second yoke housing 3 which are coupled to each other. The yoke housing 2 is formed by fitting and fixing the first yoke housing 4 and the second yoke housing 3 together. As shown in FIGS. 3 and 4, a caulking fixing portion 17 is provided on the outer edge portion of the bottom surface of the first yoke housing 4.
 第1ヨークハウジング4のうちの磁気粘性流体10を間に挟んでディスク8と対向する対向部4aは、ディスク8側、すなわちハウジング内部側に凹んだ凹形状とされている。第2ヨークハウジング3についても同様であり、第2ヨークハウジング3のうちの磁気粘性流体10を間に挟んでディスク8と対向する対向部3aは、ディスク8側、すなわちハウジング内部側に凹んだ凹形状とされている。 The opposed portion 4a of the first yoke housing 4 that faces the disk 8 with the magnetorheological fluid 10 interposed therebetween is formed in a concave shape that is recessed toward the disk 8 side, that is, the inside of the housing. The same applies to the second yoke housing 3, and the opposing portion 3a of the second yoke housing 3 that faces the disk 8 with the magnetorheological fluid 10 sandwiched therebetween is recessed on the disk 8 side, that is, the inside of the housing. It is made into a shape.
 ここで、ディスク8に対する前記した対向部3a,4aの対向方向における、第1ヨークハウジング4の内面4eに、第2ヨークハウジング3の側壁部3dの当該対向方向における端面3cが当接させられることで、前記した対向部3aと前記した対向部4aとの間に形成される隙間の寸法Sが決定する。すなわち、第1ヨークハウジング4の上記内面4eと、第2ヨークハウジング3の側壁部3dの上記端面3cとが当接する当接部Bは、隙間の寸法Sを決定する部分である。 Here, the end surface 3c of the side wall 3d of the second yoke housing 3 in the facing direction is brought into contact with the inner surface 4e of the first yoke housing 4 in the facing direction of the facing portions 3a and 4a with respect to the disk 8. Thus, the dimension S of the gap formed between the facing portion 3a and the facing portion 4a is determined. That is, the contact portion B where the inner surface 4e of the first yoke housing 4 and the end surface 3c of the side wall portion 3d of the second yoke housing 3 abut is a portion that determines the dimension S of the gap.
 ヨークハウジング2を側方から視た場合の方向を、符号Cを付して図2に示している。上記当接部Bのすぐ内側には電磁石5が収容されている。ヨークハウジング2を側方から視た場合の当接部Bから電磁石5にかけて、第1ヨークハウジング4の側壁部4fと第2ヨークハウジング3の側壁部3dとは重ね合わせられている。なお、第1ヨークハウジング4の側壁部4fと第2ヨークハウジング3の側壁部3dとを重ね合わせる長さは、図2に示すものに限られることはない。 The direction when the yoke housing 2 is viewed from the side is shown in FIG. An electromagnet 5 is accommodated immediately inside the contact portion B. The side wall portion 4f of the first yoke housing 4 and the side wall portion 3d of the second yoke housing 3 overlap each other from the contact portion B to the electromagnet 5 when the yoke housing 2 is viewed from the side. Note that the length of overlapping the side wall portion 4f of the first yoke housing 4 and the side wall portion 3d of the second yoke housing 3 is not limited to that shown in FIG.
 第1ヨークハウジング4の中央部分の形状について説明する。前記したように、第1ヨークハウジング4のうちの磁気粘性流体10を間に挟んでディスク8と対向する対向部4aは、ディスク8側、すなわちハウジング内部側に凹んだ凹形状とされている。この凹形状は環状であり、環状の凹形状であるが故に、その中止側部分には外方へ凸の突起部4bが形成される。第1ヨークハウジング4のこの突起部4bには、2つの排出孔4cが開けられている。これらの排出孔4cは、ヨークハウジング2内の磁気粘性流体10を排出するための排出口である。なお、排出孔4cは、ヨークハウジング2内へ磁気粘性流体10を充填するのにも用いられる。磁気粘性流体10が排出孔4cから漏れないように、ゴムキャップ9が突起部4bに嵌め込まれる。 The shape of the central portion of the first yoke housing 4 will be described. As described above, the facing portion 4a of the first yoke housing 4 that faces the disk 8 with the magnetorheological fluid 10 interposed therebetween has a concave shape that is recessed toward the disk 8, that is, the inside of the housing. This concave shape is annular, and since it is an annular concave shape, an outwardly protruding protrusion 4b is formed on the stop side portion. Two discharge holes 4 c are formed in the protrusion 4 b of the first yoke housing 4. These discharge holes 4 c are discharge ports for discharging the magnetorheological fluid 10 in the yoke housing 2. The discharge hole 4 c is also used to fill the magnet viscous fluid 10 into the yoke housing 2. The rubber cap 9 is fitted into the protrusion 4b so that the magnetorheological fluid 10 does not leak from the discharge hole 4c.
 なお、突起部4bにゴムキャップ9が嵌め込まれた状態において、第1ヨークハウジング4の下面から、ゴムキャップ9が下方に飛び出さないようにされている。これにより、ゴムキャップ9の角に何かが当たることはほぼないので、ゴムキャップ9が外れてしまうことが防止される。また、ゴムキャップ9の飛び出しがない分、ゴムキャップ9の飛び出しがある場合に比べて連結装置100は小型となっている。 The rubber cap 9 is prevented from protruding downward from the lower surface of the first yoke housing 4 in a state where the rubber cap 9 is fitted into the protrusion 4b. As a result, almost nothing hits the corners of the rubber cap 9, so that the rubber cap 9 is prevented from coming off. Further, since the rubber cap 9 does not pop out, the connecting device 100 is smaller than when the rubber cap 9 pops out.
 第2ヨークハウジング3についても同様に、その対向部3aの形状は、環状の凹形状となっており、これにより、その中心側部分は凸部となっている。この凸部は、内部にゴムパッキン13を収容するとともに、シャフト1を支持および収容する部分である。凸部の先端部3bは、その径が絞られており、この部分の軸方向内面に、シャフト1に設けられた鍔部1bが当たるので、シャフト1は、ヨークハウジング2の外に飛び出すことなくその内部に収容される。 Similarly, the shape of the facing portion 3a of the second yoke housing 3 is an annular concave shape, and the center side portion thereof is a convex portion. The convex portion is a portion that accommodates the rubber packing 13 inside and supports and accommodates the shaft 1. The tip portion 3b of the convex portion has a reduced diameter, and the flange portion 1b provided on the shaft 1 hits the inner surface in the axial direction of this portion, so that the shaft 1 does not jump out of the yoke housing 2 It is housed inside.
 なお、第2ヨークハウジング3の上記先端部3bの軸方向内面に、シャフト1に設けられた鍔部1bが当たったとき、第2ヨークハウジング3の対向部3aと、シャフト1に固定されたディスク8とは、当たらないようにされている。また、その反対方向に関しては、第1ヨークハウジング4の突起部4bの内面に、シャフト1の軸端が当たったとき、第1ヨークハウジング4の対向部4aと、シャフト1に固定されたディスク8とは、当たらないようにされている。このように、ヨークハウジング2の対向部3a,4aの内面と、回転するディスク8とは、直接接触して擦れあうことがないようにされている。これにより、対向部3a,4aの内面およびディスク8が損傷することが防止される。 When the flange 1b provided on the shaft 1 hits the inner surface in the axial direction of the tip portion 3b of the second yoke housing 3, the opposing portion 3a of the second yoke housing 3 and the disk fixed to the shaft 1 8 is not hit. Further, with respect to the opposite direction, when the shaft end of the shaft 1 hits the inner surface of the protrusion 4 b of the first yoke housing 4, the opposing portion 4 a of the first yoke housing 4 and the disk 8 fixed to the shaft 1. And is not to be hit. In this way, the inner surfaces of the opposing portions 3a and 4a of the yoke housing 2 and the rotating disk 8 are prevented from directly rubbing against each other. This prevents the inner surfaces of the facing portions 3a and 4a and the disk 8 from being damaged.
 図1,3,4に示すように、第1ヨークハウジング4の外周部には回り止め部16が設けられている。この回り止め部16を介してヨークハウジング2は静止物(不図示)に固定される。 As shown in FIGS. 1, 3, and 4, a rotation preventing portion 16 is provided on the outer peripheral portion of the first yoke housing 4. The yoke housing 2 is fixed to a stationary object (not shown) via the rotation stopper 16.
 なお、ヨークハウジング2を構成する第1ヨークハウジング4および第2ヨークハウジング3は、例えば、磁性体の金属板をプレス加工して作製したものである。すなわち、前記した対向部3a,4a、突起部4b、および先端部3bは、プレス加工により絞り成形された部分である。 The first yoke housing 4 and the second yoke housing 3 constituting the yoke housing 2 are produced by pressing a magnetic metal plate, for example. That is, the facing portions 3a and 4a, the protruding portion 4b, and the tip portion 3b are portions that are drawn by press working.
 シャフト1とディスク8とは、それぞれを別に作製して、その後、接着剤等にて両者を固定(結合)してもよいが、シャフト1とディスク8とを結合してなるものを、インサート成形という方法により作製してもよい。インサート成形とは、シャフト1の金型にディスク8を入れておいて、その後、シャフト1を射出成形することで、金属のディスク8が結合されたシャフト1を作製するという方法である。 The shaft 1 and the disk 8 may be produced separately and then fixed (bonded) with an adhesive or the like. However, the shaft 1 and the disk 8 may be joined by insert molding. You may produce by the method of. The insert molding is a method in which the disk 1 is put in the mold of the shaft 1 and then the shaft 1 is injection molded to produce the shaft 1 to which the metal disk 8 is coupled.
(連結装置の動作)
 磁気粘性流体を用いた連結装置100の動作について説明する。電磁石5のコイル7に電流が流れていないとき、磁気粘性流体10の粘性は低いので、シャフト1の先端部1aに取り付けられた回転する部品(不図示)に制動力は特に付与されない。そのため、当該回転する部品とともに、シャフト1は磁気粘性流体10から特に抵抗を受けることなく回転する。
(Operation of connecting device)
The operation of the coupling device 100 using the magnetorheological fluid will be described. When no current flows through the coil 7 of the electromagnet 5, the viscosity of the magnetorheological fluid 10 is low, so that no braking force is particularly applied to the rotating component (not shown) attached to the tip 1a of the shaft 1. For this reason, the shaft 1 rotates with no particular resistance from the magnetorheological fluid 10 together with the rotating parts.
 コイル7に電流を流すと、電磁石5の周囲に磁場が発生する。コイル7への通電により発生した磁力線(磁束)は、図2に磁路Lを示したように、主としてヨークハウジング2内部を循環する。なお、磁束が通るひとめぐりの磁路L(磁束の通路)を磁気回路という。 When a current is passed through the coil 7, a magnetic field is generated around the electromagnet 5. Magnetic field lines (magnetic flux) generated by energizing the coil 7 circulate mainly inside the yoke housing 2 as shown by the magnetic path L in FIG. A magnetic path L (magnetic flux path) through which magnetic flux passes is called a magnetic circuit.
 発生した磁場により磁気粘性流体10の粘度が高くなる。また、磁気粘性流体10中の強磁性粒子は、第2ヨークハウジング3の対向部3aとディスク8との間、およびディスク8と第1ヨークハウジング4の対向部4aとの間を結合させるかのごとく磁路Lに沿って並ぶ。これらにより、発生した磁場が強い磁場の場合、磁気粘性流体10を介してヨークハウジング2に対してディスク8が固定されてシャフト1の回転が止まる。これにより、シャフト1の先端部1aに取り付けられた部品(不図示)もその回転が止まる。発生した磁場の強さによっては、シャフト1の回転が停止するまでにはならないが、シャフト1の先端部1aに取り付けられた部品(不図示)には制動力(ブレーキ力)が付与される。なお、制動力の大きさは、コイル7に流す電流の大きさでコントロールすることができる。 The viscosity of the magnetorheological fluid 10 is increased by the generated magnetic field. Further, the ferromagnetic particles in the magnetorheological fluid 10 may be coupled between the facing portion 3 a of the second yoke housing 3 and the disk 8 and between the disk 8 and the facing portion 4 a of the first yoke housing 4. They are lined up along the magnetic path L. Accordingly, when the generated magnetic field is a strong magnetic field, the disk 8 is fixed to the yoke housing 2 via the magnetorheological fluid 10 and the rotation of the shaft 1 is stopped. Thereby, the rotation of components (not shown) attached to the tip 1a of the shaft 1 also stops. Depending on the strength of the generated magnetic field, the rotation of the shaft 1 does not stop, but a braking force (braking force) is applied to a component (not shown) attached to the tip 1a of the shaft 1. Note that the magnitude of the braking force can be controlled by the magnitude of the current flowing through the coil 7.
 磁気粘性流体10中の強磁性粒子の応答速度は速く、例えば、コイル7への通電、非通電を繰り返すと制動力の断続が応答速度良く繰り返され、シャフト1の先端部1aに取り付けられた部品(不図示)は、この制動力の断続により、例えば、回転と停止とを応答速度良く繰り返す。 The response speed of the ferromagnetic particles in the magnetorheological fluid 10 is fast. For example, when the energization and non-energization of the coil 7 are repeated, the braking force is intermittently repeated with a high response speed, and the component attached to the tip 1a of the shaft 1 (Not shown) repeats, for example, rotation and stop at a high response speed by the intermittent braking force.
(変形例)
 前記した実施形態では、磁場発生手段として電磁石5を用いているが、これに代えて、永久磁石を用いてもよい。磁場発生手段として永久磁石を用いれば、本発明に係る連結装置は、常時一定の制動力を付与するブレーキ装置となる。
(Modification)
In the above-described embodiment, the electromagnet 5 is used as the magnetic field generating means, but a permanent magnet may be used instead. If a permanent magnet is used as the magnetic field generating means, the connecting device according to the present invention is a brake device that always applies a constant braking force.
 さらには、磁気粘性流体に磁場を与えるための磁場発生手段として、永久磁石と電磁石とを組み合わせて用いてもよい。例えば、常時は、永久磁石により磁気粘性流体を介して一定の制動力を付与し、その制動力を解除したり、あるいは強めたりする場合に、電磁石に電流を流して、磁気粘性流体の粘性をコントロールする。 Furthermore, a permanent magnet and an electromagnet may be used in combination as a magnetic field generating means for applying a magnetic field to the magnetorheological fluid. For example, when a constant braking force is applied via a magnetorheological fluid by a permanent magnet and the braking force is released or strengthened at all times, an electric current is passed through the electromagnet to reduce the viscosity of the magnetorheological fluid. To control.
 前記した連結装置100を構成する可動軸としてのシャフト1は回転する軸であるが、リニアに(直線的に)動くシャフトであっても、本発明を適用することができる。 Although the shaft 1 as the movable shaft constituting the coupling device 100 described above is a rotating shaft, the present invention can be applied to a shaft that moves linearly (linearly).
 ヨークハウジング2(第1ヨークハウジング4および第2ヨークハウジング3)は、プレス加工により作製されることに代えて、磁性体の金属粉体を高温で固結する焼結法により作製されてもよい。 The yoke housing 2 (the first yoke housing 4 and the second yoke housing 3) may be produced by a sintering method in which metal powder of magnetic material is consolidated at a high temperature instead of being produced by pressing. .
 第1ヨークハウジング4および第2ヨークハウジング3は、それぞれ、磁性体の1枚の金属板からなる。これに代えて、磁性体の複数枚の金属板が重ね合わせられてなる第1ヨークハウジング4とされてもよい。第2ヨークハウジング3についても同様である。すなわち、第1ヨークハウジング4および第2ヨークハウジング3のうちの両方、または一方が、積層板であってもよい。 The first yoke housing 4 and the second yoke housing 3 are each made of a single metal plate made of a magnetic material. Instead of this, the first yoke housing 4 may be formed by superimposing a plurality of magnetic metal plates. The same applies to the second yoke housing 3. That is, both or one of the first yoke housing 4 and the second yoke housing 3 may be a laminated plate.
 その他に、当業者が想定できる範囲で種々の変更を行うことができる。 In addition, various changes can be made as long as those skilled in the art can assume.
1:シャフト(可動軸)
2:ヨークハウジング
3:第2ヨークハウジング
3a:対向部
3c:端面
3d:側壁部
4:第1ヨークハウジング
4a:対向部
4b:突起部
4c:排出孔(排出口)
4f:側壁部
4e:内面
5:電磁石(磁場発生手段)
8:ディスク(可動部材)
10:磁気粘性流体
100:連結装置
B:当接部
S:隙間の寸法
1: Shaft (movable shaft)
2: yoke housing 3: second yoke housing 3a: facing portion 3c: end face 3d: side wall portion 4: first yoke housing 4a: facing portion 4b: protrusion 4c: discharge hole (discharge port)
4f: side wall 4e: inner surface 5: electromagnet (magnetic field generating means)
8: Disc (movable member)
10: Magnetorheological fluid 100: Coupling device B: Contact portion S: Size of gap

Claims (4)

  1.  非磁性体で形成された可動軸と、
     前記可動軸に結合されて前記可動軸と一体的に動く、磁性体で形成された可動部材と、
     磁場が加えられることで磁場が加えられる前よりも粘度が高くなる磁気粘性流体と、
     前記磁気粘性流体に磁場を与えるための磁場発生手段と、
     前記可動軸の一部、前記可動部材、前記磁気粘性流体、および前記磁場発生手段を収容する、磁性体で形成されたヨークハウジングと、
     を備え、
     前記ヨークハウジングのうちの前記磁気粘性流体を間に挟んで前記可動部材と対向する対向部が、前記可動部材側に凹んだ凹形状とされている、磁気粘性流体を用いた連結装置。
    A movable shaft formed of a non-magnetic material;
    A movable member formed of a magnetic material coupled to the movable shaft and moving integrally with the movable shaft;
    A magnetorheological fluid whose viscosity is higher than that before the magnetic field is applied by applying the magnetic field;
    Magnetic field generating means for applying a magnetic field to the magnetorheological fluid;
    A yoke housing made of a magnetic material that houses a part of the movable shaft, the movable member, the magnetorheological fluid, and the magnetic field generating means;
    With
    A coupling device using a magnetorheological fluid, wherein a facing portion of the yoke housing that faces the movable member with the magnetorheological fluid sandwiched therebetween has a concave shape recessed toward the movable member.
  2.  請求項1に記載の連結装置において、
     前記凹形状が環状の凹形状とされることで、当該環状の凹形状の中心側部分に外方へ凸の突起部が形成され、
     前記突起部に、前記磁気粘性流体の排出口が形成されていることを特徴とする、磁気粘性流体を用いた連結装置。
    The connection device according to claim 1,
    By forming the concave shape into an annular concave shape, a protruding portion that protrudes outward is formed at the center side portion of the annular concave shape,
    A connecting device using a magnetorheological fluid, wherein the projection is formed with a discharge port for the magnetorheological fluid.
  3.  請求項1または2に記載の連結装置において、
     前記ヨークハウジングは、相互に結合される第1ヨークハウジングと第2ヨークハウジングとに分割されており、
     前記可動部材に対する前記対向部の対向方向における、前記第1ヨークハウジングの内面に、前記第2ヨークハウジングの側壁部の当該対向方向における端面が当接させられることで、前記第1ヨークハウジングの前記対向部と、前記第2ヨークハウジングの前記対向部との間に形成される隙間の寸法が決定することを特徴とする、磁気粘性流体を用いた連結装置。
    The connecting device according to claim 1 or 2,
    The yoke housing is divided into a first yoke housing and a second yoke housing that are coupled to each other.
    An end surface in the facing direction of the side wall portion of the second yoke housing is brought into contact with the inner surface of the first yoke housing in the facing direction of the facing portion with respect to the movable member. A coupling device using a magnetorheological fluid, wherein a dimension of a gap formed between a facing portion and the facing portion of the second yoke housing is determined.
  4.  請求項3に記載の連結装置において、
     前記第1ヨークハウジングの前記内面と、前記第2ヨークハウジングの前記端面とが当接する当接部の内側に、前記磁場発生手段が収容されており、
     前記ヨークハウジングを側方から視た場合の前記当接部から前記磁場発生手段にかけて、前記第1ヨークハウジングの側壁部と前記第2ヨークハウジングの側壁部とが重ね合わせられていることを特徴とする、磁気粘性流体を用いた連結装置。
    The connecting device according to claim 3.
    The magnetic field generating means is accommodated inside a contact portion where the inner surface of the first yoke housing and the end surface of the second yoke housing contact each other.
    The side wall portion of the first yoke housing and the side wall portion of the second yoke housing are overlapped from the contact portion when the yoke housing is viewed from the side to the magnetic field generating means. A coupling device using a magnetorheological fluid.
PCT/JP2017/006181 2016-03-23 2017-02-20 Connection device using magneto-rheological fluid WO2017163700A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780019381.XA CN109073004A (en) 2016-03-23 2017-02-20 Use the coupling arrangement of magnetic viscous fluid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-057923 2016-03-23
JP2016057923A JP2017172655A (en) 2016-03-23 2016-03-23 Coupling device using magnetic viscous fluid

Publications (1)

Publication Number Publication Date
WO2017163700A1 true WO2017163700A1 (en) 2017-09-28

Family

ID=59901191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006181 WO2017163700A1 (en) 2016-03-23 2017-02-20 Connection device using magneto-rheological fluid

Country Status (3)

Country Link
JP (1) JP2017172655A (en)
CN (1) CN109073004A (en)
WO (1) WO2017163700A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2564417A (en) * 2017-07-07 2019-01-16 Edwards Ltd Damper
GB2564416A (en) * 2017-07-07 2019-01-16 Edwards Ltd Damper

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3859180A1 (en) 2018-09-25 2021-08-04 Alps Alpine Co., Ltd. Torque generating device
JP7346206B2 (en) * 2019-09-27 2023-09-19 キヤノン株式会社 Rotation resistance devices and operating devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202429A (en) * 2011-03-24 2012-10-22 Kurimoto Ltd Rotary apparatus
JP2014183694A (en) * 2013-03-21 2014-09-29 Asmo Co Ltd Motor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101205955A (en) * 2007-10-26 2008-06-25 广东工业大学 Highly effective brake based on magnetic rheology technique
JP2009293760A (en) * 2008-06-09 2009-12-17 Oriental Motor Co Ltd Brake device for motor
JP4605292B2 (en) * 2008-10-22 2011-01-05 株式会社デンソー Valve timing adjustment device
JP5766092B2 (en) * 2011-10-26 2015-08-19 ジヤトコ株式会社 Torque converter using magnetorheological fluid
US9800102B2 (en) * 2013-03-06 2017-10-24 Asmo Co., Ltd. Dual rotor core motor with reduced flux leakage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202429A (en) * 2011-03-24 2012-10-22 Kurimoto Ltd Rotary apparatus
JP2014183694A (en) * 2013-03-21 2014-09-29 Asmo Co Ltd Motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2564417A (en) * 2017-07-07 2019-01-16 Edwards Ltd Damper
GB2564416A (en) * 2017-07-07 2019-01-16 Edwards Ltd Damper

Also Published As

Publication number Publication date
JP2017172655A (en) 2017-09-28
CN109073004A (en) 2018-12-21

Similar Documents

Publication Publication Date Title
WO2017163700A1 (en) Connection device using magneto-rheological fluid
JP6014367B2 (en) Braking device
JP6201176B2 (en) Rotating braking device
JP2014020539A (en) Braking device
JP2012180939A (en) Brake with field responsive material
US9453543B2 (en) Braking device
US20170363159A1 (en) Integrated device for resistive torque generation
JP2014142016A (en) Brake device
KR101713109B1 (en) Brake using magneto-rheololgical fluid
US20210207680A1 (en) Torque Generating Device
JP2014101999A (en) Brake device
JP2014142015A (en) Brake device
KR20180117231A (en) Brake of Magneto-rheological Fluid
US20090026034A1 (en) Magnetorheological clutch
JP2010252417A (en) Outer rotor type ipm motor, and rotor thereof
JP2020502393A (en) Automotive door with arrester device
JP7162112B2 (en) magneto-rheological fluid device
JP2013121275A (en) Linear actuator
JP6963874B2 (en) Ferrofluid fluid device
JP7288531B2 (en) Motor-operated valve stator and motor-operated valve
JP5715841B2 (en) solenoid
JP2015122905A (en) Brake motor and hoist
JP4233611B2 (en) Consolidation unit and its manufacturing method
JP7386197B2 (en) solenoid valve
WO2011074549A1 (en) Rotation device with seal means using magnetic viscous fluid

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769746

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17769746

Country of ref document: EP

Kind code of ref document: A1