WO2017163349A1 - Measurement device - Google Patents

Measurement device Download PDF

Info

Publication number
WO2017163349A1
WO2017163349A1 PCT/JP2016/059259 JP2016059259W WO2017163349A1 WO 2017163349 A1 WO2017163349 A1 WO 2017163349A1 JP 2016059259 W JP2016059259 W JP 2016059259W WO 2017163349 A1 WO2017163349 A1 WO 2017163349A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
period
voltage
terahertz wave
detection
Prior art date
Application number
PCT/JP2016/059259
Other languages
French (fr)
Japanese (ja)
Inventor
小林 秀樹
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2016/059259 priority Critical patent/WO2017163349A1/en
Publication of WO2017163349A1 publication Critical patent/WO2017163349A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • G01N21/3586Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation by Terahertz time domain spectroscopy [THz-TDS]

Definitions

  • the present invention relates to the technical field of a measuring apparatus that measures a specimen using electromagnetic waves such as terahertz waves.
  • the present invention has been made in view of the above-described problems, for example, and an object of the present invention is to provide a measuring apparatus capable of realizing high-speed data acquisition by a relatively simple method.
  • the measurement apparatus of the present invention is configured to apply a bias voltage and irradiate pump light, thereby emitting an electromagnetic wave pulse to the subject, and the electromagnetic wave from the subject.
  • the measurement apparatus includes an emission unit that emits an electromagnetic wave pulse to a subject, a detection unit that detects an electromagnetic wave pulse from the subject, and a detection when a bias voltage is applied and pump light is irradiated
  • a control unit that applies, to at least a part of the second period that is different from the first period, a second voltage having a reverse attribute to the first voltage.
  • the control unit continuously applies the first voltage having a predetermined voltage value (that is, the DC voltage) as the bias voltage to the emission unit during the first period. .
  • a predetermined voltage value that is, the DC voltage
  • the control unit applies a second voltage having an opposite attribute to the first voltage to the injection unit in at least a part of the second period different from the first period, thereby suppressing the life deterioration of the injection unit. be able to.
  • control unit may apply the second voltage to the emission unit such that the time average value of the bias voltage applied to the emission unit becomes zero.
  • the bipolar bias voltage is evenly applied to the emitting part, it is possible to more suitably suppress the life deterioration of the emitting part.
  • the detection unit detects an electromagnetic wave pulse from the subject by being irradiated with the probe light.
  • the measurement apparatus further includes a delay unit that changes the optical path length of the probe light and changes the detection timing of the detection unit.
  • the delay unit changes the optical path length by a length corresponding to the time waveform during the first period.
  • the delay unit is changing the optical path length of the probe light in order to generate a time waveform having a predetermined time width
  • the first voltage is continuously applied to the emission unit.
  • the electromagnetic wave pulse is continuously emitted to the specimen, and the detection unit continues to detect the electromagnetic wave pulse from the subject.
  • the measurement time can be shortened.
  • the delay unit has a rotating body in which a plurality of retroreflecting mirrors are arranged on the same circumference, and changes the optical path length of the probe light by rotating the rotating body.
  • the optical path length of the probe light can be changed relatively quickly, and as a result, the measurement time can be shortened.
  • a terahertz wave measuring device is given as an example of the measuring device of the present invention.
  • An example of the “electromagnetic wave” according to the present invention is “terahertz wave”.
  • FIG. 1 is a conceptual diagram illustrating a configuration of a terahertz wave measuring apparatus according to an embodiment.
  • the terahertz wave measuring apparatus 1 includes a laser light source 11, a terahertz (THz) wave transmitting unit 13, an optical delay unit 14, a terahertz wave receiving unit 16, and a control / arithmetic processing unit 20.
  • the terahertz wave measuring apparatus 1 is configured to be able to execute terahertz time spectroscopy using a pump-probe method in which the optical path length is changed using the optical delay unit 14.
  • the laser light source 11 can repeatedly output an ultrashort pulse laser beam of sub-picosecond order or less. During the operation of the terahertz wave measuring apparatus 1, pulse laser light emitted from the laser light source 11 is divided into pump light and probe light by the beam splitter 12.
  • the terahertz wave transmitting unit 13 includes a terahertz wave generating element (not shown) including a photoconductive antenna having a dipole antenna or the like on a semiconductor substrate formed of, for example, GaAs (Gallium Arsenide).
  • a terahertz wave generating element including a photoconductive antenna having a dipole antenna or the like on a semiconductor substrate formed of, for example, GaAs (Gallium Arsenide).
  • GaAs Gallium Arsenide
  • a gap is formed at the center of the photoconductive antenna.
  • a bias voltage is applied to the gap and the gap is irradiated with pump light, carriers are generated in the semiconductor by photoexcitation.
  • Sub-picosecond current is generated.
  • a pulsed terahertz wave having an amplitude proportional to the time derivative of the generated current is emitted.
  • the terahertz wave generated by the terahertz wave generating element is emitted from the terahertz wave transmitting unit 13 as a terahertz wave beam through, for example, a silicon collimator lens or the like (not shown).
  • the terahertz wave beam emitted from the terahertz wave transmission unit 13 is irradiated onto the target measurement object 50 via the beam splitter 15.
  • the terahertz wave beam reflected by the measurement object 50 is reflected by the beam splitter 15 and enters the terahertz wave receiving unit 16.
  • the terahertz wave receiving unit 16 includes a terahertz wave detecting element (not shown) having the same configuration as the terahertz wave generating element.
  • a terahertz wave detecting element (not shown) having the same configuration as the terahertz wave generating element.
  • the description about the detail is omitted.
  • the terahertz wave receiving unit 16 converts the generated current into a current-voltage conversion by, for example, an IV conversion unit (not shown), and uses a control / arithmetic processing unit as a detection signal of the terahertz wave reflected by the measurement target 50 20 output.
  • FIG. 2 is a plan view of the optical delay unit according to the embodiment as viewed from above.
  • the optical delay unit 14 includes a rotating body 141 and a plurality of retroreflecting mirrors 142.
  • the rotating body 141 is configured to be rotatable around a rotation axis by a driving mechanism (not shown) such as a motor, for example.
  • the plurality of retroreflecting mirrors 142 are arranged on the same circle around the rotation axis of the rotating body 141.
  • the retroreflector 142 retroreflects the probe light incident on the retroreflector 142 (that is, reflects in a direction parallel to the incident direction of the probe light).
  • FIG. 2 there are four retroreflecting mirrors 142, but the present invention is not limited to this.
  • the position of the retroreflecting mirror 142 varies with the rotation of the rotating body 141 of the optical delay unit 14.
  • the optical path length of the probe light is changed.
  • the angle of the retroreflector 142 with respect to the incident probe light changes as the rotating body 141 rotates, the period during which the retroreflector 142 can retroreflect the probe light is limited.
  • a period in which the retroreflecting mirror 142 can retroreflect the probe light in other words, a period in which the optical path length of the probe light can be changed by the optical delay unit 14 is referred to as a “mirror effective period”.
  • control / arithmetic processing unit 20 includes an optical delay unit driving / control unit 21, a data processing / display unit 22, a bias generation unit 23, and a data acquisition unit 24.
  • the optical delay unit driving / control unit 21 controls the optical delay unit 14.
  • the optical delay unit driving / control unit 21 specifies a mirror effective period based on, for example, the rotational phase of the optical delay unit 14, and outputs a signal indicating the specified mirror effective period as a bias generation unit. 21, transmit to the data acquisition unit 24 and the laser light source 11.
  • the bias generating unit 23 applies a DC bias voltage to the terahertz wave generating element of the terahertz wave transmitting unit 13. A specific description of the bias voltage will be described later.
  • the data acquisition unit 24 detects a time waveform signal caused by the terahertz wave from the detection signal output from the terahertz wave receiving unit 16.
  • the data acquisition unit 24 may detect the time waveform signal only during the period corresponding to the mirror effective period based on the signal indicating the mirror effective period.
  • the data processing / display unit 22 temporarily captures (that is, stores) the detected time waveform signal in a storage device or the like.
  • the data processing / display unit 22 generates a unique spectrum of terahertz waves reflected by the measurement object 50 or an imaging image by performing Fourier transform or the like on the captured time waveform signal. That is, a time waveform having a time width corresponding to the mirror effective period can be generated and displayed.
  • the description about the detail is omitted.
  • the terahertz wave measuring apparatus 1 shown in FIG. 1 is a reflective terahertz wave measuring apparatus, but the present invention is also applicable to a transmissive terahertz wave measuring apparatus.
  • FIG. 3 is a diagram illustrating an example of a time change of the bias voltage according to the embodiment.
  • the period t1 is the same as the mirror effective period tmir.
  • the bias generator 23 Based on the signal indicating the mirror effective period, the bias generator 23 applies a positive DC voltage (here, “+ Vb1”) as a bias voltage to the terahertz generating element only during the period t1 corresponding to the mirror effective period tmir. .
  • a positive DC voltage here, “+ Vb1”
  • the bias generator 23 applies a negative DC voltage (here, “ ⁇ Vb2”) as a bias voltage to the terahertz wave generating element only during the period t2 after the mirror effective period tmir has elapsed.
  • the period t2 is the product of the absolute value of “+ Vb1” and the period t1 (ie,
  • the laser light source 11 emits pulsed laser light only during a period corresponding to the mirror effective period tmir based on a signal indicating the mirror effective period. Accordingly, the terahertz wave generating element is irradiated with the pump light only during the period corresponding to the mirror effective period tmir. For this reason, although the bias voltage is applied to the terahertz wave generating element also in the period t2, the pump light is not irradiated, so that the terahertz wave is not radiated from the terahertz wave generating element in the period t2.
  • the bias voltage applied to the terahertz wave generating element in this embodiment is a DC voltage (that is, not a modulated sine wave voltage). For this reason, the data acquisition unit 24 only has to detect the time waveform signal caused by the terahertz wave from the detection signal output from the terahertz wave reception unit 16 for a period corresponding to the mirror effective period tmir (that is, lock-in). No detection is required).
  • the laser light source 11 may emit pulsed laser light during a period other than the mirror effective period tmir. That is, the pulse laser beam may continue to be emitted regardless of the mirror effective period tmir. Outside the mirror effective period tmir, retroreflection is impossible by the retroreflecting mirror 142, so that probe light does not enter the terahertz wave detecting element of the terahertz wave receiving unit 16, and therefore no detection signal is output from the terahertz wave receiving unit 16. . For this reason, the data acquisition unit 24 can acquire the detection signal of the terahertz wave reception unit 16 only during a period corresponding to the mirror effective period tmir.
  • the “terahertz wave transmitting unit 13”, “terahertz wave receiving unit 16”, “optical delay unit 14”, “data processing / display unit 22”, and “bias generating unit 23” according to the present embodiment are respectively included in the present invention. It is an example of the “injection unit”, “detection unit”, “delay unit”, “generation unit”, and “control unit”.
  • FIG. 4 is a diagram illustrating an example of a temporal change in the bias voltage according to the first modification.
  • the negative DC voltage ( ⁇ Vb2) is obtained after the elapse of one mirror effective period tmir as shown in FIG. It may be applied at an arbitrary timing before the start of the next mirror effective period tmir. That is, the period t3 and the period t4 change according to the period t2.
  • FIG. 5 is a diagram illustrating an example of a time change of the bias voltage according to the second modification.
  • the period t1 during which the positive DC voltage (+ Vb1) is applied is a mirror effective period as shown in FIG. It may be longer than tmir.
  • the period t2 is desirably set so that
  • ⁇ t1
  • the terahertz wave generating element is irradiated with the pump light only during the period corresponding to the mirror effective period tmir, a positive DC voltage is applied to the terahertz wave generating element even after the mirror effective period tmir has elapsed.
  • the terahertz wave is not radiated from the terahertz wave generation element after the mirror effective period tmir elapses in the period t1 (the same applies to the period t2).
  • the retroreflecting mirror 142 cannot retroreflect the probe light outside the mirror effective period tmir. Since no probe light is incident on the detection element, no detection signal is output from the terahertz wave receiving unit 16.
  • the optical delay unit 14 is a rotary optical delay device.
  • the present invention is not limited to this.
  • an optical delay device that linearly reciprocates along the incident direction of the probe light is used. May be used.
  • the period during which the optical delay unit 14 changes the optical path length within the range of the optical path length of the probe light corresponding to the time width of the time waveform to be acquired is regarded as the “mirror effective period”, and is the same as the above-described embodiment. Is performed.
  • the present invention is not limited to the above-described embodiments, and can be appropriately changed without departing from the spirit or idea of the invention that can be read from the claims and the entire specification, and a measuring apparatus with such a change can also be used. It is included in the technical scope of the present invention.
  • SYMBOLS 1 ... Terahertz wave measuring device, 11 ... Laser light source, 13 ... Terahertz wave transmission part, 14 ... Optical delay part, 16 ... Terahertz wave detection part, 20 ... Control / arithmetic processing part, 21 ... Optical delay part drive / control part, 22 ... Data processing / display unit, 23 ... Bias generation unit, 24 ... Data acquisition unit

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

A measurement device (1) is provided with an emission unit (13) that emits electromagnetic wave pulses onto a subject by having a bias voltage applied thereto and having pump light irradiated thereon, a detection unit (16) for detecting electromagnetic wave pulses from the subject, a generation unit (22) for generating an electromagnetic wave pulse time waveform on the basis of the detection data of the detection unit, and a control unit (23) for continuously applying a first voltage to the emission unit as the bias voltage during a first period during which the detection unit detects detection data and applying a second voltage that is the inverse of the first voltage to the emission unit during at least a portion of a second period that is different from the first period.

Description

測定装置measuring device
 本発明は、例えばテラヘルツ波等の電磁波を用いて検体を測定する測定装置の技術分野に関する。 The present invention relates to the technical field of a measuring apparatus that measures a specimen using electromagnetic waves such as terahertz waves.
 この種の装置として、例えばポンプ・プローブ法を用いたテラヘルツパルス分光装置が提案されている(特許文献1参照)。 As this type of device, for example, a terahertz pulse spectrometer using a pump-probe method has been proposed (see Patent Document 1).
特開2014-222157号公報JP 2014-222157 A
 特許文献1に記載の技術では、信号対雑音比(S/N比)を向上させるために、ロックインアンプが用いられている。近年、この種の装置では、データ取得の高速化が望まれている。しかしながら、データ取得の高速化を実現可能なロックインアンプを設計することは極めて困難であるという技術的問題点がある。 In the technique described in Patent Document 1, a lock-in amplifier is used to improve a signal-to-noise ratio (S / N ratio). In recent years, it has been desired to increase the speed of data acquisition in this type of apparatus. However, there is a technical problem that it is extremely difficult to design a lock-in amplifier that can realize high-speed data acquisition.
 本発明は、例えば上記問題点に鑑みてなされたものであり、比較的簡便な方法によりデータ取得の高速化を実現することができる測定装置を提供することを課題とする。 The present invention has been made in view of the above-described problems, for example, and an object of the present invention is to provide a measuring apparatus capable of realizing high-speed data acquisition by a relatively simple method.
 本発明の測定装置は、上記課題を解決するために、バイアス電圧が印加されると共にポンプ光が照射されることにより、被検体に電磁波パルスを射出する射出部と、前記被検体からの前記電磁波パルスを検出する検出部と、前記検出部の検出データに基づき、前記電磁波パルスの時間波形を生成する生成部と、前記検出部が前記検出データを検出する第1期間中に第1電圧を前記バイアス電圧として前記射出部に継続して印加し、前記第1期間とは異なる第2期間中の少なくとも一部において前記第1電圧とは逆属性の第2電圧を射出部に印加する制御部と、を備える。 In order to solve the above-described problems, the measurement apparatus of the present invention is configured to apply a bias voltage and irradiate pump light, thereby emitting an electromagnetic wave pulse to the subject, and the electromagnetic wave from the subject. A detection unit for detecting a pulse; a generation unit for generating a time waveform of the electromagnetic wave pulse based on detection data of the detection unit; and a first voltage during a first period in which the detection unit detects the detection data. A control unit that continuously applies a bias voltage to the emission unit and applies a second voltage having an attribute opposite to the first voltage to the emission unit in at least a part of a second period different from the first period; .
 本発明の作用及び他の利得は次に説明する実施するための形態から明らかにされる。 The operation and other advantages of the present invention will be clarified from the embodiments to be described below.
実施例に係るテラヘルツ波計測装置の構成を示す概念図である。It is a conceptual diagram which shows the structure of the terahertz wave measuring device which concerns on an Example. 実施例に係る光学遅延部をその上方から見た平面図である。It is the top view which looked at the optical delay part which concerns on an Example from the upper direction. 実施例に係るバイアス電圧の時間変化の一例を示す図である。It is a figure which shows an example of the time change of the bias voltage which concerns on an Example. 第1変形例に係るバイアス電圧の時間変化の一例を示す図である。It is a figure which shows an example of the time change of the bias voltage which concerns on a 1st modification. 第2変形例に係るバイアス電圧の時間変化の一例を示す図である。It is a figure which shows an example of the time change of the bias voltage which concerns on a 2nd modification.
 本発明に係る測定装置の実施形態について説明する。 Embodiments of the measuring apparatus according to the present invention will be described.
 実施形態に係る測定装置は、バイアス電圧が印加されると共にポンプ光が照射されることにより、被検体に電磁波パルスを射出する射出部と、被検体からの電磁波パルスを検出する検出部と、検出部の検出データに基づき、電磁波パルスの時間波形を生成する生成部と、検出データを検出部が検出する第1期間中に、第1電圧をバイアス電圧として射出部に継続して印加し、第1期間とは異なる第2期間中の少なくとも一部において、第1電圧とは逆属性の第2電圧を射出部に印加する制御部と、を備える。 The measurement apparatus according to the embodiment includes an emission unit that emits an electromagnetic wave pulse to a subject, a detection unit that detects an electromagnetic wave pulse from the subject, and a detection when a bias voltage is applied and pump light is irradiated A generator for generating a time waveform of the electromagnetic wave pulse based on the detection data of the unit, and a first voltage as a bias voltage continuously applied to the emitting unit during a first period in which the detection unit detects the detection data; A control unit that applies, to at least a part of the second period that is different from the first period, a second voltage having a reverse attribute to the first voltage.
 上述した特許文献1に記載の技術のように、ロックインアンプが用いられる場合、ロックイン検出に用いられる参照信号に基づいて変調された正弦波電圧がバイアス電圧として、測定期間中、射出部に印加される。 When a lock-in amplifier is used as in the technique described in Patent Document 1 described above, a sinusoidal voltage modulated based on a reference signal used for lock-in detection is used as a bias voltage in the emission unit during the measurement period. Applied.
 他方で、本実施形態に係る測定装置では、制御部は、所定の電圧値を有する(即ち、直流電圧の)第1電圧がバイアス電圧として第1期間中は継続して射出部に印加される。このため、検出部から出力される信号(即ち、検出された電磁波パルスに起因する信号)に対して、参照信号に基づく復調処理を行う必要がない(即ち、ロックインアンプは必要ない)。従って、本実施形態に係る測定装置によれば、データ取得の高速化を実現することができる。さらに、制御部は、第1期間とは異なる第2期間中の少なくとも一部において、第1電圧とは逆属性の第2電圧を射出部に印加することにより、射出部の寿命劣化を抑制することができる。 On the other hand, in the measuring apparatus according to the present embodiment, the control unit continuously applies the first voltage having a predetermined voltage value (that is, the DC voltage) as the bias voltage to the emission unit during the first period. . For this reason, it is not necessary to perform demodulation processing based on the reference signal on the signal output from the detection unit (that is, the signal resulting from the detected electromagnetic wave pulse) (that is, no lock-in amplifier is required). Therefore, according to the measuring apparatus according to the present embodiment, it is possible to realize high-speed data acquisition. Further, the control unit applies a second voltage having an opposite attribute to the first voltage to the injection unit in at least a part of the second period different from the first period, thereby suppressing the life deterioration of the injection unit. be able to.
 実施形態に係る測定装置の一態様では、制御部は、射出部に印加されるバイアス電圧の時間平均値がゼロとなるように、第2電圧を射出部に印加してもよい。 In one aspect of the measurement apparatus according to the embodiment, the control unit may apply the second voltage to the emission unit such that the time average value of the bias voltage applied to the emission unit becomes zero.
 この態様によれば、射出部に対し両極性のバイアス電圧が均等に印加されるので、射出部の寿命劣化をさらに好適に抑制することができる。 According to this aspect, since the bipolar bias voltage is evenly applied to the emitting part, it is possible to more suitably suppress the life deterioration of the emitting part.
 実施形態に係る測定装置の他の態様では、検出部は、プローブ光が照射されることにより被検体からの電磁波パルスを検出する。当該測定装置は、プローブ光の光路長を変更し、検出部による検出タイミングを変化させる遅延部を更に備える。該遅延部は、第1期間中に、光路長を時間波形に対応する長さだけ変更する。 In another aspect of the measurement apparatus according to the embodiment, the detection unit detects an electromagnetic wave pulse from the subject by being irradiated with the probe light. The measurement apparatus further includes a delay unit that changes the optical path length of the probe light and changes the detection timing of the detection unit. The delay unit changes the optical path length by a length corresponding to the time waveform during the first period.
 この態様によれば、所定の時間幅の時間波形を生成するために遅延部がプローブ光の光路長を変更している間は、第1電圧が継続して射出部に印加されることにより被検体に対して電磁波パルスが射出し続けられ、検出部は被検体からの電磁波パルスを検出し続ける。その結果、測定時間の短縮を図ることができる。 According to this aspect, while the delay unit is changing the optical path length of the probe light in order to generate a time waveform having a predetermined time width, the first voltage is continuously applied to the emission unit. The electromagnetic wave pulse is continuously emitted to the specimen, and the detection unit continues to detect the electromagnetic wave pulse from the subject. As a result, the measurement time can be shortened.
 この態様では、遅延部は、複数の再帰反射鏡が同一円周上に配置された回転体を有し、該回転体を回転させることにより、プローブ光の光路長を変更する。 In this aspect, the delay unit has a rotating body in which a plurality of retroreflecting mirrors are arranged on the same circumference, and changes the optical path length of the probe light by rotating the rotating body.
 この態様によれば、プローブ光の光路長を比較的早く変更することができ、その結果、測定時間の短縮を図ることができる。 According to this aspect, the optical path length of the probe light can be changed relatively quickly, and as a result, the measurement time can be shortened.
 本発明の測定装置に係る実施例を図面に基づいて説明する。以下の実施例では、本発明の測定装置の一例として、テラヘルツ波計測装置を挙げる。本発明に係る「電磁波」の一例として、「テラヘルツ波」を挙げる。 Embodiments according to the measuring apparatus of the present invention will be described with reference to the drawings. In the following examples, a terahertz wave measuring device is given as an example of the measuring device of the present invention. An example of the “electromagnetic wave” according to the present invention is “terahertz wave”.
 (テラヘルツ波計測装置の構成)
 実施例に係るテラヘルツ波計測装置の構成について、図1を参照して説明する。図1は、実施例に係るテラヘルツ波計測装置の構成を示す概念図である。
(Configuration of terahertz wave measuring device)
The configuration of the terahertz wave measuring apparatus according to the embodiment will be described with reference to FIG. FIG. 1 is a conceptual diagram illustrating a configuration of a terahertz wave measuring apparatus according to an embodiment.
 図1において、テラヘルツ波計測装置1は、レーザ光源11、テラヘルツ(THz)波発信部13、光学遅延部14、テラヘルツ波受信部16及び制御・演算処理部20を備えて構成されている。当該テラヘルツ波計測装置1は、光学遅延部14を用いて光路長を変更するポンプ―プローブ法によるテラヘルツ時間分光法を実行可能に構成されている。 1, the terahertz wave measuring apparatus 1 includes a laser light source 11, a terahertz (THz) wave transmitting unit 13, an optical delay unit 14, a terahertz wave receiving unit 16, and a control / arithmetic processing unit 20. The terahertz wave measuring apparatus 1 is configured to be able to execute terahertz time spectroscopy using a pump-probe method in which the optical path length is changed using the optical delay unit 14.
 レーザ光源11は、サブピコ秒オーダ以下の超短パルスレーザ光を繰り返し出力可能である。当該テラヘルツ波計測装置1の動作時に、レーザ光源11から出射されたパルスレーザ光は、ビームスプリッタ12により、ポンプ光とプローブ光とに分けられる。 The laser light source 11 can repeatedly output an ultrashort pulse laser beam of sub-picosecond order or less. During the operation of the terahertz wave measuring apparatus 1, pulse laser light emitted from the laser light source 11 is divided into pump light and probe light by the beam splitter 12.
 テラヘルツ波発信部13は、例えばGaAs(Gallium Arsenide)等により形成された半導体基板上にダイポールアンテナ等を有する光伝導アンテナを備えるテラヘルツ波発生素子(図示せず)を備えている。尚、テラヘルツ波発生素子には、公知の各種態様を適用可能であるので、その詳細についての説明は割愛する。 The terahertz wave transmitting unit 13 includes a terahertz wave generating element (not shown) including a photoconductive antenna having a dipole antenna or the like on a semiconductor substrate formed of, for example, GaAs (Gallium Arsenide). In addition, since various well-known aspects can be applied to the terahertz wave generating element, a detailed description thereof will be omitted.
 光伝導アンテナの中央部にはギャップ部が形成されており、該ギャップ部にバイアス電圧が印加された状態で、該ギャップ部にポンプ光が照射されると、光励起により半導体中にキャリアが生成され、サブピコ秒オーダの電流が発生する。この結果、発生した電流の時間微分に比例した振幅を有するパルス状のテラヘルツ波が放射される。テラヘルツ波発生素子により発生されたテラヘルツ波は、例えばシリコンコリメートレンズ等(図示せず)を介して、テラヘルツ波ビームとして、テラヘルツ波発信部13から出射される。 A gap is formed at the center of the photoconductive antenna. When a bias voltage is applied to the gap and the gap is irradiated with pump light, carriers are generated in the semiconductor by photoexcitation. Sub-picosecond current is generated. As a result, a pulsed terahertz wave having an amplitude proportional to the time derivative of the generated current is emitted. The terahertz wave generated by the terahertz wave generating element is emitted from the terahertz wave transmitting unit 13 as a terahertz wave beam through, for example, a silicon collimator lens or the like (not shown).
 当該テラヘルツ波計測装置1の動作時には、テラヘルツ波発信部13から出射されたテラヘルツ波ビームは、ビームスプリッタ15を介して、対象測定物50に照射される。該測定対象物50により反射されたテラヘルツ波ビームは、ビームスプリッタ15により反射され、テラヘルツ波受信部16に入射する。 During the operation of the terahertz wave measuring apparatus 1, the terahertz wave beam emitted from the terahertz wave transmission unit 13 is irradiated onto the target measurement object 50 via the beam splitter 15. The terahertz wave beam reflected by the measurement object 50 is reflected by the beam splitter 15 and enters the terahertz wave receiving unit 16.
 テラヘルツ波受信部16は、テラヘルツ波発生素子と同様の構成を有するテラヘルツ波検出素子(図示せず)を備えている。尚、テラヘルツ波検出素子には、公知の各種態様を適用可能であるので、その詳細についての説明は割愛する。 The terahertz wave receiving unit 16 includes a terahertz wave detecting element (not shown) having the same configuration as the terahertz wave generating element. In addition, since various well-known aspects are applicable to a terahertz wave detection element, the description about the detail is omitted.
 テラヘルツ波検出素子に、光学遅延部14を介したプローブ光が入射すると、テラヘルツ波検出素子の半導体中にキャリアが生成される。この結果、キャリアが生成された瞬間にテラヘルツ波検出素子に入射したテラヘルツ波ビームの振幅に比例した電流が発生する。テラヘルツ波受信部16は、該発生した電流を、例えばI-V変換部(図示せず)により電流電圧変換し、計測対象物50により反射されたテラヘルツ波の検出信号として、制御・演算処理部20へ出力する。 When the probe light having passed through the optical delay unit 14 is incident on the terahertz wave detection element, carriers are generated in the semiconductor of the terahertz wave detection element. As a result, a current proportional to the amplitude of the terahertz wave beam incident on the terahertz wave detection element at the moment when the carrier is generated is generated. The terahertz wave receiving unit 16 converts the generated current into a current-voltage conversion by, for example, an IV conversion unit (not shown), and uses a control / arithmetic processing unit as a detection signal of the terahertz wave reflected by the measurement target 50 20 output.
 ここで、光学遅延部14について、図2を参照して説明を加える。図2は、実施例に係る光学遅延部をその上方から見た平面図である。 Here, the optical delay unit 14 will be described with reference to FIG. FIG. 2 is a plan view of the optical delay unit according to the embodiment as viewed from above.
 図2において、光学遅延部14は、回転体141と、複数の再帰反射鏡142とを備えて構成されている。回転体141は、例えばモータ等の駆動機構(図示せず)により回転軸回りに回転可能に構成されている。 2, the optical delay unit 14 includes a rotating body 141 and a plurality of retroreflecting mirrors 142. The rotating body 141 is configured to be rotatable around a rotation axis by a driving mechanism (not shown) such as a motor, for example.
 複数の再帰反射鏡142は、回転体141の回転軸を中心とする同一円上に配置されている。再帰反射鏡142は、当該再帰反射鏡142に入射するプローブ光を再帰反射する(即ち、プローブ光の入射方向と平行な方向に反射する)。尚、図2では、再帰反射鏡142は4つであるが、これに限定されない。 The plurality of retroreflecting mirrors 142 are arranged on the same circle around the rotation axis of the rotating body 141. The retroreflector 142 retroreflects the probe light incident on the retroreflector 142 (that is, reflects in a direction parallel to the incident direction of the probe light). In FIG. 2, there are four retroreflecting mirrors 142, but the present invention is not limited to this.
 テラヘルツ波計測装置1の動作時には、光学遅延部14の回転体141の回転に伴い、再帰反射鏡142の位置が変動する。この結果、プローブ光の光路長が変更される。但し、回転体141の回転に伴い、入射するプローブ光に対する再帰反射鏡142の角度が変化するため、再帰反射鏡142が、プローブ光を再帰反射可能な期間は限られる。 During the operation of the terahertz wave measuring apparatus 1, the position of the retroreflecting mirror 142 varies with the rotation of the rotating body 141 of the optical delay unit 14. As a result, the optical path length of the probe light is changed. However, since the angle of the retroreflector 142 with respect to the incident probe light changes as the rotating body 141 rotates, the period during which the retroreflector 142 can retroreflect the probe light is limited.
 本実施例では、再帰反射鏡142がプローブ光を再帰反射可能な期間、言い換えれば、光学遅延部14によりプローブ光の光路長を変更可能な期間、を「ミラー有効期間」と称する。 In this embodiment, a period in which the retroreflecting mirror 142 can retroreflect the probe light, in other words, a period in which the optical path length of the probe light can be changed by the optical delay unit 14 is referred to as a “mirror effective period”.
 再び図1に戻り、制御・演算処理部20は、光学遅延部駆動・制御部21、データ処理・表示部22、バイアス生成部23及びデータ取得部24を備えて構成されている。 1 again, the control / arithmetic processing unit 20 includes an optical delay unit driving / control unit 21, a data processing / display unit 22, a bias generation unit 23, and a data acquisition unit 24.
 光学遅延部駆動・制御部21は、光学遅延部14を制御する。本実施例では特に、光学遅延部駆動・制御部21は、例えば光学遅延部14の回転位相等に基づいてミラー有効期間を特定し、該特定されたミラー有効期間を示す信号を、バイアス生成部21、データ取得部24及びレーザ光源11に送信する。 The optical delay unit driving / control unit 21 controls the optical delay unit 14. In this embodiment, in particular, the optical delay unit driving / control unit 21 specifies a mirror effective period based on, for example, the rotational phase of the optical delay unit 14, and outputs a signal indicating the specified mirror effective period as a bias generation unit. 21, transmit to the data acquisition unit 24 and the laser light source 11.
 バイアス生成部23は、テラヘルツ波発信部13のテラヘルツ波発生素子に、直流のバイアス電圧を印加する。尚、バイアス電圧についての具体的な説明は後述する。 The bias generating unit 23 applies a DC bias voltage to the terahertz wave generating element of the terahertz wave transmitting unit 13. A specific description of the bias voltage will be described later.
 データ取得部24は、テラヘルツ波受信部16から出力された検出信号から、テラヘルツ波に起因する時間波形信号を検波する。ここで、データ取得部24は、ミラー有効期間を示す信号に基づいて、ミラー有効期間に相当する期間だけ、時間波形信号を検波するようにしてもよい。 The data acquisition unit 24 detects a time waveform signal caused by the terahertz wave from the detection signal output from the terahertz wave receiving unit 16. Here, the data acquisition unit 24 may detect the time waveform signal only during the period corresponding to the mirror effective period based on the signal indicating the mirror effective period.
 データ処理・表示部22は、検波された時間波形信号を、一旦記憶装置等に取り込む(即ち、記憶する)。データ処理・表示部22は、取り込まれた時間波形信号に対して、フーリエ変換等を施すことにより、測定対象物50により反射されたテラヘルツ波の固有スペクトルやイメージング画像を生成する。即ち、ミラー有効期間に対応する時間幅の時間波形を生成して表示することができる。尚、テラヘルツ波に係る時間波形信号の処理については、公知の各種態様を適用可能であるので、その詳細についての説明は割愛する。 The data processing / display unit 22 temporarily captures (that is, stores) the detected time waveform signal in a storage device or the like. The data processing / display unit 22 generates a unique spectrum of terahertz waves reflected by the measurement object 50 or an imaging image by performing Fourier transform or the like on the captured time waveform signal. That is, a time waveform having a time width corresponding to the mirror effective period can be generated and displayed. In addition, about the process of the time waveform signal which concerns on a terahertz wave, since well-known various aspects are applicable, the description about the detail is omitted.
 図1に示したテラヘルツ波計測装置1は、反射型のテラヘルツ波計測装置であるが、本発明は、透過型のテラヘルツ波計測装置にも適用可能である。 The terahertz wave measuring apparatus 1 shown in FIG. 1 is a reflective terahertz wave measuring apparatus, but the present invention is also applicable to a transmissive terahertz wave measuring apparatus.
 (バイアス電圧)
 次に、テラヘルツ波発信部13のテラヘルツ波発生素子に印加されるバイアス電圧について、図3を参照して説明を加える。図3は、実施例に係るバイアス電圧の時間変化の一例を示す図である。図3において、期間t1は、ミラー有効期間tmirと同一である。
(Bias voltage)
Next, the bias voltage applied to the terahertz wave generating element of the terahertz wave transmitting unit 13 will be described with reference to FIG. FIG. 3 is a diagram illustrating an example of a time change of the bias voltage according to the embodiment. In FIG. 3, the period t1 is the same as the mirror effective period tmir.
 バイアス生成部23は、ミラー有効期間を示す信号に基づいて、ミラー有効期間tmirに相当する期間t1だけ、正の直流電圧(ここでは、“+Vb1”)をバイアス電圧として、テラヘルツ発生素子に印加する。 Based on the signal indicating the mirror effective period, the bias generator 23 applies a positive DC voltage (here, “+ Vb1”) as a bias voltage to the terahertz generating element only during the period t1 corresponding to the mirror effective period tmir. .
 バイアス生成部23は、ミラー有効期間tmir経過後、期間t2だけ、負の直流電圧(ここでは、“-Vb2”)をバイアス電圧として、テラヘルツ波発生素子に印加する。ここで、期間t2は、“+Vb1”の絶対値と期間t1との積(即ち、|Vb1|×t1)と、“-Vb2”の絶対値と期間t2との積(即ち、|Vb2|×t2)とが等しくなるように設定されることが望ましい。このように構成すれば、テラヘルツ波発生素子の寿命劣化を抑制することができる。 The bias generator 23 applies a negative DC voltage (here, “−Vb2”) as a bias voltage to the terahertz wave generating element only during the period t2 after the mirror effective period tmir has elapsed. Here, the period t2 is the product of the absolute value of “+ Vb1” and the period t1 (ie, | Vb1 | × t1) and the product of the absolute value of “−Vb2” and the period t2 (ie, | Vb2 | × It is desirable that t2) is set to be equal. If comprised in this way, lifetime deterioration of a terahertz wave generation element can be suppressed.
 尚、レーザ光源11は、ミラー有効期間を示す信号に基づいて、ミラー有効期間tmirに相当する期間だけ、パルスレーザ光を出射する。従って、ミラー有効期間tmirに相当する期間だけ、テラヘルツ波発生素子にポンプ光が照射される。このため、テラヘルツ波発生素子には、期間t2にもバイアス電圧が印加されるが、ポンプ光が照射されないので、期間t2に該テラヘルツ波発生素子からテラヘルツ波は放射されない。 The laser light source 11 emits pulsed laser light only during a period corresponding to the mirror effective period tmir based on a signal indicating the mirror effective period. Accordingly, the terahertz wave generating element is irradiated with the pump light only during the period corresponding to the mirror effective period tmir. For this reason, although the bias voltage is applied to the terahertz wave generating element also in the period t2, the pump light is not irradiated, so that the terahertz wave is not radiated from the terahertz wave generating element in the period t2.
 図3に示すように、本実施例においてテラヘルツ波発生素子に印加されるバイアス電圧は、直流電圧である(即ち、変調された正弦波電圧ではない)。このため、データ取得部24は、ミラー有効期間tmirに相当する期間だけ、テラヘルツ波受信部16から出力された検出信号から、テラヘルツ波に起因する時間波形信号を検波すればよい(即ち、ロックイン検出を行う必要はない)。 As shown in FIG. 3, the bias voltage applied to the terahertz wave generating element in this embodiment is a DC voltage (that is, not a modulated sine wave voltage). For this reason, the data acquisition unit 24 only has to detect the time waveform signal caused by the terahertz wave from the detection signal output from the terahertz wave reception unit 16 for a period corresponding to the mirror effective period tmir (that is, lock-in). No detection is required).
 または、レーザ光源11は、ミラー有効期間tmir以外の期間にも、パルスレーザ光を出射してもよい。すなわちミラー有効期間tmirに関わりなくパルスレーザ光を出射し続けてもよい。ミラー有効期間tmir以外では、再帰反射鏡142により再帰反射が不能であるため、テラヘルツ波受信部16のテラヘルツ波検出素子にプローブ光が入射しないため、テラヘルツ波受信部16からは検出信号が出力されない。このため、データ取得部24は、ミラー有効期間tmirに相当する期間だけテラヘルツ波受信部16の検出信号を取得することができる。 (技術的効果)
 本実施例では、上述の如く、ミラー有効期間tmirに、テラヘルツ波発生素子に、直流電圧がバイアス電圧として印加される。このため、ロックイン検出が行われる場合のように、変調周波数を考慮する必要がない。更に、変調周波数が用いられないので、該変調周波数の折り返しの発生も考慮する必要がない。つまり、当該テラヘルツ波計測装置1を構成する回路を設計する際に、変調周波数及びサイドバンド信号帯域を考慮する必要がない(即ち、広帯域化する必要がない)。この結果、特にロックインアンプが不要であるので回路が簡略化されると共に、コストを削減することができる。加えて、データ取得の高速化を図ることができる。
Alternatively, the laser light source 11 may emit pulsed laser light during a period other than the mirror effective period tmir. That is, the pulse laser beam may continue to be emitted regardless of the mirror effective period tmir. Outside the mirror effective period tmir, retroreflection is impossible by the retroreflecting mirror 142, so that probe light does not enter the terahertz wave detecting element of the terahertz wave receiving unit 16, and therefore no detection signal is output from the terahertz wave receiving unit 16. . For this reason, the data acquisition unit 24 can acquire the detection signal of the terahertz wave reception unit 16 only during a period corresponding to the mirror effective period tmir. (Technical effect)
In this embodiment, as described above, a DC voltage is applied as a bias voltage to the terahertz wave generating element during the mirror effective period tmir. For this reason, it is not necessary to consider the modulation frequency as in the case where lock-in detection is performed. Furthermore, since the modulation frequency is not used, it is not necessary to consider occurrence of aliasing of the modulation frequency. That is, when designing a circuit constituting the terahertz wave measuring apparatus 1, it is not necessary to consider the modulation frequency and the sideband signal band (that is, it is not necessary to widen the band). As a result, since a lock-in amplifier is not particularly required, the circuit can be simplified and the cost can be reduced. In addition, the speed of data acquisition can be increased.
 本実施例に係る「テラヘルツ波発信部13」、「テラヘルツ波受信部16」、「光学遅延部14」、「データ処理・表示部22」及び「バイアス生成部23」は、夫々、本発明に係る「射出部」、「検出部」、「遅延部」、「生成部」及び「制御部」の一例である。 The “terahertz wave transmitting unit 13”, “terahertz wave receiving unit 16”, “optical delay unit 14”, “data processing / display unit 22”, and “bias generating unit 23” according to the present embodiment are respectively included in the present invention. It is an example of the “injection unit”, “detection unit”, “delay unit”, “generation unit”, and “control unit”.
 <第1変形例>
 次に、実施例に係るテラヘルツ波計測装置1の第1変形例について、図4を参照して説明する。図4は、第1変形例に係るバイアス電圧の時間変化の一例を示す図である。
<First Modification>
Next, a first modification of the terahertz wave measuring apparatus 1 according to the embodiment will be described with reference to FIG. FIG. 4 is a diagram illustrating an example of a temporal change in the bias voltage according to the first modification.
 第1変形例では、テラヘルツ波発信部13のテラヘルツ波発生素子に印加されるバイアス電圧のうち、負の直流電圧(-Vb2)は、図4に示すように、一のミラー有効期間tmir経過後、次のミラー有効期間tmirの開始前の任意のタイミングで印加されてよい。つまり、期間t3及び期間t4は、期間t2に応じて変化する。 In the first modification, of the bias voltage applied to the terahertz wave generating element of the terahertz wave transmitting unit 13, the negative DC voltage (−Vb2) is obtained after the elapse of one mirror effective period tmir as shown in FIG. It may be applied at an arbitrary timing before the start of the next mirror effective period tmir. That is, the period t3 and the period t4 change according to the period t2.
 <第2変形例>
 次に、実施例に係るテラヘルツ波計測装置1の第2変形例について、図5を参照して説明する。図5は、第2変形例に係るバイアス電圧の時間変化の一例を示す図である。
<Second Modification>
Next, a second modification of the terahertz wave measuring apparatus 1 according to the embodiment will be described with reference to FIG. FIG. 5 is a diagram illustrating an example of a time change of the bias voltage according to the second modification.
 第2変形例では、テラヘルツ波発信部13のテラヘルツ波発生素子に印加されるバイアス電圧のうち、正の直流電圧(+Vb1)が印加される期間t1は、図5に示すように、ミラー有効期間tmirよりも長くてよい。尚、期間t2は、|Vb1|×t1=|Vb2|×t2となるように設定されることが望ましい。 In the second modification, among the bias voltages applied to the terahertz wave generating element of the terahertz wave transmission unit 13, the period t1 during which the positive DC voltage (+ Vb1) is applied is a mirror effective period as shown in FIG. It may be longer than tmir. Note that the period t2 is desirably set so that | Vb1 | × t1 = | Vb2 | × t2.
 上述の如く、ミラー有効期間tmirに相当する期間だけ、テラヘルツ波発生素子にポンプ光が照射されるようにすれば、ミラー有効期間tmir経過後も、テラヘルツ波発生素子に正の直流電圧がバイアス電圧として印加されても、期間t1のうち、ミラー有効期間tmir経過後は、テラヘルツ波発生素子からテラヘルツ波は放射されない(期間t2についても同様)。または、ミラー有効期間tmir以外の期間に、テラヘルツ波発生素子にポンプ光が照射される場合であっても、ミラー有効期間tmir以外では再帰反射鏡142がプローブ光を再帰反射できないことにより、テラヘルツ波検出素子にプローブ光が入射しないため、テラヘルツ波受信部16からは検出信号が出力されない。 As described above, if the terahertz wave generating element is irradiated with the pump light only during the period corresponding to the mirror effective period tmir, a positive DC voltage is applied to the terahertz wave generating element even after the mirror effective period tmir has elapsed. In the period t1, the terahertz wave is not radiated from the terahertz wave generation element after the mirror effective period tmir elapses in the period t1 (the same applies to the period t2). Alternatively, even if the terahertz wave generating element is irradiated with pump light during a period other than the mirror effective period tmir, the retroreflecting mirror 142 cannot retroreflect the probe light outside the mirror effective period tmir. Since no probe light is incident on the detection element, no detection signal is output from the terahertz wave receiving unit 16.
 尚、上述した実施例では、光学遅延部14として、回転型の光学遅延装置を挙げたが、これに限らず、例えばプローブ光の入射方向に沿って直線的に往復運動を行う光学遅延装置が用いられてもよい。この場合では、取得すべき時間波形の時間幅に対応するプローブ光の光路長の範囲で、光学遅延部14が光路長を変更する期間を「ミラー有効期間」とみなし、上述した実施例と同様の処理が行われる。 In the above-described embodiments, the optical delay unit 14 is a rotary optical delay device. However, the present invention is not limited to this. For example, an optical delay device that linearly reciprocates along the incident direction of the probe light is used. May be used. In this case, the period during which the optical delay unit 14 changes the optical path length within the range of the optical path length of the probe light corresponding to the time width of the time waveform to be acquired is regarded as the “mirror effective period”, and is the same as the above-described embodiment. Is performed.
 本発明は、上述した実施例に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う測定装置もまた本発明の技術的範囲に含まれるものである。 The present invention is not limited to the above-described embodiments, and can be appropriately changed without departing from the spirit or idea of the invention that can be read from the claims and the entire specification, and a measuring apparatus with such a change can also be used. It is included in the technical scope of the present invention.
 1…テラヘルツ波計測装置、11…レーザ光源、13…テラヘルツ波発信部、14…光学遅延部、16…テラヘルツ波検出部、20…制御・演算処理部、21…光学遅延部駆動・制御部、22…データ処理・表示部、23…バイアス生成部、24…データ取得部 DESCRIPTION OF SYMBOLS 1 ... Terahertz wave measuring device, 11 ... Laser light source, 13 ... Terahertz wave transmission part, 14 ... Optical delay part, 16 ... Terahertz wave detection part, 20 ... Control / arithmetic processing part, 21 ... Optical delay part drive / control part, 22 ... Data processing / display unit, 23 ... Bias generation unit, 24 ... Data acquisition unit

Claims (4)

  1.  バイアス電圧が印加されると共にポンプ光が照射されることにより、被検体に電磁波パルスを射出する射出部と、
     前記被検体からの前記電磁波パルスを検出する検出部と、
     前記検出部の検出データに基づき、前記電磁波パルスの時間波形を生成する生成部と、
     前記検出部が前記検出データを検出する第1期間中に第1電圧を前記バイアス電圧として前記射出部に継続して印加し、前記第1期間とは異なる第2期間中の少なくとも一部において前記第1電圧とは逆属性の第2電圧を前記射出部に印加する制御部と、
     を備える測定装置。
    An emission unit that emits an electromagnetic wave pulse to a subject by applying a bias voltage and irradiating pump light; and
    A detection unit for detecting the electromagnetic wave pulse from the subject;
    Based on detection data of the detection unit, a generation unit that generates a time waveform of the electromagnetic wave pulse,
    During the first period in which the detection unit detects the detection data, the first voltage is continuously applied to the emission unit as the bias voltage, and at least in a second period different from the first period. A control unit for applying a second voltage having a reverse attribute to the first voltage to the injection unit;
    A measuring apparatus comprising:
  2.  前記制御部は、前記射出部に印加されるバイアス電圧の時間平均値がゼロとなるように、前記第2電圧を前記射出部に印加することを特徴とする請求項1に記載の測定装置。 2. The measuring apparatus according to claim 1, wherein the control unit applies the second voltage to the emission unit such that a time average value of a bias voltage applied to the emission unit becomes zero.
  3.  前記検出部は、プローブ光が照射されることにより前記被検体からの前記電磁波パルスを検出し、
     前記プローブ光の光路長を変更し、前記検出部による検出タイミングを変化させる遅延部を更に備え、
     前記遅延部は、前記第1期間中に、前記光路長を前記時間波形に対応する長さだけ変更する
     ことを特徴とする請求項1又は2に記載の測定装置。
    The detection unit detects the electromagnetic wave pulse from the subject by being irradiated with probe light,
    Further comprising a delay unit that changes an optical path length of the probe light and changes a detection timing by the detection unit;
    The measuring apparatus according to claim 1, wherein the delay unit changes the optical path length by a length corresponding to the time waveform during the first period.
  4.  前記遅延部は、複数の再帰反射鏡が同一円周上に配置された回転体を有し、前記回転体を回転させることにより、前記プローブ光の光路長を変更することを特徴とする請求項3に記載の測定装置。 The delay unit includes a rotating body in which a plurality of retroreflecting mirrors are arranged on the same circumference, and changes the optical path length of the probe light by rotating the rotating body. 3. The measuring device according to 3.
PCT/JP2016/059259 2016-03-23 2016-03-23 Measurement device WO2017163349A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/059259 WO2017163349A1 (en) 2016-03-23 2016-03-23 Measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/059259 WO2017163349A1 (en) 2016-03-23 2016-03-23 Measurement device

Publications (1)

Publication Number Publication Date
WO2017163349A1 true WO2017163349A1 (en) 2017-09-28

Family

ID=59900060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059259 WO2017163349A1 (en) 2016-03-23 2016-03-23 Measurement device

Country Status (1)

Country Link
WO (1) WO2017163349A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5286785A (en) * 1976-01-14 1977-07-19 Nippon Telegr & Teleph Corp <Ntt> Operating method of double planar stripe form semiconductor laser
WO2003028173A1 (en) * 2001-09-21 2003-04-03 Nikon Corporation Terahertz light apparatus
JP2014106127A (en) * 2012-11-28 2014-06-09 Pioneer Electronic Corp Terahertz wave measurement instrument and method
JP2014149258A (en) * 2013-02-04 2014-08-21 Pioneer Electronic Corp Retroreflection device and terahertz wave measurement device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5286785A (en) * 1976-01-14 1977-07-19 Nippon Telegr & Teleph Corp <Ntt> Operating method of double planar stripe form semiconductor laser
WO2003028173A1 (en) * 2001-09-21 2003-04-03 Nikon Corporation Terahertz light apparatus
JP2014106127A (en) * 2012-11-28 2014-06-09 Pioneer Electronic Corp Terahertz wave measurement instrument and method
JP2014149258A (en) * 2013-02-04 2014-08-21 Pioneer Electronic Corp Retroreflection device and terahertz wave measurement device

Similar Documents

Publication Publication Date Title
US8237514B2 (en) Quantum interference device, atomic oscillator, and magnetic sensor
US20140204388A1 (en) Optical measuring apparatus
US11106030B2 (en) Optical distance measurement system using solid state beam steering
JP2014106127A (en) Terahertz wave measurement instrument and method
JP2011522216A5 (en)
JP2004527765A5 (en)
JP6581081B2 (en) Inspection apparatus and magneto-optic crystal arrangement method
EP2500687A2 (en) Structured light projector
US20070151343A1 (en) Method and device for opto-acoustical imagery
JP6081287B2 (en) Electromagnetic wave measuring device
JP6714665B2 (en) Device and method for light detection and ranging
WO2018008070A1 (en) Inspecting device and method
WO2017163349A1 (en) Measurement device
TWI769229B (en) Semiconductor inspection equipment
US20180120084A1 (en) Optical image measurement apparatus and optical image measurement method
JP6538198B2 (en) Measuring apparatus and method
US9360420B2 (en) Apparatus and method of measuring terahertz wave
JP2010223586A (en) Terahertz spectrometric instrument and method for terahertz spectrometry
JP6337543B2 (en) Shape measuring apparatus and shape measuring method
US11733385B1 (en) Broadening the measurement range of optical shutter-gated light detection and ranging (LIDAR)
US20220018945A1 (en) Readout architecture for fmcw lidar
US20210396713A1 (en) Systems and methods for detecting resonant frequency of mems mirrors
JP2016114371A (en) Terahertz wave measurement device
JP6501307B2 (en) Heterodyne interference device
JP2006250848A (en) High speed light delay producing method in light coherence tomography and phase modulated light coherence tomography apparatus

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895385

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16895385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP