WO2017163318A1 - Inspection device - Google Patents

Inspection device Download PDF

Info

Publication number
WO2017163318A1
WO2017163318A1 PCT/JP2016/059074 JP2016059074W WO2017163318A1 WO 2017163318 A1 WO2017163318 A1 WO 2017163318A1 JP 2016059074 W JP2016059074 W JP 2016059074W WO 2017163318 A1 WO2017163318 A1 WO 2017163318A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection apparatus
data
opening
fourier plane
light shielding
Prior art date
Application number
PCT/JP2016/059074
Other languages
French (fr)
Japanese (ja)
Inventor
良光 川越
英利 西山
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Priority to PCT/JP2016/059074 priority Critical patent/WO2017163318A1/en
Publication of WO2017163318A1 publication Critical patent/WO2017163318A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects

Definitions

  • the present invention relates to the optical field.
  • the present invention relates to an optical system for forming a Fourier plane and an inspection apparatus using the same.
  • defects exemplified by foreign matters and scratches on the surface of a semiconductor substrate (wafer) cause defects such as wiring insulation defects and short circuits, and also cause capacitor insulation defects and gate oxide film breakdown. . Therefore, it is important to detect the defect and manage the cause of the defect in managing the yield.
  • a so-called inspection device is used for such defect detection.
  • the inspection apparatus may form a so-called Fourier plane when detecting light from the wafer.
  • Patent document 1 is mentioned as an inspection apparatus which forms a Fourier surface.
  • Patent Document 1 discloses using a beam splitter and detectors 51 and 52 arranged on the optical axis of the imaging lens 22b in order to obtain a Fourier image.
  • Patent Document 1 no consideration is given to the point that such an optical system tends to be expensive.
  • the present invention is characterized in that Fourier plane data is obtained by dividing and acquiring information on a Fourier plane as a plurality of units and combining the plurality of units.
  • One feature of the present invention is that a sensor for defect detection is used for Fourier plane data.
  • the present invention is characterized in that Fourier plane data is obtained by using a light shielding member having an opening formed therein and a sensor for detecting a defect, which is movable with respect to the Fourier plane.
  • an expensive optical system dedicated to Fourier plane observation becomes unnecessary.
  • FIG. 1 is a diagram for explaining the first embodiment (overall view of the apparatus). Mechanism of interference fringe generation on the Fourier plane (schematic diagram) The figure explaining interception of interference light by a slide board
  • FIG. 6 is a diagram for explaining Example 2 (flexible slide corresponding to Fourier peak width).
  • FIG. 4 is a diagram for explaining a fourth embodiment (application of a slide to oblique illumination and epi-illumination) Diagram for explaining Example 6 (continued)
  • Diagram for explaining Example 5 (defect S / N improvement by Pattern Noise distribution analysis)
  • FIG. 6 is a diagram illustrating Example 6 (abnormality diagnosis of an optical system) Diagram for explaining Example 6 (continued)
  • FIG. 1 (a) is an overall view of the apparatus of this embodiment.
  • the illumination system 100 supplies laser light to the wafer 102.
  • the wafer 102 is attracted and fixed to the stage 101.
  • the stage 101 can move in the x and y directions.
  • the inspection apparatus of this embodiment has a plurality of optical systems for collecting scattered light.
  • One of them can be expressed as Top Channel for detecting light scattered in a relatively narrow first angle range (narrow angle scattered light), and the other is a second angle range wider than the first angle range.
  • It can be expressed as a Side-Channel for detecting light scattered by (a wide-angle scattered light).
  • the Top channel includes an objective lens 103, a Fourier lens 104, an imaging lens 106, a line sensor 107, and an A / D converter 108.
  • the Side-Channel includes an objective lens 109, a Fourier lens 110, an imaging lens 112, a line sensor 113, and an A / D converter 114.
  • the light scattered from the wafer 102 is collected by the objective lens 103.
  • the condensed light becomes a Fourier plane 105 by the Fourier lens 104 and enters the imaging lens 106.
  • the scattered light is combined with the line sensor 107 by the imaging lens 106.
  • the scattered image obtained by the line sensor 107 is sent as an electrical signal to the A / D converter 108 and converted into digital data.
  • a similar operation is performed for Side Channel.
  • a comparison operation for defect detection is performed by the CPU 115 on at least one digital data of Top Channel,, and Side Channel, and as a result, a defect is detected.
  • the CPU 115 obtains an elongated image (swath image) from the left end to the right end of the wafer.
  • a first swath image is obtained from the Top Channel, and a second swath image is obtained from the Side Channel.
  • the CPU 115 obtains a part of the A-Chip from the first swath. This portion can be referred to as a frame image 117. Further, the CPU 115 obtains an image (frame image 118) at substantially the same location as the frame image 117 from the adjacent B-Chip. The CPU 115 performs a comparison operation on the frame image 117 and the frame image 118 to obtain a first defect image 119. The CPU 115 performs the same process on the second swath image. More specifically, a comparison operation is performed on the frame image 120 from the A-chip and the frame image 121 from the B-chip to obtain a second defect image 122.
  • Defect determination is performed by integrating the first defect image 119 and the second defect image 122.
  • An example of the integration process includes obtaining a logical sum and a logical product for the first defect image 119 and the second defect image 122.
  • FIG. 2 is a diagram illustrating that when the periodic pattern 201 is irradiated with laser light, interference fringes 204 are generated therefrom.
  • the illumination system 100 forms a substantially linear illumination area on the wafer. When such an illumination region is formed in the periodic pattern 201 on the wafer, scattered light 203 is generated from individual patterns in the periodic pattern in the irradiation surface 202.
  • the scattered light 203 is overlapped and strengthened at a point in a certain space, so that the interference light 204 is formed.
  • the interference light 204 is formed at a hemispherical position from the irradiation surface 202, and as a result, interference fringes 205 are formed.
  • the interference fringes 205 can be expressed as a circular arc with the irradiation surface 202 as a base point.
  • a plurality of interference fringes 205 can be formed depending on the wavelength of the light to be irradiated, the period of the irradiated pattern, and the number of the patterns.
  • the interference fringe 205 is imaged as a first interference fringe on the Fourier plane 105 by the objective lens 103 and the Fourier lens 104 of the Top Channel. Similarly, an image is formed as a second interference fringe on the Fourier plane 111 by the objective lens 109 and the Fourier lens 110 of the side channel.
  • FIG. 3 is an explanation of an example in which the interference light (or interference fringes) described above is blocked by a blocking plate (hereinafter referred to as “Rod”), and minute defects on the periodic pattern can be detected.
  • Rod a blocking plate
  • the laser is irradiated to the periodic pattern 201 and the minute defect 312 on the periodic pattern 201.
  • Interference light from the periodic pattern 201 and scattered light from the minute defect 312 pass through the objective lens 103, the Fourier lens 104, the Fourier plane 105, and the imaging lens 106, and the image is coupled to the line sensor 107.
  • the scattered light of the micro defect is swung by the interference light, and the signal of the micro defect becomes difficult to see.
  • a flat plate (hereinafter referred to as a “slid plate”) 301 having an elongated groove (hereinafter referred to as a “slid”) 302 is moved substantially parallel to the Fourier plane 105.
  • the slit 302 comes to the position of the interference fringe 206 on the Fourier plane 105, the interference light passes through the slit plate and reaches the coupling lens 106 and the line sensor 107, and the image is formed on the line sensor 107 for defect detection. Will be.
  • the slide plate 301 is moved and the slit 302 is not present at the position of the interference fringe 206 or other interference fringes, the interference light is blocked by the slit plate 301 and the interference light is not observed on the line sensor 107.
  • a slide includes the meaning of a notch, for example, and may be called a slit.
  • the slit 302 is formed so as to intersect with the pixel arrangement direction of the line sensor 107 when viewed from the z direction (the optical axis direction of the top channel), more specifically, substantially orthogonally.
  • the slide plate 301 is moved along the projection 311 of the optical axis of the oblique illumination light onto the wafer, more specifically, parallel to the projection 311. This description can be made by replacing the projection 311 with a linear illumination region or the Y direction.
  • a profile 304 in which the moving distance of the sliding plate 301 and the observed interference light are plotted is obtained.
  • the positions of peaks 305, 306, and 307 in the profile represent the positions of interference fringes in the Fourier plane 105. It is possible to know at which position the interference fringe exists by the profile 304.
  • These operations can also be expressed as obtaining Fourier plane data by dividing Fourier plane information into a plurality of units and combining the plurality of units.
  • Rods 308, 309, and 310 that block interference light are arranged at the positions of peaks 305, 306, and 307, respectively. Then, the light that enters the coupling lens 105 is only scattered light of minute defects, and the scattered image combined by the line sensor 107 can clearly display the scattered light of minute defects.
  • FIG. 3 describes the Top channel, but the same description can be applied to the Side channel.
  • Rod can be called a spatial filter or an optical filter.
  • At least one of the first swath image and the second swath image in FIG. 1 is obtained by applying the method of FIG.
  • the movement of the sliding plate 301 is performed by a moving mechanism exemplified by a motor or the like.
  • the movement distance of the sliding plate 301 is stored by the CPU 115 or another control device storing the output of the movement mechanism in its internal memory.
  • the position of the sliding plate 301 may not exactly coincide with the position of the Fourier plane 105.
  • the slide 302 can be expressed as a hole or an opening. When the slide 302 captures a specific interference fringe, it is desirable that other portions be blocked. Therefore, it is desirable that the slide 301 includes a portion wider than the Fourier plane 105.
  • the slide plate 301 can be expressed as an optical element that allows a specific component of the Fourier plane 105 to pass therethrough. As another expression, the slide plate 301 can be expressed by the slit 302 as information having Fourier plane information as a predetermined unit.
  • the apparatus can be configured at low cost.
  • Example 2 The width of the interference light varies depending on the shape and number of periodic patterns and the laser wavelength to be irradiated.
  • the present embodiment takes this point into consideration and is characterized in that the width of the slide is variable.
  • FIG. 4 is a diagram for explaining this embodiment.
  • the sliding plate 401 of the present embodiment includes a plurality of stacked sliding plates, more specifically, two sliding plates 402 and 403 that are close enough not to contact each other.
  • a slit 404 is formed on each of the slide plates 402 and 403.
  • the slide of the slide plate 401 is expressed as a combination of two slides 404.
  • FIG. 5 is a diagram for explaining this embodiment.
  • FIG. 5A shows the slide (fixed slide) of the first embodiment
  • FIG. 5B shows the slide (flexible slide) of the second embodiment.
  • the slide of the present invention may include the slides of FIGS. 5 (c) and 5 (d).
  • the slide may be a set of a plurality of holes 502 (multi-spot slide) as shown in FIG.
  • the holes 502 may be formed at equal intervals or may be formed at different intervals.
  • the saddle of the slide may include a spherical surface portion 503 as shown in FIG.
  • FIG. 6 is a diagram for explaining this embodiment.
  • illumination light may be supplied so that a normal line of a wafer and its optical axis form a predetermined incident angle (>> 0 °). Such an illumination method is called oblique illumination. .
  • illumination light may be supplied so that the normal line of the wafer substantially coincides with its optical axis, and such an illumination method is called epi-illumination or vertical illumination.
  • oblique illumination is represented by reference numeral 602
  • epi-illumination is represented by reference numeral 603.
  • the epi-illumination 603 is reflected by the mirror 604 and supplied to the wafer via the objective lens 103.
  • the Fourier plane 105 includes a first portion 605 that is a combination of both the first interference fringe and the second interference fringe, a second portion 606 that includes only one component, and a second portion 606 that includes only the other component. 3 parts 607 will be included.
  • FIG. 7 is a diagram illustrating an example of shielding the interference pattern in the case of FIG. FIG. 7 can be described as an application of FIG.
  • the sliding plate 301 is moved relative to the Fourier plane 105 in the x direction on the Fourier plane by using a moving device such as a motor as in the first embodiment.
  • the interference fringes in the x direction are imaged on the line sensor 107 for defect detection.
  • the observed data is recorded in a memory inside the CPU 115 as a plot diagram 702.
  • the slide plate 701 having a slit orthogonal to the x direction on the wafer is moved using a moving device such as a motor along the y direction orthogonal to the x direction on the Fourier plane,
  • the interference fringes in the y direction are imaged on the line sensor 107 for defect detection.
  • the observed data is recorded in a memory inside the CPU 115 as a plot diagram 702.
  • the slits of the slit plate 701 are formed so as to extend toward the pixel arrangement direction of the line sensor 107 when viewed from the z direction, more specifically, to be substantially parallel.
  • the CPU 115 or other control device combines the plot diagrams 702 and 703 to create an intensity distribution 704 on the Fourier plane.
  • An intensity distribution 704 represents the intensity distribution of light in the x and y directions on the Fourier plane. Therefore, if Rods 308, 309, 310, 705, 706, 707, and 708 are arranged so as to shield the first portion 709, the second portion 710, and the third portion 711, a complicated pattern or a plurality of illumination lights can be obtained. Even in the case of supplying, it is possible to block unwanted interference light.
  • Example 5 In addition to the memory pattern, a relatively complicated logic pattern 801 may be formed on the wafer as shown in FIG. As shown in FIG. 8A, in the logic pattern, pattern noise 803 due to the logic pattern is generated in addition to the scattered light 804 from the defect 802. This embodiment is an embodiment that takes this logic pattern into consideration.
  • a slide plate 701 having a slide is used as shown in FIG. More specifically, the slide plate 701 is arranged so that the slide extends in the direction of the projection 805 on the wafer with oblique illumination.
  • the direction in which the slide extends substantially coincides with the pixel arrangement direction of the line sensor 107.
  • the sliding plate 701 moves in a direction intersecting with the projection 805 as viewed from the Z direction, more specifically, in a direction substantially orthogonal to the sliding plate 701.
  • the combined scattered light of the scattered light 804 and the pattern noise 803 resulting from the logic pattern passes through the objective lens 103, the Fourier lens 104, and the coupling lens 106, and is imaged on the line sensor 107.
  • An image obtained by moving the slide plate 701 is a two-dimensional image 805 shown in FIG.
  • the distance in the x direction can be obtained from the size of the slide, and the size in the y direction can be obtained from the moving distance of the slide plate 701.
  • Such a two-dimensional image 805 includes a stronger portion 806 than other portions.
  • This portion 806 shows pattern noise 803. Therefore, by disposing Rod 309 in this portion 806, the signal from the defect is more emphasized, and the image quality is improved from the state of FIG. 9C to the state of FIG. 9D.
  • the simple flow of this embodiment is expressed as FIG.
  • Example 6 In this embodiment, a Fourier plane image is applied to abnormality diagnosis of an optical system.
  • an alumina chip 901 whose surface is uniformly roughened is used.
  • the illumination system 100 supplies oblique illumination to the alumina tip 901 to form a substantially linear illumination region extending in the Y direction.
  • illumination is supplied to the alumina chip 901 and the slide plate 701 is used. More specifically, the slide plate 701 is arranged so that the slide extends in the direction of the projection 807 onto the wafer with oblique illumination. The direction in which the slide extends substantially coincides with the pixel arrangement direction of the line sensor 107.
  • the sliding plate 701 moves in a direction intersecting with the projection 805 as viewed from the Z direction, more specifically, in a direction substantially orthogonal to the sliding plate 701.
  • Scattered light from the alumina chip 901 will be scattered evenly.
  • the scattered light evenly scattered is collected by the objective lens 103 and the Fourier lens 104, and the light that has passed through the slit 701 passes through the imaging lens 106 and forms an image on the line sensor 107.
  • the CPU 115 obtains at least one of the digital data represented by FIGS. 11 (a) and 11 (b).
  • the data 902 indicates that both the illumination system 100 and the Top channel are normal.
  • Data 903 indicates that at least one of the illumination system 100 and the Top Channel exists.
  • the peak of intensity existing at the center in the data 902 has moved to the position 904 in the data 903, it can be determined that there is distortion in the optical axis of the Top channel.
  • the brightness is reduced as indicated by reference numeral 905
  • a geometric image exemplified by the dark line 906 is obtained, it can be determined that the pixel of the line sensor 107 is abnormal.
  • normal data such as data 902 is stored in the memory in the CPU 115, and the abnormality of the optical system is determined by comparing the data obtained by using the alumina 901 with the data 902. Can do.
  • This comparison may be performed by at least one of a processor exemplified by the CPU 115 and an operator.
  • This determination flow can also be expressed as the flow in FIG.
  • the present invention is not limited to the embodiments.
  • the disclosure of the present specification can be widely applied to optical devices that form a Fourier plane.
  • the apparatus of the present embodiment is a dark field type optical apparatus that detects a scattered light image
  • the disclosure of the present specification can be applied to a so-called bright field type optical apparatus, a combination of a dark field type and a bright field type. .
  • Top channel can also be applied to Side Channel.
  • the positional relationship between the slide and the illumination area can be set arbitrarily.
  • An arbitrary direction can be adopted as the moving direction of the slide plate.
  • Arbitrary shapes can be set for the shape of the slide and the slide plate.
  • Slid board is only an example.
  • the present invention can be expressed as one feature of dividing a Fourier plane into a plurality of units (which can be referred to as sections or segments) and then synthesizing the segments to obtain Fourier plane data. it can.
  • elements that do not move relative to the Fourier plane there are a shutter array including a plurality of openings and a shutter capable of blocking any opening, and a liquid crystal shutter array capable of controlling the transmittance of any section.
  • the selective propagation of part of the light on the Fourier plane due to the movement of the slit plate relative to the Fourier plane can be expressed as a division of the Fourier plane.
  • the selectively transmitted information of the Fourier plane may be referred to as one unit for explanation. Further, this unit is detected, and data exemplified in at least one of the profile 304, the intensity distribution 704, FIG. 9 (a), FIG. 9 (b), FIG. 11 (a), and FIG. 11 (b) is obtained.
  • This can be expressed as, for example, synthesis. This description can also be applied to opening / closing an arbitrary shutter and changing the transmittance of an arbitrary liquid crystal.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Patent Document 1 discloses the use of a beam splitter and detectors 51, 52 disposed on the optical axis of an image formation lens 22b to obtain a Fourier image. However, Patent Document 1 does not take into consideration the tendency of this type of optical system to be expensive. One characteristic of the present invention is obtaining Fourier plane data by obtaining Fourier plane information so as to be divided into a plurality of units and combining the plurality of units. One characteristic of the present invention is using a defect detection sensor for the Fourier plane data. One characteristic of the present invention is obtaining the Fourier plane data using the defect detection sensor and a light-blocking member that is movable in relation to a Fourier plane and has an opening formed therein. One effect of the present invention is making an expensive optical system for Fourier plane observation unnecessary.

Description

検査装置Inspection device
 本発明は光学分野に関する。特に本発明はフーリエ面を形成する光学系、及びそれを使用した検査装置に関する。 The present invention relates to the optical field. In particular, the present invention relates to an optical system for forming a Fourier plane and an inspection apparatus using the same.
 半導体製造工程では、半導体基板(ウエハー)表面の異物や傷に例示される欠陥は、配線の絶縁不良や短絡等の不良原因になり、キャパシタの絶縁不良やゲート酸化膜などの破壊原因にもなる。よって、欠陥を検出し、その発生原因を管理することは歩留まりを管理する上で重要である。このような欠陥検出に使用されるのがいわゆる検査装置である。 In semiconductor manufacturing processes, defects exemplified by foreign matters and scratches on the surface of a semiconductor substrate (wafer) cause defects such as wiring insulation defects and short circuits, and also cause capacitor insulation defects and gate oxide film breakdown. . Therefore, it is important to detect the defect and manage the cause of the defect in managing the yield. A so-called inspection device is used for such defect detection.
 検査装置はウエハーからの光を検出する場合に、いわゆるフーリエ面を形成する場合がある。フーリエ面を形成する検査装置としては特許文献1が挙げられる。 The inspection apparatus may form a so-called Fourier plane when detecting light from the wafer. Patent document 1 is mentioned as an inspection apparatus which forms a Fourier surface.
特開2012-073097号公報JP 2012-073097
 特許文献1ではフーリエ像を得るために結像レンズ22bの光軸上に配置したビームスプリッタ、検出器51、及び52を使用することを開示する。しかし、特許文献1ではこのような光学系が高額となりがちある点については配慮がされていない。 Patent Document 1 discloses using a beam splitter and detectors 51 and 52 arranged on the optical axis of the imaging lens 22b in order to obtain a Fourier image. However, in Patent Document 1, no consideration is given to the point that such an optical system tends to be expensive.
 本発明はフーリエ面の情報を複数の単位として分割して取得し、複数の単位を合成することで、フーリエ面のデータを得ること1つの特徴とする。 The present invention is characterized in that Fourier plane data is obtained by dividing and acquiring information on a Fourier plane as a plurality of units and combining the plurality of units.
 本発明は、フーリエ面のデータに欠陥検出用のセンサーを使用することを1つの特徴とする。 One feature of the present invention is that a sensor for defect detection is used for Fourier plane data.
 本発明は、フーリエ面に対して移動可能であり、開口が形成された遮光部材、及び欠陥検出用のセンサを使用してフーリエ面のデータを得ることを1つの特徴とする。 The present invention is characterized in that Fourier plane data is obtained by using a light shielding member having an opening formed therein and a sensor for detecting a defect, which is movable with respect to the Fourier plane.
 本発明によれば、例えば高額なフーリエ面観察専用の光学系が不要となる。 According to the present invention, for example, an expensive optical system dedicated to Fourier plane observation becomes unnecessary.
実施例1を説明する図(装置全体図)FIG. 1 is a diagram for explaining the first embodiment (overall view of the apparatus). フーリエ面での干渉縞発生のメカニズム(略図)Mechanism of interference fringe generation on the Fourier plane (schematic diagram) スリッド板による干渉光の遮断を説明する図The figure explaining interception of interference light by a slide board 実施例2を説明する図(フーリエピーク幅に対応したフレキシブルスリッド)FIG. 6 is a diagram for explaining Example 2 (flexible slide corresponding to Fourier peak width). 実施例3を説明する図Diagram for explaining the third embodiment 実施例4を説明する図(斜方照明、落射照明へのスリッドの応用)FIG. 4 is a diagram for explaining a fourth embodiment (application of a slide to oblique illumination and epi-illumination) 実施例6を説明する図(続き)Diagram for explaining Example 6 (continued) 実施例5を説明する図(Pattern Noise分布解析による欠陥S/N改善)Diagram for explaining Example 5 (defect S / N improvement by Pattern Noise distribution analysis) 実施例5を説明する図(続き)Diagram for explaining Example 5 (continued) 実施例6を説明する図(光学系の異常診断)FIG. 6 is a diagram illustrating Example 6 (abnormality diagnosis of an optical system) 実施例6を説明する図(続き)Diagram for explaining Example 6 (continued)
 以下、本発明の実施形態を図面を用いて説明する。以降の説明は例示である。その開示内容の任意の一部の削除、他の一部との置換、組合せも本明細書の開示の範囲である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description is an example. Deletion of any part of the disclosure, substitution with another part, and combination are also within the scope of the disclosure of this specification.
 図1(a)は本実施例の装置全体図である。照明系100はウエハー102にレーザ光を供給する。 FIG. 1 (a) is an overall view of the apparatus of this embodiment. The illumination system 100 supplies laser light to the wafer 102.
 ウエハー102は、ステージ101に吸着され固定されている。ステージ101はx、y方向に移動できる。 The wafer 102 is attracted and fixed to the stage 101. The stage 101 can move in the x and y directions.
 本実施例の検査装置は散乱光を集光するための複数の光学系を有する。その1つは比較的狭い第1の角度範囲で散乱した光(狭角度散乱光)を検出するためのTop Channelと表現でき、もう1つは第1の角度範囲よりも広い第2の角度範囲で散乱した光(広角度散乱光)を検出するためのSide Channelと表現することができる。Top Channelは対物レンズ103、フーリエレンズ104、結像レンズ106、ラインセンサー107、及びA/D変換器108を含む。Side Channelは対物レンズ109、フーリエレンズ110、結像レンズ112、ラインセンサー113、及びA/D変換器114を含む。 The inspection apparatus of this embodiment has a plurality of optical systems for collecting scattered light. One of them can be expressed as Top Channel for detecting light scattered in a relatively narrow first angle range (narrow angle scattered light), and the other is a second angle range wider than the first angle range. It can be expressed as a Side-Channel for detecting light scattered by (a wide-angle scattered light). The Top channel includes an objective lens 103, a Fourier lens 104, an imaging lens 106, a line sensor 107, and an A / D converter 108. The Side-Channel includes an objective lens 109, a Fourier lens 110, an imaging lens 112, a line sensor 113, and an A / D converter 114.
 ウエハー102から散乱した光は対物レンズ103によって集光される。集光された光はフーリエレンズ104によってフーリエ面105となり、結像レンズ106に入る。結像レンズ106によって、その散乱光がラインセンサー107に散乱イメージを結合させる。ラインセンサー107で得られた散乱イメージは、電気信号としてA/D変換器108に送られ、デジタルデータに変換される。同様の動作がSide Channelに対しても行われる。Top Channel, 及びSide Channelの少なくとも1つのデジタルデータに対して、CPU115よって欠陥検出のための比較演算が行われ、その結果欠陥が検出される。 The light scattered from the wafer 102 is collected by the objective lens 103. The condensed light becomes a Fourier plane 105 by the Fourier lens 104 and enters the imaging lens 106. The scattered light is combined with the line sensor 107 by the imaging lens 106. The scattered image obtained by the line sensor 107 is sent as an electrical signal to the A / D converter 108 and converted into digital data. A similar operation is performed for Side Channel. A comparison operation for defect detection is performed by the CPU 115 on at least one digital data of Top Channel,, and Side Channel, and as a result, a defect is detected.
 ここで、CPU115による信号処理について説明する。図1(b)に示すようにステージ101が矢印116の方向に移動することによって、CPU115ではウエハーの左端から右端へ至る細長い画像(スワス画像)が得られる。Top Channelからは第1のスワス画像が得られ、Side Channelからは第2のスワス画像が得られることになる。 Here, signal processing by the CPU 115 will be described. As shown in FIG. 1B, when the stage 101 moves in the direction of the arrow 116, the CPU 115 obtains an elongated image (swath image) from the left end to the right end of the wafer. A first swath image is obtained from the Top Channel, and a second swath image is obtained from the Side Channel.
 CPU115は第1のスワスからA-Chipの一部を得る。この一部はフレームイメージ117と称呼し得る。さらにCPU115はその隣のB-Chipからフレームイメージ117と実質的に同じ場所の画像(フレームイメージ118)を得る。CPU115はフレームイメージ117、及びフレームイメージ118に対して比較演算を行い第1の欠陥画像119を得る。CPU115は同様の処理を第2のスワス画像に対して行う。より具体的にはA-chipからのフレームイメージ120、及びB-chipからのフレームイメージ121に対して比較演算を行い第2の欠陥画像122を得る。 The CPU 115 obtains a part of the A-Chip from the first swath. This portion can be referred to as a frame image 117. Further, the CPU 115 obtains an image (frame image 118) at substantially the same location as the frame image 117 from the adjacent B-Chip. The CPU 115 performs a comparison operation on the frame image 117 and the frame image 118 to obtain a first defect image 119. The CPU 115 performs the same process on the second swath image. More specifically, a comparison operation is performed on the frame image 120 from the A-chip and the frame image 121 from the B-chip to obtain a second defect image 122.
 第1の欠陥画像119、第2の欠陥画像122を統合処理することによって欠陥判定が行われる。統合処理の一例としては、第1の欠陥画像119、第2の欠陥画像122に対する論理和、論理積を得ることが含まれる。 Defect determination is performed by integrating the first defect image 119 and the second defect image 122. An example of the integration process includes obtaining a logical sum and a logical product for the first defect image 119 and the second defect image 122.
 図2は、周期パターン201にレーザー光が照射された場合、そこから干渉縞204が発生することを説明する図である。照明系100はウエハー上に実質的に線状の照明領域を形成する。このような照明領域がウエハー上の周期パターン201に形成されると、その照射面202内にある周期パターン内の個々のパターンから散乱光203が発生する。 FIG. 2 is a diagram illustrating that when the periodic pattern 201 is irradiated with laser light, interference fringes 204 are generated therefrom. The illumination system 100 forms a substantially linear illumination area on the wafer. When such an illumination region is formed in the periodic pattern 201 on the wafer, scattered light 203 is generated from individual patterns in the periodic pattern in the irradiation surface 202.
 ここで光路差が波長λであった場合、ある空間上の点において散乱光203が重なり合い強め合った結果、干渉光204が形成される。この干渉光204は照射面202から半球状の位置に形成され、その結果干渉縞205が形成される。この干渉縞205は照射面202を基点とした円錐の弧として表現できる。この干渉縞205は、照射する光の波長と照射されたパターンの周期とその本数によって、複数形成されうる。干渉縞205はTop Channelの対物レンズ103、フーリエレンズ104によって、フーリエ面105に第1の干渉縞として結像される。同様にSide Channelの対物レンズ109、フーリエレンズ110によって、フーリエ面111に第2の干渉縞として結像される。 Here, when the optical path difference is the wavelength λ, the scattered light 203 is overlapped and strengthened at a point in a certain space, so that the interference light 204 is formed. The interference light 204 is formed at a hemispherical position from the irradiation surface 202, and as a result, interference fringes 205 are formed. The interference fringes 205 can be expressed as a circular arc with the irradiation surface 202 as a base point. A plurality of interference fringes 205 can be formed depending on the wavelength of the light to be irradiated, the period of the irradiated pattern, and the number of the patterns. The interference fringe 205 is imaged as a first interference fringe on the Fourier plane 105 by the objective lens 103 and the Fourier lens 104 of the Top Channel. Similarly, an image is formed as a second interference fringe on the Fourier plane 111 by the objective lens 109 and the Fourier lens 110 of the side channel.
 図3は、前述の干渉光(または、干渉縞)を、遮断板(以下、Rodと呼ぶ)によって、遮断し、その周期パターン上にある微小欠陥を検出可能とする例の説明である。 FIG. 3 is an explanation of an example in which the interference light (or interference fringes) described above is blocked by a blocking plate (hereinafter referred to as “Rod”), and minute defects on the periodic pattern can be detected.
 周期パターン201とその上にある微小欠陥312にレーザが照射されたとする。周期パターン201からの干渉光、及び微小欠陥312からの散乱光は対物レンズ103、フーリエレンズ104、フーリエ面105、結像レンズ106を通過し、ラインセンサー107にはそのイメージが結合される。 Suppose that the laser is irradiated to the periodic pattern 201 and the minute defect 312 on the periodic pattern 201. Interference light from the periodic pattern 201 and scattered light from the minute defect 312 pass through the objective lens 103, the Fourier lens 104, the Fourier plane 105, and the imaging lens 106, and the image is coupled to the line sensor 107.
 その際、干渉光によって、微小欠陥の散乱光がうずもれてしまい、その微小欠陥のシグナルが見えにくくなる。 At that time, the scattered light of the micro defect is swung by the interference light, and the signal of the micro defect becomes difficult to see.
 そこで、細長い溝(以下、スリッド)302をあけた平面板(以下、スリッド板)301を、フーリエ面105に対して実質的に平行に移動させる。フーリエ面105において干渉縞206位置にスリッド302が来ると、干渉光がスリッド板を通過し、結合レンズ106、ラインセンサー107に到達し、その像は欠陥検出用のラインセンサー107上に結像されることになる。なお、スリッド板301を移動させ、干渉縞206や他の干渉縞の位置にスリッド302がない場合、干渉光はスリッド板301によって遮断され、干渉光はラインセンサー107上では観測されない。スリッド板301によって、フーリエ面の情報は遮断部分と透過部分とに分割(セグメント化)されることになる。さらに、スリッド板301を移動させ、次の干渉縞の位置にスリッド302が来ると、再び、干渉光の像はラインセンサー107上に結像されることになる。なお、スリッドは例えば切れ込みという意味を含み、スリットと称呼される場合もある。 Therefore, a flat plate (hereinafter referred to as a “slid plate”) 301 having an elongated groove (hereinafter referred to as a “slid”) 302 is moved substantially parallel to the Fourier plane 105. When the slit 302 comes to the position of the interference fringe 206 on the Fourier plane 105, the interference light passes through the slit plate and reaches the coupling lens 106 and the line sensor 107, and the image is formed on the line sensor 107 for defect detection. Will be. When the slide plate 301 is moved and the slit 302 is not present at the position of the interference fringe 206 or other interference fringes, the interference light is blocked by the slit plate 301 and the interference light is not observed on the line sensor 107. The information on the Fourier plane is divided (segmented) into a blocking portion and a transmitting portion by the sliding plate 301. Further, when the slide plate 301 is moved and the slit 302 comes to the position of the next interference fringe, the interference light image is formed again on the line sensor 107. In addition, a slide includes the meaning of a notch, for example, and may be called a slit.
 本実施例では、スリッド302はz方向(Top Channelの光軸方向)から見た場合にラインセンサー107の画素配列方向と交差、より具体的には実質的に直交するよう形成される。スリッド板301は斜方照明光の光軸のウエハーへの投影311に沿って、より具体的には投影311と平行に移動される。なお、この説明は投影311を線状の照明領域やY方向へ置き換えて説明し得る。 In this embodiment, the slit 302 is formed so as to intersect with the pixel arrangement direction of the line sensor 107 when viewed from the z direction (the optical axis direction of the top channel), more specifically, substantially orthogonally. The slide plate 301 is moved along the projection 311 of the optical axis of the oblique illumination light onto the wafer, more specifically, parallel to the projection 311. This description can be made by replacing the projection 311 with a linear illumination region or the Y direction.
 このようなフーリエ面105に対するスリッド板301の相対的な移動によって、スリッド板301の移動距離と観測された干渉光をプロットしたプロファイル304が得られる。プロファイル内のピーク305、306、及び307の位置がフーリエ面105内での干渉縞の位置を表している。プロファイル304によってどの位置に干渉縞が存在しているかを知ることが出来る。これらの動作はフーリエ面の情報を複数の単位に分割して、前記複数の単位を合成することで、フーリエ面のデータを得ると表現することもできる。 By such relative movement of the sliding plate 301 with respect to the Fourier plane 105, a profile 304 in which the moving distance of the sliding plate 301 and the observed interference light are plotted is obtained. The positions of peaks 305, 306, and 307 in the profile represent the positions of interference fringes in the Fourier plane 105. It is possible to know at which position the interference fringe exists by the profile 304. These operations can also be expressed as obtaining Fourier plane data by dividing Fourier plane information into a plurality of units and combining the plurality of units.
 そして、ピーク305、306、及び307の位置に、干渉光を遮断するRod308,309,310を配置する。すると、結合レンズ105内に入ってくる光は微小欠陥の散乱光のみとなり、ラインセンサー107で結合された散乱イメージは微小欠陥の散乱光をクリアに表示することが出来る。 Then, Rods 308, 309, and 310 that block interference light are arranged at the positions of peaks 305, 306, and 307, respectively. Then, the light that enters the coupling lens 105 is only scattered light of minute defects, and the scattered image combined by the line sensor 107 can clearly display the scattered light of minute defects.
 図3はTop channelについて説明したものであるが、同様の説明はSide Channelに対しても適用し得る。Rodは空間フィルタや光学フィルタと称呼し得る。図1の第1のスワス画像、及び第2のスワス画像の少なくとも1つは図3の手法を適用して得られたものである。 FIG. 3 describes the Top channel, but the same description can be applied to the Side channel. Rod can be called a spatial filter or an optical filter. At least one of the first swath image and the second swath image in FIG. 1 is obtained by applying the method of FIG.
 スリッド板301の移動はモータ等に例示される移動機構によって行われる。スリッド板301の移動距離の記憶は移動機構の出力をCPU115や他の制御装置がその内部のメモリに記憶することで行われる。 The movement of the sliding plate 301 is performed by a moving mechanism exemplified by a motor or the like. The movement distance of the sliding plate 301 is stored by the CPU 115 or another control device storing the output of the movement mechanism in its internal memory.
 スリッド板301の位置はフーリエ面105の位置と厳密に一致していなくても良い。スリッド302は穴や開口と表現できる。スリッド302が特定の干渉縞を取り込む際、他の部分は遮断された方が望ましい。よって、スリッド301はフーリエ面105より広い部分を含む方が望ましい。スリッド板301はフーリエ面105の特定の成分を通過させる光学素子であると表現することができる。その他の表現としては、スリッド板301はスリッド302によってフーリエ面の情報を所定単位とするものであると表現できる。 The position of the sliding plate 301 may not exactly coincide with the position of the Fourier plane 105. The slide 302 can be expressed as a hole or an opening. When the slide 302 captures a specific interference fringe, it is desirable that other portions be blocked. Therefore, it is desirable that the slide 301 includes a portion wider than the Fourier plane 105. The slide plate 301 can be expressed as an optical element that allows a specific component of the Fourier plane 105 to pass therethrough. As another expression, the slide plate 301 can be expressed by the slit 302 as information having Fourier plane information as a predetermined unit.
 本実施例によれば、スリッド板と欠陥検出用のセンサーによってフーリエ面の信号を得るので、フーリエ面を観察する専用の光学系が不要となる。その結果、装置を安価に構成することが可能となる。 According to the present embodiment, since the signal of the Fourier plane is obtained by the slide plate and the defect detection sensor, a dedicated optical system for observing the Fourier plane becomes unnecessary. As a result, the apparatus can be configured at low cost.
 次に実施例2について説明する。干渉光の幅は周期パターンの形状やその本数、照射するレーザ波長によって変化する。本実施例はこの点に配慮したものであり、スリッドの幅を可変としたことを特徴とする。図4は本実施例を説明する図である。 Next, Example 2 will be described. The width of the interference light varies depending on the shape and number of periodic patterns and the laser wavelength to be irradiated. The present embodiment takes this point into consideration and is characterized in that the width of the slide is variable. FIG. 4 is a diagram for explaining this embodiment.
 本実施例のスリッド板401は積層された複数のスリッド板、より具体的には接触しない程度に近接した2枚のスリッド板402、403を含む。スリッド板402、及び403にはそれぞれスリッド404が形成されている。スリッド板401のスリッドは2つのスリッド404の合成として表現される。モータ等の移動機構によって、スリッド402、403のうち少なくとも片方をもう片方に対して移動させることによって、スリッド404の合成の幅を変更することができる。このようなスリッド板401によって干渉光406から干渉光407へ変化した場合でも、任意の干渉光のみを通過させることが可能となる。 The sliding plate 401 of the present embodiment includes a plurality of stacked sliding plates, more specifically, two sliding plates 402 and 403 that are close enough not to contact each other. A slit 404 is formed on each of the slide plates 402 and 403. The slide of the slide plate 401 is expressed as a combination of two slides 404. By moving at least one of the slides 402 and 403 with respect to the other by a moving mechanism such as a motor, the width of synthesis of the slide 404 can be changed. Even when the interference light 406 is changed from the interference light 406 to the interference light 407 by such a slide plate 401, only arbitrary interference light can be passed.
 次に実施例3について説明する。スリッドの種類は実施例1、及び2に限定されない。図5は本実施例を説明する図である。図5(a)は実施例1のスリッド(フィックスドスリッド)であり、図5(b)は実施例2のスリッド(フレキシブルスリッド)である。さらに、本発明のスリッドは、図5(c)(d)のスリッドを含みえる。 Next, Example 3 will be described. The kind of the slide is not limited to the first and second embodiments. FIG. 5 is a diagram for explaining this embodiment. FIG. 5A shows the slide (fixed slide) of the first embodiment, and FIG. 5B shows the slide (flexible slide) of the second embodiment. Furthermore, the slide of the present invention may include the slides of FIGS. 5 (c) and 5 (d).
 スリッドは図5(c)に示すように複数の穴502の集合(マルチスポットスリッド)である場合もある。穴502は等間隔に形成される場合もあれば、異なる間隔で形成される場合もある。 The slide may be a set of a plurality of holes 502 (multi-spot slide) as shown in FIG. The holes 502 may be formed at equal intervals or may be formed at different intervals.
 スリッドの淵は図5(d)に示すように球面部503を含む場合もある。 The saddle of the slide may include a spherical surface portion 503 as shown in FIG.
 次に実施例4について説明する図。本実施例はより複雑な周期パターンや照明光の方向に配慮したものである。図6は本実施例を説明する図である。 Next, a diagram for explaining the fourth embodiment. In this embodiment, more complex periodic patterns and illumination light directions are taken into consideration. FIG. 6 is a diagram for explaining this embodiment.
 検査装置では、ウエハーの法線とその光軸とが所定の入射角(>>0°)を形成するよう照明光を供給する場合があり、このような照明方式は斜方照明と称呼される。また、検査装置では、ウエハーの法線とその光軸とが実質的に一致するよう照明光を供給する場合があり、このような照明方式は落射照明や垂直照明と称呼される。図6では斜方照明は符号602によって表現され、落射照明は符号603によって表現される。落射照明603はミラー604によって反射され対物レンズ103を経由してウエハーに供給される。 In an inspection apparatus, illumination light may be supplied so that a normal line of a wafer and its optical axis form a predetermined incident angle (>> 0 °). Such an illumination method is called oblique illumination. . In some inspection apparatuses, illumination light may be supplied so that the normal line of the wafer substantially coincides with its optical axis, and such an illumination method is called epi-illumination or vertical illumination. In FIG. 6, oblique illumination is represented by reference numeral 602, and epi-illumination is represented by reference numeral 603. The epi-illumination 603 is reflected by the mirror 604 and supplied to the wafer via the objective lens 103.
 x方向にΔx幅の周期を持ち、y方向にΔy幅の周期を持つ周期パターン601に対して、斜方照明602や落射照明603が照明系100によって供給されると、フーリエ面105上にはx方向の周期に従った干渉縞(第1の干渉縞)とy方向の周期に従った干渉縞(第2の干渉縞)が形成される。その結果、フーリエ面105は第1の干渉縞と第2の干渉縞両者の合成である第1の部分605、片方のみの成分を含む第2の部分606、及びもう片方の成分のみを含む第3の部分607を含むことになる。 When oblique illumination 602 and epi-illumination 603 are supplied by the illumination system 100 to a periodic pattern 601 having a period of Δx width in the x direction and a period of Δy width in the y direction, Interference fringes (first interference fringes) according to the period in the x direction and interference fringes (second interference fringes) according to the period in the y direction are formed. As a result, the Fourier plane 105 includes a first portion 605 that is a combination of both the first interference fringe and the second interference fringe, a second portion 606 that includes only one component, and a second portion 606 that includes only the other component. 3 parts 607 will be included.
 図7は、図6の場合の干渉パターンを遮光する例を説明する図である。図7は図3の応用として説明できる。まず、フーリエ面105上でのx方向の干渉縞を観測する為、実施例1と同様にモータ等の移動装置を使用してフーリエ面上でのx方向にスリッド板301をフーリエ面105に対して移動させ、x方向の干渉縞を欠陥検出用のラインセンサー107上に結像する。その観察したデータはCPU115内部のメモリにプロット図702として記録される。 FIG. 7 is a diagram illustrating an example of shielding the interference pattern in the case of FIG. FIG. 7 can be described as an application of FIG. First, in order to observe the interference fringes in the x direction on the Fourier plane 105, the sliding plate 301 is moved relative to the Fourier plane 105 in the x direction on the Fourier plane by using a moving device such as a motor as in the first embodiment. The interference fringes in the x direction are imaged on the line sensor 107 for defect detection. The observed data is recorded in a memory inside the CPU 115 as a plot diagram 702.
 さらに本実施例では、ウエハー上のx方向に直交するスリットを持つスリッド板701をフーリエ面上のx方向に直交するy方向沿ってモータ等の移動装置を使用して移動させ、フーリエ面上のy方向の干渉縞を欠陥検出用のラインセンサー107上に結像する。その観察したデータはCPU115内部のメモリにプロット図702として記録される。本実施例では、スリッド板701のスリッドはz方向から見た場合にラインセンサー107の画素配列方向に向かって伸びるよう、より具体的には実質的に平行となるよう形成される。 Further, in this embodiment, the slide plate 701 having a slit orthogonal to the x direction on the wafer is moved using a moving device such as a motor along the y direction orthogonal to the x direction on the Fourier plane, The interference fringes in the y direction are imaged on the line sensor 107 for defect detection. The observed data is recorded in a memory inside the CPU 115 as a plot diagram 702. In this embodiment, the slits of the slit plate 701 are formed so as to extend toward the pixel arrangement direction of the line sensor 107 when viewed from the z direction, more specifically, to be substantially parallel.
 CPU115、又はその他の制御装置はプロット図702と703とを合成しフーリエ面上の強度分布704を作成する。強度分布704はフーリエ面上のx方向、y方向における光の強度分布を表わしている。よって、第1の部分709、第2の部分710、及び第3の部分711を遮光するようRod308、309、310、705、706、707、708を配置すれば複雑なパターンや複数の照明光を供給する場合でも不所望な干渉光を遮光することが可能となる。 The CPU 115 or other control device combines the plot diagrams 702 and 703 to create an intensity distribution 704 on the Fourier plane. An intensity distribution 704 represents the intensity distribution of light in the x and y directions on the Fourier plane. Therefore, if Rods 308, 309, 310, 705, 706, 707, and 708 are arranged so as to shield the first portion 709, the second portion 710, and the third portion 711, a complicated pattern or a plurality of illumination lights can be obtained. Even in the case of supplying, it is possible to block unwanted interference light.
 次に実施例5について説明する。ウエハー上にはメモリーパターンの他に、図8に示すように比較的複雑なロジックパターン801が形成される場合もある。図8(a)に示す通り、ロジックパターンでは欠陥802からの散乱光804の他にロジックパターンに起因したパターンノイズ803が発生する。本実施例はこのロジックパターンに配慮した実施例である。 Next, Example 5 will be described. In addition to the memory pattern, a relatively complicated logic pattern 801 may be formed on the wafer as shown in FIG. As shown in FIG. 8A, in the logic pattern, pattern noise 803 due to the logic pattern is generated in addition to the scattered light 804 from the defect 802. This embodiment is an embodiment that takes this logic pattern into consideration.
 本実施例では、図8(b)に示す通りスリッドを有するスリッド板701を使用する。より具体的にはスリッド板701はスリッドが斜方照明のウエハーへの投影805の方向へ伸びるよう配置される。またスリッドが伸びる方向はラインセンサー107の画素配列方向と実質的に一致している。スリッド板701はZ方向から見て投影805と交差する方向、より具体的には実質的に直交する方向へ移動する。これにより、散乱光804とロジックパターンに起因したパターンノイズ803との合成散乱光は対物レンズ103、フーリエレンズ104、結合レンズ106を通過し、ラインセンサー107上に結像される。スリッド板701の移動によって得られる画像は図9(a)に示す2次元画像805である。x方向の距離はスリッドの寸法から、y方向の寸法はスリッド板701の移動距離から得られることができる。このような2次元画像805には他の部分よりも強い部分806が含まれる。この部分806はパターンノイズ803を示している。よって、この部分806にRod309を配置することで欠陥からの信号はより強調され、像質は図9(c)の状態から図9(d)の状態へ改善される。なお、本実施例の簡潔なフローは図9(e)として表現される。 In this embodiment, a slide plate 701 having a slide is used as shown in FIG. More specifically, the slide plate 701 is arranged so that the slide extends in the direction of the projection 805 on the wafer with oblique illumination. The direction in which the slide extends substantially coincides with the pixel arrangement direction of the line sensor 107. The sliding plate 701 moves in a direction intersecting with the projection 805 as viewed from the Z direction, more specifically, in a direction substantially orthogonal to the sliding plate 701. As a result, the combined scattered light of the scattered light 804 and the pattern noise 803 resulting from the logic pattern passes through the objective lens 103, the Fourier lens 104, and the coupling lens 106, and is imaged on the line sensor 107. An image obtained by moving the slide plate 701 is a two-dimensional image 805 shown in FIG. The distance in the x direction can be obtained from the size of the slide, and the size in the y direction can be obtained from the moving distance of the slide plate 701. Such a two-dimensional image 805 includes a stronger portion 806 than other portions. This portion 806 shows pattern noise 803. Therefore, by disposing Rod 309 in this portion 806, the signal from the defect is more emphasized, and the image quality is improved from the state of FIG. 9C to the state of FIG. 9D. The simple flow of this embodiment is expressed as FIG.
 次に、実施例6について説明する。本実施例はフーリエ面像を光学系の異常診断に適用するものである。 Next, Example 6 will be described. In this embodiment, a Fourier plane image is applied to abnormality diagnosis of an optical system.
 本実施例では表面を均等に荒らしたアルミナチップ901を使用する。照明系100はアルミナチップ901に斜方照明を供給し、Y方向に延びる実質的に線状の照明領域を形成する。本実施例では、アルミナチップ901に照明を供給し、スリッド板701を使用する。より具体的にはスリッド板701はスリッドが斜方照明のウエハーへの投影807の方向へ伸びるよう配置される。またスリッドが伸びる方向はラインセンサー107の画素配列方向と実質的に一致している。スリッド板701はZ方向から見て投影805と交差する方向、より具体的には実質的に直交する方向へ移動する。 In this embodiment, an alumina chip 901 whose surface is uniformly roughened is used. The illumination system 100 supplies oblique illumination to the alumina tip 901 to form a substantially linear illumination region extending in the Y direction. In this embodiment, illumination is supplied to the alumina chip 901 and the slide plate 701 is used. More specifically, the slide plate 701 is arranged so that the slide extends in the direction of the projection 807 onto the wafer with oblique illumination. The direction in which the slide extends substantially coincides with the pixel arrangement direction of the line sensor 107. The sliding plate 701 moves in a direction intersecting with the projection 805 as viewed from the Z direction, more specifically, in a direction substantially orthogonal to the sliding plate 701.
 アルミナチップ901からの散乱光は均等に飛散することになる。均等に飛散した散乱光は対物レンズ103、フーリエレンズ104によって集光され、スリッド701のスリッドを通過した光は結像レンズ106を通過し、ラインセンサー107に像として結像される。この結果、CPU115は図11(a)(b)によって表現されるデジタルデータの少なくとも1を得る。例えば、データ902は照明系100、Top channel共に正常であることを示している。データ903は照明系100、及びTop Channelの少なくとも1つに以上が存在することを示している。 Scattered light from the alumina chip 901 will be scattered evenly. The scattered light evenly scattered is collected by the objective lens 103 and the Fourier lens 104, and the light that has passed through the slit 701 passes through the imaging lens 106 and forms an image on the line sensor 107. As a result, the CPU 115 obtains at least one of the digital data represented by FIGS. 11 (a) and 11 (b). For example, the data 902 indicates that both the illumination system 100 and the Top channel are normal. Data 903 indicates that at least one of the illumination system 100 and the Top Channel exists.
 例えば、データ902では中心に存在する強度のピークがデータ903では位置904に移動していた場合、Top Channelの光軸に歪みがあると判断できる。符号905に示すように明るさが低下していた場合、照明系100の出力低下、例えば、特にレーザ光源が劣化していると判断できる。暗い線906に例示される幾何学的映像が得られた場合、ラインセンサー107の画素に異常があると判断できる。 For example, if the peak of intensity existing at the center in the data 902 has moved to the position 904 in the data 903, it can be determined that there is distortion in the optical axis of the Top channel. When the brightness is reduced as indicated by reference numeral 905, it can be determined that the output of the illumination system 100 is reduced, for example, the laser light source is particularly deteriorated. When a geometric image exemplified by the dark line 906 is obtained, it can be determined that the pixel of the line sensor 107 is abnormal.
 よって、CPU115内のメモリにデータ902に例示される正常時のデータを保存しておき、アルミナ901を使用することによって得られたデータをデータ902と比較することで光学系の異常を判断することができる。この比較はCPU115に例示されるプロセッサ、及び作業者の少なくとも1つによって行われ得る。この判断フローは図9(c)のフローのように表現することもできる。 Accordingly, normal data such as data 902 is stored in the memory in the CPU 115, and the abnormality of the optical system is determined by comparing the data obtained by using the alumina 901 with the data 902. Can do. This comparison may be performed by at least one of a processor exemplified by the CPU 115 and an operator. This determination flow can also be expressed as the flow in FIG.
 以上、本発明の実施例について説明したが本発明は実施例に限定されない。本明細書の開示内容はフーリエ面を形成する光学装置に幅広く適用することができる。本実施例の装置は散乱光画像を検出する暗視野型光学装置であるが、本明細書の開示内容はいわゆる明視野型光学装置、暗視野型と明視野型との組み合わせにも適用し得る。 Although the embodiments of the present invention have been described above, the present invention is not limited to the embodiments. The disclosure of the present specification can be widely applied to optical devices that form a Fourier plane. Although the apparatus of the present embodiment is a dark field type optical apparatus that detects a scattered light image, the disclosure of the present specification can be applied to a so-called bright field type optical apparatus, a combination of a dark field type and a bright field type. .
 Top channelの説明はSide Channelについても適用できる。スリッドと照明領域との位置関係は任意の関係を設定できる。スリッド板の移動方向は任意の方向を採用し得る。スリッド、スリッド板の形状は任意の形状を設定し得る。 The explanation of Top channel can also be applied to Side Channel. The positional relationship between the slide and the illumination area can be set arbitrarily. An arbitrary direction can be adopted as the moving direction of the slide plate. Arbitrary shapes can be set for the shape of the slide and the slide plate.
 スリッド板は一例に過ぎない。例えば、本発明はフーリエ面を分割し、複数の単位(区画やセグメントと称呼し得る)とした上で、このセグメントを合成し、フーリエ面のデータを得ること1つの特徴とすると表現することができる。よって、フーリエ面に対して移動しない素子を使用することも本明細書の開示の範囲内である。その一例としては、複数の開口、及び任意の開口を遮光可能なシャッターを含むシャッターアレイや、任意の区画の透過率を制御可能な液晶シャッターアレイが挙げられる。 Slid board is only an example. For example, the present invention can be expressed as one feature of dividing a Fourier plane into a plurality of units (which can be referred to as sections or segments) and then synthesizing the segments to obtain Fourier plane data. it can. Thus, it is within the scope of this disclosure to use elements that do not move relative to the Fourier plane. As an example, there are a shutter array including a plurality of openings and a shutter capable of blocking any opening, and a liquid crystal shutter array capable of controlling the transmittance of any section.
 スリッド板によるフーリエ面に対する移動によるフーリエ面の光の一部の選択的な伝搬はフーリエ面の分割と表現できる。また、選択的に透過されたフーリエ面の情報を一つの単位と称呼して説明し得る。また、この単位を検出し、プロファイル304、強度分布704、図9(a)、図9(b)、図11(a)、及び図11(b)の少なくとも1つに例示されるデータを得ることを例えば合成と表現することができる。この説明は、任意のシャッターの開閉、任意の液晶の透過率の変更にも適用し得る。 The selective propagation of part of the light on the Fourier plane due to the movement of the slit plate relative to the Fourier plane can be expressed as a division of the Fourier plane. Further, the selectively transmitted information of the Fourier plane may be referred to as one unit for explanation. Further, this unit is detected, and data exemplified in at least one of the profile 304, the intensity distribution 704, FIG. 9 (a), FIG. 9 (b), FIG. 11 (a), and FIG. 11 (b) is obtained. This can be expressed as, for example, synthesis. This description can also be applied to opening / closing an arbitrary shutter and changing the transmittance of an arbitrary liquid crystal.
101・・・ステージ
102・・・ウエハー
103・・・対物レンズ
104・・・フーリエレンズ
105・・・フーリエ面
106・・・結合レンズ
107・・・ラインセンサー
108・・・A/D変換器
109・・・対物レンズ
110・・・フーリエレンズ
111・・・フーリエ面
112・・・結像レンズ
113・・・ラインセンサー
115・・・CPU
DESCRIPTION OF SYMBOLS 101 ... Stage 102 ... Wafer 103 ... Objective lens 104 ... Fourier lens 105 ... Fourier surface 106 ... Coupled lens 107 ... Line sensor 108 ... A / D converter 109 ... Objective lens 110 ... Fourier lens 111 ... Fourier surface 112 ... imaging lens 113 ... Line sensor 115 ... CPU

Claims (15)

  1.  試料へ光を供給する照明光学系と、
     前記試料からの光を集光し、フーリエ面を形成する検出光学系と、
     前記フーリエ面の情報を複数の単位に分割し、前記複数の単位を伝搬させる光学素子と、
     前記単位を検出する欠陥検出用のセンサーと、
     前記センサーからの出力を合成することでフーリエ面のデータを得るプロセッサと、を有する検査装置。
    An illumination optical system for supplying light to the sample;
    A detection optical system that collects light from the sample and forms a Fourier plane;
    An optical element that divides the information of the Fourier plane into a plurality of units and propagates the plurality of units;
    A defect detection sensor for detecting the unit;
    A processor for obtaining Fourier plane data by synthesizing outputs from the sensors.
  2.  請求項1に記載の検査装置において、
     前記センサーはラインセンサーであり、
     前記光学素子は第1の開口が形成された第1の遮光板を含み、
     前記第1の開口は前記ラインセンサーの画素配列方向と交差するよう形成され、
     さらに、前記第1の遮光板を前記フーリエ面に対して移動させる第1の移動機構を有し、
     前記データは前記第1の遮光板が移動することによって得られた第1のデータを含む検査装置。
    The inspection apparatus according to claim 1,
    The sensor is a line sensor;
    The optical element includes a first light shielding plate in which a first opening is formed,
    The first opening is formed to intersect the pixel array direction of the line sensor,
    And a first moving mechanism for moving the first light shielding plate with respect to the Fourier plane.
    The inspection apparatus includes the data including first data obtained by moving the first light shielding plate.
  3.  請求項2に記載の検査装置において、
     前記照明光学系は前記試料へ斜方照明、及び前記検出光学系を経由した落射照明を供給し、
     前記光学素子は第2の開口が形成された第2の遮光板を含み、
     前記第2の開口は前記ラインセンサーの画素配列方向に伸びるよう形成され、
     さらに、前記第2の遮光板を前記フーリエ面に対して移動させる第2の移動機構を有し、
     前記データは前記第2の遮光板が移動することによって得られた第2のデータを含む検査装置。
    The inspection apparatus according to claim 2,
    The illumination optical system supplies oblique illumination to the sample, and epi-illumination through the detection optical system,
    The optical element includes a second light shielding plate in which a second opening is formed,
    The second opening is formed to extend in the pixel array direction of the line sensor,
    And a second moving mechanism for moving the second light shielding plate with respect to the Fourier plane.
    The inspection apparatus includes second data obtained by moving the second light shielding plate.
  4.  請求項3に記載の検査装置において、
     前記プロセッサは前記第1のデータ、及び前記第2のデータを使用して第3のデータを得て、前記第3のデータを使用して前記フーリエ面の遮光位置を得る検査装置。
    The inspection apparatus according to claim 3, wherein
    The inspection apparatus, wherein the processor obtains third data using the first data and the second data, and obtains a light shielding position of the Fourier plane using the third data.
  5.  請求項4に記載の検査装置において、
     前記第2のデータは表面が均等に荒れた物体からの散乱光のデータを含み、
     前記プロセッサは基準となるデータと前記第2のデータとを比較し、前記照明光学系、及び前記検出光学系の少なくとも1つの異常を判断する検査装置。
    The inspection apparatus according to claim 4,
    The second data includes scattered light data from an object with an evenly rough surface,
    The processor compares the reference data with the second data to determine at least one abnormality of the illumination optical system and the detection optical system.
  6.  請求項5に記載の検査装置において、
     前記第1の開口、及び前記第2の開口の少なくとも1つの幅は可変である検査装置。
    The inspection apparatus according to claim 5, wherein
    An inspection apparatus in which at least one width of the first opening and the second opening is variable.
  7.  請求項5に記載の検査装置において、
     前記第1の開口、及び前記第2の開口の少なくとも1つは複数の穴の集合である検査装置。
    The inspection apparatus according to claim 5, wherein
    An inspection apparatus in which at least one of the first opening and the second opening is a set of a plurality of holes.
  8. 請求項5に記載の検査装置において、
    前記第1の開口、及び前記第2の開口の少なくとも1つの淵は球面加工されている検査装置。
    The inspection apparatus according to claim 5, wherein
    An inspection apparatus in which at least one ridge of the first opening and the second opening is spherically processed.
  9.  請求項1に記載の検査装置において、
     前記センサーはラインセンサーであり、
     前記光学素子は開口が形成された遮光板を含み、
     さらに、前記遮光板を前記フーリエ面に対して移動させる移動機構を有し、
     前記データは前記遮光板が移動することによって得られたものであり、
     前記プロセッサは前記データを使用して前記フーリエ面の遮光位置を得る検査装置。
    The inspection apparatus according to claim 1,
    The sensor is a line sensor;
    The optical element includes a light shielding plate in which an opening is formed,
    Furthermore, it has a moving mechanism for moving the light shielding plate with respect to the Fourier plane,
    The data is obtained by moving the shading plate,
    The processor is an inspection apparatus that obtains a light shielding position of the Fourier plane using the data.
  10.  請求項9に記載の検査装置において、
     前記開口は前記ラインセンサーの画素配列方向と交差するよう形成されている検査装置。
    The inspection apparatus according to claim 9, wherein
    The inspection apparatus is formed such that the opening intersects the pixel array direction of the line sensor.
  11.  請求項9に記載の検査装置において、
     前記開口は前記ラインセンサーの画素配列方向に伸びるよう形成されている検査装置。
    The inspection apparatus according to claim 9, wherein
    The inspection device is formed such that the opening extends in a pixel array direction of the line sensor.
  12.  請求項1に記載の検査装置において、
     前記センサーはラインセンサーであり、
     前記光学素子は開口が形成された遮光板を含み、
     さらに、前記遮光板を前記フーリエ面に対して移動させる移動機構を有し、
     前記データは前記遮光板が移動することによって得られたものであり、
     前記開口の幅は可変である検査装置。
    The inspection apparatus according to claim 1,
    The sensor is a line sensor;
    The optical element includes a light shielding plate in which an opening is formed,
    Furthermore, it has a moving mechanism for moving the light shielding plate with respect to the Fourier plane,
    The data is obtained by moving the shading plate,
    An inspection apparatus in which the width of the opening is variable.
  13.  請求項1に記載の検査装置において、
     前記センサーはラインセンサーであり、
     前記光学素子は開口が形成された遮光板を含み、
     さらに、前記遮光板を前記フーリエ面に対して移動させる移動機構を有し、
     前記データは前記遮光板が移動することによって得られたものであり、
     前記開口は複数の穴の集合である検査装置。
    The inspection apparatus according to claim 1,
    The sensor is a line sensor;
    The optical element includes a light shielding plate in which an opening is formed,
    Furthermore, it has a moving mechanism for moving the light shielding plate with respect to the Fourier plane,
    The data is obtained by moving the shading plate,
    The inspection device is an assembly of a plurality of holes.
  14.  請求項1に記載の検査装置において、
     前記センサーはラインセンサーであり、
     前記光学素子は開口が形成された遮光板を含み、
     さらに、前記遮光板を前記フーリエ面に対して移動させる移動機構を有し、
     前記データは前記遮光板が移動することによって得られたものであり、
     前記第開口の淵は球面加工されている検査装置。
    The inspection apparatus according to claim 1,
    The sensor is a line sensor;
    The optical element includes a light shielding plate in which an opening is formed,
    Furthermore, it has a moving mechanism for moving the light shielding plate with respect to the Fourier plane,
    The data is obtained by moving the shading plate,
    The inspection device in which the eyelid of the first opening is spherically processed.
  15.  請求項1に記載の検査装置において、
     前記データは表面が均等に荒れた物体からの散乱光のデータを含み、
     前記プロセッサは基準となるデータと前記データとを比較し、前記照明光学系、及び前記検出光学系の少なくとも1つの異常を判断する検査装置。
    The inspection apparatus according to claim 1,
    The data includes data of scattered light from an object with an evenly rough surface,
    The processor compares the data as a reference with the data, and determines at least one abnormality of the illumination optical system and the detection optical system.
PCT/JP2016/059074 2016-03-23 2016-03-23 Inspection device WO2017163318A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/059074 WO2017163318A1 (en) 2016-03-23 2016-03-23 Inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/059074 WO2017163318A1 (en) 2016-03-23 2016-03-23 Inspection device

Publications (1)

Publication Number Publication Date
WO2017163318A1 true WO2017163318A1 (en) 2017-09-28

Family

ID=59900113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059074 WO2017163318A1 (en) 2016-03-23 2016-03-23 Inspection device

Country Status (1)

Country Link
WO (1) WO2017163318A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021038633A1 (en) * 2019-08-23 2021-03-04 株式会社日立ハイテク Defect inspection method and defect inspection device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783844A (en) * 1993-09-17 1995-03-31 Nikon Corp Defect inspection device
JPH07506676A (en) * 1992-05-12 1995-07-20 テンコール・インスツルメンツ Adaptive spatial filter for surface inspection
JP2005517906A (en) * 2002-02-11 2005-06-16 ケーエルエー−テンカー テクノロジィース コーポレイション System for detecting surface anomalies and / or shapes
JP2008275540A (en) * 2007-05-02 2008-11-13 Hitachi High-Technologies Corp Pattern defect inspecting device and method
JP2012073097A (en) * 2010-09-28 2012-04-12 Hitachi High-Technologies Corp Inspection device, inspection method, and program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07506676A (en) * 1992-05-12 1995-07-20 テンコール・インスツルメンツ Adaptive spatial filter for surface inspection
JPH0783844A (en) * 1993-09-17 1995-03-31 Nikon Corp Defect inspection device
JP2005517906A (en) * 2002-02-11 2005-06-16 ケーエルエー−テンカー テクノロジィース コーポレイション System for detecting surface anomalies and / or shapes
JP2008275540A (en) * 2007-05-02 2008-11-13 Hitachi High-Technologies Corp Pattern defect inspecting device and method
JP2012073097A (en) * 2010-09-28 2012-04-12 Hitachi High-Technologies Corp Inspection device, inspection method, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021038633A1 (en) * 2019-08-23 2021-03-04 株式会社日立ハイテク Defect inspection method and defect inspection device

Similar Documents

Publication Publication Date Title
US10422984B2 (en) Flexible mode scanning optical microscopy and inspection system
JP4713185B2 (en) Foreign object defect inspection method and apparatus
US11366069B2 (en) Simultaneous multi-directional laser wafer inspection
JP5303217B2 (en) Defect inspection method and defect inspection apparatus
KR102119288B1 (en) Imaging overlay metrology target and apparatus and method for measuring imaging overlay
JP5553716B2 (en) Defect inspection method and apparatus
JP2016038302A (en) Defect inspection device and defect inspection method
KR20220024950A (en) Metrology target for scanning metrology
JP6364193B2 (en) Focus position adjustment method and inspection method
JP2004286741A (en) Method and apparatus for high-throughput inspection of large flat patterned media using dynamically programmable optical spatial filtering
KR20140006946A (en) Structured illumination for contrast enhancement in overlay metrology
KR20080069120A (en) Dynamic wafer stress management system
JP2007248086A (en) Flaw inspection device
US9927371B2 (en) Confocal line inspection optical system
JP2018054303A (en) Defect detection device and defect observation device
JP2013061185A (en) Pattern inspection device and pattern inspection method
JP2004191240A (en) Instrument for measuring three-dimensional shape
JP5571969B2 (en) Defect inspection method and apparatus
JP2008058248A (en) Diffracted light detector and inspection system
WO2017163318A1 (en) Inspection device
JP5276833B2 (en) Defect inspection method and defect inspection apparatus
CN115427754A (en) High sensitivity image-based reflectance measurements
JP7066914B2 (en) Defect detection device, defect detection method, and defect observation device equipped with this
WO2002014846A9 (en) Multiple beam inspection apparatus and method
JP2007107960A (en) Flaw inspection device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895354

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16895354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP