WO2017159837A1 - Countercurrent-type direct-heating heat exchanger - Google Patents

Countercurrent-type direct-heating heat exchanger Download PDF

Info

Publication number
WO2017159837A1
WO2017159837A1 PCT/JP2017/010836 JP2017010836W WO2017159837A1 WO 2017159837 A1 WO2017159837 A1 WO 2017159837A1 JP 2017010836 W JP2017010836 W JP 2017010836W WO 2017159837 A1 WO2017159837 A1 WO 2017159837A1
Authority
WO
WIPO (PCT)
Prior art keywords
rectifier
heat exchanger
ore slurry
direct heating
umbrella
Prior art date
Application number
PCT/JP2017/010836
Other languages
French (fr)
Japanese (ja)
Inventor
京田 洋治
中井 修
坂元 隆
諭 松原
勇太 内田
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016054629A external-priority patent/JP6631346B2/en
Priority claimed from JP2016213968A external-priority patent/JP6729302B2/en
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to AU2017235506A priority Critical patent/AU2017235506B9/en
Priority to CU2018000098A priority patent/CU20180098A7/en
Priority to EP17766832.4A priority patent/EP3406995B1/en
Publication of WO2017159837A1 publication Critical patent/WO2017159837A1/en
Priority to PH12018501631A priority patent/PH12018501631A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/10Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material
    • F28C3/12Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material the heat-exchange medium being a particulate material and a gas, vapour, or liquid
    • F28C3/14Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material the heat-exchange medium being a particulate material and a gas, vapour, or liquid the particulate material moving by gravity, e.g. down a tube
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/06Other direct-contact heat-exchange apparatus the heat-exchange media being a liquid and a gas or vapour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/06Other direct-contact heat-exchange apparatus the heat-exchange media being a liquid and a gas or vapour
    • F28C3/08Other direct-contact heat-exchange apparatus the heat-exchange media being a liquid and a gas or vapour with change of state, e.g. absorption, evaporation, condensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes

Definitions

  • the present invention relates to a countercurrent direct heating type heat exchanger. More specifically, the fluid to be heated and the heating medium are brought into direct contact with each other while the fluid to be heated flows in from the upper part and flows out from the lower part, and at the same time the heating medium flows in from the lower part and flows out from the upper part.
  • the present invention relates to a countercurrent direct heating type heat exchanger that performs exchange.
  • High pressure pressurization is a high pressure acid leaching method (HPAL: High Pressure Pressure Acid Leaching) using sulfuric acid as a hydrometallurgical process for recovering valuable metals such as nickel and cobalt from low-grade nickel oxide ores such as limonite ore.
  • HPAL High Pressure Pressure Acid Leaching
  • a sulfuric acid leaching method is known.
  • the hydrometallurgical process using the high-temperature pressurized sulfuric acid leaching method includes a pretreatment process and a high-temperature pressurized sulfuric acid leaching process.
  • a pretreatment step nickel oxide ore is crushed and classified to produce an ore slurry.
  • the high-temperature pressurized sulfuric acid leaching step the ore slurry is charged into an autoclave and leaching is performed under leaching conditions such as temperature and pressure selected as necessary.
  • a temperature of about 200 to 300 ° C. is generally selected as the leaching condition for the autoclave.
  • the temperature of the ore slurry produced in the pretreatment process is approximately the same as the outside air temperature. Therefore, if the ore slurry is charged into the autoclave at the same temperature, not only the temperature in the autoclave is lowered and the leaching rate is lowered, but also the temperature condition becomes unstable and the leaching reaction becomes difficult. Therefore, after the ore slurry is preheated and brought close to the temperature in the autoclave, the ore slurry is charged into the autoclave.
  • a countercurrent direct heating type heat exchanger is used as a preheating facility for ore slurry (Patent Document 1).
  • the counter-current direct heating type heat exchanger allows the fluid to be heated (ore slurry) to flow from the upper part and flow from the lower part, and at the same time, the heating medium (water vapor) flows from the lower part and flows out from the upper part. Heat exchange is performed by bringing the fluid to be heated and the heating medium into direct contact.
  • the side wall of the container of the countercurrent direct heating heat exchanger may be worn by the ore slurry.
  • an object of the present invention is to provide a countercurrent direct heating type heat exchanger that can suppress wear of a container due to a fluid to be heated.
  • the countercurrent direct heating heat exchanger includes a container, a supply pipe that is horizontally provided inside the container, supplies a fluid to be heated, and is provided at an end of the supply pipe.
  • a supply port that opens downward; a rectifier that is connected to the supply port; and an umbrella-shaped dispersion plate that has an apex arranged vertically below the rectifier, the rectifier comprising: a cylinder; and An induction plate provided inside, the guide plate is disposed so as to partition the inside of the cylindrical body into an upstream flow channel and a downstream flow channel of the supply pipe, and an upper end thereof is Protruding into the supply pipe.
  • the rectifier includes a plurality of the induction plates.
  • the counter-current direct heating heat exchanger according to a third aspect of the present invention is the first or second aspect of the present invention, wherein the guide plate has an upper end that is inclined toward the downstream side of the supply pipe with respect to the central axis of the cylindrical body. It is characterized by being inclined.
  • the rectifier in the first, second, or third aspect, includes a partition member that partitions the interior of the cylindrical body into a plurality of flow paths along a central axis thereof. It is characterized by providing.
  • the cylindrical body has a slit formed therein
  • the partition member has an insertion plate
  • the insertion plate is inserted into the slit.
  • a countercurrent direct heating heat exchanger according to a sixth aspect of the present invention is the fourth or fifth aspect, wherein the partition member is disposed on a central axis of the cylindrical body and obstructs the flow of the heated fluid. It is characterized by providing.
  • a countercurrent direct heating heat exchanger according to a seventh aspect of the present invention is the first, second, third, fourth, fifth or sixth aspect, wherein the top of the umbrella-shaped dispersion plate is covered with a sacrificial material. It is characterized by being.
  • the rectifier in the first, second, third, fourth, fifth, sixth, or seventh aspect, is detachably connected to the supply port. It is characterized by.
  • the countercurrent direct heating heat exchanger according to a ninth aspect of the present invention is the first, second, third, fourth, fifth, sixth, seventh or eighth aspect, wherein the rectifier opening and the umbrella shape are provided.
  • the distance from the top of the dispersion plate is 1.1 to 1.3 times the diameter of the rectifier.
  • the countercurrent direct heating heat exchanger according to a tenth aspect of the invention is the first, second, third, fourth, fifth, sixth, seventh, eighth, or ninth invention, wherein the fluid to be heated is It is a slurry.
  • the flow rate of the fluid to be heated introduced into the upstream flow path can be increased.
  • the to-be-heated fluid can be evenly dispersed in all directions of the umbrella-shaped dispersion plate. Therefore, the amount of the heated fluid that contacts the side wall of the container does not increase locally, and wear of the container due to the heated fluid can be suppressed.
  • the rectifier is provided with a plurality of induction plates, the flow rate of the heated fluid can be adjusted in fine sections, and the flow rate of the heated fluid can be made more uniform.
  • the guide plate is inclined so that the upper end is inclined downstream, the flow rate of the upstream channel can be increased and the flow rate of the downstream channel can be decreased. Thereby, the flow rate drift of the to-be-heated material fluid can be suppressed.
  • the directional flow of the heated fluid can be suppressed by the partition member, so that the heated fluid flows down near the top of the umbrella-shaped dispersion plate and is evenly distributed in all directions of the umbrella-shaped dispersion plate. The Therefore, the amount of the heated fluid that contacts the side wall of the container does not increase locally, and wear of the container due to the heated fluid can be suppressed.
  • the cylindrical body and the partition member are firmly joined by fitting and welding, the resistance generated by the flow of the heated fluid can be counteracted, and the rectifier is hardly damaged.
  • the flow velocity of the heated object fluid in the vertically lower part of the baffle member can be suppressed and the collision of the heated object fluid with the apex of the umbrella-shaped dispersion plate can be weakened. Can be reduced.
  • the sacrificial material receives an impact caused by the flow of the fluid to be heated, wear of the umbrella-shaped dispersion plate can be suppressed.
  • the rectifier since the rectifier can be removed, the rectifier can be easily replaced or repaired.
  • the distance between the rectifier and the umbrella-shaped dispersion plate is 1.1 times or more of the diameter of the rectifier, the heated fluid flows smoothly, and the heated fluid and the umbrella-shaped dispersion plate Rubbing is weakened and wear of the umbrella-shaped dispersion plate can be suppressed. Since the distance between the rectifier and the umbrella-shaped dispersion plate is not more than 1.3 times the diameter of the rectifier, the flowing direction of the fluid to be heated flowing down from the rectifier is hardly changed by the flow of the heating medium. According to the tenth invention, even if the heated fluid is a slurry, the wear of the container due to the heated fluid can be suppressed.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG. 1. Note that hatching indicates the umbrella-shaped dispersion plate 20.
  • FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 1. Note that hatching indicates the annular rectifying plate 30. It is an enlarged view of the supply port 12 vicinity when not providing the rectifier 40.
  • FIG. 4A is a longitudinal sectional view of the rectifier 40.
  • FIG. It is an enlarged view of the rectifier 40 vicinity. It is a longitudinal cross-sectional view of the rectifier 40 in 2nd Embodiment of this invention. It is a longitudinal cross-sectional view of the rectifier 40 in 3rd Embodiment of this invention.
  • A The figure is a cross-sectional view of the rectifier 40 in another embodiment.
  • B The figure is a cross-sectional view of the rectifier 40 in still another embodiment.
  • a figure is a simulation result of slurry concentration distribution.
  • (B) The figure is a simulation result of slurry flow velocity distribution. It is a whole process figure of wet smelting.
  • the countercurrent direct heating type heat exchanger A according to the first embodiment of the present invention is used for wet smelting to obtain a nickel-cobalt mixed sulfide from nickel oxide ore using a high-temperature pressurized sulfuric acid leaching method.
  • the hydrometallurgical process includes a pretreatment step (101), a high-temperature pressurized sulfuric acid leaching step (102), a solid-liquid separation step (103), a neutralization step (104), a desorption step.
  • a zinc process (105), a sulfurization process (106), and a detoxification process (107) are provided.
  • Laterite ores such as limonite ore and saprolite ore are mainly used.
  • Laterite ore usually has a nickel content of 0.5 to 3.0% by mass.
  • Nickel is contained in laterite ore as hydroxide or siliceous clay (magnesium silicate) mineral.
  • Laterite ore has an iron content of 10-50% by mass.
  • Iron is mainly contained in laterite ore in the form of trivalent hydroxide (goethite, FeOOH), but some divalent iron is contained in laterite ore as siliceous clay.
  • the nickel oxide ore is crushed and classified to an average particle size of 2 mm or less, and then slurried to produce an ore slurry. Excess water is removed from the ore slurry using a solid-liquid separator such as thickener, and the ore slurry is concentrated so that the concentration of the solid content becomes a predetermined concentration.
  • sulfuric acid leaching step (102) sulfuric acid is added to the ore slurry obtained in the pretreatment step (101), and the high-temperature pressurized acid leaching is performed by stirring at a temperature of 200 to 300 ° C. Get.
  • the leaching slurry obtained in the high-temperature pressurized sulfuric acid leaching step (102) is subjected to solid-liquid separation, and a leachate containing nickel and cobalt (hereinafter referred to as “crude nickel sulfate aqueous solution”). A leach residue is obtained.
  • the neutralization step (104) the crude nickel sulfate aqueous solution obtained in the solid-liquid separation step (103) is neutralized.
  • the zinc removal step (105) hydrogen sulfide gas is added to the crude nickel sulfate aqueous solution neutralized in the neutralization step (104) to precipitate and remove zinc as zinc sulfide.
  • the sulfidation step (106) hydrogen sulfide gas is added to the final zinc removal solution obtained in the dezincification step (105) to obtain a nickel / cobalt mixed sulfide and a nickel poor solution.
  • the detoxification step (107) the leaching residue generated in the solid-liquid separation step (103) and the nickel poor solution generated in the sulfidation step (106) are detoxified.
  • the solid content concentration of the ore slurry produced in the pretreatment step (101) greatly depends on the nature of the nickel oxide ore that is the raw material.
  • the solid content concentration of the ore slurry is not particularly limited, but is prepared so as to be 20 to 50% by mass. If the concentration of the ore slurry is less than 20% by mass, a large facility is required to obtain a predetermined residence time during leaching, and the amount of acid added also increases to adjust the residual acid concentration. Moreover, the nickel concentration of the obtained leachate becomes low.
  • the high-temperature pressurized sulfuric acid leaching step (102) has two further small steps (a preheating step and a leaching step).
  • the preheating step the ore slurry having the outside air temperature conveyed from the pretreatment step (101) is preheated to approach the temperature in the autoclave used in the leaching step.
  • the leaching step the ore slurry conveyed from the preheating step is charged into an autoclave, sulfuric acid is added to the ore slurry, and leaching is performed while blowing high-pressure air and high-pressure steam.
  • the countercurrent direct heating type heat exchanger A of the present embodiment is used to heat the ore slurry in the preheating step. If necessary, a plurality of counter-current direct heating heat exchangers A are connected in series to heat the ore slurry stepwise.
  • the countercurrent direct heating type heat exchanger A uses water vapor as a heating medium.
  • water vapor water vapor generated by a general method such as a boiler may be used.
  • the pressure is reduced stepwise using a vacuum vessel.
  • the steam generated in the decompression vessel may be recovered and used as a heating medium for the countercurrent direct heating type heat exchanger A.
  • the counterflow type direct heating type heat exchanger A is a heat exchanger that performs heat exchange by causing the heated fluid 1 and the heating medium 2 to flow countercurrently and bringing the heated fluid 1 and the heating medium 2 into direct contact with each other. is there.
  • the heated fluid 1 is the ore slurry 1 obtained in the pretreatment step (101) of the hydrometallurgy
  • the heating medium 2 is water vapor 2.
  • the countercurrent direct heating heat exchanger A includes a substantially cylindrical container 10.
  • the container 10 is arranged vertically so that its central axis is along the vertical direction.
  • a supply pipe 11 is provided substantially horizontally at the top.
  • a heated fluid supply port 12 is provided at the end of the supply pipe 11.
  • the heated object fluid supply port 12 is opened substantially vertically downward.
  • a rectifier 40 is connected to the heated fluid supply port 12.
  • a heated fluid discharge port 13 is provided at the bottom of the container 10, more specifically, at the bottom of the container 10.
  • the ore slurry 1 as the heated fluid 1 is supplied into the container 10 through the supply pipe 11, passes through the heated fluid supply port 12, and flows down from the opening (lower end) of the rectifier 40. Thereafter, the ore slurry 1 flows down in the container 10 and is discharged from the heated object fluid discharge port 13 to the outside of the container 10.
  • the heated fluid supply port 12 corresponds to a “supply port” recited in the claims.
  • the heated fluid supply port 12 is simply referred to as the supply port 12.
  • a heating medium supply port 14 is provided on the lower side wall of the container 10.
  • a heating medium discharge port 15 is provided at the top of the container 10, more specifically at the top of the container 10. The steam 2 that is the heating medium 2 is supplied into the container 10 from the heating medium supply port 14. Thereafter, the water vapor 2 rises in the container 10 and is discharged from the heating medium discharge port 15 to the outside of the container 10.
  • a plurality of umbrella-shaped dispersion plates 20 and a plurality of annular rectifying plates 30 are provided in the container 10.
  • the umbrella-shaped dispersion plate 20 and the annular rectifying plate 30 are arranged alternately in the vertical direction with their centers substantially coincided.
  • the umbrella-shaped dispersion plate 20 and the annular rectifying plate 30 have inclined surfaces.
  • the ore slurry 1 supplied to the inside of the container 10 flows down the inclined surfaces of the umbrella-shaped dispersion plate 20 and the annular rectifying plate 30 and flows down from the downstream edge thereof.
  • the ore slurry 1 flows down in the container 10 while repeating this.
  • the water vapor 2 supplied to the inside of the container 10 passes through the zigzag between the umbrella-shaped dispersion plate 20 and the annular rectifying plate 30 and rises in the container 10.
  • the supply pipe 11 is disposed along the diameter direction of the container 10 in a plan view, and reaches from the side wall of the container 10 to the approximate center.
  • a supply port 12 is formed at the end of the supply pipe 11.
  • the supply port 12 is disposed substantially at the center of the container 10 in plan view. Therefore, the rectifier 40 is also arranged at the approximate center of the container 10 in plan view.
  • the supply pipe 11 is supported by a beam 11 a that extends linearly from the end and reaches the side wall of the container 10.
  • the umbrella-shaped dispersion plate 20 is an umbrella-shaped (conical) inclined plate.
  • the umbrella-shaped dispersion plate 20 is arranged so that the apex faces upward and the apex (center) substantially coincides with the center of the container 10 in plan view.
  • the top of the umbrella-shaped dispersion plate 20 is disposed vertically below the rectifier 40. Therefore, the ore slurry 1 is supplied from the rectifier 40 to the apex of the uppermost umbrella-shaped dispersion plate 20, is radially dispersed by the inclined surface of the umbrella-shaped dispersion plate 20, and flows down from the downstream edge 21 in a skirt shape.
  • the downstream edge portion 21 of the umbrella-shaped dispersion plate 20 is an edge where the side surface and the bottom surface are in contact with each other in a cone.
  • the uppermost umbrella-shaped dispersion plate 20 is covered with a sacrificial material 22 in the vicinity of the apex thereof.
  • the sacrificial material 22 may be formed by hardening and may be formed by a material having strength such as a steel plate.
  • the annular rectifying plate 30 is an annular inclined plate having a downward gradient from the outer peripheral edge to the inner peripheral edge.
  • the outer diameter of the annular rectifying plate 30 is substantially the same as the inner diameter of the container 10, and the outer peripheral edge of the annular rectifying plate 30 is in contact with the inner wall of the container 10.
  • the annular rectifying plate 30 is disposed so that the center (the center of the outer periphery and the inner periphery) substantially coincides with the center of the container 10 in plan view.
  • the ore slurry 1 that has flowed down from the umbrella-shaped dispersion plate 20 to the annular rectifying plate 30 flows down toward the center by the inclined surface of the annular rectifying plate 30 and then flows down from the downstream edge 31 in a skirt shape.
  • the downstream edge 31 of the annular rectifying plate 30 is an inner peripheral edge.
  • the ore slurry 1 is supplied from the rectifier 40 to the inside of the container 10.
  • the ore slurry 1 supplied to the inside of the container 10 first flows down radially on the inclined surface of the uppermost umbrella-shaped dispersion plate 20 and then flows down from the downstream edge 21 in a skirt shape.
  • the ore slurry 1 that has flowed down from the umbrella-shaped dispersion plate 20 to the annular rectifying plate 30 flows down toward the center of the inclined surface of the annular rectifying plate 30 and then flows down from the downstream edge 31 in a skirt shape.
  • This ore slurry 1 flows down to the umbrella-shaped dispersion plate 20 at the next stage. As described above, the ore slurry 1 flows down the inclined surfaces of the umbrella-shaped dispersion plate 20 and the annular rectifying plate 30 alternately, and then is discharged from the heated fluid discharge port 13 at the lower part of the container 10 to the outside of the container 10.
  • the water vapor 2 is supplied to the inside of the container 10 from the heating medium supply port 14 at the lower part of the container 10, and rises in a zigzag manner between the umbrella-shaped dispersion plate 20 and the annular rectifying plate 30. It is discharged from the outlet 15 to the outside of the container 10. During this time, the water vapor 2 flows along the ore slurry 1 flowing down the inclined surfaces of the umbrella-shaped dispersion plate 20 and the annular rectifying plate 30 and comes into direct contact with the ore slurry 1. Passing through the ore slurry 1 flowing down from the downstream edges 21, 31 makes direct contact with the ore slurry 1. Thereby, heat exchange between the ore slurry 1 and the water vapor 2 is performed.
  • the countercurrent direct heating type heat exchanger A allows the ore slurry 1 to flow in from the upper part and flow out from the lower part, and at the same time, the ore slurry 1 flows in from the lower part and flows out from the upper part. And the water vapor 2 are brought into direct contact to exchange heat.
  • the ore slurry 1 is dispersed radially by the umbrella-shaped dispersion plate 20.
  • steam 2 becomes large, and heat exchange efficiency becomes high.
  • the water vapor 2 is rectified by the annular rectifying plate 30 and flows along the ore slurry 1 flowing down the inclined surface of the umbrella-shaped dispersion plate 20. This also increases the contact area between the ore slurry 1 and the water vapor 2 and increases the heat exchange efficiency.
  • FIG. 5 is an enlarged view of the vicinity of the supply port 12 when the rectifier 40 is not provided. Note that a two-dot chain line O in FIG. 5 indicates a vertical line passing through the center of the supply port 12.
  • the ore slurry 1 flows down from the supply port 12 after flowing in the supply pipe 11 in a substantially horizontal direction. Since gravity acts on the ore slurry 1 flowing down from the supply port 12, the flowing direction is downward rather than horizontal.
  • the ore slurry 1 still retains the horizontal momentum generated when it flows through the supply pipe 11. Therefore, the flow direction of the ore slurry 1 flowing down from the supply port 12 is inclined with respect to the vertically downward direction.
  • the direction in which the ore slurry 1 is inclined is the downstream side of the supply pipe 11 (the left direction in FIG. 5).
  • a phenomenon in which the flow direction of the ore slurry 1 flowing down from the supply port 12 in this way is inclined with respect to the vertically downward direction is referred to as “direction drift”.
  • the flow velocity distribution of the ore slurry 1 flowing down from the supply port 12 is faster on the downstream side V2 (left side in FIG. 5) than on the upstream side V1 (right side in FIG. 5) of the supply pipe 11. Therefore, if the flow rate of the ore slurry 1 is viewed locally, the upstream side of the supply pipe 11 is small and the downstream side is large.
  • the deviation of the flow rate distribution of the ore slurry 1 flowing down from the supply port 12 is referred to as “flow rate deviation”.
  • the “direction drift” and the “flow quantity drift” are collectively referred to as “drift”.
  • the ore slurry 1 that flows in the drift direction (downstream of the supply pipe 11) out of the ore slurry 1 that flows on the inclined surface of the umbrella-shaped dispersion plate 20 has more momentum than the ore slurry 1 that flows in the other direction.
  • the strong ore slurry 1 flows down from the downstream edge 21 of the umbrella-shaped dispersion plate 20 and then contacts the side wall of the container 10. Therefore, the part (w part in FIG. 1) located in the drift direction among the side walls of the container 10 has a larger amount of the ore slurry 1 in contact than the other parts. That is, the amount of the ore slurry 1 that contacts the side wall of the container 10 locally increases. As a result, a portion (w portion) of the side wall of the container 10 is more easily worn by the ore slurry 1 than the other portions.
  • the ore slurry 1 is not evenly dispersed in all directions of the umbrella-shaped dispersion plate 20, and the bias occurs. As a result, the heat exchange efficiency is lowered.
  • the drift angle ⁇ (the angle formed by the flow direction of the ore slurry 1 and the vertical line O) varies depending on the flow rate of the ore slurry 1, the slurry specific gravity, and the solid content concentration. These parameters vary during the operation of the countercurrent direct heating heat exchanger A. Therefore, the drift angle ⁇ changes during operation, and the position where the ore slurry 1 flowing down from the supply port 12 collides with the umbrella-shaped dispersion plate 20 changes. The portion where the ore slurry 1 flowing down from the supply port 12 collides with the umbrella-shaped dispersion plate 20 is easily damaged. If the drift angle ⁇ changes during operation, the umbrella-shaped dispersion plate 20 may be affected by the flow of the ore slurry 1 over a wide range, and it is difficult to protect the umbrella-shaped dispersion plate 20 against this.
  • a rectifier 40 is attached to the supply port 12.
  • the rectifier 40 has a function of making the flow distribution of the ore slurry 1 uniform and adjusting the flowing direction vertically downward.
  • the rectifier 40 includes a cylindrical body 41, a partition member 42, and a guide plate 45.
  • the cylinder 41 is a cylindrical member and has a flange 41f at the upper end.
  • the rectifier 40 is attached to the supply port 12 by connecting the flange 41f and the flange 12f of the supply port 12 with bolts, nuts, or the like.
  • the cylindrical body 41 is formed with four slits 41s extending from the lower end to the vicinity of the center of the top and bottom. These slits 41 s are formed at equal intervals (90 ° intervals) in the circumferential direction of the cylindrical body 41.
  • the partition member 42 includes a small-diameter pipe 42a and eight partition plates 42b joined to the outer periphery of the pipe 42a. These partition plates 42b are arranged at equal intervals (45 ° intervals) in the circumferential direction of the pipe 42a. In plan view, the partition member 42 has eight partition plates 42b radially arranged around the pipe 42a.
  • the pipe 42 a is arranged so that the central axis thereof coincides with the central axis O of the cylindrical body 41.
  • the partition plate 42b is a flat plate and is disposed along the central axis O.
  • each flow path 44 is along the central axis O.
  • the partition member 42 has a baffle member 43.
  • the baffle member 43 is a disk-shaped member, and its diameter is substantially the same as the outer diameter of the pipe 42a.
  • the baffle member 43 is disposed on the central axis O of the cylindrical body 41 and joined to the upper end of the pipe 42a. The upper end of the pipe 42 a is sealed by the baffle member 43.
  • the flow of the ore slurry 1 is hindered. Therefore, the flow of the ore slurry 1 is hindered in the vicinity of the central axis O of the cylinder 41.
  • the partition plates 42b having the insertion plates 42c and the partition plates 42b having no insert plates 42c are alternately arranged. That is, the insertion plates 42c are arranged at 90 ° intervals in the circumferential direction of the pipe 42a.
  • a guide plate 45 is provided on the upper portion of the cylindrical body 41.
  • the guide plate 45 is erected at the inner center of the cylindrical body 41 and is disposed perpendicular to the axial direction of the supply pipe 11. Therefore, the upper portion of the cylindrical body 41 is partitioned by the guide plate 45 into an upstream channel 46 a and a downstream channel 46 b of the supply pipe 11.
  • the guide plate 45 extends upward from the upper end of the cylindrical body 41, and the upper end protrudes into the supply pipe 11. Therefore, the vicinity of the supply port 12 of the supply pipe 11 is also partitioned by the guide plate 45 into an upstream flow path and a downstream flow path of the supply pipe 11.
  • the rectifier 40 is assembled in the following procedure. First, the guide plate 45 and the partition member 42 are inserted from the lower opening of the cylinder 41. At this time, the insertion plate 42c of the partition member 42 is inserted into the slit 41s of the cylindrical body 41. Then, the slit 41s and the insertion plate 42c are welded.
  • the cylinder body 41 and the partition member 42 are firmly joined by fitting and welding.
  • a force (friction or impact) acting between the ore slurry 1, the guide plate 45, and the partition member 42 generates a force that pushes the partition member 42 downward.
  • the cylinder 41 and the partition member 42 are firmly joined, it is possible to counter the downward force generated by the flow of the ore slurry 1 and the rectifier 40 is hardly damaged.
  • the assembly method of the rectifier 40 is not limited to said method.
  • the insertion plate 42c may not be inserted into the slit 41s. You may weld only the inner surface of the cylinder 41, and the outer edge part of the partition plate 42b. You may fix the cylinder 41 and the partition member 42 by other methods, such as screwing.
  • the ore slurry 1 flowing in the supply pipe 11 is introduced into the rectifier 40 from the supply port 12. At this time, the ore slurry 1 is guided by the guide plate 45 and is introduced into the upstream flow path 46a and the downstream flow path 46b.
  • the rectifier 40 when the rectifier 40 is not provided, if the flow rate of the ore slurry 1 is viewed locally, the upstream side of the supply pipe 11 is small and the downstream side is large.
  • the upper end of the guide plate 45 protrudes into the supply pipe 11, more ore slurry 1 can be introduced into the upstream flow path 46a, and the flow rate can be increased.
  • the flow rate of the ore slurry 1 can be made uniform between the upstream flow channel 46a and the downstream flow channel 46b, and the flow rate drift of the ore slurry 1 can be suppressed.
  • the flow rate of the upstream flow path 46a can be increased as the protruding amount h of the guide plate 45 is increased. Therefore, the protrusion amount h of the guide plate 45 is adjusted so that the flow rate is uniform between the upstream flow path 46a and the downstream flow path 46b.
  • the ore slurry 1 that has passed through the flow paths 46 a and 46 b above the rectifier 40 flows into eight flow paths 44 formed by the partition member 42 below the rectifier 40. Since the ore slurry 1 flows in a plurality of flow paths 44 along the central axis O of the rectifier 40, the flow direction of the ore slurry 1 can be adjusted to the direction along the central axis O of the rectifier 40.
  • the rectifier 40 is arranged so that its central axis O substantially coincides with a vertical line passing through the center of the supply port 12. Since the supply port 12 is disposed substantially at the center of the container 10, the central axis O of the rectifier 40 also substantially coincides with the central axis of the container 10. Therefore, the ore slurry 1 that has passed through the rectifier 40 flows vertically downward along the central axis of the container 10. Even if the flow direction of the ore slurry 1 in the supply pipe 11 is the horizontal direction, the flow direction of the ore slurry 1 can be adjusted vertically downward by the partition member 42. Thus, the directional drift of the ore slurry 1 can be suppressed by the partition member 42.
  • the ore slurry 1 flows down near the top of the uppermost umbrella-shaped dispersion plate 20 and is uniformly dispersed in all directions of the umbrella-shaped dispersion plate 20.
  • the momentum of the ore slurry 1 flowing on the inclined surface of the umbrella-shaped dispersion plate 20 is not locally increased.
  • the amount of the ore slurry 1 that contacts the side wall of the container 10 does not increase locally, and wear of the container 10 due to the ore slurry 1 can be suppressed.
  • the ore slurry 1 Even if the flow rate, slurry specific gravity, and solid content concentration of the ore slurry 1 are changed, the direction in which the ore slurry 1 flows can be maintained vertically downward. Therefore, the ore slurry 1 always collides with the vicinity of the top of the umbrella-shaped dispersion plate 20, and the position thereof does not change.
  • the sacrificial material 22 By covering the vicinity of the top of the uppermost umbrella-shaped dispersion plate 20 with the sacrificial material 22, the sacrificial material 22 receives an impact caused by the flow of the ore slurry 1, so that the wear of the umbrella-shaped dispersion plate 20 can be suppressed. As a result, the life of the umbrella-shaped dispersion plate 20 can be extended.
  • a baffle member 43 is provided on the central axis O of the rectifier 40.
  • An apex of the umbrella-shaped dispersion plate 20 is disposed vertically below the baffle member 43.
  • the baffle member 43 can suppress the flow rate (flow velocity) of the ore slurry 1 in the vertically downward direction. As a result, the collision of the ore slurry 1 with the apex of the uppermost umbrella-shaped dispersion plate 20 can be weakened, so that damage to the umbrella-shaped dispersion plate 20 can be reduced.
  • the rectifier 40 Since the ore slurry 1 passes through the rectifier 40, it is easily worn. After the rectifier 40 has been used for a long time, it needs to be replaced or repaired. As described above, since the rectifier 40 is attached to the supply port 12 by the flange 41f, it can be removed. Since the rectifier 40 can be removed, the rectifier 40 can be easily replaced or repaired even if the rectifier 40 is worn.
  • the distance H between the lower end opening of the rectifier 40 and the apex of the uppermost umbrella-shaped dispersion plate 20 is preferably 1.1 to 1.3 times the diameter D of the rectifier 40.
  • the ore slurry 1 stays at the outlet of the rectifier 40 and the ore slurry 1 rubs against the umbrella-shaped dispersion plate 20 violently. As a result, the umbrella-shaped dispersion plate 20 is easily worn. Further, the ore slurry 1 in the rectifier 40 is decelerated by the retained ore slurry 1, and the rectifier 40 may be blocked by the ore slurry 1. If the distance H is 1.1 times the diameter D or more, the ore slurry 1 flows smoothly, the friction between the ore slurry 1 and the umbrella-shaped dispersion plate 20 becomes weak, and wear of the umbrella-shaped dispersion plate 20 can be suppressed.
  • the ore slurry 1 flowing down from the rectifier 40 may be disturbed by the flow of the water vapor 2, and the uniform dispersion in the umbrella-shaped dispersion plate 20 may not be maintained.
  • the ore slurry 1 may hit the side wall of the container 10 without hitting the umbrella-shaped dispersion plate 20. If the distance H is 1.3 times or less of the diameter D, the flow direction of the ore slurry 1 flowing down from the rectifier 40 is unlikely to be changed by the flow of the water vapor 2. Further, the ore slurry 1 does not hit the side wall of the container 10 directly.
  • the opening surface of the rectifier 40 is orthogonal to the central axis O. Even when the pressure in the rectifier 40 is higher than the external pressure, the ore slurry 1 can be prevented from splashing outward.
  • the rectifier 40 in the second embodiment is obtained by inclining the guide plate 45 in the rectifier 40 of the first embodiment. More specifically, the guide plate 45 is inclined with respect to the central axis O of the cylindrical body 41 so that the upper end of the guide plate 45 is inclined downstream of the supply pipe 11. Since the rest of the configuration is the same as in the first embodiment, the same reference numerals are assigned to the same members, and descriptions thereof are omitted.
  • the guide plate 45 Since the guide plate 45 is inclined in this way, the inlet area of the upstream flow path 46a is widened, more ore slurry 1 can be introduced, and the flow rate can be increased.
  • the inlet area of the downstream flow path 46b becomes narrow, and the flow rate can be reduced.
  • the upstream flow path 46a has a smaller outlet area than the inlet area. Therefore, the ore slurry 1 that has passed through the upstream flow path 46a has a higher flow rate.
  • the downstream flow path 46b has a larger outlet area than the inlet area. Therefore, the ore slurry 1 that has passed through the downstream flow path 46b has a low flow rate. Therefore, the flow rate drift of the ore slurry 1 can be suppressed.
  • the flow rate of the upstream flow path 46a can be increased as the inclination angle of the guide plate 45 with respect to the central axis O is increased. Therefore, the inclination angle of the guide plate 45 is adjusted so that the flow rate is uniform between the upstream flow path 46a and the downstream flow path 46b.
  • the rectifier 40 in the third embodiment is a rectifier 40 of the first embodiment, in which a plurality of induction plates 45 are provided.
  • a plurality of induction plates 45 are provided.
  • three guide plates 45 are provided, but the number of guide plates 45 is not particularly limited, and may be two or four or more. Since the rest of the configuration is the same as in the first embodiment, the same reference numerals are assigned to the same members, and descriptions thereof are omitted.
  • the rectifier 40 is provided with a plurality of guide plates 45, the flow rate of the ore slurry 1 can be adjusted in fine sections, and the flow rate of the ore slurry 1 can be made more uniform.
  • the guide plate 45 disposed on the downstream side of the guide plate 45 disposed on the upstream side of the supply pipe 11 has a larger protruding amount. In this way, the required amount of ore slurry 1 can be introduced into the downstream flow path.
  • the guide plate 45 may be erected along the central axis O of the cylinder 41. Some or all of the plurality of guide plates 45 may be inclined. In this case, the inclination angle may be changed depending on the arrangement position of the guide plate 45.
  • the rectifier 40 of 1st Embodiment is the structure which the partition member 42 and the induction
  • the partition member 42 may be formed by bundling a plurality of small-diameter pipes 42d.
  • the cross-sectional shape of the small diameter pipe 42d is not limited to a circle, and may be a polygon.
  • the partition member 42 may be formed by radially combining a plurality of partition plates 42e.
  • the number of the flow paths 44 in the cylinder 41 is not limited to eight, and may be plural. If the partition member 42 formed by combining the partition plates 42e in a cross shape is used, the number of the flow paths 44 is four.
  • Adjacent flow paths 44 may be completely partitioned by the partition member 42. You may provide a communication part in the partition member 42 so that the adjacent flow path 44 may connect.
  • the baffle member 43 may be disposed on the central axis O of the cylinder 41.
  • the baffle member 43 is not limited to the upper part of the partition member 42, and may be disposed at the lower part or at the center in the vertical direction.
  • the shape of the baffle member 43 is not limited to a disk shape, and various shapes can be adopted.
  • the baffle member 43 may be cylindrical or conical.
  • the conical baffle member 43 is incorporated into the partition member 42 with the apex facing upward. In this way, the ore slurry 1 flows along the inclined surface of the baffle member 43. Therefore, it can suppress that the ore slurry 1 collides with the baffle member 43, and is scattered.
  • the heated object fluid 1 is not particularly limited as long as it is a heated object having fluidity.
  • the slurry-like fluid liquid containing a solid component is mentioned.
  • the slurry-like fluid liquid include a slurry containing ore (ore slurry).
  • the ore slurry is a slurry containing nickel oxide ore obtained in, for example, a pretreatment step (101) of hydrometallurgy. Even if the heated fluid 1 is a slurry, the wear of the container 10 due to the heated fluid 1 can be suppressed.
  • Heating medium 2 is not particularly limited as long as it is a medium that supplies heat to the fluid 1 to be heated.
  • Examples of the heating medium 2 include a gas such as water vapor having a temperature higher than that of the heated fluid 1.
  • FIG. 12A shows the concentration distribution of the slurry.
  • FIG. 12B shows the flow rate distribution of the slurry.
  • the concentration of the slurry is uniform and is uniformly dispersed in all directions of the umbrella-shaped dispersion plate 20.
  • the flow rate of the slurry flowing down from the rectifier 40 is substantially uniform.
  • Example 1 In the preheating process of the hydrometallurgy, the ore slurry was heated using a countercurrent direct heating type heat exchanger.
  • the basic configuration of the countercurrent direct heating heat exchanger is the same as that of the countercurrent direct heating heat exchanger A shown in FIG.
  • the side wall of the container 10 of the counter-current direct heating type heat exchanger is 9 mm thick titanium on the inside and 23.5 mm thick carbon steel on the outside, and the total thickness is 32.5 mm.
  • the rectifier 40 shown in FIG. The ore slurry 1 was supplied to the countercurrent direct heating type heat exchanger and the operation was started.
  • Example 1 (Comparative Example 1) In Example 1, the rectifier 40 was replaced with a short tube.
  • the short pipe has the same size as the cylinder 41 of the rectifier 40.
  • the other conditions are the same as in the first embodiment.
  • Example 1 From the above, it was confirmed that the wear of the side wall of the container 10 can be suppressed in Example 1. This is probably because the ore slurry 1 is evenly dispersed in all directions of the umbrella-shaped dispersion plate 20 by providing the rectifier 40.
  • a Counter-current direct heating type heat exchanger 1 Ore slurry 2 Water vapor 10 Container 11 Supply pipe 12 Supply port 20 Umbrella-shaped dispersion plate 40 Rectifier 41 Cylindrical body 42 Partition member 43 Baffle member 45 Guide plate

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

Provided is a countercurrent-type direct-heating heat exchanger in which wear of a container due to a heating subject fluid can be inhibited. The countercurrent-type direct-heating heat exchanger (A) is provided with a container (10), a feed pipe (11) which is horizontally provided in the container (10) and which feeds the heating subject fluid (1), a feed port (12) which is provided at an end section of the feed pipe (11) and which opens vertically downwards, and a rectifier (40) connected to the feed port (12). The rectifier (40) is provided with a cylinder body (41) and a guide plate (45) provided in the cylinder body (41). The guide plate (45) is disposed so as to partition the interior of the cylinder body (41) into a channel (46a) on the upstream side of the feed pipe (11) and a channel (46b) on the downstream side of the feed pipe (11). The upper end of the guide plate (45) projects into the feed pipe (11). It is possible to increase the flow rate of the heating subject fluid introduced into the channel (46a) on the upstream side, and suppress the flow rate deviation of the heating subject fluid (1).

Description

向流式直接加熱型熱交換器Counterflow direct heating type heat exchanger
 本発明は、向流式直接加熱型熱交換器に関する。さらに詳しくは、被加熱物流体をその上部から流入させその下部から流出させ、同時に加熱媒体をその下部から流入させその上部から流出させながら、被加熱物流体と加熱媒体とを直接接触させて熱交換を行う向流式直接加熱型熱交換器に関する。 The present invention relates to a countercurrent direct heating type heat exchanger. More specifically, the fluid to be heated and the heating medium are brought into direct contact with each other while the fluid to be heated flows in from the upper part and flows out from the lower part, and at the same time the heating medium flows in from the lower part and flows out from the upper part. The present invention relates to a countercurrent direct heating type heat exchanger that performs exchange.
 リモナイト鉱等に代表される低品位ニッケル酸化鉱石からニッケル、コバルト等の有価金属を回収する湿式製錬法として、硫酸を用いた高圧酸浸出法(HPAL: High Pressure Acid Leaching)である高温加圧硫酸浸出法が知られている。 High pressure pressurization is a high pressure acid leaching method (HPAL: High Pressure Pressure Acid Leaching) using sulfuric acid as a hydrometallurgical process for recovering valuable metals such as nickel and cobalt from low-grade nickel oxide ores such as limonite ore. A sulfuric acid leaching method is known.
 高温加圧硫酸浸出法を用いた湿式製錬には、前処理工程と、高温加圧硫酸浸出工程とが含まれる。前処理工程では、ニッケル酸化鉱石を解砕分級して鉱石スラリーを製造する。高温加圧硫酸浸出工程では、鉱石スラリーをオートクレーブに装入して、必要に応じて選択された温度や圧力等の浸出条件下で浸出処理を行う。 The hydrometallurgical process using the high-temperature pressurized sulfuric acid leaching method includes a pretreatment process and a high-temperature pressurized sulfuric acid leaching process. In the pretreatment step, nickel oxide ore is crushed and classified to produce an ore slurry. In the high-temperature pressurized sulfuric acid leaching step, the ore slurry is charged into an autoclave and leaching is performed under leaching conditions such as temperature and pressure selected as necessary.
 高い浸出率を維持するため、オートクレーブの浸出条件として200~300℃程度の温度が選択されることが一般的である。一方、前処理工程で製造された鉱石スラリーの温度は外気温と同程度である。そのため、鉱石スラリーをそのままの温度でオートクレーブに装入すると、オートクレーブ内の温度を低下させ浸出率が低下するばかりでなく、温度条件が不安定になり浸出反応が困難になる。そこで、鉱石スラリーを予熱してオートクレーブ内の温度に近づけた後に、鉱石スラリーをオートクレーブに装入することが行われる。 In order to maintain a high leaching rate, a temperature of about 200 to 300 ° C. is generally selected as the leaching condition for the autoclave. On the other hand, the temperature of the ore slurry produced in the pretreatment process is approximately the same as the outside air temperature. Therefore, if the ore slurry is charged into the autoclave at the same temperature, not only the temperature in the autoclave is lowered and the leaching rate is lowered, but also the temperature condition becomes unstable and the leaching reaction becomes difficult. Therefore, after the ore slurry is preheated and brought close to the temperature in the autoclave, the ore slurry is charged into the autoclave.
 鉱石スラリーの予熱設備として向流式直接加熱型熱交換器が用いられる(特許文献1)。向流式直接加熱型熱交換器は、被加熱物流体(鉱石スラリー)をその上部から流入させその下部から流出させ、同時に加熱媒体(水蒸気)をその下部から流入させその上部から流出させながら、被加熱物流体と加熱媒体とを直接接触させて熱交換を行う。 A countercurrent direct heating type heat exchanger is used as a preheating facility for ore slurry (Patent Document 1). The counter-current direct heating type heat exchanger allows the fluid to be heated (ore slurry) to flow from the upper part and flow from the lower part, and at the same time, the heating medium (water vapor) flows from the lower part and flows out from the upper part. Heat exchange is performed by bringing the fluid to be heated and the heating medium into direct contact.
特開2010-25455号公報JP 2010-25455 A
 鉱石スラリーの加熱に向流式直接加熱型熱交換器を用いると、向流式直接加熱型熱交換器の容器の側壁が鉱石スラリーにより摩耗する場合がある。 When a countercurrent direct heating heat exchanger is used to heat the ore slurry, the side wall of the container of the countercurrent direct heating heat exchanger may be worn by the ore slurry.
 本発明は上記事情に鑑み、被加熱物流体による容器の摩耗を抑制できる向流式直接加熱型熱交換器を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a countercurrent direct heating type heat exchanger that can suppress wear of a container due to a fluid to be heated.
 第1発明の向流式直接加熱型熱交換器は、容器と、前記容器の内部に水平に設けられ、被加熱物流体を供給する供給パイプと、前記供給パイプの端部に設けられ、鉛直下方に開口する供給口と、前記供給口に接続された整流器と、前記整流器の鉛直下方に頂点が配置された傘形分散板と、を備え、前記整流器は、筒体と、前記筒体の内部に設けられた誘導板と、を備え、前記誘導板は、前記筒体の内部を前記供給パイプの上流側の流路と下流側の流路とに仕切るように配置され、その上端が前記供給パイプ内に突出していることを特徴とする。
 第2発明の向流式直接加熱型熱交換器は、第1発明において、前記整流器は、複数の前記誘導板を備えていることを特徴とする。
 第3発明の向流式直接加熱型熱交換器は、第1または第2発明において、前記誘導板は、その上端が前記供給パイプの下流側に傾くように、前記筒体の中心軸に対して傾斜していることを特徴とする。
 第4発明の向流式直接加熱型熱交換器は、第1、第2または第3発明において、前記整流器は、前記筒体の内部をその中心軸に沿う複数の流路に仕切る仕切部材を備えることを特徴とする。
 第5発明の向流式直接加熱型熱交換器は、第4発明において、前記筒体にはスリットが形成されており、前記仕切部材は挿入板を有しており、前記スリットに前記挿入板が挿入され、それらが溶接されていることを特徴とする。
 第6発明の向流式直接加熱型熱交換器は、第4または第5発明において、前記仕切部材は、前記筒体の中心軸上に配置され、前記被加熱物流体の流れを妨げる邪魔部材を備えることを特徴とする。
 第7発明の向流式直接加熱型熱交換器は、第1、第2、第3、第4、第5または第6発明において、前記傘形分散板の頂点近傍が犠牲材で覆われていることを特徴とする。
 第8発明の向流式直接加熱型熱交換器は、第1、第2、第3、第4、第5、第6または第7発明において、前記整流器は前記供給口に取り外し可能に接続されていることを特徴とする。
 第9発明の向流式直接加熱型熱交換器は、第1、第2、第3、第4、第5、第6、第7または第8発明において、前記整流器の開口部と前記傘形分散板の頂点との距離は、前記整流器の直径の1.1倍以上1.3倍以下であることを特徴とする。
 第10発明の向流式直接加熱型熱交換器は、第1、第2、第3、第4、第5、第6、第7、第8または第9発明において、前記被加熱物流体はスラリーであることを特徴とする。
The countercurrent direct heating heat exchanger according to the first aspect of the present invention includes a container, a supply pipe that is horizontally provided inside the container, supplies a fluid to be heated, and is provided at an end of the supply pipe. A supply port that opens downward; a rectifier that is connected to the supply port; and an umbrella-shaped dispersion plate that has an apex arranged vertically below the rectifier, the rectifier comprising: a cylinder; and An induction plate provided inside, the guide plate is disposed so as to partition the inside of the cylindrical body into an upstream flow channel and a downstream flow channel of the supply pipe, and an upper end thereof is Protruding into the supply pipe.
According to a second aspect of the present invention, in the first aspect, the rectifier includes a plurality of the induction plates.
The counter-current direct heating heat exchanger according to a third aspect of the present invention is the first or second aspect of the present invention, wherein the guide plate has an upper end that is inclined toward the downstream side of the supply pipe with respect to the central axis of the cylindrical body. It is characterized by being inclined.
According to a fourth aspect of the present invention, in the first, second, or third aspect, the rectifier includes a partition member that partitions the interior of the cylindrical body into a plurality of flow paths along a central axis thereof. It is characterized by providing.
According to a fifth aspect of the present invention, in the fourth aspect, the cylindrical body has a slit formed therein, the partition member has an insertion plate, and the insertion plate is inserted into the slit. Are inserted and welded.
A countercurrent direct heating heat exchanger according to a sixth aspect of the present invention is the fourth or fifth aspect, wherein the partition member is disposed on a central axis of the cylindrical body and obstructs the flow of the heated fluid. It is characterized by providing.
A countercurrent direct heating heat exchanger according to a seventh aspect of the present invention is the first, second, third, fourth, fifth or sixth aspect, wherein the top of the umbrella-shaped dispersion plate is covered with a sacrificial material. It is characterized by being.
According to an eighth aspect of the present invention, in the first, second, third, fourth, fifth, sixth, or seventh aspect, the rectifier is detachably connected to the supply port. It is characterized by.
The countercurrent direct heating heat exchanger according to a ninth aspect of the present invention is the first, second, third, fourth, fifth, sixth, seventh or eighth aspect, wherein the rectifier opening and the umbrella shape are provided. The distance from the top of the dispersion plate is 1.1 to 1.3 times the diameter of the rectifier.
The countercurrent direct heating heat exchanger according to a tenth aspect of the invention is the first, second, third, fourth, fifth, sixth, seventh, eighth, or ninth invention, wherein the fluid to be heated is It is a slurry.
 第1発明によれば、誘導板の上端が供給パイプ内に突出しているので、上流側の流路に導入される被加熱物流体の流量を多くできる。これにより、被加熱物流体の流量偏流を抑制できるので、被加熱物流体を傘形分散板の全方向に均等に分散できる。そのため、容器の側壁に接触する被加熱物流体の量が局所的に多くならず、被加熱物流体による容器の摩耗を抑制できる。
 第2発明によれば、整流器に複数の誘導板が備えられているので、細かい区分で被加熱物流体の流量を調整でき、被加熱物流体の流量をより均一にできる。
 第3発明によれば、上端が下流側に傾くように誘導板が傾斜しているので、上流側の流路の流速を速くでき、下流側の流路の流速を遅くできる。これにより、被加熱物流体の流量偏流を抑制できる。
 第4発明によれば、仕切部材により被加熱物流体の方向偏流を抑制できるので、被加熱物流体が傘形分散板の頂点近傍に流下し、傘形分散板の全方向に均等に分散される。そのため、容器の側壁に接触する被加熱物流体の量が局所的に多くならず、被加熱物流体による容器の摩耗を抑制できる。
 第5発明によれば、筒体と仕切部材とが嵌合と溶接とにより強固に接合されているので、被加熱物流体の流れにより生じる抵抗に対抗でき、整流器が破損し難い。
 第6発明によれば、邪魔部材の鉛直下方における被加熱物流体の流速を抑え、傘形分散板の頂点への被加熱物流体の衝突を弱めることができるので、傘形分散板の損傷を低減できる。
 第7発明によれば、犠牲材が被加熱物流体の流下による衝撃を受けるので傘形分散板の摩耗を抑制できる。
 第8発明によれば、整流器が取り外し可能であるので、整流器の交換や補修が容易である。
 第9発明によれば、整流器と傘形分散板との距離が整流器の直径の1.1倍以上であるので、被加熱物流体がスムーズに流れ、被加熱物流体と傘形分散板との擦れが弱くなり、傘形分散板の摩耗を抑制できる。整流器と傘形分散板との距離が整流器の直径の1.3倍以下であるので、整流器から流下する被加熱物流体の流れる方向が加熱媒体の流れにより変わりにくい。
 第10発明によれば、被加熱物流体がスラリーであったとしても、被加熱物流体による容器の摩耗を抑制できる。
According to the first invention, since the upper end of the guide plate protrudes into the supply pipe, the flow rate of the fluid to be heated introduced into the upstream flow path can be increased. Thereby, since the flow rate drift of the to-be-heated fluid can be suppressed, the to-be-heated fluid can be evenly dispersed in all directions of the umbrella-shaped dispersion plate. Therefore, the amount of the heated fluid that contacts the side wall of the container does not increase locally, and wear of the container due to the heated fluid can be suppressed.
According to the second aspect of the invention, since the rectifier is provided with a plurality of induction plates, the flow rate of the heated fluid can be adjusted in fine sections, and the flow rate of the heated fluid can be made more uniform.
According to the third aspect of the invention, since the guide plate is inclined so that the upper end is inclined downstream, the flow rate of the upstream channel can be increased and the flow rate of the downstream channel can be decreased. Thereby, the flow rate drift of the to-be-heated material fluid can be suppressed.
According to the fourth aspect of the invention, the directional flow of the heated fluid can be suppressed by the partition member, so that the heated fluid flows down near the top of the umbrella-shaped dispersion plate and is evenly distributed in all directions of the umbrella-shaped dispersion plate. The Therefore, the amount of the heated fluid that contacts the side wall of the container does not increase locally, and wear of the container due to the heated fluid can be suppressed.
According to the fifth aspect, since the cylindrical body and the partition member are firmly joined by fitting and welding, the resistance generated by the flow of the heated fluid can be counteracted, and the rectifier is hardly damaged.
According to the sixth aspect of the invention, the flow velocity of the heated object fluid in the vertically lower part of the baffle member can be suppressed and the collision of the heated object fluid with the apex of the umbrella-shaped dispersion plate can be weakened. Can be reduced.
According to the seventh invention, since the sacrificial material receives an impact caused by the flow of the fluid to be heated, wear of the umbrella-shaped dispersion plate can be suppressed.
According to the eighth invention, since the rectifier can be removed, the rectifier can be easily replaced or repaired.
According to the ninth invention, since the distance between the rectifier and the umbrella-shaped dispersion plate is 1.1 times or more of the diameter of the rectifier, the heated fluid flows smoothly, and the heated fluid and the umbrella-shaped dispersion plate Rubbing is weakened and wear of the umbrella-shaped dispersion plate can be suppressed. Since the distance between the rectifier and the umbrella-shaped dispersion plate is not more than 1.3 times the diameter of the rectifier, the flowing direction of the fluid to be heated flowing down from the rectifier is hardly changed by the flow of the heating medium.
According to the tenth invention, even if the heated fluid is a slurry, the wear of the container due to the heated fluid can be suppressed.
本発明の第1実施形態に係る向流式直接加熱型熱交換器Aの縦断面図である。It is a longitudinal cross-sectional view of the countercurrent direct heating type heat exchanger A which concerns on 1st Embodiment of this invention. 図1におけるII-II線矢視断面図である。It is the II-II arrow directional cross-sectional view in FIG. 図1におけるIII-III線矢視断面図である。なお、ハッチングは傘形分散板20を示す。FIG. 3 is a cross-sectional view taken along line III-III in FIG. 1. Note that hatching indicates the umbrella-shaped dispersion plate 20. 図1におけるIV-IV線矢視断面図である。なお、ハッチングは環状整流板30を示す。FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 1. Note that hatching indicates the annular rectifying plate 30. 整流器40を設けない場合の供給口12付近の拡大図である。It is an enlarged view of the supply port 12 vicinity when not providing the rectifier 40. FIG. (A)図は整流器40の縦断面図である。(B)図は整流器40の平面図である。FIG. 4A is a longitudinal sectional view of the rectifier 40. FIG. 4B is a plan view of the rectifier 40. 整流器40の斜視分解図である。2 is an exploded perspective view of a rectifier 40. FIG. 整流器40付近の拡大図である。It is an enlarged view of the rectifier 40 vicinity. 本発明の第2実施形態における整流器40の縦断面図である。It is a longitudinal cross-sectional view of the rectifier 40 in 2nd Embodiment of this invention. 本発明の第3実施形態における整流器40の縦断面図である。It is a longitudinal cross-sectional view of the rectifier 40 in 3rd Embodiment of this invention. (A)図は他の実施形態における整流器40の横断面図である。(B)図はさらに他の実施形態における整流器40の横断面図である。(A) The figure is a cross-sectional view of the rectifier 40 in another embodiment. (B) The figure is a cross-sectional view of the rectifier 40 in still another embodiment. (A)図はスラリー濃度分布のシミュレーション結果である。(B)図はスラリー流速分布のシミュレーション結果である。(A) A figure is a simulation result of slurry concentration distribution. (B) The figure is a simulation result of slurry flow velocity distribution. 湿式製錬の全体工程図である。It is a whole process figure of wet smelting.
 つぎに、本発明の実施形態を図面に基づき説明する。
〔第1実施形態〕
 (湿式製錬)
 本発明の第1実施形態に係る向流式直接加熱型熱交換器Aは、高温加圧硫酸浸出法を用いてニッケル酸化鉱石からニッケル・コバルト混合硫化物を得る湿式製錬に用いられる。図13に示すように、前記湿式製錬は、前処理工程(101)と、高温加圧硫酸浸出工程(102)と、固液分離工程(103)と、中和工程(104)と、脱亜鉛工程(105)と、硫化工程(106)と、無害化工程(107)とを備える。
Next, an embodiment of the present invention will be described with reference to the drawings.
[First Embodiment]
(Wet smelting)
The countercurrent direct heating type heat exchanger A according to the first embodiment of the present invention is used for wet smelting to obtain a nickel-cobalt mixed sulfide from nickel oxide ore using a high-temperature pressurized sulfuric acid leaching method. As shown in FIG. 13, the hydrometallurgical process includes a pretreatment step (101), a high-temperature pressurized sulfuric acid leaching step (102), a solid-liquid separation step (103), a neutralization step (104), a desorption step. A zinc process (105), a sulfurization process (106), and a detoxification process (107) are provided.
 原料のニッケル酸化鉱石としては、主としてリモナイト鉱およびサプロライト鉱等のいわゆるラテライト鉱が用いられる。ラテライト鉱のニッケル含有量は通常0.5~3.0質量%である。ニッケルは水酸化物またはケイ苦土(ケイ酸マグネシウム)鉱物としてラテライト鉱に含有される。ラテライト鉱の鉄含有量は10~50質量%である。鉄は主として3価の水酸化物(ゲーサイト、FeOOH)の形態でラテライト鉱に含有されるが、一部の2価の鉄はケイ苦土鉱物としてラテライト鉱に含有される。 As the raw material nickel oxide ore, so-called laterite ores such as limonite ore and saprolite ore are mainly used. Laterite ore usually has a nickel content of 0.5 to 3.0% by mass. Nickel is contained in laterite ore as hydroxide or siliceous clay (magnesium silicate) mineral. Laterite ore has an iron content of 10-50% by mass. Iron is mainly contained in laterite ore in the form of trivalent hydroxide (goethite, FeOOH), but some divalent iron is contained in laterite ore as siliceous clay.
 前処理工程(101)では、ニッケル酸化鉱石を解砕分級して平均粒径を2mm以下とした後、スラリー化して鉱石スラリーを製造する。鉱石スラリーはシックナー等の固液分離装置を用いて余剰の水が除去され、固形分の濃度が所定濃度になるように濃縮される。高温加圧硫酸浸出工程(102)では、前処理工程(101)で得られた鉱石スラリーに硫酸を添加し、温度条件を200~300℃として撹拌することで高温加圧酸浸出し、浸出スラリーを得る。固液分離工程(103)では、高温加圧硫酸浸出工程(102)で得られた浸出スラリーを固液分離して、ニッケルおよびコバルトを含む浸出液(以下、「粗硫酸ニッケル水溶液」という。)と浸出残渣とを得る。 In the pretreatment step (101), the nickel oxide ore is crushed and classified to an average particle size of 2 mm or less, and then slurried to produce an ore slurry. Excess water is removed from the ore slurry using a solid-liquid separator such as thickener, and the ore slurry is concentrated so that the concentration of the solid content becomes a predetermined concentration. In the high-temperature pressurized sulfuric acid leaching step (102), sulfuric acid is added to the ore slurry obtained in the pretreatment step (101), and the high-temperature pressurized acid leaching is performed by stirring at a temperature of 200 to 300 ° C. Get. In the solid-liquid separation step (103), the leaching slurry obtained in the high-temperature pressurized sulfuric acid leaching step (102) is subjected to solid-liquid separation, and a leachate containing nickel and cobalt (hereinafter referred to as “crude nickel sulfate aqueous solution”). A leach residue is obtained.
 中和工程(104)では、固液分離工程(103)で得られた粗硫酸ニッケル水溶液を中和する。脱亜鉛工程(105)では、中和工程(104)で中和した粗硫酸ニッケル水溶液に硫化水素ガスを添加して亜鉛を硫化亜鉛として沈殿除去する。硫化工程(106)では、脱亜鉛工程(105)で得られた脱亜鉛終液に硫化水素ガスを添加してニッケル・コバルト混合硫化物とニッケル貧液とを得る。無害化工程(107)では、固液分離工程(103)で発生した浸出残渣と、硫化工程(106)で発生したニッケル貧液とを無害化する。 In the neutralization step (104), the crude nickel sulfate aqueous solution obtained in the solid-liquid separation step (103) is neutralized. In the zinc removal step (105), hydrogen sulfide gas is added to the crude nickel sulfate aqueous solution neutralized in the neutralization step (104) to precipitate and remove zinc as zinc sulfide. In the sulfidation step (106), hydrogen sulfide gas is added to the final zinc removal solution obtained in the dezincification step (105) to obtain a nickel / cobalt mixed sulfide and a nickel poor solution. In the detoxification step (107), the leaching residue generated in the solid-liquid separation step (103) and the nickel poor solution generated in the sulfidation step (106) are detoxified.
 前処理工程(101)で製造される鉱石スラリーの固形分濃度(スラリー中の固形分(鉱石)の重量比率)は、原料であるニッケル酸化鉱石の性質に大きく左右される。鉱石スラリーの固形分濃度は、特に限定されないが、20~50質量%となるように調製される。鉱石スラリーの濃度が20質量%未満では、浸出の際、所定の滞留時間を得るために大きな設備が必要となり、酸の添加量も残留酸濃度を調整するため増加する。また、得られる浸出液のニッケル濃度が低くなる。一方、鉱石スラリーの固形分濃度が50質量%を超えると、設備の規模を小さくできるものの、鉱石スラリーの粘度が高くなり、搬送管が閉塞したり、搬送に大きなエネルギーを要したりする等、搬送が困難になる。 The solid content concentration of the ore slurry produced in the pretreatment step (101) (the weight ratio of the solid content (ore) in the slurry) greatly depends on the nature of the nickel oxide ore that is the raw material. The solid content concentration of the ore slurry is not particularly limited, but is prepared so as to be 20 to 50% by mass. If the concentration of the ore slurry is less than 20% by mass, a large facility is required to obtain a predetermined residence time during leaching, and the amount of acid added also increases to adjust the residual acid concentration. Moreover, the nickel concentration of the obtained leachate becomes low. On the other hand, if the solid content concentration of the ore slurry exceeds 50% by mass, the scale of the equipment can be reduced, but the viscosity of the ore slurry becomes high, the transport pipe is blocked, or a large amount of energy is required for transport, etc. Transport becomes difficult.
 高温加圧硫酸浸出工程(102)は、さらに2つの小工程(予熱工程および浸出工程)を有している。予熱工程では、前処理工程(101)から搬送された外気温程度の鉱石スラリーを予熱して、浸出工程で用いられるオートクレーブ内の温度に近づける。浸出工程では、予熱工程から搬送された鉱石スラリーをオートクレーブに装入し、鉱石スラリーに硫酸を添加し、かつ高圧空気および高圧水蒸気を吹き込みながら浸出する。 The high-temperature pressurized sulfuric acid leaching step (102) has two further small steps (a preheating step and a leaching step). In the preheating step, the ore slurry having the outside air temperature conveyed from the pretreatment step (101) is preheated to approach the temperature in the autoclave used in the leaching step. In the leaching step, the ore slurry conveyed from the preheating step is charged into an autoclave, sulfuric acid is added to the ore slurry, and leaching is performed while blowing high-pressure air and high-pressure steam.
 本実施形態の向流式直接加熱型熱交換器Aは、前記予熱工程において鉱石スラリーを加熱するのに用いられる。なお、必要に応じて、複数の向流式直接加熱型熱交換器Aを直列に接続し、鉱石スラリーを段階的に加熱することが行われる。 The countercurrent direct heating type heat exchanger A of the present embodiment is used to heat the ore slurry in the preheating step. If necessary, a plurality of counter-current direct heating heat exchangers A are connected in series to heat the ore slurry stepwise.
 鉱石スラリーの水分率を維持するため、向流式直接加熱型熱交換器Aは、加熱媒体として水蒸気を用いる。この水蒸気としては、ボイラー等の一般的な方法によって発生させた水蒸気を用いればよい。また、オートクレーブから浸出スラリーを排出する際には、減圧容器を用いて段階的に減圧する。この減圧容器で発生する水蒸気を回収して、向流式直接加熱型熱交換器Aの加熱媒体として用いてもよい。 In order to maintain the moisture content of the ore slurry, the countercurrent direct heating type heat exchanger A uses water vapor as a heating medium. As the water vapor, water vapor generated by a general method such as a boiler may be used. Further, when discharging the leaching slurry from the autoclave, the pressure is reduced stepwise using a vacuum vessel. The steam generated in the decompression vessel may be recovered and used as a heating medium for the countercurrent direct heating type heat exchanger A.
 (向流式直接加熱型熱交換器A)
 つぎに、本実施形態に係る向流式直接加熱型熱交換器Aを説明する。
 向流式直接加熱型熱交換器Aは、被加熱物流体1と加熱媒体2とを向流させ、被加熱物流体1と加熱媒体2とを直接接触させて熱交換を行う熱交換器である。本実施形態において、被加熱物流体1は前記湿式製錬の前処理工程(101)で得られた鉱石スラリー1であり、加熱媒体2は水蒸気2である。
(Countercurrent direct heating type heat exchanger A)
Next, the countercurrent direct heating type heat exchanger A according to the present embodiment will be described.
The counterflow type direct heating type heat exchanger A is a heat exchanger that performs heat exchange by causing the heated fluid 1 and the heating medium 2 to flow countercurrently and bringing the heated fluid 1 and the heating medium 2 into direct contact with each other. is there. In this embodiment, the heated fluid 1 is the ore slurry 1 obtained in the pretreatment step (101) of the hydrometallurgy, and the heating medium 2 is water vapor 2.
 図1に示すように、向流式直接加熱型熱交換器Aは、略円筒形の容器10を備えている。容器10は、その中心軸が鉛直方向に沿うように縦に配置されている。 As shown in FIG. 1, the countercurrent direct heating heat exchanger A includes a substantially cylindrical container 10. The container 10 is arranged vertically so that its central axis is along the vertical direction.
 容器10の内部には、その上部に供給パイプ11が略水平に設けられている。供給パイプ11の端部には被加熱物流体供給口12が設けられている。被加熱物流体供給口12は略鉛直下方に開口している。被加熱物流体供給口12には整流器40が接続されている。容器10の下部、より詳細には容器10の底には、被加熱物流体排出口13が設けられている。被加熱物流体1である鉱石スラリー1は、供給パイプ11を通じて容器10の内部に供給され、被加熱物流体供給口12を通り、整流器40の開口部(下端)から流下する。その後、鉱石スラリー1は、容器10内を流下し、被加熱物流体排出口13から容器10の外部へ排出される。 In the container 10, a supply pipe 11 is provided substantially horizontally at the top. A heated fluid supply port 12 is provided at the end of the supply pipe 11. The heated object fluid supply port 12 is opened substantially vertically downward. A rectifier 40 is connected to the heated fluid supply port 12. A heated fluid discharge port 13 is provided at the bottom of the container 10, more specifically, at the bottom of the container 10. The ore slurry 1 as the heated fluid 1 is supplied into the container 10 through the supply pipe 11, passes through the heated fluid supply port 12, and flows down from the opening (lower end) of the rectifier 40. Thereafter, the ore slurry 1 flows down in the container 10 and is discharged from the heated object fluid discharge port 13 to the outside of the container 10.
 なお、図1における実線矢印は鉱石スラリー1の流れを示す。また、被加熱物流体供給口12が特許請求の範囲に記載の「供給口」に相当する。以下、被加熱物流体供給口12を単に供給口12と称する。 In addition, the solid line arrow in FIG. 1 shows the flow of the ore slurry 1. The heated fluid supply port 12 corresponds to a “supply port” recited in the claims. Hereinafter, the heated fluid supply port 12 is simply referred to as the supply port 12.
 容器10の下部側壁には加熱媒体供給口14が設けられている。容器10の上部、より詳細には容器10の頂部には、加熱媒体排出口15が設けられている。加熱媒体2である水蒸気2は、加熱媒体供給口14から容器10の内部に供給される。その後、水蒸気2は、容器10内を上昇し、加熱媒体排出口15から容器10の外部へ排出される。なお、図1における破線矢印は水蒸気2の流れを示す。 A heating medium supply port 14 is provided on the lower side wall of the container 10. A heating medium discharge port 15 is provided at the top of the container 10, more specifically at the top of the container 10. The steam 2 that is the heating medium 2 is supplied into the container 10 from the heating medium supply port 14. Thereafter, the water vapor 2 rises in the container 10 and is discharged from the heating medium discharge port 15 to the outside of the container 10. In addition, the broken-line arrow in FIG.
 容器10の内部には、複数の傘形分散板20と、複数の環状整流板30とが設けられている。傘形分散板20と環状整流板30とは、その中心を略一致させ、上下方向に交互に配置されている。これら傘形分散板20および環状整流板30は傾斜面を有する。容器10の内部に供給された鉱石スラリー1は、傘形分散板20および環状整流板30の傾斜面を流下し、その下流縁部から流れ落ちる。これを繰り返しながら、鉱石スラリー1は容器10内を流下する。一方、容器10の内部に供給された水蒸気2は、傘形分散板20と環状整流板30との間をジグザクに通って、容器10内を上昇する。 In the container 10, a plurality of umbrella-shaped dispersion plates 20 and a plurality of annular rectifying plates 30 are provided. The umbrella-shaped dispersion plate 20 and the annular rectifying plate 30 are arranged alternately in the vertical direction with their centers substantially coincided. The umbrella-shaped dispersion plate 20 and the annular rectifying plate 30 have inclined surfaces. The ore slurry 1 supplied to the inside of the container 10 flows down the inclined surfaces of the umbrella-shaped dispersion plate 20 and the annular rectifying plate 30 and flows down from the downstream edge thereof. The ore slurry 1 flows down in the container 10 while repeating this. On the other hand, the water vapor 2 supplied to the inside of the container 10 passes through the zigzag between the umbrella-shaped dispersion plate 20 and the annular rectifying plate 30 and rises in the container 10.
 図2に示すように、供給パイプ11は、平面視において容器10の直径方向に沿って配置されており、容器10の側壁から略中心まで達している。供給パイプ11の端部に供給口12が形成されている。供給口12は平面視において容器10の略中心に配置されている。したがって、整流器40も平面視において容器10の略中心に配置されている。なお、供給パイプ11は、その端部から直線状に延び、容器10の側壁に達する梁11aにより支持されている。 As shown in FIG. 2, the supply pipe 11 is disposed along the diameter direction of the container 10 in a plan view, and reaches from the side wall of the container 10 to the approximate center. A supply port 12 is formed at the end of the supply pipe 11. The supply port 12 is disposed substantially at the center of the container 10 in plan view. Therefore, the rectifier 40 is also arranged at the approximate center of the container 10 in plan view. The supply pipe 11 is supported by a beam 11 a that extends linearly from the end and reaches the side wall of the container 10.
 図1および図3に示すように、傘形分散板20は、傘形(円錐形)の傾斜板である。傘形分散板20は、頂点を上向きとして、頂点(中心)が平面視において容器10の中心と略一致するよう配置されている。傘形分散板20の頂点は整流器40の鉛直下方に配置されている。そのため、鉱石スラリー1は、整流器40から最上段の傘形分散板20の頂点に供給され、傘形分散板20の傾斜面により放射状に分散して、下流縁部21からスカート状に流れ落ちる。ここで、傘形分散板20の下流縁部21とは、円錐において側面と底面とが接する縁である。 1 and 3, the umbrella-shaped dispersion plate 20 is an umbrella-shaped (conical) inclined plate. The umbrella-shaped dispersion plate 20 is arranged so that the apex faces upward and the apex (center) substantially coincides with the center of the container 10 in plan view. The top of the umbrella-shaped dispersion plate 20 is disposed vertically below the rectifier 40. Therefore, the ore slurry 1 is supplied from the rectifier 40 to the apex of the uppermost umbrella-shaped dispersion plate 20, is radially dispersed by the inclined surface of the umbrella-shaped dispersion plate 20, and flows down from the downstream edge 21 in a skirt shape. Here, the downstream edge portion 21 of the umbrella-shaped dispersion plate 20 is an edge where the side surface and the bottom surface are in contact with each other in a cone.
 最上段の傘形分散板20は、その頂点近傍が犠牲材22で覆われている。犠牲材22は硬化肉盛で形成してもよいし、鋼板等の強度を有する素材で形成してもよい。 The uppermost umbrella-shaped dispersion plate 20 is covered with a sacrificial material 22 in the vicinity of the apex thereof. The sacrificial material 22 may be formed by hardening and may be formed by a material having strength such as a steel plate.
 図1および図4に示すように、環状整流板30は、外周縁から内周縁にかけて下り勾配を有する環状の傾斜板である。環状整流板30の外径は容器10の内径と略同一であり、環状整流板30の外周縁が容器10の内壁に接触している。環状整流板30は、その中心(外周および内周の中心)が平面視において容器10の中心と略一致するよう配置されている。傘形分散板20から環状整流板30に流れ落ちた鉱石スラリー1は、環状整流板30の傾斜面により中心に向かって流下し、下流縁部31からスカート状に流れ落ちる。ここで、環状整流板30の下流縁部31とは、内周縁である。 As shown in FIGS. 1 and 4, the annular rectifying plate 30 is an annular inclined plate having a downward gradient from the outer peripheral edge to the inner peripheral edge. The outer diameter of the annular rectifying plate 30 is substantially the same as the inner diameter of the container 10, and the outer peripheral edge of the annular rectifying plate 30 is in contact with the inner wall of the container 10. The annular rectifying plate 30 is disposed so that the center (the center of the outer periphery and the inner periphery) substantially coincides with the center of the container 10 in plan view. The ore slurry 1 that has flowed down from the umbrella-shaped dispersion plate 20 to the annular rectifying plate 30 flows down toward the center by the inclined surface of the annular rectifying plate 30 and then flows down from the downstream edge 31 in a skirt shape. Here, the downstream edge 31 of the annular rectifying plate 30 is an inner peripheral edge.
 (向流式直接加熱型熱交換器Aによる熱交換)
 つぎに、前記向流式直接加熱型熱交換器Aによる熱交換を説明する。
 鉱石スラリー1は整流器40から容器10の内部に供給される。容器10の内部に供給された鉱石スラリー1は、まず、最上段の傘形分散板20の傾斜面を放射状に流下し、下流縁部21からスカート状に流れ落ちる。つぎに、傘形分散板20から環状整流板30に流れ落ちた鉱石スラリー1は、環状整流板30の傾斜面を中心に向かって流下し、下流縁部31からスカート状に流れ落ちる。この鉱石スラリー1は、次の段の傘形分散板20に流れ落ちる。このように、鉱石スラリー1は傘形分散板20および環状整流板30の傾斜面を交互に流下した後、容器10下部の被加熱物流体排出口13から容器10の外部へ排出される。
(Heat exchange by countercurrent direct heating type heat exchanger A)
Next, heat exchange by the countercurrent direct heating type heat exchanger A will be described.
The ore slurry 1 is supplied from the rectifier 40 to the inside of the container 10. The ore slurry 1 supplied to the inside of the container 10 first flows down radially on the inclined surface of the uppermost umbrella-shaped dispersion plate 20 and then flows down from the downstream edge 21 in a skirt shape. Next, the ore slurry 1 that has flowed down from the umbrella-shaped dispersion plate 20 to the annular rectifying plate 30 flows down toward the center of the inclined surface of the annular rectifying plate 30 and then flows down from the downstream edge 31 in a skirt shape. This ore slurry 1 flows down to the umbrella-shaped dispersion plate 20 at the next stage. As described above, the ore slurry 1 flows down the inclined surfaces of the umbrella-shaped dispersion plate 20 and the annular rectifying plate 30 alternately, and then is discharged from the heated fluid discharge port 13 at the lower part of the container 10 to the outside of the container 10.
 一方、水蒸気2は、容器10下部の加熱媒体供給口14から容器10の内部に供給され、傘形分散板20と環状整流板30との間をジグザクに上昇して、容器10上部の加熱媒体排出口15から容器10の外部へ排出される。この間、水蒸気2は、傘形分散板20および環状整流板30の傾斜面を流下する鉱石スラリー1に沿って流れて鉱石スラリー1と直接接触するとともに、傘形分散板20および環状整流板30の下流縁部21、31から流れ落ちる鉱石スラリー1を通過することで鉱石スラリー1と直接接触する。これにより、鉱石スラリー1と水蒸気2の熱交換が行われる。 On the other hand, the water vapor 2 is supplied to the inside of the container 10 from the heating medium supply port 14 at the lower part of the container 10, and rises in a zigzag manner between the umbrella-shaped dispersion plate 20 and the annular rectifying plate 30. It is discharged from the outlet 15 to the outside of the container 10. During this time, the water vapor 2 flows along the ore slurry 1 flowing down the inclined surfaces of the umbrella-shaped dispersion plate 20 and the annular rectifying plate 30 and comes into direct contact with the ore slurry 1. Passing through the ore slurry 1 flowing down from the downstream edges 21, 31 makes direct contact with the ore slurry 1. Thereby, heat exchange between the ore slurry 1 and the water vapor 2 is performed.
 このように、向流式直接加熱型熱交換器Aは、鉱石スラリー1をその上部から流入させその下部から流出させ、同時に水蒸気2をその下部から流入させその上部から流出させながら、鉱石スラリー1と水蒸気2とを直接接触させて熱交換を行う。 Thus, the countercurrent direct heating type heat exchanger A allows the ore slurry 1 to flow in from the upper part and flow out from the lower part, and at the same time, the ore slurry 1 flows in from the lower part and flows out from the upper part. And the water vapor 2 are brought into direct contact to exchange heat.
 ここで、鉱石スラリー1は傘形分散板20により放射状に分散する。これにより、鉱石スラリー1と水蒸気2との接触面積が広くなり、熱交換効率が高くなる。また、水蒸気2は環状整流板30により整流され、傘形分散板20の傾斜面を流下する鉱石スラリー1に沿って流れる。これによっても、鉱石スラリー1と水蒸気2との接触面積が広くなり、熱交換効率が高くなる。 Here, the ore slurry 1 is dispersed radially by the umbrella-shaped dispersion plate 20. Thereby, the contact area of the ore slurry 1 and the water vapor | steam 2 becomes large, and heat exchange efficiency becomes high. Further, the water vapor 2 is rectified by the annular rectifying plate 30 and flows along the ore slurry 1 flowing down the inclined surface of the umbrella-shaped dispersion plate 20. This also increases the contact area between the ore slurry 1 and the water vapor 2 and increases the heat exchange efficiency.
 (整流器40)
 つぎに、本実施形態の特徴部分である整流器40の詳細を説明する。
 図5は、整流器40を設けない場合の供給口12付近の拡大図である。なお、図5における二点鎖線Oは、供給口12の中心を通る鉛直線を示す。
(Rectifier 40)
Next, details of the rectifier 40, which is a characteristic part of the present embodiment, will be described.
FIG. 5 is an enlarged view of the vicinity of the supply port 12 when the rectifier 40 is not provided. Note that a two-dot chain line O in FIG. 5 indicates a vertical line passing through the center of the supply port 12.
 整流器40を設けない場合、鉱石スラリー1は供給パイプ11内を略水平方向に流れた後に、供給口12から流下する。供給口12から流下する鉱石スラリー1には重力が作用するため、その流れる方向は水平よりも下向きとなる。 When the rectifier 40 is not provided, the ore slurry 1 flows down from the supply port 12 after flowing in the supply pipe 11 in a substantially horizontal direction. Since gravity acts on the ore slurry 1 flowing down from the supply port 12, the flowing direction is downward rather than horizontal.
 しかし、鉱石スラリー1には供給パイプ11内を流れた際に生じた水平方向の勢いが残っている。そのため、供給口12から流下する鉱石スラリー1の流れる方向は、鉛直下向きに対して傾く。鉱石スラリー1が傾く方向は供給パイプ11の下流側(図5における左方向)である。本明細書では、このように供給口12から流下する鉱石スラリー1の流れる方向が鉛直下向きに対して傾く現象を「方向偏流」と称する。 However, the ore slurry 1 still retains the horizontal momentum generated when it flows through the supply pipe 11. Therefore, the flow direction of the ore slurry 1 flowing down from the supply port 12 is inclined with respect to the vertically downward direction. The direction in which the ore slurry 1 is inclined is the downstream side of the supply pipe 11 (the left direction in FIG. 5). In this specification, a phenomenon in which the flow direction of the ore slurry 1 flowing down from the supply port 12 in this way is inclined with respect to the vertically downward direction is referred to as “direction drift”.
 また、供給口12から流下する鉱石スラリー1の流速分布は、供給パイプ11の上流側V1(図5における右側)に比べて下流側V2(図5における左側)の方が速い。そのため、鉱石スラリー1の流量を局所的にみれば、供給パイプ11の上流側が少なく、下流側が多い。本明細書では、このように供給口12から流下する鉱石スラリー1の流量分布の偏りを「流量偏流」と称する。また、「方向偏流」と「流量偏流」とを合わせて「偏流」と称する。 Also, the flow velocity distribution of the ore slurry 1 flowing down from the supply port 12 is faster on the downstream side V2 (left side in FIG. 5) than on the upstream side V1 (right side in FIG. 5) of the supply pipe 11. Therefore, if the flow rate of the ore slurry 1 is viewed locally, the upstream side of the supply pipe 11 is small and the downstream side is large. In this specification, the deviation of the flow rate distribution of the ore slurry 1 flowing down from the supply port 12 is referred to as “flow rate deviation”. The “direction drift” and the “flow quantity drift” are collectively referred to as “drift”.
 偏流が生じると、傘形分散板20の傾斜面を流れる鉱石スラリー1のうち、偏流方向(供給パイプ11の下流側)に流れる鉱石スラリー1は、その他の方向に流れる鉱石スラリー1よりも勢いが強くなる。この勢いの強い鉱石スラリー1は傘形分散板20の下流縁部21から流れ落ちた後、容器10の側壁に接触する。そのため、容器10の側壁のうち偏流方向に位置する部分(図1におけるw部分)は、他の部分よりも接触する鉱石スラリー1の量が多くなる。すなわち、容器10の側壁に接触する鉱石スラリー1の量が局所的に多くなる。その結果、容器10の側壁の一部分(w部分)は他の部分に比べて鉱石スラリー1により摩耗しやすくなる。 When the drift occurs, the ore slurry 1 that flows in the drift direction (downstream of the supply pipe 11) out of the ore slurry 1 that flows on the inclined surface of the umbrella-shaped dispersion plate 20 has more momentum than the ore slurry 1 that flows in the other direction. Become stronger. The strong ore slurry 1 flows down from the downstream edge 21 of the umbrella-shaped dispersion plate 20 and then contacts the side wall of the container 10. Therefore, the part (w part in FIG. 1) located in the drift direction among the side walls of the container 10 has a larger amount of the ore slurry 1 in contact than the other parts. That is, the amount of the ore slurry 1 that contacts the side wall of the container 10 locally increases. As a result, a portion (w portion) of the side wall of the container 10 is more easily worn by the ore slurry 1 than the other portions.
 また、偏流が生じると、鉱石スラリー1が傘形分散板20の全方向に均等に分散されず、偏りが生じる。その結果、熱交換効率が低くなる。 Further, when the drift occurs, the ore slurry 1 is not evenly dispersed in all directions of the umbrella-shaped dispersion plate 20, and the bias occurs. As a result, the heat exchange efficiency is lowered.
 さらに、偏流角θ(鉱石スラリー1の流れる方向と鉛直線Oとのなす角)は鉱石スラリー1の流量、スラリー比重、固形分濃度によって変化する。これらのパラメータは向流式直接加熱型熱交換器Aの操業中に変化する。そのため、操業中に偏流角θが変化し、供給口12から流下した鉱石スラリー1が傘形分散板20に衝突する位置が変化する。傘形分散板20は供給口12から流下した鉱石スラリー1が衝突する部分が損傷しやすい。操業中に偏流角θが変化すると、傘形分散板20の広範囲に渡って鉱石スラリー1の流下による衝撃を受ける可能性があり、これに対する傘形分散板20の保護が困難である。 Furthermore, the drift angle θ (the angle formed by the flow direction of the ore slurry 1 and the vertical line O) varies depending on the flow rate of the ore slurry 1, the slurry specific gravity, and the solid content concentration. These parameters vary during the operation of the countercurrent direct heating heat exchanger A. Therefore, the drift angle θ changes during operation, and the position where the ore slurry 1 flowing down from the supply port 12 collides with the umbrella-shaped dispersion plate 20 changes. The portion where the ore slurry 1 flowing down from the supply port 12 collides with the umbrella-shaped dispersion plate 20 is easily damaged. If the drift angle θ changes during operation, the umbrella-shaped dispersion plate 20 may be affected by the flow of the ore slurry 1 over a wide range, and it is difficult to protect the umbrella-shaped dispersion plate 20 against this.
 上記の問題を解決するため、供給口12に整流器40が取り付けられている。この整流器40は鉱石スラリー1の流量分布を均一にするとともに、流れる方向を鉛直下向きに整える機能を有する。 In order to solve the above problem, a rectifier 40 is attached to the supply port 12. The rectifier 40 has a function of making the flow distribution of the ore slurry 1 uniform and adjusting the flowing direction vertically downward.
 図6(A)、(B)および図7に示すように、整流器40は、筒体41と、仕切部材42と、誘導板45とからなる。 6A, 6B, and 7, the rectifier 40 includes a cylindrical body 41, a partition member 42, and a guide plate 45.
 筒体41は、円筒形の部材であり、上端部にフランジ41fを有する。フランジ41fと供給口12のフランジ12fとをボルト、ナット等で連結することで、整流器40が供給口12に取り付けられる。 The cylinder 41 is a cylindrical member and has a flange 41f at the upper end. The rectifier 40 is attached to the supply port 12 by connecting the flange 41f and the flange 12f of the supply port 12 with bolts, nuts, or the like.
 筒体41には、下端から上下中央付近に至る4つのスリット41sが形成されている。これらスリット41sは筒体41の周方向に等間隔(90°間隔)に形成されている。 The cylindrical body 41 is formed with four slits 41s extending from the lower end to the vicinity of the center of the top and bottom. These slits 41 s are formed at equal intervals (90 ° intervals) in the circumferential direction of the cylindrical body 41.
 仕切部材42は、小径のパイプ42aと、パイプ42aの外周に接合された8つの仕切板42bとからなる。これら仕切板42bはパイプ42aの周方向に等間隔(45°間隔)に配置されている。平面視において、仕切部材42はパイプ42aを中心として、8つの仕切板42bが放射状に配置されている。パイプ42aは、その中心軸が筒体41の中心軸Oと一致するように配置されている。仕切板42bは平板であり、中心軸Oに沿って配置されている。 The partition member 42 includes a small-diameter pipe 42a and eight partition plates 42b joined to the outer periphery of the pipe 42a. These partition plates 42b are arranged at equal intervals (45 ° intervals) in the circumferential direction of the pipe 42a. In plan view, the partition member 42 has eight partition plates 42b radially arranged around the pipe 42a. The pipe 42 a is arranged so that the central axis thereof coincides with the central axis O of the cylindrical body 41. The partition plate 42b is a flat plate and is disposed along the central axis O.
 図6(B)に示すように、筒体41の下部は仕切部材42により8つの流路44に仕切られている。パイプ42aも仕切板42bも中心軸Oに沿って配置されているため、各流路44は中心軸Oに沿っている。 As shown in FIG. 6B, the lower portion of the cylinder 41 is partitioned into eight flow paths 44 by a partition member 42. Since both the pipe 42 a and the partition plate 42 b are arranged along the central axis O, each flow path 44 is along the central axis O.
 仕切部材42は邪魔部材43を有している。邪魔部材43は円板状の部材であり、その直径がパイプ42aの外径と略同一である。邪魔部材43は、筒体41の中心軸O上に配置され、パイプ42aの上端に接合されている。そして、邪魔部材43によりパイプ42aの上端が封止されている。邪魔部材43が配置された部分は、鉱石スラリー1の流れが妨げられる。そのため、筒体41の中心軸O近傍は鉱石スラリー1の流れが妨げられる。 The partition member 42 has a baffle member 43. The baffle member 43 is a disk-shaped member, and its diameter is substantially the same as the outer diameter of the pipe 42a. The baffle member 43 is disposed on the central axis O of the cylindrical body 41 and joined to the upper end of the pipe 42a. The upper end of the pipe 42 a is sealed by the baffle member 43. In the portion where the baffle member 43 is disposed, the flow of the ore slurry 1 is hindered. Therefore, the flow of the ore slurry 1 is hindered in the vicinity of the central axis O of the cylinder 41.
 8つの仕切板42bのうち4つは、その外縁部が外側に突出している。この突出部を挿入板42cと称する。挿入板42cを有する仕切板42bと、それを有さない仕切板42bとは交互に配置されている。すなわち、挿入板42cはパイプ42aの周方向に90°間隔で配置されている。 4 out of the eight partition plates 42b have outer edges protruding outward. This protrusion is referred to as an insertion plate 42c. The partition plates 42b having the insertion plates 42c and the partition plates 42b having no insert plates 42c are alternately arranged. That is, the insertion plates 42c are arranged at 90 ° intervals in the circumferential direction of the pipe 42a.
 図6(A)に示すように、筒体41の上部には誘導板45が設けられている。誘導板45は筒体41の内部中央に立設しており、供給パイプ11の軸方向に対して垂直に配置されている。そのため、筒体41の上部は誘導板45により供給パイプ11の上流側の流路46aと下流側の流路46bとに仕切られている。また、誘導板45は筒体41の上端よりも上方に延長されており、その上端が供給パイプ11内に突出している。そのため、供給パイプ11の供給口12近傍も、誘導板45により供給パイプ11の上流側の流路と下流側の流路とに仕切られている。 As shown in FIG. 6A, a guide plate 45 is provided on the upper portion of the cylindrical body 41. The guide plate 45 is erected at the inner center of the cylindrical body 41 and is disposed perpendicular to the axial direction of the supply pipe 11. Therefore, the upper portion of the cylindrical body 41 is partitioned by the guide plate 45 into an upstream channel 46 a and a downstream channel 46 b of the supply pipe 11. The guide plate 45 extends upward from the upper end of the cylindrical body 41, and the upper end protrudes into the supply pipe 11. Therefore, the vicinity of the supply port 12 of the supply pipe 11 is also partitioned by the guide plate 45 into an upstream flow path and a downstream flow path of the supply pipe 11.
 図7に示すように、誘導板45を下方に延長した位置には、8つの仕切板42bのうち2つがあり、これら2つの仕切板42bと誘導板45とは一体に形成されている。このように、仕切部材42と誘導板45とを一体形成できる。 As shown in FIG. 7, at the position where the guide plate 45 is extended downward, there are two of the eight partition plates 42b, and these two partition plates 42b and the guide plate 45 are integrally formed. Thus, the partition member 42 and the guide plate 45 can be integrally formed.
 整流器40は以下の手順で組み立てられる。まず、筒体41の下側開口部から誘導板45および仕切部材42を挿入する。この際、筒体41のスリット41sに仕切部材42の挿入板42cを挿入する。そして、スリット41sと挿入板42cとを溶接する。 The rectifier 40 is assembled in the following procedure. First, the guide plate 45 and the partition member 42 are inserted from the lower opening of the cylinder 41. At this time, the insertion plate 42c of the partition member 42 is inserted into the slit 41s of the cylindrical body 41. Then, the slit 41s and the insertion plate 42c are welded.
 このように整流器40を組み立てることにより、筒体41と仕切部材42とが嵌合と溶接とにより強固に接合される。整流器40内に鉱石スラリー1が通ると、鉱石スラリー1と誘導板45および仕切部材42との間に働く抵抗(摩擦や衝撃)により、仕切部材42を下向きに押す力が生じる。しかし、筒体41と仕切部材42とが強固に接合されているので、鉱石スラリー1の流れにより生じる下向きの力に対抗でき、整流器40が破損し難い。 By assembling the rectifier 40 in this way, the cylinder body 41 and the partition member 42 are firmly joined by fitting and welding. When the ore slurry 1 passes through the rectifier 40, a force (friction or impact) acting between the ore slurry 1, the guide plate 45, and the partition member 42 generates a force that pushes the partition member 42 downward. However, since the cylinder 41 and the partition member 42 are firmly joined, it is possible to counter the downward force generated by the flow of the ore slurry 1 and the rectifier 40 is hardly damaged.
 なお、整流器40の組み立て方法は上記の方法に限定されない。スリット41sに挿入板42cを挿入する構成としなくてもよい。単に筒体41の内面と仕切板42bの外縁部とを溶接してもよい。筒体41と仕切部材42とをネジ止めなど他の方法で固定してもよい。 In addition, the assembly method of the rectifier 40 is not limited to said method. The insertion plate 42c may not be inserted into the slit 41s. You may weld only the inner surface of the cylinder 41, and the outer edge part of the partition plate 42b. You may fix the cylinder 41 and the partition member 42 by other methods, such as screwing.
 つぎに、図8に基づき、整流器40の機能を説明する。
 供給パイプ11内を流れてきた鉱石スラリー1は供給口12から整流器40に導入される。この際、鉱石スラリー1は誘導板45により誘導され、上流側の流路46aと下流側の流路46bとに分けて導入される。
Next, the function of the rectifier 40 will be described with reference to FIG.
The ore slurry 1 flowing in the supply pipe 11 is introduced into the rectifier 40 from the supply port 12. At this time, the ore slurry 1 is guided by the guide plate 45 and is introduced into the upstream flow path 46a and the downstream flow path 46b.
 前述のごとく、整流器40を設けない場合、鉱石スラリー1の流量を局所的にみれば、供給パイプ11の上流側が少なく、下流側が多くなる。しかし、本実施形態によれば、誘導板45の上端が供給パイプ11内に突出しているので、上流側の流路46aにより多くの鉱石スラリー1を導入でき、流量を多くできる。その結果、上流側の流路46aと下流側の流路46bとで鉱石スラリー1の流量を均一にでき、鉱石スラリー1の流量偏流を抑制できる。 As described above, when the rectifier 40 is not provided, if the flow rate of the ore slurry 1 is viewed locally, the upstream side of the supply pipe 11 is small and the downstream side is large. However, according to this embodiment, since the upper end of the guide plate 45 protrudes into the supply pipe 11, more ore slurry 1 can be introduced into the upstream flow path 46a, and the flow rate can be increased. As a result, the flow rate of the ore slurry 1 can be made uniform between the upstream flow channel 46a and the downstream flow channel 46b, and the flow rate drift of the ore slurry 1 can be suppressed.
 なお、誘導板45の突出量hを大きくするほど、上流側の流路46aの流量を多くできる。したがって、上流側の流路46aと下流側の流路46bとで流量が均一になるように、誘導板45の突出量hが調整される。 In addition, the flow rate of the upstream flow path 46a can be increased as the protruding amount h of the guide plate 45 is increased. Therefore, the protrusion amount h of the guide plate 45 is adjusted so that the flow rate is uniform between the upstream flow path 46a and the downstream flow path 46b.
 整流器40上部の流路46a、46bを通過した鉱石スラリー1は、整流器40下部の仕切部材42により形成された8つの流路44に分かれて流入する。鉱石スラリー1が整流器40の中心軸Oに沿った複数の流路44に分かれて流れるので、鉱石スラリー1の流れる方向を整流器40の中心軸Oに沿う方向に整えることができる。 The ore slurry 1 that has passed through the flow paths 46 a and 46 b above the rectifier 40 flows into eight flow paths 44 formed by the partition member 42 below the rectifier 40. Since the ore slurry 1 flows in a plurality of flow paths 44 along the central axis O of the rectifier 40, the flow direction of the ore slurry 1 can be adjusted to the direction along the central axis O of the rectifier 40.
 整流器40はその中心軸Oが供給口12の中心を通る鉛直線と略一致するように配置されている。供給口12は容器10の略中心に配置されているため、整流器40の中心軸Oも容器10の中心軸と略一致する。したがって、整流器40を通った鉱石スラリー1は容器10の中心軸に沿って鉛直下向きに流れる。供給パイプ11内の鉱石スラリー1の流れる方向が水平方向であったとしても、仕切部材42により鉱石スラリー1の流れる方向を鉛直下向きに整えることができる。このように、仕切部材42により鉱石スラリー1の方向偏流を抑制できる。 The rectifier 40 is arranged so that its central axis O substantially coincides with a vertical line passing through the center of the supply port 12. Since the supply port 12 is disposed substantially at the center of the container 10, the central axis O of the rectifier 40 also substantially coincides with the central axis of the container 10. Therefore, the ore slurry 1 that has passed through the rectifier 40 flows vertically downward along the central axis of the container 10. Even if the flow direction of the ore slurry 1 in the supply pipe 11 is the horizontal direction, the flow direction of the ore slurry 1 can be adjusted vertically downward by the partition member 42. Thus, the directional drift of the ore slurry 1 can be suppressed by the partition member 42.
 以上のように、鉱石スラリー1の偏流を抑制できるので、鉱石スラリー1は最上段の傘形分散板20の頂点近傍に流下し、傘形分散板20の全方向に均等に分散される。傘形分散板20の傾斜面を流れる鉱石スラリー1の勢いが局所的に強くなることがない。容器10の側壁に接触する鉱石スラリー1の量が局所的に多くならず、鉱石スラリー1による容器10の摩耗を抑制できる。 As described above, since the drift of the ore slurry 1 can be suppressed, the ore slurry 1 flows down near the top of the uppermost umbrella-shaped dispersion plate 20 and is uniformly dispersed in all directions of the umbrella-shaped dispersion plate 20. The momentum of the ore slurry 1 flowing on the inclined surface of the umbrella-shaped dispersion plate 20 is not locally increased. The amount of the ore slurry 1 that contacts the side wall of the container 10 does not increase locally, and wear of the container 10 due to the ore slurry 1 can be suppressed.
 また、鉱石スラリー1が傘形分散板20の全方向に均等に分散されるので、向流式直接加熱型熱交換器Aの熱交換効率が高くなる。 Further, since the ore slurry 1 is uniformly dispersed in all directions of the umbrella-shaped dispersion plate 20, the heat exchange efficiency of the countercurrent direct heating type heat exchanger A is increased.
 鉱石スラリー1の流量、スラリー比重、固形分濃度が変化しても、鉱石スラリー1の流れる方向を鉛直下向きに維持できる。そのため、鉱石スラリー1は常に傘形分散板20の頂点近傍に衝突し、その位置が変化することがない。最上段の傘形分散板20の頂点近傍を犠牲材22で覆うことにより、犠牲材22が鉱石スラリー1の流下による衝撃を受けるので傘形分散板20の摩耗を抑制できる。その結果、傘形分散板20の寿命を延ばすことができる。 Even if the flow rate, slurry specific gravity, and solid content concentration of the ore slurry 1 are changed, the direction in which the ore slurry 1 flows can be maintained vertically downward. Therefore, the ore slurry 1 always collides with the vicinity of the top of the umbrella-shaped dispersion plate 20, and the position thereof does not change. By covering the vicinity of the top of the uppermost umbrella-shaped dispersion plate 20 with the sacrificial material 22, the sacrificial material 22 receives an impact caused by the flow of the ore slurry 1, so that the wear of the umbrella-shaped dispersion plate 20 can be suppressed. As a result, the life of the umbrella-shaped dispersion plate 20 can be extended.
 整流器40の中心軸O上には邪魔部材43が設けられている。邪魔部材43の鉛直下方には傘形分散板20の頂点が配置されている。邪魔部材43により、その鉛直下方における鉱石スラリー1の流量(流速)を抑えることができる。その結果、最上段の傘形分散板20の頂点への鉱石スラリー1の衝突を弱めることができるので、傘形分散板20の損傷を低減できる。 A baffle member 43 is provided on the central axis O of the rectifier 40. An apex of the umbrella-shaped dispersion plate 20 is disposed vertically below the baffle member 43. The baffle member 43 can suppress the flow rate (flow velocity) of the ore slurry 1 in the vertically downward direction. As a result, the collision of the ore slurry 1 with the apex of the uppermost umbrella-shaped dispersion plate 20 can be weakened, so that damage to the umbrella-shaped dispersion plate 20 can be reduced.
 整流器40は鉱石スラリー1が通るので、摩耗しやすい。整流器40を長期間使用した後は、交換や補修の必要がある。前述のごとく、整流器40はフランジ41fで供給口12に取り付けられているため、取り外し可能である。整流器40が取り外し可能であるので、整流器40が摩耗しても、整流器40の交換や補修が容易である。 Since the ore slurry 1 passes through the rectifier 40, it is easily worn. After the rectifier 40 has been used for a long time, it needs to be replaced or repaired. As described above, since the rectifier 40 is attached to the supply port 12 by the flange 41f, it can be removed. Since the rectifier 40 can be removed, the rectifier 40 can be easily replaced or repaired even if the rectifier 40 is worn.
 ところで、整流器40の下端開口部と最上段の傘形分散板20の頂点との距離Hは、整流器40の直径Dの1.1倍以上1.3倍以下であることが好ましい。 Incidentally, the distance H between the lower end opening of the rectifier 40 and the apex of the uppermost umbrella-shaped dispersion plate 20 is preferably 1.1 to 1.3 times the diameter D of the rectifier 40.
 距離Hが直径Dの1.1倍未満であると、整流器40の出口で鉱石スラリー1が滞留して、鉱石スラリー1が傘形分散板20と激しく擦れる。その結果、傘形分散板20が摩耗しやすくなる。また、滞留した鉱石スラリー1により整流器40内の鉱石スラリー1が減速し、整流器40が鉱石スラリー1により閉塞する恐れがある。距離Hが直径Dの1.1倍以上であれば、鉱石スラリー1がスムーズに流れ、鉱石スラリー1と傘形分散板20との擦れが弱くなり、傘形分散板20の摩耗を抑制できる。 If the distance H is less than 1.1 times the diameter D, the ore slurry 1 stays at the outlet of the rectifier 40 and the ore slurry 1 rubs against the umbrella-shaped dispersion plate 20 violently. As a result, the umbrella-shaped dispersion plate 20 is easily worn. Further, the ore slurry 1 in the rectifier 40 is decelerated by the retained ore slurry 1, and the rectifier 40 may be blocked by the ore slurry 1. If the distance H is 1.1 times the diameter D or more, the ore slurry 1 flows smoothly, the friction between the ore slurry 1 and the umbrella-shaped dispersion plate 20 becomes weak, and wear of the umbrella-shaped dispersion plate 20 can be suppressed.
 距離Hが直径Dの1.3倍を超えると、整流器40から流下した鉱石スラリー1が水蒸気2の流れにより乱れ、傘形分散板20における均一な分散を維持できない恐れがある。また、整流器40の整流能力を超える大量の鉱石スラリー1を供給した場合には、鉱石スラリー1が、傘形分散板20に当たることなく容器10の側壁に直撃することも考えられる。距離Hが直径Dの1.3倍以下であれば、整流器40から流下する鉱石スラリー1の流れる方向が水蒸気2の流れにより変わりにくい。また、鉱石スラリー1が容器10の側壁に直撃することもない。 If the distance H exceeds 1.3 times the diameter D, the ore slurry 1 flowing down from the rectifier 40 may be disturbed by the flow of the water vapor 2, and the uniform dispersion in the umbrella-shaped dispersion plate 20 may not be maintained. In addition, when a large amount of ore slurry 1 exceeding the rectifying capacity of the rectifier 40 is supplied, the ore slurry 1 may hit the side wall of the container 10 without hitting the umbrella-shaped dispersion plate 20. If the distance H is 1.3 times or less of the diameter D, the flow direction of the ore slurry 1 flowing down from the rectifier 40 is unlikely to be changed by the flow of the water vapor 2. Further, the ore slurry 1 does not hit the side wall of the container 10 directly.
 整流器40の開口面は、中心軸Oに対して直交している。整流器40内の圧力が外部の圧力よりも高い場合でも、鉱石スラリー1が外向きに飛び散ることを抑制できる。 The opening surface of the rectifier 40 is orthogonal to the central axis O. Even when the pressure in the rectifier 40 is higher than the external pressure, the ore slurry 1 can be prevented from splashing outward.
〔第2実施形態〕
 つぎに、図9に基づき、第2実施形態における整流器40を説明する。
 本実施形態の整流器40は、第1実施形態の整流器40において、誘導板45が傾斜して設けられたものである。より詳細には、誘導板45は、その上端が供給パイプ11の下流側に傾くように、筒体41の中心軸Oに対して傾斜している。その余の構成は第1実施形態と同様であるので、同一部材に同一符号を付して説明を省略する。
[Second Embodiment]
Next, the rectifier 40 in the second embodiment will be described with reference to FIG.
The rectifier 40 of the present embodiment is obtained by inclining the guide plate 45 in the rectifier 40 of the first embodiment. More specifically, the guide plate 45 is inclined with respect to the central axis O of the cylindrical body 41 so that the upper end of the guide plate 45 is inclined downstream of the supply pipe 11. Since the rest of the configuration is the same as in the first embodiment, the same reference numerals are assigned to the same members, and descriptions thereof are omitted.
 このように誘導板45が傾斜しているので、上流側の流路46aの入口面積が広くなり、より多くの鉱石スラリー1を導入でき、流量を多くできる。これに対して、下流側の流路46bの入口面積が狭くなり、流量を少なくできる。また、上流側の流路46aは入口面積に対して出口面積が狭い。そのため、上流側の流路46aを通過した鉱石スラリー1は流速が速くなる。これに対して、下流側の流路46bは入口面積に対して出口面積が広い。そのため、下流側の流路46bを通過した鉱石スラリー1は流速が遅くなる。したがって、鉱石スラリー1の流量偏流を抑制できる。 Since the guide plate 45 is inclined in this way, the inlet area of the upstream flow path 46a is widened, more ore slurry 1 can be introduced, and the flow rate can be increased. On the other hand, the inlet area of the downstream flow path 46b becomes narrow, and the flow rate can be reduced. The upstream flow path 46a has a smaller outlet area than the inlet area. Therefore, the ore slurry 1 that has passed through the upstream flow path 46a has a higher flow rate. In contrast, the downstream flow path 46b has a larger outlet area than the inlet area. Therefore, the ore slurry 1 that has passed through the downstream flow path 46b has a low flow rate. Therefore, the flow rate drift of the ore slurry 1 can be suppressed.
 なお、中心軸Oに対する誘導板45の傾斜角度を大きくするほど、上流側の流路46aの流量を多くできる。したがって、上流側の流路46aと下流側の流路46bとで流量が均一になるように、誘導板45の傾斜角度が調整される。 In addition, the flow rate of the upstream flow path 46a can be increased as the inclination angle of the guide plate 45 with respect to the central axis O is increased. Therefore, the inclination angle of the guide plate 45 is adjusted so that the flow rate is uniform between the upstream flow path 46a and the downstream flow path 46b.
〔第3実施形態〕
 つぎに、図10に基づき、第3実施形態における整流器40を説明する。
 本実施形態の整流器40は、第1実施形態の整流器40において、複数の誘導板45が設けられたものである。図10に示す例は、誘導板45が3つ設けられているが、誘導板45の数は特に限定されず、2つでも4つ以上でもよい。その余の構成は第1実施形態と同様であるので、同一部材に同一符号を付して説明を省略する。
[Third Embodiment]
Next, the rectifier 40 in the third embodiment will be described with reference to FIG.
The rectifier 40 of this embodiment is a rectifier 40 of the first embodiment, in which a plurality of induction plates 45 are provided. In the example shown in FIG. 10, three guide plates 45 are provided, but the number of guide plates 45 is not particularly limited, and may be two or four or more. Since the rest of the configuration is the same as in the first embodiment, the same reference numerals are assigned to the same members, and descriptions thereof are omitted.
 整流器40に複数の誘導板45が備えられているので、細かい区分で鉱石スラリー1の流量を調整でき、鉱石スラリー1の流量をより均一にできる。 Since the rectifier 40 is provided with a plurality of guide plates 45, the flow rate of the ore slurry 1 can be adjusted in fine sections, and the flow rate of the ore slurry 1 can be made more uniform.
 また、供給パイプ11の上流側に配置された誘導板45よりも下流側に配置された誘導板45の方が、突出量を大きくすることが好ましい。このようにすれば、下流側の流路に必要な量の鉱石スラリー1を導入することができる。 Further, it is preferable that the guide plate 45 disposed on the downstream side of the guide plate 45 disposed on the upstream side of the supply pipe 11 has a larger protruding amount. In this way, the required amount of ore slurry 1 can be introduced into the downstream flow path.
 誘導板45は筒体41の中心軸Oに沿うように立設されてもよい。複数の誘導板45のうち、一部または全部を傾斜して設けてもよい。この場合、誘導板45の配置位置によって傾斜角度を変えてもよい。 The guide plate 45 may be erected along the central axis O of the cylinder 41. Some or all of the plurality of guide plates 45 may be inclined. In this case, the inclination angle may be changed depending on the arrangement position of the guide plate 45.
〔その他の実施形態〕
(整流器40)
 第1実施形態の整流器40は、仕切部材42と誘導板45とが一体化した構成であるが、これらを別部材としてもよい。誘導板45のみを設け、仕切部材42を設けなくてもよい。
[Other Embodiments]
(Rectifier 40)
Although the rectifier 40 of 1st Embodiment is the structure which the partition member 42 and the induction | guidance | derivation board 45 integrated, these are good also as another member. Only the guide plate 45 may be provided, and the partition member 42 may not be provided.
 図11(A)に示すように、複数の小径パイプ42dを束ねて仕切部材42を形成してもよい。小径パイプ42dの断面形状は円形に限定されず、多角形でもよい。 As shown in FIG. 11A, the partition member 42 may be formed by bundling a plurality of small-diameter pipes 42d. The cross-sectional shape of the small diameter pipe 42d is not limited to a circle, and may be a polygon.
 図11(B)に示すように、複数の仕切板42eを放射状に組み合わせて仕切部材42を形成してもよい。筒体41内の流路44の数は8つに限定されず、複数であればよい。仕切板42eを十字に組み合わせて形成した仕切部材42を用いれば、流路44の数が4つとなる。 As shown in FIG. 11 (B), the partition member 42 may be formed by radially combining a plurality of partition plates 42e. The number of the flow paths 44 in the cylinder 41 is not limited to eight, and may be plural. If the partition member 42 formed by combining the partition plates 42e in a cross shape is used, the number of the flow paths 44 is four.
 隣り合う流路44は仕切部材42により完全に仕切ればよい。隣り合う流路44が連通するように仕切部材42に連通部分を設けてもよい。 Adjacent flow paths 44 may be completely partitioned by the partition member 42. You may provide a communication part in the partition member 42 so that the adjacent flow path 44 may connect.
 邪魔部材43は筒体41の中心軸O上に配置されていればよい。円板状の邪魔部材43を用いる場合、邪魔部材43は仕切部材42の上部に限られず、下部に配置してもよいし、上下中央に配置してもよい。 The baffle member 43 may be disposed on the central axis O of the cylinder 41. When the disc-shaped baffle member 43 is used, the baffle member 43 is not limited to the upper part of the partition member 42, and may be disposed at the lower part or at the center in the vertical direction.
 邪魔部材43の形状は円板状に限定されず、種々の形状を採用できる。邪魔部材43を円柱形としてもよいし円錐形としてもよい。例えば、円錐形の邪魔部材43を、頂点を上向きにして仕切部材42に組み込む。このようにすれば、鉱石スラリー1が邪魔部材43の傾斜面に沿って流れる。そのため、鉱石スラリー1が邪魔部材43に衝突して散乱することを抑制できる。 The shape of the baffle member 43 is not limited to a disk shape, and various shapes can be adopted. The baffle member 43 may be cylindrical or conical. For example, the conical baffle member 43 is incorporated into the partition member 42 with the apex facing upward. In this way, the ore slurry 1 flows along the inclined surface of the baffle member 43. Therefore, it can suppress that the ore slurry 1 collides with the baffle member 43, and is scattered.
 (被加熱物流体1)
 被加熱物流体1は、流動性を有する被加熱物であればよく、特に限定されない。例えば、固体成分を含有するスラリー状の流動性液体が挙げられる。スラリー状の流動性液体としては、鉱石を含有するスラリー(鉱石スラリー)が挙げられる。鉱石スラリーは、例えば湿式製錬の前処理工程(101)で得られるニッケル酸化鉱石を含有するスラリーである。被加熱物流体1がスラリーであったとしても、被加熱物流体1による容器10の摩耗を抑制できる。
(Heating object fluid 1)
The heated object fluid 1 is not particularly limited as long as it is a heated object having fluidity. For example, the slurry-like fluid liquid containing a solid component is mentioned. Examples of the slurry-like fluid liquid include a slurry containing ore (ore slurry). The ore slurry is a slurry containing nickel oxide ore obtained in, for example, a pretreatment step (101) of hydrometallurgy. Even if the heated fluid 1 is a slurry, the wear of the container 10 due to the heated fluid 1 can be suppressed.
 (加熱媒体2)
 加熱媒体2は、被加熱物流体1に熱を供給する媒体であればよく、特に限定されない。加熱媒体2としては、被加熱物流体1より高温の水蒸気などの気体が挙げられる。
(Heating medium 2)
The heating medium 2 is not particularly limited as long as it is a medium that supplies heat to the fluid 1 to be heated. Examples of the heating medium 2 include a gas such as water vapor having a temperature higher than that of the heated fluid 1.
(シミュレーション)
 供給パイプ11、整流器40、最上段の傘形分散板20をコンピュータ上で再現し、スラリーの挙動をシミュレーションした。整流器40の形状は図6に示すとおりとした。図12(A)にスラリーの濃度分布を示す。図12(B)にスラリーの流速分布を示す。
(simulation)
The supply pipe 11, the rectifier 40, and the uppermost umbrella-shaped dispersion plate 20 were reproduced on a computer, and the behavior of the slurry was simulated. The shape of the rectifier 40 was as shown in FIG. FIG. 12A shows the concentration distribution of the slurry. FIG. 12B shows the flow rate distribution of the slurry.
 図12(A)から分かるように、スラリーの濃度は均一であり、傘形分散板20の全方向に均等に分散されている。図12(B)から分かるように、整流器40から流下するスラリーの流速はほぼ均一である。 As can be seen from FIG. 12A, the concentration of the slurry is uniform and is uniformly dispersed in all directions of the umbrella-shaped dispersion plate 20. As can be seen from FIG. 12B, the flow rate of the slurry flowing down from the rectifier 40 is substantially uniform.
(実施例1)
 前記湿式製錬の予熱工程において、向流式直接加熱型熱交換器を用いて鉱石スラリーを加熱した。向流式直接加熱型熱交換器の基本的構成は図1に示す向流式直接加熱型熱交換器Aと同様である。
Example 1
In the preheating process of the hydrometallurgy, the ore slurry was heated using a countercurrent direct heating type heat exchanger. The basic configuration of the countercurrent direct heating heat exchanger is the same as that of the countercurrent direct heating heat exchanger A shown in FIG.
 向流式直接加熱型熱交換器の容器10の側壁は、内側が9mm厚のチタン、外側が23.5mm厚のカーボンスチールであり、全体の厚みが32.5mmである。 The side wall of the container 10 of the counter-current direct heating type heat exchanger is 9 mm thick titanium on the inside and 23.5 mm thick carbon steel on the outside, and the total thickness is 32.5 mm.
 供給口12には図6に示す整流器40を取り付けた。向流式直接加熱型熱交換器に鉱石スラリー1を供給して運転を開始した。 The rectifier 40 shown in FIG. The ore slurry 1 was supplied to the countercurrent direct heating type heat exchanger and the operation was started.
 運転開始1年後に向流式直接加熱型熱交換器の内部の状態を確認したところ、容器10の側壁に減肉はみられなかった。運転開始2年後に向流式直接加熱型熱交換器の内部の状態を確認したところ、容器10の側壁に減肉はみられなかった。 When the internal state of the countercurrent direct heating heat exchanger was confirmed one year after the start of operation, no thinning was observed on the side wall of the container 10. When the internal state of the countercurrent direct heating type heat exchanger was confirmed two years after the start of operation, no thinning was observed on the side wall of the container 10.
(比較例1)
 実施例1において、整流器40を短管に代えた。短管は整流器40の筒体41と同程度の寸法を有する。その余の条件は実施例1と同一である。
(Comparative Example 1)
In Example 1, the rectifier 40 was replaced with a short tube. The short pipe has the same size as the cylinder 41 of the rectifier 40. The other conditions are the same as in the first embodiment.
 運転開始1年後に向流式直接加熱型熱交換器の内部の状態を確認したところ、容器10の側壁に減肉がみられた。運転開始2年後に向流式直接加熱型熱交換器の内部の状態を確認したところ、容器10の側壁の減肉が進行し、ピンホールが発生した。 When the internal state of the countercurrent direct heating type heat exchanger was confirmed one year after the start of operation, thinning was observed on the side wall of the container 10. Two years after the start of operation, the internal state of the countercurrent direct heating type heat exchanger was confirmed. As a result, the side wall of the container 10 was thinned and a pinhole was generated.
 以上のより、実施例1では容器10の側壁の摩耗を抑制できることが確認された。これは、整流器40を設けたことにより、鉱石スラリー1が傘形分散板20の全方向に均等に分散されるようになったためと考えられる。 From the above, it was confirmed that the wear of the side wall of the container 10 can be suppressed in Example 1. This is probably because the ore slurry 1 is evenly dispersed in all directions of the umbrella-shaped dispersion plate 20 by providing the rectifier 40.
 A  向流式直接加熱型熱交換器
 1  鉱石スラリー
 2  水蒸気
 10 容器
 11 供給パイプ
 12 供給口
 20 傘形分散板
 40 整流器
 41 筒体
 42 仕切部材
 43 邪魔部材
 45 誘導板
A Counter-current direct heating type heat exchanger 1 Ore slurry 2 Water vapor 10 Container 11 Supply pipe 12 Supply port 20 Umbrella-shaped dispersion plate 40 Rectifier 41 Cylindrical body 42 Partition member 43 Baffle member 45 Guide plate

Claims (10)

  1.  容器と、
    前記容器の内部に水平に設けられ、被加熱物流体を供給する供給パイプと、
    前記供給パイプの端部に設けられ、鉛直下方に開口する供給口と、
    前記供給口に接続された整流器と、
    前記整流器の鉛直下方に頂点が配置された傘形分散板と、を備え、
    前記整流器は、
    筒体と、
    前記筒体の内部に設けられた誘導板と、を備え、
    前記誘導板は、前記筒体の内部を前記供給パイプの上流側の流路と下流側の流路とに仕切るように配置され、その上端が前記供給パイプ内に突出している
    ことを特徴とする向流式直接加熱型熱交換器。
    A container,
    A supply pipe that is provided horizontally inside the container and supplies a fluid to be heated;
    A supply port provided at an end of the supply pipe and opening vertically downward;
    A rectifier connected to the supply port;
    An umbrella-shaped dispersion plate whose apex is arranged vertically below the rectifier, and
    The rectifier is
    A cylinder,
    A guide plate provided inside the cylindrical body,
    The guide plate is arranged so as to partition the inside of the cylindrical body into a flow path on the upstream side and a flow path on the downstream side of the supply pipe, and an upper end thereof protrudes into the supply pipe. Counterflow direct heating type heat exchanger.
  2.  前記整流器は、複数の前記誘導板を備えている
    ことを特徴とする請求項1記載の向流式直接加熱型熱交換器。
    The counterflow direct heating type heat exchanger according to claim 1, wherein the rectifier includes a plurality of the induction plates.
  3.  前記誘導板は、その上端が前記供給パイプの下流側に傾くように、前記筒体の中心軸に対して傾斜している
    ことを特徴とする請求項1または2記載の向流式直接加熱型熱交換器。
    3. The countercurrent direct heating type according to claim 1, wherein the guide plate is inclined with respect to a central axis of the cylindrical body so that an upper end of the guide plate is inclined downstream of the supply pipe. Heat exchanger.
  4.  前記整流器は、前記筒体の内部をその中心軸に沿う複数の流路に仕切る仕切部材を備える
    ことを特徴とする請求項1、2または3記載の向流式直接加熱型熱交換器。
    4. The countercurrent direct heating heat exchanger according to claim 1, wherein the rectifier includes a partition member that partitions the inside of the cylindrical body into a plurality of flow paths along a central axis thereof. 5.
  5.  前記筒体にはスリットが形成されており、
    前記仕切部材は挿入板を有しており、
    前記スリットに前記挿入板が挿入され、それらが溶接されている
    ことを特徴とする請求項4記載の向流式直接加熱型熱交換器。
    A slit is formed in the cylindrical body,
    The partition member has an insertion plate,
    The countercurrent direct heating type heat exchanger according to claim 4, wherein the insertion plate is inserted into the slit and welded.
  6.  前記仕切部材は、前記筒体の中心軸上に配置され、前記被加熱物流体の流れを妨げる邪魔部材を備える
    ことを特徴とする請求項4または5記載の向流式直接加熱型熱交換器。
    6. The countercurrent direct heating type heat exchanger according to claim 4, wherein the partition member is provided on a central axis of the cylindrical body, and includes a baffle member that prevents the flow of the fluid to be heated. .
  7.  前記傘形分散板の頂点近傍が犠牲材で覆われている
    ことを特徴とする請求項1、2、3、4、5または6記載の向流式直接加熱型熱交換器。
    The countercurrent direct heating type heat exchanger according to claim 1, wherein the top of the umbrella-shaped dispersion plate is covered with a sacrificial material.
  8.  前記整流器は前記供給口に取り外し可能に接続されている
    ことを特徴とする請求項1、2、3、4、5、6または7記載の向流式直接加熱型熱交換器。
    The countercurrent direct heating type heat exchanger according to claim 1, 2, 3, 4, 5, 6 or 7, wherein the rectifier is detachably connected to the supply port.
  9.  前記整流器の開口部と前記傘形分散板の頂点との距離は、前記整流器の直径の1.1倍以上1.3倍以下である
    ことを特徴とする請求項1、2、3、4、5、6、7または8記載の向流式直接加熱型熱交換器。
    The distance between the opening of the rectifier and the top of the umbrella-shaped dispersion plate is 1.1 to 1.3 times the diameter of the rectifier. The countercurrent direct heating type heat exchanger according to 5, 6, 7 or 8.
  10.  前記被加熱物流体はスラリーである
    ことを特徴とする請求項1、2、3、4、5、6、7、8または9記載の向流式直接加熱型熱交換器。
    10. The countercurrent direct heating type heat exchanger according to claim 1, wherein the heated fluid is a slurry.
PCT/JP2017/010836 2016-03-18 2017-03-17 Countercurrent-type direct-heating heat exchanger WO2017159837A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2017235506A AU2017235506B9 (en) 2016-03-18 2017-03-17 Countercurrent-type direct-heating heat exchanger
CU2018000098A CU20180098A7 (en) 2016-03-18 2017-03-17 COUNTERFLOW HEAT EXCHANGER DIRECT HEATING TYPE
EP17766832.4A EP3406995B1 (en) 2016-03-18 2017-03-17 Countercurrent-type direct-heating heat exchanger
PH12018501631A PH12018501631A1 (en) 2016-03-18 2018-08-01 Countercurrent direct-heating heat exchanger

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016054629A JP6631346B2 (en) 2016-03-18 2016-03-18 Countercurrent direct heating type heat exchanger
JP2016-054629 2016-03-18
JP2016213968A JP6729302B2 (en) 2016-11-01 2016-11-01 Countercurrent direct heating type heat exchanger
JP2016-213968 2016-11-01

Publications (1)

Publication Number Publication Date
WO2017159837A1 true WO2017159837A1 (en) 2017-09-21

Family

ID=59851049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010836 WO2017159837A1 (en) 2016-03-18 2017-03-17 Countercurrent-type direct-heating heat exchanger

Country Status (5)

Country Link
EP (1) EP3406995B1 (en)
AU (1) AU2017235506B9 (en)
CU (1) CU20180098A7 (en)
PH (1) PH12018501631A1 (en)
WO (1) WO2017159837A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017166786A (en) * 2016-03-18 2017-09-21 住友金属鉱山株式会社 Counterflow direct heating type heat exchanger

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50159873A (en) * 1974-06-08 1975-12-24
JPH03275824A (en) * 1990-03-23 1991-12-06 Inax Corp Construction of discharge port
JPH0660665U (en) * 1993-02-06 1994-08-23 株式会社イナックス Insulation cap mounting structure
JPH0671562U (en) * 1993-03-17 1994-10-07 株式会社イナックス Insulation cap mounting structure
JP2010025455A (en) 2008-07-22 2010-02-04 Sumitomo Metal Mining Co Ltd Countercurrent type direct heating heat exchanger
JP2011141089A (en) * 2010-01-07 2011-07-21 Sumitomo Heavy Ind Ltd Fluidized bed reactor
CN204787914U (en) * 2015-06-29 2015-11-18 广西农垦糖业集团红河制糖有限公司 A constant temperature equipment for vapour congeals water -cooled

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9664087B2 (en) * 2010-07-22 2017-05-30 Wescast Industries, Inc. Exhaust heat recovery system with bypass

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50159873A (en) * 1974-06-08 1975-12-24
JPH03275824A (en) * 1990-03-23 1991-12-06 Inax Corp Construction of discharge port
JPH0660665U (en) * 1993-02-06 1994-08-23 株式会社イナックス Insulation cap mounting structure
JPH0671562U (en) * 1993-03-17 1994-10-07 株式会社イナックス Insulation cap mounting structure
JP2010025455A (en) 2008-07-22 2010-02-04 Sumitomo Metal Mining Co Ltd Countercurrent type direct heating heat exchanger
JP2011141089A (en) * 2010-01-07 2011-07-21 Sumitomo Heavy Ind Ltd Fluidized bed reactor
CN204787914U (en) * 2015-06-29 2015-11-18 广西农垦糖业集团红河制糖有限公司 A constant temperature equipment for vapour congeals water -cooled

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017166786A (en) * 2016-03-18 2017-09-21 住友金属鉱山株式会社 Counterflow direct heating type heat exchanger

Also Published As

Publication number Publication date
CU20180098A7 (en) 2019-03-04
AU2017235506B2 (en) 2019-01-24
AU2017235506A1 (en) 2018-08-16
EP3406995A1 (en) 2018-11-28
PH12018501631A1 (en) 2019-05-27
EP3406995A4 (en) 2019-02-13
AU2017235506B9 (en) 2019-02-14
EP3406995B1 (en) 2020-09-16

Similar Documents

Publication Publication Date Title
AU2013278507B2 (en) Autoclave apparatus used during high-pressure acid leaching process
US8101118B2 (en) Countercurrent direct-heating-type heat exchanger
CA2861034C (en) Flash vessel and method for operating same
EP2843064B1 (en) Method for adding starting material slurry and sulfuric acid to an autoclave in high pressure acid leaching process and autoclave
WO2017159837A1 (en) Countercurrent-type direct-heating heat exchanger
WO2017159836A1 (en) Countercurrent-type direct heating heat exchanger
JP6729302B2 (en) Countercurrent direct heating type heat exchanger
JP6075395B2 (en) Counterflow direct heating type heat exchanger
PH12014501593B1 (en) Method for operating flash vessel
JP5482955B2 (en) Method of adding raw slurry and sulfuric acid to autoclave in high pressure acid leaching process and autoclave

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017235506

Country of ref document: AU

Date of ref document: 20170317

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017766832

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017766832

Country of ref document: EP

Effective date: 20180823

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766832

Country of ref document: EP

Kind code of ref document: A1