WO2017163384A1 - Data processing device, data processing method, and data processing program - Google Patents

Data processing device, data processing method, and data processing program Download PDF

Info

Publication number
WO2017163384A1
WO2017163384A1 PCT/JP2016/059480 JP2016059480W WO2017163384A1 WO 2017163384 A1 WO2017163384 A1 WO 2017163384A1 JP 2016059480 W JP2016059480 W JP 2016059480W WO 2017163384 A1 WO2017163384 A1 WO 2017163384A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
point
points
unit
cloud data
Prior art date
Application number
PCT/JP2016/059480
Other languages
French (fr)
Japanese (ja)
Inventor
川浦 健央
隆博 加島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/059480 priority Critical patent/WO2017163384A1/en
Priority to JP2017548475A priority patent/JP6293386B2/en
Priority to TW105117710A priority patent/TW201734954A/en
Publication of WO2017163384A1 publication Critical patent/WO2017163384A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics

Definitions

  • the present invention relates to an image processing technique.
  • the AR (Augmented Reality) display system generates a subject development image from 3D (3 dimensional) shape data and texture data of a subject, checks the image feature points of the subject development image, and tracks the subject.
  • Patent Document 1 discloses an AR display system including an image input unit, a development view feature representation unit, a database, a database feature representation unit, a collation unit, and a display unit.
  • the image input unit inputs an RGB image obtained by photographing with a camera or the like.
  • the development view feature expression unit generates a development image from the 3D model and texture of the subject input via the image input unit, extracts image feature points, and calculates an image feature amount.
  • the database stores in advance images taken from arbitrary positions (coordinates and orientations) with respect to various objects.
  • the database feature representation unit reads an image from the database, extracts image feature points, and calculates a local descriptor.
  • the collation unit compares the local descriptors of the image feature points calculated by the development view feature representation unit and the database feature representation unit to identify the most similar image in the database, and obtains the position of the camera with respect to the object at the time of shooting.
  • the display unit is, for example, a display device.
  • the AR display system of Patent Document 1 there is a problem that it is necessary to accumulate a large amount of images in a database in advance in a database. Further, the AR display system of Patent Document 1 has a problem that a developed image must be generated at high speed from a 3D model and a texture.
  • the main object of the present invention is to solve the above-mentioned problems, and to speed up AR display without accumulating images in a database in advance and without generating a developed image. Objective.
  • a point cloud data acquisition unit for acquiring point cloud data composed of a plurality of points, each of which represents a three-dimensional shape of an object, each of which is set with a three-dimensional coordinate;
  • a point corresponding to the image feature point included in the captured image of the object is extracted from the plurality of points of the point cloud data, and the three-dimensional coordinates set for the extracted point are associated with the image feature point.
  • an association unit for acquiring point cloud data composed of a plurality of points, each of which represents a three-dimensional shape of an object, each of which is set with a three-dimensional coordinate;
  • the three-dimensional coordinates of the points corresponding to the image feature points in the captured image are associated with the image feature points. For this reason, according to the present invention, the data amount can be significantly reduced by holding only the three-dimensional coordinates of the image feature points.
  • the search can be performed at high speed.
  • the three-dimensional shape of the object is handled by the point cloud data, it is not necessary to generate a developed image or to store the RGB image in the database in advance, and the AR display can be speeded up.
  • FIG. 3 is a diagram illustrating a functional configuration example of the AR display device according to the first embodiment.
  • FIG. 4 is a flowchart showing an operation example of the AR display device according to the first embodiment.
  • FIG. 6 is a diagram illustrating an example of a functional configuration of an AR display device according to a second embodiment.
  • FIG. 9 is a flowchart showing an operation example of the AR display device according to the second embodiment.
  • FIG. 10 is a diagram illustrating a functional configuration example of an AR display device according to a third embodiment.
  • FIG. 10 is a flowchart showing an operation example of the AR display device according to the third embodiment.
  • FIG. 4 is a diagram showing a hardware configuration example of an AR display device according to Embodiments 1 to 3.
  • FIG. 4 is a diagram illustrating an example of an image according to the first embodiment.
  • FIG. 4 is a diagram illustrating an example in which an annotation image is superimposed on an image according to the first embodiment.
  • FIG. 10 is a diagram illustrating an example of image feature points according to the second embodiment.
  • FIG. *** Explanation of configuration *** FIG. 1 shows a functional configuration example of an AR display device 1 according to the present embodiment.
  • FIG. 7 shows a hardware configuration example of the AR display device 1 according to the present embodiment.
  • the AR display device 1 is an example of a data processing device. The processing performed by the AR display device 1 corresponds to an example of a data processing method and a data processing program. First, an outline of the AR display device 1 according to the present embodiment will be described.
  • the AR display device 1 acquires point cloud data and an annotation image.
  • the point cloud data is data representing the three-dimensional shape of an object that is a subject.
  • the point cloud data is composed of a plurality of points.
  • Point cloud data is usually a collection of tens of thousands of points.
  • Three-dimensional coordinates (hereinafter also referred to as 3D coordinates) are set for each point of the point cloud data.
  • An annotation image is an image that is superimposed on a captured image of an object.
  • FIG. 9 shows an AR image obtained by virtually superimposing an underground pipe annotation image on the road image shown in FIG.
  • the graphics 50 (figure) indicating the shape of the pipe and the text 51 indicating the attributes of the pipe (in FIG. 9, the dimensions of the pipe) shown in FIG. 9 are annotation images.
  • the AR display device 1 acquires, for example, a cylindrical graphic 50 representing a manhole, and displays the cylindrical graphic 50 at the position of the manhole in the image. Moreover, the AR display device 1 acquires the text 51 representing the dimensions of the pipe, and displays the acquired text 51 at an appropriate position in the image. As described above, when displaying the graphics 50 and the text 51 of the annotation image, the AR display device 1 selects one of the plurality of points of the point cloud data and sets the three-dimensional coordinates of the selected point. Corresponding to the graphics 50 or text 51 of the annotation image.
  • the AR display device 1 includes a CPU (Central Processing Unit) 21, a memory 23, a GPU (Graphics Processing Unit) 25, a frame memory 26, and a RADAC (Random Access Memory Digital-to-Analog Converter) 27.
  • Computer The CPU 21 executes a program that implements the annotation image editing unit 6, the world coordinate setting unit 7, and the perspective projection unit 8 shown in FIG. That is, the annotation image editing unit 6, the world coordinate setting unit 7, and the perspective projection unit 8 are realized by a program.
  • the GPU 25 executes a program that realizes the AR superimposing unit 9. That is, the AR superimposing unit 9 is realized by a program.
  • the GPU 25 uses the RAMDAC 27 when the AR superimposing unit 9 performs an operation as a program.
  • a program for realizing the annotation image editing unit 6, the world coordinate setting unit 7, and the perspective projection unit 8 and a program for realizing the AR superimposing unit 9 are stored in the memory 23.
  • the CPU 21 reads a program for realizing the annotation image editing unit 6, the world coordinate setting unit 7, and the perspective projection unit 8 from the memory 23 and executes this program.
  • the GPU 25 reads a program for realizing the AR superimposing unit 9 and executes this program.
  • the frame memory 26 stores annotation images.
  • the AR display device 1 is connected to a 3D sensor 22, a keyboard / mouse 29, and a monitor 28.
  • the 3D sensor 22 implements the image input unit 2, the RGB image generation unit 3, and the point cloud data generation unit 4 shown in FIG.
  • the keyboard / mouse 29 implements the annotation image input unit 5 shown in FIG.
  • the monitor 28 implements the display unit 10.
  • the AR display device 1 includes an annotation image editing unit 6, a world coordinate setting unit 7, a perspective projection unit 8, and an AR superimposing unit 9.
  • the annotation image editing unit 6 acquires an annotation image such as text or a figure from the annotation image input unit 5 and edits the acquired annotation image.
  • the world coordinate setting unit 7 sets the three-dimensional coordinates of the annotation image to an arbitrary point in the point cloud data. More specifically, the world coordinate setting unit 7 acquires point cloud data representing the three-dimensional shape of the subject. In addition, the world coordinate setting unit 7 selects one of a plurality of points in the point cloud data, and associates the three-dimensional image set at the selected point with the annotation image.
  • the superimposition position of the annotation image is defined by the point (point of the point cloud data) selected by the world coordinate setting unit 7. For example, by specifying the position in the RGB image (also referred to as a captured image) of the upper left vertex of the rectangle of the text 51 in FIG.
  • the world coordinate setting unit 7 selects a point corresponding to the position in the RGB image of the top left vertex of the rectangle of the text 51 from the plurality of points of the point cloud data, and the text The point corresponding to the position in the RGB image of the lower right vertex of the 51 rectangle is selected.
  • the world coordinate setting unit 7 is an example of a point cloud data acquisition unit and an association unit.
  • the operations performed in the world coordinate setting unit 7 are examples of point cloud data acquisition processing and association processing.
  • the perspective projection unit 8 projects an annotation image on 3D coordinates onto two-dimensional coordinates (hereinafter also referred to as 2D coordinates).
  • the AR superimposing unit 9 superimposes the annotation image projected on the 2D coordinates by the perspective projection unit 8 on the RGB image.
  • the image input unit 2 simultaneously measures the color and distance of the subject.
  • the RGB image generation unit 3 generates an RGB image from the color of the subject.
  • the point cloud data generation unit 4 generates point cloud data from the distance to the subject. In the RGB image and the point cloud data, the same subject is captured from the same position and the same angle. That is, the 3D sensor 22 generates an RGB image and point cloud data in parallel for the same subject.
  • the annotation image input unit 5 inputs an annotation image such as text or graphics using a keyboard, a mouse, or the like.
  • the display unit 10 displays the superimposition result of the AR superimposing unit 9. As described above, the image input unit 2, the RGB image generation unit 3, and the point cloud data generation unit 4 are realized by the 3D sensor 22 shown in FIG.
  • the annotation image input unit 5 is realized by the keyboard / mouse 29 shown in FIG.
  • the display unit 10 is realized by the monitor 28 shown in FIG.
  • the image input unit 2 inputs the subject's color and distance measurement results to the RGB image generation unit 3 and the point cloud data generation unit 4.
  • the RGB image generation unit 3 generates an RGB image and inputs the generated RGB image to the AR superimposing unit 9.
  • the point cloud data generation unit 4 generates 3D coordinate point cloud data of the outline of the subject, and inputs the generated point cloud data to the world coordinate setting unit 7.
  • the annotation image input unit 5 generates an annotation image such as text or graphics, and inputs the generated annotation image to the annotation image editing unit 6.
  • the annotation image editing unit 6 edits an annotation image such as text or graphics, and inputs the edited annotation image to the world coordinate setting unit 7.
  • the world coordinate setting unit 7 acquires an annotation image and point cloud data.
  • the world coordinate setting unit 7 selects an arbitrary point from a plurality of points in the point cloud data, and associates the 3D coordinates set for the selected point with the annotation image to obtain an annotation image of 3D coordinates. . Further, the world coordinate setting unit 7 inputs a 3D coordinate annotation image to the perspective projection unit 8.
  • the perspective projection unit 8 acquires a 3D coordinate annotation image and projects the 3D coordinate annotation image onto the 2D coordinate. Further, the perspective projection unit 8 inputs the annotation image projected on the 2D coordinates to the AR superimposing unit 9.
  • the AR superimposing unit 9 acquires the annotation image projected on the 2D coordinates, and superimposes the annotation image projected on the 2D coordinates on the RGB image. Further, the AR superimposing unit 9 inputs the superimposition result to the display unit 10.
  • the display unit 10 displays the superimposed result of the AR superimposing unit 9 as an AR display for the subject.
  • the image input unit 2 captures a subject. More specifically, in the image input (step S2), the 3D sensor 22 captures the subject.
  • the RGB image generation unit 3 In RGB image generation (step S3), the RGB image generation unit 3 generates an RGB image. More specifically, in the RGB image generation (step S3), the subject is red, green, blue using a CCD (Charge Coupled Device) image sensor in the 3D sensor 22 or a CMOS (Complementary Metal Oxide Semiconductor) image sensor. An RGB image having such color information is generated.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • the point cloud data generation unit 4 In the point cloud data generation (step S4), the point cloud data generation unit 4 generates point cloud data. More specifically, in the point cloud data generation (step S4), the 3D sensor is set to the origin based on the time when the infrared ray emitted from the infrared ray output device in the 3D sensor 22 is reflected by the subject and returns to the infrared ray receiver. Point cloud data that is a set of 3D coordinate points of the outer shape of the subject.
  • the annotation image input unit 5 inputs the annotation image to the annotation image editing unit 6. More specifically, in the annotation image input (step S5), the operator of the AR display device 1 inputs the annotation image to the AR display device 1 by operating the keyboard, mouse, or the like.
  • annotation image editing edits text and graphics in the annotation image.
  • step S7 3D coordinates of an arbitrary point of the point cloud data of the subject are given to the annotation image. More specifically, the world coordinate setting unit 7 selects any one of a plurality of points in the point cloud data in accordance with an instruction from the operator of the AR display device 1, and uses the 3D coordinates of the selected point as an annotation. Associate with an image.
  • the perspective projection unit 8 projects an annotation image of 3D coordinates onto 2D coordinates. More specifically, the perspective projection unit 8 converts (X, Y, Z), which are the three-dimensional coordinates of the annotation image, to the coordinates (u, v) of the projection image, for example, by projective transformation shown in Equation 1 below. Convert to In Equation 1, [R
  • the AR superimposing unit 9 superimposes the projection image of the annotation image on the RGB image.
  • step S10 the display unit 10 displays the overlay result of the AR overlay (step S9).
  • the annotation image is mapped to the point cloud data that is the 3D coordinates of the subject, and the projected image of the annotation following the position of the arbitrary 3D sensor is superimposed on the RGB image. AR can be realized.
  • FIG. *** Explanation of configuration *** FIG. 3 shows a functional configuration example of the AR editing device 15 according to the present embodiment.
  • the AR editing device 15 according to the present embodiment is also an example of a data processing device.
  • the processing performed by the AR editing device 15 according to the present embodiment also corresponds to an example of a data processing method and a data processing program.
  • the hardware configuration example of the AR editing device 15 is as shown in FIG. 7, similarly to the AR display device 1 according to the first embodiment.
  • the perspective projection unit 8, the AR superimposing unit 9, and the display unit 10 are deleted from the configuration of the AR display device 1 of FIG.
  • an image feature point extraction unit 11, an AR data output unit 12, and an AR data 13 are added to the configuration of the AR display device 1 of FIG.
  • the image feature point extraction unit 11 and the AR data output unit 12 are realized by a program, which is executed by the CPU 21 in FIG.
  • the image feature point extraction unit 11 analyzes the RGB image and extracts image feature points of the RGB image. Image feature points exist mainly at discontinuous points in the RGB image. Each point in FIG. 10 represents an image feature point.
  • the image feature point extraction unit 11 extracts image feature points by, for example, the Harris method, the KTK method, the Canny method, the zero crossing method, the relaxation method, the Hough transform, the dynamic contour method, the level set method, and the like.
  • the AR data 13 is data in which 3D coordinates in the world coordinate system of image feature points are recorded.
  • the AR data output unit 12 outputs the AR data 13 to the outside of the AR editing device 15. In FIG.
  • the image input unit 2, the RGB image generation unit 3, the point cloud data generation unit 4, the annotation image input unit 5, and the annotation image editing unit 6 are the same as those in the first embodiment, and thus description thereof is omitted.
  • the world coordinate setting unit 7 selects any point from a plurality of points in the point cloud data, and the three-dimensional coordinates set for the selected point. Is associated with the annotation image. Further, the world coordinate setting unit 7 extracts a point corresponding to the image feature point from a plurality of points of the point cloud data, and associates the three-dimensional coordinates set to the extracted point with the image feature point.
  • the image feature point extraction unit 11 extracts image feature points of the RGB image, and inputs the extracted image feature points to the world coordinate setting unit 7.
  • the world coordinate setting unit 7 acquires an annotation image from the annotation image editing unit 6 and acquires point cloud data from the point cloud data generation unit 4 as in the first embodiment. Then, as in the first embodiment, the world coordinate setting unit 7 selects one of a plurality of points in the point cloud data, and uses the three-dimensional coordinates set for the selected point as an annotation image. Associate.
  • the three-dimensional coordinates associated with the annotation image are referred to as first three-dimensional coordinates.
  • the world coordinate setting unit 7 acquires image feature points from the image feature point extraction unit 11, extracts points corresponding to the acquired image feature points from a plurality of points of the point cloud data, and extracts the extracted points.
  • 3D coordinates set in are associated with image feature points.
  • the three-dimensional coordinates associated with the image feature points are referred to as second three-dimensional coordinates.
  • the world coordinate setting unit 7 inputs the first three-dimensional coordinates and the second three-dimensional coordinates as AR data 13 to the AR data output unit 12.
  • the AR data output unit 12 outputs the AR data 13 to the outside of the AR editing device 15.
  • step S2 The image input (step S2), RGB image generation (step S3), point cloud data generation (step S4), annotation image input (step S5), and annotation image editing (step S6) in FIG. 4 are those shown in FIG. Since this is the same as the above, description thereof is omitted.
  • the image feature point extraction unit 11 extracts image feature points from the RGB image.
  • the image feature amount is described by the gradient of the brightness (brightness) of the peripheral pixels of each image feature point.
  • the world coordinate setting unit 7 records the 3D coordinates (first three-dimensional coordinates and second three-dimensional coordinates) of the annotation image and the world coordinate system of the image feature points. 13 is generated.
  • the AR data output unit 12 outputs the AR data to the outside of the AR editing device 15.
  • the AR data obtained by mapping the image feature points extracted from the RGB image of the subject to the point cloud data that is the 3D coordinates can be stored in advance in the database. Further, it can be generated at high speed without generating a developed image.
  • FIG. FIG. 5 shows a functional configuration example of the AR display device 100 according to the present embodiment.
  • the AR display device 100 according to the present embodiment is also an example of a data processing device.
  • the processing performed by the AR display device 100 according to the present embodiment also corresponds to examples of the data processing method and the data processing program.
  • the hardware configuration example of the AR display device 100 according to the present embodiment is as shown in FIG. 7, similarly to the AR display device 1 according to the first embodiment.
  • the point cloud data generation unit 4 the annotation image input unit 5, the annotation image editing unit 6, and the world coordinate setting unit 7 are deleted from the configuration of the AR display device 1 of FIG.
  • an image feature point extraction unit 11, a position estimation unit 14, and an AR data input unit 16 are added to the configuration of the AR display device 1 of FIG.
  • the image feature point extraction unit 11 and the position estimation unit 14 are realized by a program, and this program is executed by the CPU 21 of FIG.
  • the AR data input unit 16 is realized by the keyboard / mouse 29 of FIG.
  • the image feature point extraction unit 11 is the same as that shown in FIG. 3, analyzes the RGB image, and extracts image feature points of the RGB image.
  • the operation performed by the image feature point extraction unit 11 is an example of image feature point extraction processing.
  • the AR data input unit 16 acquires the AR data 13.
  • the AR data 13 is the same as that described in the second embodiment.
  • the position estimation unit 14 is a 3D imaging device based on 3D coordinates of image feature points in the world coordinate system and 2D coordinates in RGB images (2D coordinates of image feature points obtained by projective transformation of 3D coordinates of image feature points). The position of the sensor 22 is estimated.
  • the position estimation unit 14 estimates the position when the 3D sensor 22 captures an RGB image based on the 3D coordinates of the image feature points and the 2D coordinates of the image feature points in the RGB image.
  • the operation performed by the position estimation unit 14 is an example of position estimation processing.
  • the AR data input unit 16 inputs the AR data 13 to the perspective projection unit 8 and the position estimation unit 14.
  • the position estimation unit 14 estimates the position of the 3D sensor 22 from the 3D coordinates of the image feature points in the world coordinate system and the 2D coordinates in the RGB image, and inputs the estimated 3D sensor 22 position to the perspective projection unit 8.
  • step S2 The image input (step S2), RGB image generation (step S3), perspective projection (step S8), AR superimposition (step S9), and display (step S10) in FIG. 6 are the same as those shown in FIG. The description is omitted. Further, the processing of image feature point extraction (step S11) is the same as that in FIG.
  • the AR data input unit 16 inputs the AR data 13 to the perspective projection unit 8.
  • the position estimation unit 14 estimates the position of the 3D sensor 22 in the RGB image. Specifically, the position estimation unit 14 detects the coordinates x on the RGB image corresponding to the image feature points of the three-dimensional coordinates (X, Y, Z) by matching the image feature amounts. If the coordinates obtained by reprojecting the three-dimensional coordinates (X, Y, Z) of the image feature points onto the RGB image by Equation 1 are x ⁇ , the reprojection error E is the Euclidean distance d (x, x ⁇ ) between x and x ⁇ . (Note that the notation with “ ⁇ ” diagonally above and to the right of x is the same as the notation with “ ⁇ ” immediately above x in Equation 2).
  • the reprojection error E can be obtained using Equation 2.
  • the position estimation unit 14 estimates the position of the 3D sensor 22 that minimizes the error E with i image feature points, that is, [R
  • the position estimation unit 14 inputs the estimated position of the 3D sensor 22 to the perspective projection unit 8.
  • the AR data in which the image feature points extracted from the RGB image of the subject are mapped to the point cloud data that is 3D coordinate data is used for estimating the position of the 3D sensor. Since it is not necessary to match the developed image of the 3D model with the RGB image at each position of the 3D sensor stored in the database in advance for estimation of the position of the 3D sensor, both images are unnecessary.
  • the CPU 21 and the GPU 25 illustrated in FIG. 7 are ICs (Integrated Circuits) that perform processing.
  • the memory 23 and the frame memory 26 illustrated in FIG. 7 are a RAM (Random Access Memory), a flash memory, an HDD (Hard Disk Drive), and the like.
  • the memory 23 also stores an OS (Operating System).
  • the CPU 21 executes functions of the annotation image editing unit 6, the world coordinate setting unit 7, the perspective projection unit 8, the image feature point extraction unit 11, the AR data output unit 12, and the position estimation unit 14 while executing at least a part of the OS. Execute the program to be realized.
  • the CPU 21 executes the OS, task management, memory management, file management, communication control, and the like are performed.
  • Information, data, signal values, and the like indicating the processing results of the annotation image editing unit 6, the world coordinate setting unit 7, the perspective projection unit 8, the image feature point extraction unit 11, the AR data output unit 12, and the position estimation unit 14.
  • the variable value is stored in the memory 23 or a register or cache memory in the CPU 21.
  • a program for realizing the functions of the annotation image editing unit 6, the world coordinate setting unit 7, the perspective projection unit 8, the image feature point extraction unit 11, the AR data output unit 12, the position estimation unit 14, and the AR superimposition unit 9 is You may memorize
  • the AR display device 1, the AR editing device 15, and the AR display device 100 are respectively a logic IC (Integrated Circuit), a GA (Gate Array), an ASIC (Application Specific Integrated Circuit), and an FPGA (Field-Programmable Grating). It may be realized by an electronic circuit.
  • the processor and the electronic circuit are also collectively referred to as a processing circuit.
  • 1 AR display device 2 image input unit, 3 RGB image generation unit, 4 point cloud data generation unit, 5 annotation image input unit, 6 annotation image editing unit, 7 world coordinate setting unit, 8 perspective projection unit, 9 AR superimposition unit 10, display unit, 11 image feature point extraction unit, 12 AR data output unit, 13 AR data, 14 position estimation unit, 15 AR editing device, 16 AR data input unit, 21 CPU, 22 3D sensor, 23 memory 25 GPU, 26 frame memory, 27 RAMDAC, 28 monitor, 29 keyboard / mouse, 50 graphics, 51 text, 100 AR display.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Graphics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Processing Or Creating Images (AREA)

Abstract

According to the present invention, a world coordinate setting unit (7) acquires point group data representing the three-dimensional shape of an object and comprising a plurality of points, for each of which three-dimensional coordinates have been set. Further, the world coordinate setting unit (7) extracts, from the plurality of points in the point group data, points corresponding to image feature points included in a captured image of the object, and associates the three-dimensional coordinates set for the extracted points with the image feature points.

Description

データ処理装置、データ処理方法及びデータ処理プログラムData processing apparatus, data processing method, and data processing program
 本発明は、画像処理技術に関する。 The present invention relates to an image processing technique.
 AR(Augmented Reality)表示システムは、被写体の3D(3 dimensional)形状データとテクスチャデータから被写体展開画像を生成し、被写体展開画像の画像特徴点を照査して、被写体を追跡する。 The AR (Augmented Reality) display system generates a subject development image from 3D (3 dimensional) shape data and texture data of a subject, checks the image feature points of the subject development image, and tracks the subject.
 特許文献1には、画像入力部、展開図特徴表現部、データベース、データベース特徴表現部、照合部及び表示部で構成されるAR表示システムが開示されている。
 画像入力部は、カメラ等で撮影して得られたRGB画像を入力する。
 展開図特徴表現部は、画像入力部を介して入力した被写体の3Dモデルとテクスチャから展開画像を生成して画像特徴点を抽出して画像特徴量を算出する。
 データベースは、予めさまざまな物体に対して任意の位置(座標、向き)から撮影した画像を蓄積する。
 データベース特徴表現部は、データベースから画像を読み出して画像特徴点を抽出して局所記述子を算出する。
 照合部は、展開図特徴表現部とデータベース特徴表現部で算出した画像特徴点の局所記述子を比較して最も類似するデータベース内の画像を特定し、撮影したときの物体に対するカメラの位置を求める。
 表示部は、例えば、表示装置である。
Patent Document 1 discloses an AR display system including an image input unit, a development view feature representation unit, a database, a database feature representation unit, a collation unit, and a display unit.
The image input unit inputs an RGB image obtained by photographing with a camera or the like.
The development view feature expression unit generates a development image from the 3D model and texture of the subject input via the image input unit, extracts image feature points, and calculates an image feature amount.
The database stores in advance images taken from arbitrary positions (coordinates and orientations) with respect to various objects.
The database feature representation unit reads an image from the database, extracts image feature points, and calculates a local descriptor.
The collation unit compares the local descriptors of the image feature points calculated by the development view feature representation unit and the database feature representation unit to identify the most similar image in the database, and obtains the position of the camera with respect to the object at the time of shooting. .
The display unit is, for example, a display device.
特開2014-102746号公報JP 2014-102746 A
 特許文献1のAR表示システムでは、事前にデータ量の大きい画像をデータベースに大量に蓄積する必要があるという課題がある。また、特許文献1のAR表示システムでは、3Dモデルとテクスチャから展開画像を高速に生成しなければならないという課題がある。 In the AR display system of Patent Document 1, there is a problem that it is necessary to accumulate a large amount of images in a database in advance in a database. Further, the AR display system of Patent Document 1 has a problem that a developed image must be generated at high speed from a 3D model and a texture.
 本発明は、上記のような課題を解決することを主な目的とし、事前に画像をデータベースに蓄積することなく、また、展開画像を生成することなく、AR表示を高速化することを主な目的とする。 The main object of the present invention is to solve the above-mentioned problems, and to speed up AR display without accumulating images in a database in advance and without generating a developed image. Objective.
 本発明に係るデータ処理装置は、
 物体の三次元形状が表される、それぞれに三次元座標が設定されている複数の点で構成される点群データを取得する点群データ取得部と、
 前記点群データの前記複数の点の中から、前記物体の撮影画像に含まれる画像特徴点に相当する点を抽出し、抽出した点に設定されている三次元座標を前記画像特徴点に対応付ける対応付け部とを有する。
The data processing apparatus according to the present invention
A point cloud data acquisition unit for acquiring point cloud data composed of a plurality of points, each of which represents a three-dimensional shape of an object, each of which is set with a three-dimensional coordinate;
A point corresponding to the image feature point included in the captured image of the object is extracted from the plurality of points of the point cloud data, and the three-dimensional coordinates set for the extracted point are associated with the image feature point. And an association unit.
 本発明では、撮影画像内の画像特徴点に相当する点の三次元座標を画像特徴点に対応付ける。このため、本発明によれば、画像特徴点の三次元座標のみを保持することで、データ量を著しく減らすことが出来る。
 また、本発明では、保持する点群データのデータ量が少ないので、検索を高速に行うことができる。更に、本発明では、点群データで物体の三次元形状を扱うので、展開画像を生成する必要も事前にRGB画像をデータベースに蓄積する必要もなく、AR表示を高速化することができる。
In the present invention, the three-dimensional coordinates of the points corresponding to the image feature points in the captured image are associated with the image feature points. For this reason, according to the present invention, the data amount can be significantly reduced by holding only the three-dimensional coordinates of the image feature points.
In the present invention, since the amount of point cloud data to be held is small, the search can be performed at high speed. Further, in the present invention, since the three-dimensional shape of the object is handled by the point cloud data, it is not necessary to generate a developed image or to store the RGB image in the database in advance, and the AR display can be speeded up.
実施の形態1に係るAR表示装置の機能構成例を示す図。FIG. 3 is a diagram illustrating a functional configuration example of the AR display device according to the first embodiment. 実施の形態1に係るAR表示装置の動作例を示すフローチャート図。FIG. 4 is a flowchart showing an operation example of the AR display device according to the first embodiment. 実施の形態2に係るAR表示装置の機能構成例を示す図。FIG. 6 is a diagram illustrating an example of a functional configuration of an AR display device according to a second embodiment. 実施の形態2に係るAR表示装置の動作例を示すフローチャート図。FIG. 9 is a flowchart showing an operation example of the AR display device according to the second embodiment. 実施の形態3に係るAR表示装置の機能構成例を示す図。FIG. 10 is a diagram illustrating a functional configuration example of an AR display device according to a third embodiment. 実施の形態3に係るAR表示装置の動作例を示すフローチャート図。FIG. 10 is a flowchart showing an operation example of the AR display device according to the third embodiment. 実施の形態1~3に係るAR表示装置のハードウェア構成例を示す図。FIG. 4 is a diagram showing a hardware configuration example of an AR display device according to Embodiments 1 to 3. 実施の形態1に係る画像の例を示す図。FIG. 4 is a diagram illustrating an example of an image according to the first embodiment. 実施の形態1に係る画像にアノテーション画像を重畳した例を示す図。FIG. 4 is a diagram illustrating an example in which an annotation image is superimposed on an image according to the first embodiment. 実施の形態2に係る画像特徴点の例を示す図。FIG. 10 is a diagram illustrating an example of image feature points according to the second embodiment.
実施の形態1.
***構成の説明***
 図1は、本実施の形態に係るAR表示装置1の機能構成例を示す。
 また、図7は、本実施の形態に係るAR表示装置1のハードウェア構成例を示す。
 なお、AR表示装置1は、データ処理装置の例である。また、AR表示装置1により行われる処理は、データ処理方法及びデータ処理プログラムの例に相当する。
 まず、本実施の形態に係るAR表示装置1の概要を説明する。
Embodiment 1 FIG.
*** Explanation of configuration ***
FIG. 1 shows a functional configuration example of an AR display device 1 according to the present embodiment.
FIG. 7 shows a hardware configuration example of the AR display device 1 according to the present embodiment.
The AR display device 1 is an example of a data processing device. The processing performed by the AR display device 1 corresponds to an example of a data processing method and a data processing program.
First, an outline of the AR display device 1 according to the present embodiment will be described.
 本実施の形態に係るAR表示装置1は、点群データとアノテーション画像を取得する。
 点群データは、被写体である物体の三次元形状が表されるデータである。点群データは、複数の点で構成される。点群データは、通常、数万の点の集合体である。点群データの各点には、三次元座標(以下、3D座標ともいう)が設定されている。
 アノテーション画像は、物体の撮影画像に重畳される画像である。
 図9は、図8に示す道路の撮影画像に、仮想的に地下の配管のアノテーション画像を重畳して得られるAR画像を示す。
 図9に示す、配管の形状を示すグラフィックス50(図形)と、配管の属性(図9では、配管の寸法)を示すテキスト51がアノテーション画像である。
 AR表示装置1は、例えば、マンホールを表す円柱のグラフィックス50を取得し、この円柱のグラフィックス50を画像中のマンホールの位置に表示する。また、AR表示装置1は、配管の寸法を表すテキスト51を取得し、取得したテキスト51を画像中の適切な位置に表示する。
 このように、アノテーション画像のグラフィックス50及びテキスト51を表示するにあたって、AR表示装置1は、点群データの複数の点の中からいずれかの点を選択し、選択した点の三次元座標をアノテーション画像のグラフィックス50又はテキスト51に対応付ける。
The AR display device 1 according to the present embodiment acquires point cloud data and an annotation image.
The point cloud data is data representing the three-dimensional shape of an object that is a subject. The point cloud data is composed of a plurality of points. Point cloud data is usually a collection of tens of thousands of points. Three-dimensional coordinates (hereinafter also referred to as 3D coordinates) are set for each point of the point cloud data.
An annotation image is an image that is superimposed on a captured image of an object.
FIG. 9 shows an AR image obtained by virtually superimposing an underground pipe annotation image on the road image shown in FIG.
The graphics 50 (figure) indicating the shape of the pipe and the text 51 indicating the attributes of the pipe (in FIG. 9, the dimensions of the pipe) shown in FIG. 9 are annotation images.
The AR display device 1 acquires, for example, a cylindrical graphic 50 representing a manhole, and displays the cylindrical graphic 50 at the position of the manhole in the image. Moreover, the AR display device 1 acquires the text 51 representing the dimensions of the pipe, and displays the acquired text 51 at an appropriate position in the image.
As described above, when displaying the graphics 50 and the text 51 of the annotation image, the AR display device 1 selects one of the plurality of points of the point cloud data and sets the three-dimensional coordinates of the selected point. Corresponding to the graphics 50 or text 51 of the annotation image.
 次に、図7を参照して、AR表示装置1のハードウェア構成例について説明する。 Next, a hardware configuration example of the AR display device 1 will be described with reference to FIG.
 図7に示すように、AR表示装置1は、CPU(Central Processing Unit)21、メモリ23、GPU(Graphics Processing Unit)25、フレームメモリ26、RADAC(Random Access Memory Digital-to-Analog Converter)27を備えるコンピュータである。
 CPU21は、図1に示すアノテーション画像編集部6、ワールド座標設定部7及び透視投影部8を実現するプログラムを実行する。つまり、アノテーション画像編集部6、ワールド座標設定部7及び透視投影部8は、プログラムで実現される。
 また、GPU25は、AR重畳部9を実現するプログラムを実行する。つまり、AR重畳部9はプログラムで実現される。GPU25は、AR重畳部9はプログラムとしての動作を行う際に、RAMDAC27を使用する。
 アノテーション画像編集部6、ワールド座標設定部7及び透視投影部8を実現するプログラムと、AR重畳部9を実現するプログラムは、メモリ23に格納されている。CPU21が、メモリ23からアノテーション画像編集部6、ワールド座標設定部7及び透視投影部8を実現するプログラムを読み込んで、このプログラムを実行する。また、GPU25が、AR重畳部9を実現するプログラムを読み込んで、このプログラムを実行する。
 フレームメモリ26は、アノテーション画像を格納する。
As shown in FIG. 7, the AR display device 1 includes a CPU (Central Processing Unit) 21, a memory 23, a GPU (Graphics Processing Unit) 25, a frame memory 26, and a RADAC (Random Access Memory Digital-to-Analog Converter) 27. Computer.
The CPU 21 executes a program that implements the annotation image editing unit 6, the world coordinate setting unit 7, and the perspective projection unit 8 shown in FIG. That is, the annotation image editing unit 6, the world coordinate setting unit 7, and the perspective projection unit 8 are realized by a program.
The GPU 25 executes a program that realizes the AR superimposing unit 9. That is, the AR superimposing unit 9 is realized by a program. The GPU 25 uses the RAMDAC 27 when the AR superimposing unit 9 performs an operation as a program.
A program for realizing the annotation image editing unit 6, the world coordinate setting unit 7, and the perspective projection unit 8 and a program for realizing the AR superimposing unit 9 are stored in the memory 23. The CPU 21 reads a program for realizing the annotation image editing unit 6, the world coordinate setting unit 7, and the perspective projection unit 8 from the memory 23 and executes this program. Further, the GPU 25 reads a program for realizing the AR superimposing unit 9 and executes this program.
The frame memory 26 stores annotation images.
 また、AR表示装置1は、3Dセンサ22、キーボード/マウス29、モニタ28に接続されている。
 3Dセンサ22は、図1に示す画像入力部2、RGB画像生成部3及び点群データ生成部4を実現する。
 キーボード/マウス29は、図1に示すアノテーション画像入力部5を実現する。
 モニタ28は、表示部10を実現する。
The AR display device 1 is connected to a 3D sensor 22, a keyboard / mouse 29, and a monitor 28.
The 3D sensor 22 implements the image input unit 2, the RGB image generation unit 3, and the point cloud data generation unit 4 shown in FIG.
The keyboard / mouse 29 implements the annotation image input unit 5 shown in FIG.
The monitor 28 implements the display unit 10.
 次に、図1を参照して、AR表示装置1の機能構成例を説明する。 Next, a functional configuration example of the AR display device 1 will be described with reference to FIG.
 AR表示装置1は、アノテーション画像編集部6、ワールド座標設定部7、透視投影部8及びAR重畳部9で構成される。
 アノテーション画像編集部6は、アノテーション画像入力部5からテキストや図形等のアノテーション画像を取得し、取得したアノテーション画像を編集する。
The AR display device 1 includes an annotation image editing unit 6, a world coordinate setting unit 7, a perspective projection unit 8, and an AR superimposing unit 9.
The annotation image editing unit 6 acquires an annotation image such as text or a figure from the annotation image input unit 5 and edits the acquired annotation image.
 ワールド座標設定部7は、アノテーション画像の三次元座標を点群データ内の任意の点に設定する。
 より具体的には、ワールド座標設定部7は、被写体の三次元形状が表される点群データを取得する。
 また、ワールド座標設定部7は、点群データの複数の点の中からいずれかの点を選択し、選択した点に設定されている三次元画像をアノテーション画像に対応付ける。ワールド座標設定部7が選択する点(点群データの点)により、アノテーション画像の重畳位置が定義される。例えば、図9のテキスト51の矩形の左上の頂点のRGB画像(撮影画像ともいう)での位置と右上の頂点のRGB画像での位置を指定することで、テキスト51のRGB画像との重畳位置が定義される。ワールド座標設定部7は、AR表示装置1のオペレータからの指示に従い、点群データの複数の点の中から、テキスト51の矩形の左上の頂点のRGB画像での位置に対応する点と、テキスト51の矩形の右下の頂点のRGB画像での位置に対応する点とを選択する。
 ワールド座標設定部7は、点群データ取得部及び対応付け部の例である。また、ワールド座標設定部7で行われる動作は、点群データ取得処理及び対応付け処理の例である。
The world coordinate setting unit 7 sets the three-dimensional coordinates of the annotation image to an arbitrary point in the point cloud data.
More specifically, the world coordinate setting unit 7 acquires point cloud data representing the three-dimensional shape of the subject.
In addition, the world coordinate setting unit 7 selects one of a plurality of points in the point cloud data, and associates the three-dimensional image set at the selected point with the annotation image. The superimposition position of the annotation image is defined by the point (point of the point cloud data) selected by the world coordinate setting unit 7. For example, by specifying the position in the RGB image (also referred to as a captured image) of the upper left vertex of the rectangle of the text 51 in FIG. 9 and the position in the RGB image of the upper right vertex, the superimposed position of the text 51 with the RGB image Is defined. In accordance with an instruction from the operator of the AR display device 1, the world coordinate setting unit 7 selects a point corresponding to the position in the RGB image of the top left vertex of the rectangle of the text 51 from the plurality of points of the point cloud data, and the text The point corresponding to the position in the RGB image of the lower right vertex of the 51 rectangle is selected.
The world coordinate setting unit 7 is an example of a point cloud data acquisition unit and an association unit. The operations performed in the world coordinate setting unit 7 are examples of point cloud data acquisition processing and association processing.
 透視投影部8は、3D座標上のアノテーション画像を二次元座標(以下、2D座標ともいう)に投射する。 The perspective projection unit 8 projects an annotation image on 3D coordinates onto two-dimensional coordinates (hereinafter also referred to as 2D coordinates).
 AR重畳部9は、透視投影部8により2D座標に投射されたアノテーション画像をRGB画像に重畳する。 The AR superimposing unit 9 superimposes the annotation image projected on the 2D coordinates by the perspective projection unit 8 on the RGB image.
 また、図1において、画像入力部2は、被写体の色合いと距離を同時に計測する。
 RGB画像生成部3は、被写体の色合いからRGB画像を生成する。
 点群データ生成部4は、被写体までの距離から点群データを生成する。
 RGB画像と点群データでは、同じ被写体が同じ位置、同じ角度から捕捉されている。つまり、3Dセンサ22は、同じ被写体に対して並行してRGB画像の生成と点群データの生成を行う。
 アノテーション画像入力部5は、キーボードやマウス等でテキストや図形等のアノテーション画像を入力する。
 表示部10は、AR重畳部9の重畳結果を表示する。
 前述したように、画像入力部2、RGB画像生成部3及び点群データ生成部4は、図7に示す3Dセンサ22で実現される。
 また、アノテーション画像入力部5は、図7に示すキーボード/マウス29で実現される。
 また、表示部10は、図7に示すモニタ28で実現される。
In FIG. 1, the image input unit 2 simultaneously measures the color and distance of the subject.
The RGB image generation unit 3 generates an RGB image from the color of the subject.
The point cloud data generation unit 4 generates point cloud data from the distance to the subject.
In the RGB image and the point cloud data, the same subject is captured from the same position and the same angle. That is, the 3D sensor 22 generates an RGB image and point cloud data in parallel for the same subject.
The annotation image input unit 5 inputs an annotation image such as text or graphics using a keyboard, a mouse, or the like.
The display unit 10 displays the superimposition result of the AR superimposing unit 9.
As described above, the image input unit 2, the RGB image generation unit 3, and the point cloud data generation unit 4 are realized by the 3D sensor 22 shown in FIG.
The annotation image input unit 5 is realized by the keyboard / mouse 29 shown in FIG.
The display unit 10 is realized by the monitor 28 shown in FIG.
***動作の説明***
 次に、図1に基づき、本実施の形態に係るAR表示装置1の動作を説明する。
*** Explanation of operation ***
Next, the operation of the AR display device 1 according to the present embodiment will be described with reference to FIG.
 画像入力部2は、被写体の色合いと距離の計測結果をRGB画像生成部3と点群データ生成部4に入力する。
 RGB画像生成部3は、RGB画像を生成し、生成したRGB画像をAR重畳部9に入力する。
 点群データ生成部4は、被写体の外形の3D座標の点群データを生成し、生成した点群データをワールド座標設定部7に入力する。
 アノテーション画像入力部5は、テキストや図形等のアノテーション画像を生成し、生成したアノテーション画像をアノテーション画像編集部6に入力する。
 アノテーション画像編集部6は、テキストや図形等のアノテーション画像を編集し、編集後のアノテーション画像をワールド座標設定部7に入力する。
 ワールド座標設定部7は、アノテーション画像と点群データを取得する。そして、ワールド座標設定部7は、点群データの複数の点の中から任意の点を選択し、選択した点に設定されている3D座標をアノテーション画像に対応付けて3D座標のアノテーション画像を得る。更に、ワールド座標設定部7は、3D座標のアノテーション画像を透視投影部8に入力する。
 透視投影部8は、3D座標のアノテーション画像を取得し、3D座標のアノテーション画像を2D座標に投射する。更に、透視投影部8は、2D座標に投射されたアノテーション画像をAR重畳部9に入力する。
 AR重畳部9は、2D座標に投射されたアノテーション画像を取得し、2D座標に投射されたアノテーション画像をRGB画像に重畳する。更に、AR重畳部9は、重畳結果を表示部10に入力する。
 表示部10は、AR重畳部9の重畳結果を、被写体に対するAR表示として表示する。
The image input unit 2 inputs the subject's color and distance measurement results to the RGB image generation unit 3 and the point cloud data generation unit 4.
The RGB image generation unit 3 generates an RGB image and inputs the generated RGB image to the AR superimposing unit 9.
The point cloud data generation unit 4 generates 3D coordinate point cloud data of the outline of the subject, and inputs the generated point cloud data to the world coordinate setting unit 7.
The annotation image input unit 5 generates an annotation image such as text or graphics, and inputs the generated annotation image to the annotation image editing unit 6.
The annotation image editing unit 6 edits an annotation image such as text or graphics, and inputs the edited annotation image to the world coordinate setting unit 7.
The world coordinate setting unit 7 acquires an annotation image and point cloud data. Then, the world coordinate setting unit 7 selects an arbitrary point from a plurality of points in the point cloud data, and associates the 3D coordinates set for the selected point with the annotation image to obtain an annotation image of 3D coordinates. . Further, the world coordinate setting unit 7 inputs a 3D coordinate annotation image to the perspective projection unit 8.
The perspective projection unit 8 acquires a 3D coordinate annotation image and projects the 3D coordinate annotation image onto the 2D coordinate. Further, the perspective projection unit 8 inputs the annotation image projected on the 2D coordinates to the AR superimposing unit 9.
The AR superimposing unit 9 acquires the annotation image projected on the 2D coordinates, and superimposes the annotation image projected on the 2D coordinates on the RGB image. Further, the AR superimposing unit 9 inputs the superimposition result to the display unit 10.
The display unit 10 displays the superimposed result of the AR superimposing unit 9 as an AR display for the subject.
 次に、本実施の形態に係るAR表示装置1の動作例を図2のフローチャートを参照して説明する。 Next, an operation example of the AR display device 1 according to the present embodiment will be described with reference to the flowchart of FIG.
 画像入力(ステップS2)では、画像入力部2が被写体を撮影する。より具体的には、画像入力(ステップS2)では、3Dセンサ22が被写体を撮影する。 In image input (step S2), the image input unit 2 captures a subject. More specifically, in the image input (step S2), the 3D sensor 22 captures the subject.
 RGB画像生成(ステップS3)では、RGB画像生成部3が、RGB画像を生成する。より具体的には、RGB画像生成(ステップS3)では、被写体を3Dセンサ22内のCCD(Charge Coupled Device)イメージセンサ、あるいは、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等で、赤、緑、青といった色情報を持つRGB画像を生成する。 In RGB image generation (step S3), the RGB image generation unit 3 generates an RGB image. More specifically, in the RGB image generation (step S3), the subject is red, green, blue using a CCD (Charge Coupled Device) image sensor in the 3D sensor 22 or a CMOS (Complementary Metal Oxide Semiconductor) image sensor. An RGB image having such color information is generated.
 点群データ生成(ステップS4)では、点群データ生成部4が、点群データを生成する。より具体的には、点群データ生成(ステップS4)では、3Dセンサ22内の赤外線出力器から射出された赤外線が被写体で反射して赤外線受光器まで戻ってくる時間に基づき、3Dセンサを原点とした被写体の外形の3D座標の点の集合である点群データを生成する。 In the point cloud data generation (step S4), the point cloud data generation unit 4 generates point cloud data. More specifically, in the point cloud data generation (step S4), the 3D sensor is set to the origin based on the time when the infrared ray emitted from the infrared ray output device in the 3D sensor 22 is reflected by the subject and returns to the infrared ray receiver. Point cloud data that is a set of 3D coordinate points of the outer shape of the subject.
 アノテーション画像入力(ステップS5)では、アノテーション画像入力部5が、アノテーション画像をアノテーション画像編集部6に入力する。
 より具体的には、アノテーション画像入力(ステップS5)では、AR表示装置1のオペレータが、キーボードやマウス等の操作によりアノテーション画像をAR表示装置1に入力する。
In the annotation image input (step S5), the annotation image input unit 5 inputs the annotation image to the annotation image editing unit 6.
More specifically, in the annotation image input (step S5), the operator of the AR display device 1 inputs the annotation image to the AR display device 1 by operating the keyboard, mouse, or the like.
 アノテーション画像編集(ステップS6)では、アノテーション画像編集部6が、アノテーション画像内のテキスト及びグラフィックスの編集を行う。 In annotation image editing (step S6), the annotation image editing unit 6 edits text and graphics in the annotation image.
 ワールド座標設定(ステップS7)では、アノテーション画像に被写体の点群データの任意の点の3D座標を与える。
 より具体的には、ワールド座標設定部7は、AR表示装置1のオペレータの指示に従って、点群データの複数の点のうちのいずれかの点を選択し、選択した点の3D座標を、アノテーション画像に対応付ける。
In the world coordinate setting (step S7), 3D coordinates of an arbitrary point of the point cloud data of the subject are given to the annotation image.
More specifically, the world coordinate setting unit 7 selects any one of a plurality of points in the point cloud data in accordance with an instruction from the operator of the AR display device 1, and uses the 3D coordinates of the selected point as an annotation. Associate with an image.
 透視投影(ステップS8)では、透視投影部8が、3D座標のアノテーション画像を2D座標に投射する。
 より具体的には、透視投影部8は、例えば、下記の式1に示す射影変換により、アノテーション画像の三次元座標である(X,Y,Z)を、投影像の座標(u,v)に変換する。式1において、[R|t]は、3Dセンサ22の位置である。また、「R」は3Dセンサ22の向き等を表す回転行列であり、「t」は3Dセンサ22の座標を表す並進ベクトルである。また、式1の「A」は3Dセンサ22の内部パラメータの固定値である。
In perspective projection (step S8), the perspective projection unit 8 projects an annotation image of 3D coordinates onto 2D coordinates.
More specifically, the perspective projection unit 8 converts (X, Y, Z), which are the three-dimensional coordinates of the annotation image, to the coordinates (u, v) of the projection image, for example, by projective transformation shown in Equation 1 below. Convert to In Equation 1, [R | t] is the position of the 3D sensor 22. “R” is a rotation matrix that represents the orientation of the 3D sensor 22, and “t” is a translation vector that represents the coordinates of the 3D sensor 22. Further, “A” in Expression 1 is a fixed value of an internal parameter of the 3D sensor 22.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 AR重畳(ステップS9)では、AR重畳部9が、RGB画像にアノテーション画像の投影像を重畳する。 In AR superimposition (step S9), the AR superimposing unit 9 superimposes the projection image of the annotation image on the RGB image.
 表示(ステップS10)では、表示部10が、AR重畳(ステップS9)の重畳結果を表示する。 In the display (step S10), the display unit 10 displays the overlay result of the AR overlay (step S9).
***実施の形態の効果の説明***
 以上のように、本実施の形態によれば、被写体の3D座標である点群データにアノテーション画像をマッピングすることで、任意の3Dセンサの位置に追随したアノテーションの投影像をRGB画像に重畳したARを実現できる。
*** Explanation of the effect of the embodiment ***
As described above, according to the present embodiment, the annotation image is mapped to the point cloud data that is the 3D coordinates of the subject, and the projected image of the annotation following the position of the arbitrary 3D sensor is superimposed on the RGB image. AR can be realized.
実施の形態2.
***構成の説明***
 図3は、本実施の形態に係るAR編集装置15の機能構成例を示す。
 本実施の形態に係るAR編集装置15も、データ処理装置の例である。また、本実施の形態に係るAR編集装置15により行われる処理も、データ処理方法及びデータ処理プログラムの例に相当する。
 なお、AR編集装置15のハードウェア構成例は、実施の形態1に係るAR表示装置1と同様に、図7に示す通りである。
Embodiment 2. FIG.
*** Explanation of configuration ***
FIG. 3 shows a functional configuration example of the AR editing device 15 according to the present embodiment.
The AR editing device 15 according to the present embodiment is also an example of a data processing device. The processing performed by the AR editing device 15 according to the present embodiment also corresponds to an example of a data processing method and a data processing program.
Note that the hardware configuration example of the AR editing device 15 is as shown in FIG. 7, similarly to the AR display device 1 according to the first embodiment.
 図3のAR編集装置15では、図1のAR表示装置1の構成から透視投影部8、AR重畳部9及び表示部10を削除している。
 一方、図3のAR編集装置15では、図1のAR表示装置1の構成に、画像特徴点抽出部11、AR用データ出力部12及びAR用データ13が追加されている。
 画像特徴点抽出部11、AR用データ出力部12は、プログラムにより実現され、このプログラムは、図7のCPU21により実行される。
In the AR editing device 15 of FIG. 3, the perspective projection unit 8, the AR superimposing unit 9, and the display unit 10 are deleted from the configuration of the AR display device 1 of FIG.
On the other hand, in the AR editing device 15 of FIG. 3, an image feature point extraction unit 11, an AR data output unit 12, and an AR data 13 are added to the configuration of the AR display device 1 of FIG.
The image feature point extraction unit 11 and the AR data output unit 12 are realized by a program, which is executed by the CPU 21 in FIG.
 画像特徴点抽出部11は、RGB画像を解析して、RGB画像の画像特徴点を抽出する。画像特徴点は、RGB画像の主に不連続点に存在する。図10の各点は、画像特徴点を示す。画像特徴点抽出部11は、例えば、Harris法、KTK法、Canny法、ゼロ交差点法、弛緩法、Hough変換、動的輪郭法、レベルセット法等により画像特徴点を抽出する。
 AR用データ13は、画像特徴点のワールド座標系の3D座標が記録されたデータである。
 AR用データ出力部12は、AR用データ13をAR編集装置15の外部に出力する。
 図3において、画像入力部2、RGB画像生成部3、点群データ生成部4、アノテーション画像入力部5、アノテーション画像編集部6は、実施の形態1と同様であるため、説明を省略する。
 本実施の形態では、ワールド座標設定部7は、実施の形態1と同様に、点群データの複数の点の中からいずれかの点を選択し、選択した点に設定されている三次元座標をアノテーション画像に対応付ける。更に、ワールド座標設定部7は、点群データの複数の点の中から画像特徴点に相当する点を抽出し、抽出した点に設定されている三次元座標を画像特徴点に対応付ける。
The image feature point extraction unit 11 analyzes the RGB image and extracts image feature points of the RGB image. Image feature points exist mainly at discontinuous points in the RGB image. Each point in FIG. 10 represents an image feature point. The image feature point extraction unit 11 extracts image feature points by, for example, the Harris method, the KTK method, the Canny method, the zero crossing method, the relaxation method, the Hough transform, the dynamic contour method, the level set method, and the like.
The AR data 13 is data in which 3D coordinates in the world coordinate system of image feature points are recorded.
The AR data output unit 12 outputs the AR data 13 to the outside of the AR editing device 15.
In FIG. 3, the image input unit 2, the RGB image generation unit 3, the point cloud data generation unit 4, the annotation image input unit 5, and the annotation image editing unit 6 are the same as those in the first embodiment, and thus description thereof is omitted.
In the present embodiment, as in the first embodiment, the world coordinate setting unit 7 selects any point from a plurality of points in the point cloud data, and the three-dimensional coordinates set for the selected point. Is associated with the annotation image. Further, the world coordinate setting unit 7 extracts a point corresponding to the image feature point from a plurality of points of the point cloud data, and associates the three-dimensional coordinates set to the extracted point with the image feature point.
 以下では、主に実施の形態1との違いを説明する。以下で説明していない事項は、実施の形態1と同じである。 Hereinafter, differences from the first embodiment will be mainly described. Matters not described below are the same as those in the first embodiment.
***動作の説明***
 次に、図3に基づき、本実施の形態に係るAR編集装置15の動作を説明する。
 なお、図3の画像入力部2、RGB画像生成部3、点群データ生成部4、アノテーション画像入力部5、アノテーション画像編集部6の動作は図1と同じであるため、説明を省略する。
*** Explanation of operation ***
Next, the operation of the AR editing device 15 according to the present embodiment will be described based on FIG.
The operations of the image input unit 2, RGB image generation unit 3, point cloud data generation unit 4, annotation image input unit 5, and annotation image editing unit 6 in FIG. 3 are the same as those in FIG.
 画像特徴点抽出部11は、RGB画像の画像特徴点を抽出し、抽出した画像特徴点をワールド座標設定部7に入力する。 The image feature point extraction unit 11 extracts image feature points of the RGB image, and inputs the extracted image feature points to the world coordinate setting unit 7.
 ワールド座標設定部7は、実施の形態1と同様に、アノテーション画像編集部6からアノテーション画像を取得し、点群データ生成部4から点群データを取得する。そして、ワールド座標設定部7は、実施の形態1と同様に、点群データの複数の点の中からいずれかの点を選択し、選択した点に設定されている三次元座標をアノテーション画像に対応付ける。以下では、アノテーション画像に対応付けられた三次元座標を第1の三次元座標という。更に、ワールド座標設定部7は、画像特徴点抽出部11から画像特徴点を取得し、点群データの複数の点の中から、取得した画像特徴点に相当する点を抽出し、抽出した点に設定されている三次元座標を画像特徴点に対応付ける。以下では、画像特徴点に対応付けられた三次元座標を第2の三次元座標という。ワールド座標設定部7は、第1の三次元座標と第2の三次元座標をAR用データ13としてAR用データ出力部12に入力する。 The world coordinate setting unit 7 acquires an annotation image from the annotation image editing unit 6 and acquires point cloud data from the point cloud data generation unit 4 as in the first embodiment. Then, as in the first embodiment, the world coordinate setting unit 7 selects one of a plurality of points in the point cloud data, and uses the three-dimensional coordinates set for the selected point as an annotation image. Associate. Hereinafter, the three-dimensional coordinates associated with the annotation image are referred to as first three-dimensional coordinates. Further, the world coordinate setting unit 7 acquires image feature points from the image feature point extraction unit 11, extracts points corresponding to the acquired image feature points from a plurality of points of the point cloud data, and extracts the extracted points. 3D coordinates set in are associated with image feature points. Hereinafter, the three-dimensional coordinates associated with the image feature points are referred to as second three-dimensional coordinates. The world coordinate setting unit 7 inputs the first three-dimensional coordinates and the second three-dimensional coordinates as AR data 13 to the AR data output unit 12.
 AR用データ出力部12は、AR用データ13をAR編集装置15の外部に出力する。 The AR data output unit 12 outputs the AR data 13 to the outside of the AR editing device 15.
 次に、本実施の形態に係るAR編集装置15の動作例を図4のフローチャートを参照して説明する。 Next, an operation example of the AR editing device 15 according to the present embodiment will be described with reference to the flowchart of FIG.
 図4の画像入力(ステップS2)、RGB画像生成(ステップS3)、点群データ生成(ステップS4)、アノテーション画像入力(ステップS5)、アノテーション画像編集(ステップS6)は、図2に示したものと同じであるため、説明を省略する。 The image input (step S2), RGB image generation (step S3), point cloud data generation (step S4), annotation image input (step S5), and annotation image editing (step S6) in FIG. 4 are those shown in FIG. Since this is the same as the above, description thereof is omitted.
 画像特徴点抽出(ステップS11)では、画像特徴点抽出部11がRGB画像から画像特徴点を抽出する。なお、画像特徴量は各画像特徴点の周辺画素の輝度(明るさ)の勾配により記述する。 In image feature point extraction (step S11), the image feature point extraction unit 11 extracts image feature points from the RGB image. The image feature amount is described by the gradient of the brightness (brightness) of the peripheral pixels of each image feature point.
 ワールド座標設定(ステップS7)では、ワールド座標設定部7が、アノテーション画像と画像特徴点のワールド座標系の3D座標(第1の三次元座標と第2の三次元座標)を記録したAR用データ13を生成する。 In the world coordinate setting (step S7), the world coordinate setting unit 7 records the 3D coordinates (first three-dimensional coordinates and second three-dimensional coordinates) of the annotation image and the world coordinate system of the image feature points. 13 is generated.
 AR用データ出力(ステップS12)では、AR用データ出力部12が、AR用データをAR編集装置15の外部に出力する。 In the AR data output (step S12), the AR data output unit 12 outputs the AR data to the outside of the AR editing device 15.
***実施の形態の効果の説明***
 以上のように、本実施の形態によれば、被写体のRGB画像から抽出した画像特徴点を3D座標である点群データにマッピングしたAR用データを、事前に画像をデータベースに蓄積することなく、また、展開画像を生成することなく、高速に生成することができる。
*** Explanation of the effect of the embodiment ***
As described above, according to the present embodiment, the AR data obtained by mapping the image feature points extracted from the RGB image of the subject to the point cloud data that is the 3D coordinates can be stored in advance in the database. Further, it can be generated at high speed without generating a developed image.
実施の形態3.
 図5は、本実施の形態に係るAR表示装置100の機能構成例を示す。
 本実施の形態に係るAR表示装置100も、データ処理装置の例である。また、本実施の形態に係るAR表示装置100により行われる処理も、データ処理方法及びデータ処理プログラムの例に相当する。
 なお、本実施の形態に係るAR表示装置100のハードウェア構成例は、実施の形態1に係るAR表示装置1と同様に、図7に示す通りである。
Embodiment 3 FIG.
FIG. 5 shows a functional configuration example of the AR display device 100 according to the present embodiment.
The AR display device 100 according to the present embodiment is also an example of a data processing device. The processing performed by the AR display device 100 according to the present embodiment also corresponds to examples of the data processing method and the data processing program.
Note that the hardware configuration example of the AR display device 100 according to the present embodiment is as shown in FIG. 7, similarly to the AR display device 1 according to the first embodiment.
 図5のAR表示装置100では、図1のAR表示装置1の構成から点群データ生成部4、アノテーション画像入力部5、アノテーション画像編集部6、ワールド座標設定部7が削除されている。
 一方、図5のAR表示装置100では、図1のAR表示装置1の構成に、画像特徴点抽出部11、位置推定部14及びAR用データ入力部16が追加されている。
 画像特徴点抽出部11、位置推定部14は、プログラムにより実現され、このプログラムは、図7のCPU21により実行される。
 また、AR用データ入力部16は、図7のキーボード/マウス29により実現される。
In the AR display device 100 of FIG. 5, the point cloud data generation unit 4, the annotation image input unit 5, the annotation image editing unit 6, and the world coordinate setting unit 7 are deleted from the configuration of the AR display device 1 of FIG.
On the other hand, in the AR display device 100 of FIG. 5, an image feature point extraction unit 11, a position estimation unit 14, and an AR data input unit 16 are added to the configuration of the AR display device 1 of FIG.
The image feature point extraction unit 11 and the position estimation unit 14 are realized by a program, and this program is executed by the CPU 21 of FIG.
The AR data input unit 16 is realized by the keyboard / mouse 29 of FIG.
 画像特徴点抽出部11は、図3に示したものと同様であり、RGB画像を解析して、RGB画像の画像特徴点を抽出する。なお、画像特徴点抽出部11により行われる動作は、画像特徴点抽出処理の例である。
 AR用データ入力部16は、AR用データ13を取得する。AR用データ13は、実施の形態2で説明したものと同じである。
 位置推定部14は、画像特徴点のワールド座標系上の3D座標とRGB画像内の2D座標(画像特徴点の3D座標の射影変換により得られる画像特徴点の2D座標)から撮影装置である3Dセンサ22の位置を推定する。つまり、位置推定部14は、画像特徴点の3D座標と、画像特徴点のRGB画像での2D座標とに基づき、3Dセンサ22がRGB画像を撮影した際の位置を推定する。なお、位置推定部14により行われる動作は、位置推定処理の例である。
The image feature point extraction unit 11 is the same as that shown in FIG. 3, analyzes the RGB image, and extracts image feature points of the RGB image. The operation performed by the image feature point extraction unit 11 is an example of image feature point extraction processing.
The AR data input unit 16 acquires the AR data 13. The AR data 13 is the same as that described in the second embodiment.
The position estimation unit 14 is a 3D imaging device based on 3D coordinates of image feature points in the world coordinate system and 2D coordinates in RGB images (2D coordinates of image feature points obtained by projective transformation of 3D coordinates of image feature points). The position of the sensor 22 is estimated. That is, the position estimation unit 14 estimates the position when the 3D sensor 22 captures an RGB image based on the 3D coordinates of the image feature points and the 2D coordinates of the image feature points in the RGB image. The operation performed by the position estimation unit 14 is an example of position estimation processing.
 以下では、主に実施の形態1との違いを説明する。以下で説明していない事項は、実施の形態1と同じである。 Hereinafter, differences from the first embodiment will be mainly described. Matters not described below are the same as those in the first embodiment.
***動作の説明***
 次に、図5に基づき、本実施の形態に係るAR表示装置100の動作を説明する。
 なお、図5の画像入力部2、RGB画像生成部3、透視投影部8、AR重畳部9、表示部10の動作は図1と同じであるため、説明を省略する。また、画像特徴点抽出部11の動作は図3と同じであるため、説明を省略する。
*** Explanation of operation ***
Next, the operation of the AR display device 100 according to the present embodiment will be described with reference to FIG.
The operations of the image input unit 2, the RGB image generation unit 3, the perspective projection unit 8, the AR superimposing unit 9, and the display unit 10 in FIG. 5 are the same as those in FIG. The operation of the image feature point extraction unit 11 is the same as that in FIG.
 AR用データ入力部16は、AR用データ13を透視投影部8と位置推定部14に入力する。
 位置推定部14は、画像特徴点のワールド座標系上の3D座標とRGB画像内の2D座標から3Dセンサ22の位置を推定し、推定した3Dセンサ22位置を透視投影部8に入力する。
The AR data input unit 16 inputs the AR data 13 to the perspective projection unit 8 and the position estimation unit 14.
The position estimation unit 14 estimates the position of the 3D sensor 22 from the 3D coordinates of the image feature points in the world coordinate system and the 2D coordinates in the RGB image, and inputs the estimated 3D sensor 22 position to the perspective projection unit 8.
 次に、本実施の形態に係るAR表示装置1の動作例を図6のフローチャートを参照して説明する。 Next, an operation example of the AR display device 1 according to the present embodiment will be described with reference to the flowchart of FIG.
 図6の画像入力(ステップS2)、RGB画像生成(ステップS3)、透視投影(ステップS8)、AR重畳(ステップS9)、表示(ステップS10)は、図2に示したものと同じであるため、説明を省略する。
 また、画像特徴点抽出(ステップS11)の処理は図4と同じであるため、説明を省略する。
The image input (step S2), RGB image generation (step S3), perspective projection (step S8), AR superimposition (step S9), and display (step S10) in FIG. 6 are the same as those shown in FIG. The description is omitted.
Further, the processing of image feature point extraction (step S11) is the same as that in FIG.
 AR用データ入力(ステップS16)では、AR用データ入力部16が、AR用データ13を透視投影部8に入力する。 In the AR data input (step S16), the AR data input unit 16 inputs the AR data 13 to the perspective projection unit 8.
 位置推定(ステップS14)では、位置推定部14が、RGB画像における3Dセンサ22の位置を推定する。
 具体的には、位置推定部14は、三次元座標(X,Y,Z)の画像特徴点に該当するRGB画像上の座標xを画像特徴量のマッチングで検出する。画像特徴点の三次元座標(X,Y,Z)を式1でRGB画像に再投影した座標をx^とすれば、再投影の誤差Eはxとx^のユークリッド距離d(x、x^)となる(なお、xの右斜め上に「^」がある表記は、式2のxの真上に「^」がある表記と同じである)。再投影の誤差Eは、式2を用いて求めることができる。位置推定部14は、i個の画像特徴点で誤差Eを最小にする3Dセンサ22の位置、つまり、式1の[R|t]を推定し、推定した[R|t]の値を現在の3Dセンサ22の位置とする.
In position estimation (step S14), the position estimation unit 14 estimates the position of the 3D sensor 22 in the RGB image.
Specifically, the position estimation unit 14 detects the coordinates x on the RGB image corresponding to the image feature points of the three-dimensional coordinates (X, Y, Z) by matching the image feature amounts. If the coordinates obtained by reprojecting the three-dimensional coordinates (X, Y, Z) of the image feature points onto the RGB image by Equation 1 are x ^, the reprojection error E is the Euclidean distance d (x, x ^) between x and x ^. (Note that the notation with “^” diagonally above and to the right of x is the same as the notation with “^” immediately above x in Equation 2). The reprojection error E can be obtained using Equation 2. The position estimation unit 14 estimates the position of the 3D sensor 22 that minimizes the error E with i image feature points, that is, [R | t] of Equation 1, and the estimated value of [R | t] The position of the 3D sensor 22.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 また、位置推定部14は、推定した3Dセンサ22の位置を透視投影部8に入力する。 Further, the position estimation unit 14 inputs the estimated position of the 3D sensor 22 to the perspective projection unit 8.
***実施の形態の効果の説明***
 以上のように、本実施の形態によれば、3Dセンサの位置の推定に被写体のRGB画像から抽出した画像特徴点を3D座標データである点群データにマッピングしたAR用データを用いているため、3Dセンサの位置の推定に3Dモデルの展開画像と、事前にデータベースに蓄積した3Dセンサの各位置のRGB画像をマッチングするする必要が無いので両画像が不要である。
*** Explanation of the effect of the embodiment ***
As described above, according to the present embodiment, the AR data in which the image feature points extracted from the RGB image of the subject are mapped to the point cloud data that is 3D coordinate data is used for estimating the position of the 3D sensor. Since it is not necessary to match the developed image of the 3D model with the RGB image at each position of the 3D sensor stored in the database in advance for estimation of the position of the 3D sensor, both images are unnecessary.
 以上、本発明の実施の形態について説明したが、これらの実施の形態のうち、2つ以上を組み合わせて実施しても構わない。
 あるいは、これらの実施の形態のうち、1つを部分的に実施しても構わない。
 あるいは、これらの実施の形態のうち、2つ以上を部分的に組み合わせて実施しても構わない。
 なお、本発明は、これらの実施の形態に限定されるものではなく、必要に応じて種々の変更が可能である。
***ハードウェア構成の説明***
 最後に、ハードウェア構成の補足説明を行う。
 図7に示すCPU21及びGPU25は、プロセッシングを行うIC(Integrated Circuit)である。
 図7に示すメモリ23及びフレームメモリ26は、RAM(Random Access Memory)、フラッシュメモリ、HDD(Hard Disk Drive)等である。
 また、メモリ23には、OS(Operating System)も記憶されている。
 そして、OSの少なくとも一部がCPU21により実行される。
 CPU21はOSの少なくとも一部を実行しながら、アノテーション画像編集部6、ワールド座標設定部7、透視投影部8、画像特徴点抽出部11、AR用データ出力部12、位置推定部14の機能を実現するプログラムを実行する。
 CPU21がOSを実行することで、タスク管理、メモリ管理、ファイル管理、通信制御等が行われる。
 また、アノテーション画像編集部6、ワールド座標設定部7、透視投影部8、画像特徴点抽出部11、AR用データ出力部12、位置推定部14の処理の結果を示す情報やデータや信号値や変数値が、メモリ23、又は、CPU21内のレジスタ又はキャッシュメモリに記憶される。
 また、アノテーション画像編集部6、ワールド座標設定部7、透視投影部8、画像特徴点抽出部11、AR用データ出力部12、位置推定部14及びAR重畳部9の機能を実現するプログラムは、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ブルーレイ(登録商標)ディスク、DVD等の可搬記憶媒体に記憶されてもよい。
As mentioned above, although embodiment of this invention was described, you may implement in combination of 2 or more among these embodiment.
Alternatively, one of these embodiments may be partially implemented.
Alternatively, two or more of these embodiments may be partially combined.
In addition, this invention is not limited to these embodiment, A various change is possible as needed.
*** Explanation of hardware configuration ***
Finally, a supplementary explanation of the hardware configuration will be given.
The CPU 21 and the GPU 25 illustrated in FIG. 7 are ICs (Integrated Circuits) that perform processing.
The memory 23 and the frame memory 26 illustrated in FIG. 7 are a RAM (Random Access Memory), a flash memory, an HDD (Hard Disk Drive), and the like.
The memory 23 also stores an OS (Operating System).
At least a part of the OS is executed by the CPU 21.
The CPU 21 executes functions of the annotation image editing unit 6, the world coordinate setting unit 7, the perspective projection unit 8, the image feature point extraction unit 11, the AR data output unit 12, and the position estimation unit 14 while executing at least a part of the OS. Execute the program to be realized.
When the CPU 21 executes the OS, task management, memory management, file management, communication control, and the like are performed.
Information, data, signal values, and the like indicating the processing results of the annotation image editing unit 6, the world coordinate setting unit 7, the perspective projection unit 8, the image feature point extraction unit 11, the AR data output unit 12, and the position estimation unit 14. The variable value is stored in the memory 23 or a register or cache memory in the CPU 21.
A program for realizing the functions of the annotation image editing unit 6, the world coordinate setting unit 7, the perspective projection unit 8, the image feature point extraction unit 11, the AR data output unit 12, the position estimation unit 14, and the AR superimposition unit 9 is You may memorize | store in portable storage media, such as a magnetic disk, a flexible disk, an optical disk, a compact disk, a Blu-ray (trademark) disk, and DVD.
 また、アノテーション画像編集部6、ワールド座標設定部7、透視投影部8、画像特徴点抽出部11、AR用データ出力部12、位置推定部14及びAR重畳部9の「部」を、「回路」又は「工程」又は「手順」又は「処理」に読み替えてもよい。
 また、AR表示装置1、AR編集装置15及びAR表示装置100は、それぞれ、ロジックIC(Integrated Circuit)、GA(Gate Array)、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)といった電子回路により実現されてもよい。
 なお、プロセッサ及び上記の電子回路を総称してプロセッシングサーキットリーともいう。
Further, the “parts” of the annotation image editing unit 6, the world coordinate setting unit 7, the perspective projection unit 8, the image feature point extraction unit 11, the AR data output unit 12, the position estimation unit 14, and the AR superimposition unit 9 are referred to as “circuit”. ”Or“ step ”or“ procedure ”or“ processing ”.
The AR display device 1, the AR editing device 15, and the AR display device 100 are respectively a logic IC (Integrated Circuit), a GA (Gate Array), an ASIC (Application Specific Integrated Circuit), and an FPGA (Field-Programmable Grating). It may be realized by an electronic circuit.
The processor and the electronic circuit are also collectively referred to as a processing circuit.
 1 AR表示装置、2 画像入力部、3 RGB画像生成部、4 点群データ生成部、5 アノテーション画像入力部、6 アノテーション画像編集部、7 ワールド座標設定部、8 透視投影部、9 AR重畳部、10 表示部、11 画像特徴点抽出部、12 AR用データ出力部、13 AR用データ、14 位置推定部、15 AR編集装置、16 AR用データ入力部、21 CPU、22 3Dセンサ、23 メモリ、25 GPU、26 フレームメモリ、27 RAMDAC、28 モニタ、29 キーボード/マウス、50 グラフィックス、51 テキスト、100 AR表示装置。 1 AR display device, 2 image input unit, 3 RGB image generation unit, 4 point cloud data generation unit, 5 annotation image input unit, 6 annotation image editing unit, 7 world coordinate setting unit, 8 perspective projection unit, 9 AR superimposition unit 10, display unit, 11 image feature point extraction unit, 12 AR data output unit, 13 AR data, 14 position estimation unit, 15 AR editing device, 16 AR data input unit, 21 CPU, 22 3D sensor, 23 memory 25 GPU, 26 frame memory, 27 RAMDAC, 28 monitor, 29 keyboard / mouse, 50 graphics, 51 text, 100 AR display.

Claims (11)

  1.  物体の三次元形状が表される、それぞれに三次元座標が設定されている複数の点で構成される点群データを取得する点群データ取得部と、
     前記点群データの前記複数の点の中から、前記物体の撮影画像に含まれる画像特徴点に相当する点を抽出し、抽出した点に設定されている三次元座標を前記画像特徴点に対応付ける対応付け部とを有するデータ処理装置。
    A point cloud data acquisition unit for acquiring point cloud data composed of a plurality of points, each of which represents a three-dimensional shape of an object, each of which is set with a three-dimensional coordinate;
    A point corresponding to the image feature point included in the captured image of the object is extracted from the plurality of points of the point cloud data, and the three-dimensional coordinates set for the extracted point are associated with the image feature point. A data processing apparatus having an association unit.
  2.  前記対応付け部は、
     前記点群データの前記複数の点の中からいずれかの点を選択し、選択した点に設定されている三次元画像を、前記物体の撮影画像に重畳されるアノテーション画像に対応付ける請求項1に記載のデータ処理装置。
    The association unit
    The point cloud data is selected from any of the plurality of points, and a three-dimensional image set for the selected point is associated with an annotation image superimposed on a captured image of the object. The data processing apparatus described.
  3.  物体の三次元形状が表される、それぞれに三次元座標が設定されている複数の点で構成される点群データを取得する点群データ取得部と、
     前記点群データの前記複数の点の中からいずれかの点を選択し、選択した点に設定されている三次元画像を、前記物体の撮影画像に重畳されるアノテーション画像に対応付ける対応付け部とを有するデータ処理装置。
    A point cloud data acquisition unit for acquiring point cloud data composed of a plurality of points, each of which represents a three-dimensional shape of an object, each of which is set with a three-dimensional coordinate;
    An association unit that selects any one of the plurality of points of the point cloud data and associates a three-dimensional image set to the selected point with an annotation image to be superimposed on the captured image of the object; A data processing apparatus.
  4.  物体の撮影画像を解析して、前記物体の撮影画像に含まれる画像特徴点を抽出する画像特徴点抽出部と、
     前記画像特徴点の三次元座標と、前記画像特徴点の前記撮影画像での二次元座標とに基づき、前記撮影画像を撮影した撮影装置の前記撮影画像を撮影した際の位置を推定する位置推定部とを有するデータ処理装置。
    An image feature point extraction unit that analyzes a captured image of the object and extracts image feature points included in the captured image of the object;
    Position estimation for estimating a position when the photographed image of the photographing device that photographed the photographed image is photographed based on the three-dimensional coordinates of the image feature point and the two-dimensional coordinates of the image feature point in the photographed image. A data processing apparatus.
  5.  前記位置推定部は、
     前記画像特徴点の三次元座標と、前記画像特徴点の三次元座標の射影変換により得られる、前記画像特徴点の前記撮影画像での二次元座標とに基づき、前記撮影装置の前記撮影画像を撮影した際の位置を推定する請求項3に記載のデータ処理装置。
    The position estimation unit
    Based on the three-dimensional coordinates of the image feature points and the two-dimensional coordinates in the captured image of the image feature points obtained by projective transformation of the three-dimensional coordinates of the image feature points, the captured image of the imaging device is The data processing apparatus according to claim 3, wherein a position at the time of shooting is estimated.
  6.  コンピュータが、物体の三次元形状が表される、それぞれに三次元座標が設定されている複数の点で構成される点群データを取得し、
     前記コンピュータが、前記点群データの前記複数の点の中から、前記物体の撮影画像に含まれる画像特徴点に相当する点を抽出し、抽出した点に設定されている三次元座標を前記画像特徴点に対応付けるデータ処理方法。
    The computer obtains point cloud data composed of a plurality of points, each representing a three-dimensional shape of an object, each having three-dimensional coordinates,
    The computer extracts a point corresponding to an image feature point included in a captured image of the object from the plurality of points of the point cloud data, and sets the three-dimensional coordinates set for the extracted point to the image A data processing method for associating with feature points.
  7.  コンピュータが、物体の三次元形状が表される、それぞれに三次元座標が設定されている複数の点で構成される点群データを取得し、
     前記コンピュータが、前記点群データの前記複数の点の中からいずれかの点を選択し、選択した点に設定されている三次元画像を、前記物体の撮影画像に重畳されるアノテーション画像に対応付けるデータ処理方法。
    The computer obtains point cloud data composed of a plurality of points, each representing a three-dimensional shape of an object, each having three-dimensional coordinates,
    The computer selects any one of the plurality of points of the point cloud data, and associates the 3D image set to the selected point with the annotation image superimposed on the captured image of the object Data processing method.
  8.  コンピュータが、物体の撮影画像を解析して、前記物体の撮影画像に含まれる画像特徴点を抽出し、
     前記コンピュータが、前記画像特徴点の三次元座標と、前記画像特徴点の前記撮影画像での二次元座標とに基づき、前記撮影画像を撮影した撮影装置の前記撮影画像を撮影した際の位置を推定するデータ処理方法。
    The computer analyzes the captured image of the object and extracts image feature points included in the captured image of the object,
    Based on the three-dimensional coordinates of the image feature point and the two-dimensional coordinates of the image feature point in the photographed image, the computer captures the position of the photographing device that photographed the photographed image. Data processing method to estimate.
  9.  物体の三次元形状が表される、それぞれに三次元座標が設定されている複数の点で構成される点群データを取得する点群データ取得処理と、
     前記点群データの前記複数の点の中から、前記物体の撮影画像に含まれる画像特徴点に相当する点を抽出し、抽出した点に設定されている三次元座標を前記画像特徴点に対応付ける対応付け処理とをコンピュータに実行させるデータ処理プログラム。
    A point cloud data acquisition process for acquiring point cloud data composed of a plurality of points each having a three-dimensional coordinate set, in which the three-dimensional shape of the object is represented;
    A point corresponding to the image feature point included in the captured image of the object is extracted from the plurality of points of the point cloud data, and the three-dimensional coordinates set for the extracted point are associated with the image feature point. A data processing program for causing a computer to execute association processing.
  10.  物体の三次元形状が表される、それぞれに三次元座標が設定されている複数の点で構成される点群データを取得する点群データ取得処理と、
     前記点群データの前記複数の点の中からいずれかの点を選択し、選択した点に設定されている三次元画像を、前記物体の撮影画像に重畳されるアノテーション画像に対応付ける対応付け処理とをコンピュータに実行させるデータ処理プログラム。
    A point cloud data acquisition process for acquiring point cloud data composed of a plurality of points each having a three-dimensional coordinate set, in which the three-dimensional shape of the object is represented;
    An association process for selecting any one of the plurality of points of the point cloud data and associating a 3D image set for the selected point with an annotation image to be superimposed on the captured image of the object; A data processing program that causes a computer to execute.
  11.  物体の撮影画像を解析して、前記物体の撮影画像に含まれる画像特徴点を抽出する画像特徴点抽出処理と、
     前記画像特徴点の三次元座標と、前記画像特徴点の前記撮影画像での二次元座標とに基づき、前記撮影画像を撮影した撮影装置の前記撮影画像を撮影した際の位置を推定する位置推定処理とをコンピュータに実行させるデータ処理プログラム。
    Image feature point extraction processing for analyzing a captured image of an object and extracting image feature points included in the captured image of the object;
    Position estimation for estimating a position when the photographed image of the photographing device that photographed the photographed image is photographed based on the three-dimensional coordinates of the image feature point and the two-dimensional coordinates of the image feature point in the photographed image. A data processing program that causes a computer to execute processing.
PCT/JP2016/059480 2016-03-24 2016-03-24 Data processing device, data processing method, and data processing program WO2017163384A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2016/059480 WO2017163384A1 (en) 2016-03-24 2016-03-24 Data processing device, data processing method, and data processing program
JP2017548475A JP6293386B2 (en) 2016-03-24 2016-03-24 Data processing apparatus, data processing method, and data processing program
TW105117710A TW201734954A (en) 2016-03-24 2016-06-04 Data processing device, data processing method, and data processing program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/059480 WO2017163384A1 (en) 2016-03-24 2016-03-24 Data processing device, data processing method, and data processing program

Publications (1)

Publication Number Publication Date
WO2017163384A1 true WO2017163384A1 (en) 2017-09-28

Family

ID=59900048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059480 WO2017163384A1 (en) 2016-03-24 2016-03-24 Data processing device, data processing method, and data processing program

Country Status (3)

Country Link
JP (1) JP6293386B2 (en)
TW (1) TW201734954A (en)
WO (1) WO2017163384A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107918955A (en) * 2017-11-15 2018-04-17 百度在线网络技术(北京)有限公司 Augmented reality method and apparatus
JP2018169824A (en) * 2017-03-30 2018-11-01 株式会社パスコ Road facilities management support device and road facilities management support program
WO2019098318A1 (en) * 2017-11-20 2019-05-23 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Three-dimensional point group data generation method, position estimation method, three-dimensional point group data generation device, and position estimation device
JP2019212225A (en) * 2018-06-08 2019-12-12 朝日航洋株式会社 Terminal device and terminal device control method
CN113168904A (en) * 2018-11-20 2021-07-23 阿特瑞斯公司 Cloud-based radiology review and workspace sharing
WO2022044755A1 (en) * 2020-08-27 2022-03-03 パシフィックコンサルタンツ株式会社 Equipment management method, equipment management apparatus, equipment management program, and recording medium

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI642903B (en) * 2017-10-13 2018-12-01 緯創資通股份有限公司 Locating method, locator, and locating system for head-mounted display
CN110163904B (en) * 2018-09-11 2022-04-22 腾讯大地通途(北京)科技有限公司 Object labeling method, movement control method, device, equipment and storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013225245A (en) * 2012-04-23 2013-10-31 Sony Corp Image processing device, image processing method, and program
WO2014162852A1 (en) * 2013-04-04 2014-10-09 ソニー株式会社 Image processing device, image processing method and program

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5295416B1 (en) * 2012-08-01 2013-09-18 ヤフー株式会社 Image processing apparatus, image processing method, and image processing program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013225245A (en) * 2012-04-23 2013-10-31 Sony Corp Image processing device, image processing method, and program
WO2014162852A1 (en) * 2013-04-04 2014-10-09 ソニー株式会社 Image processing device, image processing method and program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIROYUKI UCHIYAMA ET AL.: "Method for Displaying Images on Urban Structures by Augmented Reality", IEICE TECHNICAL REPORT, vol. 111, no. 500, 2012, pages 141 - 146, XP055422234 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018169824A (en) * 2017-03-30 2018-11-01 株式会社パスコ Road facilities management support device and road facilities management support program
CN107918955A (en) * 2017-11-15 2018-04-17 百度在线网络技术(北京)有限公司 Augmented reality method and apparatus
WO2019098318A1 (en) * 2017-11-20 2019-05-23 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Three-dimensional point group data generation method, position estimation method, three-dimensional point group data generation device, and position estimation device
CN111373442A (en) * 2017-11-20 2020-07-03 松下电器(美国)知识产权公司 Three-dimensional point group data generation method, position estimation method, three-dimensional point group data generation device, and position estimation device
JPWO2019098318A1 (en) * 2017-11-20 2020-11-19 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 3D point cloud data generation method, position estimation method, 3D point cloud data generation device, and position estimation device
JP7325332B2 (en) 2017-11-20 2023-08-14 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 3D point cloud data generation method and 3D point cloud data generation device
JP2019212225A (en) * 2018-06-08 2019-12-12 朝日航洋株式会社 Terminal device and terminal device control method
CN113168904A (en) * 2018-11-20 2021-07-23 阿特瑞斯公司 Cloud-based radiology review and workspace sharing
EP3864663A4 (en) * 2018-11-20 2022-09-28 Arterys Inc. Cloud-based radiology commenting and workspace sharing
US11915821B2 (en) 2018-11-20 2024-02-27 Arterys Inc. Cloud-based radiology commenting and workspace sharing
WO2022044755A1 (en) * 2020-08-27 2022-03-03 パシフィックコンサルタンツ株式会社 Equipment management method, equipment management apparatus, equipment management program, and recording medium
JP2022038803A (en) * 2020-08-27 2022-03-10 パシフィックコンサルタンツ株式会社 Equipment management program, equipment management method and equipment management system

Also Published As

Publication number Publication date
JPWO2017163384A1 (en) 2018-04-05
JP6293386B2 (en) 2018-03-14
TW201734954A (en) 2017-10-01

Similar Documents

Publication Publication Date Title
JP6293386B2 (en) Data processing apparatus, data processing method, and data processing program
CN111783820B (en) Image labeling method and device
JP5094663B2 (en) Position / orientation estimation model generation apparatus, position / orientation calculation apparatus, image processing apparatus, and methods thereof
US8467596B2 (en) Method and apparatus for object pose estimation
CN104715479A (en) Scene reproduction detection method based on augmented virtuality
WO2021258579A1 (en) Image splicing method and apparatus, computer device, and storage medium
JP5538868B2 (en) Image processing apparatus, image processing method and program
CN109934873B (en) Method, device and equipment for acquiring marked image
JP2010287174A (en) Furniture simulation method, device, program, recording medium
TW202011353A (en) Method for operating a depth data processing system
WO2021017589A1 (en) Image fusion method based on gradient domain mapping
CN112712487A (en) Scene video fusion method and system, electronic equipment and storage medium
CN113379815A (en) Three-dimensional reconstruction method and device based on RGB camera and laser sensor and server
JP2010205095A (en) Three-dimensional object recognition device, three-dimensional object recognition program, and computer readable recording medium having program recorded therein
JP2019106008A (en) Estimation device, estimation method, and estimation program
JP2006113832A (en) Stereoscopic image processor and program
JP2014102805A (en) Information processing device, information processing method and program
WO2019080257A1 (en) Electronic device, vehicle accident scene panoramic image display method and storage medium
JP6341540B2 (en) Information terminal device, method and program
JP2013182416A (en) Feature amount extraction device, feature amount extraction method, and feature amount extraction program
KR100466587B1 (en) Method of Extrating Camera Information for Authoring Tools of Synthetic Contents
JP2008299670A (en) Image area extraction device and its control method, composite reality presentation system and computer program
JP2002135807A (en) Method and device for calibration for three-dimensional entry
WO2021176877A1 (en) Image processing device, image processing method, and image processing program
EL Abbadi et al. Panoramic Image Stitching Techniques Based on SURF and Singular Value Decomposition

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017548475

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895420

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16895420

Country of ref document: EP

Kind code of ref document: A1