WO2017163278A1 - Product demand forecasting system, product demand forecasting method, and product demand forecasting program - Google Patents

Product demand forecasting system, product demand forecasting method, and product demand forecasting program Download PDF

Info

Publication number
WO2017163278A1
WO2017163278A1 PCT/JP2016/001758 JP2016001758W WO2017163278A1 WO 2017163278 A1 WO2017163278 A1 WO 2017163278A1 JP 2016001758 W JP2016001758 W JP 2016001758W WO 2017163278 A1 WO2017163278 A1 WO 2017163278A1
Authority
WO
WIPO (PCT)
Prior art keywords
product
demand
prediction
sales
target
Prior art date
Application number
PCT/JP2016/001758
Other languages
French (fr)
Japanese (ja)
Inventor
圭介 梅津
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2018506500A priority Critical patent/JP6451894B2/en
Priority to PCT/JP2016/001758 priority patent/WO2017163278A1/en
Publication of WO2017163278A1 publication Critical patent/WO2017163278A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass

Definitions

  • the present invention relates to a commodity demand prediction system, a commodity demand prediction method, and a commodity demand prediction program for predicting commodity demand.
  • a method of learning a prediction model based on past transaction results of products and performing future demand prediction based on the prediction model is widely known.
  • a predictive model is created based on learning data including data such as past sales performance, store opening hours, campaign information, weather information, etc., and the amount of product demand.
  • a predicted value is obtained by substituting a value.
  • Patent Document 1 describes a system for predicting demand for new products for which there is no past demand data.
  • the system described in Patent Document 1 selects a product similar to a new product, calculates a base demand amount of the new product from the past demand amount of the similar product, and calculates a demand amount after the launch date of the new product.
  • an object of the present invention is to provide a product demand prediction system, a product demand prediction method, and a product demand prediction program that can improve the demand prediction accuracy of a product for which learning data does not exist.
  • the product demand prediction system learns a prediction model based on learning data including an elapsed period from the start of sales of a product, a word included in the name of the product, and a demand quantity of the product after the start of sales.
  • a learning device and a predictor for predicting the demand quantity of the target product which is a product for which no learning data exists, based on the prediction model and the words included in the target product, It is characterized by forecasting demand quantity.
  • Another product demand prediction system is a product demand prediction system that predicts a demand quantity of a target product that is a product for which learning data including a past demand quantity does not exist. What is a target product sold in the past? Included in the forecast model that was learned based on the learning data including the elapsed period from the start of sales of different products, the words included in the name of the product, and the demand quantity of the product after the start of sales, and the target product And a predictor for predicting the demand quantity of the target product in the prediction target period based on the word.
  • the product demand prediction method learns a prediction model based on learning data including an elapsed period from the start of sales of a product, a word included in the name of the product, and a demand quantity of the product after the sales start.
  • the demand quantity of the target product in the prediction target period is predicted based on the prediction model and words included in the target product that is a product for which no learning data exists.
  • Another product demand prediction method is a product demand prediction method for predicting a demand quantity of a target product that is a product for which learning data including a past demand quantity does not exist. What is a target product sold in the past? Included in the forecast model that was learned based on the learning data including the elapsed period from the start of sales of different products, the words included in the name of the product, and the demand quantity of the product after the start of sales, and the target product The demand quantity of the target product in the prediction target period is predicted on the basis of the word.
  • the product demand prediction program is based on learning data including an elapsed period from the start of sales of a product, a word included in the name of the product, and a demand quantity of the product after the start of sales. And a prediction process that predicts the demand quantity of the target product, which is a product for which no learning data exists, in the prediction process, based on the prediction model and the words included in the target product, The demand quantity of the target product in is predicted.
  • Another product demand prediction program is a product demand prediction program applied to a computer that predicts a demand quantity of a target product that is a product for which learning data including a past demand quantity does not exist. Forecasts learned based on learning data that includes the elapsed time from the start of sales of a product that is different from the target product sold on, the words included in the name of the product, and the demand quantity of that product since the start of sales Based on the model and the words included in the target product, a prediction process for predicting the demand quantity of the target product in the prediction target period is executed.
  • a word included in the name of a product is an explanatory variable, and the demand quantity of the product (for example, the number of transactions) , Sales, orders, etc.).
  • FIG. FIG. 1 is a block diagram showing a configuration example of a first embodiment of a commodity demand prediction system according to the present invention.
  • the commodity demand prediction system 100 of this embodiment includes a storage unit 10, a learning device 20, a predictor 30, and an output unit 40.
  • the storage unit 10 stores learning data used by the learning device 20 described later to create a prediction model.
  • the storage unit 10 is realized by, for example, a magnetic disk device.
  • the learning device 20 and the storage unit 10 described later may be connected via a wired or wireless LAN (Local Area Network), or may be connected via the Internet.
  • LAN Local Area Network
  • the prediction model is information representing the correlation between explanatory variables and objective variables.
  • a prediction model is a component for predicting the result of a prediction object, for example by calculating the target variable based on an explanatory variable.
  • the prediction model may be described as “model”, “learning model”, “estimation model”, “prediction formula”, “estimation formula”, or the like.
  • the storage unit 10 stores learning data including an elapsed period from the start of sales of a product, a word included in the name of the product, and a demand quantity of the product after the sales start. For example, when the demand quantity is managed on a daily basis, the storage unit 10 includes the number of days elapsed from the sale start date of the product, the word included in the product name, and the demand quantity of the product after the sale start date. Store learning data.
  • the unit of the aggregation period of the demand quantity included in the learning data may be referred to as a unit period. For example, when there is daily learning data, the unit period is one day.
  • a certain factory predicts how much a new product should be manufactured as a demand quantity. If the quantity to be manufactured can be predicted, it is also possible to predict the raw materials necessary for manufacturing a new product at the factory.
  • the learning data for example, sales data (for example, POS (Point ⁇ ⁇ ⁇ of sale) data) of a new product acquired in the past at a store is used.
  • sales data for example, POS (Point ⁇ ⁇ ⁇ of sale) data
  • POS Point ⁇ ⁇ ⁇ of sale
  • the demand means not only the demand of each store in a certain factory but also the demand of customers viewed from the store. For example, if the number of daily lunch boxes sold at a certain store is 10, from the store's viewpoint, the demand quantity of the lunch boxes for that day will be 10. In addition, if the number of lunches per day that are wholesaled to 100 stores in a certain area is 10 each, the demand quantity of the lunches for that day is 1000 from the viewpoint of the factory.
  • the storage unit 10 since a word included in the name of a product is used as an explanatory variable, the storage unit 10 stores whether or not a word used as an explanatory variable is included in each product.
  • storage part 10 shall not memorize
  • FIG. 2 is an explanatory diagram illustrating an example of learning data stored in the storage unit 10.
  • FIG. 2 exemplifies learning data including the number of days elapsed from the sales start date of a product sold in the past, the words included in the name of the product, and the demand quantity of the product on each elapsed date after the sales start date. ing.
  • the transaction actual number (demand quantity) illustrated in FIG. 2 is, for example, a total value of the sales quantity and the order quantity of each store.
  • variable 1 represents the number of days elapsed from the sales start date
  • variables 2 to 5 indicate whether or not a predetermined word is included in the product name (if included, 1 When not included, 0) is represented.
  • the variable 2 is “whether or not the product name includes“ within the curtain ”(1 if included, 0 if not included, the same applies hereinafter)”
  • the variable 3 is “Japanese-style“ "Whether or not” "is included”
  • variable 4 represents "whether or not” product name includes "season” "”
  • variable 5 represents "whether or not” product name includes "ginger” ".
  • the actual number of transactions represents the demand quantity.
  • storage part 10 may memorize
  • storage part 10 memorize
  • the storage unit 10 preferably stores whether or not a word corresponding to the explanatory variable is included.
  • the learning data includes the number of days elapsed from the sales start date of the product, the word included in the name of the product, and the demand quantity of the product on each elapsed date after the sales start date.
  • the learning data may include other variables.
  • Other variables include information indicating the characteristics of each elapsed date, information indicating the characteristics of each product, and the like.
  • information indicating the characteristics of the elapsed date for example, the ratio of holidays to the number of elapsed days from the sales start date can be considered.
  • information indicating the characteristics of a product for example, information indicating the amount of nutrients contained in the product can be considered.
  • FIG. 3 is an explanatory diagram showing another example of learning data.
  • learning data including information indicating the characteristics of the product. Specifically, in the example shown in FIG. 3, variables 6 to 8 are added to the example shown in FIG.
  • Variable 6 represents, as information indicating the characteristics of each elapsed day, whether or not the day is a holiday (1 if it is a holiday, 0 if it is not a holiday).
  • variable 7 represents the price of the product
  • variable 8 represents the calorie of the product.
  • the information indicating the characteristics of each elapsed date and the information indicating the characteristics of each product may not necessarily be included in the learning data. However, it is more preferable to create a prediction model in consideration of these variables because the prediction accuracy becomes higher.
  • the information indicating the characteristics of each elapsed date is not limited to information indicating whether the elapsed date is a holiday.
  • Information indicating the characteristics of each elapsed day may include, for example, information such as the day of the week, whether it is a consecutive holiday, or the week of the month. Such information is also used as explanatory variables of the prediction model.
  • the learning data may include information indicating the classification of the product.
  • the learning data may include information indicating whether “meat” or “fish” is included, or information indicating “rice” or “bread”.
  • the learning data may include variables indicating “meat” and “rice boiled rice”.
  • the learning data may include information indicating the classification hierarchically.
  • the learning data may include hierarchical classification information such as “meat> pork”.
  • the learning device 20 creates a prediction model based on the learning data described above. Specifically, the learning device 20 creates one prediction model with the demand quantity as an objective variable and variables (information) included in the learning data as explanatory variables.
  • the method for creating the prediction model is arbitrary.
  • the learning device 20 may create a prediction model using a generally known method. Since a method for creating a prediction model is widely known, detailed description thereof is omitted.
  • the predictor 30 predicts the demand quantity of the target product (that is, the product for which the learning data described above does not exist). Specifically, the predictor 30 predicts the demand quantity of the target product in the prediction target period based on the prediction model created by the learning device 20 and the words included in the target product.
  • the demand quantity of the target product in the forecast target period for example, the total demand quantity from the start of sales until the predetermined period elapses (from the first day of sales to the Mth day) or the day of the predetermined period after the start of sales (The demand quantity on the (Nth day), the total demand quantity within a certain period (from the Nth day to the Mth day) after a predetermined period from the start of sales, and the like are conceivable.
  • variable 1 2.
  • the particle "no" may be included in the word candidates.
  • the variable 6 1.
  • the price is 300 yen and the calorie is 1000 kcal
  • the predictor 30 predicts the demand quantity D on the second day by substituting these variables into Equation 1 shown above.
  • the predictor 30 performs the third day, the fourth day, and the fifth day similarly to the case of forecasting the demand quantity on the second day.
  • the daily demand quantity may be calculated, and the demand quantity for each day may be added to calculate the total demand quantity.
  • the output unit 40 outputs the prediction result by the predictor 30.
  • the output unit 40 is realized by a display device, for example.
  • the learning device 20 and the predictor 30 are realized by a CPU of a computer that operates according to a program (commodity demand prediction program).
  • the program may be stored in the storage unit 10, and the CPU may read the program and operate as the learning device 20 and the predictor 30 according to the program.
  • the function of the product demand prediction system may be provided in the SaaS (Software as a Service) format.
  • each of the learning device 20 and the predictor 30 may be realized by dedicated hardware.
  • a part or all of each component of each device may be realized by a general-purpose or dedicated circuit (circuitry), a processor, or a combination thereof. These may be configured by a single chip or may be configured by a plurality of chips connected via a bus. Part or all of each component of each device may be realized by a combination of the above-described circuit and the like and a program.
  • each device when some or all of the components of each device are realized by a plurality of information processing devices and circuits, the plurality of information processing devices and circuits may be centrally arranged or distributedly arranged. May be.
  • the information processing apparatus, the circuit, and the like may be realized as a form in which each is connected via a communication network, such as a client and server system and a cloud computing system.
  • FIG. 4 is a flowchart illustrating an operation example of the commodity demand prediction system 100 according to the first embodiment.
  • the learning device 20 learns the prediction model based on the learning data (step S11).
  • the predictor 30 predicts the demand quantity of the target product in the prediction target period based on the prediction model and the words included in the target product (step S12).
  • the learning device 20 is based on learning data including an elapsed period from the start of sales of a product, a word included in the name of the product, and a demand quantity of the product after the start of sales.
  • the predictor 30 predicts the demand quantity of the goods (namely, object goods) with which learning data does not exist.
  • the predictor 30 predicts the demand quantity of the target product in the prediction target period based on the prediction model and the words included in the target product.
  • a prediction model is created based on objective information called product names. For this reason, prediction that does not depend on the subjectivity becomes possible, and the demand prediction accuracy can be improved. Moreover, the prediction which paid its attention to the name of goods like this embodiment corresponds also with the viewpoint of judging the goods visually by the consumer who saw the new goods.
  • the amount of raw materials required before the release of new products can be ascertained in advance, so it is possible to suppress the risk of excessive or insufficient raw materials.
  • the viewpoint of a store that sells new products it is possible to suppress risks such as stocking of new products and loss of opportunities.
  • a prediction model is represented by one prediction formula which is illustrated by Formula 1.
  • a prediction model is not limited to the aspect represented by one prediction formula.
  • the learning device 20 may create a prediction model in which a prediction expression is determined according to the value of a variable that identifies the target product.
  • the predictor 30 may specify a prediction formula according to the value of the variable which specifies object goods from the created prediction model, and may predict the demand quantity of object goods using the specified prediction formula.
  • FIG. 5 is an explanatory diagram illustrating an example of a prediction model in which a prediction formula is determined according to a value of a variable that identifies a target product.
  • FIG. 5 illustrates a prediction model in which a selected prediction formula is represented by a tree structure.
  • the prediction formula 1 is used when the price of the target product is less than 300 yen
  • the prediction formula 2 is used when the price of the target product is 300 yen or more.
  • Embodiment 2 a second embodiment of this embodiment will be described.
  • the configuration of the commodity demand prediction system of this embodiment is the same as the configuration of the first embodiment.
  • a certain factory predicts how much a new product should be manufactured as a demand quantity.
  • This embodiment demonstrates the case where the demand quantity which considered the attribute of the store is estimated.
  • the store attributes include, for example, information for identifying individual stores (for example, information on store types and chain stores), and regions to which the stores belong (for example, Kanto district, Kansai district, Tokyo, etc.) It is.
  • FIG. 6 is an explanatory diagram showing still another example of learning data stored in the storage unit 10.
  • the learning data illustrated in FIG. 6 includes a variable 9 indicating a sales area as a store attribute.
  • the learning device 20 creates one prediction model including the demand quantity as an objective variable and a variable representing the store attribute as an explanatory variable. That is, in the present embodiment, the learning device 20 does not create a prediction model for each store or region, but creates a prediction model that includes the attributes of these stores as explanatory variables.
  • the learning device 20 can also use learning data of other regions that exist in large quantities by creating one prediction model, demand prediction can be performed even for regions with a small amount of learning data. Accuracy can be improved.
  • the predictor 30 predicts the demand quantity D on the second day by substituting these variables into Equation 2 shown above.
  • the learning device 20 creates one prediction model including the demand quantity as the objective variable and the variable representing the store attribute as the explanatory variable. Therefore, in addition to the effects of the first embodiment, it is possible to perform demand prediction for each region. Further, by making one prediction model to be created, it is possible to improve the accuracy of demand prediction even in an area where learning data is small.
  • FIG. 7 is a block diagram showing an outline of a commodity demand prediction system according to the present invention.
  • the product demand prediction system 80 (for example, the product demand prediction system 100) according to the present invention includes an elapsed period from the start of sales of the product (for example, the number of days elapsed from the sales start date), a word included in the name of the product, and sales.
  • a learning device 81 (for example, learning device 20) that learns a prediction model based on learning data including the demand amount of the product after the start, and a demand quantity (for example, ordering) of a target product that is a product for which no learning data exists
  • a predictor 82 (for example, the predictor 30).
  • the predictor 82 predicts the demand quantity of the target product in the prediction target period based on the prediction model and the words included in the target product.
  • the learning device 81 may create one prediction model that uses the demand quantity as an objective variable and includes a variable that represents a store attribute as an explanatory variable. According to such a configuration, it is possible to perform demand prediction from the viewpoint of the store. Further, by making one prediction model to be created, it is possible to improve the accuracy of demand prediction even in an area where learning data is small.
  • the learning device 81 obtains information indicating characteristics when a predetermined period has elapsed from the start of sales of the product (for example, characteristics of an elapsed date from the sales start date, whether it is a holiday, etc.), and characteristics of the product.
  • the prediction model may be learned based on learning data including at least one piece of information (for example, price). According to such a configuration, it is possible to make a prediction in consideration of the sales date and the characteristics of the product.
  • the predictor 82 determines the total demand quantity from the start of sales until the predetermined period elapses, the demand quantity for the unit period after the elapse of the predetermined period from the start of sales, or after the elapse of the predetermined period from the start of sales.
  • the total demand quantity within a certain period of time may be predicted.
  • the explanatory variable for example, information including a word position in the product name may be used as the explanatory variable. For example, information such as whether a certain word is included at the head of the product name or whether a certain word is included at the end of the product name may be used as the explanatory variable.
  • the learning device 81 may create a prediction model in which a prediction formula is determined according to the value of a variable that identifies the target product. And the predictor 82 may specify a prediction formula according to the value of the variable which specifies object goods from the created prediction model, and may predict the demand quantity of object goods using the specified prediction formula.
  • a product for which no learning data exists may be a newly released product.
  • FIG. 8 is a block diagram showing another outline of the commodity demand prediction system according to the present invention.
  • the product demand prediction system illustrated in FIG. 8 is a product demand prediction system 90 (for example, a product demand prediction system 100) that predicts the demand quantity of a target product that is a product for which learning data including past demand quantities does not exist. , Learned based on learning data including the elapsed time from the start of sales of a product different from the target product sold in the past, the word included in the name of the product, and the demand quantity of the product after the start of sales
  • a predictor 91 (for example, predictor 30) that predicts the demand quantity of the target product in the prediction target period based on the prediction model and the words included in the target product.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Development Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Physics & Mathematics (AREA)
  • Finance (AREA)
  • Accounting & Taxation (AREA)
  • Marketing (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Game Theory and Decision Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

According to the present invention, a learner 81 learns a forecasting model on the basis of learning data including, for each of one or more products, an elapsed time since the sales launch of the product, words included in the name of the product, and a total quantity demanded for the product since the sales launch of the product. A forecaster 82 forecasts a quantity demanded for a target product, which is a product for which no learning data exists. Specifically, the forecaster 82 forecasts the quantity demanded for the target product for a target forecasting period, on the basis of the forecasting model and one or more words included in the name of the target product.

Description

商品需要予測システム、商品需要予測方法および商品需要予測プログラムProduct demand forecasting system, product demand forecasting method, and product demand forecasting program
 本発明は、商品の需要を予測する商品需要予測システム、商品需要予測方法および商品需要予測プログラムに関する。 The present invention relates to a commodity demand prediction system, a commodity demand prediction method, and a commodity demand prediction program for predicting commodity demand.
 過去の商品の取引実績に基づいて予測モデルを学習し、その予測モデルに基づいて将来の需要予測を行う方法が広く知られている。例えば、過去の売上実績、店舗営業時間、キャンペーン情報および気象情報などのデータと商品の需要量とを含む学習データに基づいて予測モデルを作成し、作成された予測モデルに予測する日の説明変数値を代入することで予測値が得られる。 A method of learning a prediction model based on past transaction results of products and performing future demand prediction based on the prediction model is widely known. For example, a predictive model is created based on learning data including data such as past sales performance, store opening hours, campaign information, weather information, etc., and the amount of product demand. A predicted value is obtained by substituting a value.
 一方、新商品のように過去に取引実績がない場合、その商品についての学習データが存在しないため、上述する方法で予測モデルを作成することはできない。そこで、発売前に需要実績に関する情報がない場合でも需要予測を行う方法が提案されている。 On the other hand, when there is no transaction record in the past like a new product, there is no learning data for the product, so a prediction model cannot be created by the method described above. In view of this, there has been proposed a method for performing demand prediction even when there is no information on the actual demand before release.
 例えば、特許文献1には、過去の需要データがない新商品の需要予測を行うシステムが記載されている。特許文献1に記載されたシステムは、新商品と類似する商品を選択し、類似商品の過去の需要量から新商品のベース需要量を算出して、新商品の発売開始日以降の需要量を求める。 For example, Patent Document 1 describes a system for predicting demand for new products for which there is no past demand data. The system described in Patent Document 1 selects a product similar to a new product, calculates a base demand amount of the new product from the past demand amount of the similar product, and calculates a demand amount after the launch date of the new product. Ask.
特開2015-32034号公報Japanese Patent Laying-Open No. 2015-32034
 しかし、特許文献1に記載されたシステムでは、予測対象の新商品と、過去の需要データが存在する商品とが、互いに類似するか否かの判断が人間の主観に依存し、その判断基準が自明ではない。すなわち、特許文献1に記載されたシステムでは、ある商品に類似する商品の入力をユーザから受け付けて類似商品としているが、その類否判断の方法は不明である。そのため、類似するか否かの判断が、例えば、熟練のマーケット担当者による過去の経験や勘などの主観に依存してしまうと言う問題がある。 However, in the system described in Patent Document 1, the determination as to whether a new product to be predicted and a product having past demand data are similar to each other depends on human subjectivity. Not self-evident. In other words, in the system described in Patent Document 1, an input of a product similar to a certain product is received from the user as a similar product, but the method of determining similarity is unknown. For this reason, there is a problem that the determination of whether or not they are similar depends on subjectivity such as past experience and intuition by skilled market staff.
 また、同一の商品の実績データが存在しない場合、予測モデルを学習する際には、新商品に類似する過去の商品群の実績データを纏めて予測モデルを学習することが考えられる。しかし、どの商品を類似する商品群として纏めるかも自明ではないため、やはり、予測モデルの精度が経験者の主観に依存してしまうと言う問題もある。 Also, when there is no actual data of the same product, when learning a prediction model, it is conceivable to learn the prediction model by collecting historical data of past product groups similar to the new product. However, since it is not obvious which products are grouped as similar product groups, there is still a problem that the accuracy of the prediction model depends on the subjectivity of the experienced person.
 そこで、本発明は、学習データが存在しない商品の需要予測精度を向上させることができる商品需要予測システム、商品需要予測方法および商品需要予測プログラムを提供することを目的とする。 Therefore, an object of the present invention is to provide a product demand prediction system, a product demand prediction method, and a product demand prediction program that can improve the demand prediction accuracy of a product for which learning data does not exist.
 本発明による商品需要予測システムは、商品の販売開始からの経過期間と、商品の名称に含まれる単語と、販売開始以降の商品の需要数量とを含む学習データに基づいて、予測モデルを学習する学習器と、学習データの存在しない商品である対象商品の需要数量を予測する予測器とを備え、予測器が、予測モデルおよび対象商品に含まれる単語に基づいて、予測対象期間における対象商品の需要数量を予測することを特徴とする。 The product demand prediction system according to the present invention learns a prediction model based on learning data including an elapsed period from the start of sales of a product, a word included in the name of the product, and a demand quantity of the product after the start of sales. A learning device and a predictor for predicting the demand quantity of the target product, which is a product for which no learning data exists, based on the prediction model and the words included in the target product, It is characterized by forecasting demand quantity.
 本発明による他の商品需要予測システムは、過去の需要数量を含む学習データが存在しない商品である対象商品の需要数量を予測する商品需要予測システムであって、過去に販売された対象商品とは異なる商品の販売開始からの経過期間と、その商品の名称に含まれる単語と、販売開始以降のその商品の需要数量とを含む学習データに基づいて学習された予測モデル、および、対象商品に含まれる単語に基づいて、予測対象期間における対象商品の需要数量を予測する予測器を備えたことを特徴とする。 Another product demand prediction system according to the present invention is a product demand prediction system that predicts a demand quantity of a target product that is a product for which learning data including a past demand quantity does not exist. What is a target product sold in the past? Included in the forecast model that was learned based on the learning data including the elapsed period from the start of sales of different products, the words included in the name of the product, and the demand quantity of the product after the start of sales, and the target product And a predictor for predicting the demand quantity of the target product in the prediction target period based on the word.
 本発明による商品需要予測方法は、商品の販売開始からの経過期間と、商品の名称に含まれる単語と、販売開始以降の商品の需要数量とを含む学習データに基づいて、予測モデルを学習し、予測モデル、および、学習データの存在しない商品である対象商品に含まれる単語に基づいて、予測対象期間におけるその対象商品の需要数量を予測することを特徴とする。 The product demand prediction method according to the present invention learns a prediction model based on learning data including an elapsed period from the start of sales of a product, a word included in the name of the product, and a demand quantity of the product after the sales start. The demand quantity of the target product in the prediction target period is predicted based on the prediction model and words included in the target product that is a product for which no learning data exists.
 本発明による他の商品需要予測方法は、過去の需要数量を含む学習データが存在しない商品である対象商品の需要数量を予測する商品需要予測方法であって、過去に販売された対象商品とは異なる商品の販売開始からの経過期間と、その商品の名称に含まれる単語と、販売開始以降のその商品の需要数量とを含む学習データに基づいて学習された予測モデル、および、対象商品に含まれる単語に基づいて、予測対象期間における対象商品の需要数量を予測することを特徴とする。 Another product demand prediction method according to the present invention is a product demand prediction method for predicting a demand quantity of a target product that is a product for which learning data including a past demand quantity does not exist. What is a target product sold in the past? Included in the forecast model that was learned based on the learning data including the elapsed period from the start of sales of different products, the words included in the name of the product, and the demand quantity of the product after the start of sales, and the target product The demand quantity of the target product in the prediction target period is predicted on the basis of the word.
 本発明による商品需要予測プログラムは、コンピュータに、商品の販売開始からの経過期間と、商品の名称に含まれる単語と、販売開始以降の商品の需要数量とを含む学習データに基づいて、予測モデルを学習する学習処理、および、学習データの存在しない商品である対象商品の需要数量を予測する予測処理を実行させ、予測処理で、予測モデルおよび対象商品に含まれる単語に基づいて、予測対象期間における対象商品の需要数量を予測させることを特徴とする。 The product demand prediction program according to the present invention is based on learning data including an elapsed period from the start of sales of a product, a word included in the name of the product, and a demand quantity of the product after the start of sales. And a prediction process that predicts the demand quantity of the target product, which is a product for which no learning data exists, in the prediction process, based on the prediction model and the words included in the target product, The demand quantity of the target product in is predicted.
 本発明による他の商品需要予測プログラムは、過去の需要数量を含む学習データが存在しない商品である対象商品の需要数量を予測するコンピュータに適用される商品需要予測プログラムであって、コンピュータに、過去に販売された対象商品とは異なる商品の販売開始からの経過期間と、その商品の名称に含まれる単語と、販売開始以降のその商品の需要数量とを含む学習データに基づいて学習された予測モデル、および、対象商品に含まれる単語に基づいて、予測対象期間における対象商品の需要数量を予測する予測処理を実行させることを特徴とする。 Another product demand prediction program according to the present invention is a product demand prediction program applied to a computer that predicts a demand quantity of a target product that is a product for which learning data including a past demand quantity does not exist. Forecasts learned based on learning data that includes the elapsed time from the start of sales of a product that is different from the target product sold on, the words included in the name of the product, and the demand quantity of that product since the start of sales Based on the model and the words included in the target product, a prediction process for predicting the demand quantity of the target product in the prediction target period is executed.
 本発明によれば、学習データが存在しない商品の需要予測精度を向上させることができる。 According to the present invention, it is possible to improve the demand prediction accuracy of a product for which no learning data exists.
本発明による商品需要予測システムの一実施形態の構成例を示すブロック図である。It is a block diagram which shows the structural example of one Embodiment of the goods demand prediction system by this invention. 学習データの例を示す説明図である。It is explanatory drawing which shows the example of learning data. 学習データの他の例を示す説明図である。It is explanatory drawing which shows the other example of learning data. 第1の実施形態の動作例を示すフローチャートである。It is a flowchart which shows the operation example of 1st Embodiment. 予測モデルの例を示す説明図である。It is explanatory drawing which shows the example of a prediction model. 学習データのさらに他の例を示す説明図である。It is explanatory drawing which shows the other example of learning data. 本発明による商品需要予測システムの概要を示すブロック図である。It is a block diagram which shows the outline | summary of the goods demand prediction system by this invention. 本発明による商品需要予測システムの他の概要を示すブロック図である。It is a block diagram which shows the other outline | summary of the goods demand prediction system by this invention.
 例えば、新商品は過去に販売実績がないため、その商品の販売実績から予測モデルを作成ることはできない。そこで、発明者は、新商品のそのものの過去の販売実績ではなく、新商品の名称に含まれる単語に着目し、その単語を含む商品の過去の販売実績を利用するとの着想を得た。具体的には、本願発明では、商品の名称に含まれる単語(より具体的には、各単語が各商品に含まれているか否か)を説明変数とし、商品の需要数量(例えば、取引数、販売数、注文数など)を予測する。以下、本発明の実施形態を図面を参照して説明する。 For example, since a new product has no sales record in the past, a prediction model cannot be created from the sales result of the product. Accordingly, the inventor has focused on the word included in the name of the new product, not the past sales performance of the new product itself, and has come up with the idea of using the past sales performance of the product including the word. Specifically, in the present invention, a word included in the name of a product (more specifically, whether or not each word is included in each product) is an explanatory variable, and the demand quantity of the product (for example, the number of transactions) , Sales, orders, etc.). Hereinafter, embodiments of the present invention will be described with reference to the drawings.
実施形態1.
 図1は、本発明による商品需要予測システムの第1の実施形態の構成例を示すブロック図である。本実施形態の商品需要予測システム100は、記憶部10と、学習器20と、予測器30と、出力部40とを備えている。
Embodiment 1. FIG.
FIG. 1 is a block diagram showing a configuration example of a first embodiment of a commodity demand prediction system according to the present invention. The commodity demand prediction system 100 of this embodiment includes a storage unit 10, a learning device 20, a predictor 30, and an output unit 40.
 記憶部10は、後述する学習器20が予測モデルの作成に用いる学習データを記憶する。記憶部10は、例えば、磁気ディスク装置等により実現される。後述する学習器20と記憶部10とは、有線または無線LAN(Local Area Network)を介して接続されていてもよく、インターネットを介して接続されていてもよい。 The storage unit 10 stores learning data used by the learning device 20 described later to create a prediction model. The storage unit 10 is realized by, for example, a magnetic disk device. The learning device 20 and the storage unit 10 described later may be connected via a wired or wireless LAN (Local Area Network), or may be connected via the Internet.
 予測モデルは、説明変数と目的変数の相関関係を表す情報である。予測モデルは、例えば、説明変数に基づいて目的とする変数を算出することにより予測対象の結果を予測するためのコンポーネントである。予測モデルは、「モデル」、「学習モデル」、「推定モデル」、「予測式」または「推定式」などと記載されることもある。 The prediction model is information representing the correlation between explanatory variables and objective variables. A prediction model is a component for predicting the result of a prediction object, for example by calculating the target variable based on an explanatory variable. The prediction model may be described as “model”, “learning model”, “estimation model”, “prediction formula”, “estimation formula”, or the like.
 記憶部10は、商品の販売開始からの経過期間と、商品の名称に含まれる単語と、販売開始以降の商品の需要数量とを含む学習データを記憶する。例えば、日単位で需要数量が管理される場合、記憶部10は、商品の販売開始日からの経過日数と、商品の名称に含まれる単語と、販売開始日以降の商品の需要数量とを含む学習データを記憶する。以下、学習データに含まれる需要数量の集計期間の単位を単位期間と記すこともある。例えば、日単位の学習データが存在する場合、単位期間は1日になる。 The storage unit 10 stores learning data including an elapsed period from the start of sales of a product, a word included in the name of the product, and a demand quantity of the product after the sales start. For example, when the demand quantity is managed on a daily basis, the storage unit 10 includes the number of days elapsed from the sale start date of the product, the word included in the product name, and the demand quantity of the product after the sale start date. Store learning data. Hereinafter, the unit of the aggregation period of the demand quantity included in the learning data may be referred to as a unit period. For example, when there is daily learning data, the unit period is one day.
 本実施形態の具体例として、ある工場が新商品をどの程度製造すべきかを需要数量として予測することを想定する。製造すべき数量を予測できれば、その工場で新商品の製造に必要な原材料を予測することも可能になる。学習データには、例えば、店舗で過去に取得された新商品の売上データ(例えば、POS(Point of sale )データ)が用いられる。例えば、「弁当」が新商品の場合、過去の売上データのうち、弁当の売上データを学習データに用いることが好ましい。また、新商品の売上傾向を予測するため、発売日から一定の期間(例えば、1~7日目)のデータが用いられる。 As a specific example of this embodiment, it is assumed that a certain factory predicts how much a new product should be manufactured as a demand quantity. If the quantity to be manufactured can be predicted, it is also possible to predict the raw materials necessary for manufacturing a new product at the factory. As the learning data, for example, sales data (for example, POS (Point デ ー タ of sale) data) of a new product acquired in the past at a store is used. For example, when “Bento” is a new product, it is preferable to use the sales data of the lunch box among the past sales data as the learning data. In addition, data for a certain period (for example, 1st to 7th days) from the release date is used to predict the sales trend of new products.
 また、需要とは、ある工場における各店舗の需要だけでなく、店舗からみた顧客の需要をも意味する。例えば、ある店舗の1日の弁当の販売数が10個の場合、店舗の観点では、その日の弁当の需要数量は10個になる。また、ある地域内に存在する100店舗に卸す1日の弁当の数がそれぞれ10個の場合、工場の観点では、その日の弁当の需要数量は1000個になる。 In addition, the demand means not only the demand of each store in a certain factory but also the demand of customers viewed from the store. For example, if the number of daily lunch boxes sold at a certain store is 10, from the store's viewpoint, the demand quantity of the lunch boxes for that day will be 10. In addition, if the number of lunches per day that are wholesaled to 100 stores in a certain area is 10 each, the demand quantity of the lunches for that day is 1000 from the viewpoint of the factory.
 本実施形態では、商品の名称に含まれる単語が説明変数として用いられるため、記憶部10は、説明変数として用いられる単語が各商品に含まれるか否かを記憶する。本実施形態では、記憶部10は、予測の対象とする商品(以下、対象商品と記す。)の学習データを記憶していないものとする。対象商品の例として、新商品や、既存の商品のうち今まで扱っていなかった商品などが挙げられる。 In this embodiment, since a word included in the name of a product is used as an explanatory variable, the storage unit 10 stores whether or not a word used as an explanatory variable is included in each product. In this embodiment, the memory | storage part 10 shall not memorize | store the learning data of the goods (henceforth target goods) made into the object of prediction. Examples of target products include new products and products that have not been handled so far among existing products.
 図2は、記憶部10が記憶する学習データの例を示す説明図である。図2では、過去に販売された商品の販売開始日からの経過日数、その商品の名称に含まれる単語、および、販売開始日以降の各経過日における商品の需要数量を含む学習データを例示している。図2に例示する取引実績数(需要数量)は、例えば、各店舗の売上数量や発注数の合算値である。 FIG. 2 is an explanatory diagram illustrating an example of learning data stored in the storage unit 10. FIG. 2 exemplifies learning data including the number of days elapsed from the sales start date of a product sold in the past, the words included in the name of the product, and the demand quantity of the product on each elapsed date after the sales start date. ing. The transaction actual number (demand quantity) illustrated in FIG. 2 is, for example, a total value of the sales quantity and the order quantity of each store.
 図2に示す例では、変数1が、販売開始日からの経過日数を表わし、また、変数2~変数5が、予め定めた単語が商品名に含まれるか否か(含まれる場合に1、含まれない場合に0)を表わす。図2に示す例では、変数2が『商品名に「幕の内」を含むか否か(含む場合に1、含まない場合に0。以下、同様。)』、変数3が『商品名に「和風」を含むか否か』、変数4が『商品名に「季節」を含むか否か』、変数5が『商品名に「生姜」を含むか否か』をそれぞれ表わす。また、取引実績数が需要数量を表わす。 In the example shown in FIG. 2, variable 1 represents the number of days elapsed from the sales start date, and variables 2 to 5 indicate whether or not a predetermined word is included in the product name (if included, 1 When not included, 0) is represented. In the example shown in FIG. 2, the variable 2 is “whether or not the product name includes“ within the curtain ”(1 if included, 0 if not included, the same applies hereinafter)” and the variable 3 is “Japanese-style“ "Whether or not" "is included," variable 4 represents "whether or not" product name includes "season" "", and variable 5 represents "whether or not" product name includes "ginger" ". Further, the actual number of transactions represents the demand quantity.
 例えば、図2に例示する表の1行目は、店舗ID=S101で識別される店舗において、販売開始日から1日目の商品ID=P101で識別される商品「豪華和風幕の内弁当」の需要数量が1180個であったことを示す。また、「豪華和風幕の内弁当」には、単語「豪華」、「和風」「幕の内」および「弁当」が含まれているため、対応する変数2および変数3に1が設定される。 For example, the first row of the table illustrated in FIG. 2 shows the demand for the product “Luxury Japanese Style Lunch Box” identified by the product ID = P101 on the first day from the sales start date at the store identified by the store ID = S101. It shows that the quantity was 1180 pieces. Further, since the word “gorgeous”, “Japanese style”, “curtain inside”, and “bento” are included in the “gorgeous Japanese style curtain lunch box”, 1 is set to the corresponding variable 2 and variable 3.
 なお、記憶部10は、商品の名称に含まれる単語そのものを記憶していてもよい。また、記憶部10が商品の名称のみを記憶し、利用する側に形態素解析などの方法を用いて、商品名から単語を抽出させてもよい。ただし、後述する学習処理を高速化するため、記憶部10は、説明変数に対応する単語が含まれているか否かを記憶することが好ましい。 In addition, the memory | storage part 10 may memorize | store the word itself contained in the name of goods. Moreover, the memory | storage part 10 memorize | stores only the name of goods, and a word may be extracted from a goods name using methods, such as a morphological analysis, on the side to utilize. However, in order to speed up the learning process described later, the storage unit 10 preferably stores whether or not a word corresponding to the explanatory variable is included.
 また、図2に示す例では、学習データが、商品の販売開始日からの経過日数、その商品の名称に含まれる単語、および、販売開始日以降の各経過日における商品の需要数量を含む場合を例示しているが、学習データには、その他の変数を含んでいてもよい。その他の変数として、各経過日の特性を示す情報や、各商品の特性を示す情報などが挙げられる。経過日の特性を示す情報としては、例えば、販売開始日からの経過日数に占める休日の割合などが考えられる。商品の特性を示す情報としては、例えば、当該商品に含まれる栄養素の量を示す情報などが考えられる。 In the example shown in FIG. 2, the learning data includes the number of days elapsed from the sales start date of the product, the word included in the name of the product, and the demand quantity of the product on each elapsed date after the sales start date. However, the learning data may include other variables. Other variables include information indicating the characteristics of each elapsed date, information indicating the characteristics of each product, and the like. As information indicating the characteristics of the elapsed date, for example, the ratio of holidays to the number of elapsed days from the sales start date can be considered. As information indicating the characteristics of a product, for example, information indicating the amount of nutrients contained in the product can be considered.
 図3は、学習データの他の例を示す説明図である。図3では、過去に販売された商品の販売開始日からの経過日数、その商品の名称に含まれる単語、販売開始日以降の各経過日における商品の需要数量、各経過日の特性を示す情報、および、商品の特性を示す情報を含む学習データを例示している。具体的には、図3に示す例では、図2に示す例に加え、変数6~8が追加されている。 FIG. 3 is an explanatory diagram showing another example of learning data. In FIG. 3, information indicating the number of days elapsed from the sales start date of a product sold in the past, the word included in the name of the product, the demand quantity of the product on each elapsed date after the sales start date, and the characteristics of each elapsed date And learning data including information indicating the characteristics of the product. Specifically, in the example shown in FIG. 3, variables 6 to 8 are added to the example shown in FIG.
 変数6は、各経過日の特性を示す情報として、その日が休日か否か(休日の場合に1、休日でない場合に0)を表わす。また、各商品の特性を示す情報として、変数7は商品の価格を表わし、変数8は商品のカロリーを表わす。 Variable 6 represents, as information indicating the characteristics of each elapsed day, whether or not the day is a holiday (1 if it is a holiday, 0 if it is not a holiday). As information indicating the characteristics of each product, variable 7 represents the price of the product, and variable 8 represents the calorie of the product.
 各経過日の特性を示す情報や、各商品の特性を示す情報は、必ずしも学習データに含まれていなくてもよい。ただし、これらの変数を考慮して予測モデルを作成するほうが、予測精度が高くなるため、より好ましい。 The information indicating the characteristics of each elapsed date and the information indicating the characteristics of each product may not necessarily be included in the learning data. However, it is more preferable to create a prediction model in consideration of these variables because the prediction accuracy becomes higher.
 また、各経過日の特性を示す情報は、経過日が休日か否かを表わす情報に限定されない。各経過日の特性を示す情報として、例えば、曜日、連休か否か、月の何週目か、などの情報を含んでいてもよい。これらの情報も予測モデルの説明変数として利用される。 Also, the information indicating the characteristics of each elapsed date is not limited to information indicating whether the elapsed date is a holiday. Information indicating the characteristics of each elapsed day may include, for example, information such as the day of the week, whether it is a consecutive holiday, or the week of the month. Such information is also used as explanatory variables of the prediction model.
 また、各商品を分類するため、学習データは、その商品の分類を示す情報を含んでいてもよい。例えば、商品が食品の場合、学習データは、「肉」や「魚」が含まれるか否かを示す情報や、「米飯」または「パン」であることを示す情報を含んでいてもよい。例えば、商品「満腹ロース生姜焼き弁当」は、「肉」を含む「米飯」であることから、学習データは、「肉」を含むこと、「米飯」であることを示す変数を含んでいてもよい。また、学習データは、分類を階層的に示す情報を含んでいてもよい。学習データは、例えば、「肉>豚肉」のような階層的な分類情報を含んでいてもよい。 Moreover, in order to classify each product, the learning data may include information indicating the classification of the product. For example, when the product is food, the learning data may include information indicating whether “meat” or “fish” is included, or information indicating “rice” or “bread”. For example, since the product “full-boiled ginger-grilled lunch” is “boiled rice” including “meat”, the learning data may include variables indicating “meat” and “rice boiled rice”. Good. Further, the learning data may include information indicating the classification hierarchically. The learning data may include hierarchical classification information such as “meat> pork”.
 学習器20は、上述する学習データに基づいて予測モデルを作成する。具体的には、学習器20は、需要数量を目的変数とし、学習データに含まれる変数(情報)を説明変数とする1つの予測モデルを作成する。予測モデルの作成方法は任意である。学習器20は、一般的に知られて方法を用いて予測モデルを作成すればよい。予測モデルの作成方法は広く知られているため、詳細な説明を省略する。 The learning device 20 creates a prediction model based on the learning data described above. Specifically, the learning device 20 creates one prediction model with the demand quantity as an objective variable and variables (information) included in the learning data as explanatory variables. The method for creating the prediction model is arbitrary. The learning device 20 may create a prediction model using a generally known method. Since a method for creating a prediction model is widely known, detailed description thereof is omitted.
 予測器30は、対象商品(すなわち、上述する学習データの存在しない商品)の需要数量を予測する。具体的には、予測器30は、学習器20により作成された予測モデルおよび対象商品に含まれる単語に基づいて、予測対象期間における対象商品の需要数量を予測する。 The predictor 30 predicts the demand quantity of the target product (that is, the product for which the learning data described above does not exist). Specifically, the predictor 30 predicts the demand quantity of the target product in the prediction target period based on the prediction model created by the learning device 20 and the words included in the target product.
 予測対象期間における対象商品の需要数量として、例えば、販売開始時から所定期間経過するまで(販売初日からM日目まで)の総需要数量や、販売開始時から所定期間経過した日の1日(N日目)の需要数量、販売開始時から所定期間経過した後の一定期間(N日目からM日目まで)内の総需要数量などが考えられる。 As the demand quantity of the target product in the forecast target period, for example, the total demand quantity from the start of sales until the predetermined period elapses (from the first day of sales to the Mth day) or the day of the predetermined period after the start of sales ( The demand quantity on the (Nth day), the total demand quantity within a certain period (from the Nth day to the Mth day) after a predetermined period from the start of sales, and the like are conceivable.
 以下、図3で例示した説明変数を用いた場合の予測方法を、具体例を示しながら説明する。ここでは、新発売商品「季節の野菜サンド生姜風味」について、販売開始からの需要数量を予測するものとする。 Hereinafter, the prediction method when the explanatory variables illustrated in FIG. 3 are used will be described with reference to specific examples. Here, it is assumed that the demand quantity from the start of sales of the newly released product “seasonal vegetable sandwich ginger flavor” is predicted.
 図3に例示する学習データの変数を用いた予測モデルは、例えば、以下に例示する式1で表される。ここで、fは予測式を表わす任意の関数である。
 需要数量D=f(変数1、変数2、…、変数7、変数8) ・・・(式1)
The prediction model using the variable of the learning data illustrated in FIG. 3 is expressed by, for example, Expression 1 illustrated below. Here, f is an arbitrary function representing a prediction formula.
Demand quantity D = f (variable 1, variable 2,..., Variable 7, variable 8) (Equation 1)
 以下、販売開始から2日目の需要数量を予測する場合について説明する。ここで、予測日は休日であるとし、新発売商品の価格が300円、カロリーが1000kcalであるとする。新発売開始から2日目の取引数を予測するため、変数1=2になる。また、新発売商品「季節の野菜サンド生姜風味」には、「季節」、「野菜」、「サンド」、「生姜」および「風味」が含まれているため、変数2=0、変数3=0、変数4=1、変数5=1になる。なお、助詞である「の」を単語の候補に含めてもよい。予測日が休日であることから、変数6=1になる。また、価格が300円であり、カロリーが1000kcalであるため、変数7=300、変数8=1000になる。予測器30は、これらの変数を上記に示す式1に代入することで、2日目の需要数量Dを予測する。 Hereinafter, the case where the demand quantity on the second day from the start of sales is predicted will be described. Here, it is assumed that the predicted date is a holiday, the price of the newly released product is 300 yen, and the calorie is 1000 kcal. In order to predict the number of transactions on the second day from the start of the new release, the variable 1 = 2. In addition, since the newly released product “seasonal vegetable sandwich ginger flavor” includes “season”, “vegetable”, “sand”, “ginger” and “flavor”, variable 2 = 0, variable 3 = 0, variable 4 = 1, variable 5 = 1. Note that the particle "no" may be included in the word candidates. Since the predicted date is a holiday, the variable 6 = 1. Moreover, since the price is 300 yen and the calorie is 1000 kcal, variable 7 = 300 and variable 8 = 1000. The predictor 30 predicts the demand quantity D on the second day by substituting these variables into Equation 1 shown above.
 販売開始時から所定期間経過した後の一定期間内の総需要数量を算出する場合も同様である。例えば、販売開始の2日目から5日目までの総需要数量を算出する場合、予測器30は、2日目の需要数量を予測する場合と同様に、3日目、4日目および5日目の需要数量をそれぞれ算出し、各日の需要数量を加算して総需要数量を算出すればよい。販売開始時から所定期間経過するまでの総需要数量を算出する場合も同様である。 The same applies when calculating the total demand quantity within a certain period after a predetermined period has elapsed since the start of sales. For example, when calculating the total demand quantity from the second day to the fifth day of the sales start, the predictor 30 performs the third day, the fourth day, and the fifth day similarly to the case of forecasting the demand quantity on the second day. The daily demand quantity may be calculated, and the demand quantity for each day may be added to calculate the total demand quantity. The same applies when calculating the total demand quantity from the start of sales until a predetermined period elapses.
 出力部40は、予測器30による予測結果を出力する。出力部40は、例えば、ディスプレイ装置により実現される。 The output unit 40 outputs the prediction result by the predictor 30. The output unit 40 is realized by a display device, for example.
 学習器20と、予測器30とは、プログラム(商品需要予測プログラム)に従って動作するコンピュータのCPUによって実現される。例えば、プログラムは、記憶部10に記憶され、CPUは、そのプログラムを読み込み、プログラムに従って、学習器20および予測器30として動作してもよい。また、商品需要予測システムの機能がSaaS(Software as a Service )形式で提供されてもよい。 The learning device 20 and the predictor 30 are realized by a CPU of a computer that operates according to a program (commodity demand prediction program). For example, the program may be stored in the storage unit 10, and the CPU may read the program and operate as the learning device 20 and the predictor 30 according to the program. Further, the function of the product demand prediction system may be provided in the SaaS (Software as a Service) format.
 また、学習器20と、予測器30とは、それぞれが専用のハードウェアで実現されていてもよい。また、各装置の各構成要素の一部又は全部は、汎用または専用の回路(circuitry )、プロセッサ等やこれらの組合せによって実現されもよい。これらは、単一のチップによって構成されてもよいし、バスを介して接続される複数のチップによって構成されてもよい。各装置の各構成要素の一部又は全部は、上述した回路等とプログラムとの組合せによって実現されてもよい。 Further, each of the learning device 20 and the predictor 30 may be realized by dedicated hardware. Moreover, a part or all of each component of each device may be realized by a general-purpose or dedicated circuit (circuitry), a processor, or a combination thereof. These may be configured by a single chip or may be configured by a plurality of chips connected via a bus. Part or all of each component of each device may be realized by a combination of the above-described circuit and the like and a program.
 また、各装置の各構成要素の一部又は全部が複数の情報処理装置や回路等により実現される場合には、複数の情報処理装置や回路等は、集中配置されてもよいし、分散配置されてもよい。例えば、情報処理装置や回路等は、クライアントアンドサーバシステム、クラウドコンピューティングシステム等、各々が通信ネットワークを介して接続される形態として実現されてもよい。 In addition, when some or all of the components of each device are realized by a plurality of information processing devices and circuits, the plurality of information processing devices and circuits may be centrally arranged or distributedly arranged. May be. For example, the information processing apparatus, the circuit, and the like may be realized as a form in which each is connected via a communication network, such as a client and server system and a cloud computing system.
 次に、本実施形態の商品需要予測システムの動作を説明する。図4は、第1の実施形態の商品需要予測システム100の動作例を示すフローチャートである。 Next, the operation of the product demand prediction system of this embodiment will be described. FIG. 4 is a flowchart illustrating an operation example of the commodity demand prediction system 100 according to the first embodiment.
 学習器20は、学習データに基づいて予測モデルを学習する(ステップS11)。予測器30は、予測モデルおよび対象商品に含まれる単語に基づいて、予測対象期間における対象商品の需要数量を予測する(ステップS12)。 The learning device 20 learns the prediction model based on the learning data (step S11). The predictor 30 predicts the demand quantity of the target product in the prediction target period based on the prediction model and the words included in the target product (step S12).
 以上のように、本実施形態では、学習器20が、商品の販売開始からの経過期間と、商品の名称に含まれる単語と、販売開始以降の商品の需要数量とを含む学習データに基づいて、予測モデルを学習する。そして、予測器30が、学習データの存在しない商品(すなわち、対象商品)の需要数量を予測する。具体的には、予測器30は、予測モデルおよび対象商品に含まれる単語に基づいて、予測対象期間における対象商品の需要数量を予測する。そのような構成により、学習データが存在しない商品の需要予測精度を向上させることができる。 As described above, in the present embodiment, the learning device 20 is based on learning data including an elapsed period from the start of sales of a product, a word included in the name of the product, and a demand quantity of the product after the start of sales. Learn the prediction model. And the predictor 30 predicts the demand quantity of the goods (namely, object goods) with which learning data does not exist. Specifically, the predictor 30 predicts the demand quantity of the target product in the prediction target period based on the prediction model and the words included in the target product. With such a configuration, it is possible to improve the demand prediction accuracy of a product for which no learning data exists.
 すなわち、本実施形態の商品需要予測システムでは、商品の名称という客観的な情報に基づいて予測モデルが作成される。そのため、主観に依存しない予測が可能になり、需要予測精度を向上させることができる。また、本実施形態のように商品の名称に着目した予測は、新商品を見た消費者が見た目でその商品を判断する観点とも一致する。 That is, in the product demand prediction system of the present embodiment, a prediction model is created based on objective information called product names. For this reason, prediction that does not depend on the subjectivity becomes possible, and the demand prediction accuracy can be improved. Moreover, the prediction which paid its attention to the name of goods like this embodiment corresponds also with the viewpoint of judging the goods visually by the consumer who saw the new goods.
 また、例えば、新商品を製造する工場の観点では、新商品の発売前に必要となる原材料量を事前に把握できるため、原材料の過不足が発生するリスクを抑えることが可能になる。また、新商品を販売する店舗の観点では、新商品の在庫を抱えたり、機会損失が発生したりといったリスクを抑えることが可能になる。 Also, for example, from the viewpoint of a factory that manufactures new products, the amount of raw materials required before the release of new products can be ascertained in advance, so it is possible to suppress the risk of excessive or insufficient raw materials. In addition, from the viewpoint of a store that sells new products, it is possible to suppress risks such as stocking of new products and loss of opportunities.
 次に、第1の実施形態の変形例を説明する。第1の実施形態では、予測モデルが式1で例示するような1つの予測式で表される場合について例示した。一方、予測モデルは、1つの予測式で表される態様に限定されない。学習器20は、対象商品を特定する変数の値に応じて予測式が決定される予測モデルを作成してもよい。そして、予測器30は、作成された予測モデルから対象商品を特定する変数の値に応じて予測式を特定し、特定された予測式を用いて対象商品の需要数量を予測してもよい。 Next, a modification of the first embodiment will be described. In 1st Embodiment, it illustrated about the case where a prediction model is represented by one prediction formula which is illustrated by Formula 1. On the other hand, a prediction model is not limited to the aspect represented by one prediction formula. The learning device 20 may create a prediction model in which a prediction expression is determined according to the value of a variable that identifies the target product. And the predictor 30 may specify a prediction formula according to the value of the variable which specifies object goods from the created prediction model, and may predict the demand quantity of object goods using the specified prediction formula.
 図5は、対象商品を特定する変数の値に応じて予測式が決定される予測モデルの例を示す説明図である。図5では、選択される予測式が木構造で表される予測モデルを例示している。図5に示す例では、対象商品の価格が300円未満の場合に予測式1、300円以上の場合に予測式2が用いられることを示す。 FIG. 5 is an explanatory diagram illustrating an example of a prediction model in which a prediction formula is determined according to a value of a variable that identifies a target product. FIG. 5 illustrates a prediction model in which a selected prediction formula is represented by a tree structure. In the example illustrated in FIG. 5, the prediction formula 1 is used when the price of the target product is less than 300 yen, and the prediction formula 2 is used when the price of the target product is 300 yen or more.
実施形態2.
 次に、本実施形態の第2の実施形態を説明する。本実施形態の商品需要予測システムの構成は、第1の実施形態の構成と同様である。第1の実施形態では、ある工場が新商品をどの程度を製造すべきかを需要数量として予測することを想定した。本実施形態では、店舗の属性を考慮した需要数量を予測する場合について説明する。店舗の属性には、例えば、個々の店舗を特定する情報(例えば、店舗の種類やチェーン店に関する情報など)、その店舗が属する地域(例えば、関東地区、関西地区、東京都、など)が含まれる。
Embodiment 2. FIG.
Next, a second embodiment of this embodiment will be described. The configuration of the commodity demand prediction system of this embodiment is the same as the configuration of the first embodiment. In the first embodiment, it is assumed that a certain factory predicts how much a new product should be manufactured as a demand quantity. This embodiment demonstrates the case where the demand quantity which considered the attribute of the store is estimated. The store attributes include, for example, information for identifying individual stores (for example, information on store types and chain stores), and regions to which the stores belong (for example, Kanto district, Kansai district, Tokyo, etc.) It is.
 図6は、記憶部10が記憶する学習データのさらに他の例を示す説明図である。図6に例示する学習データは、図3に例示する変数1~8に加え、店舗の属性として、販売地域を示す変数9が追加されている。例えば、関東地区の場合、変数9=1になり、関西地区の場合、変数9=2になる。 FIG. 6 is an explanatory diagram showing still another example of learning data stored in the storage unit 10. In addition to the variables 1 to 8 illustrated in FIG. 3, the learning data illustrated in FIG. 6 includes a variable 9 indicating a sales area as a store attribute. For example, in the Kanto region, the variable 9 = 1, and in the Kansai region, the variable 9 = 2.
 学習器20は、需要数量を目的変数とし、店舗の属性を表わす変数を説明変数に含む1つの予測モデルを作成する。すなわち、本実施形態では、学習器20は、店舗や地域ごとに予測モデルを作成するのではなく、これらの店舗の属性を説明変数に含む予測モデルを作成する。 The learning device 20 creates one prediction model including the demand quantity as an objective variable and a variable representing the store attribute as an explanatory variable. That is, in the present embodiment, the learning device 20 does not create a prediction model for each store or region, but creates a prediction model that includes the attributes of these stores as explanatory variables.
 例えば、新規出店エリアや店舗そのものが少ない地域では、新商品の学習データを大量に収集するのは難しい。しかし、本実施形態では、作成する予測モデルを1つとすることで、学習器20が、大量に存在する他の地域の学習データも用いることができるため、学習データの少ない地域についても需要予測の精度を向上させることができる。 For example, in areas where there are few new store openings or stores, it is difficult to collect a large amount of learning data for new products. However, in this embodiment, since the learning device 20 can also use learning data of other regions that exist in large quantities by creating one prediction model, demand prediction can be performed even for regions with a small amount of learning data. Accuracy can be improved.
 なお、予測器30が予測をする方法は、第1の実施形態と同様である。例えば、図6に例示する学習データの変数を用いた予測モデルは、以下に例示する式2で表される。ここで、gは予測式を表わす任意の関数である。
 需要数量D=g(変数1、変数2、…、変数7、変数8、変数9) ・・・(式2)
Note that the method of prediction by the predictor 30 is the same as in the first embodiment. For example, a prediction model using the learning data variables illustrated in FIG. 6 is represented by Expression 2 illustrated below. Here, g is an arbitrary function representing a prediction formula.
Demand quantity D = g (variable 1, variable 2,..., Variable 7, variable 8, variable 9) (Equation 2)
 以下、ある商品の関西地区の販売開始から2日目の需要数量を予測する場合について説明する。第1の実施形態と同様に、発売開始からの経過期間、単語の有無、価格、カロリーに基づいて変数1~8の値が設定される。さらに、関西地区の需要数量を予測するため、変数9=2になる。予測器30は、これらの変数を上記に示す式2に代入することで、2日目の需要数量Dを予測する。 Hereinafter, the case where the demand quantity on the second day from the start of sales of a certain product in the Kansai area is predicted. As in the first embodiment, the values of variables 1 to 8 are set based on the elapsed period from the start of sale, the presence / absence of words, price, and calories. Furthermore, in order to predict the demand quantity in the Kansai area, the variable 9 = 2. The predictor 30 predicts the demand quantity D on the second day by substituting these variables into Equation 2 shown above.
 以上のように、本実施形態では、学習器20が、需要数量を目的変数とし、店舗の属性を表わす変数を説明変数に含む1つの予測モデルを作成する。よって、第1の実施形態の効果に加え、地域ごとの需要予測を行うことが可能になる。また、作成する予測モデルを1つとすることで、学習データの少ない地域についても需要予測の精度を向上させることができる。 As described above, in the present embodiment, the learning device 20 creates one prediction model including the demand quantity as the objective variable and the variable representing the store attribute as the explanatory variable. Therefore, in addition to the effects of the first embodiment, it is possible to perform demand prediction for each region. Further, by making one prediction model to be created, it is possible to improve the accuracy of demand prediction even in an area where learning data is small.
 次に、本発明の概要を説明する。図7は、本発明による商品需要予測システムの概要を示すブロック図である。本発明による商品需要予測システム80(例えば、商品需要予測システム100)は、商品の販売開始からの経過期間(例えば、販売開始日からの経過日数)と、商品の名称に含まれる単語と、販売開始以降の商品の需要数量とを含む学習データに基づいて、予測モデルを学習する学習器81(例えば、学習器20)と、学習データの存在しない商品である対象商品の需要数量(例えば、発注数など)を予測する予測器82(例えば、予測器30)とを備えている。 Next, the outline of the present invention will be described. FIG. 7 is a block diagram showing an outline of a commodity demand prediction system according to the present invention. The product demand prediction system 80 (for example, the product demand prediction system 100) according to the present invention includes an elapsed period from the start of sales of the product (for example, the number of days elapsed from the sales start date), a word included in the name of the product, and sales. A learning device 81 (for example, learning device 20) that learns a prediction model based on learning data including the demand amount of the product after the start, and a demand quantity (for example, ordering) of a target product that is a product for which no learning data exists A predictor 82 (for example, the predictor 30).
 予測器82は、予測モデルおよび対象商品に含まれる単語に基づいて、予測対象期間における対象商品の需要数量を予測する。 The predictor 82 predicts the demand quantity of the target product in the prediction target period based on the prediction model and the words included in the target product.
 そのような構成により、学習データが存在しない商品の需要予測精度を向上させることができる。 With such a configuration, it is possible to improve the demand prediction accuracy of products for which no learning data exists.
 また、学習器81は、需要数量を目的変数とし、店舗の属性を表わす変数を説明変数に含む1つの予測モデルを作成してもよい。そのような構成によれば、店舗の観点で需要予測を行うことが可能になる。また、作成する予測モデルを1つとすることで、学習データの少ない地域についても需要予測の精度を向上させることができる。 Also, the learning device 81 may create one prediction model that uses the demand quantity as an objective variable and includes a variable that represents a store attribute as an explanatory variable. According to such a configuration, it is possible to perform demand prediction from the viewpoint of the store. Further, by making one prediction model to be created, it is possible to improve the accuracy of demand prediction even in an area where learning data is small.
 また、学習器81は、商品の販売開始からの所定の期間経過時の特性(例えば、販売開始日からの経過日の特性。休日か否か、など)を示す情報、および、商品の特性を示す情報(例えば、価格など)の少なくとも1つを含む学習データに基づいて、予測モデルを学習してもよい。そのような構成によれば、販売日や商品の特性を考慮した予測が可能になる。 In addition, the learning device 81 obtains information indicating characteristics when a predetermined period has elapsed from the start of sales of the product (for example, characteristics of an elapsed date from the sales start date, whether it is a holiday, etc.), and characteristics of the product. The prediction model may be learned based on learning data including at least one piece of information (for example, price). According to such a configuration, it is possible to make a prediction in consideration of the sales date and the characteristics of the product.
 具体的には、予測器82は、販売開始時から所定期間経過するまでの総需要数量、販売開始時から所定期間経過後の単位期間の需要数量、または、販売開始時から所定期間経過した後の一定期間内の総需要数量を予測してもよい。また、説明変数として、例えば商品名における単語の位置を含む情報を説明変数としてもよい。例えば、ある単語が商品名の先頭に含まれているか否か、ある単語が商品名の語尾に含まれているか否か、といった情報を説明変数としてもよい。 Specifically, the predictor 82 determines the total demand quantity from the start of sales until the predetermined period elapses, the demand quantity for the unit period after the elapse of the predetermined period from the start of sales, or after the elapse of the predetermined period from the start of sales. The total demand quantity within a certain period of time may be predicted. Further, as the explanatory variable, for example, information including a word position in the product name may be used as the explanatory variable. For example, information such as whether a certain word is included at the head of the product name or whether a certain word is included at the end of the product name may be used as the explanatory variable.
 また、学習器81は、対象商品を特定する変数の値に応じて予測式が決定される予測モデルを作成してもよい。そして、予測器82は、作成された予測モデルから対象商品を特定する変数の値に応じて予測式を特定し、特定された予測式を用いて対象商品の需要数量を予測してもよい。 Further, the learning device 81 may create a prediction model in which a prediction formula is determined according to the value of a variable that identifies the target product. And the predictor 82 may specify a prediction formula according to the value of the variable which specifies object goods from the created prediction model, and may predict the demand quantity of object goods using the specified prediction formula.
 具体的には、学習データの存在しない商品は、新発売商品であってもよい。 Specifically, a product for which no learning data exists may be a newly released product.
 図8は、本発明による商品需要予測システムの他の概要を示すブロック図である。図8に例示する商品需要予測システムは、過去の需要数量を含む学習データが存在しない商品である対象商品の需要数量を予測する商品需要予測システム90(例えば、商品需要予測システム100)であって、過去に販売された対象商品とは異なる商品の販売開始からの経過期間と、その商品の名称に含まれる単語と、販売開始以降のその商品の需要数量とを含む学習データに基づいて学習された予測モデル、および、対象商品に含まれる単語に基づいて、予測対象期間における対象商品の需要数量を予測する予測器91(例えば、予測器30)を備えている。 FIG. 8 is a block diagram showing another outline of the commodity demand prediction system according to the present invention. The product demand prediction system illustrated in FIG. 8 is a product demand prediction system 90 (for example, a product demand prediction system 100) that predicts the demand quantity of a target product that is a product for which learning data including past demand quantities does not exist. , Learned based on learning data including the elapsed time from the start of sales of a product different from the target product sold in the past, the word included in the name of the product, and the demand quantity of the product after the start of sales A predictor 91 (for example, predictor 30) that predicts the demand quantity of the target product in the prediction target period based on the prediction model and the words included in the target product.
 そのような構成によっても、学習データが存在しない商品の需要予測精度を向上させることができる。 Even with such a configuration, it is possible to improve the demand prediction accuracy of products for which no learning data exists.
 10 記憶部
 20 学習器
 30 予測器
 40 出力部
 100 商品需要予測システム
DESCRIPTION OF SYMBOLS 10 Memory | storage part 20 Learning device 30 Predictor 40 Output part 100 Commodity demand prediction system

Claims (13)

  1.  商品の販売開始からの経過期間と、前記商品の名称に含まれる単語と、前記販売開始以降の前記商品の需要数量とを含む学習データに基づいて、予測モデルを学習する学習器と、
     前記学習データの存在しない商品である対象商品の需要数量を予測する予測器とを備え、
     前記予測器は、前記予測モデルおよび前記対象商品に含まれる単語に基づいて、予測対象期間における前記対象商品の需要数量を予測する
     ことを特徴とする商品需要予測システム。
    A learning device for learning a prediction model based on learning data including an elapsed period from the start of sales of a product, a word included in the name of the product, and a demand quantity of the product after the sales start,
    A predictor for predicting the demand quantity of the target product, which is a product for which the learning data does not exist,
    The predictor predicts a demand quantity of the target product in a prediction target period based on the prediction model and words included in the target product.
  2.  学習器は、需要数量を目的変数とし、店舗の属性を表わす変数を説明変数に含む1つの予測モデルを作成する
     請求項1記載の商品需要予測システム。
    The commodity demand prediction system according to claim 1, wherein the learning device creates one prediction model including the demand quantity as an objective variable and a variable representing a store attribute as an explanatory variable.
  3.  学習器は、商品の販売開始からの所定の期間経過時の特性を示す情報、および、商品の特性を示す情報の少なくとも1つを含む学習データに基づいて、予測モデルを学習する
     請求項1または請求項2記載の商品需要予測システム。
    The learning device learns a prediction model based on learning data including at least one of information indicating a characteristic when a predetermined period has elapsed from the start of sales of the product and information indicating a characteristic of the product. The commodity demand prediction system according to claim 2.
  4.  予測器は、販売開始時から所定期間経過するまでの総需要数量、販売開始時から所定期間経過後の単位期間の需要数量、または、販売開始時から所定期間経過した後の一定期間内の総需要数量を予測する
     請求項1から請求項3のうちのいずれか1項に記載の商品需要予測システム。
    The predictor is the total demand quantity from the start of sales until the elapse of a predetermined period, the demand quantity for the unit period after the elapse of the predetermined period from the start of sales, or the total quantity within a certain period after elapse of the predetermined period from the start of sales The commodity demand prediction system according to any one of claims 1 to 3, wherein a demand quantity is predicted.
  5.  学習器は、対象商品を特定する変数の値に応じて予測式が決定される予測モデルを作成し、
     予測器は、作成された予測モデルから対象商品を特定する変数の値に応じて予測式を特定し、特定された予測式を用いて対象商品の需要数量を予測する
     請求項1から請求項4のうちのいずれか1項に記載の商品需要予測システム。
    The learner creates a prediction model in which the prediction formula is determined according to the value of the variable that identifies the target product,
    The predictor specifies a prediction formula according to a value of a variable that specifies the target product from the generated prediction model, and predicts a demand quantity of the target product using the specified prediction formula. The commodity demand prediction system according to any one of the above.
  6.  学習データの存在しない商品は、新発売商品である
     請求項1から請求項5のうちのいずれか1項に記載の商品需要予測システム。
    The product demand prediction system according to any one of claims 1 to 5, wherein the product for which learning data does not exist is a newly released product.
  7.  過去の需要数量を含む学習データが存在しない商品である対象商品の需要数量を予測する商品需要予測システムであって、
     過去に販売された前記対象商品とは異なる商品の販売開始からの経過期間と、当該商品の名称に含まれる単語と、前記販売開始以降の当該商品の需要数量とを含む学習データに基づいて学習された予測モデル、および、前記対象商品に含まれる単語に基づいて、予測対象期間における前記対象商品の需要数量を予測する予測器を備えた
     ことを特徴とする商品需要予測システム。
    A product demand prediction system that predicts the demand quantity of a target product that is a product for which learning data including past demand quantities does not exist,
    Learning based on learning data including an elapsed period from the start of sales of a product different from the target product sold in the past, a word included in the name of the product, and a demand quantity of the product after the sales start A product demand prediction system comprising: a predictor that predicts a demand quantity of the target product in a prediction target period based on the prediction model that has been made and a word included in the target product.
  8.  商品の販売開始からの経過期間と、前記商品の名称に含まれる単語と、前記販売開始以降の前記商品の需要数量とを含む学習データに基づいて、予測モデルを学習し、
     前記予測モデル、および、前記学習データの存在しない商品である対象商品に含まれる単語に基づいて、予測対象期間における当該対象商品の需要数量を予測する
     ことを特徴とする商品需要予測方法。
    Learning a prediction model based on learning data including an elapsed period from the start of sales of the product, a word included in the name of the product, and a demand quantity of the product after the start of sales,
    Based on the prediction model and a word included in a target product that is a product for which the learning data does not exist, a demand quantity of the target product in a prediction target period is predicted.
  9.  需要数量を目的変数とし、店舗の属性を表わす変数を説明変数に含む1つの予測モデルを作成する
     請求項8記載の商品需要予測方法。
    The commodity demand forecasting method according to claim 8, wherein a demand model is used as an objective variable, and one forecasting model including a variable representing a store attribute as an explanatory variable is created.
  10.  過去の需要数量を含む学習データが存在しない商品である対象商品の需要数量を予測する商品需要予測方法であって、
     過去に販売された前記対象商品とは異なる商品の販売開始からの経過期間と、当該商品の名称に含まれる単語と、前記販売開始以降の当該商品の需要数量とを含む学習データに基づいて学習された予測モデル、および、前記対象商品に含まれる単語に基づいて、予測対象期間における前記対象商品の需要数量を予測する
     ことを特徴とする商品需要予測方法。
    A product demand prediction method for predicting a demand quantity of a target product, which is a product for which learning data including a past demand quantity does not exist,
    Learning based on learning data including an elapsed period from the start of sales of a product different from the target product sold in the past, a word included in the name of the product, and a demand quantity of the product after the sales start A demand forecast method for a product, characterized in that a demand quantity of the target product in a forecast target period is predicted based on the predicted model and a word included in the target product.
  11.  コンピュータに、
     商品の販売開始からの経過期間と、前記商品の名称に含まれる単語と、前記販売開始以降の前記商品の需要数量とを含む学習データに基づいて、予測モデルを学習する学習処理、および、
     前記学習データの存在しない商品である対象商品の需要数量を予測する予測処理を実行させ、
     前記予測処理で、前記予測モデルおよび前記対象商品に含まれる単語に基づいて、予測対象期間における前記対象商品の需要数量を予測させる
     ための商品需要予測プログラム。
    On the computer,
    A learning process for learning a prediction model based on learning data including an elapsed period from the start of sales of a product, a word included in the name of the product, and a demand quantity of the product after the sales start, and
    A prediction process for predicting a demand quantity of a target product that is a product for which the learning data does not exist;
    A product demand prediction program for predicting a demand quantity of the target product in a prediction target period based on the prediction model and words included in the target product in the prediction process.
  12.  コンピュータに、
     学習処理で、需要数量を目的変数とし、店舗の属性を表わす変数を説明変数に含む1つの予測モデルを作成させる
     請求項11記載の商品需要予測プログラム。
    On the computer,
    The merchandise demand forecasting program according to claim 11, wherein a learning model is used to create one forecasting model including demand quantity as an objective variable and a variable representing a store attribute as an explanatory variable.
  13.  過去の需要数量を含む学習データが存在しない商品である対象商品の需要数量を予測するコンピュータに適用される商品需要予測プログラムであって、
     前記コンピュータに、
     過去に販売された前記対象商品とは異なる商品の販売開始からの経過期間と、当該商品の名称に含まれる単語と、前記販売開始以降の当該商品の需要数量とを含む学習データに基づいて学習された予測モデル、および、前記対象商品に含まれる単語に基づいて、予測対象期間における前記対象商品の需要数量を予測する予測処理
     を実行させるための商品需要予測プログラム。
    A product demand prediction program applied to a computer that predicts the demand quantity of a target product that is a product for which learning data including past demand quantities does not exist,
    In the computer,
    Learning based on learning data including an elapsed period from the start of sales of a product different from the target product sold in the past, a word included in the name of the product, and a demand quantity of the product after the sales start The product demand prediction program for performing the prediction process which estimates the demand quantity of the said target goods in a prediction target period based on the made prediction model and the word contained in the said target goods.
PCT/JP2016/001758 2016-03-25 2016-03-25 Product demand forecasting system, product demand forecasting method, and product demand forecasting program WO2017163278A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018506500A JP6451894B2 (en) 2016-03-25 2016-03-25 Product demand forecasting system, product demand forecasting method, and product demand forecasting program
PCT/JP2016/001758 WO2017163278A1 (en) 2016-03-25 2016-03-25 Product demand forecasting system, product demand forecasting method, and product demand forecasting program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/001758 WO2017163278A1 (en) 2016-03-25 2016-03-25 Product demand forecasting system, product demand forecasting method, and product demand forecasting program

Publications (1)

Publication Number Publication Date
WO2017163278A1 true WO2017163278A1 (en) 2017-09-28

Family

ID=59901250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001758 WO2017163278A1 (en) 2016-03-25 2016-03-25 Product demand forecasting system, product demand forecasting method, and product demand forecasting program

Country Status (2)

Country Link
JP (1) JP6451894B2 (en)
WO (1) WO2017163278A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109214587A (en) * 2018-09-27 2019-01-15 重庆智万家科技有限公司 A kind of demand for commodity prediction based on three decisions divides storehouse planing method with logistics
JP2020008965A (en) * 2018-07-03 2020-01-16 Zホールディングス株式会社 Device, method, and program for processing information
WO2020230735A1 (en) * 2019-05-13 2020-11-19 株式会社Nttドコモ Demand prediction device
JP2021022220A (en) * 2019-07-29 2021-02-18 株式会社プロフィールド Information processing device, information processing method, and program
WO2021255883A1 (en) * 2020-06-18 2021-12-23 日本電気株式会社 Need prediction device, need prediction method, and computer readable recording medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111652655A (en) * 2020-06-10 2020-09-11 创新奇智(上海)科技有限公司 Commodity sales prediction method and device, electronic equipment and readable storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002373242A (en) * 2001-06-18 2002-12-26 Fuji Electric Co Ltd New merchandise demand prediction device, new merchandise demand prediction method and program
JP2014229252A (en) * 2013-05-27 2014-12-08 株式会社日立製作所 Computer, prediction method, and prediction program
JP2015032034A (en) * 2013-07-31 2015-02-16 キヤノンマーケティングジャパン株式会社 Demand prediction device, demand prediction system, control method and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002373242A (en) * 2001-06-18 2002-12-26 Fuji Electric Co Ltd New merchandise demand prediction device, new merchandise demand prediction method and program
JP2014229252A (en) * 2013-05-27 2014-12-08 株式会社日立製作所 Computer, prediction method, and prediction program
JP2015032034A (en) * 2013-07-31 2015-02-16 キヤノンマーケティングジャパン株式会社 Demand prediction device, demand prediction system, control method and program

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHIN SEIHIN ET AL.: "Kikai Gakushu de Seido 90% Cho ni - Asahi Beer Yamamoto-shi", NIKKEI INFORMATION STRATEGY, 19 June 2015 (2015-06-19), Retrieved from the Internet <URL:http://itpro.nikkeibp.co.jp/atcl/news/15/061902065> [retrieved on 20160602] *
SOICHIRO NITA: "Shokuhin Maker no Shohin Juyo Yosoku eno Big Data Gijutsu Katsuyo", NEC TECHNICAL JOURNAL, vol. 68, no. 1, 15 September 2015 (2015-09-15), pages 90 - 93, ISSN: 0285-4139 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020008965A (en) * 2018-07-03 2020-01-16 Zホールディングス株式会社 Device, method, and program for processing information
CN109214587A (en) * 2018-09-27 2019-01-15 重庆智万家科技有限公司 A kind of demand for commodity prediction based on three decisions divides storehouse planing method with logistics
WO2020230735A1 (en) * 2019-05-13 2020-11-19 株式会社Nttドコモ Demand prediction device
JP7443355B2 (en) 2019-05-13 2024-03-05 株式会社Nttドコモ Demand forecasting device
JP2021022220A (en) * 2019-07-29 2021-02-18 株式会社プロフィールド Information processing device, information processing method, and program
WO2021255883A1 (en) * 2020-06-18 2021-12-23 日本電気株式会社 Need prediction device, need prediction method, and computer readable recording medium

Also Published As

Publication number Publication date
JP6451894B2 (en) 2019-01-16
JPWO2017163278A1 (en) 2018-07-26

Similar Documents

Publication Publication Date Title
JP6451894B2 (en) Product demand forecasting system, product demand forecasting method, and product demand forecasting program
JP5963709B2 (en) Computer, prediction method, and prediction program
JP7107222B2 (en) Product demand forecast system, product demand forecast method and product demand forecast program
JP6352798B2 (en) Marketing measure optimization apparatus, method, and program
Panda et al. Optimal pricing and lot-sizing for perishable inventory with price and time dependent ramp-type demand
US20100138281A1 (en) System and method for retail store shelf stock monitoring, predicting, and reporting
JP6604431B2 (en) Information processing system, information processing method, and information processing program
JP5337174B2 (en) Demand prediction device and program thereof
JP6848230B2 (en) Processing equipment, processing methods and programs
US20170011421A1 (en) Preference analyzing system
JP6573024B2 (en) Information processing system, information processing method, and information processing program
Potter et al. Removing bullwhip from the Tesco supply chain
US20190385178A1 (en) Prediction system and prediction method
JP2021043477A (en) Demand forecasting device, demand forecasting method, and program
JP2009251779A (en) Sales estimation system, method and program
JP5847137B2 (en) Demand prediction apparatus and program
JP6193817B2 (en) Demand prediction apparatus and program
JP2005228014A (en) System for predicting number of visitor using bayesian network
JP2016095786A (en) Information processing device and program
WO2023120126A1 (en) Unit-sales prediction system and unit-sales prediction method
JP6276655B2 (en) Demand prediction apparatus and program
JP6576043B2 (en) Product demand forecast system
JP5819363B2 (en) Demand prediction apparatus and program
JP6956072B2 (en) Methods and systems for generating schedule data structures for promotional display spaces
JPWO2018008303A1 (en) Opportunity loss calculation system, opportunity loss calculation method and opportunity loss calculation program

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018506500

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895318

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16895318

Country of ref document: EP

Kind code of ref document: A1