WO2017163569A1 - データ処理装置、データ処理システム、データ処理方法及びプログラム - Google Patents

データ処理装置、データ処理システム、データ処理方法及びプログラム Download PDF

Info

Publication number
WO2017163569A1
WO2017163569A1 PCT/JP2017/001877 JP2017001877W WO2017163569A1 WO 2017163569 A1 WO2017163569 A1 WO 2017163569A1 JP 2017001877 W JP2017001877 W JP 2017001877W WO 2017163569 A1 WO2017163569 A1 WO 2017163569A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
waveform
operation state
target device
distance
Prior art date
Application number
PCT/JP2017/001877
Other languages
English (en)
French (fr)
Inventor
馨 遠藤
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to CA3018660A priority Critical patent/CA3018660A1/en
Priority to CN201780019327.5A priority patent/CN108885448A/zh
Priority to EP17769616.8A priority patent/EP3435185A4/en
Priority to US16/085,665 priority patent/US10831184B2/en
Publication of WO2017163569A1 publication Critical patent/WO2017163569A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/024Quantitative history assessment, e.g. mathematical relationships between available data; Functions therefor; Principal component analysis [PCA]; Partial least square [PLS]; Statistical classifiers, e.g. Bayesian networks, linear regression or correlation analysis; Neural networks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D27/00Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00
    • G05D27/02Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00 characterised by the use of electric means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/33Director till display
    • G05B2219/33034Online learning, training
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/33Director till display
    • G05B2219/33038Real time online learning, training, dynamic network
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/30State monitoring, e.g. fault, temperature monitoring, insulator monitoring, corona discharge

Definitions

  • the present invention relates to a data processing device, a data processing system, a data processing method, and a program.
  • Patent Document 1 discloses an apparatus for diagnosing the presence / absence of an abnormality sign of a mechanical facility based on multidimensional sensor data measured by a plurality of sensors.
  • Patent Documents 2 and 3 disclose methods for determining the type and operating status of an electrical device based on a current waveform.
  • Patent Documents 1 to 3 it is necessary to previously generate measurement data (teacher data) representing a predetermined state (eg, a state where there is no abnormality, a predetermined operation state, etc.).
  • This measurement data may vary depending on the operating state of the target device and the external environment. It takes a lot of time and effort to generate various teacher data corresponding to various operating states and various external environments.
  • An object of the present invention is to provide a new technique for generating teacher data for estimating the state of an electrical device.
  • Waveform data acquisition means for acquiring waveform data of current consumption and / or voltage of the target device; Feature amount extraction means for extracting a waveform feature amount from the waveform data;
  • Environmental data acquisition means for acquiring environmental data indicating the environment of the target device when the waveform data is acquired;
  • Operation state data acquisition means for acquiring operation state data indicating an operation state of the target device when the waveform data is acquired;
  • a distance calculating means for calculating a distance between the member including the waveform feature, the environment data, and the operation state data, and a plurality of reference members; Grouping means for grouping the members based on a distance from each of the plurality of reference members;
  • Registration means for registering a group satisfying a predetermined condition as teacher data;
  • a data processing apparatus is provided.
  • the terminal device Waveform data acquisition means for acquiring waveform data of current consumption and / or voltage of the target device; Feature amount extraction means for extracting a waveform feature amount from the waveform data;
  • Environmental data acquisition means for acquiring environmental data indicating the environment of the target device when the waveform data is acquired;
  • Operation state data acquisition means for acquiring operation state data indicating an operation state of the target device when the waveform data is acquired;
  • Transmitting / receiving means for transmitting the waveform feature quantity, the environmental data and the operation state data to the server;
  • Have The server Transmitting / receiving means for receiving the waveform feature value, the environmental data, and the operation state data from each of the plurality of terminal devices;
  • a distance calculating means for calculating a distance between the member including the waveform feature, the environment data, and the operation state data, and a plurality of reference members;
  • Grouping means for grouping the members based on a distance from each of the plurality of reference members;
  • Registration means for registering
  • Waveform data acquisition means for acquiring waveform data of current consumption and / or voltage of the target device; Feature amount extraction means for extracting a waveform feature amount from the waveform data;
  • Environmental data acquisition means for acquiring environmental data indicating the environment of the target device when the waveform data is acquired;
  • Operation state data acquisition means for acquiring operation state data indicating an operation state of the target device when the waveform data is acquired;
  • a distance calculating means for calculating a distance between each of the plurality of reference members and a member including the waveform feature, the environment data, and the operation state data;
  • Grouping means for grouping the members based on a distance from each of the plurality of reference members;
  • Registration means for registering a group satisfying a predetermined condition as teacher data;
  • a program is provided that functions as:
  • Each unit included in the apparatus of the present embodiment is stored in a CPU (Central Processing Unit), a memory, a program loaded into the memory, a storage unit such as a hard disk storing the program (from the stage of shipping the apparatus in advance).
  • a storage unit such as a hard disk storing the program (from the stage of shipping the apparatus in advance).
  • storage media such as CDs (Compact Discs) and programs downloaded from servers on the Internet can also be stored.) Realized by any combination of hardware and software, centering on the network connection interface Is done. It will be understood by those skilled in the art that there are various modifications to the implementation method and apparatus.
  • FIG. 1 is a block diagram illustrating the hardware configuration of the apparatus according to the present embodiment.
  • the apparatus includes a processor 1A, a memory 2A, an input / output interface 3A, a peripheral circuit 4A, and a bus 5A.
  • the peripheral circuit includes various modules.
  • the bus 5A is a data transmission path through which the processor 1A, the memory 2A, the peripheral circuit 4A, and the input / output interface 3A transmit / receive data to / from each other.
  • the processor 1A is an arithmetic processing device such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit).
  • the memory 2A is a memory such as a RAM (Random Access Memory) or a ROM (Read Only Memory).
  • the input / output interface 3A includes an interface for acquiring information from an external device, an external server, an external sensor, and the like.
  • the processor 1A issues a command to each module and performs a calculation based on the calculation result.
  • the data processing apparatus 10 provides a function of collecting teacher data used for estimating the state of the target device. Details will be described below.
  • FIG. 2 shows an example of a functional block diagram of the data processing apparatus 10 of the present embodiment.
  • the data processing apparatus 10 includes a waveform data acquisition unit 11, a feature amount extraction unit 12, an environment data acquisition unit 13, an operation state data acquisition unit 14, a grouping unit 15, a registration unit 16, A distance calculation unit 19.
  • the waveform data acquisition unit 11 acquires waveform data of current consumption and / or voltage of the target device.
  • the target device may be a household electrical appliance used in a general household, an office device used in an office, a factory device used in a factory, or the like. There may be.
  • a measurement sensor installed at a predetermined position continuously measures waveform data of current consumption and / or voltage of one corresponding target device.
  • the waveform data acquisition unit 11 continuously acquires the waveform data measured by the measurement sensor.
  • the waveform data is associated with date / time information of the measurement timing by any means.
  • the waveform data measured by the measurement sensor may be stored in the waveform data DB (database) in association with the date / time information.
  • the waveform data acquisition part 11 may acquire waveform data from waveform data DB.
  • the waveform data acquisition unit 11 may acquire waveform data without using the waveform data DB.
  • the feature amount extraction unit 12 extracts a predetermined waveform feature amount from the waveform data acquired by the waveform data acquisition unit 11.
  • the feature amount extraction unit 12 may divide the waveform data into processing unit data for each predetermined time, and extract the waveform feature amount for each processing unit data.
  • Waveform features are the frequency intensity and phase of current consumption (harmonic component), phase, current consumption change, average value, peak value, effective value, crest factor, waveform rate, current change convergence time, energization time, peak , The time difference between the peak position of the voltage and the peak position of the current consumption, the power factor, and the like are conceivable, but are not limited thereto.
  • the feature amount extraction unit 12 extracts one or more types of predetermined waveform feature amounts.
  • the environment data acquisition unit 13 acquires environment data indicating the environment of the target device when the waveform data is acquired.
  • the environmental data acquisition unit 13 can acquire at least one of temperature, humidity, and weather as environmental data.
  • the environmental data is associated with the observed date / time information by any means.
  • the environmental data acquisition unit 13 may acquire the temperature and / or humidity measured by a measurement sensor installed around the target device, for example.
  • the environmental data acquisition unit 13 continuously acquires the temperature and / or humidity measured by the measurement sensor.
  • the data is associated with date / time information of the measurement timing by any means.
  • the temperature and / or humidity measured by the measurement sensor may be stored in the temperature and / or humidity DB in association with the date / time information.
  • the environmental data acquisition part 13 may acquire the said data from temperature and / or humidity DB.
  • the environment data acquisition unit 13 may acquire the data without using the temperature and / or humidity DB.
  • the environmental data acquisition unit 13 may acquire, for example, weather information on the installation location of the target device that is disclosed on the network from a predetermined server.
  • the environment data acquisition unit 13 holds information indicating the installation location of the target device in advance.
  • the server requests and obtains weather information corresponding to the installation location.
  • the operator may input weather information to the environment data acquisition unit 13.
  • the environment data acquisition unit 13 obtains the latest actual weather information (concept different from the weather forecast, weather information at that timing actually observed at each timing) announced every predetermined time as the above-mentioned predetermined weather information. You may acquire from a server or an operator for every time. In addition, the environment data acquisition unit 13 may acquire a weather forecast announced in advance from a server or an operator, and acquire weather information when waveform data is acquired from the weather forecast.
  • the operation state data acquisition unit 14 acquires operation state data indicating the operation state of the target device when the waveform data is acquired.
  • the operation state data acquisition unit 14 can acquire operation state data from the target device and / or from a measurement sensor attached to the target device.
  • the operation state data is associated with date / time information when each operation state is observed by any means.
  • the operation state data acquisition unit 14 continuously acquires operation state data from the target device and / or measurement sensor.
  • the operation state data is associated with date / time information of the measurement timing by any means.
  • the operation state data measured by the target device and / or the measurement sensor may be stored in the operation state data DB in association with the date / time information. Then, the operation state data acquisition unit 14 may acquire operation state data from the operation state DB. In addition, the operation state data acquisition unit 14 may acquire the operation state data without using the operation state DB.
  • the operation state data will be described.
  • the contents (shape, etc.) of the waveform data of the current consumption and / or voltage may be different from each other.
  • an example of operation state data will be described for each type of target device.
  • the operation status data includes data indicating the operating status (standby, operating, etc.), data indicating the operation mode (heating, cooling, dehumidification, etc.), set temperature, ambient temperature of the outdoor unit, The number of rotations of the outdoor unit fan, the temperature in the room, the number of rotations of the indoor unit fan, the operating state of the compressor (maximum XX%, etc.) can be considered.
  • the operation status data may be the operating status (standby, operating, etc.), operating mode (normal mode, eco mode, etc.), set temperature, fan speed, etc.
  • the operation status data includes operating status (freezing, defrosting, etc.), set temperature, outdoor unit ambient temperature, compressor operating status (maximum XX%, etc.) Conceivable.
  • the operation status data includes operating status (refrigeration, defrosting, etc.), set temperature, outdoor unit ambient temperature, outdoor unit fan speed, indoor temperature, indoor unit The rotation speed of the fan, the operating state of the compressor (maximum XX%, etc.), etc. are conceivable.
  • the operation status data may be the operating status (standby, heating, etc.), power setting, etc.
  • the operation state data may be in the operating state (standby, watching, recording, etc.).
  • the operation state data may be the operation state (refrigeration, defrosting, etc.), the internal temperature, the ambient temperature, the compressor operation state (maximum XX%, etc.), and the like.
  • the operating status data may be the operating status (standby, operating, etc.).
  • the operation state data may be the operating state (during washing, rinsing, dehydrating, waiting, etc.).
  • the operating state data may be the operating state (standby, lighting, etc.), dimming state (XX%), etc.
  • the operating status data includes the operating status (standby, warming, cold, etc.), operating mode (warming, cold, etc.), compressor operating status (maximum XX%) Etc.), internal temperature, ambient temperature, etc. can be considered.
  • the operation status data may be the operating status (standby, copying, etc.).
  • the operation state data may be the operating state (standby, depositing, withdrawal, etc.).
  • the operating state data may be the operating state (lighted, extinguished, etc.).
  • the operating state data may be the operating state (standby, heating, etc.).
  • the operating state data may be the operating state (standby, washing, drying, etc.).
  • the operation status data may be the operating status (standby, extraction, boiling, cleaning, etc.).
  • the operation status data may be the operating status (standby, input, deposit, withdrawal, printing, etc.).
  • the above-described waveform data acquisition unit 11, feature amount extraction unit 12, environment data acquisition unit 13 and operation state data acquisition unit 14 obtain values other than the distance in the data shown in FIG.
  • the data shown in FIG. 3 includes information (processing unit data ID (identifier)) for identifying each processing unit data, which is a unit for extracting the waveform feature value from the waveform data, and the waveform feature value extracted from each processing unit data.
  • processing unit data ID identifier
  • the external environment data at the timing when each processing unit data is measured, the operation state data at the timing when each processing unit data is measured, and the distance calculated by the distance calculation unit 19 described below are associated with each other. ing.
  • the data shown in FIG. 3 is updated as needed (new data is added).
  • “External environment data at the timing when the processing unit data is measured” means the same timing as the date and time (target timing) when the processing unit data is measured, the timing closest to the target timing, and the closest after the target timing It may be external environment data measured at the timing or the closest timing before the target timing.
  • processing unit data waveform data of processing unit
  • multiple values corresponding to various external environment data are measured within the time width. obtain.
  • the statistical values (average value, maximum value, minimum value, mode value, intermediate value, etc.) of the plurality of values may be external environment data at the timing when the processing unit data is measured.
  • operation state data at the timing when the processing unit data is measured means the same timing as the date and time (target timing) when the processing unit data is measured, the timing closest to the target timing, and the most recent after the target timing. It means the operation state data measured at the closest timing or the closest timing before the target timing.
  • the processing unit data waveform data of the processing unit
  • a plurality of values corresponding to various operation state data are measured within the time width. obtain.
  • the statistical values average value, maximum value, minimum value, mode value, intermediate value, etc.
  • the plurality of values may be used as the operation state data at the timing when the processing unit data is measured.
  • the distance calculation unit 19 includes the waveform feature amount extracted by the feature amount extraction unit 12, the environment data acquired by the environment data acquisition unit 13, and the operation state data acquired by the operation state data acquisition unit 14. The distance between the member and each of the plurality of reference members is calculated. The waveform feature amount, environment data, and operation state data corresponding to one processing unit data ID shown in FIG. 3 become one member.
  • Each reference member includes waveform features, environmental data, and operating state data.
  • each of the teacher data registered at that time is set as each reference member.
  • FIG. 4 schematically shows an example of registered teacher data.
  • information for identifying each of a plurality of teacher data, a waveform feature amount, external environment data, and operation state data are associated with each other.
  • the information is updated by editing by the operator and registration of new teacher data by the registration unit 16 described below.
  • an operator registers two or more teacher data.
  • the teacher data registered in this way becomes a reference member.
  • the number of reference members increases accordingly.
  • the distance calculation unit 19 calculates the distance (similarity) between the newly acquired member and each of the teacher data (reference member) registered at that time.
  • the calculation method of the distance is a design matter. For example, the distance may be calculated by machine learning.
  • various waveform feature quantities, various environment data, and various operation state data are normalized according to predetermined rules, and multidimensional coordinates are obtained by arranging them in a predetermined order. May be. Then, the distance between the coordinate values may be calculated.
  • the value in the distance column in FIG. 3 is determined by the processing by the distance calculation unit 19.
  • N is an integer of 2 or more
  • N distances are calculated corresponding to each member and registered as N-dimensional data in the distance column.
  • the grouping unit 15 groups the members based on the distance from each of the plurality of reference members. Specifically, the grouping unit 15 groups items having similar distance (N-dimensional data) values.
  • the grouping method is a design matter, but an example will be described below.
  • the grouping unit 15 issues a group ID and makes the first member belong to the first group. Then, the distance (N-dimensional data) of the first member is registered as the representative distance of the first group. Thereby, the information shown in FIG. 5 is updated.
  • the grouping unit 15 determines the distance of the second member (N-dimensional data) and the representative distance (N-dimensional data) of the first group registered at that time.
  • the similarity is calculated.
  • the grouping unit 15 treats N-dimensional data as N-dimensional coordinates, and calculates the distance between the coordinates as the similarity.
  • the grouping unit 15 determines whether the similarity is equal to or less than a predetermined value (design item). When the value is equal to or less than the predetermined value (design item), the grouping unit 15 causes the second member to belong to the first group. Then, based on the distance (N-dimensional data) of the first member and the distance (N-dimensional data) of the second member, the representative distance (N-dimensional data) of the first group is calculated and updated. For example, the average value of the distance of the first member (N-dimensional data) and the distance of the second member (N-dimensional data) is used as the representative distance (N-dimensional data) of the first group. Thereby, the information shown in FIG. 5 is updated.
  • the grouping unit 15 issues a new group ID and makes the second member belong to the second group. Then, the distance (N-dimensional data) of the second member is registered as the representative distance of the second group. Thereby, the information shown in FIG. 5 is updated.
  • the grouping unit 15 determines the new member distance (N-dimensional data) and the representative distance ( N-dimensional data) may be calculated, and those having similarities below a predetermined value may be grouped.
  • the registration unit 16 registers a group satisfying the predetermined condition as teacher data indicating a predetermined state of the target device.
  • the predetermined condition include “the number of members is a predetermined number or more”.
  • the registration unit 16 When new teacher data is registered by the registration unit 16, the information shown in FIG. 4 is updated. In addition, when new teacher data is registered by the registration unit 16, the number of reference members increases. Along with this, the dimension of the N-dimensional data indicating the distance between the reference member and each member also increases.
  • the distance calculation unit 19 can update the value in the distance column shown in FIG. 3 when new teacher data is registered by the registration unit 16. For example, it is assumed that the number of reference members has increased from 3 to 4 due to the registration of new teacher data by the registration unit 16. In this case, the distance calculation unit 19 obtains the three-dimensional data (distance) indicating the distance between each member and each of the three reference members up to that point, between each member and each of the four new reference members. Updates to four-dimensional data (distance) indicating the distance.
  • Each teacher data includes a waveform feature amount, environment data, and operation state data.
  • wave teacher data at the time of activation, light load, and heavy load may be registered.
  • the waveform data acquisition unit 11 acquires current consumption and / or voltage waveform data of the target device. Further, the environment data acquisition unit 13 acquires environment data indicating the environment of the target device when the waveform data is acquired. Further, the operation state data acquisition unit 14 acquires operation state data indicating the operation state of the target device when the waveform data is acquired.
  • the feature quantity extraction unit 12 processes the processing unit data in the waveform data acquired in S10, and extracts a predetermined waveform feature quantity.
  • the distance calculation unit 19 is registered at that time with the member including the waveform feature amount of the waveform data extracted in S11, the environmental data and the operation state data when the waveform data acquired in S10 is acquired.
  • the distance to each teacher data (reference member) is calculated and associated with the member (see FIG. 3).
  • the grouping unit 15 groups members based on the distance from each of the plurality of teacher data (reference members) (grouping process). Thereby, the information of FIG. 5 is updated.
  • the registration unit 16 determines whether there is a group that satisfies a predetermined condition for registering as teacher data (whether it has newly occurred) (S14). ).
  • the predetermined condition here is, for example, that the number of members is a predetermined number or more.
  • the registration unit 16 newly registers the group as teacher data indicating the predetermined state of the target device (S15). Thereafter, the distance calculation unit 19 updates the value in the distance column shown in FIG. 3 (S16). Specifically, the value in the distance column is updated to information indicating the distance between each member and each of a plurality of teacher data (reference members) including newly registered teacher data.
  • the grouping unit 15 groups the members based on the updated distance (grouping process). Thereby, the information of FIG. 5 is updated. Then, it progresses to S14 and repeats the same process.
  • S17 it is determined whether or not to end the teacher data generation process. If it is determined not to end (No in S17), the process returns to S10 and is repeated. On the other hand, if it is determined to end (Yes in S17), the process ends. For example, “no new teacher data is registered for a predetermined time or more”, “the number of registered teacher data has reached a predetermined number”, “the execution time of teacher data generation processing has reached a predetermined time”, “operator If a condition such as “there was a process end instruction input from” is satisfied, the data processing apparatus 10 determines to end the process.
  • teacher data indicating a predetermined state of the target device while operating the target device. For this reason, for example, teacher data can be generated while the target device is actually used in daily life.
  • teacher data can be generated while being actually used in daily life, it is possible to reduce the labor of operating the target device only to generate teacher data. In this case, since it is not necessary to operate the target device wastefully, it is expected to save electricity costs.
  • the waveform feature quantity of the group satisfying a predetermined condition can be registered as teacher data. Therefore, it is possible to register various teacher data corresponding to various external environments and various operation states.
  • the waveform feature quantities of groups having a predetermined number of members or more is not registered as teacher data.
  • the waveform feature amount that appears temporarily is not registered as teacher data due to an unexpected operation of the target device.
  • registration of unnecessary teacher data can be reduced, and the inconvenience that the number of teacher data is unnecessarily large can be reduced.
  • a plurality of members can be grouped based on the distance to each of a plurality of teacher data (reference members) registered at that time. For this reason, it is not necessary to prepare a lot of teacher data to be prepared first, and at least two teacher data are sufficient. In addition, there is no special condition for the teacher data to be prepared first.
  • the teacher data can be collected in an environment that can be easily prepared, for example, temperatures of 10 ° C. and 20 ° C., which is one of the environmental data. Time and effort to prepare can be greatly reduced.
  • the data processing apparatus 10 provides a function for estimating the state of the target device using teacher data generated by the functions described in the first embodiment. To do. Details will be described below.
  • FIG. 7 shows an example of a functional block diagram of the data processing apparatus 10 of the present embodiment.
  • the data processing apparatus 10 includes a waveform data acquisition unit 11, a feature amount extraction unit 12, an environment data acquisition unit 13, an operation state data acquisition unit 14, a grouping unit 15, and a registration unit 16.
  • the configurations of the waveform data acquisition unit 11, the feature amount extraction unit 12, the environment data acquisition unit 13, the operation state data acquisition unit 14, the grouping unit 15, the registration unit 16, and the distance calculation unit 19 are the same as those in the first embodiment. is there.
  • the teacher data storage unit 17 stores the teacher data registered by the registration unit 16 (see FIG. 4).
  • the estimation unit 18 estimates the state of the target device using the teacher data stored in the teacher data storage unit 17. Specifically, it is estimated whether the state of the target device is abnormal or normal.
  • the estimation unit 18 generates an estimation model by machine learning using the teacher data (normal waveform feature amount), and the feature amount extraction unit 12, the environment data acquisition unit 13, and the operation state data are added to the generated estimation model.
  • An estimation result (normal or above) can be obtained by inputting a new member value acquired by the acquisition unit 14.
  • the estimation model for example, a multiple regression analysis, a neural network, a hidden Markov model, or the like can be used.
  • the estimation process by the estimation unit 18 may be performed in parallel with the teacher data generation process described with reference to FIG. 6 in the first embodiment, or may be performed after the teacher data collection process is completed. . In any case, the estimation accuracy by the estimation unit 18 increases as the number of teacher data stored in the teacher data storage unit 17 increases.
  • the same operational effects as those of the first embodiment can be realized.
  • the state (presence / absence of abnormality) of the target device can be estimated.
  • various teacher data corresponding to various external environments and various operation states are generated and registered. By performing estimation processing based on such various teacher data, it is possible to improve estimation accuracy.
  • various teacher data are collected by processing linked with a server (for example, a cloud server) and a plurality of terminal devices.
  • FIG. 8 shows an example of a functional block diagram of the server 40 and the terminal device 30.
  • each of the plurality of terminal devices 30 includes a waveform data acquisition unit 11, a feature amount extraction unit 12, an environment data acquisition unit 13, an operation state data acquisition unit 14, a teacher data storage unit 17-2, an estimation unit 18, and A transmission / reception unit 21 is included.
  • the teacher data storage unit 17-2 and the estimation unit 18 may not be provided.
  • the configurations of the waveform data acquisition unit 11, the feature amount extraction unit 12, the environment data acquisition unit 13, the operation state data acquisition unit 14, and the estimation unit 18 are the same as those in the first and second embodiments.
  • the transmission / reception unit 21 transmits / receives data to / from another device (for example, the server 40).
  • the teacher data storage unit 17-2 stores a plurality of teacher data.
  • the server 40 includes a grouping unit 15, a registration unit 16, a teacher data storage unit 17-1, a distance calculation unit 19, and a transmission / reception unit 20.
  • the configurations of the grouping unit 15, the registration unit 16, and the distance calculation unit 19 are the same as those in the first and second embodiments.
  • the transmission / reception unit 20 transmits / receives data to / from other devices (for example, a plurality of terminal devices 30).
  • the teacher data storage unit 17-1 stores a plurality of teacher data.
  • a plurality of terminal devices 30 are installed corresponding to each of a plurality of target devices.
  • the plurality of terminal devices 30 may be installed at geographically distant locations.
  • the plurality of terminal devices 30 acquire waveform feature amounts, environment data, and operation state data corresponding to each of the plurality of target devices, and transmit them to the server 40.
  • the terminal device 30 may transmit the waveform feature amount, the environmental data, and the operation state data to the server 40 in association with the identification information (model number or the like) of the corresponding target device.
  • the server 40 groups the waveform feature amounts, environment data, and operation state data acquired from the plurality of terminal devices 30. Then, a group satisfying a predetermined condition is registered as teacher data.
  • the server 40 can transmit the teacher data registered in the teacher data storage unit 17-1 to each of the plurality of terminal devices 30.
  • Each terminal device 30 registers the teacher data received from the server 40 in the teacher data storage unit 17-2.
  • the estimation unit 18 estimates the state of the target device using the teacher data stored in the teacher data storage unit 17-2.
  • data (waveform feature values, environmental data, and operation state data) can be collected by a plurality of terminal devices 30, so that a large amount of data can be collected in a short time.
  • teacher data can be generated efficiently.
  • various teacher data can be generated that incorporates environmental factors (differences in temperature and humidity, and differences in temperature between day and night) due to geographical location. it can.
  • Waveform data acquisition means for acquiring waveform data of current consumption and / or voltage of the target device; Feature amount extraction means for extracting a waveform feature amount from the waveform data;
  • Environmental data acquisition means for acquiring environmental data indicating the environment of the target device when the waveform data is acquired;
  • Operation state data acquisition means for acquiring operation state data indicating an operation state of the target device when the waveform data is acquired;
  • a distance calculating means for calculating a distance between the member including the waveform feature, the environment data, and the operation state data, and a plurality of reference members; Grouping means for grouping the members based on a distance from each of the plurality of reference members;
  • Registration means for registering a group satisfying a predetermined condition as teacher data;
  • a data processing apparatus for registering a group satisfying a predetermined condition as teacher data;
  • the distance calculation means is a data processing device that calculates the distance using the registered teacher data as the reference member.
  • the registration means is a data processing apparatus for registering the group having the predetermined number of members or more as the teacher data. 4).
  • the environmental data acquisition means is a data processing device that acquires at least one of temperature, humidity, and weather as the environmental data. 5.
  • the operation state data acquisition unit is a data processing device that acquires the operation state data from the target device and / or from a sensor attached to the target device. 6).
  • a data processing apparatus further comprising an estimation unit that estimates the state of the target device using the teacher data. 7).
  • the terminal device Waveform data acquisition means for acquiring waveform data of current consumption and / or voltage of the target device; Feature amount extraction means for extracting a waveform feature amount from the waveform data;
  • Environmental data acquisition means for acquiring environmental data indicating the environment of the target device when the waveform data is acquired;
  • Operation state data acquisition means for acquiring operation state data indicating an operation state of the target device when the waveform data is acquired; Transmitting / receiving means for transmitting the waveform feature quantity, the environmental data and the operation state data to the server;
  • Have The server Transmitting / receiving means for receiving the waveform feature value, the environmental data, and the operation state data from each of the plurality of terminal devices;
  • a distance calculating means for calculating a distance between the member including the waveform feature, the environment data, and the operation state data, and a plurality of reference members;
  • the data processing system in which the transmission / reception unit of the server transmits the teacher data registered by the registration unit to each of the plurality of terminal devices.
  • Computer A waveform data acquisition step for acquiring waveform data of current consumption and / or voltage of the target device; A feature amount extraction step of extracting a waveform feature amount from the waveform data; An environmental data acquisition step of acquiring environmental data indicating an environment of the target device when the waveform data is acquired; An operation state data acquisition step of acquiring operation state data indicating an operation state of the target device when the waveform data is acquired; A distance calculating step of calculating a distance between each of the plurality of reference members and a member including the waveform feature, the environment data, and the operation state data; A grouping step of grouping the members based on a distance to each of the plurality of reference members; A registration process for registering a group satisfying a predetermined condition as teacher data; Data processing method to execute.
  • 9-2 The data processing method according to 9, In the distance calculation step, a data processing method for calculating the distance by using the registered teacher data as the reference member. 9-3. In the data processing method according to 9 or 9-2, A data processing method for registering, as the teacher data, the group in which the number of members is a predetermined number or more in the registration step. 9-4. In the data processing method according to any one of 9 to 9-3, In the environmental data acquisition step, at least one of temperature, humidity, and weather is acquired as the environmental data. 9-5. In the data processing method according to any one of 9 to 9-4, In the operation state data acquisition step, a data processing method for acquiring the operation state data from the target device and / or from a sensor attached to the target device. 9-6.
  • a data processing method in which the computer further executes an estimation step of estimating a state of the target device using the teacher data includes Computer Waveform data acquisition means for acquiring waveform data of current consumption and / or voltage of the target device; Feature amount extraction means for extracting a waveform feature amount from the waveform data; Environmental data acquisition means for acquiring environmental data indicating the environment of the target device when the waveform data is acquired; Operation state data acquisition means for acquiring operation state data indicating an operation state of the target device when the waveform data is acquired; A distance calculating means for calculating a distance between each of the plurality of reference members and a member including the waveform feature, the environment data, and the operation state data; Grouping means for grouping the members based on a distance from each of the plurality of reference members; Registration means for registering a group satisfying a predetermined condition as teacher data; Program to function as.
  • the distance calculation means calculates the distance using the registered teacher data as the reference member. 10-3.
  • the registration means is a program for registering the group in which the number of members is a predetermined number or more as the teacher data. 10-4.
  • the environmental data acquisition means is a program for acquiring at least one of temperature, humidity and weather as the environmental data. 10-5.
  • the operating state data acquisition means is a program for acquiring the operating state data from the target device and / or from a sensor attached to the target device. 10-6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Medical Informatics (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

対象機器の消費電流及び/又は電圧の波形データを取得する波形データ取得部(11)と、波形データから波形特徴量を抽出する特徴量抽出部(12)と、波形データが取得された時の対象機器の環境を示す環境データを取得する環境データ取得部(13)と、波形データが取得された時の対象機器の動作状態を示す動作状態データを取得する動作状態データ取得部(14)と、波形特徴量、環境データ及び動作状態データを含むメンバーと、複数の参照メンバー各々との距離を算出する距離算出部(19)と、複数の参照メンバー各々との距離に基づき、メンバーをグループ化するグループ化部(15)と、所定条件を満たすグループを、教師データとして登録する登録部(16)と、を有するデータ処理装置(10)を提供する。

Description

データ処理装置、データ処理システム、データ処理方法及びプログラム
 本発明は、データ処理装置、データ処理システム、データ処理方法及びプログラムに関する。
 特許文献1乃至3に関連する技術が開示されている。
 特許文献1には、複数のセンサーによって測定された多次元センサデータに基づいて、機械設備の異常予兆の有無を診断する装置が開示されている。
 特許文献2及び3には、電流波形に基づき、電気機器の種別や動作状況を判断する方法が開示されている。
特開2013-8111号公報 特開2014-206417号公報 特開2013-201230号公報
 特許文献1乃至3いずれにおいても、所定の状態(例:異常がない状態、所定の動作状況等)を表す測定データ(教師データ)を予め生成する必要がある。この測定データは、対象機器の動作状態や外部環境に応じて変動し得る。各種動作状態及び各種外部環境に対応した多様な教師データを生成するのは多くの時間と手間を要する。
 本発明は、電気機器の状態を推定するための教師データを生成する新たな技術を提供することを課題とする。
 本発明によれば、
 対象機器の消費電流及び/又は電圧の波形データを取得する波形データ取得手段と、
 前記波形データから波形特徴量を抽出する特徴量抽出手段と、
 前記波形データが取得された時の前記対象機器の環境を示す環境データを取得する環境データ取得手段と、
 前記波形データが取得された時の前記対象機器の動作状態を示す動作状態データを取得する動作状態データ取得手段と、
 前記波形特徴量、前記環境データ及び前記動作状態データを含むメンバーと、複数の参照メンバー各々との距離を算出する距離算出手段と、
 複数の前記参照メンバー各々との距離に基づき、前記メンバーをグループ化するグループ化手段と、
 所定条件を満たすグループを教師データとして登録する登録手段と、
を有するデータ処理装置が提供される。
 また、本発明によれば、
 複数の端末装置とサーバとを有し、
 前記端末装置は、
  対象機器の消費電流及び/又は電圧の波形データを取得する波形データ取得手段と、
  前記波形データから波形特徴量を抽出する特徴量抽出手段と、
  前記波形データが取得された時の前記対象機器の環境を示す環境データを取得する環境データ取得手段と、
  前記波形データが取得された時の前記対象機器の動作状態を示す動作状態データを取得する動作状態データ取得手段と、
  前記波形特徴量、前記環境データ及び前記動作状態データを前記サーバに送信する送受信手段と、
を有し、
 前記サーバは、
  複数の前記端末装置各々から前記波形特徴量、前記環境データ及び前記動作状態データを受信する送受信手段と、
  前記波形特徴量、前記環境データ及び前記動作状態データを含むメンバーと、複数の参照メンバー各々との距離を算出する距離算出手段と、
  複数の前記参照メンバー各々との距離に基づき、前記メンバーをグループ化するグループ化手段と、
  所定条件を満たすグループを教師データとして登録する登録手段と、
を有するデータ処理システムが提供される。
 また、本発明によれば、
 コンピュータが、
 対象機器の消費電流及び/又は電圧の波形データを取得する波形データ取得工程と、
 前記波形データから波形特徴量を抽出する特徴量抽出工程と、
 前記波形データが取得された時の前記対象機器の環境を示す環境データを取得する環境データ取得工程と、
 前記波形データが取得された時の前記対象機器の動作状態を示す動作状態データを取得する動作状態データ取得工程と、
 前記波形特徴量、前記環境データ及び前記動作状態データを含むメンバーと、複数の参照メンバー各々との距離を算出する距離算出工程と、
 複数の前記参照メンバー各々との距離に基づき、前記メンバーをグループ化するグループ化工程と、
 所定条件を満たすグループを教師データとして登録する登録工程と、
を実行するデータ処理方法が提供される。
 また、本発明によれば、
 対象機器の消費電流及び/又は電圧の波形データを取得する波形データ取得手段、
 前記波形データから波形特徴量を抽出する特徴量抽出手段、
 前記波形データが取得された時の前記対象機器の環境を示す環境データを取得する環境データ取得手段、
 前記波形データが取得された時の前記対象機器の動作状態を示す動作状態データを取得する動作状態データ取得手段、
 前記波形特徴量、前記環境データ及び前記動作状態データを含むメンバーと、複数の参照メンバー各々との距離を算出する距離算出手段、
 複数の前記参照メンバー各々との距離に基づき、前記メンバーをグループ化するグループ化手段、
 所定条件を満たすグループを教師データとして登録する登録手段、
として機能させるプログラムが提供される。
 本発明によれば、電気機器の状態を推定するための教師データを生成する新たな技術が実現される。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
本実施形態の装置のハードウエア構成の一例を概念的に示す図である。 本実施形態のデータ処理装置の機能ブロック図の一例である。 本実施形態のデータ処理装置が処理するデータの一例を模式的に示す図である。 本実施形態のデータ処理装置が処理するデータの一例を模式的に示す図である。 本実施形態のデータ処理装置が処理するデータの一例を模式的に示す図である。 本実施形態のデータ処理装置の処理の流れの一例を示すフローチャートである。 本実施形態のデータ処理装置の機能ブロック図の一例である。 本実施形態のデータ処理システムの機能ブロック図の一例である。
 まず、本実施形態の装置(データ処理装置)のハードウエア構成の一例について説明する。本実施形態の装置が備える各部は、任意のコンピュータのCPU(Central Processing Unit)、メモリ、メモリにロードされるプログラム、そのプログラムを格納するハードディスク等の記憶ユニット(あらかじめ装置を出荷する段階から格納されているプログラムのほか、CD(Compact Disc)等の記憶媒体やインターネット上のサーバ等からダウンロードされたプログラムをも格納できる)、ネットワーク接続用インターフェイスを中心にハードウエアとソフトウエアの任意の組合せによって実現される。そして、その実現方法、装置にはいろいろな変形例があることは、当業者には理解されるところである。
 図1は、本実施形態の装置のハードウエア構成を例示するブロック図である。図1に示すように、装置は、プロセッサ1A、メモリ2A、入出力インターフェイス3A、周辺回路4A、バス5Aを有する。周辺回路には、様々なモジュールが含まれる。
 バス5Aは、プロセッサ1A、メモリ2A、周辺回路4A及び入出力インターフェイス3Aが相互にデータを送受信するためのデータ伝送路である。プロセッサ1Aは、例えばCPU(Central Processing Unit) やGPU(Graphics Processing Unit)などの演算処理装置である。メモリ2Aは、例えばRAM(Random Access Memory)やROM(Read Only Memory)などのメモリである。入出力インターフェイス3Aは、外部装置、外部サーバ、外部センサー等から情報を取得するためのインターフェイスなどを含む。プロセッサ1Aは、各モジュールに指令を出し、それらの演算結果をもとに演算を行う。
 以下、本実施の形態について説明する。なお、以下の実施形態の説明において利用する機能ブロック図は、ハードウエア単位の構成ではなく、機能単位のブロックを示している。これらの図においては、各装置は1つの機器により実現されるよう記載されているが、その実現手段はこれに限定されない。すなわち、物理的に分かれた構成であっても、論理的に分かれた構成であっても構わない。なお、同一の構成要素には同一の符号を付し、適宜説明を省略する。
<第1の実施形態>
 本実施形態のデータ処理装置10は、対象機器の状態を推定するために用いられる教師データを収集する機能を提供する。以下、詳細に説明する。
 図2に、本実施形態のデータ処理装置10の機能ブロック図の一例を示す。図示するように、データ処理装置10は、波形データ取得部11と、特徴量抽出部12と、環境データ取得部13と、動作状態データ取得部14と、グループ化部15と、登録部16、距離算出部19とを有する。
 波形データ取得部11は、対象機器の消費電流及び/又は電圧の波形データを取得する。
 対象機器は、一般家庭で利用される家電機器であってもよいし、オフィスで利用されるオフィス機器であってもよいし、工場等で利用される工場機器であってもよいし、その他であってもよい。所定位置に設置された測定センサーが、対応する1つの対象機器の消費電流及び/又は電圧の波形データを連続的に測定する。
 波形データ取得部11は、上記測定センサーが測定した上記波形データを、連続的に、取得する。当該波形データは、任意の手段で、測定タイミングの日時時刻情報と対応付けられる。なお、測定センサーにより測定された波形データは、日時時刻情報と対応付けて、波形データDB(データベース)に蓄積されてもよい。そして、波形データ取得部11は、波形データDBから、波形データを取得してもよい。その他、波形データ取得部11は、波形データDBを介さず、波形データを取得してもよい。
 特徴量抽出部12は、波形データ取得部11が取得した波形データから所定の波形特徴量を抽出する。特徴量抽出部12は、波形データを所定時間毎の処理単位データに分割し、処理単位データ毎に波形特徴量を抽出してもよい。
 波形特徴量は、消費電流の周波数強度・位相(高調波成分)、位相、消費電流の変化、平均値、ピーク値、実効値、波高率、波形率、電流変化の収束時間、通電時間、ピークの位置、電圧のピーク位置と消費電流のピーク位置との間の時間差、力率などが考えられるが、これらに限定されない。特徴量抽出部12は、予め定められた1種類又は複数種類の波形特徴量を抽出する。
 環境データ取得部13は、波形データが取得された時の対象機器の環境を示す環境データを取得する。環境データ取得部13は、例えば、温度、湿度及び天候の中の少なくとも1つを環境データとして取得することができる。環境データは、任意の手段で、観測された日時時刻情報と対応付けられる。
 環境データ取得部13は、例えば、対象機器の周辺に設置された測定センサーにより測定された温度及び/又は湿度を取得してもよい。環境データ取得部13は、上記測定センサーが測定した温度及び/又は湿度を、連続的に取得する。当該データは、任意の手段で、測定タイミングの日時時刻情報と対応付けられる。測定センサーにより測定された温度及び/又は湿度は、日時時刻情報と対応付けて、温度及び/又は湿度DBに蓄積されてもよい。そして、環境データ取得部13は、温度及び/又は湿度DBから、上記データを取得してもよい。その他、環境データ取得部13は、温度及び/又は湿度DBを介さず上記データを取得してもよい。
 また、環境データ取得部13は、例えば、ネット上で公開されている対象機器の設置場所の天候情報を所定のサーバから取得してもよい。この場合、環境データ取得部13は、予め、対象機器の設置場所を示す情報を保持している。そして、当該設置場所に対応する天候情報をサーバに要求し、取得する。その他、オペレータが、天候情報を環境データ取得部13に入力してもよい。
 なお、環境データ取得部13は、所定の時間毎に発表される最新の実際の天候情報(天気予報と異なる概念であり、実際に各タイミングで観測されたそのタイミングの天候情報)を、上記所定の時間毎にサーバ又はオペレータから取得してもよい。その他、環境データ取得部13は、前もって発表された天気予報をサーバ又はオペレータから取得し、当該天気予報から、波形データが取得された時の天候情報を取得してもよい。
 動作状態データ取得部14は、波形データが取得された時の対象機器の動作状態を示す動作状態データを取得する。動作状態データ取得部14は、対象機器から、及び/又は、対象機器に取り付けられた測定センサーから、動作状態データを取得することができる。動作状態データは、任意の手段で、各動作状態が観察された日時時刻情報と対応付けられる。
 動作状態データ取得部14は、対象機器及び/又は測定センサーから、連続的に、動作状態データを取得する。当該動作状態データは、任意の手段で、測定タイミングの日時時刻情報と対応付けられる。対象機器及び/又は測定センサーにより測定された動作状態データは、日時時刻情報と対応付けて、動作状態データDBに蓄積されてもよい。そして、動作状態データ取得部14は、動作状態DBから、動作状態データを取得してもよい。その他、動作状態データ取得部14は、動作状態DBを介さず、動作状態データを取得してもよい。
 ここで、動作状態データについて説明する。動作状態データが異なると、消費電流及び/又は電圧の波形データの内容(形状等)が互いに異なり得る。以下、対象機器の種類ごとに動作状態データの一例を説明する。
 例えば、対象機器がエアコンの場合、動作状態データは、稼働状態(待機中、動作中等)を示すデータ、動作モード(暖房、冷房、除湿等)を示すデータ、設定温度、室外機の周囲温度、室外機のファンの回転数、室内の温度、室内機のファンの回転数、コンプレッサの稼働状態(最大のXX%等)等が考えられる。
 対象機器が石油ファンヒーターの場合、動作状態データは、稼働状態(待機中、動作中等)、動作モード(通常モード、エコモード等)、設定温度、ファンの回転数等が考えられる。
 対象機器が冷凍機(業務用、大型)の場合、動作状態データは、稼働状態(冷凍、霜取り等)、設定温度、室外機の周囲温度、コンプレッサの稼働状態(最大のXX%等)等が考えられる。
 対象機器が冷凍庫(業務用、小型)の場合、動作状態データは、稼働状態(冷蔵、霜取り等)、設定温度、室外機の周囲温度、室外機のファンの回転数、室内の温度、室内機のファンの回転数、コンプレッサの稼働状態(最大のXX%等)等が考えられる。
 対象機器が電子レンジの場合、動作状態データは、稼働状態(待機中、加熱中等)、電力設定等が考えられる。
 対象機器がテレビの場合、動作状態データは、稼働状態(待機中、視聴中、録画中等)が考えられる。
 対象機器が冷蔵庫の場合、動作状態データは、稼働状態(冷蔵、霜取り等)、庫内温度、周囲温度、コンプレッサの稼働状態(最大のXX%等)等が考えられる。
 対象機器がパソコンの場合、動作状態データは、稼働状態(待機中、動作中等)等が考えられる。
 対象機器が洗濯機の場合、動作状態データは、稼働状態(洗濯中、濯ぎ中、脱水中、待機中等)等が考えられる。
 対象機器が照明器具の場合、動作状態データは、稼働状態(待機中、点灯中等)、調光状態(XX%)等が考えられる。
 対象機器が保温機/保冷器(ショーケース)の場合、動作状態データは、稼働状態(待機、保温中、保冷中等)、動作モード(保温、保冷等)、コンプレッサの稼働状態(最大のXX%等)、庫内温度、周囲温度等が考えられる。
 対象機器がコピー機の場合、動作状態データは、稼働状態(待機中、コピー中等)等が考えられる。
 対象機器がATM(Automatic Teller Machine)の場合、動作状態データは、稼働状態(待機中、入金中、出金中等)等が考えられる。
 対象機器が看板照明の場合、動作状態データは、稼働状態(点灯中、滅灯中等)等が考えられる。
 対象機器がフライヤーの場合、動作状態データは、稼働状態(待機中、加熱中等)等が考えられる。
 対象機器が食器洗浄機の場合、動作状態データは、稼働状態(待機中、洗浄中、乾燥中等)等が考えられる。
 対象機器がコーヒーメーカ(全自動)の場合、動作状態データは、稼働状態(待機中、抽出中、湯沸し中、清掃中等)等が考えられる。
 対象機器がレジ・POS(Point Of Sale)システムの場合、動作状態データは、稼働状態(待機中、入力中、入金中、出金中、印刷中等)等が考えられる。
 以上説明した波形データ取得部11、特徴量抽出部12、環境データ取得部13及び動作状態データ取得部14により、図3に示すデータの中の、距離以外の値が得られる。図3に示すデータは、波形データから波形特徴量を抽出する単位となる処理単位データ各々を識別する情報(処理単位データID(identifier))と、各処理単位データから抽出された波形特徴量と、各処理単位データが測定されたタイミングの外部環境データと、各処理単位データが測定されたタイミングの動作状態データと、以下で説明する距離算出部19により算出される距離とが互いに対応付けられている。波形データ取得部11、特徴量抽出部12、環境データ取得部13及び動作状態データ取得部14により新たなデータが処理されると、図3に示すデータが随時更新される(新たなデータが追加)。
 なお、「処理単位データが測定されたタイミングの外部環境データ」とは、処理単位データが測定された日時時刻(対象タイミング)と同じタイミング、対象タイミングに最も近いタイミング、対象タイミングより後の最も近いタイミング、又は、対象タイミングより前の最も近いタイミングで測定された外部環境データであってもよい。その他、処理単位データ(処理単位の波形データ)は一定の時間幅を有するため、外部環境データの測定間隔によっては、当該時間幅の中に各種外部環境データに対応して複数の値が測定され得る。この場合、当該複数の値の統計値(平均値、最大値、最小値、最頻値、中間値等)を、処理単位データが測定されたタイミングの外部環境データとしてもよい。
 同様に、「処理単位データが測定されたタイミングの動作状態データ」とは、処理単位データが測定された日時時刻(対象タイミング)と同じタイミング、対象タイミングに最も近いタイミング、対象タイミングより後の最も近いタイミング、又は、対象タイミングより前の最も近いタイミングで測定された動作状態データを意味する。その他、処理単位データ(処理単位の波形データ)は一定の時間幅を有するため、動作状態データの測定間隔によっては、当該時間幅の中に各種動作状態データに対応して複数の値が測定され得る。この場合、当該複数の値の統計値(平均値、最大値、最小値、最頻値、中間値等)を、処理単位データが測定されたタイミングの動作状態データとしてもよい。
 図2に戻り、距離算出部19は、特徴量抽出部12が抽出した波形特徴量、環境データ取得部13が取得した環境データ、及び、動作状態データ取得部14が取得した動作状態データを含むメンバーと、複数の参照メンバー各々との距離を算出する。図3に示す1つの処理単位データIDに対応する波形特徴量、環境データ及び動作状態データが、1つのメンバーとなる。
 各参照メンバーは、波形特徴量、環境データ、及び、動作状態データを含む。本実施形態では、その時点で登録されている教師データ各々を、各参照メンバーとする。
 図4に、登録されている教師データの一例を模式的に示す。図4に示すデータは、複数の教師データ各々を識別する情報(教師データID)と、波形特徴量と、外部環境データと、動作状態データとが互いに対応付けられている。当該情報は、オペレータによる編集及び以下で説明する登録部16による新たな教師データの登録により更新される。
 例えば、本実施形態の教師データ生成処理を開始する前処理として、オペレータが2つ以上の教師データを登録しておく。最初の段階では、このようにして登録された教師データが、参照メンバーとなる。以降、本実施形態の教師データ生成処理の進行に伴い、登録部16による新たな教師データの登録があると、それに伴い、参照メンバーの数が増えていくこととなる。
 距離算出部19は、新たに取得したメンバーと、その時点で登録されている教師データ(参照メンバー)各々との距離(類似度)を算出する。距離の算出方法は、設計的事項である。例えば、機械学習により距離を算出してもよい。その他、各メンバー及び各参照メンバーに対応して、各種波形特徴量、各種環境データ、及び、各種動作状態データを予め定められたルールに従い規格化し、それらを所定の順に並べた多次元座標を得てもよい。そして、当該座標値間の距離を算出してもよい。
 距離算出部19による処理により、図3の距離の欄の値が定まる。距離を算出する時点で参照データがN個(Nは、2以上の整数)ある場合、各メンバーに対応してN個の距離が算出され、N次元データとして距離の欄に登録される。
 図2に戻り、グループ化部15は、複数の参照メンバー各々との距離に基づき、メンバーをグループ化する。具体的には、グループ化部15は、距離(N次元データ)の値が類似するもの同士をグループ化する。グループ化の方法は設計的事項であるが、以下、一例を説明する。
 まず、最初の第1のメンバーが与えられると、グループ化部15は、グループIDを発行し、第1のグループに第1のメンバーを属させる。そして、第1のメンバーの距離(N次元データ)を、第1のグループの代表距離として登録する。これにより、図5に示す情報が更新される。
 次いで、第2のメンバーが与えられると、グループ化部15は、第2のメンバーの距離(N次元データ)と、その時点で登録されている第1のグループの代表距離(N次元データ)との類似度を算出する。例えば、グループ化部15は、N次元データをN次元座標として扱い、当該座標間の距離を上記類似度として算出する。
 そして、グループ化部15は、上記類似度が所定値(設計的事項)以下か判断する。所定値(設計的事項)以下である場合、グループ化部15は、第2のメンバーを第1のグループに属させる。そして、第1のメンバーの距離(N次元データ)と第2のメンバーの距離(N次元データ)とに基づき、第1のグループの代表距離(N次元データ)を算出し、更新する。例えば、第1のメンバーの距離(N次元データ)と第2のメンバーの距離(N次元データ)との平均値を、第1のグループの代表距離(N次元データ)とする。これにより、図5に示す情報が更新される。
 一方、所定値(設計的事項)以下でない場合、グループ化部15は、新たなグループIDを発行し、第2のグループに第2のメンバーを属させる。そして、第2のメンバーの距離(N次元データ)を、第2のグループの代表距離として登録する。これにより、図5に示す情報が更新される。
 例えばこのようにして、新たなメンバーがグループ化部15に与えられると、グループ化部15は、新たなメンバーの距離(N次元データ)と、その時点で登録されているグループ各々の代表距離(N次元データ)との類似度を算出し、類似度が所定以下のものをグループ化してもよい。
 図2に戻り、登録部16は、所定条件を満たすグループを、対象機器の所定の状態を示す教師データとして登録する。所定条件としては、例えば「メンバーの数が所定数以上」等が例示される。
 登録部16により新たな教師データが登録されると、図4に示す情報が更新される。また、登録部16により新たな教師データが登録されると、参照メンバーの数が増加する。それに伴い、参照メンバーと各メンバーとの距離をしめすN次元データの次元も増加する。
 距離算出部19は、登録部16により新たな教師データが登録されると、図3に示す距離の欄の値を更新することができる。例えば、登録部16による新たな教師データの登録により、参照メンバーの数が3個から4個に増加したとする。この場合、距離算出部19は、各メンバーと、それまでの3個の参照メンバー各々との距離を示した3次元データ(距離)を、各メンバーと、新たな4個の参照メンバー各々との距離を示した4次元データ(距離)に更新する。
 次に、図6のフローチャートに基づき、本実施形態のデータ処理装置10の処理の流れの一例を説明する。
 まず、前準備として、2個以上の教師データが登録される(図4参照)。各教師データは、波形特徴量、環境データ及び動作状態データを含む。例えば、起動時、小負荷時、大負荷時の波教師データが登録されてもよい。
 前準備の後、教師データ生成処理が開始されると、S10において、波形データ取得部11が、対象機器の消費電流及び/又は電圧の波形データを取得する。また、環境データ取得部13が、上記波形データが取得された時の対象機器の環境を示す環境データを取得する。また、動作状態データ取得部14が、上記波形データが取得された時の対象機器の動作状態を示す動作状態データを取得する。
 S11では、特徴量抽出部12が、S10で取得された波形データ内の処理単位データを処理し、所定の波形特徴量を抽出する。
 S12では、距離算出部19が、S11で抽出された波形データの波形特徴量、S10で取得された当該波形データが取得された時の環境データ及び動作状態データ含むメンバーと、その時点で登録されている教師データ(参照メンバー)各々との距離を算出し、当該メンバーに対応付ける(図3参照)。
 S13では、グループ化部15が、複数の教師データ(参照メンバー)各々との距離に基づき、メンバーをグループ化する(グループ化処理)。これにより、図5の情報が更新される。
 グループ化処理により図5に示す情報が更新された後、登録部16は、教師データとして登録するための所定の条件を満たすグループが存在しないか(新たに発生していないか)判断する(S14)。ここでの所定の条件は、例えば、メンバーの数が所定数以上である。
 所定の条件を満たすグループが存在する場合(S14のYes)、登録部16は、そのグループを、対象機器の所定の状態を示す教師データとして新たに登録する(S15)。その後、距離算出部19は、図3に示す距離の欄の値を更新する(S16)。具体的には、距離の欄の値を、各メンバーと、新たに登録された教師データを含む複数の教師データ(参照メンバー)各々との距離を示す情報に更新する。
 その後、グループ化部15が、更新後の距離に基づき、メンバーをグループ化する(グループ化処理)。これにより、図5の情報が更新される。その後、S14に進み、同様の処理を繰り返す。
 S14において、所定の条件を満たすグループが存在しない場合(S14のNo)、S17に進む。
 S17では、教師データ生成処理を終了するか否か判断する。終了しないと判断した場合(S17のNo)、S10に戻って処理を繰り返す。一方、終了すると判断した場合(S17のYes)、処理を終了する。例えば、「新たな教師データの登録が所定時間以上ない」、「登録された教師データの数が所定数に達した」、「教師データ生成処理の実行時間が所定時間に達した」、「オペレータから処理終了の指示入力があった」等の条件を満たすと、データ処理装置10は処理を終了すると判断する。
 以上説明した本実施形態によれば、対象機器を動作させながら、その対象機器の所定の状態を示す教師データを生成することができる。このため、例えば、対象機器を日常の中で実際に利用しながら、教師データを生成することができる。
 このように、日常の中で実際に利用しながら教師データを生成することができるので、教師データを生成するためだけに対象機器を動作させるという労力を軽減することができる。この場合、対象機器を無駄に動作させる必要がないため、電気代の節約等が期待される。
 また、本実施形態では、外部環境データや動作状態データに基づきグループ化した後、所定の条件を満たすグループの波形特徴量を教師データとして登録することができる。このため、各種外部環境や各種動作状態に応じた多様な教師データを登録することが可能となる。
 また、本実施形態では、メンバーの数が所定数以上のグループの波形特徴量を教師データとして登録することができる。すなわち、メンバーの数が所定数に達しないグループの波形特徴量を教師データとして登録しない。かかる場合、対象機器の予期せぬ動作により、一時的に現れた波形特徴量が教師データとして登録されることはない。結果、不要な教師データの登録を軽減し、教師データの数が不要に膨大となる不都合を軽減できる。
 また、本実施形態では、その時点で登録されている複数の教師データ(参照メンバー)各々との距離に基づき、複数のメンバーをグループ化できる。このため、最初に用意すべき教師データを多く用意する必要が無く、最低2つでよい。また、最初に用意する教師データに特別な条件は無く、たとえば、環境データの1つである温度が10℃と20℃といった簡単に用意できる環境で教師データを採取することができ、教師データを用意する手間や時間を大きく削減できる。
<第2の実施形態>
 本実施形態のデータ処理装置10は、第1の実施形態で説明した機能に加えて、第1の実施形態で説明した機能で生成した教師データを用い、対象機器の状態を推定する機能を提供する。以下、詳細に説明する。
 図7に、本実施形態のデータ処理装置10の機能ブロック図の一例を示す。図示するように、データ処理装置10は、波形データ取得部11と、特徴量抽出部12と、環境データ取得部13と、動作状態データ取得部14と、グループ化部15と、登録部16と、教師データ記憶部17と、推定部18と、距離算出部19を有する。
 波形データ取得部11、特徴量抽出部12、環境データ取得部13、動作状態データ取得部14、グループ化部15、登録部16及び距離算出部19の構成は、第1の実施形態と同様である。
 教師データ記憶部17には、登録部16が登録した教師データ(図4参照)が記憶される。
 推定部18は、教師データ記憶部17に記憶されている教師データを用いて、対象機器の状態を推定する。具体的には、対象機器の状態が異常か正常かを推定する。
 例えば、推定部18は、教師データ(正常時の波形特徴量)を用いた機械学習により推定モデルを生成し、生成した推定モデルに、特徴量抽出部12、環境データ取得部13及び動作状態データ取得部14により取得された新たなメンバーの値を入力することで、推定結果(正常又は以上)を得ることができる。推定モデルは、例えば、重回帰分析、ニューラルネットワーク、隠れマルコフモデル等を用いたものとできる。
 推定部18による推定処理は、第1の実施形態で図6を用いて説明した教師データ生成処理と並行して行われてもよいし、教師データ取集処理が完了した後に行われてもよい。いずれにしても、教師データ記憶部17に記憶されている教師データの数が増えるほど、推定部18による推定精度が高くなる。
 以上説明した本実施形態によれば、第1の実施形態と同様な作用効果を実現できる。また、本実施形態によれば、対象機器の状態(異常の有無)を推定することができる。第1の実施形態で説明したように、本実施形態のデータ処理装置10によれば、各種外部環境や各種動作状態に応じた多様な教師データが生成され、登録される。このような多様な教師データに基づき推定処理を行うことで、推定精度を高めることができる。
<第3の実施形態>
 本実施形態では、サーバ(例:クラウドサーバ)と、複数の端末装置との連動した処理により、多様な教師データを収集する。
 図8に、サーバ40及び端末装置30の機能ブロック図の一例を示す。複数の端末装置30各々は、図示するように、波形データ取得部11、特徴量抽出部12、環境データ取得部13、動作状態データ取得部14、教師データ記憶部17-2、推定部18及び送受信部21を有する。なお、教師データ記憶部17-2及び推定部18を有さなくてもよい。
 波形データ取得部11、特徴量抽出部12、環境データ取得部13、動作状態データ取得部14及び推定部18の構成は、第1及び第2の実施形態と同様である。送受信部21は、他の装置(例:サーバ40)との間でデータの送受信を行う。教師データ記憶部17-2は、複数の教師データを記憶する。
 サーバ40は、グループ化部15、登録部16、教師データ記憶部17-1、距離算出部19及び送受信部20を有する。
 グループ化部15、登録部16及び距離算出部19の構成は、第1及び第2の実施形態と同様である。送受信部20は、他の装置(例:複数の端末装置30)との間でデータの送受信を行う。教師データ記憶部17-1は、複数の教師データを記憶する。
 複数の端末装置30は、複数の対象機器各々に対応して設置される。複数の端末装置30は、互いに地理的に離れた場所に設置されてもよい。複数の端末装置30は、複数の対象機器各々に対応した波形特徴量、環境データ及び動作状態データを取得し、サーバ40に送信する。端末装置30は、対応する対象機器の識別情報(型番等)に対応付けて、波形特徴量、環境データ及び動作状態データをサーバ40に送信してもよい。
 サーバ40は、複数の端末装置30から取得した波形特徴量、環境データ及び動作状態データをグループ化する。そして、所定条件を満たすグループを教師データとして登録する。
 サーバ40は、教師データ記憶部17-1に登録されている教師データを複数の端末装置30各々に送信することができる。各端末装置30は、サーバ40から受信した教師データを教師データ記憶部17-2に登録する。そして、推定部18は、教師データ記憶部17-2に記憶されている教師データを用いて、対象機器の状態を推定する。
 以上説明した本実施形態によれば、複数の端末装置30でデータ(波形特徴量、環境データ及び動作状態データ)を収集することができるので、短時間で多くのデータを収集することができる。結果、教師データを効率的に生成することができる。
 また、様々な場所に複数の端末装置を設置することで、地理的な位置に起因する環境要因(気温、湿度の違いや、昼夜の寒暖差)も取り込んだ多様な教師データが生成することができる。
 以下、参考形態の例を付記する。
1. 対象機器の消費電流及び/又は電圧の波形データを取得する波形データ取得手段と、
 前記波形データから波形特徴量を抽出する特徴量抽出手段と、
 前記波形データが取得された時の前記対象機器の環境を示す環境データを取得する環境データ取得手段と、
 前記波形データが取得された時の前記対象機器の動作状態を示す動作状態データを取得する動作状態データ取得手段と、
 前記波形特徴量、前記環境データ及び前記動作状態データを含むメンバーと、複数の参照メンバー各々との距離を算出する距離算出手段と、
 複数の前記参照メンバー各々との距離に基づき、前記メンバーをグループ化するグループ化手段と、
 所定条件を満たすグループを教師データとして登録する登録手段と、
を有するデータ処理装置。
2. 1に記載のデータ処理装置において、
 前記距離算出手段は、登録されている前記教師データを前記参照メンバーとし、前記距離を算出するデータ処理装置。
3. 1又は2に記載のデータ処理装置において、
 前記登録手段は、前記メンバーの数が所定数以上となった前記グループを、前記教師データとして登録するデータ処理装置。
4. 1から3のいずれかに記載のデータ処理装置において、
 前記環境データ取得手段は、前記環境データとして、温度、湿度及び天候の中の少なくとも1つを取得するデータ処理装置。
5. 1から4のいずれかに記載のデータ処理装置において、
 前記動作状態データ取得手段は、前記対象機器から、及び/又は、前記対象機器に取り付けられたセンサーから、前記動作状態データを取得するデータ処理装置。
6. 1から5のいずれかに記載のデータ処理装置において、
 前記教師データを用いて、前記対象機器の状態を推定する推定手段をさらに有するデータ処理装置。
7. 複数の端末装置とサーバとを有し、
 前記端末装置は、
  対象機器の消費電流及び/又は電圧の波形データを取得する波形データ取得手段と、
  前記波形データから波形特徴量を抽出する特徴量抽出手段と、
  前記波形データが取得された時の前記対象機器の環境を示す環境データを取得する環境データ取得手段と、
  前記波形データが取得された時の前記対象機器の動作状態を示す動作状態データを取得する動作状態データ取得手段と、
  前記波形特徴量、前記環境データ及び前記動作状態データを前記サーバに送信する送受信手段と、
を有し、
 前記サーバは、
  複数の前記端末装置各々から前記波形特徴量、前記環境データ及び前記動作状態データを受信する送受信手段と、
  前記波形特徴量、前記環境データ及び前記動作状態データを含むメンバーと、複数の参照メンバー各々との距離を算出する距離算出手段と、
  複数の前記参照メンバー各々との距離に基づき、前記メンバーをグループ化するグループ化手段と、
  所定条件を満たすグループを教師データとして登録する登録手段と、
を有するデータ処理システム。
8. 7に記載のデータ処理システムにおいて、
 前記サーバの前記送受信手段は、前記登録手段により登録された前記教師データを、複数の前記端末装置各々に送信するデータ処理システム。
9. コンピュータが、
 対象機器の消費電流及び/又は電圧の波形データを取得する波形データ取得工程と、
 前記波形データから波形特徴量を抽出する特徴量抽出工程と、
 前記波形データが取得された時の前記対象機器の環境を示す環境データを取得する環境データ取得工程と、
 前記波形データが取得された時の前記対象機器の動作状態を示す動作状態データを取得する動作状態データ取得工程と、
 前記波形特徴量、前記環境データ及び前記動作状態データを含むメンバーと、複数の参照メンバー各々との距離を算出する距離算出工程と、
 複数の前記参照メンバー各々との距離に基づき、前記メンバーをグループ化するグループ化工程と、
 所定条件を満たすグループを教師データとして登録する登録工程と、
を実行するデータ処理方法。
9-2. 9に記載のデータ処理方法において、
 前記距離算出工程では、登録されている前記教師データを前記参照メンバーとし、前記距離を算出するデータ処理方法。
9-3. 9又は9-2に記載のデータ処理方法において、
 前記登録工程では、前記メンバーの数が所定数以上となった前記グループを、前記教師データとして登録するデータ処理方法。
9-4. 9から9-3のいずれかに記載のデータ処理方法において、
 前記環境データ取得工程では、前記環境データとして、温度、湿度及び天候の中の少なくとも1つを取得するデータ処理方法。
9-5. 9から9-4のいずれかに記載のデータ処理方法において、
 前記動作状態データ取得工程では、前記対象機器から、及び/又は、前記対象機器に取り付けられたセンサーから、前記動作状態データを取得するデータ処理方法。
9-6. 9から9-5のいずれかに記載のデータ処理方法において、
 前記コンピュータが、前記教師データを用いて、前記対象機器の状態を推定する推定工程をさらに実行するデータ処理方法。
10. コンピュータを、
 対象機器の消費電流及び/又は電圧の波形データを取得する波形データ取得手段、
 前記波形データから波形特徴量を抽出する特徴量抽出手段、
 前記波形データが取得された時の前記対象機器の環境を示す環境データを取得する環境データ取得手段、
 前記波形データが取得された時の前記対象機器の動作状態を示す動作状態データを取得する動作状態データ取得手段、
 前記波形特徴量、前記環境データ及び前記動作状態データを含むメンバーと、複数の参照メンバー各々との距離を算出する距離算出手段、
 複数の前記参照メンバー各々との距離に基づき、前記メンバーをグループ化するグループ化手段、
 所定条件を満たすグループを教師データとして登録する登録手段、
として機能させるプログラム。
10-2. 10に記載のプログラムにおいて、
 前記距離算出手段は、登録されている前記教師データを前記参照メンバーとし、前記距離を算出するプログラム。
10-3. 10又は10-2に記載のプログラムにおいて、
 前記登録手段は、前記メンバーの数が所定数以上となった前記グループを、前記教師データとして登録するプログラム。
10-4. 10から10-3のいずれかに記載のプログラムにおいて、
 前記環境データ取得手段は、前記環境データとして、温度、湿度及び天候の中の少なくとも1つを取得するプログラム。
10-5. 10から10-4のいずれかに記載のプログラムにおいて、
 前記動作状態データ取得手段は、前記対象機器から、及び/又は、前記対象機器に取り付けられたセンサーから、前記動作状態データを取得するプログラム。
10-6. 10から10-5のいずれかに記載のプログラムにおいて、
 前記教師データを用いて、前記対象機器の状態を推定する推定手段をさらに有するプログラム。
 この出願は、2016年3月23日に出願された日本出願特願2016-058004号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (10)

  1.  対象機器の消費電流及び/又は電圧の波形データを取得する波形データ取得手段と、
     前記波形データから波形特徴量を抽出する特徴量抽出手段と、
     前記波形データが取得された時の前記対象機器の環境を示す環境データを取得する環境データ取得手段と、
     前記波形データが取得された時の前記対象機器の動作状態を示す動作状態データを取得する動作状態データ取得手段と、
     前記波形特徴量、前記環境データ及び前記動作状態データを含むメンバーと、複数の参照メンバー各々との距離を算出する距離算出手段と、
     複数の前記参照メンバー各々との距離に基づき、前記メンバーをグループ化するグループ化手段と、
     所定条件を満たすグループを教師データとして登録する登録手段と、
    を有するデータ処理装置。
  2.  請求項1に記載のデータ処理装置において、
     前記距離算出手段は、登録されている前記教師データを前記参照メンバーとし、前記距離を算出するデータ処理装置。
  3.  請求項1又は2に記載のデータ処理装置において、
     前記登録手段は、前記メンバーの数が所定数以上となった前記グループを、前記教師データとして登録するデータ処理装置。
  4.  請求項1から3のいずれか1項に記載のデータ処理装置において、
     前記環境データ取得手段は、前記環境データとして、温度、湿度及び天候の中の少なくとも1つを取得するデータ処理装置。
  5.  請求項1から4のいずれか1項に記載のデータ処理装置において、
     前記動作状態データ取得手段は、前記対象機器から、及び/又は、前記対象機器に取り付けられたセンサーから、前記動作状態データを取得するデータ処理装置。
  6.  請求項1から5のいずれか1項に記載のデータ処理装置において、
     前記教師データを用いて、前記対象機器の状態を推定する推定手段をさらに有するデータ処理装置。
  7.  複数の端末装置とサーバとを有し、
     前記端末装置は、
      対象機器の消費電流及び/又は電圧の波形データを取得する波形データ取得手段と、
      前記波形データから波形特徴量を抽出する特徴量抽出手段と、
      前記波形データが取得された時の前記対象機器の環境を示す環境データを取得する環境データ取得手段と、
      前記波形データが取得された時の前記対象機器の動作状態を示す動作状態データを取得する動作状態データ取得手段と、
      前記波形特徴量、前記環境データ及び前記動作状態データを前記サーバに送信する送受信手段と、
    を有し、
     前記サーバは、
      複数の前記端末装置各々から前記波形特徴量、前記環境データ及び前記動作状態データを受信する送受信手段と、
      前記波形特徴量、前記環境データ及び前記動作状態データを含むメンバーと、複数の参照メンバー各々との距離を算出する距離算出手段と、
      複数の前記参照メンバー各々との距離に基づき、前記メンバーをグループ化するグループ化手段と、
      所定条件を満たすグループを教師データとして登録する登録手段と、
    を有するデータ処理システム。
  8.  請求項7に記載のデータ処理システムにおいて、
     前記サーバの前記送受信手段は、前記登録手段により登録された前記教師データを、複数の前記端末装置各々に送信するデータ処理システム。
  9.  コンピュータが、
     対象機器の消費電流及び/又は電圧の波形データを取得する波形データ取得工程と、
     前記波形データから波形特徴量を抽出する特徴量抽出工程と、
     前記波形データが取得された時の前記対象機器の環境を示す環境データを取得する環境データ取得工程と、
     前記波形データが取得された時の前記対象機器の動作状態を示す動作状態データを取得する動作状態データ取得工程と、
     前記波形特徴量、前記環境データ及び前記動作状態データを含むメンバーと、複数の参照メンバー各々との距離を算出する距離算出工程と、
     複数の前記参照メンバー各々との距離に基づき、前記メンバーをグループ化するグループ化工程と、
     所定条件を満たすグループを教師データとして登録する登録工程と、
    を実行するデータ処理方法。
  10.  コンピュータを、
     対象機器の消費電流及び/又は電圧の波形データを取得する波形データ取得手段、
     前記波形データから波形特徴量を抽出する特徴量抽出手段、
     前記波形データが取得された時の前記対象機器の環境を示す環境データを取得する環境データ取得手段、
     前記波形データが取得された時の前記対象機器の動作状態を示す動作状態データを取得する動作状態データ取得手段、
     前記波形特徴量、前記環境データ及び前記動作状態データを含むメンバーと、複数の参照メンバー各々との距離を算出する距離算出手段、
     複数の前記参照メンバー各々との距離に基づき、前記メンバーをグループ化するグループ化手段、
     所定条件を満たすグループを教師データとして登録する登録手段、
    として機能させるプログラム。
PCT/JP2017/001877 2016-03-23 2017-01-20 データ処理装置、データ処理システム、データ処理方法及びプログラム WO2017163569A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA3018660A CA3018660A1 (en) 2016-03-23 2017-01-20 Data processing apparatus, data processing system, data processing method, and storage medium
CN201780019327.5A CN108885448A (zh) 2016-03-23 2017-01-20 数据处理装置、数据处理系统、数据处理方法和程序
EP17769616.8A EP3435185A4 (en) 2016-03-23 2017-01-20 DATA PROCESSING DEVICE, DATA PROCESSING SYSTEM, DATA PROCESSING METHOD, AND PROGRAM
US16/085,665 US10831184B2 (en) 2016-03-23 2017-01-20 Data processing apparatus, data processing system, data processing method, and non-transitory storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-058004 2016-03-23
JP2016058004A JP6686593B2 (ja) 2016-03-23 2016-03-23 データ処理装置、データ処理システム、データ処理方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2017163569A1 true WO2017163569A1 (ja) 2017-09-28

Family

ID=59899928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001877 WO2017163569A1 (ja) 2016-03-23 2017-01-20 データ処理装置、データ処理システム、データ処理方法及びプログラム

Country Status (7)

Country Link
US (1) US10831184B2 (ja)
EP (1) EP3435185A4 (ja)
JP (1) JP6686593B2 (ja)
CN (1) CN108885448A (ja)
CA (1) CA3018660A1 (ja)
TW (1) TW201738677A (ja)
WO (1) WO2017163569A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107360A1 (ja) * 2017-11-28 2019-06-06 株式会社安川電機 制御システム、工場システム、学習システム、推定用モデルの生成方法及びアクチュエータの状態推定方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018146747A1 (ja) * 2017-02-08 2018-08-16 三菱電機株式会社 情報処理装置、情報処理方法及び情報処理プログラム
JP6810675B2 (ja) 2017-11-16 2021-01-06 東京エレクトロンデバイス株式会社 情報処理装置及びプログラム
JP7214417B2 (ja) * 2018-09-20 2023-01-30 株式会社Screenホールディングス データ処理方法およびデータ処理プログラム
WO2020194716A1 (ja) * 2019-03-28 2020-10-01 三菱電機株式会社 信号選択装置、学習装置、信号選択方法及びプログラム
TWI687696B (zh) * 2019-06-26 2020-03-11 國立中興大學 回饋型隱藏式馬可夫模型辨識器的建立方法與基於此辨識器的辨識系統的建立方法
US11427193B2 (en) * 2020-01-22 2022-08-30 Nodar Inc. Methods and systems for providing depth maps with confidence estimates
WO2021150369A1 (en) 2020-01-22 2021-07-29 Nodar Inc. Non-rigid stereo vision camera system
TWI783826B (zh) * 2021-12-14 2022-11-11 國立中山大學 電力系統狀態的分析方法
WO2023244252A1 (en) 2022-06-14 2023-12-21 Nodar Inc. 3d vision system with automatically calibrated stereo vision sensors and lidar sensor
CN116302897B (zh) * 2023-05-15 2023-10-17 合肥联宝信息技术有限公司 一种数据集的建立方法、装置、电子设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010191556A (ja) * 2009-02-17 2010-09-02 Hitachi Ltd 異常検知方法及び異常検知システム
JP2014167667A (ja) * 2013-02-28 2014-09-11 Mitsubishi Electric Corp 設備点検順位設定装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200919210A (en) 2007-07-18 2009-05-01 Steven Kays Adaptive electronic design
WO2009034821A1 (ja) * 2007-09-11 2009-03-19 Nec Corporation データロガー、データ保存方法およびプログラム
JP5048625B2 (ja) * 2008-10-09 2012-10-17 株式会社日立製作所 異常検知方法及びシステム
JP5392533B2 (ja) 2008-10-10 2014-01-22 ソニー株式会社 固体撮像素子、光学装置、信号処理装置及び信号処理システム
CA2972362C (en) * 2008-12-15 2019-08-13 Accenture Global Services Limited Power grid outage and fault condition management
TW201037637A (en) 2009-04-03 2010-10-16 Lin Wen Yuan Method of monitoring an object using ID recognization
US8156055B2 (en) * 2009-05-04 2012-04-10 ThinkEco, Inc. System and method for utility usage, monitoring and management
US9014685B2 (en) 2009-06-12 2015-04-21 Microsoft Technology Licensing, Llc Mobile device which automatically determines operating mode
JP2011155712A (ja) * 2010-01-25 2011-08-11 Sony Corp 電子機器、電力管理装置、及び機器特定方法
JP4832609B1 (ja) 2011-06-22 2011-12-07 株式会社日立エンジニアリング・アンド・サービス 異常予兆診断装置および異常予兆診断方法
JP5639562B2 (ja) * 2011-09-30 2014-12-10 株式会社東芝 サービス実行装置、サービス実行方法およびサービス実行プログラム
JP2013201230A (ja) 2012-03-23 2013-10-03 Seiko Instruments Inc ホールセンサ
JP5991942B2 (ja) 2013-04-11 2016-09-14 日本電信電話株式会社 電源電圧歪みによる電流の特徴への影響除去法
US11002773B2 (en) * 2013-07-17 2021-05-11 Nec Corporation Monitoring apparatus, monitoring method, and storage medium
CN104699685B (zh) * 2013-12-04 2018-02-09 富士通株式会社 模型更新装置及方法、数据处理装置及方法、程序
WO2015145865A1 (ja) * 2014-03-24 2015-10-01 日本電気株式会社 監視装置、監視システム、監視方法及びプログラム
JP6465106B2 (ja) * 2014-03-31 2019-02-06 日本電気株式会社 教師データ生成装置、電気機器監視システム、教師データ生成方法及びプログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010191556A (ja) * 2009-02-17 2010-09-02 Hitachi Ltd 異常検知方法及び異常検知システム
JP2014167667A (ja) * 2013-02-28 2014-09-11 Mitsubishi Electric Corp 設備点検順位設定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3435185A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107360A1 (ja) * 2017-11-28 2019-06-06 株式会社安川電機 制御システム、工場システム、学習システム、推定用モデルの生成方法及びアクチュエータの状態推定方法
CN111433691A (zh) * 2017-11-28 2020-07-17 株式会社安川电机 控制系统、工厂系统、学习系统、估计用模型的生成方法和致动器的状态估计方法
JPWO2019107360A1 (ja) * 2017-11-28 2020-12-03 株式会社安川電機 制御システム、工場システム、学習システム、推定用モデルの生成方法及びアクチュエータの状態推定方法
CN111433691B (zh) * 2017-11-28 2024-03-08 株式会社安川电机 控制系统、工厂系统、学习系统、估计用模型的生成方法和致动器的状态估计方法
US11947322B2 (en) 2017-11-28 2024-04-02 Kabushiki Kaisha Yaskawa Denki Factory system for machine learning of an actuator

Also Published As

Publication number Publication date
CA3018660A1 (en) 2017-09-28
EP3435185A4 (en) 2019-05-01
US10831184B2 (en) 2020-11-10
JP6686593B2 (ja) 2020-04-22
TW201738677A (zh) 2017-11-01
EP3435185A1 (en) 2019-01-30
US20190087186A1 (en) 2019-03-21
CN108885448A (zh) 2018-11-23
JP2017174045A (ja) 2017-09-28

Similar Documents

Publication Publication Date Title
WO2017163569A1 (ja) データ処理装置、データ処理システム、データ処理方法及びプログラム
US9625518B2 (en) Multi-node electrical power monitoring, analysis, and related services
US6996508B1 (en) System and method for remote retrofit identification of energy consumption systems and components
CN102708419B (zh) 数据中心效率分析及优化的方法和系统
US11002773B2 (en) Monitoring apparatus, monitoring method, and storage medium
JP6583265B2 (ja) 監視装置、監視システム、監視方法及びプログラム
JP6958599B2 (ja) 監視装置、監視システム、監視方法及びプログラム
US20110288793A1 (en) Event identification
JP2003316922A (ja) エネルギー情報分析方法、エネルギー情報分析装置、エネルギー情報分析システム
CN102822639A (zh) 器具的自动检测
JP2010218077A (ja) 省エネ支援装置、省エネ支援システム
JP2019212131A (ja) 予測装置、電気機器、管理システム、予測方法、及び制御プログラム
US9785902B1 (en) Computer-implemented engineering review of energy consumption by equipment
CN112101665A (zh) 故障检测预警方法、装置、存储介质及电子设备
CN103616863A (zh) 家用空调和冰箱的风险预估方法
US11125790B2 (en) Method for operating a power consumption metering system and power consumption metering system
CN110736221A (zh) 空调的控制方法、装置和系统
JP2002092410A (ja) 製品の紹介方法
US11508020B2 (en) Method for operating a power consumption metering system and power consumption metering system
CN114811891B (zh) 用于空调新风管防凝露的方法、装置及空调
JP2012048409A (ja) 電力管理システムおよび管理サーバ
US20170330246A1 (en) System, user managing server, and method of providing user customized advertisement
WO2015194248A1 (ja) 情報提供装置、情報提供方法、及び、プログラム
JP6656093B2 (ja) 情報提供システム
Reeg Nonintrusive load monitoring for verification and diagnostics

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3018660

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017769616

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017769616

Country of ref document: EP

Effective date: 20181023

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769616

Country of ref document: EP

Kind code of ref document: A1