WO2017163285A1 - Biological information measurement device - Google Patents

Biological information measurement device Download PDF

Info

Publication number
WO2017163285A1
WO2017163285A1 PCT/JP2016/004187 JP2016004187W WO2017163285A1 WO 2017163285 A1 WO2017163285 A1 WO 2017163285A1 JP 2016004187 W JP2016004187 W JP 2016004187W WO 2017163285 A1 WO2017163285 A1 WO 2017163285A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
stress
unit
measurement unit
measured
Prior art date
Application number
PCT/JP2016/004187
Other languages
French (fr)
Japanese (ja)
Inventor
和宏 井出
朋哉 日下部
北堂 正晴
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2017163285A1 publication Critical patent/WO2017163285A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state

Definitions

  • the present disclosure relates to a biological information measuring apparatus that measures a stress of a measurement subject.
  • Non-Patent Document 1 the subject's subjectivity is answered for a plurality of test items, and the measurer determines the subject's stress based on the result. judge. When it is determined that the stress is high, a treatment such as an interview by a doctor or a public health nurse is taken.
  • An object of the present disclosure is to provide a biological information measuring device that contributes to accurately measuring the stress state of the measurement subject.
  • One form of the biological information measurement device includes a first measurement unit that measures stress based on subjectivity of the measurement subject, and a second measurement unit that measures stress based on biological information of the measurement subject. And a third measurement unit that measures stress based on the measurement result of the first measurement unit and the measurement result of the second measurement unit.
  • the biological information measuring device contributes to accurately measuring the stress state of the person being measured.
  • FIG. 1 is a front view of the biological information measuring apparatus according to the first embodiment.
  • FIG. 2 is a front view of the biological information measuring apparatus of FIG. 1 attached to an arm.
  • FIG. 3 is a rear view of the biological information measuring apparatus of FIG.
  • FIG. 4 is a block diagram showing a configuration of the stress measurement unit of FIG.
  • FIG. 5 is a diagram illustrating an example of a stress state measurement map.
  • FIG. 6 is a flowchart illustrating an example of a procedure of a stress state measurement method.
  • FIG. 7 is a diagram illustrating an example of a stress state measurement map according to the second embodiment.
  • One form of the biological information measurement device includes a first measurement unit that measures stress based on subjectivity of the measurement subject, and a second measurement unit that measures stress based on biological information of the measurement subject. And a third measurement unit that measures stress based on the measurement result of the first measurement unit and the measurement result of the second measurement unit.
  • the measurement result obtained by the third measurement unit reflects not only the measurement result based on the subjectivity of the measurement subject obtained by the first measurement unit but also the objective measurement result regarding the stress obtained by the second measurement unit. To do. For this reason, compared with the case where the state of stress is measured based only on the subject's subjectivity, the state of stress of the subject can be measured accurately.
  • the third measurement unit may be any of a plurality of types of stress states in which a combination of the measurement result of the first measurement unit and the measurement result of the second measurement unit is defined in advance. It is judged whether it corresponds to.
  • One of the stress measurement methods in such a case is a combination of subjectively measured stress intensity and objectively measured stress intensity among a plurality of pre-classified stress states. A method for determining which of these is applicable. According to this method, when the measurement results by the subjective and objective methods are consistent and when the measurement results are not consistent, it can be determined as one of the stress states. The state can be measured more accurately.
  • the third measurement unit has a low stress estimated from the measurement result of the first measurement unit, and the stress estimated from the measurement result of the second measurement unit. If the strength of is high, it is determined that there is a stress that the measurement subject cannot recognize.
  • the stress intensity measured subjectively is weak and the stress intensity measured objectively. Measurement result may be obtained. This measurement result can also be interpreted as suggesting that there is a strong stress that the measurement subject cannot recognize. Since the biological information measuring device performs measurement incorporating such a concept, it can detect that there is a latent stress on the measurement subject.
  • the third measurement unit is based on the multiple measurement results acquired from the first measurement unit and the multiple measurement results acquired from the second measurement unit. Measure stress.
  • Measured person's condition and measurement environment may affect the measurement result related to stress condition. For this reason, in order to improve the accuracy of the measurement result, it is preferable to obtain a final measurement result by combining a plurality of measurement results. According to the biological information measuring apparatus, since measurement based on such points is performed, the state of stress of the measurement subject can be measured more accurately.
  • At least one of the measurement result of the first measurement unit, the measurement result of the second measurement unit, and the measurement result of the third measurement unit is used as the characteristics of the measurement subject. Correct based on.
  • Measured person characteristics may affect the response to stress.
  • a major example of a person being measured is the age and personality of the person being measured.
  • the biological information measuring apparatus since measurement based on such points is performed, the state of stress of the measurement subject can be measured more accurately.
  • the biological information measuring device 10 includes a main body 11, an input unit 12, an output unit 13, a mounting unit 14, a pulse wave detection unit 20, and a stress measurement unit 30.
  • the stress measurement unit 30 is a computer having a function of measuring a state related to stress of the measurement subject (hereinafter, “stress state”).
  • the main body 11 supports or accommodates various elements constituting the biological information measuring apparatus 10 including the input unit 12 and the like.
  • the input unit 12 is operated by a measurement person or a measurement person (hereinafter referred to as “user”) in order to input information on the measurement person to the stress measurement part 30.
  • An example of the input unit 12 is an operation button provided on the main body 11 so that the user can operate, or a wireless reception unit provided on the main body 11 so that information from an external device can be received.
  • An example of the external device is a portable information terminal such as a smartphone, a tablet information terminal, and a portable or stationary personal computer.
  • the information about the person to be measured input to the input unit 12 is considered to affect information that subjectively evaluates the state of the person to be measured regarding stress (hereinafter referred to as “subjective evaluation information”) and a response to the stress.
  • Information on the characteristics of the person being measured (hereinafter referred to as “characteristic information”).
  • Subjective evaluation information includes, for example, the response of the measured person to the Occupational Stress Simple Questionnaire, the response of the measured person to the Chalder Fatigue Scale, the response of the measured person to the Pittsburgh Sleep Questionnaire, or depression
  • the measurement result of the measured person for CES-D is measured.
  • the characteristic information includes, for example, age and personality.
  • the output unit 13 outputs the stress state measured by the stress measurement unit 30.
  • An example of the output unit 13 is a display device provided in the main body 11 so that the user can visually recognize it, or a wireless transmission unit provided in the main body 11 so that information can be transmitted to the portable information terminal.
  • the mounting part 14 fixes the main body 11 to the arm of the person to be measured.
  • An example of the mounting portion 14 is a belt.
  • FIG. 2 shows a state in which the main body 11 is attached to the arm of the person to be measured when the attachment portion 14 is wound around the arm.
  • wearing the body with the biological information measuring device 10 can be changed arbitrarily.
  • the biological information measuring device 10 can be configured to be worn on the finger, ankle, forehead, chest, shoulder, or ear of the measurement subject.
  • the pulse wave detection unit 20 includes a light emitting unit 21 and a light receiving unit 22, and is a pulse that is time-series data of a measured subject's pulse wave based on a light reception signal output from the light receiving unit 22. Wave information is calculated.
  • the light emitting unit 21 and the light receiving unit 22 are provided on the back surface 11 ⁇ / b> B of the main body 11.
  • An example of the light emitting unit 21 is a green light emitting diode.
  • An example of the light receiving unit 22 is a photodiode. When green light is reflected from the light emitting unit 21 toward the body, a part of the green light is reflected and received by the light receiving unit 22.
  • the light receiving unit 22 outputs a light reception signal that changes according to the intensity of the received green light.
  • the intensity of the reflected green light varies depending on the state of the pulse wave of the measurement subject. For this reason, the pulse wave of the person to be measured can be calculated based on the light reception signal of the light receiving unit 22.
  • the configuration of the stress measurement unit 30 will be described with reference to FIG.
  • the stress measurement unit 30 includes a first measurement unit 31, a second measurement unit 32, a third measurement unit 33, a CPU 34, and a memory 35.
  • the memory 35 stores temporary data necessary for processing executed by the measurement units 31 to 33, calculation results of the measurement units 31 to 33, and the like.
  • An example of the memory 35 is a nonvolatile memory.
  • Information on the person to be measured input to the input unit 12 is input to the first measurement unit 31 and stored in the memory 35.
  • the measurement result of the pulse wave detection unit 20 is input to the second measurement unit 32 and stored in the memory 35.
  • the first measurement unit 31 calculates a subjective stress value P, which is an index that subjectively evaluates the strength of stress of the measurement subject, based on the subjective evaluation information input to the input unit 12.
  • a subjective evaluation map that defines the relationship between the subjective evaluation information and the subjective stress value P is stored in the memory 35 in advance. The first measurement unit 31 uses the subjective evaluation map and the subjective evaluation information input to the input unit 12 to obtain a subjective stress value P corresponding to the subjective evaluation information.
  • the second measuring unit 32 calculates an objective stress value Q that is an index that objectively evaluates the strength of stress of the measurement subject based on the pulse wave information measured by the pulse wave detecting unit 20.
  • the objective stress value Q is calculated by the following procedure.
  • the time between adjacent local maximum values in the time series data of the received light signal obtained by the light receiving unit 22 is calculated as the heartbeat interval PP.
  • PI Percentage Index
  • PPi in the formula [1] indicates the i-th measured heartbeat interval PP.
  • entropy E which is an index of autonomic nerve activity, is calculated from the following equation [2], which is an equation of Shannon's average information amount.
  • P shown in the equation [2] indicates the probability that the PI obtained by the equation [1] will occur.
  • a tone T that is an index of the balance of the autonomic nerve is calculated for each activity state of the living body by the following equation [3].
  • M in the equation is the number of heartbeat intervals PP measured.
  • the second measuring unit 32 calculates an objective stress value Q based on the tone T and entropy E.
  • an objective evaluation map that defines the relationship between the tone T and entropy E and the objective stress value Q is stored in the memory 35 in advance.
  • the second measuring unit 32 uses the objective evaluation map and the calculated tone T and entropy E to obtain an objective stress value Q corresponding to the tone T and entropy E.
  • an evaluation method using entropy E and tone T as an index representing the state of the autonomic nerve is illustrated, but objective stress value Q may be calculated using an index different from entropy E and tone T. it can.
  • An example of another index is a ratio (LF / HF) of an LF (Low Frequency) component and an HF (High Frequency) component obtained by a frequency analysis method.
  • the third measurement unit 33 determines the stress state of the measurement subject. measure.
  • the third measuring unit 33 reads the stress state measurement map shown in FIG. 5 from the memory 35, and a point determined by the subjective stress value P and the objective stress value Q (hereinafter, “measurement point R”) belongs to it.
  • the state of stress of the measurement subject is determined according to the area on the stress state measurement map.
  • the third measuring unit 33 corresponds to any of a plurality of pre-classified stress states in which the subjectively measured stress intensity and the objectively measured stress intensity are combined. Judge whether to do. According to this method, when the measurement results by the subjective and objective methods are consistent and when the measurement results are not consistent, it can be determined as one of the stress states. The state can be measured more accurately.
  • the stress state measurement map is a coordinate plane defined by the coordinate axis related to the subjective stress value P and the coordinate axis related to the objective stress value Q, and the first area A1 corresponding to the first quadrant and the second area corresponding to the second quadrant. Area A2, a third area A3 corresponding to the third quadrant, and a fourth area A4 corresponding to the fourth quadrant.
  • the first area A1 is an area where the subjective stress value P is larger than the reference value PX and the objective stress value Q is larger than the reference value QX.
  • the stress measured based on the subject's subjectivity and the stress measured objectively based on the pulse wave information are both strong, there is strong stress on the subject. It is strongly suggested that For this reason, when the measurement point R belongs to the first region A1, it is determined that the stress state of the measurement subject is the first stress state in which a strong stress that has been manifested exists.
  • the second area A2 is an area where the subjective stress value P is smaller than the reference value PX and the objective stress value Q is larger than the reference value QX.
  • the stress evaluated based on the subject's subjectivity is weak and the stress objectively evaluated based on the pulse wave information is strong, so the results of subjective evaluation and objective evaluation Are not consistent. This conflicting result can be interpreted as suggesting a state in which there is a stress that the measurement subject cannot recognize. For this reason, when the measurement point R belongs to the second region A2, it is determined that the stress state of the measurement subject is a second stress state in which strong stress that the measurement subject cannot recognize is latent.
  • the third area A3 is an area where the subjective stress value P is smaller than the reference value PX and the objective stress value Q is smaller than the reference value QX.
  • the stress held by the subject is weak. Or it strongly suggests that there is almost no stress in the measurement subject. For this reason, when the measurement point R belongs to the third region A3, the stress state of the measurement subject is weak, or the third stress in which the measurement subject has almost no stress. The state is determined.
  • the fourth area A4 is an area where the subjective stress value P is larger than the reference value PX and the objective stress value Q is smaller than the reference value QX.
  • the fourth region A4 since the stress evaluated based on the subjectivity of the measurement subject is strong and the stress evaluated objectively based on the pulse wave information is weak, the result of subjective evaluation and objective evaluation Are not consistent. This conflicting result can be interpreted as suggesting that the person being measured is stressed, but the stress is temporarily strong and transient. For this reason, when the measurement point R belongs to the fourth region A4, the stress state of the measurement subject is the fourth stress state in which there is a high possibility that the stress is a transient stress although the stress exists. Determined.
  • step S ⁇ b> 1 the user operates the input unit 12 to input information on the person to be measured to the stress measurement unit 30.
  • the input information is stored in the memory 35.
  • the first measuring unit 31 calculates a subjective stress value P based on the subjective evaluation information.
  • the pulse wave detection unit 20 calculates the pulse wave information of the measurement subject.
  • the second measuring unit 32 calculates the tone T and entropy E based on the pulse wave information.
  • the second measuring unit 32 calculates an objective stress value Q based on the tone T and entropy E.
  • step S6 the first measuring unit 31 stores the subjective stress value P in the memory 35, and the second measuring unit 32 stores the objective stress value Q in the memory 35.
  • step S7 the third measuring unit 33 determines whether or not the number of measurements of the subjective stress value P and the objective stress value Q has reached a predetermined number.
  • the state of the person being measured and the measurement environment may affect the measurement results regarding the state of stress. For this reason, in order to improve the accuracy of the measurement result, it is preferable to obtain a final measurement result by combining a plurality of measurement results.
  • Step S7 is a step for realizing this point. For this reason, according to this measurement procedure including step S7, the state of stress of the measurement subject is more accurately measured.
  • step S8 the third measuring unit 33 calculates an average value of a plurality of subjective stress values P and an average value of a plurality of objective stress values Q.
  • step S9 based on the region where the measurement point R determined by the average value of the subjective stress value P and the average value of the objective stress value Q belongs in the stress state measurement map, the stress state is the first to fourth stress states. It is determined which is applicable.
  • step S ⁇ b> 10 the third measurement unit 33 transmits the measurement result of the stress state to the output unit 13.
  • step S11 the output unit 13 outputs the measurement result of the stress state.
  • the output unit 13 displays a stress state measurement map as shown in FIG. 5 and measurement points R plotted thereon on the display device.
  • the output unit 13 includes a wireless transmission unit
  • a signal including the measurement result of the stress state is transmitted to an external device such as a portable information terminal.
  • the external device receives a signal from the output unit 13, the external device displays the coordinate plane and the measurement point R on a display device provided in the external device.
  • the measurement result obtained by the third measurement unit 33 is not only the measurement result based on the subjectivity of the measurement subject obtained by the first measurement unit 31 but also the stress obtained by the second measurement unit 32. Reflects objective measurement results. For this reason, compared with the case where the state of stress is measured based only on the subject's subjectivity, the state of stress of the subject can be measured accurately.
  • the biological information measuring apparatus 10 includes a configuration in which a part of the stress state measurement process according to the first embodiment is changed.
  • the measurement point R determined by the average value of the subjective stress value P and the average value of the objective stress value Q is displayed on the display device.
  • the measurement unit R determined by each of the set of the measured subjective stress values P and objective stress values Q is displayed on the output unit 13.
  • FIG. 7 shows an example.
  • the output unit 13 further displays a line segment connecting the measurement points R so that a polygon having each measurement point R as a vertex is formed.
  • a triangle having each measurement point R as a vertex is displayed.
  • the area of the polygon having each measurement point R as a vertex is considered to reflect, for example, the degree of stress intensity fluctuation (hereinafter referred to as “degree of fluctuation”). For this reason, the user can recognize the degree of variation from the size of the polygonal area.
  • the stress measuring unit 30 is provided with a function for obtaining the degree of variation.
  • the stress measurement unit 30 calculates a polygonal area based on each measurement point R, determines whether the area is equal to or larger than the determination area, and causes the output unit 13 to output the result. When the area of the polygon is equal to or larger than the determination area, it is determined that the degree of variation is large. When the area of the polygon is less than the determination area, it is determined that the degree of variation is small.
  • the biological information measuring apparatus 10 according to the third embodiment has a configuration in which a part of the stress state measuring process according to the first embodiment is changed.
  • the final measurement result regarding the state of stress is determined using the stress state measurement map.
  • the stress state measurement process of the third embodiment the total stress value obtained by integrating the subjective stress value P and the objective stress value Q using the subjective stress value P and the objective stress value Q and a predetermined function. U is calculated.
  • the content of step S8 of the stress state measurement process of the first embodiment is changed as follows.
  • the third measuring unit 33 calculates the total stress value U in the following order.
  • the correction coefficient ⁇ and the correction coefficient ⁇ are determined based on the characteristic information input to the input unit 12.
  • the correction coefficient ⁇ is a weighting coefficient for the subjective stress value P.
  • the correction coefficient ⁇ is a weighting coefficient for the objective stress value Q.
  • the memory 35 stores a correction coefficient map that defines the relationship between the characteristic information, the correction coefficient ⁇ , and the correction coefficient ⁇ .
  • the total stress value U is calculated from the following equation [4].
  • the third measurement unit 33 causes the output unit 13 to output the total stress value U as a final measurement result regarding the stress state.
  • the third measuring unit 33 determines whether the total stress value U belongs to a plurality of predetermined ranks, and outputs the determined rank as a final measurement result regarding the stress state. 13 to output.
  • each said embodiment is an illustration of the form which the biological information measuring device which concerns on this indication can take, and it does not intend restrict
  • the biological information measuring device according to the present disclosure may take another form in which a part of each embodiment is changed, for example.
  • the biological information measuring apparatus can be used to check the stress of the measurement subject in various scenes such as a medical institution and a home, including a worker's stress check based on the stress check system.

Abstract

A biological information measurement device according to the present invention includes: a first measurement unit that measures stress on the basis of the subjective opinion of a person to be measured; a second measurement unit that measures stress on the basis of biological information of the person to be measured; and a third measurement unit that measures stress on the basis of the measurement result from the first measurement unit and the measurement result from the second measurement unit. Thus, the stress state of the person being measured can be accurately measured. That is, the stress state of the person being measured can be accurately measured compared to when the stress state is measured only on the basis of the subjective opinion of the person being measured.

Description

生体情報計測装置Biological information measuring device
 本開示は被計測者のストレスを計測する生体情報計測装置に関する。 The present disclosure relates to a biological information measuring apparatus that measures a stress of a measurement subject.
 近年、労働者のストレスが社会的な問題として注目されている。このような背景を踏まえ、労働者のストレスをチェックすることを一定の条件を満たす雇用者に義務付けるストレスチェック制度が導入された。非特許文献1に記載されるようにストレスチェック制度により規定されたストレス判定方法では、複数の検査項目について被計測者の主観により回答し、計測者がその結果に基づいて被計測者のストレスを判定する。ストレスが高い状態であると判定された場合、医師または保健師による面談等の処置が採られる。 In recent years, worker stress has attracted attention as a social problem. Against this background, a stress check system has been introduced that requires employers who meet certain conditions to check the stress of workers. In the stress determination method defined by the stress check system as described in Non-Patent Document 1, the subject's subjectivity is answered for a plurality of test items, and the measurer determines the subject's stress based on the result. judge. When it is determined that the stress is high, a treatment such as an interview by a doctor or a public health nurse is taken.
 上記ストレス判定方法によれば、被計測者の主観により得られた回答だけに基づいてストレスの状態が判定されるため、正確な結果が得られないおそれがある。 According to the stress determination method described above, since the stress state is determined based only on answers obtained by the subject's subjectivity, there is a possibility that an accurate result cannot be obtained.
 本開示の目的は、被計測者のストレスの状態を正確に計測することに貢献する生体情報計測装置を提供することである。 An object of the present disclosure is to provide a biological information measuring device that contributes to accurately measuring the stress state of the measurement subject.
 本開示に係る生体情報計測装置の一形態は、被計測者の主観に基づいてストレスを計測する第1の計測部と、被計測者の生体情報に基づいてストレスを計測する第2の計測部と、第1の計測部の計測結果および第2の計測部の計測結果に基づいてストレスを計測する第3の計測部とを備える。 One form of the biological information measurement device according to the present disclosure includes a first measurement unit that measures stress based on subjectivity of the measurement subject, and a second measurement unit that measures stress based on biological information of the measurement subject. And a third measurement unit that measures stress based on the measurement result of the first measurement unit and the measurement result of the second measurement unit.
 上記生体情報計測装置は被計測者のストレスの状態を正確に計測することに貢献する。 The biological information measuring device contributes to accurately measuring the stress state of the person being measured.
図1は、実施の形態1の生体情報計測装置の正面図である。FIG. 1 is a front view of the biological information measuring apparatus according to the first embodiment. 図2は、腕に装着された図1の生体情報計測装置の正面図である。FIG. 2 is a front view of the biological information measuring apparatus of FIG. 1 attached to an arm. 図3は、図1の生体情報計測装置の背面図である。FIG. 3 is a rear view of the biological information measuring apparatus of FIG. 図4は、図1のストレス計測部の構成を示すブロック図である。FIG. 4 is a block diagram showing a configuration of the stress measurement unit of FIG. 図5は、ストレス状態計測マップの一例を示す図である。FIG. 5 is a diagram illustrating an example of a stress state measurement map. 図6は、ストレス状態の計測方法の手順の一例を示すフローチャートである。FIG. 6 is a flowchart illustrating an example of a procedure of a stress state measurement method. 図7は、実施の形態2のストレス状態計測マップの一例を示す図である。FIG. 7 is a diagram illustrating an example of a stress state measurement map according to the second embodiment.
 (生体情報計測装置が取り得る形態の一例)
 本開示に係る生体情報計測装置の一形態は、被計測者の主観に基づいてストレスを計測する第1の計測部と、被計測者の生体情報に基づいてストレスを計測する第2の計測部と、第1の計測部の計測結果および第2の計測部の計測結果に基づいてストレスを計測する第3の計測部とを備える。
(An example of a form that the biological information measuring device can take)
One form of the biological information measurement device according to the present disclosure includes a first measurement unit that measures stress based on subjectivity of the measurement subject, and a second measurement unit that measures stress based on biological information of the measurement subject. And a third measurement unit that measures stress based on the measurement result of the first measurement unit and the measurement result of the second measurement unit.
 第3の計測部により得られる計測結果は、第1の計測部により得られる被計測者の主観に基づく計測結果だけではなく、第2の計測部により得られるストレスに関する客観的な計測結果を反映する。このため、被計測者の主観だけに基づいてストレスの状態が計測される場合と比較して、被計測者のストレスの状態を正確に計測できる。 The measurement result obtained by the third measurement unit reflects not only the measurement result based on the subjectivity of the measurement subject obtained by the first measurement unit but also the objective measurement result regarding the stress obtained by the second measurement unit. To do. For this reason, compared with the case where the state of stress is measured based only on the subject's subjectivity, the state of stress of the subject can be measured accurately.
 上記生体情報計測装置の一例によれば、第3の計測部は、第1の計測部の計測結果および第2の計測部の計測結果の組み合わせが予め規定された複数の種類のストレス状態のいずれに該当するか判定する。 According to an example of the biological information measuring apparatus, the third measurement unit may be any of a plurality of types of stress states in which a combination of the measurement result of the first measurement unit and the measurement result of the second measurement unit is defined in advance. It is judged whether it corresponds to.
 例えば、主観的に計測されたストレスの強さと客観的に計測されたストレスの強さとが大きく相違する場合、ストレスの強さがどの程度であるかという観点だけではストレスの状態を正確に計測できない。このような場合におけるストレスの計測方法の1つとして、主観的に計測されたストレスの強さと客観的に計測されたストレスの強さとの組み合わせが、予め分類された複数のストレスの状態のうちのいずれに該当するか判定する方法が挙げられる。この方法によれば、主観的および客観的な方法による計測結果が整合している場合、および、整合していない場合のそれぞれをストレスの状態の1つとして判定できるため、被計測者のストレスの状態をより正確に計測できる。 For example, if the subjectively measured stress intensity is significantly different from the objectively measured stress intensity, it is not possible to accurately measure the stress state only from the perspective of how much the stress intensity is. . One of the stress measurement methods in such a case is a combination of subjectively measured stress intensity and objectively measured stress intensity among a plurality of pre-classified stress states. A method for determining which of these is applicable. According to this method, when the measurement results by the subjective and objective methods are consistent and when the measurement results are not consistent, it can be determined as one of the stress states. The state can be measured more accurately.
 上記生体情報計測装置の一例によれば、第3の計測部は、第1の計測部の計測結果から推定されるストレスの強さが弱く、第2の計測部の計測結果から推定されるストレスの強さが強い場合、被計測者が自覚できていないストレスが存在すると判定する。 According to the example of the biological information measuring device, the third measurement unit has a low stress estimated from the measurement result of the first measurement unit, and the stress estimated from the measurement result of the second measurement unit. If the strength of is high, it is determined that there is a stress that the measurement subject cannot recognize.
 第1の計測部および第2の計測部を備える上記生体情報計測装置を用いてストレスを計測した場合、主観的に計測されたストレスの強さが弱く、客観的に計測されたストレスの強さが強いという計測結果が得られることがある。この計測結果について、被計測者が自覚できていない強いストレスが存在していることを示唆していると解釈することもできる。上記生体情報計測装置はこのような思想を取り入れた計測を実行するため、被計測者に潜在化したストレスが存在していることを検出できる。 When the stress is measured using the biological information measuring apparatus including the first measurement unit and the second measurement unit, the stress intensity measured subjectively is weak and the stress intensity measured objectively. Measurement result may be obtained. This measurement result can also be interpreted as suggesting that there is a strong stress that the measurement subject cannot recognize. Since the biological information measuring device performs measurement incorporating such a concept, it can detect that there is a latent stress on the measurement subject.
 上記生体情報計測装置の一例によれば、第3の計測部は、第1の計測部から取得した複数回の計測結果、および、第2の計測部から取得した複数回の計測結果に基づいてストレスを計測する。 According to an example of the biological information measurement device, the third measurement unit is based on the multiple measurement results acquired from the first measurement unit and the multiple measurement results acquired from the second measurement unit. Measure stress.
 被計測者の状態および計測環境はストレスの状態に関する計測結果に影響を及ぼすことがある。このため、計測結果の正確性を高めるためには、複数回の計測結果を総合して最終的な計測結果を求めることが好ましい。上記生体情報計測装置によれば、このような点を踏まえた計測が実行されるため、被計測者のストレスの状態がより正確に計測される。 Measured person's condition and measurement environment may affect the measurement result related to stress condition. For this reason, in order to improve the accuracy of the measurement result, it is preferable to obtain a final measurement result by combining a plurality of measurement results. According to the biological information measuring apparatus, since measurement based on such points is performed, the state of stress of the measurement subject can be measured more accurately.
 上記生体情報計測装置の一例によれば、第1の計測部の計測結果、第2の計測部の計測結果、および、第3の計測部の計測結果の少なくとも1つを被計測者の特性に基づいて補正する。 According to an example of the biological information measuring device, at least one of the measurement result of the first measurement unit, the measurement result of the second measurement unit, and the measurement result of the third measurement unit is used as the characteristics of the measurement subject. Correct based on.
 被計測者の特性はストレスに対する反応に影響を及ぼすことがある。被計測者の特性の主要な例は、被計測者の年齢および性格である。上記生体情報計測装置によれば、このような点を踏まえた計測が実行されるため、被計測者のストレスの状態がより正確に計測される。 Measured person characteristics may affect the response to stress. A major example of a person being measured is the age and personality of the person being measured. According to the biological information measuring apparatus, since measurement based on such points is performed, the state of stress of the measurement subject can be measured more accurately.
 (実施の形態1)
 図1~図3を参照して、生体情報計測装置10の構成について説明する。
(Embodiment 1)
The configuration of the biological information measuring apparatus 10 will be described with reference to FIGS.
 図1に示されるように、生体情報計測装置10は、本体11、入力部12、出力部13、装着部14、脈波検出部20、および、ストレス計測部30を備える。ストレス計測部30は、被計測者のストレスに関する状態(以下では「ストレス状態」)を計測する機能を備えたコンピュータである。本体11は、入力部12等をはじめとして生体情報計測装置10を構成する各種の要素を支持または収容する。 1, the biological information measuring device 10 includes a main body 11, an input unit 12, an output unit 13, a mounting unit 14, a pulse wave detection unit 20, and a stress measurement unit 30. The stress measurement unit 30 is a computer having a function of measuring a state related to stress of the measurement subject (hereinafter, “stress state”). The main body 11 supports or accommodates various elements constituting the biological information measuring apparatus 10 including the input unit 12 and the like.
 入力部12は、被計測者に関する情報をストレス計測部30に入力するために被計測者または計測者(以下では「ユーザー」)により操作される。入力部12の一例は、ユーザーが操作できるように本体11に設けられる操作ボタン、または、外部機器からの情報を受信できるように本体11に設けられる無線受信部である。外部機器の一例は、スマートフォン等の携帯情報端末、タブレット型の情報端末、および、携帯型または据え置き型のパーソナルコンピュータ等である。 The input unit 12 is operated by a measurement person or a measurement person (hereinafter referred to as “user”) in order to input information on the measurement person to the stress measurement part 30. An example of the input unit 12 is an operation button provided on the main body 11 so that the user can operate, or a wireless reception unit provided on the main body 11 so that information from an external device can be received. An example of the external device is a portable information terminal such as a smartphone, a tablet information terminal, and a portable or stationary personal computer.
 入力部12に入力される被計測者に関する情報は、被計測者のストレスに関する状態を主観的に評価した情報(以下では「主観評価情報」)、および、ストレスに対する反応に影響を及ぼすと考えられている被計測者の特性に関する情報(以下では「特性情報」)を含む。主観評価情報は、例えば、職業性ストレス簡易調査票に対する被計測者の回答結果、チャルダーの疲労尺度に対する被計測者の回答結果、ピッツバーグの睡眠質問票に対する被計測者の回答結果、または、うつ状態を測るCES-Dに対する被計測者の回答結果を含む。特性情報は例えば、年齢および性格を含む。 The information about the person to be measured input to the input unit 12 is considered to affect information that subjectively evaluates the state of the person to be measured regarding stress (hereinafter referred to as “subjective evaluation information”) and a response to the stress. Information on the characteristics of the person being measured (hereinafter referred to as “characteristic information”). Subjective evaluation information includes, for example, the response of the measured person to the Occupational Stress Simple Questionnaire, the response of the measured person to the Chalder Fatigue Scale, the response of the measured person to the Pittsburgh Sleep Questionnaire, or depression The measurement result of the measured person for CES-D is measured. The characteristic information includes, for example, age and personality.
 出力部13はストレス計測部30により計測されたストレス状態等を出力する。出力部13の一例は、ユーザーが視認できるように本体11に設けられる表示装置、または、携帯情報端末に情報を送信できるように本体11に設けられる無線送信部である。 The output unit 13 outputs the stress state measured by the stress measurement unit 30. An example of the output unit 13 is a display device provided in the main body 11 so that the user can visually recognize it, or a wireless transmission unit provided in the main body 11 so that information can be transmitted to the portable information terminal.
 装着部14は本体11を被計測者の腕に固定する。装着部14の一例はベルトである。図2は装着部14が腕に巻かれることにより本体11が被計測者の腕に装着された状態を示している。なお、生体情報計測装置10を身体に装着するための構成は任意に変更可能である。例えば、被計測者の指、足首、額、胸、肩、または、耳に装着できるように生体情報計測装置10を構成することもできる。 The mounting part 14 fixes the main body 11 to the arm of the person to be measured. An example of the mounting portion 14 is a belt. FIG. 2 shows a state in which the main body 11 is attached to the arm of the person to be measured when the attachment portion 14 is wound around the arm. In addition, the structure for mounting | wearing the body with the biological information measuring device 10 can be changed arbitrarily. For example, the biological information measuring device 10 can be configured to be worn on the finger, ankle, forehead, chest, shoulder, or ear of the measurement subject.
 図3に示されるように、脈波検出部20は、発光部21および受光部22を備え、受光部22から出力される受光信号に基づいて被計測者の脈波の時系列データである脈波情報を算出する。発光部21および受光部22は、本体11の背面11Bに設けられる。発光部21の一例は緑色光の発光ダイオードである。受光部22の一例はフォトダイオードである。発光部21から身体に向けて緑色光が反射された場合、その一部が反射され受光部22により受光される。受光部22は受光した緑色光の強さに応じて変化する受光信号を出力する。反射される緑色光の強さは被計測者の脈波の状態に応じて異なる。このため、受光部22の受光信号に基づいて被計測者の脈波を算出することができる。 As shown in FIG. 3, the pulse wave detection unit 20 includes a light emitting unit 21 and a light receiving unit 22, and is a pulse that is time-series data of a measured subject's pulse wave based on a light reception signal output from the light receiving unit 22. Wave information is calculated. The light emitting unit 21 and the light receiving unit 22 are provided on the back surface 11 </ b> B of the main body 11. An example of the light emitting unit 21 is a green light emitting diode. An example of the light receiving unit 22 is a photodiode. When green light is reflected from the light emitting unit 21 toward the body, a part of the green light is reflected and received by the light receiving unit 22. The light receiving unit 22 outputs a light reception signal that changes according to the intensity of the received green light. The intensity of the reflected green light varies depending on the state of the pulse wave of the measurement subject. For this reason, the pulse wave of the person to be measured can be calculated based on the light reception signal of the light receiving unit 22.
 図4を参照して、ストレス計測部30の構成について説明する。 The configuration of the stress measurement unit 30 will be described with reference to FIG.
 ストレス計測部30は第1の計測部31、第2の計測部32、第3の計測部33、CPU34、および、メモリ35を備える。メモリ35は、各計測部31~33により実行される処理に必要な一時データ、および、各計測部31~33の計算結果等を格納する。メモリ35の一例は不揮発性メモリである。入力部12に入力された被計測者に関する情報は第1の計測部31に入力され、メモリ35に格納される。脈波検出部20の計測結果は第2の計測部32に入力され、メモリ35に格納される。 The stress measurement unit 30 includes a first measurement unit 31, a second measurement unit 32, a third measurement unit 33, a CPU 34, and a memory 35. The memory 35 stores temporary data necessary for processing executed by the measurement units 31 to 33, calculation results of the measurement units 31 to 33, and the like. An example of the memory 35 is a nonvolatile memory. Information on the person to be measured input to the input unit 12 is input to the first measurement unit 31 and stored in the memory 35. The measurement result of the pulse wave detection unit 20 is input to the second measurement unit 32 and stored in the memory 35.
 第1の計測部31は、入力部12に入力された主観評価情報に基づいて、被計測者のストレスの強さを主観的に評価した指標である主観ストレス値Pを算出する。一例では、主観評価情報と主観ストレス値Pとの関係を規定した主観評価マップがメモリ35に予め記憶される。第1の計測部31は主観評価マップおよび入力部12に入力された主観評価情報を用い、その主観評価情報に対応する主観ストレス値Pを求める。 The first measurement unit 31 calculates a subjective stress value P, which is an index that subjectively evaluates the strength of stress of the measurement subject, based on the subjective evaluation information input to the input unit 12. In one example, a subjective evaluation map that defines the relationship between the subjective evaluation information and the subjective stress value P is stored in the memory 35 in advance. The first measurement unit 31 uses the subjective evaluation map and the subjective evaluation information input to the input unit 12 to obtain a subjective stress value P corresponding to the subjective evaluation information.
 第2の計測部32は、脈波検出部20により計測された脈波情報に基づいて、被計測者のストレスの強さを客観的に評価した指標である客観ストレス値Qを算出する。一例では、次の手順により客観ストレス値Qが算出される。 The second measuring unit 32 calculates an objective stress value Q that is an index that objectively evaluates the strength of stress of the measurement subject based on the pulse wave information measured by the pulse wave detecting unit 20. In one example, the objective stress value Q is calculated by the following procedure.
 最初に、受光部22により得られる受光信号の時系列データにおいて隣り合う極大値間の時間が心拍間隔PPとして算出される。次に、心拍間隔PPの変化を百分率で示した値であるPI(Percentage Index)が下記[1]式から算出される。[1]式のPPiはi番目に測定した心拍間隔PPを示す。次に、Shannonの平均情報量の式である下記[2]式から自律神経の活動度の指標であるエントロピーEが算出される。[2]式に示されるpは[1]式により求められたPIが生じる確率を示す。次に、下記[3]式により自律神経のバランスの指標であるトーンTが生体の活動状態毎に算出される。[3]式のMは、心拍間隔PPの測定数である。 First, the time between adjacent local maximum values in the time series data of the received light signal obtained by the light receiving unit 22 is calculated as the heartbeat interval PP. Next, PI (Percentage Index), which is a value indicating the change in the heartbeat interval PP as a percentage, is calculated from the following equation [1]. PPi in the formula [1] indicates the i-th measured heartbeat interval PP. Next, entropy E, which is an index of autonomic nerve activity, is calculated from the following equation [2], which is an equation of Shannon's average information amount. P shown in the equation [2] indicates the probability that the PI obtained by the equation [1] will occur. Next, a tone T that is an index of the balance of the autonomic nerve is calculated for each activity state of the living body by the following equation [3]. [3] M in the equation is the number of heartbeat intervals PP measured.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 第2の計測部32は、トーンTおよびエントロピーEに基づいて客観ストレス値Qを算出する。一例では、トーンTおよびエントロピーEと客観ストレス値Qとの関係を規定した客観評価マップがメモリ35に予め記憶される。第2の計測部32は客観評価マップおよび算出したトーンTおよびエントロピーEを用い、それらトーンTおよびエントロピーEに対応する客観ストレス値Qを求める。ここでは、自律神経の状態を表す指標としてエントロピーEおよびトーンTを用いた評価方法を例示しているが、エントロピーEおよびトーンTとは別の指標を用いて客観ストレス値Qを算出することもできる。別の指標の一例は、周波数解析法により得られるLF(Low Frequency)成分とHF(High Frequency)成分との比(LF/HF)である。 The second measuring unit 32 calculates an objective stress value Q based on the tone T and entropy E. In one example, an objective evaluation map that defines the relationship between the tone T and entropy E and the objective stress value Q is stored in the memory 35 in advance. The second measuring unit 32 uses the objective evaluation map and the calculated tone T and entropy E to obtain an objective stress value Q corresponding to the tone T and entropy E. Here, an evaluation method using entropy E and tone T as an index representing the state of the autonomic nerve is illustrated, but objective stress value Q may be calculated using an index different from entropy E and tone T. it can. An example of another index is a ratio (LF / HF) of an LF (Low Frequency) component and an HF (High Frequency) component obtained by a frequency analysis method.
 第3の計測部33は、第1の計測部31により求められた主観ストレス値P、および、第2の計測部32により求められた客観ストレス値Qに基づいて、被計測者のストレス状態を計測する。一例では、第3の計測部33は、図5に示されるストレス状態計測マップをメモリ35から読み出し、主観ストレス値Pおよび客観ストレス値Qにより定められる点(以下では「計測点R」)が属するストレス状態計測マップ上の領域に応じて被計測者のストレスの状態を判定する。このように第3の計測部33は、主観的に計測されたストレスの強さと客観的に計測されたストレスの強さとの組み合わせが、予め分類された複数のストレスの状態のうちのいずれに該当するか判定する。この方法によれば、主観的および客観的な方法による計測結果が整合している場合、および、整合していない場合のそれぞれをストレスの状態の1つとして判定できるため、被計測者のストレスの状態をより正確に計測できる。 Based on the subjective stress value P obtained by the first measurement unit 31 and the objective stress value Q obtained by the second measurement unit 32, the third measurement unit 33 determines the stress state of the measurement subject. measure. In one example, the third measuring unit 33 reads the stress state measurement map shown in FIG. 5 from the memory 35, and a point determined by the subjective stress value P and the objective stress value Q (hereinafter, “measurement point R”) belongs to it. The state of stress of the measurement subject is determined according to the area on the stress state measurement map. Thus, the third measuring unit 33 corresponds to any of a plurality of pre-classified stress states in which the subjectively measured stress intensity and the objectively measured stress intensity are combined. Judge whether to do. According to this method, when the measurement results by the subjective and objective methods are consistent and when the measurement results are not consistent, it can be determined as one of the stress states. The state can be measured more accurately.
 ストレス状態計測マップは、主観ストレス値Pに関する座標軸、および、客観ストレス値Qに関する座標軸により規定される座標平面であり、第1象限に対応する第1の領域A1、第2象限に対応する第2の領域A2、第3象限に対応する第3の領域A3、および、第4象限に対応する第4の領域A4に区分される。 The stress state measurement map is a coordinate plane defined by the coordinate axis related to the subjective stress value P and the coordinate axis related to the objective stress value Q, and the first area A1 corresponding to the first quadrant and the second area corresponding to the second quadrant. Area A2, a third area A3 corresponding to the third quadrant, and a fourth area A4 corresponding to the fourth quadrant.
 第1の領域A1は、主観ストレス値Pが基準値PXよりも大きく、客観ストレス値Qが基準値QXよりも大きい領域である。第1の領域A1では、被計測者の主観に基づいて計測されたストレス、および、脈波情報に基づいて客観的に計測されたストレスの双方が強いため、被計測者に強いストレスが存在していることが強く示唆される。このため、計測点Rが第1の領域A1に属する場合、被計測者のストレス状態が、顕在化した強いストレスが存在する第1のストレス状態であると判定される。 The first area A1 is an area where the subjective stress value P is larger than the reference value PX and the objective stress value Q is larger than the reference value QX. In the first region A1, since the stress measured based on the subject's subjectivity and the stress measured objectively based on the pulse wave information are both strong, there is strong stress on the subject. It is strongly suggested that For this reason, when the measurement point R belongs to the first region A1, it is determined that the stress state of the measurement subject is the first stress state in which a strong stress that has been manifested exists.
 第2の領域A2は、主観ストレス値Pが基準値PXよりも小さく、客観ストレス値Qが基準値QXよりも大きい領域である。第2の領域A2では、被計測者の主観に基づいて評価されたストレスが弱く、脈波情報に基づいて客観的に評価されたストレスが強いため、主観的な評価および客観的な評価の結果が整合していない。この相反する結果は、被計測者が自覚できていないストレスが存在している状態を示唆していると解釈することもできる。このため、計測点Rが第2の領域A2に属する場合、被計測者のストレス状態が、被計測者が自覚できていない強いストレスが潜在化した第2のストレス状態であると判定される。 The second area A2 is an area where the subjective stress value P is smaller than the reference value PX and the objective stress value Q is larger than the reference value QX. In the second region A2, the stress evaluated based on the subject's subjectivity is weak and the stress objectively evaluated based on the pulse wave information is strong, so the results of subjective evaluation and objective evaluation Are not consistent. This conflicting result can be interpreted as suggesting a state in which there is a stress that the measurement subject cannot recognize. For this reason, when the measurement point R belongs to the second region A2, it is determined that the stress state of the measurement subject is a second stress state in which strong stress that the measurement subject cannot recognize is latent.
 第3の領域A3は、主観ストレス値Pが基準値PXよりも小さく、客観ストレス値Qが基準値QXよりも小さい領域である。第3の領域A3では、被計測者の主観に基づいて計測されたストレス、および、脈波情報に基づいて客観的に計測されたストレスの双方が弱いため、被計測者が抱えるストレスが弱い、または、被計測者にストレスがほぼ存在していないことが強く示唆される。このため、計測点Rが第3の領域A3に属する場合、被計測者のストレス状態が、被計測者が抱えるストレスが弱い、または、被計測者にストレスがほぼ存在していない第3のストレス状態であると判定される。 The third area A3 is an area where the subjective stress value P is smaller than the reference value PX and the objective stress value Q is smaller than the reference value QX. In the third region A3, since both the stress measured based on the subject's subjectivity and the stress objectively measured based on the pulse wave information are weak, the stress held by the subject is weak. Or it strongly suggests that there is almost no stress in the measurement subject. For this reason, when the measurement point R belongs to the third region A3, the stress state of the measurement subject is weak, or the third stress in which the measurement subject has almost no stress. The state is determined.
 第4の領域A4は、主観ストレス値Pが基準値PXよりも大きく、客観ストレス値Qが基準値QXよりも小さい領域である。第4の領域A4では、被計測者の主観に基づいて評価されたストレスが強く、脈波情報に基づいて客観的に評価されたストレスが弱いため、主観的な評価および客観的な評価の結果が整合していない。この相反する結果は、被計測者がストレスを抱えてはいるもののそのストレスが一時的に強く一過性ストレスである状態を示唆していると解釈することもできる。このため、計測点Rが第4の領域A4に属する場合、被計測者のストレス状態が、ストレスが存在するもののそのストレスが一過性ストレスである可能性が高い第4のストレス状態であると判定される。 The fourth area A4 is an area where the subjective stress value P is larger than the reference value PX and the objective stress value Q is smaller than the reference value QX. In the fourth region A4, since the stress evaluated based on the subjectivity of the measurement subject is strong and the stress evaluated objectively based on the pulse wave information is weak, the result of subjective evaluation and objective evaluation Are not consistent. This conflicting result can be interpreted as suggesting that the person being measured is stressed, but the stress is temporarily strong and transient. For this reason, when the measurement point R belongs to the fourth region A4, the stress state of the measurement subject is the fourth stress state in which there is a high possibility that the stress is a transient stress although the stress exists. Determined.
 図6を参照して、ストレス状態の計測手順の一例について説明する。 Referring to FIG. 6, an example of the stress state measurement procedure will be described.
 ステップS1では、ユーザーが入力部12を操作することにより、被計測者に関する情報をストレス計測部30に入力する。入力された情報はメモリ35に格納される。ステップS2では、第1の計測部31が主観評価情報に基づいて主観ストレス値Pを算出する。ステップS3では、脈波検出部20が被計測者の脈波情報を算出する。ステップS4では、第2の計測部32が脈波情報に基づいてトーンTおよびエントロピーEを算出する。ステップS5では、第2の計測部32がトーンTおよびエントロピーEに基づいて客観ストレス値Qを算出する。 In step S <b> 1, the user operates the input unit 12 to input information on the person to be measured to the stress measurement unit 30. The input information is stored in the memory 35. In step S2, the first measuring unit 31 calculates a subjective stress value P based on the subjective evaluation information. In step S3, the pulse wave detection unit 20 calculates the pulse wave information of the measurement subject. In step S4, the second measuring unit 32 calculates the tone T and entropy E based on the pulse wave information. In step S5, the second measuring unit 32 calculates an objective stress value Q based on the tone T and entropy E.
 ステップS6では、第1の計測部31が主観ストレス値Pをメモリ35に格納し、第2の計測部32が客観ストレス値Qをメモリ35に格納する。ステップS7では、第3の計測部33が主観ストレス値Pおよび客観ストレス値Qの計測回数が予め規定された回数に達したか否かを判定する。被計測者の状態および計測環境はストレスの状態に関する計測結果に影響を及ぼすことがある。このため、計測結果の正確性を高めるためには、複数回の計測結果を総合して最終的な計測結果を求めることが好ましい。ステップS7はこの点を実現するためのステップである。このため、ステップS7を含む本計測手順によれば、被計測者のストレスの状態がより正確に計測される。 In step S6, the first measuring unit 31 stores the subjective stress value P in the memory 35, and the second measuring unit 32 stores the objective stress value Q in the memory 35. In step S7, the third measuring unit 33 determines whether or not the number of measurements of the subjective stress value P and the objective stress value Q has reached a predetermined number. The state of the person being measured and the measurement environment may affect the measurement results regarding the state of stress. For this reason, in order to improve the accuracy of the measurement result, it is preferable to obtain a final measurement result by combining a plurality of measurement results. Step S7 is a step for realizing this point. For this reason, according to this measurement procedure including step S7, the state of stress of the measurement subject is more accurately measured.
 ステップS8では、第3の計測部33が複数の主観ストレス値Pの平均値、および、複数の客観ストレス値Qの平均値を算出する。ステップS9では、主観ストレス値Pの平均値および客観ストレス値Qの平均値により決められる計測点Rがストレス状態計測マップにおいて属する領域に基づいて、ストレスの状態が第1~第4のストレス状態のいずれに該当するかを判定する。ステップS10では、第3の計測部33がストレス状態の計測結果を出力部13に送信する。ステップS11では、出力部13がストレス状態の計測結果を出力する。一例では、出力部13は、図5に示されるようなストレス状態計測マップおよびそれにプロットされた計測点Rを表示装置に表示する。出力部13が無線送信部を含む場合、ストレス状態の計測結果を含む信号が携帯情報端末等の外部機器に送信される。外部機器は出力部13から信号を受信した場合、座標平面および計測点Rを外部機器に設けられる表示装置に表示する。 In step S8, the third measuring unit 33 calculates an average value of a plurality of subjective stress values P and an average value of a plurality of objective stress values Q. In step S9, based on the region where the measurement point R determined by the average value of the subjective stress value P and the average value of the objective stress value Q belongs in the stress state measurement map, the stress state is the first to fourth stress states. It is determined which is applicable. In step S <b> 10, the third measurement unit 33 transmits the measurement result of the stress state to the output unit 13. In step S11, the output unit 13 outputs the measurement result of the stress state. In one example, the output unit 13 displays a stress state measurement map as shown in FIG. 5 and measurement points R plotted thereon on the display device. When the output unit 13 includes a wireless transmission unit, a signal including the measurement result of the stress state is transmitted to an external device such as a portable information terminal. When the external device receives a signal from the output unit 13, the external device displays the coordinate plane and the measurement point R on a display device provided in the external device.
 このように、第3の計測部33により得られる計測結果は、第1の計測部31により得られる被計測者の主観に基づく計測結果だけではなく、第2の計測部32により得られるストレスに関する客観的な計測結果を反映する。このため、被計測者の主観だけに基づいてストレスの状態が計測される場合と比較して、被計測者のストレスの状態を正確に計測できる。 As described above, the measurement result obtained by the third measurement unit 33 is not only the measurement result based on the subjectivity of the measurement subject obtained by the first measurement unit 31 but also the stress obtained by the second measurement unit 32. Reflects objective measurement results. For this reason, compared with the case where the state of stress is measured based only on the subject's subjectivity, the state of stress of the subject can be measured accurately.
 (実施の形態2)
 実施の形態2の生体情報計測装置10は、実施の形態1のストレス状態計測処理の一部を変更した構成を備える。実施の形態1のストレス状態計測処理では、主観ストレス値Pの平均値および客観ストレス値Qの平均値により決められる計測点Rを表示装置に表示させる。これに対して、実施の形態2のストレス状態計測処理では、計測された複数の主観ストレス値Pおよび客観ストレス値Qの組のそれぞれにより決められる計測点Rを出力部13に表示させる。例えば、1日に3回の計測が実施され、それぞれの計測により計測点Rである第1の計測点R1、第2の計測点R2、および、第3の計測点R3が得られた場合、それぞれの計測点R1~R3がストレス状態計測マップ上にプロットされる。図7はその一例を示している。
(Embodiment 2)
The biological information measuring apparatus 10 according to the second embodiment includes a configuration in which a part of the stress state measurement process according to the first embodiment is changed. In the stress state measurement process of the first embodiment, the measurement point R determined by the average value of the subjective stress value P and the average value of the objective stress value Q is displayed on the display device. On the other hand, in the stress state measurement process according to the second embodiment, the measurement unit R determined by each of the set of the measured subjective stress values P and objective stress values Q is displayed on the output unit 13. For example, when measurement is performed three times a day, and the first measurement point R1, the second measurement point R2, and the third measurement point R3, which are measurement points R, are obtained by each measurement, Each measurement point R1 to R3 is plotted on the stress state measurement map. FIG. 7 shows an example.
 出力部13は、各計測点Rを表示することに加え、各計測点Rを頂点とする多角形が形成されるように各計測点R間を結ぶ線分をさらに表示する。図7に示される例では各計測点Rを頂点とする三角形が表示されている。各計測点Rを頂点とする多角形の面積は、例えばストレスの強さの変動の度合(以下では「変動度合」)を反映していると考えられる。このため、ユーザーは多角形の面積の大きさから変動度合を認識することができる。 In addition to displaying each measurement point R, the output unit 13 further displays a line segment connecting the measurement points R so that a polygon having each measurement point R as a vertex is formed. In the example shown in FIG. 7, a triangle having each measurement point R as a vertex is displayed. The area of the polygon having each measurement point R as a vertex is considered to reflect, for example, the degree of stress intensity fluctuation (hereinafter referred to as “degree of fluctuation”). For this reason, the user can recognize the degree of variation from the size of the polygonal area.
 一例では、変動度合を求める機能がストレス計測部30に設けられる。この場合、ストレス計測部30は各計測点Rに基づいて多角形の面積を算出し、その面積が判定面積以上であるか否かを判定し、その結果を出力部13に出力させる。多角形の面積が判定面積以上である場合、変動度合が大きいと判定され、多角形の面積が判定面積未満である場合、変動度合が小さいと判定される。 In one example, the stress measuring unit 30 is provided with a function for obtaining the degree of variation. In this case, the stress measurement unit 30 calculates a polygonal area based on each measurement point R, determines whether the area is equal to or larger than the determination area, and causes the output unit 13 to output the result. When the area of the polygon is equal to or larger than the determination area, it is determined that the degree of variation is large. When the area of the polygon is less than the determination area, it is determined that the degree of variation is small.
 (実施の形態3)
 実施の形態3の生体情報計測装置10は、実施の形態1のストレス状態計測処理の一部を変更した構成を備える。実施の形態1のストレス状態計測処理では、ストレス状態計測マップを用いてストレスの状態に関する最終的な計測結果を決定している。これに対して実施の形態3のストレス状態計測処理では、主観ストレス値Pおよび客観ストレス値Qと予め規定された関数とを用いて、主観ストレス値Pおよび客観ストレス値Qを総合した総ストレス値Uを算出する。一例では、実施の形態1のストレス状態計測処理のステップS8の内容が以下のとおり変更される。
(Embodiment 3)
The biological information measuring apparatus 10 according to the third embodiment has a configuration in which a part of the stress state measuring process according to the first embodiment is changed. In the stress state measurement process of the first embodiment, the final measurement result regarding the state of stress is determined using the stress state measurement map. On the other hand, in the stress state measurement process of the third embodiment, the total stress value obtained by integrating the subjective stress value P and the objective stress value Q using the subjective stress value P and the objective stress value Q and a predetermined function. U is calculated. In one example, the content of step S8 of the stress state measurement process of the first embodiment is changed as follows.
 変更されたステップS8では、第3の計測部33が次の順序で総ストレス値Uを算出する。最初に、入力部12に入力された特性情報に基づいて補正係数αおよび補正係数βが決められる。補正係数αは主観ストレス値Pに対する重み係数である。補正係数βは客観ストレス値Qに対する重み係数である。メモリ35は、特性情報と補正係数αおよび補正係数βとの関係を規定した補正係数マップを記憶している。次に、下記[4]式から総ストレス値Uが算出される。 In the changed step S8, the third measuring unit 33 calculates the total stress value U in the following order. First, the correction coefficient α and the correction coefficient β are determined based on the characteristic information input to the input unit 12. The correction coefficient α is a weighting coefficient for the subjective stress value P. The correction coefficient β is a weighting coefficient for the objective stress value Q. The memory 35 stores a correction coefficient map that defines the relationship between the characteristic information, the correction coefficient α, and the correction coefficient β. Next, the total stress value U is calculated from the following equation [4].
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 第3の計測部33は、総ストレス値Uをストレス状態に関する最終的な計測結果として出力部13に出力させる。別の例では、第3の計測部33は総ストレス値Uが予め規定された複数のランクのうちのいずれに属するかを判定し、判定したランクをストレス状態に関する最終的な計測結果として出力部13に出力させる。 The third measurement unit 33 causes the output unit 13 to output the total stress value U as a final measurement result regarding the stress state. In another example, the third measuring unit 33 determines whether the total stress value U belongs to a plurality of predetermined ranks, and outputs the determined rank as a final measurement result regarding the stress state. 13 to output.
 なお、上記各実施の形態に関する説明は本開示に係る生体情報計測装置が取り得る形態の例示であり、その形態を制限することを意図していない。本開示に従う生体情報計測装置は例えば各実施の形態の一部を変更した別の形態を取り得る。 In addition, the description regarding each said embodiment is an illustration of the form which the biological information measuring device which concerns on this indication can take, and it does not intend restrict | limiting the form. The biological information measuring device according to the present disclosure may take another form in which a part of each embodiment is changed, for example.
 本開示に係る生体情報計測装置は、ストレスチェック制度に基づく労働者のストレスチェックをはじめとして医療機関および家庭等の様々な場面において被計測者のストレスをチェックするために用いることができる。 The biological information measuring apparatus according to the present disclosure can be used to check the stress of the measurement subject in various scenes such as a medical institution and a home, including a worker's stress check based on the stress check system.
 10 生体情報計測装置
 31 第1の計測部
 32 第2の計測部
 33 第3の計測部
DESCRIPTION OF SYMBOLS 10 Biological information measuring device 31 1st measurement part 32 2nd measurement part 33 3rd measurement part

Claims (5)

  1.  被計測者の主観に基づいてストレスを計測する第1の計測部と、
     前記被計測者の生体情報に基づいてストレスを計測する第2の計測部と、
     前記第1の計測部の計測結果および前記第2の計測部の計測結果に基づいてストレスを計測する第3の計測部とを備える
     生体情報計測装置。
    A first measurement unit that measures stress based on the subjectivity of the measurement subject;
    A second measuring unit that measures stress based on the biological information of the person to be measured;
    A biological information measurement apparatus comprising: a third measurement unit that measures stress based on a measurement result of the first measurement unit and a measurement result of the second measurement unit.
  2.  前記第3の計測部は、前記第1の計測部の計測結果および前記第2の計測部の計測結果の組み合わせが予め規定された複数の種類のストレス状態のいずれに該当するか判定する
     請求項1に記載の生体情報計測装置。
    The third measurement unit determines whether a combination of a measurement result of the first measurement unit and a measurement result of the second measurement unit corresponds to a plurality of types of stress states defined in advance. The biological information measuring device according to 1.
  3.  前記第3の計測部は、前記第1の計測部の計測結果から推定されるストレスの強さが弱く、前記第2の計測部の計測結果から推定されるストレスの強さが強い場合、前記被計測者が自覚できていないストレスが存在すると判定する
     請求項1または2に記載の生体情報計測装置。
    The third measurement unit has a low stress intensity estimated from the measurement result of the first measurement unit, and a high stress intensity estimated from the measurement result of the second measurement unit. The biological information measuring device according to claim 1, wherein it is determined that there is a stress that the measurement subject cannot recognize.
  4.  前記第3の計測部は、前記第1の計測部から取得した複数回の計測結果、および、前記第2の計測部から取得した複数回の計測結果に基づいてストレスを計測する
     請求項1~3のいずれか一項に記載の生体情報計測装置。
    The third measurement unit measures stress based on a plurality of measurement results acquired from the first measurement unit and a plurality of measurement results acquired from the second measurement unit. 4. The biological information measuring device according to any one of 3 above.
  5.  前記第1の計測部の計測結果、前記第2の計測部の計測結果、および、前記第3の計測部の計測結果の少なくとも1つを前記被計測者の特性に基づいて補正する
     請求項1~4のいずれか一項に記載の生体情報計測装置。
    2. At least one of a measurement result of the first measurement unit, a measurement result of the second measurement unit, and a measurement result of the third measurement unit is corrected based on characteristics of the measurement subject. The biological information measuring device according to any one of 1 to 4.
PCT/JP2016/004187 2016-03-25 2016-09-14 Biological information measurement device WO2017163285A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-061492 2016-03-25
JP2016061492A JP2017169974A (en) 2016-03-25 2016-03-25 Biological information measurement device

Publications (1)

Publication Number Publication Date
WO2017163285A1 true WO2017163285A1 (en) 2017-09-28

Family

ID=59901271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004187 WO2017163285A1 (en) 2016-03-25 2016-09-14 Biological information measurement device

Country Status (2)

Country Link
JP (1) JP2017169974A (en)
WO (1) WO2017163285A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146738A1 (en) * 2018-01-25 2019-08-01 国立大学法人大阪大学 Stress state detection method and stress detection device
JP7426595B2 (en) * 2020-01-31 2024-02-02 パナソニックIpマネジメント株式会社 State visualization system, space control system, state visualization method and program
WO2023027153A1 (en) * 2021-08-27 2023-03-02 ソニーグループ株式会社 Information processing method, information processing device, and information processing program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11169362A (en) * 1997-12-15 1999-06-29 Nissan Motor Co Ltd Apparatus for supporting self-recognition on mental and physical condition
JP2002191579A (en) * 2000-12-25 2002-07-09 Tanita Corp Shivering meter
JP2012075708A (en) * 2010-10-01 2012-04-19 Sharp Corp Stress state estimation device, stress state estimation method, program, and recording medium
WO2014184868A1 (en) * 2013-05-14 2014-11-20 株式会社 東芝 Electronic device and biosignal measurement method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11169362A (en) * 1997-12-15 1999-06-29 Nissan Motor Co Ltd Apparatus for supporting self-recognition on mental and physical condition
JP2002191579A (en) * 2000-12-25 2002-07-09 Tanita Corp Shivering meter
JP2012075708A (en) * 2010-10-01 2012-04-19 Sharp Corp Stress state estimation device, stress state estimation method, program, and recording medium
WO2014184868A1 (en) * 2013-05-14 2014-11-20 株式会社 東芝 Electronic device and biosignal measurement method

Also Published As

Publication number Publication date
JP2017169974A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
JP5693325B2 (en) Medical examination result output system and medical examination result output program
US9808184B2 (en) Motor function evaluation device and motor function evaluation method
US20110077536A1 (en) Biological information management system and measurement device
WO2017163285A1 (en) Biological information measurement device
US9070317B2 (en) Device and method of automatic display brightness control
RU2010116975A (en) METHOD FOR ESTIMATING GLASS LENSES, METHOD FOR CALCULATING GLASS LENSES WITH ITS USE, METHOD OF MANUFACTURE OF GLASS LENSES, SYSTEM OF MANUFACTURE OF GLASS LENSES AND GLASS LENSES
US20230233152A1 (en) Methods, apparatus and systems for adaptable presentation of sensor data
US10750961B2 (en) Diagnosis assistance apparatus, diagnosis assistance method, diagnosis assistance program
JP2019030389A (en) Autonomic state evaluation device, autonomic state evaluation system, autonomic state evaluation method and program
JP2024020461A (en) In-body measurement system and program
JP2015131049A5 (en)
WO2019037045A1 (en) Psychological stress assessment method and apparatus
JP2018000597A (en) Biological information processing system and program
US20160213286A1 (en) Electronic device, monitoring and feedback system on thoracoabdominal motion and method thereof
JP6675228B2 (en) Life activity display device, life activity display method, and walking test system
JP7301343B2 (en) Health care device, health care system, health care program, and health care method
US20140073931A1 (en) System and method for determining a measure of the resistance of peripheral vasculature
GB2560863A (en) Bioinformation display device
US20190343443A1 (en) Stress state evaluation apparatus, stress state evaluation system, and non-transitory computer readable medium storing program
WO2019181517A1 (en) Visual field test device, method of controlling same, and visual field test program
CN110446459B (en) Blood pressure related information display device and method
JP2019136114A (en) Worker&#39;s fatigue status evaluation method and apparatus
Wang et al. Google glass indirect ophthalmoscopy
JP7250310B2 (en) Server device, information processing device and program
US20200211711A1 (en) Health condition determination system, health condition determination method, and recording medium

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895325

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16895325

Country of ref document: EP

Kind code of ref document: A1