WO2017163518A1 - Polyhydroxyalkanoic acid having functional group at terminal carboxyl group and method for producing same - Google Patents

Polyhydroxyalkanoic acid having functional group at terminal carboxyl group and method for producing same Download PDF

Info

Publication number
WO2017163518A1
WO2017163518A1 PCT/JP2016/088424 JP2016088424W WO2017163518A1 WO 2017163518 A1 WO2017163518 A1 WO 2017163518A1 JP 2016088424 W JP2016088424 W JP 2016088424W WO 2017163518 A1 WO2017163518 A1 WO 2017163518A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
acid
pha
carbon atoms
polyhydroxyalkanoic
Prior art date
Application number
PCT/JP2016/088424
Other languages
French (fr)
Japanese (ja)
Inventor
新吾 小林
哲也 藤木
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2018506780A priority Critical patent/JP6990169B2/en
Publication of WO2017163518A1 publication Critical patent/WO2017163518A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/685Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/688Polyesters containing atoms other than carbon, hydrogen and oxygen containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters

Definitions

  • the present invention relates to a novel polyhydroxyalkanoic acid having a functional group at the carboxy terminus and a method for producing the same.
  • the present invention relates to a microbially produced R-3-hydroxyalkanoic acid homopolymer or copolymer [poly (R-3-hydroxyalkanoic acid)] having a hydroxy group at the 3-position and a method for producing the same.
  • PHA Polyhydroxyalkanoic acid
  • Ecoplastic polyester that is produced and accumulated as an energy storage substance in the cells of many microbial species.
  • PHA produced from various natural carbon sources by microorganisms is completely biodegraded by microorganisms in soil and water, and is thus incorporated into the natural carbon cycle process. Therefore, it can be said that PHA is an environmentally friendly plastic that has almost no adverse effects on the ecosystem.
  • PHA has attracted attention as an environmentally friendly green plastic, and its practical application is eagerly desired.
  • PHB polyhydroxybutyrate
  • 3HB 3-hydroxybutyric acid
  • 3-hydroxyalkanoic acid into the PHB skeleton in order to improve the brittleness by lowering the crystallinity of PHB.
  • side chains such as 3-hydroxypropionic acid (hereinafter abbreviated as “3HP”), 4-hydroxybutyric acid (hereinafter abbreviated as “4HB”), 5-hydroxyvaleric acid (hereinafter abbreviated as “5HV”), etc.
  • PHB for monomers having a side chain such as linear monomers not having lactic acid, 3-hydroxyvaleric acid (hereinafter abbreviated as “3HV”), 3-hydroxyhexanoic acid (hereinafter abbreviated as “3HHx”), etc.
  • Patent Document 1 reports that a thioester has been introduced into the side chain of a medium chain PHA having 6 to 14 carbon atoms.
  • Non-Patent Document 1 discloses that a side chain of a medium chain PHA having 6 to 14 carbon atoms has a branched alkyl group, a cyclohexyl group, an alkyl halide, an acetoxy group, an ester, an alkoxy group, an epoxy group, a thiol group, a cyano group. Examples of introducing aromatic ring compounds such as nitro group, nitro group, phenyl group and benzoyl group are summarized.
  • Non-Patent Document 3 reports that a fluorescent substance or a peptide is modified to a double bond of a PHA side chain using a thiol-enclick reaction.
  • Non-Patent Document 4 reports that the water repellency of PHA was changed by introducing a hydroxy group or a carboxy group into a double bond of a PHA side chain by using a thiol-ene click reaction.
  • Non-Patent Document 4 reports that PHA can be crosslinked by reacting with a multi-branched structure compound.
  • Non-Patent Document 5 reports an example in which a PHA having an azide group in the side chain is produced and the side chain is modified using an alkyne-azide click reaction.
  • Such a method of introducing a functional group into PHA and chemically modifying it into a target is useful for changing the physical properties of PHA.
  • reaction control is very difficult.
  • PHA gels if there are many cross-linking points, but if the cross-linking points are small, the effect of modifying physical properties by cross-linking cannot be obtained.
  • the presence of a plurality of reactive groups on one molecule of PHA chain has caused a problem that the product after the reaction becomes a mixture of various compounds.
  • Non-Patent Document 6 reports an example in which a functional group is introduced at the carboxy terminus of PHA.
  • Non-Patent Document 6 describes a Bacillus genus microorganism having a type IV PHA synthase gene in the presence of 1.3-propanediol, 2-propyn-1-ol, 3-mercapto-1-propanol, and benzyl alcohol. Incubation in 1-propanol group, 1-propynyl group, 1-propanethiol group, and benzyl group is introduced at the carboxy terminus of PHB, and the molecular weight may be lower than that in the absence of these. It has been reported. Furthermore, Non-Patent Document 6 reports that no decrease in molecular weight was observed even when cultured in the presence of 2-propen-1-ol or 3-butyn-1-ol.
  • Non-Patent Document 6 describes a compound in which a functional group is introduced at the carboxy terminus of PHA.
  • a functional group is introduced at the carboxy terminus of PHA.
  • only four compounds can be actually produced.
  • a propynyl group can be introduced for an alkynyl group.
  • the butynyl group could not be introduced.
  • An object of the present invention is to provide a method capable of producing various novel PHA having a functional group at the carboxy terminus that can be chemically modified and whose reaction control is easy, and a PHA that has not been conventionally produced.
  • the repeating unit is represented by the following general formula (1) [—C * HR 1 —CH 2 —CO—O—] (1)
  • R 1 is an alkyl group represented by C n H 2n + 1
  • n is an integer of 1 to 15, and * is asymmetric.
  • the hydroxyalkanoic acid is 3-hydroxybutyric acid, 3-hydroxypropionic acid, 4-hydroxybutyric acid, 3-hydroxyvaleric acid, 5-hydroxyvaleric acid, 3-hydroxyhexanoic acid, 6-hydroxyhexanoic acid, 3-hydroxyheptanoic acid , Polyhydroxyalkanoic acid composed of a plurality of kinds selected from 3-hydroxyoctanoic acid, 3-hydroxynonanoic acid, 3-hydroxydecanoic acid, 3-hydroxyundecanoic acid and 3-hydroxydodecanoic acid.
  • the hydroxyalkanoic acid is 3-hydroxybutyric acid, 3-hydroxypropionic acid, 4-hydroxybutyric acid, 3-hydroxyvaleric acid, 5-hydroxyvaleric acid, 3-hydroxyhexanoic acid, 6-hydroxyhexanoic acid, 3-hydroxyheptanoic acid , Composed of a single species selected from 3-hydroxyoctanoic acid, 3-hydroxynonanoic acid, 3-hydroxydecanoic acid, 3-hydroxyundecanoic acid, 3-hydroxydodecanoic acid,
  • the alkyne group is a butynyl group, a pentynyl group, or a hexynyl group;
  • the alkene group is a propenyl group, a butenyl group, a pentenyl group, or a hexenyl group;
  • Including culturing a microorganism belonging to the genus Cupriavidus capable of producing polyhydroxyalkanoic acid using an alcohol having 2 to 8 carbon atoms having an alkyne group, an alkene group, a thiol group, an azide group, or an allyl group A method for producing a polyhydroxyalkanoic acid into which an alkyne group, an alkene group, a thiol group, an azide group, or an allyl group is introduced. 8). 8. The production method according to 6 or 7 above, wherein the alcohol is a primary alcohol. 9. 9. 9.
  • microorganism is a microorganism having a gene encoding a polyhydroxyalkanoate synthase derived from the genus Aeromonas, Ralstonia or Pseudomonas. 10. 10. The production method according to 8 or 9 above, wherein the microorganism is a microorganism belonging to the genus Cupriavidus. 11. 11. The production method according to 7 or 10 above, wherein the microorganism is a transformant using Cupriavidus necator as a host. 12 6.
  • a completely new PHA having a specific functional group at the carboxy terminus can be produced.
  • the PHA of the present invention can be expected not only to improve the physical properties of conventional PHA by using it as an additive for producing molded articles such as films and sheets, but also to have various structures by further modifying the above functional groups. It is thought that guidance to the body is possible.
  • FIG. 1 is a 1 H-NMR chart of Example 8.
  • FIG. FIG. 2 is a 1 H-NMR chart of Example 16.
  • FIG. 3 is a 1 H-NMR chart of Comparative Example 1.
  • the PHA of the present invention has a repeating unit represented by the following general formula (1) [—C * HR 1 —CH 2 —CO—O—] (1)
  • R 1 is an alkyl group represented by C n H 2n + 1
  • n is an integer of 1 to 15, and * represents an asymmetric carbon.
  • 3HA R-3-hydroxyalkanoic acid
  • P3HA these polymers are abbreviated as “P3HA”), wherein P3HA is a homopolymer or a copolymer.
  • the following groups are bonded to the carboxy terminus.
  • the following groups are bonded to an ester bond containing the carboxy group, and have a triple bond, a double bond, a mercapto group (thiol group), or an allyl group at the terminal of PHA.
  • a group bonded to the carboxy terminus when it is a single polymer C4-C8 alkynyl group, C3-C8 alkenyl group, C2-C4-8 mercaptoalkyl group, C3-C8
  • the PHA of the present invention is a polyester resin produced from microorganisms, which is called P3HA with 3HA as a main monomer unit.
  • the monomer unit in the PHA of the present invention may be composed of a single species or a plurality of species. When plural kinds of monomer units are included, two or more kinds of 3HA may be copolymerized, or 4-hydroxyalkanoic acid such as 4HB may be copolymerized with one or more kinds of 3HA. It may be.
  • the PHA of the present invention preferably contains at least 3HB as a monomer unit.
  • the PHA of the present invention may be a PHB consisting only of the above 3HB as a monomer unit, or may be a copolymer consisting of 3HB and another monomer unit.
  • monomer units other than 3HB examples include the above-described monomer units, 3HP, 4HB, 5HV, 6-hydroxyhexanoate (hereinafter abbreviated as “6HHx”), and the like.
  • 6HHx 6-hydroxyhexanoate
  • PHBH Poly (3HB-co-3HHx) further having 3HHx
  • Poly further having 4HV (3HB-co-4HV) and the like are preferred.
  • the copolymerization ratio of each monomer unit when the PHA of the present invention is a copolymer is not particularly limited, but when 3HB is contained as a monomer unit, the copolymerization ratio is more preferably 50 mol% or more. 60 mol% or more is more preferable, 70 mol% or more is more preferable, and 80 mol% or more is particularly preferable.
  • the lower limit of the 3HHx copolymerization ratio is preferably 1 mol%, more preferably 2 mol%, and even more preferably 3 mol%. Further, the upper limit is preferably 20 mol%, more preferably 15 mol%, and still more preferably 12 mol%.
  • the PHA of the present invention is characterized in that an alkynyl group, an alkenyl group, a thiol group (mercapto group), an azide group, or an allyl group is introduced as a specific functional group at the carboxy terminal of the polymer main chain.
  • the carboxy terminus of the PHA of the present invention has an alkynyl group, an alkenyl group, a thiol group, and an azide group via an alkyl chain, and an allyl group via an oxyalkyl chain.
  • alkynyl group having 3 to 8 carbon atoms examples include linear or branched propynyl group, butynyl group, pentynyl group, hexynyl group, heptynyl group, and octynyl group.
  • One having no branching, that is, a straight chain is preferred.
  • the number of carbon atoms is preferably 3 to 6, and among them, propynyl group, butynyl group, and hexynyl group are preferable examples.
  • alkenyl group having 3 to 8 carbon atoms examples include linear or branched propenyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group, and octenyl group.
  • One having no branching, that is, a straight chain is preferred.
  • the number of carbon atoms is preferably 3 to 6, and among them, propenyl group, butenyl group and hexenyl group are preferable examples.
  • Examples of the mercaptoalkyl group having 2 to 8 carbon atoms include linear or branched mercaptoethyl group, mercaptopropyl group, mercaptobutyl group, mercaptopentyl group, mercaptohexyl group, mercaptoheptyl group, and mercaptooctyl group.
  • One having no branching, that is, a straight chain is preferred.
  • the number of carbon atoms is preferably 2 to 6, and more preferably 3 to 6.
  • a mercaptoethyl group and a mercaptopropyl group are preferable examples.
  • Examples of the azido alkyl group having 3 to 8 carbon atoms include linear or branched azidated propyl group, azido butyl group, azido pentyl group, azido hexyl group, and azido heptyl group.
  • One having no branching, that is, a straight chain is preferred.
  • the number of carbon atoms is preferably 3 to 6, and among them, preferred examples include azidopropyl group and azidobutyl group.
  • Examples of the allyl (poly) oxyalkyl group having 2 to 6 carbon atoms in the alkyl group include those having 1 to 3 oxyalkyl, preferably 1.
  • Examples of the oxyalkyl group include an oxyethyl group, an oxypropyl group, an oxybutyl group, an oxypentyl group, and an oxyhexyl group. Among them, an oxyethyl group, an oxypropyl group, and an oxybutyl group are preferable examples. One having no branching, that is, a straight chain is preferred.
  • the total carbon number of the allyl (poly) oxyalkyl group is preferably 2 to 6, and examples thereof include an allyloxyethyl group, an allyloxypropyl group, and an allyloxybutyl group.
  • the PHA of the present invention is characterized by having a specific functional group at the carboxyl group terminal as described above, but it may further have a functional group in the polymer side chain. However, when a new derivative is synthesized by further chemically modifying the PHA of the present invention, it is preferable that the functional group is present only at the carboxyl group terminal from the viewpoint of reaction control.
  • the molecular weight of the PHA of the present invention is not limited. However, when the production method of the present invention described below is used, a relatively low molecular weight PHA tends to be obtained.
  • the weight average molecular weight (M w ) may be about 5,000 to 20,000,000, and may be about 8,000 to 300,000 or even about 10,000 to 100,000 depending on the purpose of use.
  • the number average molecular weight (M n ) may be about 3000 to 1500,000, and may be about 5000 to 1000000 or even about 7000 to 800000 depending on the purpose of use.
  • PHA is produced using an alcohol having the alkynyl group, alkenyl group, thiol group, azide group, or allyl group so that the specific functional group can be introduced at the carboxy terminus.
  • a method of culturing a synthesizeable microorganism hereinafter referred to as “the microorganism of the present invention”
  • the production method of the present invention The alcohol is preferably a primary alcohol.
  • alcohols examples include 2-propyn-1-ol, 3-butyn-1-ol, 4-pentyn-1-ol, 5-hexyn-1-ol; 2-propen-1-ol, 3- Buten-1-ol, 4-penten-1-ol, 5-hexen-1-ol; 2-mercaptoethanol, 3-mercaptopropanol, 4-mercaptobutanol, 5-mercaptopentanol, 6-mercaptohexanol; Azidobutan-1-ol, 5-azidopentan-1-ol, 6-azidohexane-1-ol; ethylene glycol monoallyl ether, propylene glycol monoallyl ether, tetramethylene glycol monoallyl ether, pentamethylene glycol monoallyl ether, etc.
  • 2-propen-1-ol, 3-buten-1-ol, 5-hexen-1-ol, 2-propyn-1-ol, 3-butyn-1-ol, 5-hexyn-1-ol Preferred examples include 2-mercaptoethanol, 3-mercaptopropanol, and ethylene glycol monoallyl ether.
  • an alcohol having a branched structure in the alkyl chain portion an alcohol having a plurality of hydroxy groups, or an alcohol having a plurality of alkynyl groups, alkenyl groups, thiol groups, azide groups, or allyl groups may be used. These alcohols may be used alone or in combination of two or more.
  • the alcohol functions as a terminator in the chain transfer reaction in PHA synthesis in microbial cells.
  • what alcohol functions as a terminator depends on the substrate specificity of the PHA synthase of the microorganism of the present invention for alcohol.
  • the microorganism of the present invention is a gene encoding a PHA synthase derived from the genus Aeromonas (Aeromonas), Ralstonia, or Pseudomonas (hereinafter referred to as “PHA synthase gene”).
  • the PHA synthase gene is derived from Aeromonas caviae, which consists of the amino acid sequence shown in SEQ ID NO: 1, and the 149th asparagine is Ralstonia eutropha consisting of the amino acid sequence described in SEQ ID NO: 2, a PHA synthase gene in which 171th aspartic acid is artificially replaced with glycine in serine Rofa) PHA synthase gene derived from, the amino acid sequence set forth in SEQ ID NO: 3, Pseudomonas Sp.
  • PHA synthase genes derived from 61-3 in which the 325th serine is artificially replaced with threonine, the 477th serine with arginine, and the 481st glutamine with arginine, are more preferred examples. It is not limited to these.
  • PHA synthase derived from Aeromonas genus is known to use a hydroxyalkanoic acid CoA having 3 to 6 carbon atoms as a substrate, by using a microorganism having a PHA synthase gene derived from Aeromonas genus, 3HB, 3HP, A homopolymer composed of 4HB, 3HV, 5HV, and 3HHx, or a copolymerized PHA composed of these monomer units can be produced.
  • 3HB, 3HP can be obtained by using a microorganism having Ralstonia genus-derived PHA synthase gene. Homopolymers composed of 4HB, 3HV, and 5HV, or copolymerized PHA composed of these monomer units can be produced.
  • Pseudomonas genus-derived PHA synthase is known to use a hydroxyalkanoic acid CoA having 3 to 12 carbon atoms as a substrate, 3HB, 3HP can be obtained by using a microorganism having a Pseudomonas genus-derived PHA synthase gene.
  • Homopolymer comprising 4HB, 3HV, 5HV, 3HHx, 6HHx, 3-hydroxyheptanoic acid, 3-hydroxyoctanoic acid, 3-hydroxynonanoic acid, 3-hydroxydecanoic acid, 3-hydroxyundecanoic acid, 3-hydroxydodecanoic acid
  • a copolymerized PHA composed of these monomer units can be produced.
  • the microorganism species of the present invention is not particularly limited, and may be either bacteria or fungi.
  • Acinetobacter Acinetobacter
  • Aeromonas Aeromonas
  • Alcaligenes Alkalinegenes
  • Allochromatium Arozobium
  • Azotobacter Azotobacter Deria
  • Candida genus Caurobacter genus
  • Chromobacterium genus Comamonas genus
  • Cupriavidus genus Ectothiorhodospira genus bsiella (Klebsiella), Methylobacterium (Methylobacterium), Nocardia (Nocardia), Paracoccus, Pseudomonas, Ralstonia, Rhizobium, Rhizobium, Rhizobium, Rhizobium Genus, Rhodococcus genus, Rhodospirillum genus, Rickettsia genus
  • microorganisms belonging to the genus Aeromonas, Alcaligenes, Cupriavidus, Escherichia, Pseudomonas, Ralstonia, etc. are preferred, and microorganisms belonging to the genus Cupriavidus, Escherichia, Ralstonia are more preferred, and the microorganism belonging to the genus Cu belonging to the genus Cu is more preferred than the microorganism belonging to the genus Cu.
  • Particularly preferred as the microorganism of the present invention is Cupriavidus necator.
  • the microorganism of the present invention does not originally have a PHA synthase gene, or when the PHA synthase gene originally possessed by the microorganism is not the desired PHA synthase gene, the above-described preferred PHA synthase gene is transformed into a host by gene recombination, for example. It is also possible to use a transformant introduced into the microorganism.
  • the method for introducing the PHA synthase gene into the host may be a format in which the gene is held in a plasmid or a format in which it is introduced at an arbitrary position on the chromosome. At this time, the PHA synthase gene originally possessed by the host is preferably lost its function.
  • Examples of a method of deleting the function of the PHA synthase gene include, as an example, a method of deleting the PHA synthase gene over its entire length or partially, or addition or deletion of a base to the PHA synthase gene. Alternatively, a method in which the function of the produced PHA synthase is lost by substitution, and the like can be mentioned.
  • a method of inserting or replacing DNA see, for example, Green, M. et al. R. And Sambrook, J.A. , 2012, Molecular Cloning: A Laboratory Manual Fourth Ed. , Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York may be referred to.
  • the alcohol may be used alone as a carbon source for producing PHA.
  • the alcohol and another carbon source in combination.
  • any raw material can be used as long as it is a carbon source that can be assimilated by the microorganism of the present invention.
  • Such a carbon source is not particularly limited, but is preferably sugars such as glucose, fructose, sucrose, palm oil, palm kernel oil (hereinafter abbreviated as “PKO”), corn oil, palm Preferred are oils such as oil, olive oil, soybean oil, rapeseed oil and jatropha oil, fractionated oils or refined by-products thereof, or fatty acids such as lauric acid, oleic acid, stearic acid, palmitic acid and myristic acid, and derivatives thereof. .
  • yeast extract and polypeptone can also be used.
  • palm olein, palm double olein, or palm kernel oil olein PFAD (palm oil fatty acid distillation), which is a low melting point fraction obtained by fractionating palm oil or palm kernel oil, or vegetable oils such as palm oil and palm kernel oil Product), PKFAD (palm kernel oil fatty acid distillate), or rapeseed oil fatty acid distillate, and the like.
  • PFAD palm oil fatty acid distillation
  • PKFAD palm kernel oil fatty acid distillate
  • rapeseed oil fatty acid distillate and the like.
  • the oil and fat refinement by-product is particularly preferable.
  • the microorganism is cultured using a medium containing the alcohol, a carbon source other than alcohol, a nitrogen source that is a nutrient source other than the carbon source, inorganic salts, and other organic nutrient sources.
  • the nitrogen source include ammonia, ammonium chloride, urea, ammonium sulfate, ammonium phosphate and other ammonium salts, as well as peptone, meat extract, yeast extract and the like.
  • inorganic salts include potassium dihydrogen phosphate, disodium hydrogen phosphate, magnesium phosphate, magnesium sulfate, sodium chloride and the like.
  • examples of other organic nutrient sources include amino acids such as glycine, alanine, serine, threonine, and proline, and vitamins such as vitamin B1, vitamin B12, and vitamin C.
  • the concentration of the alcohol in the medium is not particularly limited, but in order to efficiently produce the PHA of the present invention, the lower limit is preferably 0.01 g / L, and 0.05 g / L is more preferable, and 0.1 g / L is more preferable.
  • the upper limit is preferably about 5 g / L, more preferably 3 g / L, and more preferably 2 g / L from the viewpoint of suppressing the influence on the growth of microorganisms as described above. Further, when mercapto alcohol is used as the alcohol, it is particularly preferable to use it at a concentration of 0.8 g / L or less.
  • a method for recovering PHA from microbial cells is not particularly limited, and for example, the following method can be used.
  • the cells are separated from the culture solution with a centrifuge, and the cells are washed with distilled water, methanol, or the like and dried.
  • PHA is extracted from the dried cells using an organic solvent such as chloroform.
  • Cellular components are removed from the organic solvent solution containing PHA by filtration or the like, and a poor solvent such as methanol or hexane is added to the filtrate to precipitate PHA. Further, the supernatant is removed by filtration or centrifugation, and dried to recover PHA.
  • the PHA of the present invention is further rearranged, that is, chemically modified, by a chemical reaction via a specific alkenyl group, alkynyl group, thiol group, azide group, or allyl group introduced at the carboxy terminus. You can also.
  • a compound containing a thiol group can be rearranged by a thiol-ene click reaction or a thiol-in click reaction.
  • a compound containing an alkenyl group or an alkynyl group can be rearranged by a thiol-ene click reaction or a thiol-in click reaction.
  • a compound containing an azide group can be rearranged by an alkyne-azido click reaction.
  • a compound containing an alkynyl group can be rearranged by an alkyne-azido click reaction.
  • the PHA of this invention and the resin molding containing the compound which is the derivative of the said are also the category of this invention.
  • the compound which is PHA of this invention and its derivative (s) may be used independently, and can also be mixed with a conventionally well-known PHA and used.
  • the product after the reaction can be limited, which is more preferable.
  • a PHA having a double bond in the side chain and a PHA having a thiol group at the carboxy terminus can be reacted to induce a graft polymer.
  • PHA having an alkene group at the carboxy terminus can be converted to a multibranched PHA by rearranging it to a thiol compound having a multibranched structure such as pentaerythritol tetrakis (3-mercaptopropionate). .
  • a resin composition containing PHA having an alkene group introduced at the carboxy terminus may be processed into a film, sheet, nonwoven fabric, etc., and then the thiol compound is rearranged to modify the surface of the resin molded product. it can.
  • a dendrimer is constituted using the PHA of the present invention, it is possible to provide medical materials with high biocompatibility and agricultural materials with moderate sustained release properties.
  • the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
  • the breeding of a strain, the analysis method of the monomer unit copolymerization ratio contained in PHA, and the analysis method of the molecular weight of PHA are as follows.
  • the monomer unit copolymerization ratio contained in PHA was analyzed using NMR. Specifically, 2 mg of the obtained PHA was dissolved in 2 mL of deuterated chloroform and transferred to a sample tube for measurement. From the area of each detected peak, the copolymerization ratio of the monomer units was calculated.
  • the molecular weight of PHA was analyzed by gel permeation chromatography.
  • the measurement system used was a Shimadzu GPC system.
  • the column was used with two Shodex GPC K-806L (Showa Denko) connected in series, and the column oven was set to 40 ° C.
  • the mobile phase was chloroform and the flow rate was 1.0 mL / min.
  • molecular weight standard about 7 million, about 1.9 million, about 350,000, about 190,000, about 30,000, and about 2,000 polystyrene were used.
  • a calibration curve was prepared from the analysis results of 6 samples, and the molecular weight of PHA (weight average molecular weight M w and number average molecular weight M n ) was calculated based on this.
  • KNK-005 trc-phaJ4b / ⁇ phaZ1,2,6 Production of PHA by KNK-005 trc-phaJ4b / ⁇ phaZ1,2,6 in a medium containing 0.2 g / L of 2-propen-1-ol As a microorganism, KNK-005 trc- described in WO2015 / 115619 is used.
  • the phaJ4b / ⁇ phaZ1,2,6 strain was used.
  • KNK-005 trcphaJ4b / ⁇ phaZ1,2,6 has a full-length deletion of the phaZ1 and phaZ6 genes on the chromosome, a deletion from the 16th codon to the stop codon of the phaZ2 gene, and the sequence number 4 on the chromosome. It is a strain having a mutant PHA synthase gene derived from the described Aeromonas caviae and having an expression regulatory sequence described in SEQ ID NO: 5 inserted upstream
  • the microorganism was cultured under the following conditions.
  • the composition of the seed medium is 10 g / L meat extract, 10 g / L bactotryptone, 2 g / L yeast extract, 9 g / L sodium dihydrogen phosphate dodecahydrate, 1.5 g / L dipotassium hydrogen phosphate and did.
  • the composition of the PHA production medium is 11 g / L disodium hydrogen phosphate 12 hydrate, 1.9 g / L dipotassium hydrogen phosphate, 1.3 g / L ammonium sulfate, 5 mL / L magnesium solution, 1 mL / L trace metal salt. It was set as the solution.
  • the magnesium solution was prepared by dissolving 200 g / L magnesium sulfate heptahydrate in water.
  • Trace metal salt solution is 0.218 g / L cobalt chloride hexahydrate, 16.2 g / L iron (III) chloride hexahydrate, 10.3 g / L calcium chloride dihydrate in 0.1N hydrochloric acid. 0.118 g / L nickel chloride hexahydrate and 0.156 g / L copper sulfate pentahydrate were prepared.
  • PHA production culture was performed in a flask. 50 mL of PHA production medium was placed in a 500 mL shake flask. Immediately before inoculation, 250 ⁇ L of magnesium solution, 50 ⁇ L of trace metal solution, 1 g of PKO were added, and 2-propen-1-ol was further added to 0.2 g / L. After the medium was prepared, 500 ⁇ L of the preculture was inoculated into the shake flask, and shake culture was performed at 30 ° C. for 72 hours.
  • the obtained PHA was analyzed for monomer unit copolymerization ratio and molecular weight. The results are shown in Table 1.
  • Comparative Example 3 Production of PHA by KNK-005 trc-phaJ4b / ⁇ phaZ1,2,6 in a medium containing 2-aminoethanol hydrochloride 1.0 g / L
  • KNK-005 trc -PhaJ4b / ⁇ phaZ1,2,6 strains were cultured and purified to obtain purified PHA.
  • the final concentration of 2-aminoethanol hydrochloride added to the medium was 1.0 g / L.
  • the monomer unit copolymerization ratio and the molecular weight were analyzed. The results are shown in Table 1.
  • 1 and 2 are 1 H-NMR charts of Examples 8 and 16, respectively.
  • the 1 H-NMR chart of Comparative Example 1 is shown in FIG. Compared to FIG. 3, in FIG. 1, a peak attributed to methylene protons in the propynyl group appears around 4.7 ppm, and in FIG. 2, a peak attributed to the allyl group appears around 4.5 ppm and 5.9 ppm. It appears that these groups have been introduced.
  • the microorganism having the PHA synthase gene derived from the genus Aeromonas is cultured by adding an alcohol having an alkynyl group, an alkenyl group, a thiol group or an allyl group to the carboxy terminus, It was suggested that PHA introduced with an alkynyl group, a thiol group or an allyl group can be produced.
  • H16 ⁇ phaZ1,2,6 strain In producing H16 ⁇ phaZ1,2,6 strain, first, based on KNK-005 ⁇ phaZ1,2,6 strain described in WO2014 / 065253, PHA synthase H16 ⁇ phaC1 ⁇ phaZ1,2,6 strains in which the gene was disrupted were prepared by the following procedure.
  • the KNK-005 ⁇ phaZ1,2,6 strain has a full-length deletion of the phaZ1 and phaZ6 genes on the chromosome, a deletion from the 16th codon to the stop codon of the phaZ2 gene, and the sequence described in SEQ ID NO: 5 on the chromosome.
  • a strain having a PHA synthase gene A strain having a PHA synthase gene.
  • a plasmid for full-length deletion of the PHA synthase gene of KNK-005 ⁇ phaZ1, 2, 6 strain was prepared.
  • C. PCR was performed using the genomic DNA of neator H16 strain as a template and the DNAs shown in SEQ ID NOs: 6 and 7 as primer pairs.
  • KOD-plus Toyobo
  • PCR was performed using the DNAs shown in SEQ ID NO: 8 and SEQ ID NO: 9 as primer pairs.
  • PCR was performed under the same conditions using the two types of DNA fragments obtained by the above PCR as templates and the DNAs shown in SEQ ID NO: 6 and SEQ ID NO: 9 as primer pairs, and the resulting DNA fragments were digested with the restriction enzyme SmiI. did.
  • This DNA fragment was ligated with a DNA fragment obtained by digesting the vector pNS2X-sacB described in JP-A-2007-259708 with SmiI using DNA ligase (Ligation High, Toyobo), upstream of the phaC1 gene.
  • DNA ligase Ligation High, Toyobo
  • a PHA synthase gene-disrupting plasmid pNS2X-sacB- ⁇ phaC1UL having the nucleotide sequence of and the downstream of the phaC1 gene.
  • This plasmid for disrupting the PHA synthase gene pNS2X-sacB- ⁇ phaC1UL was introduced into E. coli S17-1 strain (ATCC47055), mixed and cultured on KNK-005 ⁇ phaZ1,2,6 strain on Nutrient Agar medium (DIFCO). Went.
  • This strain was cultured for 2 generations in Nutrient Broth medium (DIFCO), and then a strain that grew on Nutrient Agar medium containing 15% sucrose was selected. From the obtained strain, a strain in which the full-length PHA synthase gene described in SEQ ID NO: 5 on the chromosome was deleted was selected by PCR, and one strain was named H16 ⁇ phaC1, ⁇ phaZ1, 2, 6 strain. H16 ⁇ phaC1 ⁇ phaZ1,2,6 shares are C.I.
  • the strain necator H16 is a parent strain, the phaZ1 gene and phaZ6 gene on the chromosome are deleted in full length, the 16th codon to the stop codon of the phaZ2 gene are deleted, and the phaC1 gene is deleted in full length.
  • H16 ⁇ phaC1 ⁇ phaZ1, 2, 6 strain C.I. H16 ⁇ phaC1,2,6 strains in which the phaC1 gene derived from necator H16 strain was inserted were prepared by the following procedure.
  • C.I A plasmid for inserting the phaC1 gene of necator H16 strain on the chromosome was prepared.
  • C. PCR was performed using the genomic DNA of the necator H16 strain as a template and the DNAs shown in SEQ ID NOs: 6 and 9 as primer pairs.
  • KOD-plus was used as the polymerase.
  • the obtained DNA fragment was digested with the restriction enzyme SmiI.
  • This DNA fragment is ligated with a DNA fragment obtained by digesting pNS2X-sacB with SmiI using DNA ligase, and has a base sequence upstream from the phaC1 gene, a phaC1 gene, and a base sequence downstream from the phaC1 gene
  • a plasmid pNS2X-sacB-phaC Re + UL for disrupting the PHA synthase gene was prepared.
  • H16 ⁇ phaC1 ⁇ phaZ1,2,6 strain As the parent strain. This strain was cultured for 2 generations in Nutrient Broth medium, and then a strain that grew on Nutrient Agar medium containing 15% sucrose was selected. From the obtained strain, a strain into which the phaC1 gene on the chromosome was inserted was selected by PCR, and one strain was named H16 ⁇ phaZ1,2,6 strain. H16 ⁇ phaZ1,2,6 strains are C.I.
  • Plasmid pCUP2-REP-phaC1 Ps expressing the PHA synthase gene derived from the 61-3 strain was prepared.
  • the expression control sequence described in SEQ ID NO: 11 is C.I. This is the promoter of the phaCAB operon derived from the necator H16 strain.
  • C. PCR was carried out using the genomic DNA of necator H16 strain as a template and the DNAs shown in SEQ ID NOs: 14 and 15 as primer pairs. As the polymerase, KOD-plus was used. Similarly, Pseudomonas Sp.
  • PCR was performed using the genomic DNA of the 61-3 strain as a template and the DNAs shown in SEQ ID NOs: 16 and 17 as primer pairs. PCR was carried out under the same conditions using the two types of DNA fragments obtained by the above PCR as templates and the DNAs shown in SEQ ID NO: 14 and SEQ ID NO: 17 as primer pairs, and the resulting DNA fragments were converted into restriction enzymes MunI and SpeI. Digested with. This DNA fragment, a DNA fragment obtained by digesting the vector PCUP2 described in JP 2007-259708 by MunI and SpeI, ligated with DNA ligase to prepare the plasmid pCUP2-REP-phaC1 Ps .
  • PCR was performed using pCUP2-REP-phaC1 Ps as a template and the DNAs shown in SEQ ID NOs: 14 and 18 as primer pairs. Similarly, PCR was performed using the DNAs shown in SEQ ID NO: 19 and SEQ ID NO: 20 as primer pairs. Similarly, PCR was performed using the DNAs shown in SEQ ID NO: 21 and SEQ ID NO: 17 as primer pairs. PCR was carried out under the same conditions using the three types of DNA fragments obtained by the above PCR as templates and the DNAs shown in SEQ ID NO: 14 and SEQ ID NO: 17 as primer pairs, and the obtained DNA fragments were subjected to restriction enzymes MunI and SpeI. Digested with.
  • This DNA fragment was ligated with a DNA fragment obtained by digesting the vector pCUP2 described in JP-A-2007-259708 with MunI and SpeI using DNA ligase, and the plasmid pCUP2-REP-phaC1 Ps S325T, S477R Thus, Q481R was fabricated.
  • a plasmid for inserting the PHA synthase gene described in SEQ ID NO: 11 onto the chromosome was prepared.
  • PCR was performed using pCUP2-REP-phaC1 Ps S325T, S477R, and Q481R as templates and the DNAs shown in SEQ ID NOs: 6 and 22 as primer pairs.
  • KOD-plus was used as the polymerase.
  • PCR was performed using the DNAs represented by SEQ ID NO: 23 and SEQ ID NO: 9 as primer pairs.
  • PCR was performed under the same conditions using the two types of DNA fragments obtained by the above PCR as templates and the DNAs shown in SEQ ID NO: 6 and SEQ ID NO: 9 as primer pairs, and the resulting DNA fragments were digested with the restriction enzyme SmiI. did.
  • This DNA fragment was ligated with a DNA fragment obtained by digesting pNS2X-sacB with SmiI using DNA ligase, a base sequence upstream from the phaC1 gene, the PHA synthase gene described in SEQ ID NO: 11, and the phaC1 gene
  • a plasmid for destroying PHA synthase gene pNS2X-sacB- ⁇ phaC1UL :: STSRQR having a downstream base sequence was prepared.
  • the P16 synthase gene described in SEQ ID NO: 11 was obtained using pNS2X-sacB- ⁇ phaC1UL :: STSRQR with the H16 ⁇ phaC1 ⁇ phaZ1,2,6 strain as the parent strain. Inserted on the chromosome.
  • the obtained strain was named ReSK003 strain.
  • the ReSK003 strain is a strain in which the mutant PHA synthase gene derived from the genus Pseudomonas described in SEQ ID NO: 11 is inserted on the chromosome, with the H16 ⁇ phaC1 ⁇ phaZ1,2,6 strain as the parent strain.
  • an alkenyl group or alkynyl group was introduced at the carboxy terminus by culturing a microorganism having a PHA synthase gene derived from the genus Pseudomonas by adding an alcohol having an alkynyl group or alkenyl group to the medium. It was suggested that PHA can be produced.

Abstract

Provided are: a novel polyhydroxyalkanoic acid which has a functional group at a terminal carboxy group, and which is able to be chemically modified, while being easily controlled in terms of reaction; and a method for producing this polyhydroxyalkanoic acid. A polyhydroxyalkanoic acid according to the present invention is obtained by introducing a specific alkyne group, alkene group, thiol group, azide group or allyl group into a terminal carboxy group. A production method according to the present invention comprises a step wherein a microorganism that is capable of producing a polyhydroxyalkanoic acid is cultured with use of an alcohol that has an alkyne group, an alkene group, a thiol group, an azide group or an allyl group.

Description

カルボキシ末端に官能基を有するポリヒドロキシアルカン酸とその製造方法POLYHYDROXYALKANOIC ACID HAVING FUNCTIONAL GROUP AT CARBOXY TERMINAL AND PROCESS FOR PRODUCING THE SAME
 本発明は、カルボキシ末端に官能基を有する新規なポリヒドロキシアルカン酸とその製造方法に関する。特に、3位にヒドロキシ基を有する微生物産生のR-3-ヒドロキシアルカン酸の単独ポリマーまたは共重合ポリマー[ポリ(R-3-ヒドロキシアルカン酸)]とその製造方法に関する。 The present invention relates to a novel polyhydroxyalkanoic acid having a functional group at the carboxy terminus and a method for producing the same. In particular, the present invention relates to a microbially produced R-3-hydroxyalkanoic acid homopolymer or copolymer [poly (R-3-hydroxyalkanoic acid)] having a hydroxy group at the 3-position and a method for producing the same.
 ポリヒドロキシアルカン酸(以下、「PHA」と略す)は、多くの微生物種の細胞内にエネルギー貯蔵物質として生産、蓄積される熱可塑性ポリエステルである。微生物によって様々な天然の炭素源から生産されるPHAは、土中や水中の微生物により完全に生分解されるため、自然界の炭素循環プロセスに取り込まれる。従って、PHAは生態系への悪影響がほとんどない環境調和型のプラスチックであると言える。近年、環境汚染、廃棄物処理、石油資源の観点から、合成プラスチックによる社会問題が深刻になるに伴って、PHAが環境にやさしいグリーンプラスチックとして注目され、その実用化が切望されている。 Polyhydroxyalkanoic acid (hereinafter abbreviated as “PHA”) is a thermoplastic polyester that is produced and accumulated as an energy storage substance in the cells of many microbial species. PHA produced from various natural carbon sources by microorganisms is completely biodegraded by microorganisms in soil and water, and is thus incorporated into the natural carbon cycle process. Therefore, it can be said that PHA is an environmentally friendly plastic that has almost no adverse effects on the ecosystem. In recent years, from the viewpoints of environmental pollution, waste disposal, and petroleum resources, as social problems due to synthetic plastics become serious, PHA has attracted attention as an environmentally friendly green plastic, and its practical application is eagerly desired.
 微生物中に最初に発見されたPHAは、3-ヒドロキシ酪酸(以下、「3HB」と略す)のホモポリマーであるポリヒドロキシブチレート(以下、「PHB」と略す)である。PHBは高結晶性であり、結晶化度が高いため硬くて脆く、しかも融点付近の温度(180℃)で速やかに熱分解するため、溶融加工性が低く実用範囲は極めて限られるという問題を有している。 The first PHA discovered in microorganisms is polyhydroxybutyrate (hereinafter abbreviated as “PHB”), which is a homopolymer of 3-hydroxybutyric acid (hereinafter abbreviated as “3HB”). PHB has high crystallinity, is hard and brittle because of its high degree of crystallinity, and rapidly decomposes at a temperature near the melting point (180 ° C.), so that melt workability is low and the practical range is extremely limited. is doing.
 そこで、PHBの結晶化度を下げて脆性を改善するため、他の3-ヒドロキシアルカン酸をPHB骨格中に導入する試みがなされた。例えば、3-ヒドロキシプロピオン酸(以下、「3HP」と略す)、4-ヒドロキシ酪酸(以下、「4HB」と略す)、5-ヒドロキシ吉草酸(以下、「5HV」と略す)などの側鎖を持たない直鎖状モノマーや、乳酸、3-ヒドロキシ吉草酸(以下、「3HV」と略す)、3-ヒドロキシヘキサン酸(以下、「3HHx」と略す)などのの側鎖を有するモノマーについて、PHB骨格への導入がこれまでに報告されている。導入するモノマーの種類やその共重合比率によって得られるPHAの物性は大きく変化するが、基本的にどのモノマーを導入してもPHBの結晶化度が低下するため、PHBと比べて溶融加工性が改善する。 Therefore, an attempt was made to introduce another 3-hydroxyalkanoic acid into the PHB skeleton in order to improve the brittleness by lowering the crystallinity of PHB. For example, side chains such as 3-hydroxypropionic acid (hereinafter abbreviated as “3HP”), 4-hydroxybutyric acid (hereinafter abbreviated as “4HB”), 5-hydroxyvaleric acid (hereinafter abbreviated as “5HV”), etc. PHB for monomers having a side chain such as linear monomers not having lactic acid, 3-hydroxyvaleric acid (hereinafter abbreviated as “3HV”), 3-hydroxyhexanoic acid (hereinafter abbreviated as “3HHx”), etc. Introduction to the skeleton has been reported so far. The physical properties of PHA obtained vary greatly depending on the type of monomer to be introduced and the copolymerization ratio, but basically any monomer is introduced, so that the crystallinity of PHB is lowered, so that the melt processability is higher than that of PHB. Improve.
 PHAの用途をさらに広げるためには、上記のようなPHAとは大きく異なる物性を有する新たなPHAを生産する技術開発が必要である。そのためには、単純にPHA主鎖の長さや直鎖の大きさを変化させるだけではなく、PHAの側鎖やカルボキシ末端に何らかの官能基を導入することが有効と考えられる。 In order to further expand the applications of PHA, it is necessary to develop technology for producing new PHA having physical properties greatly different from those described above. For this purpose, it is considered effective not only to simply change the length of the PHA main chain and the size of the straight chain, but also to introduce some functional group into the side chain or carboxy terminus of the PHA.
 これまでに、PHAの側鎖に官能基を導入した例として、特許文献1では炭素数6~14の中鎖PHAの側鎖にチオエステルを導入したことが報告されている。また、非特許文献1には、炭素数6~14の中鎖PHAの側鎖に、分岐鎖アルキル基、シクロヘキシル基、ハロゲン化アルキル、アセトキシ基、エステル、アルコシキ基、エポキシ基、チオール基、シアノ基、ニトロ基、フェニル基やベンゾイル基などの芳香環化合物を導入した例がまとめられている。 So far, as an example of introducing a functional group into the side chain of PHA, Patent Document 1 reports that a thioester has been introduced into the side chain of a medium chain PHA having 6 to 14 carbon atoms. Non-Patent Document 1 discloses that a side chain of a medium chain PHA having 6 to 14 carbon atoms has a branched alkyl group, a cyclohexyl group, an alkyl halide, an acetoxy group, an ester, an alkoxy group, an epoxy group, a thiol group, a cyano group. Examples of introducing aromatic ring compounds such as nitro group, nitro group, phenyl group and benzoyl group are summarized.
 これら官能基の導入は、PHAの物性を大きく変化させるだけでなく、上記官能基を更に化学的に修飾するための反応起点を付与する点でも重要である。例えば非特許文献3では、チオール-エンクリック反応を用いて、PHA側鎖の二重結合に蛍光物質やペプチドを修飾したことが報告されている。また非特許文献4では、チオール-エンクリック反応を用いて、PHA側鎖の二重結合にヒドロキシ基やカルボキシ基を導入し、PHAの撥水性を変化させたことが報告されている。さらに非特許文献4では多分岐構造化合物と反応させることで、PHAを架橋できたことも報告されている。さらに非特許文献5では、側鎖にアジド基を有するPHAを生産し、アルキン-アジドクリック反応を用いて上記側鎖を修飾した例が報告されている。 The introduction of these functional groups is important not only for greatly changing the physical properties of PHA, but also for providing a reaction starting point for further chemically modifying the functional groups. For example, Non-Patent Document 3 reports that a fluorescent substance or a peptide is modified to a double bond of a PHA side chain using a thiol-enclick reaction. Non-Patent Document 4 reports that the water repellency of PHA was changed by introducing a hydroxy group or a carboxy group into a double bond of a PHA side chain by using a thiol-ene click reaction. Furthermore, Non-Patent Document 4 reports that PHA can be crosslinked by reacting with a multi-branched structure compound. Further, Non-Patent Document 5 reports an example in which a PHA having an azide group in the side chain is produced and the side chain is modified using an alkyne-azide click reaction.
 このようにPHAに官能基を導入し、それを標的に化学修飾する方法は、PHAの物性を変化させる上で有用である。しかしながら、上記のようにPHA側鎖の官能基を用いる場合、反応制御が非常に難しい。例えば上記多分岐構造化合物を用いて架橋する場合、架橋点が多いとPHAはゲル化してしまうが、架橋点が少ないと架橋による物性改変の効果が得られない。また、1分子のPHA鎖上に複数の反応基が存在することで、反応後の生成物は多様な化合物の混合物となってしまうという課題も有していた。 Such a method of introducing a functional group into PHA and chemically modifying it into a target is useful for changing the physical properties of PHA. However, when the PHA side chain functional group is used as described above, reaction control is very difficult. For example, when cross-linking is performed using the above multi-branched structure compound, PHA gels if there are many cross-linking points, but if the cross-linking points are small, the effect of modifying physical properties by cross-linking cannot be obtained. In addition, the presence of a plurality of reactive groups on one molecule of PHA chain has caused a problem that the product after the reaction becomes a mixture of various compounds.
 一方、非特許文献6には、PHAのカルボキシ末端に官能基を導入した例が報告されている。詳細には非特許文献6には、IV型PHA合成酵素遺伝子を有するBacillus属微生物を1.3-プロパンジオール、2-プロピン-1-オール、3-メルカプト-1-プロパノール、ベンジルアルコールの存在下で培養すると、PHBのカルボキシ末端に1-プロパノール基、1-プロピニル基、1-プロパンチオール基、ベンジル基が導入されて、これらの非存在下で培養した場合に比べて分子量が低下することが報告されている。更に上記非特許文献6には、2-プロペン-1-オールや3-ブチン-1-オールの存在下で培養しても、分子量低下は観察されなかったことも報告されている。 On the other hand, Non-Patent Document 6 reports an example in which a functional group is introduced at the carboxy terminus of PHA. Specifically, Non-Patent Document 6 describes a Bacillus genus microorganism having a type IV PHA synthase gene in the presence of 1.3-propanediol, 2-propyn-1-ol, 3-mercapto-1-propanol, and benzyl alcohol. Incubation in 1-propanol group, 1-propynyl group, 1-propanethiol group, and benzyl group is introduced at the carboxy terminus of PHB, and the molecular weight may be lower than that in the absence of these. It has been reported. Furthermore, Non-Patent Document 6 reports that no decrease in molecular weight was observed even when cultured in the presence of 2-propen-1-ol or 3-butyn-1-ol.
WO2012/038572WO2012 / 038572
 前述したとおり非特許文献6にはPHAのカルボキシ末端に官能基が導入された化合物が記載されているが、実際に製造できたのは僅か4つであり、例えばアルキニル基についてプロピニル基は導入できたがブチニル基は導入できなかったことが記載されている。本発明の課題は、化学修飾可能でその反応制御が容易な、カルボキシ末端に官能基を有する各種新規のPHAを製造できる方法、およびこうした従来製造ではなかったPHAを提供することである。 As described above, Non-Patent Document 6 describes a compound in which a functional group is introduced at the carboxy terminus of PHA. However, only four compounds can be actually produced. For example, a propynyl group can be introduced for an alkynyl group. However, it is described that the butynyl group could not be introduced. An object of the present invention is to provide a method capable of producing various novel PHA having a functional group at the carboxy terminus that can be chemically modified and whose reaction control is easy, and a PHA that has not been conventionally produced.
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、PHAの側鎖ではなくカルボキシ末端に特定の官能基を含有するPHAの製造に成功し、本発明を完成するに至った。
 本発明の詳細は以下のとおりである。
 1.繰り返し単位が下記一般式(1)
[-C*HR1-CH2-CO-O-] ・・・(1)
(式中、R1はCn2n+1で表されるアルキル基であり、nは1~15の整数であり、*は不斉であることを表す。)
で示されるR-3-ヒドロキシアルカン酸の単独又は共重合ポリマーであって、該ポリマーが単独ポリマーであるか共重合ポリマーであるかに応じて、カルボキシ末端に以下に示す基が結合しているポリヒドロキシアルカン酸。
 (1)単独ポリマーである時にカルボキシ末端に結合する基
 炭素数4~8のアルキニル基、
 炭素数3~8のアルケニル基、
 炭素数2、4~8のメルカプトアルキル基、
 炭素数3~8のアジド化アルキル基、または
 アルキル基の炭素数が2~6のアリル(ポリ)オキシアルキル基
 (2)共重合ポリマーである時にカルボキシ末端に結合する基
 炭素数3~8のアルキニル基、
 炭素数3~8のアルケニル基、
 炭素数2~8のメルカプトアルキル基、
 炭素数3~8のアジド化アルキル基、または
 アルキル基の炭素数が2~6のアリル(ポリ)オキシアルキル基
 2.カルボキシ末端に、アルキン基(アルキニル基と同義)、アルケン基(アルケニル基と同義)、チオール基(メルカプト基)またはアジド基が導入された微生物産生ポリヒドロキシアルカン酸であり、
 前記ヒドロキシアルカン酸が3-ヒドロキシ酪酸、3-ヒドロキプロピオン酸、4-ヒドロキシ酪酸、3-ヒドロキシ吉草酸、5-ヒドロキシ吉草酸、3-ヒドロキシヘキサン酸、6-ヒドロキシヘキサン酸、3-ヒドロキシヘプタン酸、3-ヒドロキシオクタン酸、3-ヒドロキシノナン酸、3-ヒドロキシデカン酸、3-ヒドロキシウンデカン酸、3-ヒドロキシドデカン酸から選ばれる複数種で構成されているポリヒドロキシアルカン酸。
 3.カルボキシ末端に、アルキン基、アルケン基、チオール基またはアジド基が導入された微生物産生ポリヒドロキシアルカン酸であり、
 前記ヒドロキシアルカン酸が3-ヒドロキシ酪酸、3-ヒドロキプロピオン酸、4-ヒドロキシ酪酸、3-ヒドロキシ吉草酸、5-ヒドロキシ吉草酸、3-ヒドロキシヘキサン酸、6-ヒドロキシヘキサン酸、3-ヒドロキシヘプタン酸、3-ヒドロキシオクタン酸、3-ヒドロキシノナン酸、3-ヒドロキシデカン酸、3-ヒドロキシウンデカン酸、3-ヒドロキシドデカン酸から選ばれる単一種で構成されており、
 前記アルキン基が、ブチニル基、ペンチニル基、又はヘキシニル基であり、
 前記アルケン基が、プロペニル基、ブテニル基、ペンテニル基、又はヘキセニル基であり、
 前記チオール基が、メルカプトエチル基、メルカプトブチル基、メルカプトペンチル基、又はメルカプトヘキシル基であるポリヒドロキシアルカン酸。
 4.モノマーユニットとして少なくとも3-ヒドロキシ酪酸を含む上記1~3のいずれかに記載のポリヒドロキシアルカン酸。
 5.モノマーユニットとしてさらに3-ヒドロキシヘキサン酸を含む上記4に記載のポリヒドロキシアルカン酸。
 6.上記1~5のいずれかに記載のポリヒドロキシアルカン酸を製造する方法であって、
 アルキン基、アルケン基、チオール基、アジド基、またはアリル基を有するアルコールを用いて、ポリヒドロキシアルカン酸を生産可能な微生物を培養する工程を含む、カルボキシ末端に、アルキン基、アルケン基、チオール基、アジド基、又はアリル基が導入されたポリヒドロキシアルカン酸の製造方法。
 7.アルキン基、アルケン基、チオール基、アジド基、またはアリル基を有する炭素数2~8のアルコールを用いて、ポリヒドロキシアルカン酸を生産可能なCupriavidus属に属する微生物を培養する工程を含む、カルボキシ末端に、アルキン基、アルケン基、チオール基、アジド基、又はアリル基が導入されたポリヒドロキシアルカン酸の製造方法。
 8.前記アルコールが第一級アルコールである上記6または7に記載の製造方法。
 9.前記微生物が、Aeromonas属、Ralstonia属またはPseudomonas属由来のポリヒドロキシアルカン酸合成酵素をコードする遺伝子を有する微生物である上記6~8のいずれかに記載の製造方法。
 10.前記微生物が、Cupriavidus属に属する微生物である上記8または9に記載の製造方法。
 11.前記微生物が、Cupriavidus necatorを宿主とする形質転換体である上記7または10に記載の製造方法。
 12.上記1~5のいずれかに記載のポリヒドロキシアルカン酸の末端のアルキン基、アルケン基、チオール基、アジド基、またはアリル基がさらに化学修飾された化合物。
 13.上記1~5のいずれかに記載のポリヒドロキシアルカン酸、または上記12に記載の化合物を含有する成形体。
As a result of intensive studies to solve the above problems, the present inventors have succeeded in producing a PHA containing a specific functional group at the carboxy terminus instead of the side chain of PHA, and completed the present invention. It was.
The details of the present invention are as follows.
1. The repeating unit is represented by the following general formula (1)
[—C * HR 1 —CH 2 —CO—O—] (1)
(In the formula, R 1 is an alkyl group represented by C n H 2n + 1 , n is an integer of 1 to 15, and * is asymmetric.)
R-3-hydroxyalkanoic acid homopolymer or copolymer represented by the following, wherein the following groups are bonded to the carboxy terminus depending on whether the polymer is a homopolymer or a copolymer Polyhydroxyalkanoic acid.
(1) a group bonded to the carboxy terminus when it is a single polymer, an alkynyl group having 4 to 8 carbon atoms,
An alkenyl group having 3 to 8 carbon atoms,
A mercaptoalkyl group having 2 or 4 to 8 carbon atoms,
An azido alkyl group having 3 to 8 carbon atoms, or an allyl (poly) oxyalkyl group having 2 to 6 carbon atoms in the alkyl group (2) a group bonded to the carboxy terminus when the copolymer is a polymer having 3 to 8 carbon atoms An alkynyl group,
An alkenyl group having 3 to 8 carbon atoms,
A mercaptoalkyl group having 2 to 8 carbon atoms,
1. an azido alkyl group having 3 to 8 carbon atoms or an allyl (poly) oxyalkyl group having 2 to 6 carbon atoms in the alkyl group; A microbially produced polyhydroxyalkanoic acid having an alkyne group (synonymous with alkynyl group), alkene group (synonymous with alkenyl group), thiol group (mercapto group) or azide group introduced at the carboxy terminus,
The hydroxyalkanoic acid is 3-hydroxybutyric acid, 3-hydroxypropionic acid, 4-hydroxybutyric acid, 3-hydroxyvaleric acid, 5-hydroxyvaleric acid, 3-hydroxyhexanoic acid, 6-hydroxyhexanoic acid, 3-hydroxyheptanoic acid , Polyhydroxyalkanoic acid composed of a plurality of kinds selected from 3-hydroxyoctanoic acid, 3-hydroxynonanoic acid, 3-hydroxydecanoic acid, 3-hydroxyundecanoic acid and 3-hydroxydodecanoic acid.
3. A microbially produced polyhydroxyalkanoic acid having an alkyne group, alkene group, thiol group or azide group introduced at the carboxy terminus;
The hydroxyalkanoic acid is 3-hydroxybutyric acid, 3-hydroxypropionic acid, 4-hydroxybutyric acid, 3-hydroxyvaleric acid, 5-hydroxyvaleric acid, 3-hydroxyhexanoic acid, 6-hydroxyhexanoic acid, 3-hydroxyheptanoic acid , Composed of a single species selected from 3-hydroxyoctanoic acid, 3-hydroxynonanoic acid, 3-hydroxydecanoic acid, 3-hydroxyundecanoic acid, 3-hydroxydodecanoic acid,
The alkyne group is a butynyl group, a pentynyl group, or a hexynyl group;
The alkene group is a propenyl group, a butenyl group, a pentenyl group, or a hexenyl group;
A polyhydroxyalkanoic acid in which the thiol group is a mercaptoethyl group, a mercaptobutyl group, a mercaptopentyl group, or a mercaptohexyl group.
4). 4. The polyhydroxyalkanoic acid according to any one of 1 to 3 above, which contains at least 3-hydroxybutyric acid as a monomer unit.
5. 5. The polyhydroxyalkanoic acid as described in 4 above, further containing 3-hydroxyhexanoic acid as a monomer unit.
6). A method for producing the polyhydroxyalkanoic acid according to any one of 1 to 5, wherein
Including culturing a microorganism capable of producing polyhydroxyalkanoic acid using an alcohol having an alkyne group, an alkene group, a thiol group, an azide group, or an allyl group; , An azido group, or a polyhydroxyalkanoic acid having an allyl group introduced therein.
7). Including culturing a microorganism belonging to the genus Cupriavidus capable of producing polyhydroxyalkanoic acid using an alcohol having 2 to 8 carbon atoms having an alkyne group, an alkene group, a thiol group, an azide group, or an allyl group, A method for producing a polyhydroxyalkanoic acid into which an alkyne group, an alkene group, a thiol group, an azide group, or an allyl group is introduced.
8). 8. The production method according to 6 or 7 above, wherein the alcohol is a primary alcohol.
9. 9. The production method according to any one of the above 6 to 8, wherein the microorganism is a microorganism having a gene encoding a polyhydroxyalkanoate synthase derived from the genus Aeromonas, Ralstonia or Pseudomonas.
10. 10. The production method according to 8 or 9 above, wherein the microorganism is a microorganism belonging to the genus Cupriavidus.
11. 11. The production method according to 7 or 10 above, wherein the microorganism is a transformant using Cupriavidus necator as a host.
12 6. A compound obtained by further chemically modifying the terminal alkyne group, alkene group, thiol group, azide group, or allyl group of the polyhydroxyalkanoic acid according to any one of 1 to 5 above.
13. A molded product containing the polyhydroxyalkanoic acid according to any one of 1 to 5 above or the compound according to 12 above.
 本発明によれば、カルボキシ末端に特定の官能基を有する全く新規のPHAを製造することができる。本発明のPHAは、フィルムやシートなどの成形体を製造するための添加剤として使用することで従来のPHAの物性改善が期待できるだけでなく、上記官能基をさらに化学修飾することで多様な構造体への誘導が可能であると考えられる。 According to the present invention, a completely new PHA having a specific functional group at the carboxy terminus can be produced. The PHA of the present invention can be expected not only to improve the physical properties of conventional PHA by using it as an additive for producing molded articles such as films and sheets, but also to have various structures by further modifying the above functional groups. It is thought that guidance to the body is possible.
図1は、実施例8の1H-NMRチャートである。1 is a 1 H-NMR chart of Example 8. FIG. 図2は、実施例16の1H-NMRチャートである。FIG. 2 is a 1 H-NMR chart of Example 16. 図3は、比較例1の1H-NMRチャートである。FIG. 3 is a 1 H-NMR chart of Comparative Example 1.
 以下、本発明について、さらに詳細に説明する。 Hereinafter, the present invention will be described in more detail.
 本発明のPHAは、繰り返し単位が下記一般式(1)
[-C*HR1-CH2-CO-O-] ・・・(1)
(式中、R1はCn2n+1で表されるアルキル基であり、nは1~15の整数であり、*は不斉炭素であることを表す。)
で示されるR-3-ヒドロキシアルカン酸(以下、「3HA」と略す)の単独又は共重合ポリマー(以下、これらのポリマーを「P3HA」と略す)であって、P3HAが単独ポリマーであるか共重合ポリマーであるかに応じて、カルボキシ末端に以下に示す基が結合しているものである。好ましくは該カルボキシ基を含むエステル結合に以下の基が結合しており、PHAの末端に、三重結合、二重結合、メルカプト基(チオール基)、アリル基を有するものである。
 (1)単独ポリマーである時にカルボキシ末端に結合する基
 炭素数4~8のアルキニル基、炭素数3~8のアルケニル基、炭素数2、4~8のメルカプトアルキル基、炭素数3~8のアジド化アルキル基、またはアルキル基の炭素数が2~6のアリル(ポリ)オキシアルキル基
 (2)共重合ポリマーである時にカルボキシ末端に結合する基
 炭素数3~8のアルキニル基、炭素数3~8のアルケニル基、炭素数2~8のメルカプトアルキル基、炭素数3~8のアジド化アルキル基、またはアルキル基の炭素数が2~6のアリル(ポリ)オキシアルキル基
The PHA of the present invention has a repeating unit represented by the following general formula (1)
[—C * HR 1 —CH 2 —CO—O—] (1)
(In the formula, R 1 is an alkyl group represented by C n H 2n + 1 , n is an integer of 1 to 15, and * represents an asymmetric carbon.)
Or a copolymer of R-3-hydroxyalkanoic acid (hereinafter abbreviated as “3HA”) (hereinafter, these polymers are abbreviated as “P3HA”), wherein P3HA is a homopolymer or a copolymer. Depending on whether the polymer is a polymer, the following groups are bonded to the carboxy terminus. Preferably, the following groups are bonded to an ester bond containing the carboxy group, and have a triple bond, a double bond, a mercapto group (thiol group), or an allyl group at the terminal of PHA.
(1) A group bonded to the carboxy terminus when it is a single polymer C4-C8 alkynyl group, C3-C8 alkenyl group, C2-C4-8 mercaptoalkyl group, C3-C8 An azido alkyl group or an allyl (poly) oxyalkyl group having 2 to 6 carbon atoms in the alkyl group (2) a group bonded to the carboxy terminus when the copolymer is a polymer 3 to 8 alkynyl group or 3 carbon atoms An alkenyl group having 8 to 8 carbon atoms, a mercaptoalkyl group having 2 to 8 carbon atoms, an azido alkyl group having 3 to 8 carbon atoms, or an allyl (poly) oxyalkyl group having 2 to 6 carbon atoms in the alkyl group
 なお、前述した非特許文献6には、上記一般式(1)においてn=1である3HBのホモポリマーであって、そのカルボキシ末端にプロピニル基(炭素数3のアルキニル基)およびメルカプトプロピル基(炭素数3のアルキル基を有するチオール基)が開示されているに過ぎず、本発明とは官能基の種類が相違する。また、両者は使用する微生物種が相違する。 In Non-Patent Document 6 described above, 3HB homopolymer in which n = 1 in the above general formula (1), a propynyl group (alkynyl group having 3 carbon atoms) and a mercaptopropyl group ( Only a thiol group having an alkyl group having 3 carbon atoms is disclosed, and the type of functional group is different from the present invention. In addition, both use different microbial species.
 すなわち本発明のPHAは、3HAを主要モノマーユニットとし、P3HAと称される、微生物から生産されるポリエステル樹脂である。本発明のPHAを構成するモノマーユニットとしては、例えば3HB(上記一般式(1)において、Cn2n+1で表されるアルキル基R1のn=1)、3HV(n=2)、3HHx(n=3)、3-ヒドロキシヘプタン酸(n=4)、3-ヒドロキシオクタン酸(n=5)、3-ヒドロキシノナン酸(n=6)、3-ヒドロキシデカン酸(n=7)、3-ヒドロキシウンデカン酸(n=8)、3-ヒドロキシドデカン酸(n=9)などが挙げられる。 That is, the PHA of the present invention is a polyester resin produced from microorganisms, which is called P3HA with 3HA as a main monomer unit. Examples of the monomer unit constituting the PHA of the present invention include 3HB (in the general formula (1), n = 1 of the alkyl group R 1 represented by C n H 2n + 1), 3HV (n = 2), 3HHx (n = 3), 3-hydroxyheptanoic acid (n = 4), 3-hydroxyoctanoic acid (n = 5), 3-hydroxynonanoic acid (n = 6), 3-hydroxydecanoic acid (n = 7) , 3-hydroxyundecanoic acid (n = 8), 3-hydroxydodecanoic acid (n = 9), and the like.
 本発明のPHAにおけるモノマーユニットは、単一種で構成されていても良いし、複数種で構成されていても良い。複数種のモノマーユニットを含む場合、2種類以上の3HAを共重合させたものであってもよいし、1種または2種以上の3HAに対し、4HB等の4-ヒドロキシアルカン酸を共重合させたものであってもよい。本発明のPHAとしては、モノマーユニットとして、少なくとも3HBを含んでいることが好ましい。本発明のPHAは、モノマーユニットとして上記3HBのみからなるPHBであってもよく、3HBとその他のモノマーユニットからなる共重合体であっても良い。3HB以外のモノマーユニットとして、前述したモノマーユニットのほか、3HP、4HB、5HV、6-ヒドロキシヘキサン酸(6-hydroxyhexanonate;以下、「6HHx」と略す)などが挙げられる。このような共重合体の例として、3HHxをさらに有するPoly(3HB-co-3HHx)(以下、「PHBH」と略す)、3HVをさらに有するPoly(3HB-co-3HV)、4HVをさらに有するPoly(3HB-co-4HV)などが挙げられる。これらのうちPHBHが好ましい。 The monomer unit in the PHA of the present invention may be composed of a single species or a plurality of species. When plural kinds of monomer units are included, two or more kinds of 3HA may be copolymerized, or 4-hydroxyalkanoic acid such as 4HB may be copolymerized with one or more kinds of 3HA. It may be. The PHA of the present invention preferably contains at least 3HB as a monomer unit. The PHA of the present invention may be a PHB consisting only of the above 3HB as a monomer unit, or may be a copolymer consisting of 3HB and another monomer unit. Examples of monomer units other than 3HB include the above-described monomer units, 3HP, 4HB, 5HV, 6-hydroxyhexanoate (hereinafter abbreviated as “6HHx”), and the like. As an example of such a copolymer, Poly (3HB-co-3HHx) further having 3HHx (hereinafter abbreviated as “PHBH”), Poly having further 3HV (3HB-co-3HV), and Poly further having 4HV (3HB-co-4HV) and the like. Of these, PHBH is preferred.
 本発明のPHAが共重合体である場合の各モノマーユニットの共重合比率は特に限定されないが、3HBをモノマーユニットとして含有する場合、その共重合比率は、50モル%以上であることがより好ましく、60モル%以上であることがさらに好ましく、70モル%以上であることが一層好ましく、80モル%以上であることが特に好ましい。また本発明のPHAがPHBHである場合、3HHx共重合比率の下限は、1モル%が好ましく、2モル%がより好ましく、3モル%がさらに好ましい。またその上限は、20モル%が好ましく、15モル%がより好ましく、12モル%がさらに好ましい。 The copolymerization ratio of each monomer unit when the PHA of the present invention is a copolymer is not particularly limited, but when 3HB is contained as a monomer unit, the copolymerization ratio is more preferably 50 mol% or more. 60 mol% or more is more preferable, 70 mol% or more is more preferable, and 80 mol% or more is particularly preferable. When the PHA of the present invention is PHBH, the lower limit of the 3HHx copolymerization ratio is preferably 1 mol%, more preferably 2 mol%, and even more preferably 3 mol%. Further, the upper limit is preferably 20 mol%, more preferably 15 mol%, and still more preferably 12 mol%.
 上述したように本発明のPHAは、ポリマー主鎖のカルボキシ末端に、特定の官能基としてアルキニル基、アルケニル基、チオール基(メルカプト基)、アジド基、またはアリル基が導入されていることを特徴とする。本発明のPHAのカルボキシ末端は、アルキル鎖を介してアルキニル基、アルケニル基、チオール基、アジド基を有しており、またオキシアルキル鎖を介してアリル基を有する。 As described above, the PHA of the present invention is characterized in that an alkynyl group, an alkenyl group, a thiol group (mercapto group), an azide group, or an allyl group is introduced as a specific functional group at the carboxy terminal of the polymer main chain. And The carboxy terminus of the PHA of the present invention has an alkynyl group, an alkenyl group, a thiol group, and an azide group via an alkyl chain, and an allyl group via an oxyalkyl chain.
 上記炭素数3~8のアルキニル基として、直鎖状または分岐状のプロピニル基、ブチニル基、ペンチニル基、ヘキシニル基、へプチニル基、オクチニル基が挙げられる。分岐はない方、すなわち直鎖が好ましい。炭素数は3~6であることが好ましく、なかでもプロピニル基、ブチニル基、ヘキシニル基が好ましい例として挙げられる。 Examples of the alkynyl group having 3 to 8 carbon atoms include linear or branched propynyl group, butynyl group, pentynyl group, hexynyl group, heptynyl group, and octynyl group. One having no branching, that is, a straight chain is preferred. The number of carbon atoms is preferably 3 to 6, and among them, propynyl group, butynyl group, and hexynyl group are preferable examples.
 上記炭素数3~8のアルケニル基として、直鎖状または分岐状のプロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、へプテニル基、オクテニル基が挙げられる。分岐はない方、すなわち直鎖が好ましい。炭素数は3~6であることが好ましく、なかでもプロペニル基、ブテニル基、ヘキセニル基が好ましい例として挙げられる。 Examples of the alkenyl group having 3 to 8 carbon atoms include linear or branched propenyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group, and octenyl group. One having no branching, that is, a straight chain is preferred. The number of carbon atoms is preferably 3 to 6, and among them, propenyl group, butenyl group and hexenyl group are preferable examples.
 上記炭素数2~8のメルカプトアルキル基として、直鎖状または分岐状のメルカプトエチル基、メルカプトプロピル基、メルカプトブチル基、メルカプトペンチル基、メルカプトヘキシル基、メルカプトヘプチル基、メルカプトオクチル基が挙げられる。分岐はない方、すなわち直鎖が好ましい。炭素数は2~6であることが好ましく、3~6であることがより好ましい。例えばメルカプトエチル基、メルカプトプロピル基が好ましい例として挙げられる。 Examples of the mercaptoalkyl group having 2 to 8 carbon atoms include linear or branched mercaptoethyl group, mercaptopropyl group, mercaptobutyl group, mercaptopentyl group, mercaptohexyl group, mercaptoheptyl group, and mercaptooctyl group. One having no branching, that is, a straight chain is preferred. The number of carbon atoms is preferably 2 to 6, and more preferably 3 to 6. For example, a mercaptoethyl group and a mercaptopropyl group are preferable examples.
 上記炭素数3~8のアジド化アルキル基として、直鎖状または分岐状のアジド化プロピル基、アジド化ブチル基、アジド化ペンチル基、アジド化ヘキシル基、アジド化ヘプチル基が挙げられる。分岐はない方、すなわち直鎖が好ましい。炭素数は3~6であることが好ましく、なかでもアジド化プロピル基、アジド化ブチル基が好ましい例として挙げられる。 Examples of the azido alkyl group having 3 to 8 carbon atoms include linear or branched azidated propyl group, azido butyl group, azido pentyl group, azido hexyl group, and azido heptyl group. One having no branching, that is, a straight chain is preferred. The number of carbon atoms is preferably 3 to 6, and among them, preferred examples include azidopropyl group and azidobutyl group.
 アルキル基の炭素数が2~6のアリル(ポリ)オキシアルキル基として、オキシアルキルを1~3有するものが挙げられ、好ましくは1である。オキシアルキル基としては例えばオキシエチル基、オキシプロピル基、オキシブチル基、オキシペンチル基、オキシヘキシル基が挙げられ、なかでもオキシエチル基、オキシプロピル基、オキシブチル基が好ましい例として挙げられる。分岐はない方、すなわち直鎖が好ましい。アリル(ポリ)オキシアルキル基の総炭素数は2~6であることが好ましく、例えばアリルオキシエチル基、アリルオキシプロピル基、アリルオキシブチル基が挙げられる。 Examples of the allyl (poly) oxyalkyl group having 2 to 6 carbon atoms in the alkyl group include those having 1 to 3 oxyalkyl, preferably 1. Examples of the oxyalkyl group include an oxyethyl group, an oxypropyl group, an oxybutyl group, an oxypentyl group, and an oxyhexyl group. Among them, an oxyethyl group, an oxypropyl group, and an oxybutyl group are preferable examples. One having no branching, that is, a straight chain is preferred. The total carbon number of the allyl (poly) oxyalkyl group is preferably 2 to 6, and examples thereof include an allyloxyethyl group, an allyloxypropyl group, and an allyloxybutyl group.
 本発明のPHAは上記の通り特定の官能基をカルボキシル基末端に有していることを特徴とするが、ポリマー側鎖にもさらに官能基を有していてもかまわない。但し、本発明のPHAをさらに化学修飾して新たな誘導体を合成する場合には、反応制御の観点からカルボキシル基末端にのみ官能基を有しているのが好ましい。 The PHA of the present invention is characterized by having a specific functional group at the carboxyl group terminal as described above, but it may further have a functional group in the polymer side chain. However, when a new derivative is synthesized by further chemically modifying the PHA of the present invention, it is preferable that the functional group is present only at the carboxyl group terminal from the viewpoint of reaction control.
 本発明のPHAの分子量は限定されないが、下記本発明の製造方法を利用する場合、比較的低分子量のPHAが得られる傾向がある。例えば重量平均分子量(Mw)として、5000~20000000程度、使用目的によっては8000~300000程度やさらに10000~100000程度であっても差し支えない。また数平均分子量(Mn)として3000~1500000程度、使用目的によっては5000~1000000程度やさらに7000~800000程度であっても差し支えない。 The molecular weight of the PHA of the present invention is not limited. However, when the production method of the present invention described below is used, a relatively low molecular weight PHA tends to be obtained. For example, the weight average molecular weight (M w ) may be about 5,000 to 20,000,000, and may be about 8,000 to 300,000 or even about 10,000 to 100,000 depending on the purpose of use. The number average molecular weight (M n ) may be about 3000 to 1500,000, and may be about 5000 to 1000000 or even about 7000 to 800000 depending on the purpose of use.
 上述した本発明のPHAを生産する方法としては、上記特定の官能基をカルボキシ末端に導入できるよう、上記アルキニル基、アルケニル基、チオール基、アジド基、またはアリル基を有するアルコールを用いてPHAを合成可能な微生物(以下、「本発明の微生物」と言う)を培養する方法(以下、「本発明の製造方法」と言う)が挙げられる。前記アルコールとしては、第一級アルコールが好ましい。 As a method for producing the above-described PHA of the present invention, PHA is produced using an alcohol having the alkynyl group, alkenyl group, thiol group, azide group, or allyl group so that the specific functional group can be introduced at the carboxy terminus. And a method of culturing a synthesizeable microorganism (hereinafter referred to as “the microorganism of the present invention”) (hereinafter referred to as “the production method of the present invention”). The alcohol is preferably a primary alcohol.
 このようなアルコールとしては、例えば2-プロピン-1-オール、3-ブチン-1-オール、4-ペンチン-1-オール、5-ヘキシン-1-オール;2-プロペン-1-オール、3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1-オール;2-メルカプトエタノール、3-メルカプトプロパノール、4-メルカプトブタノール、5-メルカプトペンタノール、6-メルカプトヘキサノール;4-アジドブタン-1-オール、5-アジドペンタン-1-オール、6-アジドヘキサン-1-オール;エチレングリコールモノアリルエーテル、プロピレングリコールモノアリルエーテル、テトラメチレングリコールモノアリルエーテル、ペンタメチレングリコールモノアリルエーテルなどが挙げられる。なかでも、2-プロペン-1-オール、3-ブテン-1-オール、5-ヘキセン-1-オール、2-プロピン-1-オール、3-ブチン-1-オール、5-ヘキシン-1-オール、2-メルカプトエタノール、3-メルカプトプロパノール、エチレングリコールモノアリルエーテルなどが好ましい例として挙げられる。これ以外にも、アルキル鎖部分に分岐構造を有するアルコールや、ヒドロキシ基を複数有するアルコール、あるいはアルキニル基、アルケニル基、チオール基、アジド基、またはアリル基を複数有するアルコールを使用しても良い。また、これらのアルコールは、単独種で使用しても良いし、複数種を併用しても良い。 Examples of such alcohols include 2-propyn-1-ol, 3-butyn-1-ol, 4-pentyn-1-ol, 5-hexyn-1-ol; 2-propen-1-ol, 3- Buten-1-ol, 4-penten-1-ol, 5-hexen-1-ol; 2-mercaptoethanol, 3-mercaptopropanol, 4-mercaptobutanol, 5-mercaptopentanol, 6-mercaptohexanol; Azidobutan-1-ol, 5-azidopentan-1-ol, 6-azidohexane-1-ol; ethylene glycol monoallyl ether, propylene glycol monoallyl ether, tetramethylene glycol monoallyl ether, pentamethylene glycol monoallyl ether, etc. Is mentioned. Among them, 2-propen-1-ol, 3-buten-1-ol, 5-hexen-1-ol, 2-propyn-1-ol, 3-butyn-1-ol, 5-hexyn-1-ol Preferred examples include 2-mercaptoethanol, 3-mercaptopropanol, and ethylene glycol monoallyl ether. In addition to this, an alcohol having a branched structure in the alkyl chain portion, an alcohol having a plurality of hydroxy groups, or an alcohol having a plurality of alkynyl groups, alkenyl groups, thiol groups, azide groups, or allyl groups may be used. These alcohols may be used alone or in combination of two or more.
 本発明の製造方法では、微生物菌体内でのPHA合成における連鎖移動反応において、上記アルコールが停止剤として機能していると考えられる。その場合、どのようなアルコールが停止剤として機能するのかは、本発明の微生物が有するPHA合成酵素のアルコールに対する基質特異性に依存する。本発明の製造方法においては、上記本発明の微生物が、Aeromonas(アエロモナス)属、Ralstonia(ラルストニア)属またはPseudomonas(シュードモナス)属由来のPHA合成酵素をコードする遺伝子(以下、「PHA合成酵素遺伝子」と略す)を有する微生物であるのが好ましく、さらに具体的には、PHA合成酵素遺伝子として、配列番号1に記載するアミノ酸配列からなる、Aeromonas caviae(アエロモナス キャビエ)由来で、かつ149番目のアスパラギンがセリンに、171番目のアスパラギン酸がグリシンにそれぞれ人工的に置き換えられたPHA合成酵素遺伝子、配列番号2に記載するアミノ酸配列からなる、Ralstonia eutropha(ラルストニア ユートロファ)由来のPHA合成酵素遺伝子、配列番号3に記載するアミノ酸配列からなる、Pseudomonas Sp.61-3由来で、325番目のセリンがトレオニンに、477番目のセリンがアルギニンに、481番目のグルタミンがアルギニンにそれぞれ人工的に置き換えられたPHA合成酵素遺伝子等がより好ましい例としてあげられるが、これらに限定されない。Aeromonas属由来PHA合成酵素は炭素数3~6のヒドロキシアルカン酸CoAを基質とすることが知られているため、Aeromonas属由来のPHA合成酵素遺伝子を有する微生物を使用することで、3HB、3HP、4HB、3HV、5HV、および3HHxからなるホモポリマー、あるいはこれらのモノマーユニットからなる共重合PHAが生産できる。また、Ralstonia属由来PHA合成酵素は炭素数3~5のヒドロキシアルカン酸CoAを基質とすることが知られているため、Ralstonia属由来PHA合成酵素遺伝子を有する微生物を使用することで、3HB、3HP、4HB、3HV、および5HVからなるホモポリマー、あるいはこれらのモノマーユニットからなる共重合PHAが生産できる。また、Pseudomonas属由来PHA合成酵素は炭素数3~12のヒドロキシアルカン酸CoAを基質とすることが知られているため、Pseudomonas属由来PHA合成酵素遺伝子を有する微生物を使用することで、3HB、3HP、4HB、3HV、5HV、3HHx、6HHx、3-ヒドロキシヘプタン酸、3-ヒドロキシオクタン酸、3-ヒドロキシノナン酸、3-ヒドロキシデカン酸、3-ヒドロキシウンデカン酸、3-ヒドロキシドデカン酸からなるホモポリマー、あるいはこれらのモノマーユニットからなる共重合PHAが生産できる。 In the production method of the present invention, it is considered that the alcohol functions as a terminator in the chain transfer reaction in PHA synthesis in microbial cells. In that case, what alcohol functions as a terminator depends on the substrate specificity of the PHA synthase of the microorganism of the present invention for alcohol. In the production method of the present invention, the microorganism of the present invention is a gene encoding a PHA synthase derived from the genus Aeromonas (Aeromonas), Ralstonia, or Pseudomonas (hereinafter referred to as “PHA synthase gene”). And more specifically, the PHA synthase gene is derived from Aeromonas caviae, which consists of the amino acid sequence shown in SEQ ID NO: 1, and the 149th asparagine is Ralstonia eutropha consisting of the amino acid sequence described in SEQ ID NO: 2, a PHA synthase gene in which 171th aspartic acid is artificially replaced with glycine in serine Rofa) PHA synthase gene derived from, the amino acid sequence set forth in SEQ ID NO: 3, Pseudomonas Sp. PHA synthase genes derived from 61-3, in which the 325th serine is artificially replaced with threonine, the 477th serine with arginine, and the 481st glutamine with arginine, are more preferred examples. It is not limited to these. Since PHA synthase derived from Aeromonas genus is known to use a hydroxyalkanoic acid CoA having 3 to 6 carbon atoms as a substrate, by using a microorganism having a PHA synthase gene derived from Aeromonas genus, 3HB, 3HP, A homopolymer composed of 4HB, 3HV, 5HV, and 3HHx, or a copolymerized PHA composed of these monomer units can be produced. Moreover, since it is known that Ralstonia genus-derived PHA synthase uses a hydroxyalkanoic acid CoA having 3 to 5 carbon atoms as a substrate, 3HB, 3HP can be obtained by using a microorganism having Ralstonia genus-derived PHA synthase gene. Homopolymers composed of 4HB, 3HV, and 5HV, or copolymerized PHA composed of these monomer units can be produced. In addition, since Pseudomonas genus-derived PHA synthase is known to use a hydroxyalkanoic acid CoA having 3 to 12 carbon atoms as a substrate, 3HB, 3HP can be obtained by using a microorganism having a Pseudomonas genus-derived PHA synthase gene. Homopolymer comprising 4HB, 3HV, 5HV, 3HHx, 6HHx, 3-hydroxyheptanoic acid, 3-hydroxyoctanoic acid, 3-hydroxynonanoic acid, 3-hydroxydecanoic acid, 3-hydroxyundecanoic acid, 3-hydroxydodecanoic acid Alternatively, a copolymerized PHA composed of these monomer units can be produced.
 本発明の微生物種は特に限定されず、細菌、または真菌のいずれであってもよい。例えば、Acinetobacter(アシネトバクター)属、Aeromonas(アエロモナス)属、Alcaligenes(アルカリゲネス)属、Allochromatium(アルロクロマチウム)属、Azorhizobium(アゾリゾビウム)属、Azotobacter(アゾトバクター)属、Bacillus(バチルス)属、Burkholderia(バークホルデリア)属、Candida(カンジダ)属、Caulobacter(カウロバクター)属、Chromobacterium(クロモバクテリウム)属、Comamonas(コマモナス)属、Cupriavidus(カプリアビダス)属、Ectothiorhodospira(エクトチオドスピラ)属、Escherichia属、Klebsiella(クレブシエラ)属、Methylobacterium(メチロバクテリウム)属、Nocardia(ノカルディア)属、Paracoccus(パラコッカス)属、Pseudomonas(シュードモナス)属、Ralstonia(ラルストニア)属、Rhizobium(リゾビウム)属、Rhodobacter(ロドバクター)属、Rhodococcus(ロドコッカス)属、Rhodospirillum(ロドスピリルム)属、Rickettsia(リケッチア)属、Saccharomyces(サッカロミセス)属、Sinorhizobium(シノリゾビウム)属、Sphingomonas(スフィンゴモナス)属、Synechocystis(シネコシスティス)属、Thiococcus(チオコッカス)属、Thiocystis(チオキスチス)属、Vibrio(ビブリオ)属、Wautersia(ウォーテルシア)属、またはZoog/Loea(ゾオグ/ロエア)属に属する微生物が挙げられる。中でもAeromonas属、Alcaligenes属、Cupriavidus属、Escherichia属、Pseudomonas属、Ralstonia属等に属する微生物が好ましく、Cupriavidus属、Escherichia属、Ralstonia属に属する微生物がより好ましく、Cupriavidus属に属する微生物がさらにより好ましい。本発明の微生物して特に好ましいのは、Cupriavidus necator(カプリアビダス ネカトール)である。 The microorganism species of the present invention is not particularly limited, and may be either bacteria or fungi. For example, Acinetobacter (Acinetobacter), Aeromonas (Aeromonas), Alcaligenes (Alkalinegenes), Allochromatium (Arozobium), Azotobacter (Azotobacter) Deria) genus, Candida genus, Caurobacter genus, Chromobacterium genus, Comamonas genus, Cupriavidus genus, Ectothiorhodospira genus bsiella (Klebsiella), Methylobacterium (Methylobacterium), Nocardia (Nocardia), Paracoccus, Pseudomonas, Ralstonia, Rhizobium, Rhizobium, Rhizobium, Rhizobium Genus, Rhodococcus genus, Rhodospirillum genus, Rickettsia genus, Saccharomyces genus, Sinorhobium genus, S cus (Chiokokkasu) genus, Thiocystis (Chiokisuchisu) genus Vibrio (Vibrio) genus, Wautersia (Woterushia) genus, or Zoog / Loea (Zoogu / Roea) include microorganisms belonging to the genus. Of these, microorganisms belonging to the genus Aeromonas, Alcaligenes, Cupriavidus, Escherichia, Pseudomonas, Ralstonia, etc. are preferred, and microorganisms belonging to the genus Cupriavidus, Escherichia, Ralstonia are more preferred, and the microorganism belonging to the genus Cu belonging to the genus Cu is more preferred than the microorganism belonging to the genus Cu. Particularly preferred as the microorganism of the present invention is Cupriavidus necator.
 本発明の微生物が元来PHA合成酵素遺伝子を持たない場合、あるいは微生物がもともと有するPHA合成酵素遺伝子が所望するPHA合成酵素遺伝子ではない場合、遺伝子組換え法によって例えば上記好ましいPHA合成酵素遺伝子を宿主となる微生物に導入した形質転換体を使用することも出来る。PHA合成酵素遺伝子を宿主に導入する方法としては、プラスミドで保持する形式であっても良いし、または染色体の任意の位置に導入する形式であっても良い。この際、宿主がもともと有するPHA合成酵素遺伝子は、機能が失われている方が好ましい。該PHA合成酵素遺伝子の機能を欠失する方法としては、一例として、該PHA合成酵素遺伝子を全長にわたって、または部分的に欠損する方法、または該PHA合成酵素遺伝子への塩基の付加、欠失、または置換によって、生産されるPHA合成酵素の機能が欠損する方法などが挙げられる。DNAの挿入または置換の具体的な方法については、例えば、Green,M.R. and Sambrook,J.,2012,Molecular Cloning:A Laboratory Manual Fourth Ed.,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,New Yorkに記載の方法を参考にすればよい。 When the microorganism of the present invention does not originally have a PHA synthase gene, or when the PHA synthase gene originally possessed by the microorganism is not the desired PHA synthase gene, the above-described preferred PHA synthase gene is transformed into a host by gene recombination, for example. It is also possible to use a transformant introduced into the microorganism. The method for introducing the PHA synthase gene into the host may be a format in which the gene is held in a plasmid or a format in which it is introduced at an arbitrary position on the chromosome. At this time, the PHA synthase gene originally possessed by the host is preferably lost its function. Examples of a method of deleting the function of the PHA synthase gene include, as an example, a method of deleting the PHA synthase gene over its entire length or partially, or addition or deletion of a base to the PHA synthase gene. Alternatively, a method in which the function of the produced PHA synthase is lost by substitution, and the like can be mentioned. For specific methods of inserting or replacing DNA, see, for example, Green, M. et al. R. And Sambrook, J.A. , 2012, Molecular Cloning: A Laboratory Manual Fourth Ed. , Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York may be referred to.
 本発明の製造方法においては、PHAを生産する場合の炭素源として上記アルコールを単独で使用しても良いが、上記アルコールを大量に培養に使用すると微生物の成育に影響がある可能性が高いことから、上記アルコールとそれ以外の炭素源を併用するのが好ましい。そのようなアルコール以外の炭素源としては、本発明の微生物が資化可能な炭素源であれば任意の原料を使用することができる。そのような炭素源としては、特に限定されないが、好ましくは、グルコース、フルクトース、スクロースなどの糖類、パーム油、パーム核油(Palm Kernel Oil;以下、「PKO」と略す)、コーン油、やし油、オリーブ油、大豆油、菜種油、ヤトロファ油などの油脂、その分画油類もしくはその精製副産物、またはラウリン酸、オレイン酸、ステアリン酸、パルミチン酸、ミリスチン酸などの脂肪酸、それらの誘導体等が好ましい。また、酵母エキスやポリペプトンなども使用することができる。より好ましくは、パーム油、パーム核油などの植物油脂、またはパーム油やパーム核油を分別した低融点分画であるパームオレイン、パームダブルオレイン、もしくはパーム核油オレイン、PFAD(パーム油脂肪酸蒸留物)、PKFAD(パーム核油脂肪酸蒸留物)、または菜種油の脂肪酸蒸留物といった油脂の精製副産物等であり、食糧との競合を避ける観点からは前記油脂の精製副産物が特に好ましい。 In the production method of the present invention, the alcohol may be used alone as a carbon source for producing PHA. However, if a large amount of the alcohol is used for culturing, the growth of microorganisms is likely to be affected. Therefore, it is preferable to use the alcohol and another carbon source in combination. As such a carbon source other than alcohol, any raw material can be used as long as it is a carbon source that can be assimilated by the microorganism of the present invention. Such a carbon source is not particularly limited, but is preferably sugars such as glucose, fructose, sucrose, palm oil, palm kernel oil (hereinafter abbreviated as “PKO”), corn oil, palm Preferred are oils such as oil, olive oil, soybean oil, rapeseed oil and jatropha oil, fractionated oils or refined by-products thereof, or fatty acids such as lauric acid, oleic acid, stearic acid, palmitic acid and myristic acid, and derivatives thereof. . In addition, yeast extract and polypeptone can also be used. More preferably, palm olein, palm double olein, or palm kernel oil olein, PFAD (palm oil fatty acid distillation), which is a low melting point fraction obtained by fractionating palm oil or palm kernel oil, or vegetable oils such as palm oil and palm kernel oil Product), PKFAD (palm kernel oil fatty acid distillate), or rapeseed oil fatty acid distillate, and the like. From the viewpoint of avoiding competition with food, the oil and fat refinement by-product is particularly preferable.
 本発明の製造方法においては、上記アルコール、アルコール以外の炭素源、炭素源以外の栄養源である窒素源、無機塩類、およびその他の有機栄養源を含む培地を用いて、前記微生物を培養することが好ましい。窒素源としては、例えばアンモニア、塩化アンモニウム、尿素、硫酸アンモニウム、リン酸アンモニウム等のアンモニウム塩の他、ペプトン、肉エキス、酵母エキス等が挙げられる。無機塩類としては、例えばリン酸二水素カリウム、リン酸水素二ナトリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム等が挙げられる。そのほかの有機栄養源としては、例えばグリシン、アラニン、セリン、トレオニン、プロリン等のアミノ酸、ビタミンB1、ビタミンB12、ビタミンC等のビタミン等が挙げられる。 In the production method of the present invention, the microorganism is cultured using a medium containing the alcohol, a carbon source other than alcohol, a nitrogen source that is a nutrient source other than the carbon source, inorganic salts, and other organic nutrient sources. Is preferred. Examples of the nitrogen source include ammonia, ammonium chloride, urea, ammonium sulfate, ammonium phosphate and other ammonium salts, as well as peptone, meat extract, yeast extract and the like. Examples of inorganic salts include potassium dihydrogen phosphate, disodium hydrogen phosphate, magnesium phosphate, magnesium sulfate, sodium chloride and the like. Examples of other organic nutrient sources include amino acids such as glycine, alanine, serine, threonine, and proline, and vitamins such as vitamin B1, vitamin B12, and vitamin C.
 本発明の製造方法において、培地中における上記アルコールの濃度は特に限定されないが、効率よく本発明のPHAを生産するためには、その下限は0.01g/Lであるのが好ましく、0.05g/Lがさらに好ましく、0.1g/Lがより好ましい。上限としては、上述したように微生物の成育に対する影響を押さえるという観点から、5g/L程度が好ましく、3g/Lがさらに好ましく、2g/Lがより好ましい。さらにアルコールとしてメルカプトアルコールを使用する場合には0.8g/L以下の濃度で使用するのが特に好ましい。 In the production method of the present invention, the concentration of the alcohol in the medium is not particularly limited, but in order to efficiently produce the PHA of the present invention, the lower limit is preferably 0.01 g / L, and 0.05 g / L is more preferable, and 0.1 g / L is more preferable. The upper limit is preferably about 5 g / L, more preferably 3 g / L, and more preferably 2 g / L from the viewpoint of suppressing the influence on the growth of microorganisms as described above. Further, when mercapto alcohol is used as the alcohol, it is particularly preferable to use it at a concentration of 0.8 g / L or less.
 それ以外の培養温度、培養時間、培養時pH、培地等の条件は、本発明の微生物において通常使用される培養条件でよい。 Other conditions such as culture temperature, culture time, culture pH, medium, etc. may be those normally used in the microorganism of the present invention.
 本発明の製造方法において、微生物菌体からPHAを回収する方法は、特に限定されないが、例えば次のような方法により行うことができる。培養終了後、培養液から遠心分離機等で菌体を分離し、その菌体を蒸留水およびメタノール等により洗浄し、乾燥させる。この乾燥菌体から、クロロホルム等の有機溶剤を用いてPHAを抽出する。このPHAを含んだ有機溶剤溶液から、濾過等によって菌体成分を除去し、その濾液にメタノールやヘキサン等の貧溶媒を加えてPHAを沈殿させる。さらに、濾過や遠心分離によって上澄み液を除去し、乾燥させてPHAを回収する。 In the production method of the present invention, a method for recovering PHA from microbial cells is not particularly limited, and for example, the following method can be used. After completion of the culture, the cells are separated from the culture solution with a centrifuge, and the cells are washed with distilled water, methanol, or the like and dried. PHA is extracted from the dried cells using an organic solvent such as chloroform. Cellular components are removed from the organic solvent solution containing PHA by filtration or the like, and a poor solvent such as methanol or hexane is added to the filtrate to precipitate PHA. Further, the supernatant is removed by filtration or centrifugation, and dried to recover PHA.
 本発明のPHAは、カルボキシ末端に導入された特定のアルケニル基、アルキニル基、チオール基、アジド基、またはアリル基を介して、化学反応により、さらに任意の化合物に転位させる、即ち化学修飾することもできる。例えば、本発明のPHAがカルボキシ末端にアルケニル基、またはアルキニル基を有する場合、チオール基を含有する化合物を、チオール-エンクリック反応、またはチオール-インクリック反応によって転位させることができる。逆に、本発明のPHAがカルボキシ末端にチオール基を有する場合、アルケニル基、またはアルキニル基を含有する化合物を、チオール-エンクリック反応、またはチオール-インクリック反応によって転位させることができる。あるいは、本発明のPHAがカルボキシ末端にアルキニル基を有する場合、アジド基を含有する化合物を、アルキン-アジドクリック反応によって転位させることができる。逆に、本発明のPHAがカルボキシ末端にアジド基を有する場合、アルキニル基を含有する化合物を、アルキン-アジドクリック反応によって転位させることができる。このような化学修飾によって得られる誘導体も、本発明の範疇である。さらには、本発明のPHAや、上記その誘導体である化合物を含有する樹脂成形体も本発明の範疇である。前記樹脂成形体においては、本発明のPHAやその誘導体である化合物を単独で使用してもよく、従来公知のPHAと混合して使用することも出来る。 The PHA of the present invention is further rearranged, that is, chemically modified, by a chemical reaction via a specific alkenyl group, alkynyl group, thiol group, azide group, or allyl group introduced at the carboxy terminus. You can also. For example, when the PHA of the present invention has an alkenyl group or an alkynyl group at the carboxy terminus, a compound containing a thiol group can be rearranged by a thiol-ene click reaction or a thiol-in click reaction. Conversely, when the PHA of the present invention has a thiol group at the carboxy terminus, a compound containing an alkenyl group or an alkynyl group can be rearranged by a thiol-ene click reaction or a thiol-in click reaction. Alternatively, when the PHA of the present invention has an alkynyl group at the carboxy terminus, a compound containing an azide group can be rearranged by an alkyne-azido click reaction. Conversely, when the PHA of the present invention has an azide group at the carboxy terminus, a compound containing an alkynyl group can be rearranged by an alkyne-azido click reaction. Derivatives obtained by such chemical modification are also within the scope of the present invention. Furthermore, the PHA of this invention and the resin molding containing the compound which is the derivative of the said are also the category of this invention. In the said resin molding, the compound which is PHA of this invention and its derivative (s) may be used independently, and can also be mixed with a conventionally well-known PHA and used.
 本発明のPHAがポリマー主鎖の末端にのみ官能基を有する場合、反応後の生成物を限定することができ、より好ましい。例えば、側鎖に二重結合を有するPHAと、カルボキシ末端にチオール基を有するPHAを反応させることで、グラフトポリマーへと誘導することができる。また、カルボキシ末端にアルケン基を有するPHAを、ペンタエリトリトールテトラキス(3-メルカプトプロピオナート)のような多分岐構造を有するチオール化合物に転位させれば、多分岐型PHAへと誘導することもできる。あるいは、カルボキシ末端にアルケン基が導入されたPHAを含有する樹脂組成物を、フィルム、シート、不織布などに加工し、その後にチオール化合物を転位させることで、樹脂成形物の表面修飾をすることができる。 When the PHA of the present invention has a functional group only at the terminal of the polymer main chain, the product after the reaction can be limited, which is more preferable. For example, a PHA having a double bond in the side chain and a PHA having a thiol group at the carboxy terminus can be reacted to induce a graft polymer. Further, PHA having an alkene group at the carboxy terminus can be converted to a multibranched PHA by rearranging it to a thiol compound having a multibranched structure such as pentaerythritol tetrakis (3-mercaptopropionate). . Alternatively, a resin composition containing PHA having an alkene group introduced at the carboxy terminus may be processed into a film, sheet, nonwoven fabric, etc., and then the thiol compound is rearranged to modify the surface of the resin molded product. it can.
 さらに、本発明のPHAを利用してデンドリマーを構成すれば、生体適合性の高い医療用材料や、適度な徐放性を有する農業用資材を提供することもできる。 Furthermore, if a dendrimer is constituted using the PHA of the present invention, it is possible to provide medical materials with high biocompatibility and agricultural materials with moderate sustained release properties.
 本願は、2016年3月25日に出願された日本国特許出願第2016-062278号に基づく優先権の利益を主張するものである。2016年3月25日に出願された日本国特許出願第2016-062278号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2016-062278 filed on Mar. 25, 2016. The entire content of the specification of Japanese Patent Application No. 2016-062278 filed on March 25, 2016 is incorporated herein by reference.
 以下に実施例を示し、本発明をより具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。なお、菌株の育種、PHAに含まれるモノマーユニット共重合比率の分析方法、PHAの分子量の分析方法は以下の通りである。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples. In addition, the breeding of a strain, the analysis method of the monomer unit copolymerization ratio contained in PHA, and the analysis method of the molecular weight of PHA are as follows.
 (菌株の育種)
 本明細書の実施例における遺伝子操作は、前述のGreen,M.R. and Sambrook,J.(2012)に記載されている方法で行うことができる。また、遺伝子操作に使用する酵素、クローニング宿主などは市場の供給者から購入し、その取扱説明書に従って使用することができる。なお、実施例等に用いられる酵素は、遺伝子操作に使用できるものであれば特に限定されない。
(Breeding of strains)
The genetic manipulations in the examples herein are described in Green, M. et al. R. and Sambrook, J. et al. (2012). In addition, enzymes, cloning hosts, etc. used for gene manipulation can be purchased from market suppliers and used in accordance with the instruction manual. In addition, the enzyme used for an Example etc. will not be specifically limited if it can be used for gene manipulation.
 (PHAに含まれるモノマーユニット共重合比率の分析方法)
 PHAに含まれるモノマーユニット共重合比率は、NMRを用いて分析した。具体的には、得られたPHA2mgを重クロロホルム2mLに溶かし、試料管に移して測定に供した。検出された各ピークの面積から、モノマーユニットの共重合比率を算出した。
(Analyzing method of copolymerization ratio of monomer units contained in PHA)
The monomer unit copolymerization ratio contained in PHA was analyzed using NMR. Specifically, 2 mg of the obtained PHA was dissolved in 2 mL of deuterated chloroform and transferred to a sample tube for measurement. From the area of each detected peak, the copolymerization ratio of the monomer units was calculated.
 (PHAの分子量の分析方法)
 PHAの分子量は、ゲルパーミッションクロマトグラフィー法により分析した。PHAを1.5g/Lの濃度でクロロホルムに溶解し、Φ=0.2μmフィルターで濾過して得られた濾液を分析サンプルとした。測定システムは島津製作所のGPCシステムを使用した。カラムはShodex GPC K-806L(昭和電工)を2本直列に接続した状態で使用し、カラムオーブンは40℃に設定した。移動相はクロロホルムを使用し、流速は1.0mL/分とした。分子量標品としては、、約700万、約190万、約35万、約19万、約3万、約2千のポリスチレンを使用した。標品6点の分析結果から検量線を作成し、これを元にPHAの分子量(重量平均分子量Mw、および数平均分子量Mn)を算出した。
(Method for analyzing molecular weight of PHA)
The molecular weight of PHA was analyzed by gel permeation chromatography. The filtrate obtained by dissolving PHA in chloroform at a concentration of 1.5 g / L and filtering through a Φ = 0.2 μm filter was used as an analysis sample. The measurement system used was a Shimadzu GPC system. The column was used with two Shodex GPC K-806L (Showa Denko) connected in series, and the column oven was set to 40 ° C. The mobile phase was chloroform and the flow rate was 1.0 mL / min. As the molecular weight standard, about 7 million, about 1.9 million, about 350,000, about 190,000, about 30,000, and about 2,000 polystyrene were used. A calibration curve was prepared from the analysis results of 6 samples, and the molecular weight of PHA (weight average molecular weight M w and number average molecular weight M n ) was calculated based on this.
 (PHAのカルボキシ末端構造の確認)
 1H-NMRを用いてカルボキシ末端に所定の基が導入されているか確かめた。1H-NMRの測定は、日本電子製NMR機器を用い、室温にて、500MHz、SCAN回数256回程度の条件で行った。データ解析は、ALICE2 for windows ver.4を用いて行なった。下記実施例8、16については、具体的な結果を図1、図2に示す。比較のため、比較例1の結果も図3に示す。
(Confirmation of carboxy terminal structure of PHA)
Using 1 H-NMR, it was confirmed whether a predetermined group was introduced at the carboxy terminus. The measurement of 1 H-NMR was carried out using a JEOL NMR instrument at room temperature under conditions of 500 MHz and about 256 SCAN times. Data analysis was performed using ALICE2 for windows ver. 4 was used. For the following Examples 8 and 16, specific results are shown in FIGS. For comparison, the result of Comparative Example 1 is also shown in FIG.
 2-プロペン-1-オールを0.2g/L含有する培地における、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株によるPHAの生産
 微生物としては、WO2015/115619号記載のKNK-005 trc-phaJ4b/ΔphaZ1,2,6株を使用した。KNK-005 trcphaJ4b/ΔphaZ1,2,6株は、染色体上のphaZ1遺伝子およびphaZ6遺伝子を全長欠失し、phaZ2遺伝子の16番目のコドンから終止コドンまでを欠失し、染色体上に配列番号4に記載のAeromonas caviae由来の変異型PHA合成酵素遺伝子を有し、phaJ4b遺伝子上流に配列番号5記載の発現調節配列が挿入された菌株である。
Production of PHA by KNK-005 trc-phaJ4b / ΔphaZ1,2,6 in a medium containing 0.2 g / L of 2-propen-1-ol As a microorganism, KNK-005 trc- described in WO2015 / 115619 is used. The phaJ4b / ΔphaZ1,2,6 strain was used. KNK-005 trcphaJ4b / ΔphaZ1,2,6 has a full-length deletion of the phaZ1 and phaZ6 genes on the chromosome, a deletion from the 16th codon to the stop codon of the phaZ2 gene, and the sequence number 4 on the chromosome. It is a strain having a mutant PHA synthase gene derived from the described Aeromonas caviae and having an expression regulatory sequence described in SEQ ID NO: 5 inserted upstream of the phaJ4b gene.
 (培養)
 上記微生物を以下の条件で培養した。
(culture)
The microorganism was cultured under the following conditions.
 種母培地の組成は、10g/L 肉エキス、10g/L バクトトリプトン、2g/L酵母エキス、9g/L リン酸二水素ナトリウム12水和物、1.5g/L リン酸水素二カリウムとした。 The composition of the seed medium is 10 g / L meat extract, 10 g / L bactotryptone, 2 g / L yeast extract, 9 g / L sodium dihydrogen phosphate dodecahydrate, 1.5 g / L dipotassium hydrogen phosphate and did.
 PHA生産培地の組成は、11g/L リン酸水素二ナトリウム12水和物、1.9g/L リン酸水素二カリウム、1.3g/L 硫酸アンモニウム、5mL/L マグネシウム溶液、1mL/L 微量金属塩溶液とした。マグネシウム溶液は、水に200g/L 硫酸マグネシウム七水和物を溶かして調製した。微量金属塩溶液は、0.1N塩酸に、0.218g/L 塩化コバルト六水和物、16.2g/L 塩化鉄(III)六水和物、10.3g/L 塩化カルシウム二水和物、0.118g/L 塩化ニッケル六水和物、0.156g/L 硫酸銅五水和物を溶かして調製した。 The composition of the PHA production medium is 11 g / L disodium hydrogen phosphate 12 hydrate, 1.9 g / L dipotassium hydrogen phosphate, 1.3 g / L ammonium sulfate, 5 mL / L magnesium solution, 1 mL / L trace metal salt. It was set as the solution. The magnesium solution was prepared by dissolving 200 g / L magnesium sulfate heptahydrate in water. Trace metal salt solution is 0.218 g / L cobalt chloride hexahydrate, 16.2 g / L iron (III) chloride hexahydrate, 10.3 g / L calcium chloride dihydrate in 0.1N hydrochloric acid. 0.118 g / L nickel chloride hexahydrate and 0.156 g / L copper sulfate pentahydrate were prepared.
 菌株のグリセロールストック溶液50μLを種母培地10mLに接種し、30℃で24時間振盪培養した。得られた培養液を前培養液とした。 50 μL of the glycerol stock solution of the strain was inoculated into 10 mL of the seed mother medium, and cultured with shaking at 30 ° C. for 24 hours. The obtained culture broth was used as a pre-culture broth.
 PHA生産培養は、フラスコで行った。500mL容量の振盪フラスコにPHA生産培地50mLを入れた。植菌直前に、マグネシウム溶液を250μL、微量金属溶液を50μL、PKOを1g添加し、さらに2-プロペン-1-オールを0.2g/Lとなるように添加した。培地調製後、振盪フラスコに前培養液を500μL接種し、30℃で72時間振盪培養を行った。 PHA production culture was performed in a flask. 50 mL of PHA production medium was placed in a 500 mL shake flask. Immediately before inoculation, 250 μL of magnesium solution, 50 μL of trace metal solution, 1 g of PKO were added, and 2-propen-1-ol was further added to 0.2 g / L. After the medium was prepared, 500 μL of the preculture was inoculated into the shake flask, and shake culture was performed at 30 ° C. for 72 hours.
 (精製)
 培養終了後、遠心分離によって菌体を回収し、水で懸濁した後、終濃度3%(w/v)となるようにラウリル硫酸ナトリウムを添加した。調製した菌体溶液を、氷冷しながら超音波で処理し、菌体を破砕した。破砕菌体溶液から遠心分離によってPHAを沈殿として回収し、水およびエタノールで1回ずつ洗浄した後、沈殿を60℃で2時間真空乾燥して、精製PHAとして取得した。
(Purification)
After completion of the culture, the cells were collected by centrifugation, suspended in water, and sodium lauryl sulfate was added to a final concentration of 3% (w / v). The prepared microbial cell solution was treated with ultrasonic waves while cooling with ice to disrupt the microbial cells. PHA was collected as a precipitate from the disrupted cell solution by centrifugation, washed once with water and ethanol, and then dried in vacuo at 60 ° C. for 2 hours to obtain purified PHA.
 得られたPHAについて、モノマーユニット共重合比率と分子量の分析を行った。その結果を表1に示す。 The obtained PHA was analyzed for monomer unit copolymerization ratio and molecular weight. The results are shown in Table 1.
 2-プロペン-1-オールを1.0g/L含有する培地における、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株によるPHAの生産
 実施例1と同様に、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株を培養、精製し精製PHAを取得した。ただし、PHA生産培養において培地中に添加する2-プロペン-1-オールの終濃度は1.0g/Lとした。得られたPHAについて、モノマーユニット共重合比率と分子量の分析を行った。その結果を表1に示す。
Production of PHA by KNK-005 trc-phaJ4b / ΔphaZ1,2,6 in a medium containing 2-propen-1-ol at 1.0 g / L As in Example 1, KNK-005 trc-phaJ4b / ΔphaZ1 , 2 and 6 were cultured and purified to obtain purified PHA. However, the final concentration of 2-propen-1-ol added to the medium in the PHA production culture was 1.0 g / L. About the obtained PHA, the monomer unit copolymerization ratio and the molecular weight were analyzed. The results are shown in Table 1.
 3-ブテン-1-オールを0.2g/L含有する培地における、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株によるPHAの生産
 実施例1と同様に、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株を培養、精製し精製PHAを取得した。ただし、PHA生産培養において2-プロペン-1-オールの代わりに、3-ブテン-1-オールを終濃度0.2g/Lとなるよう培地中に添加した。得られたPHAについて、モノマーユニット共重合比率と分子量の分析を行った。その結果を表1に示す。
Production of PHA by KNK-005 trc-phaJ4b / ΔphaZ1,2,6 in medium containing 0.2 g / L of 3-buten-1-ol As in Example 1, KNK-005 trc-phaJ4b / ΔphaZ1 , 2 and 6 were cultured and purified to obtain purified PHA. However, instead of 2-propen-1-ol in PHA production culture, 3-buten-1-ol was added to the medium to a final concentration of 0.2 g / L. About the obtained PHA, the monomer unit copolymerization ratio and the molecular weight were analyzed. The results are shown in Table 1.
 3-ブテン-1-オールを1.0g/L含有する培地における、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株によるPHAの生産
 実施例3と同様に、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株を培養、精製し精製PHAを取得した。ただし、PHA生産培養において培地中に添加する3-ブテン-1-オールの終濃度は1.0g/Lとした。得られたPHAについて、モノマーユニット共重合比率と分子量の分析を行った。その結果を表1に示す。
Production of PHA by KNK-005 trc-phaJ4b / ΔphaZ1,2,6 strain in a medium containing 1.0 g / L of 3-buten-1-ol As in Example 3, KNK-005 trc-phaJ4b / ΔphaZ1 , 2 and 6 were cultured and purified to obtain purified PHA. However, the final concentration of 3-buten-1-ol added to the medium in the PHA production culture was 1.0 g / L. About the obtained PHA, the monomer unit copolymerization ratio and the molecular weight were analyzed. The results are shown in Table 1.
 5-ヘキセン-1-オールを0.2g/L含有する培地における、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株によるPHAの生産
 実施例1と同様に、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株を培養、精製し精製PHAを取得した。ただし、PHA生産培養において2-プロペン-1-オールの代わりに、5-ヘキセン-1-オールを終濃度0.2g/Lとなるよう培地中に添加した。得られたPHAについて、モノマーユニット共重合比率と分子量の分析を行った。その結果を表1に示す。
Production of PHA by KNK-005 trc-phaJ4b / ΔphaZ1,2,6 in a medium containing 0.2 g / L of 5-hexen-1-ol As in Example 1, KNK-005 trc-phaJ4b / ΔphaZ1 , 2 and 6 were cultured and purified to obtain purified PHA. However, instead of 2-propen-1-ol in PHA production culture, 5-hexen-1-ol was added to the medium to a final concentration of 0.2 g / L. About the obtained PHA, the monomer unit copolymerization ratio and the molecular weight were analyzed. The results are shown in Table 1.
 5-ヘキセン-1-オールを1.0g/L含有する培地における、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株によるPHAの生産
 実施例5と同様に、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株を培養、精製し精製PHAを取得した。ただし、培地中に添加する5-ヘキセン-1-オールの終濃度は1.0g/Lとした。得られたPHAについて、モノマーユニット共重合比率と分子量の分析を行った。その結果を表1に示す。
Production of PHA by KNK-005 trc-phaJ4b / ΔphaZ1,2,6 in a medium containing 1.0 g / L of 5-hexen-1-ol As in Example 5, KNK-005 trc-phaJ4b / ΔphaZ1 , 2 and 6 were cultured and purified to obtain purified PHA. However, the final concentration of 5-hexen-1-ol added to the medium was 1.0 g / L. About the obtained PHA, the monomer unit copolymerization ratio and the molecular weight were analyzed. The results are shown in Table 1.
 2-プロピン-1-オールを0.2g/L含有する培地における、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株によるPHAの生産
 実施例1と同様に、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株を培養、精製し精製PHAを取得した。ただし、PHA生産培養において2-プロペン-1-オールの代わりに、2-プロピン-1-オールを終濃度0.2g/Lとなるよう培地中に添加した。得られたPHAについて、モノマーユニット共重合比率と分子量の分析を行った。その結果を表1に示す。
Production of PHA by KNK-005 trc-phaJ4b / ΔphaZ1,2,6 in medium containing 0.2 g / L of 2-propyn-1-ol Similar to Example 1, KNK-005 trc-phaJ4b / ΔphaZ1 , 2 and 6 were cultured and purified to obtain purified PHA. However, in the PHA production culture, 2-propyn-1-ol was added to the medium to a final concentration of 0.2 g / L instead of 2-propen-1-ol. About the obtained PHA, the monomer unit copolymerization ratio and the molecular weight were analyzed. The results are shown in Table 1.
 2-プロピン-1-オールを1.0g/L含有する培地における、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株によるPHAの生産
 実施例7と同様に、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株を培養、精製し精製PHAを取得した。ただし、培地中に添加する2-プロピン-1-オールの終濃度は1.0g/Lとした。得られたPHAについて、モノマーユニット共重合比率と分子量の分析を行った。その結果を表1に示す。
Production of PHA by KNK-005 trc-phaJ4b / ΔphaZ1,2,6 in a medium containing 2-propyn-1-ol 1.0 g / L As in Example 7, KNK-005 trc-phaJ4b / ΔphaZ1 , 2 and 6 were cultured and purified to obtain purified PHA. However, the final concentration of 2-propyn-1-ol added to the medium was 1.0 g / L. About the obtained PHA, the monomer unit copolymerization ratio and the molecular weight were analyzed. The results are shown in Table 1.
 3-ブチン-1-オールを0.2g/L含有する培地における、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株によるPHAの生産
 実施例1と同様に、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株を培養、精製し精製PHAを取得した。ただし、PHA生産培養において2-プロペン-1-オールの代わりに、3-ブチン-1-オールを終濃度0.2g/Lとなるよう培地中に添加した。得られたPHAについて、モノマーユニット共重合比率と分子量の分析を行った。その結果を表1に示す。
Production of PHA by KNK-005 trc-phaJ4b / ΔphaZ1,2,6 in medium containing 0.2 g / L of 3-butyn-1-ol As in Example 1, KNK-005 trc-phaJ4b / ΔphaZ1 , 2 and 6 were cultured and purified to obtain purified PHA. However, instead of 2-propen-1-ol in the PHA production culture, 3-butyn-1-ol was added to the medium to a final concentration of 0.2 g / L. About the obtained PHA, the monomer unit copolymerization ratio and the molecular weight were analyzed. The results are shown in Table 1.
 3-ブチン-1-オールを1.0g/L含有する培地における、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株によるPHAの生産
 実施例9と同様に、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株を培養、精製し精製PHAを取得した。ただし、培地中に添加する3-ブチン-1-オールの終濃度は1.0g/Lとした。得られたPHAについて、モノマーユニット共重合比率と分子量の分析を行いった。その結果を表1に示す。
Production of PHA by KNK-005 trc-phaJ4b / ΔphaZ1,2,6 in medium containing 1.0 g / L of 3-butyn-1-ol As in Example 9, KNK-005 trc-phaJ4b / ΔphaZ1 , 2 and 6 were cultured and purified to obtain purified PHA. However, the final concentration of 3-butyn-1-ol added to the medium was 1.0 g / L. About the obtained PHA, the monomer unit copolymerization ratio and the molecular weight were analyzed. The results are shown in Table 1.
 5-ヘキシン-1-オールを0.2g/L含有する培地における、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株によるPHAの生産
 実施例1と同様に、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株を培養、精製し精製PHAを取得した。ただし、PHA生産培養において2-プロペン-1-オールの代わりに、5-ヘキシン-1-オールを終濃度0.2g/Lとなるよう培地中に添加した。得られたPHAについて、モノマーユニット共重合比率と分子量の分析を行った。その結果を表1に示す。
Production of PHA by strain KNK-005 trc-phaJ4b / ΔphaZ1,2,6 in a medium containing 0.2 g / L of 5-hexyn-1-ol As in Example 1, KNK-005 trc-phaJ4b / ΔphaZ1 , 2 and 6 were cultured and purified to obtain purified PHA. However, instead of 2-propen-1-ol in PHA production culture, 5-hexyn-1-ol was added to the medium to a final concentration of 0.2 g / L. About the obtained PHA, the monomer unit copolymerization ratio and the molecular weight were analyzed. The results are shown in Table 1.
 5-ヘキシン-1-オールを1.0g/L含有する培地における、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株によるPHAの生産
 実施例11と同様に、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株を培養、精製し精製PHAを取得した。ただし、培地中に添加する5-ヘキシン-1-オールの終濃度は1.0g/Lとした。得られたPHAについて、モノマーユニット共重合比率と分子量の分析を行った。その結果を表1に示す。
Production of PHA by KNK-005 trc-phaJ4b / ΔphaZ1,2,6 in medium containing 1.0 g / L of 5-hexyn-1-ol Similar to Example 11, KNK-005 trc-phaJ4b / ΔphaZ1 , 2 and 6 were cultured and purified to obtain purified PHA. However, the final concentration of 5-hexyn-1-ol added to the medium was 1.0 g / L. About the obtained PHA, the monomer unit copolymerization ratio and the molecular weight were analyzed. The results are shown in Table 1.
 2-メルカプトエタノールを0.2g/L含有する培地における、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株によるPHAの生産
 実施例1と同様に、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株を培養、精製し精製PHAを取得した。ただし、PHA生産培養において2-プロペン-1-オールの代わりに、2-メルカプトエタノールを終濃度0.2g/Lとなるよう培地中に添加した。得られたPHAについて、モノマーユニット共重合比率と分子量の分析を行った。その結果を表1に示す。
Production of PHA by KNK-005 trc-phaJ4b / ΔphaZ1,2,6 in medium containing 0.2 g / L of 2-mercaptoethanol As in Example 1, KNK-005 trc-phaJ4b / ΔphaZ1,2, Six strains were cultured and purified to obtain purified PHA. However, in the PHA production culture, 2-mercaptoethanol was added to the medium to a final concentration of 0.2 g / L instead of 2-propen-1-ol. About the obtained PHA, the monomer unit copolymerization ratio and the molecular weight were analyzed. The results are shown in Table 1.
 3-メルカプトプロパノールを0.2g/L含有する培地における、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株によるPHAの生産
 実施例1と同様に、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株を培養、精製し精製PHAを取得した。ただし、PHA生産培養において2-プロペン-1-オールの代わりに、3-メルカプトプロパノールを終濃度0.2g/Lとなるよう培地中に添加した。得られたPHAについて、モノマーユニット共重合比率と分子量の分析を行った。その結果を表1に示す。
Production of PHA by KNK-005 trc-phaJ4b / ΔphaZ1,2,6 in a medium containing 0.2 g / L of 3-mercaptopropanol Similar to Example 1, KNK-005 trc-phaJ4b / ΔphaZ1,2, Six strains were cultured and purified to obtain purified PHA. However, in the PHA production culture, 3-mercaptopropanol was added to the medium to a final concentration of 0.2 g / L instead of 2-propen-1-ol. About the obtained PHA, the monomer unit copolymerization ratio and the molecular weight were analyzed. The results are shown in Table 1.
 エチレングリコールモノアリルエーテルを0.2g/L含有する培地における、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株によるPHAの生産
 実施例1と同様に、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株を培養、精製し精製PHAを取得した。ただし、PHA生産培養において2-プロペン-1-オールの代わりに、エチレングリコールモノアリルエーテルを終濃度0.2g/Lとなるよう培地中に添加した。得られたPHAについて、モノマーユニット共重合比率と分子量の分析を行った。その結果を表1に示す。
Production of PHA by KNK-005 trc-phaJ4b / ΔphaZ1,2,6 in a medium containing 0.2 g / L of ethylene glycol monoallyl ether As in Example 1, KNK-005 trc-phaJ4b / ΔphaZ1,2 6 strains were cultured and purified to obtain purified PHA. However, in the PHA production culture, ethylene glycol monoallyl ether was added to the medium to a final concentration of 0.2 g / L instead of 2-propen-1-ol. About the obtained PHA, the monomer unit copolymerization ratio and the molecular weight were analyzed. The results are shown in Table 1.
 エチレングリコールモノアリルエーテルを1.0g/L含有する培地における、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株によるPHAの生産
 実施例15と同様に、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株を培養、精製し精製PHAを取得した。ただし、培地中に添加するエチレングリコールモノアリルエーテルの終濃度は1.0g/Lとした。得られたPHAについて、モノマーユニット共重合比率と分子量の分析を行った。その結果を表1に示す。
Production of PHA by KNK-005 trc-phaJ4b / ΔphaZ1,2,6 in a medium containing 1.0 g / L of ethylene glycol monoallyl ether As in Example 15, KNK-005 trc-phaJ4b / ΔphaZ1,2 6 strains were cultured and purified to obtain purified PHA. However, the final concentration of ethylene glycol monoallyl ether added to the medium was 1.0 g / L. About the obtained PHA, the monomer unit copolymerization ratio and the molecular weight were analyzed. The results are shown in Table 1.
 (比較例1)特定のアルコールなどを含有しない培地における、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株によるPHAの生産
 PHA生産培養において培地中に2-プロペン-1-オールを添加しない以外は、実施例1と同様に、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株を培養、精製し精製PHAを取得した。得られたPHAについて、モノマーユニット共重合比率と分子量の分析を行った。その結果を表1に示す。
(Comparative Example 1) Production of PHA by KNK-005 trc-phaJ4b / ΔphaZ1,2,6 in a medium not containing a specific alcohol or the like, except that 2-propen-1-ol is not added to the medium in the PHA production culture In the same manner as in Example 1, KNK-005 trc-phaJ4b / ΔphaZ1,2,6 strains were cultured and purified to obtain purified PHA. About the obtained PHA, the monomer unit copolymerization ratio and the molecular weight were analyzed. The results are shown in Table 1.
 (比較例2)2-アミノエタノール塩酸塩を0.2g/L含有する培地における、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株によるPHAの生産
 実施例1と同様に、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株を培養、精製し精製PHAを取得した。ただし、PHA生産培養において2-プロペン-1-オールの代わりに、2-アミノエタノール塩酸塩を終濃度0.2g/Lとなるよう培地中に添加した。得られたPHAについて、モノマーユニット共重合比率と分子量の分析を行った。その結果を表1に示す。
(Comparative Example 2) Production of PHA by KNK-005 trc-phaJ4b / ΔphaZ1,2,6 strain in a medium containing 0.2 g / L of 2-aminoethanol hydrochloride As in Example 1, KNK-005 trc -PhaJ4b / ΔphaZ1,2,6 strains were cultured and purified to obtain purified PHA. However, in the PHA production culture, 2-aminoethanol hydrochloride was added to the medium to a final concentration of 0.2 g / L instead of 2-propen-1-ol. About the obtained PHA, the monomer unit copolymerization ratio and the molecular weight were analyzed. The results are shown in Table 1.
 (比較例3)2-アミノエタノール塩酸塩を1.0g/L含有する培地における、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株によるPHAの生産
 比較例2と同様に、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株を培養、精製し精製PHAを取得した。ただし、培地中に添加する2-アミノエタノール塩酸塩の終濃度は1.0g/Lとした。得られたPHAについて、モノマーユニット共重合比率と分子量の分析を行った。その結果を表1に示す。
Comparative Example 3 Production of PHA by KNK-005 trc-phaJ4b / ΔphaZ1,2,6 in a medium containing 2-aminoethanol hydrochloride 1.0 g / L As in Comparative Example 2, KNK-005 trc -PhaJ4b / ΔphaZ1,2,6 strains were cultured and purified to obtain purified PHA. However, the final concentration of 2-aminoethanol hydrochloride added to the medium was 1.0 g / L. About the obtained PHA, the monomer unit copolymerization ratio and the molecular weight were analyzed. The results are shown in Table 1.
 (比較例4)3-アミノプロパノール塩酸塩を0.2g/L含有する培地における、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株によるPHAの生産
 実施例1と同様に、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株を培養、精製し精製PHAを取得した。ただし、PHA生産培養において2-プロペン-1-オールの代わりに、3-アミノプロパノール塩酸塩を終濃度0.2g/Lとなるよう培地中に添加した。得られたPHAについて、モノマーユニット共重合比率と分子量の分析を行った。その結果を表1に示す。
(Comparative Example 4) Production of PHA by KNK-005 trc-phaJ4b / ΔphaZ1,2,6 in a medium containing 0.2 g / L of 3-aminopropanol hydrochloride As in Example 1, KNK-005 trc -PhaJ4b / ΔphaZ1,2,6 strains were cultured and purified to obtain purified PHA. However, in the PHA production culture, 3-aminopropanol hydrochloride was added to the medium to a final concentration of 0.2 g / L instead of 2-propen-1-ol. About the obtained PHA, the monomer unit copolymerization ratio and the molecular weight were analyzed. The results are shown in Table 1.
 (比較例5)2-アミノエタノール塩酸塩を1.0g/L含有する培地における、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株によるPHAの生産
 比較例4と同様に、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株を培養、精製し精製PHAを取得した。ただし、培地中に添加する3-アミノプロパノール塩酸塩の終濃度は1.0g/Lとした。得られたPHAについて、モノマーユニット共重合比率と分子量の分析を行った。その結果を表1に示す。
(Comparative Example 5) Production of PHA by KNK-005 trc-phaJ4b / ΔphaZ1,2,6 in a medium containing 2-aminoethanol hydrochloride 1.0 g / L As in Comparative Example 4, KNK-005 trc -PhaJ4b / ΔphaZ1,2,6 strains were cultured and purified to obtain purified PHA. However, the final concentration of 3-aminopropanol hydrochloride added to the medium was 1.0 g / L. About the obtained PHA, the monomer unit copolymerization ratio and the molecular weight were analyzed. The results are shown in Table 1.
 (比較例6)1,2-エタンジチオールを0.2g/L含有する培地における、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株によるPHAの生産
 実施例1と同様に、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株を培養、精製し精製PHAを取得した。ただし、PHA生産培養において2-プロペン-1-オールの代わりに、1,2-エタンジチオールを終濃度0.2g/Lとなるよう培地中に添加した。得られたPHAについて、モノマーユニット共重合比率と分子量の分析を行った。その結果を表1に示す。
(Comparative Example 6) Production of PHA by KNK-005 trc-phaJ4b / ΔphaZ1,2,6 strain in a medium containing 0.2 g / L of 1,2-ethanedithiol As in Example 1, KNK-005 trc -PhaJ4b / ΔphaZ1,2,6 strains were cultured and purified to obtain purified PHA. However, instead of 2-propen-1-ol in the PHA production culture, 1,2-ethanedithiol was added to the medium to a final concentration of 0.2 g / L. About the obtained PHA, the monomer unit copolymerization ratio and the molecular weight were analyzed. The results are shown in Table 1.
 (比較例7)1,3-プロパンジチオールを0.2g/L含有する培地における、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株によるPHAの生産
 実施例1と同様に、KNK-005 trc-phaJ4b/ΔphaZ1,2,6株を培養、精製し精製PHAを取得した。ただし、PHA生産培養において2-プロペン-1-オールの代わりに、培地中に1,3-プロパンジチオールを終濃度0.2g/Lとなるよう添加した。得られたPHAについて、モノマーユニット共重合比率と分子量の分析を行った。その結果を表1に示す。
(Comparative Example 7) Production of PHA by KNK-005 trc-phaJ4b / ΔphaZ1,2,6 in a medium containing 0.2 g / L of 1,3-propanedithiol As in Example 1, KNK-005 trc -PhaJ4b / ΔphaZ1,2,6 strains were cultured and purified to obtain purified PHA. However, in the PHA production culture, 1,3-propanedithiol was added to the medium to a final concentration of 0.2 g / L instead of 2-propen-1-ol. About the obtained PHA, the monomer unit copolymerization ratio and the molecular weight were analyzed. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (結果と考察)
 表1の結果から、アルキニル基、アルケニル基、チオール基またはアリル基を有するアルコールを培地中に添加してPHA生産微生物を培養した実施例1~16では、これらアルコールを添加していない比較例1と比べ、得られたPHAの分子量が、重量平均分子量(Mw)、数平均分子量(Mn)ともに低下したことから、添加したアルコールが停止剤として機能し、その結果、カルボキシ末端に、アルケニル基、アルキニル基、チオール基またはアリル基が導入されたPHAが生産されていると推察できる。ただし、5-ヘキセン-1-オールを添加した場合には、その培地中への添加濃度が1g/Lの場合のみ、PHAの大幅な分子量低下が認められた。
(Results and discussion)
From the results of Table 1, in Examples 1 to 16 in which PHA-producing microorganisms were cultured by adding an alcohol having an alkynyl group, alkenyl group, thiol group or allyl group to the medium, Comparative Example 1 in which these alcohols were not added The molecular weight of the obtained PHA was decreased both in the weight average molecular weight (M w ) and the number average molecular weight (M n ), so that the added alcohol functions as a terminator. It can be inferred that PHA into which a group, an alkynyl group, a thiol group or an allyl group is introduced is produced. However, when 5-hexen-1-ol was added, a significant decrease in molecular weight of PHA was observed only when the concentration in the medium was 1 g / L.
 図1、図2はそれぞれ、実施例8、16の1H-NMRチャートである。比較のため、図3に比較例1の1H-NMRチャートを示す。図3に比べ、図1では4.7ppm付近にプロピニル基中のメチレンプロトンに帰属されるピークが現れており、また図2では4.5ppm、5.9ppm付近にアリル基に帰属されるピークが現れており、これらの基が導入されていることが分かる。 1 and 2 are 1 H-NMR charts of Examples 8 and 16, respectively. For comparison, the 1 H-NMR chart of Comparative Example 1 is shown in FIG. Compared to FIG. 3, in FIG. 1, a peak attributed to methylene protons in the propynyl group appears around 4.7 ppm, and in FIG. 2, a peak attributed to the allyl group appears around 4.5 ppm and 5.9 ppm. It appears that these groups have been introduced.
 一方、比較例2~5では、2-アミノエタノールや3-アミノ-1-プロパノールを培地中に添加してもPHAの分子量低下は認められなかった。この結果は、これらのアミノアルコールが微生物により代謝されたことが原因と考えられる。また、比較例6、7でも、1,2-エタンジチオールや1,3-プロパンジチオールは培地中に添加してもPHAの分子量低下が認められず、ジチオールは停止剤としては機能しないと考えられる。 On the other hand, in Comparative Examples 2 to 5, no decrease in the molecular weight of PHA was observed even when 2-aminoethanol or 3-amino-1-propanol was added to the medium. This result is considered that these amino alcohols were metabolized by microorganisms. Also in Comparative Examples 6 and 7, even when 1,2-ethanedithiol or 1,3-propanedithiol was added to the medium, no decrease in the molecular weight of PHA was observed, and dithiol would not function as a terminator. .
 以上の結果から、Aeromonas属由来PHA合成酵素遺伝子を有する微生物を、アルキニル基、アルケニル基、チオール基またはアリル基を有するアルコールを培地中に添加して培養することにより、カルボキシ末端に、アルケニル基、アルキニル基、チオール基またはアリル基を導入されたPHAが生産できることが示唆された。 From the above results, the microorganism having the PHA synthase gene derived from the genus Aeromonas is cultured by adding an alcohol having an alkynyl group, an alkenyl group, a thiol group or an allyl group to the carboxy terminus, It was suggested that PHA introduced with an alkynyl group, a thiol group or an allyl group can be produced.
 (製造例1)H16 ΔphaZ1,2,6株の作製
 H16ΔphaZ1,2,6株を作製するにあたって、まず、WO2014/065253号記載のKNK-005 ΔphaZ1,2,6株をもとに、PHA合成酵素遺伝子が破壊されたH16 ΔphaC1 ΔphaZ1,2,6株を以下の手順で作製した。KNK-005 ΔphaZ1,2,6株は、染色体上のphaZ1遺伝子およびphaZ6遺伝子を全長欠失し、phaZ2遺伝子の16番目のコドンから終止コドンまでを欠失し、染色体上に配列番号5に記載のPHA合成酵素遺伝子を有する菌株である。
(Production Example 1) Production of H16 ΔphaZ1,2,6 strain In producing H16ΔphaZ1,2,6 strain, first, based on KNK-005 ΔphaZ1,2,6 strain described in WO2014 / 065253, PHA synthase H16 ΔphaC1 ΔphaZ1,2,6 strains in which the gene was disrupted were prepared by the following procedure. The KNK-005 ΔphaZ1,2,6 strain has a full-length deletion of the phaZ1 and phaZ6 genes on the chromosome, a deletion from the 16th codon to the stop codon of the phaZ2 gene, and the sequence described in SEQ ID NO: 5 on the chromosome. A strain having a PHA synthase gene.
 まずKNK-005 ΔphaZ1,2,6株のPHA合成酵素遺伝子を全長欠損するためのプラスミドを作製した。C. necator H16株のゲノムDNAを鋳型とし、配列番号6および配列番号7で示したDNAをプライマーペアとして、PCRを行った。ポリメラーゼはKOD-plus(東洋紡)を用いた。同様に、配列番号8および配列番号9で示したDNAをプライマーペアとして、PCRを行った。上記PCRで得られた2種類のDNA断片を鋳型とし、配列番号6および配列番号9で示したDNAをプライマーペアとして、同様の条件でPCRを行い、得られたDNA断片を制限酵素SmiIで消化した。このDNA断片を、特開2007-259708号公報に記載のベクターpNS2X-sacBをSmiIで消化して得られたDNA断片と、DNAリガーゼ(Ligation High、東洋紡)を用いて連結し、phaC1遺伝子より上流の塩基配列、およびphaC1遺伝子より下流の塩基配列を有するPHA合成酵素遺伝子破壊用プラスミドpNS2X-sacB-ΔphaC1ULを作製した。 First, a plasmid for full-length deletion of the PHA synthase gene of KNK-005 ΔphaZ1, 2, 6 strain was prepared. C. PCR was performed using the genomic DNA of neator H16 strain as a template and the DNAs shown in SEQ ID NOs: 6 and 7 as primer pairs. As the polymerase, KOD-plus (Toyobo) was used. Similarly, PCR was performed using the DNAs shown in SEQ ID NO: 8 and SEQ ID NO: 9 as primer pairs. PCR was performed under the same conditions using the two types of DNA fragments obtained by the above PCR as templates and the DNAs shown in SEQ ID NO: 6 and SEQ ID NO: 9 as primer pairs, and the resulting DNA fragments were digested with the restriction enzyme SmiI. did. This DNA fragment was ligated with a DNA fragment obtained by digesting the vector pNS2X-sacB described in JP-A-2007-259708 with SmiI using DNA ligase (Ligation High, Toyobo), upstream of the phaC1 gene. And a PHA synthase gene-disrupting plasmid pNS2X-sacB-ΔphaC1UL having the nucleotide sequence of and the downstream of the phaC1 gene.
 このPHA合成酵素遺伝子破壊用プラスミドpNS2X-sacB-ΔphaC1ULを大腸菌S17-1株(ATCC47055)に導入し、KNK-005 ΔphaZ1,2,6株とNutrient Agar培地(DIFCO)上で混合培養して接合伝達を行った。 This plasmid for disrupting the PHA synthase gene pNS2X-sacB-ΔphaC1UL was introduced into E. coli S17-1 strain (ATCC47055), mixed and cultured on KNK-005 ΔphaZ1,2,6 strain on Nutrient Agar medium (DIFCO). Went.
 上記接合伝達後の菌株から、250mg/Lのカナマイシン硫酸塩を含むシモンズ寒天培地(クエン酸ナトリウム2g/L、塩化ナトリウム5g/L、硫酸マグネシウム 7水和物0.2g/L、リン酸二水素アンモニウム1g/L、リン酸水素二カリウム1g/L、寒天15g/L、pH6.8)上で生育する菌株を選択し、前記プラスミドがKNK-005 ΔphaZ1,2,6株の染色体上に組み込まれた株を取得した。この株をNutrient Broth培地(DIFCO)で2世代培養した後、15%のショ糖を含むNutrient Agar培地で生育する菌株を選択した。得られた菌株から染色体上にある配列番号5記載のPHA合成酵素遺伝子が全長欠失された菌株をPCRにより選別し、うち1株をH16 ΔphaC1 ΔphaZ1,2,6株と命名した。H16 ΔphaC1 ΔphaZ1,2,6株は、C. necator H16株を親株とし、染色体上のphaZ1遺伝子およびphaZ6遺伝子を全長欠失し、phaZ2遺伝子の16番目のコドンから終止コドンまでを欠失し、さらにphaC1遺伝子が全長欠失された菌株である。 Simmons agar medium containing 2 mg / L of kanamycin sulfate (sodium citrate 2 g / L, sodium chloride 5 g / L, magnesium sulfate heptahydrate 0.2 g / L, dihydrogen phosphate) A strain that grows on ammonium 1 g / L, dipotassium hydrogen phosphate 1 g / L, agar 15 g / L, pH 6.8) is selected, and the plasmid is integrated into the chromosome of KNK-005 ΔphaZ1,2,6. Acquired shares. This strain was cultured for 2 generations in Nutrient Broth medium (DIFCO), and then a strain that grew on Nutrient Agar medium containing 15% sucrose was selected. From the obtained strain, a strain in which the full-length PHA synthase gene described in SEQ ID NO: 5 on the chromosome was deleted was selected by PCR, and one strain was named H16 ΔphaC1, ΔphaZ1, 2, 6 strain. H16 ΔphaC1 ΔphaZ1,2,6 shares are C.I. The strain necator H16 is a parent strain, the phaZ1 gene and phaZ6 gene on the chromosome are deleted in full length, the 16th codon to the stop codon of the phaZ2 gene are deleted, and the phaC1 gene is deleted in full length.
 次に、得られたH16 ΔphaC1 ΔphaZ1,2,6株をもとに、配列番号10記載のC. necator H16株由来のphaC1遺伝子が挿入されたH16 ΔphaC1,2,6株を以下の手順で作製した。 Next, based on the obtained H16 ΔphaC1 ΔphaZ1, 2, 6 strain, C.I. H16ΔphaC1,2,6 strains in which the phaC1 gene derived from necator H16 strain was inserted were prepared by the following procedure.
 まずC. necator H16株のphaC1遺伝子を染色体上に挿入するためのプラスミドを作製した。C. necator H16株のゲノムDNAを鋳型とし、配列番号6および配列番号9で示したDNAをプライマーペアとして、PCRを行った。ポリメラーゼはKOD-plusを用いた。得られたDNA断片を制限酵素SmiIで消化した。このDNA断片を、pNS2X-sacBをSmiIで消化して得られたDNA断片と、DNAリガーゼを用いて連結し、phaC1遺伝子より上流の塩基配列、phaC1遺伝子、およびphaC1遺伝子より下流の塩基配列を有するPHA合成酵素遺伝子破壊用プラスミドpNS2X-sacB-phaCRe+ULを作製した。 First, C.I. A plasmid for inserting the phaC1 gene of necator H16 strain on the chromosome was prepared. C. PCR was performed using the genomic DNA of the necator H16 strain as a template and the DNAs shown in SEQ ID NOs: 6 and 9 as primer pairs. As the polymerase, KOD-plus was used. The obtained DNA fragment was digested with the restriction enzyme SmiI. This DNA fragment is ligated with a DNA fragment obtained by digesting pNS2X-sacB with SmiI using DNA ligase, and has a base sequence upstream from the phaC1 gene, a phaC1 gene, and a base sequence downstream from the phaC1 gene A plasmid pNS2X-sacB-phaC Re + UL for disrupting the PHA synthase gene was prepared.
 上記PHA合成酵素遺伝子破壊と同様の手順で、H16 ΔphaC1 ΔphaZ1,2,6株を親株とし、pNS2X-sacB-phaCRe+ULが染色体上に組み込まれた株を取得した。この株をNutrient Broth培地で2世代培養した後、15%のショ糖を含むNutrient Agar培地で生育する菌株を選択した。得られた菌株から染色体上にあるphaC1遺伝子が挿入された菌株をPCRにより選別し、うち1株をH16 ΔphaZ1,2,6株と命名した。H16 ΔphaZ1,2,6株は、C. necator H16株を親株とし、染色体上のphaZ1遺伝子およびphaZ6遺伝子を全長欠失し、phaZ2遺伝子の16番目のコドンから終止コドンまでを欠失し、Ralstonia eutropha由来の野生型PHA合成酵素をコードする遺伝子を染色体上に有する菌株である。 In the same procedure as in the above PHA synthase gene disruption, a strain in which pNS2X-sacB-phaC Re + UL was integrated on the chromosome was obtained with the H16 ΔphaC1 ΔphaZ1,2,6 strain as the parent strain. This strain was cultured for 2 generations in Nutrient Broth medium, and then a strain that grew on Nutrient Agar medium containing 15% sucrose was selected. From the obtained strain, a strain into which the phaC1 gene on the chromosome was inserted was selected by PCR, and one strain was named H16 ΔphaZ1,2,6 strain. H16 ΔphaZ1,2,6 strains are C.I. Necator H16 strain as parent strain, phaZ1 gene and phaZ6 gene on the chromosome are deleted in full length, the 16th codon to stop codon of phaZ2 gene is deleted, and a gene encoding a wild-type PHA synthase derived from Ralstonia eutropha On the chromosome.
 (製造例2)ReSK003株の作製
 製造例1記載のH16 ΔphaC1 ΔphaZ1,2,6株をもとに、染色体上に配列番号11に記載する塩基配列からなるPHA合成酵素遺伝子が挿入されたReSK003株を作製した。配列番号11に記載する塩基配列からなるPHA合成酵素遺伝子は、Pseudomonas Sp.61-3由来で、325番目のセリンがトレオニンに、477番目のセリンがアルギニンに、481番目のグルタミンがアルギニンにそれぞれ人工的に置き換えられた、配列番号3記載のアミノ酸配列からなるPHA合成酵素をコードする遺伝子である。
(Production Example 2) Production of ReSK003 strain Based on the H16 ΔphaC1 ΔphaZ1, 2, 6 strain described in Production Example 1, the ReSK003 strain in which the PHA synthase gene consisting of the base sequence described in SEQ ID NO: 11 is inserted on the chromosome Was made. The PHA synthase gene consisting of the base sequence set forth in SEQ ID NO: 11 is Pseudomonas Sp. A PHA synthase consisting of the amino acid sequence of SEQ ID NO: 3 derived from 61-3, wherein the 325th serine is artificially replaced with threonine, the 477th serine with arginine, and the 481st glutamine with arginine. It is a gene that encodes.
 まず、配列番号12記載の発現調節配列下で、配列番号13記載のPseudomonas Sp.61-3株由来のPHA合成酵素遺伝子を発現するプラスミドpCUP2-REP-phaC1Psを作製した。配列番号11記載の発現調節配列は、C. necator H16株由来のphaCABオペロンのプロモーターである。C. necatorH16株のゲノムDNAを鋳型とし、配列番号14および配列番号15で示したDNAをプライマーペアとして、PCRを行った。ポリメラーゼはKOD-plusを用いた。同様に、Pseudomonas Sp.61-3株のゲノムDNAを鋳型とし、配列番号16および配列番号17で示したDNAをプライマーペアとして、PCRを行った。上記PCRで得られた2種類のDNA断片を鋳型とし、配列番号14および配列番号17で示したDNAをプライマーペアとして、同様の条件でPCRを行い、得られたDNA断片を制限酵素MunIおよびSpeIで消化した。このDNA断片を、特開2007-259708号公報記載のベクターpCUP2をMunIおよびSpeIで消化して得られたDNA断片と、DNAリガーゼを用いて連結し、上記プラスミドpCUP2-REP-phaC1Psを作製した。 First, under the expression control sequence described in SEQ ID NO: 12, Pseudomonas Sp. Plasmid pCUP2-REP-phaC1 Ps expressing the PHA synthase gene derived from the 61-3 strain was prepared. The expression control sequence described in SEQ ID NO: 11 is C.I. This is the promoter of the phaCAB operon derived from the necator H16 strain. C. PCR was carried out using the genomic DNA of necator H16 strain as a template and the DNAs shown in SEQ ID NOs: 14 and 15 as primer pairs. As the polymerase, KOD-plus was used. Similarly, Pseudomonas Sp. PCR was performed using the genomic DNA of the 61-3 strain as a template and the DNAs shown in SEQ ID NOs: 16 and 17 as primer pairs. PCR was carried out under the same conditions using the two types of DNA fragments obtained by the above PCR as templates and the DNAs shown in SEQ ID NO: 14 and SEQ ID NO: 17 as primer pairs, and the resulting DNA fragments were converted into restriction enzymes MunI and SpeI. Digested with. This DNA fragment, a DNA fragment obtained by digesting the vector PCUP2 described in JP 2007-259708 by MunI and SpeI, ligated with DNA ligase to prepare the plasmid pCUP2-REP-phaC1 Ps .
 次に、pCUP2-REP-phaC1Psを鋳型とし、配列番号14および配列番号18で示したDNAをプライマーペアとしてPCRを行った。同様に、配列番号19および配列番号20で示したDNAをプライマーペアとしてPCRを行った。同様に、配列番号21および配列番号17で示したDNAをプライマーペアとしてPCRを行った。上記PCRで得られた3種類のDNA断片を鋳型とし、配列番号14および配列番号17で示したDNAをプライマーペアとして、同様の条件でPCRを行い、得られたDNA断片を制限酵素MunIおよびSpeIで消化した。このDNA断片を、特開2007-259708号公報記載のベクターpCUP2をMunIおよびSpeIで消化して得られたDNA断片と、DNAリガーゼを用いて連結し、上記プラスミドpCUP2-REP-phaC1Ps S325T,S477R,Q481Rを作製した。 Next, PCR was performed using pCUP2-REP-phaC1 Ps as a template and the DNAs shown in SEQ ID NOs: 14 and 18 as primer pairs. Similarly, PCR was performed using the DNAs shown in SEQ ID NO: 19 and SEQ ID NO: 20 as primer pairs. Similarly, PCR was performed using the DNAs shown in SEQ ID NO: 21 and SEQ ID NO: 17 as primer pairs. PCR was carried out under the same conditions using the three types of DNA fragments obtained by the above PCR as templates and the DNAs shown in SEQ ID NO: 14 and SEQ ID NO: 17 as primer pairs, and the obtained DNA fragments were subjected to restriction enzymes MunI and SpeI. Digested with. This DNA fragment was ligated with a DNA fragment obtained by digesting the vector pCUP2 described in JP-A-2007-259708 with MunI and SpeI using DNA ligase, and the plasmid pCUP2-REP-phaC1 Ps S325T, S477R Thus, Q481R was fabricated.
 次に、配列番号11記載のPHA合成酵素遺伝子を染色体上に挿入するためのプラスミドを作製した。pCUP2-REP-phaC1Ps S325T,S477R,Q481Rを鋳型とし、配列番号6および配列番号22で示したDNAをプライマーペアとして、PCRを行った。ポリメラーゼはKOD-plusを用いた。同様に、配列番号23および配列番号9で示したDNAをプライマーペアとしてPCRを行った。上記PCRで得られた2種類のDNA断片を鋳型とし、配列番号6および配列番号9で示したDNAをプライマーペアとして、同様の条件でPCRを行い、得られたDNA断片を制限酵素SmiIで消化した。このDNA断片を、pNS2X-sacBをSmiIで消化して得られたDNA断片と、DNAリガーゼを用いて連結し、phaC1遺伝子より上流の塩基配列、配列番号11記載のPHA合成酵素遺伝子、およびphaC1遺伝子より下流の塩基配列を有するPHA合成酵素遺伝子破壊用プラスミドpNS2X-sacB-ΔphaC1UL::STSRQRを作製した。 Next, a plasmid for inserting the PHA synthase gene described in SEQ ID NO: 11 onto the chromosome was prepared. PCR was performed using pCUP2-REP-phaC1 Ps S325T, S477R, and Q481R as templates and the DNAs shown in SEQ ID NOs: 6 and 22 as primer pairs. As the polymerase, KOD-plus was used. Similarly, PCR was performed using the DNAs represented by SEQ ID NO: 23 and SEQ ID NO: 9 as primer pairs. PCR was performed under the same conditions using the two types of DNA fragments obtained by the above PCR as templates and the DNAs shown in SEQ ID NO: 6 and SEQ ID NO: 9 as primer pairs, and the resulting DNA fragments were digested with the restriction enzyme SmiI. did. This DNA fragment was ligated with a DNA fragment obtained by digesting pNS2X-sacB with SmiI using DNA ligase, a base sequence upstream from the phaC1 gene, the PHA synthase gene described in SEQ ID NO: 11, and the phaC1 gene A plasmid for destroying PHA synthase gene pNS2X-sacB-ΔphaC1UL :: STSRQR having a downstream base sequence was prepared.
 製造例1記載のPHA合成酵素遺伝子挿入と同様の手順で、H16 ΔphaC1 ΔphaZ1,2,6株を親株とし、pNS2X-sacB-ΔphaC1UL::STSRQRを用いて、配列番号11記載のPHA合成酵素遺伝子を染色体上に挿入した。得られた菌株をReSK003株と命名した。ReSK003株は、H16 ΔphaC1 ΔphaZ1,2,6株を親株とし、配列番号11記載のPseudomonas属由来の変異型PHA合成酵素遺伝子が染色体上に挿入された菌株である。 In the same manner as the PHA synthase gene insertion described in Production Example 1, the P16 synthase gene described in SEQ ID NO: 11 was obtained using pNS2X-sacB-ΔphaC1UL :: STSRQR with the H16 ΔphaC1 ΔphaZ1,2,6 strain as the parent strain. Inserted on the chromosome. The obtained strain was named ReSK003 strain. The ReSK003 strain is a strain in which the mutant PHA synthase gene derived from the genus Pseudomonas described in SEQ ID NO: 11 is inserted on the chromosome, with the H16 ΔphaC1 ΔphaZ1,2,6 strain as the parent strain.
 2-プロペン-1-オールを1.0g/L含有する培地における、H16 ΔphaZ1,2,6株によるPHAの生産
 実施例1と同様の方法で、製造例1で作製したH16 ΔphaZ1,2,6株を培養、精製し精製PHAを取得した。ただし、培地中に添加する2-プロペン-1-オールの終濃度は1.0g/Lとした。得られたPHAについて、モノマーユニット共重合比率と分子量の分析を行った。その結果を表2に示す。
Production of PHA by H16 ΔphaZ1,2,6 strain in medium containing 1.0 g / L of 2-propen-1-ol H16 ΔphaZ1,2,6 prepared in Production Example 1 in the same manner as in Example 1. The strain was cultured and purified to obtain purified PHA. However, the final concentration of 2-propen-1-ol added to the medium was 1.0 g / L. About the obtained PHA, the monomer unit copolymerization ratio and the molecular weight were analyzed. The results are shown in Table 2.
 2-プロピン-1-オールを1.0g/L含有する培地における、H16 ΔphaZ1,2,6株によるPHAの生産
 実施例15と同様の方法で、製造例1で作製したH16 ΔphaZ1,2,6株を培養、精製し精製PHAを取得した。ただし、PHA生産培養において培地中に2-プロペン-1-オールの代わりに、2-プロピン-1-オールを終濃度1.0g/Lとなるよう培地中に添加した。得られたPHAについて、モノマーユニット共重合比率と分子量の分析を行った。その結果を表2に示す。
Production of PHA by H16 ΔphaZ1,2,6 strain in a medium containing 2-propyn-1-ol 1.0 g / L H16 ΔphaZ1,2,6 prepared in Production Example 1 in the same manner as in Example 15. The strain was cultured and purified to obtain purified PHA. However, in the PHA production culture, 2-propin-1-ol was added to the medium so that the final concentration was 1.0 g / L instead of 2-propen-1-ol. About the obtained PHA, the monomer unit copolymerization ratio and the molecular weight were analyzed. The results are shown in Table 2.
 (比較例8)特定のアルコールを含有しない培地における、H16 ΔphaZ1,2,6株によるPHAの生産 PHA生産培養において培地中に2-プロペン-1-オールをは添加しない以外は、実施例15と同様の方法で、製造例1で作製したH16 ΔphaZ1,2,6株を培養、精製し精製PHAを取得した。得られたPHAについて、モノマーユニット共重合比率と分子量の分析を行った。その結果を表2に示す。 (Comparative Example 8) Production of PHA by H16 ΔphaZ1,2,6 in a medium not containing a specific alcohol Example 15 except that 2-propen-1-ol was not added to the medium in the PHA production culture. In the same manner, the H16ΔphaZ1,2,6 strain prepared in Production Example 1 was cultured and purified to obtain purified PHA. About the obtained PHA, the monomer unit copolymerization ratio and the molecular weight were analyzed. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (結果と考察)
 表2の結果から、2-プロペン-1-オールまたは2-プロピン-1-オールを培地中に添加した実施例17、18では、これらアルコールを添加していない比較例8と比べ、PHAの分子量がMw、Mnともに低下したことから、添加したアルコールが停止剤として機能し、その結果、カルボキシ末端に、プロペニル基またはプロピニル基が導入されたPHAが生産されていると推察できる。以上の結果から、Ralstonia属由来PHA合成酵素遺伝子を有する微生物を、アルキニル基またはアルケニル基を有するアルコールを培地中に添加して培養することによりカルボキシ末端に、アルケニル基またはアルキニル基が導入されたPHAが生産できることが示唆された。
(Results and discussion)
From the results of Table 2, in Examples 17 and 18 in which 2-propen-1-ol or 2-propin-1-ol was added to the medium, the molecular weight of PHA was compared to Comparative Example 8 in which these alcohols were not added. Since both M w and M n decreased, it can be inferred that the added alcohol functions as a terminator, and as a result, a PHA having a propenyl group or a propynyl group introduced at the carboxy terminus is produced. From the above results, PHA in which an alkenyl group or alkynyl group is introduced at the carboxy terminus by culturing a microorganism having a PHA synthase gene derived from Ralstonia genus by adding an alcohol having an alkynyl group or alkenyl group to the medium. It was suggested that can be produced.
 2-プロペン-1-オールを1.0g/L含有する培地における、ReSK003株によるPHAの生産
 実施例1と同様の方法で、製造例2で作製したReSK003株を培養、精製し精製PHAを取得した。ただし、培地中に添加する2-プロペン-1-オールの終濃度は1.0g/Lとした。得られたPHAについて、モノマーユニット共重合比率と分子量の分析を行った。その結果を表3に示す。
Production of PHA by ReSK003 strain in a medium containing 2-propen-1-ol at 1.0 g / L In the same manner as in Example 1, the ReSK003 strain prepared in Production Example 2 is cultured and purified to obtain purified PHA did. However, the final concentration of 2-propen-1-ol added to the medium was 1.0 g / L. About the obtained PHA, the monomer unit copolymerization ratio and the molecular weight were analyzed. The results are shown in Table 3.
 2-プロピン-1-オールを1.0g/L含有する培地における、ReSK003株によるPHAの生産
 実施例19と同様の方法で、製造例1で作製したReSK003株を培養、精製し精製PHAを取得した。ただし、PHA生産培養において2-プロペン-1-オールの代わりに、2-プロピン-1-オールを終濃度1.0g/Lとなるよう培地中に添加した。得られたPHAについて、モノマーユニット共重合比率と分子量の分析を行った。その結果を表3に示す。
Production of PHA by ReSK003 strain in a medium containing 1.0 g / L of 2-propyn-1-ol In the same manner as in Example 19, the ReSK003 strain prepared in Production Example 1 is cultured and purified to obtain purified PHA did. However, in the PHA production culture, 2-propyn-1-ol was added to the medium to a final concentration of 1.0 g / L instead of 2-propen-1-ol. About the obtained PHA, the monomer unit copolymerization ratio and the molecular weight were analyzed. The results are shown in Table 3.
 (比較例9)特例のアルコールを含有しない培地における、ReSK003株によるPHAの生産
 PHA生産培養において培地中に2-プロペン-1-オールを添加しない以外は、実施例17と同様の方法で、製造例1で作製したReSK003株を培養、精製し精製PHAを取得した。た得られたPHAについて、モノマーユニット共重合比率と分子量の分析を行った。その結果を表3に示す。
(Comparative Example 9) Production of PHA by ReSK003 strain in a medium not containing special alcohol Production by the same method as in Example 17 except that 2-propen-1-ol was not added to the medium in the PHA production culture. The ReSK003 strain prepared in Example 1 was cultured and purified to obtain purified PHA. The obtained PHA was analyzed for the monomer unit copolymerization ratio and molecular weight. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (結果と考察)
 表3の結果から、2-プロペン-1-オールまたは2-プロピン-1-オールを添加した実施例19、20では、これらアルコールを添加していない比較例9と比べ、PHAの分子量がMw、Mnともに低下したことから、添加したアルコールが停止剤として機能し、その結果、カルボキシ末端に、プロペニル基またはプロピニル基が導入されたPHAが生産されていると推察できる。以上の結果から、Pseudomonas属由来PHA合成酵素遺伝子を有する微生物を、アルキニル基またはアルケニル基を有するアルコールを培地中に添加して培養することによりカルボキシ末端に、アルケニル基またはアルキニル基が導入しされたPHAが生産できることが示唆された。
(Results and discussion)
From the results of Table 3, in Examples 19 and 20 to which 2-propen-1-ol or 2-propyn-1-ol was added, the molecular weight of PHA was M w compared to Comparative Example 9 to which these alcohols were not added. Since both Mn and Mn decreased, it can be inferred that the added alcohol functions as a terminator, and as a result, PHA having a propenyl group or a propynyl group introduced at the carboxy terminus is produced. From the above results, an alkenyl group or alkynyl group was introduced at the carboxy terminus by culturing a microorganism having a PHA synthase gene derived from the genus Pseudomonas by adding an alcohol having an alkynyl group or alkenyl group to the medium. It was suggested that PHA can be produced.

Claims (13)

  1.  繰り返し単位が下記一般式(1)
    [-C*HR1-CH2-CO-O-] ・・・(1)
    (式中、R1はCn2n+1で表されるアルキル基であり、nは1~15の整数であり、*は不斉炭素であることを表す。)
    で示されるR-3-ヒドロキシアルカン酸の単独又は共重合ポリマーであって、該ポリマーが単独ポリマーであるか共重合ポリマーであるかに応じて、カルボキシ末端に以下に示す基が結合しているポリヒドロキシアルカン酸。
     (1)単独ポリマーである時にカルボキシ末端に結合する基
     炭素数4~8のアルキニル基、
     炭素数3~8のアルケニル基、
     炭素数2、4~8のメルカプトアルキル基、
     炭素数3~8のアジド化アルキル基、または
     アルキル基の炭素数が2~6のアリル(ポリ)オキシアルキル基、
     (2)共重合ポリマーである時にカルボキシ末端に結合する基
     炭素数3~8のアルキニル基、
     炭素数3~8のアルケニル基、
     炭素数2~8のメルカプトアルキル基、
     炭素数3~8のアジド化アルキル基、または
     アルキル基の炭素数が2~6のアリル(ポリ)オキシアルキル基
    The repeating unit is represented by the following general formula (1)
    [—C * HR 1 —CH 2 —CO—O—] (1)
    (In the formula, R 1 is an alkyl group represented by C n H 2n + 1 , n is an integer of 1 to 15, and * represents an asymmetric carbon.)
    R-3-hydroxyalkanoic acid homopolymer or copolymer represented by the following, wherein the following groups are bonded to the carboxy terminus depending on whether the polymer is a homopolymer or a copolymer Polyhydroxyalkanoic acid.
    (1) a group bonded to the carboxy terminus when it is a single polymer, an alkynyl group having 4 to 8 carbon atoms,
    An alkenyl group having 3 to 8 carbon atoms,
    A mercaptoalkyl group having 2 or 4 to 8 carbon atoms,
    An azido alkyl group having 3 to 8 carbon atoms, or an allyl (poly) oxyalkyl group having 2 to 6 carbon atoms in the alkyl group,
    (2) a group bonded to the carboxy terminus when being a copolymer, an alkynyl group having 3 to 8 carbon atoms,
    An alkenyl group having 3 to 8 carbon atoms,
    A mercaptoalkyl group having 2 to 8 carbon atoms,
    An azido alkyl group having 3 to 8 carbon atoms, or an allyl (poly) oxyalkyl group having an alkyl group having 2 to 6 carbon atoms
  2.  カルボキシ末端に、アルキン基、アルケン基、チオール基またはアジド基が導入された微生物産生ポリヒドロキシアルカン酸であり、
     前記ヒドロキシアルカン酸が3-ヒドロキシ酪酸、3-ヒドロキプロピオン酸、4-ヒドロキシ酪酸、3-ヒドロキシ吉草酸、5-ヒドロキシ吉草酸、3-ヒドロキシヘキサン酸、6-ヒドロキシヘキサン酸、3-ヒドロキシヘプタン酸、3-ヒドロキシオクタン酸、3-ヒドロキシノナン酸、3-ヒドロキシデカン酸、3-ヒドロキシウンデカン酸、3-ヒドロキシドデカン酸から選ばれる複数種で構成されているポリヒドロキシアルカン酸。
    A microbially produced polyhydroxyalkanoic acid having an alkyne group, alkene group, thiol group or azide group introduced at the carboxy terminus;
    The hydroxyalkanoic acid is 3-hydroxybutyric acid, 3-hydroxypropionic acid, 4-hydroxybutyric acid, 3-hydroxyvaleric acid, 5-hydroxyvaleric acid, 3-hydroxyhexanoic acid, 6-hydroxyhexanoic acid, 3-hydroxyheptanoic acid , Polyhydroxyalkanoic acid composed of a plurality of kinds selected from 3-hydroxyoctanoic acid, 3-hydroxynonanoic acid, 3-hydroxydecanoic acid, 3-hydroxyundecanoic acid and 3-hydroxydodecanoic acid.
  3.  カルボキシ末端に、アルキン基、アルケン基、チオール基またはアジド基が導入された微生物産生ポリヒドロキシアルカン酸であり、
     前記ヒドロキシアルカン酸が3-ヒドロキシ酪酸、3-ヒドロキプロピオン酸、4-ヒドロキシ酪酸、3-ヒドロキシ吉草酸、5-ヒドロキシ吉草酸、3-ヒドロキシヘキサン酸、6-ヒドロキシヘキサン酸、3-ヒドロキシヘプタン酸、3-ヒドロキシオクタン酸、3-ヒドロキシノナン酸、3-ヒドロキシデカン酸、3-ヒドロキシウンデカン酸、3-ヒドロキシドデカン酸から選ばれる単一種で構成されており、
     前記アルキン基が、ブチニル基、ペンチニル基、又はヘキシニル基であり、
     前記アルケン基が、プロペニル基、ブテニル基、ペンテニル基、又はヘキセニル基であり、
     前記チオール基が、メルカプトエチル基、メルカプトブチル基、メルカプトペンチル基、又はメルカプトヘキシル基であるポリヒドロキシアルカン酸。
    A microbially produced polyhydroxyalkanoic acid having an alkyne group, alkene group, thiol group or azide group introduced at the carboxy terminus;
    The hydroxyalkanoic acid is 3-hydroxybutyric acid, 3-hydroxypropionic acid, 4-hydroxybutyric acid, 3-hydroxyvaleric acid, 5-hydroxyvaleric acid, 3-hydroxyhexanoic acid, 6-hydroxyhexanoic acid, 3-hydroxyheptanoic acid , Composed of a single species selected from 3-hydroxyoctanoic acid, 3-hydroxynonanoic acid, 3-hydroxydecanoic acid, 3-hydroxyundecanoic acid, 3-hydroxydodecanoic acid,
    The alkyne group is a butynyl group, a pentynyl group, or a hexynyl group;
    The alkene group is a propenyl group, a butenyl group, a pentenyl group, or a hexenyl group;
    A polyhydroxyalkanoic acid in which the thiol group is a mercaptoethyl group, a mercaptobutyl group, a mercaptopentyl group, or a mercaptohexyl group.
  4.  モノマーユニットとして少なくとも3-ヒドロキシ酪酸を含む請求項1~3のいずれかに記載のポリヒドロキシアルカン酸。 The polyhydroxyalkanoic acid according to any one of claims 1 to 3, which contains at least 3-hydroxybutyric acid as a monomer unit.
  5.  モノマーユニットとしてさらに3-ヒドロキシヘキサン酸を含む請求項4に記載のポリヒドロキシアルカン酸。 The polyhydroxyalkanoic acid according to claim 4, further comprising 3-hydroxyhexanoic acid as a monomer unit.
  6.  請求項1~5のいずれかに記載のポリヒドロキシアルカン酸を製造する方法であって、
     アルキン基、アルケン基、チオール基、アジド基、またはアリル基を有するアルコールを用いて、ポリヒドロキシアルカン酸を生産可能な微生物を培養する工程を含む、カルボキシ末端に、アルキン基、アルケン基、チオール基、アジド基、又はアリル基が導入されたポリヒドロキシアルカン酸の製造方法。
    A process for producing the polyhydroxyalkanoic acid according to any one of claims 1 to 5,
    Including culturing a microorganism capable of producing polyhydroxyalkanoic acid using an alcohol having an alkyne group, an alkene group, a thiol group, an azide group, or an allyl group; , An azido group, or a polyhydroxyalkanoic acid having an allyl group introduced therein.
  7.  アルキン基、アルケン基、チオール基、アジド基、またはアリル基を有する炭素数2~8のアルコールを用いて、ポリヒドロキシアルカン酸を生産可能なCupriavidus属に属する微生物を培養する工程を含む、カルボキシ末端に、アルキン基、アルケン基、チオール基、アジド基、又はアリル基が導入されたポリヒドロキシアルカン酸の製造方法。 Including culturing a microorganism belonging to the genus Cupriavidus capable of producing polyhydroxyalkanoic acid using an alcohol having 2 to 8 carbon atoms having an alkyne group, an alkene group, a thiol group, an azide group, or an allyl group, A method for producing a polyhydroxyalkanoic acid into which an alkyne group, an alkene group, a thiol group, an azide group, or an allyl group is introduced.
  8.  前記アルコールが第一級アルコールである請求項6または7に記載の製造方法。 The method according to claim 6 or 7, wherein the alcohol is a primary alcohol.
  9.  前記微生物が、Aeromonas属、Ralstonia属またはPseudomonas属由来のポリヒドロキシアルカン酸合成酵素をコードする遺伝子を有する微生物である請求項6~8のいずれかに記載の製造方法。 The production method according to any one of claims 6 to 8, wherein the microorganism is a microorganism having a gene encoding a polyhydroxyalkanoate synthase derived from the genus Aeromonas, Ralstonia or Pseudomonas.
  10.  前記微生物が、Cupriavidus属に属する微生物である請求項8または9に記載の製造方法。 The method according to claim 8 or 9, wherein the microorganism is a microorganism belonging to the genus Cupriavidus.
  11.  前記微生物が、Cupriavidus necatorを宿主とする形質転換体である請求項7または10に記載の製造方法。 The production method according to claim 7 or 10, wherein the microorganism is a transformant having a Cupriavidus necator as a host.
  12.  請求項1~5のいずれか1項に記載のポリヒドロキシアルカン酸の末端のアルキン基、アルケン基、チオール基、アジド基、またはアリル基がさらに化学修飾された化合物。 6. A compound obtained by further chemically modifying the terminal alkyne group, alkene group, thiol group, azide group, or allyl group of the polyhydroxyalkanoic acid according to any one of claims 1 to 5.
  13.  請求項1~5のいずれか1項に記載のポリヒドロキシアルカン酸、または請求項12に記載の化合物を含有する成形体。 A molded article containing the polyhydroxyalkanoic acid according to any one of claims 1 to 5 or the compound according to claim 12.
PCT/JP2016/088424 2016-03-25 2016-12-22 Polyhydroxyalkanoic acid having functional group at terminal carboxyl group and method for producing same WO2017163518A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018506780A JP6990169B2 (en) 2016-03-25 2016-12-22 Polyhydroxyalkanoic acid having a functional group at the carboxy terminal and its production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016062278 2016-03-25
JP2016-062278 2016-03-25

Publications (1)

Publication Number Publication Date
WO2017163518A1 true WO2017163518A1 (en) 2017-09-28

Family

ID=59899940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088424 WO2017163518A1 (en) 2016-03-25 2016-12-22 Polyhydroxyalkanoic acid having functional group at terminal carboxyl group and method for producing same

Country Status (2)

Country Link
JP (1) JP6990169B2 (en)
WO (1) WO2017163518A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021161732A1 (en) * 2020-02-12 2021-08-19 株式会社カネカ Method for producing polyhydroxyalkanoate and use of same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0052946A1 (en) * 1980-11-20 1982-06-02 Imperial Chemical Industries Plc Stabilised polyester compositions
WO2015115619A1 (en) * 2014-01-31 2015-08-06 株式会社カネカ MICROORGANISM HAVING ADJUSTED EXPRESSION OF R-SPECIFIC ENOYL-CoA HYDRATASE GENE, AND METHOD FOR MANUFACTURING POLYHYDROXYALKANOATE COPOLYMER USING SAME

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0052946A1 (en) * 1980-11-20 1982-06-02 Imperial Chemical Industries Plc Stabilised polyester compositions
WO2015115619A1 (en) * 2014-01-31 2015-08-06 株式会社カネカ MICROORGANISM HAVING ADJUSTED EXPRESSION OF R-SPECIFIC ENOYL-CoA HYDRATASE GENE, AND METHOD FOR MANUFACTURING POLYHYDROXYALKANOATE COPOLYMER USING SAME

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BABINOT JULIEN ET AL.: "Controlled Synthesis of Well Defined Poly(3-hydroxyalkanoate)s-based Amphiphilic Diblock Copolymers Using Click Chemistry", MACROMOL. CHEM. PHYS., vol. 212, no. 3, 2011, pages 278 - 285, XP055600912 *
HORI YOJI ET AL.: "A Novel Biodegradable Poly(urethane ester) Synthesized from Poly(3-hydroxybutyrate) Segments", MACROMOLECULES, vol. 25, 1992, pages 5117 - 5118, XP000298711, DOI: doi:10.1021/ma00045a046 *
HUYNH VIEN T. ET AL.: "Thiol-yne and Thiol-ene 'Click' Chemistry as a Tool for a Variety of Platinum Drug Delivery Carries, from Statistical Copolymers to Crosslinked Micelles", BIOMACROMOLECULES, vol. 12, 4 August 2011 (2011-08-04), pages 1738 - 1751 *
HYAKUTAKE MANAMI ET AL.: "Carboxy-teminal modification of polyhydroxyalkanoate (PHA) via alcoholysis reaction catalyzed by Class IV PHA synthase", POLYMER DEGRADATION AND STABILITY, vol. 117, 2015, pages 90 - 96, XP029242931, DOI: doi:10.1016/j.polymdegradstab.2015.04.002 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021161732A1 (en) * 2020-02-12 2021-08-19 株式会社カネカ Method for producing polyhydroxyalkanoate and use of same

Also Published As

Publication number Publication date
JP6990169B2 (en) 2022-02-03
JPWO2017163518A1 (en) 2019-01-31

Similar Documents

Publication Publication Date Title
Budde et al. Production of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil by engineered Ralstonia eutropha strains
US11453896B2 (en) Transformed microorganism for producing PHA copolymer comprising 3HH monomer unit at high composition rate and method for producing PHA using same
Orita et al. Biosynthesis of polyhydroxyalkanoate copolymers from methanol by Methylobacterium extorquens AM1 and the engineered strains under cobalt-deficient conditions
EP3101129B1 (en) Microorganism having adjusted expression of r-specific enoyl-coa hydratase gene, and method for manufacturing polyhydroxyalkanoate copolymer using same
JP6860489B2 (en) A microorganism having a gene encoding a PHA synthase, and a method for producing PHA using the microorganism.
Altaee et al. Recovery and subsequent characterization of polyhydroxybutyrate from Rhodococcus equi cells grown on crude palm kernel oil
WO2015146195A1 (en) Microorganism having multiple genes encoding pha synthase and method for producing pha using same
US11268113B2 (en) PHA-producing microorganism in which glycerol kinase activity is enhanced, and PHA production method using same
Höfer et al. Production of functionalized polyhydroxyalkanoates by genetically modified Methylobacterium extorquens strains
TWI806893B (en) Manufacturing method of polyester
JP6313708B2 (en) High molecular weight PHA producing microorganism and method for producing high molecular weight PHA using the same
JP4643799B2 (en) Polyester manufacturing method
EP3677613B1 (en) Polyester including 4-hydroxybutyrate units
WO2017163518A1 (en) Polyhydroxyalkanoic acid having functional group at terminal carboxyl group and method for producing same
JP7071283B2 (en) Production method of polyhydroxyalkanoate and microorganisms
Cerrone et al. Pseudomonas umsongensis GO16 as a platform for the in vivo synthesis of short and medium chain length polyhydroxyalkanoate blends
US20180346943A1 (en) Polyhydroxyalkanoic acid having functional group at terminal carboxy group and method for producing the same
WO2017033652A1 (en) Polyhydroxyalkanoate resin composition having free hydroxy groups, and method for producing same
JP5839854B2 (en) Microbial culture method
JP2018109103A (en) Block copolymer and resin composition containing the same, and method for producing block copolymer
JP2009207420A (en) Method for producing polyhydroxyalkanoate copolymer using methanol as raw material
JP5103619B2 (en) Production method of copolyester
WO2008135065A1 (en) PHAs PRODUCING MICROORGANISM AND PHA OBTAINABLE THEREWITH
Chen Polyhydroxyalkanoates (PHAs): separation, purification and manufacturing methods

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018506780

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895541

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16895541

Country of ref document: EP

Kind code of ref document: A1