WO2017159730A1 - Impeller, rotary machine, and impeller manufacturing method - Google Patents

Impeller, rotary machine, and impeller manufacturing method Download PDF

Info

Publication number
WO2017159730A1
WO2017159730A1 PCT/JP2017/010391 JP2017010391W WO2017159730A1 WO 2017159730 A1 WO2017159730 A1 WO 2017159730A1 JP 2017010391 W JP2017010391 W JP 2017010391W WO 2017159730 A1 WO2017159730 A1 WO 2017159730A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
peripheral surface
axial direction
axis
blade
Prior art date
Application number
PCT/JP2017/010391
Other languages
French (fr)
Japanese (ja)
Inventor
山下 修一
伸一郎 得山
Original Assignee
三菱重工業株式会社
三菱重工コンプレッサ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 三菱重工コンプレッサ株式会社 filed Critical 三菱重工業株式会社
Priority to EP17766726.8A priority Critical patent/EP3415767A4/en
Priority to US16/083,412 priority patent/US20190078583A1/en
Publication of WO2017159730A1 publication Critical patent/WO2017159730A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/10Manufacture by removing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/301Cross-section characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/70Shape
    • F05B2250/71Shape curved
    • F05B2250/711Shape curved convex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/303Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade

Definitions

  • the present invention relates to an impeller, a rotating machine, and a method for manufacturing an impeller.
  • Patent Document 1 describes a centrifugal compressor having a so-called closed impeller in which a cover is integrally attached to a blade.
  • the cover, the blade, and the disk are not formed by the three-piece manufacturing method that is assembled after individually forming the cover, the blade, and the disk, or the cover, the blade, and the disk are formed from the beginning.
  • a one-piece manufacturing method of forming in an integrated state is adopted.
  • the working fluid is a corrosive gas
  • it is difficult to weld a corrosion-resistant material and thus a one-piece manufacturing method is often employed.
  • This one-piece manufacturing method is also adopted when the flow path width becomes extremely narrow, such as a small-diameter impeller, and the leg length of the welded portion becomes too large with respect to the flow path width, and there is a concern about performance reliability.
  • the closed impeller described in Patent Document 1 may require complicated machining, electrical discharge machining, or the like, particularly when trying to make a single piece.
  • this machining since the root of the tool is thick, the depth at which the tool can be inserted in the axial direction of the impeller between the blades is limited. For this reason, when machining the disk side or the cover side of the impeller, the tool is inserted obliquely with respect to the impeller axis line.
  • a cutting tool may interfere with the impeller cover or the like, and there is a problem that skill is required for processing the impeller.
  • electric discharge machining it is necessary to form the discharge electrode in a complicated shape, which may increase the cost.
  • An object of this invention is to provide the impeller which can be processed easily, a rotary machine, and the manufacturing method of an impeller.
  • the impeller includes a disk, a plurality of blades, and a cover.
  • the disc has a disk shape centered on the axis.
  • the plurality of blades are formed on the surface facing the first side in the axial direction of the disk at intervals in the circumferential direction of the axial line.
  • the cover surrounds the plurality of blades from the first side in the axial direction.
  • the cover has an inner peripheral surface and a tip surface.
  • the inner peripheral surface is reduced in diameter toward the first side from the other side in the axial direction and connected to the blade.
  • the distal end surface extends radially outward from the first axial end of the inner peripheral surface and faces the first axial direction.
  • a front edge portion which is a first edge portion in the axial direction of the blade, extends radially inward from a boundary between the inner peripheral surface and the tip surface.
  • the distal end surface according to the first aspect may include a convex curved surface that is disposed on the other side in the axial direction toward the radially inner side.
  • the edge according to the first or second aspect may be provided with a protruding edge that protrudes radially outward on the first side in the axial direction.
  • the protruding edge portion is provided on the radially outer portion of the front edge portion of the blade, the inner peripheral surface and the tip end are provided via the protruding edge portion regardless of the shape of the front edge portion of the blade.
  • the leading edge of the blade can be formed continuously from the boundary with the surface.
  • the rotating machine includes the impeller according to any one of the first to third aspects.
  • an impeller manufacturing method is an impeller manufacturing method including a disk, a plurality of blades, and a cover.
  • the disc has a disk shape centered on the axis.
  • the plurality of blades are formed on the surface facing the first side in the axial direction of the disk at intervals in the circumferential direction of the axial line.
  • the cover surrounds the plurality of blades from the first side in the axial direction.
  • the cover includes an inner peripheral surface and a tip surface.
  • the inner peripheral surface is reduced in diameter toward the first side from the other side in the axial direction and connected to the blade.
  • the distal end surface extends radially outward from the first axial end of the inner peripheral surface and faces the first axial direction.
  • a front edge which is a first edge in the axial direction of the blade, is formed so as to extend radially inward from the boundary between the inner peripheral surface and the tip surface. Process. By doing in this way, the interference of the tool to a disk can be suppressed. Therefore, the impeller can be easily manufactured.
  • FIG. 2 It is a block diagram which shows schematic structure of the centrifugal compressor in 1st embodiment of this invention. It is an enlarged view of the impeller in 1st embodiment of this invention. It is a graph in which the horizontal axis represents the position in the span direction relative to the blade (Span Normalized), and the vertical axis represents the absolute value (Vt_abs) of the circumferential speed of the gas. It is a flowchart which shows the manufacturing method of the impeller in 1st embodiment of this invention. It is an enlarged view equivalent to FIG. 2 in 2nd embodiment of this invention. It is an enlarged view equivalent to FIG. 2 in the modification of 1st embodiment of this invention.
  • FIG. 1 is a configuration diagram showing a schematic configuration of a centrifugal compressor in the first embodiment of the present invention.
  • the centrifugal compressor 1 includes a rotating shaft 2, an impeller 3 ⁇ / b> A, a journal bearing 5 ⁇ / b> A, a thrust bearing 5 ⁇ / b> B, and a casing 6.
  • the rotary shaft 2 is formed in a column shape extending in the axis O direction.
  • the rotary shaft 2 is rotatably supported by the journal bearing 5A on the first end portion 2a side (first side in the axial direction) and the second end portion 2b side (second side in the axial direction) in the axis O direction. ing. Further, the rotary shaft 2 has a first end 2a supported by a thrust bearing 5B.
  • a plurality of impellers 3A are provided in the direction of the axis O with respect to the rotating shaft 2. These impellers 3A are attached to the rotary shaft 2 by fitting or the like.
  • the impeller 3A includes a disk 3a, a blade 3b, and a cover 3c.
  • the disk 3a is formed in a disk shape centered on the axis O. More specifically, the disk 3a has a diameter centered on the axis O as it goes from the side near the first end 2a of the rotary shaft 2 toward the side close to the second end 2b of the rotary shaft 2 in the direction of the axis O. It is formed so as to gradually expand in the direction.
  • the central axis of the disk 3 a overlaps the axis O of the rotary shaft 2. Therefore, in the following description, the axis of the disk 3a is also referred to as “axis O”.
  • the blade 3b is formed on the surface of the disk 3a facing the first end 2a side in the axis O direction, and a plurality of blades 3b are formed at intervals in the circumferential direction of the axis O. These blades 3b extend away from the disk 3a and are arranged radially about the axis O.
  • the cover 3c covers the plurality of blades 3b from the first end 2a side in the axis O direction.
  • the cover 3c is provided so as to face the disk 3a with the blade 3b interposed therebetween.
  • the inner peripheral surface 11 of the cover 3c is formed so as to decrease in diameter from the side close to the second end 2b in the axis O direction toward the side close to the first end 2a. From the inner peripheral surface 11, the blade 3b described above extends toward the disk 3a.
  • the impeller 3A has a surface of the disk 3a facing the first end portion 2a in the axis O direction, the blade 3b, and the inner peripheral surface 11 of the cover 3c from the side close to the first end portion 2a in the axis O direction.
  • a flow path extending toward the radially outer side is formed toward the side closer to the second end 2b.
  • the rotary shaft 2 of the centrifugal compressor 1 in this embodiment is provided with a plurality of impellers 3A in the direction of the axis O, thereby constituting a multistage impeller group 3G.
  • the casing 6 is formed in a cylindrical shape and accommodates the rotating shaft 2, the impeller 3A, the journal bearing 5A, and the like.
  • the casing 6 rotatably supports the rotary shaft 2 via the journal bearing 5A.
  • the impeller 3A attached to the rotary shaft 2 can rotate relative to the casing 6.
  • the casing 6 includes a suction port 6a, a connection channel 6b, a casing channel 6c, a connection channel 6d, and a discharge port 6e.
  • the suction port 6a is formed on the side close to the first end 2a of the casing 6 in the axis O direction.
  • the suction port 6a receives gas supplied from the outside.
  • the suction port 6a is disposed on the outermost surface 6f of the casing 6 on the side closest to the first end portion 2a in the axis O direction.
  • connection flow path 6b connects the suction port 6a and the first stage impeller 3A arranged closest to the first end 2a among the plurality of impellers 3A. That is, the connection flow path 6b supplies the gas received by the suction port 6a to the first stage impeller 3A.
  • the casing flow path 6c connects the flow paths of the impellers 3A adjacent in the axis O direction. More specifically, the impeller accommodating space near the outer peripheral end of the impeller 3A arranged on the upstream side and the impeller accommodating space near the front end of the impeller 3A arranged on the downstream side are communicated.
  • the casing flow path 6c guides the gas boosted by the impeller 3A disposed on the upstream side to the radially outer side, then guides the gas to the radially inner side and supplies it to the front end portion of the impeller 3A disposed on the downstream side. Thereby, the gas flowing through the casing flow path 6c is stepped up stepwise by the plurality of impellers 3A.
  • a diffuser, a return vane, or the like may be provided in the casing flow path 6c.
  • connection flow path 6d connects the final stage impeller 3A disposed on the side closest to the second end 2b and the discharge port 6e. That is, the connection flow path 6d guides the gas boosted by the multistage impeller group 3G to the discharge port 6e.
  • the discharge port 6 e discharges the gas guided by the connection flow path 6 d to the outside of the casing 6.
  • the outlet 6e is disposed on the outermost surface 6f of the casing 6 on the side closest to the second end 2b in the axis O direction.
  • FIG. 2 is an enlarged view of the impeller in the first embodiment of the present invention.
  • the cover 3 c of the impeller 3 ⁇ / b> A includes an inner peripheral surface 11, an outer peripheral surface 12, a front end surface 13, and a rear end surface 14.
  • the inner peripheral surface 11 has a shape as described above, and is a convex curved surface in a cross section including the axis O shown in FIG.
  • the outer peripheral surface 12 is directed from the side close to the second end 2 b in the axis O direction (the right side in FIG. 2) to the side close to the first end 2 a (the left side in FIG. 2).
  • the diameter is reduced according to the above.
  • the outer peripheral surface 12 is a concave curved surface in a cross section including the axis O shown in FIG.
  • the outer peripheral surface 12 is disposed so as to face the inner peripheral surface 6g of the casing 6 in which the impeller 3A is accommodated via a slight gap.
  • the outer peripheral surface 12 is gradually separated from the inner peripheral surface 11 as it goes from the side close to the second end 2b in the direction of the axis O toward the side close to the first end 2a.
  • the cover 3c is formed so that its thickness gradually increases from the side close to the second end 2b toward the side close to the first end 2a.
  • a seal mechanism such as a labyrinth seal may be provided between the inner peripheral surface 6g of the casing 6 and the outer peripheral surface 12 of the cover 3c.
  • the front end surface 13 extends from the end portion 11a of the inner peripheral surface 11 on the side close to the first end portion 2a in the axis O direction toward the outer side in the radial direction with the axis O as the center. That is, the tip surface 13 faces the first end 2a side in the axis O direction.
  • the tip surface 13 is formed across the end 11a of the inner peripheral surface 11 and the end 12a of the outer peripheral surface 12 on the side close to the first end 2a in the axis O direction.
  • the tip surface 13 is formed by a plane perpendicular to the axis O.
  • a flat surface facing the tip surface 13 is formed on the inner peripheral surface 6g of the casing 6 in this embodiment.
  • the rear end surface 14 is formed so as to extend over the end portion 11b of the inner peripheral surface 11 and the end portion 12b of the outer peripheral surface 12 on the side close to the second end portion 2b in the axis O direction.
  • the blade 3b includes a front edge portion 20 that is an edge portion on the side close to the first end portion 2a in the axis O direction.
  • the front edge portion 20 extends from the boundary portion K where the inner peripheral surface 11 and the tip surface 13 intersect toward the radially inner side with the axis O as the center.
  • the front edge portion 20 can be formed so as to be continuous with the distal end surface 13.
  • the front edge portion 20 in this embodiment is formed in a slightly curved shape close to a straight line.
  • the front edge 20 is further inclined with respect to a plane perpendicular to the axis O so as to be arranged on the second end 2b side from the radially outer side centering on the axis O toward the inner side.
  • the boundary K described above includes not only the position where the inner peripheral surface 11 and the tip surface 13 intersect, but also includes, for example, a position shifted by about 1 mm to 2 mm from the position where the inner peripheral surface 11 and the tip surface 13 intersect. (The same applies to the second embodiment below).
  • FIG. 3 is a graph in which the horizontal axis represents the position in the span direction with respect to the blade (Span Normalized), and the vertical axis represents the absolute value (Vt_abs) of the circumferential velocity of the gas.
  • a broken line is a comparative example.
  • the front edge 20 of the blade 3b extends radially inward from a position closer to the second end 2b than the boundary K.
  • the solid line is the case of the above-described embodiment (example). As shown in FIG.
  • the front edge 20 extends from the boundary K toward the inside in the radial direction. Therefore, immediately before the front edge portion 20 of the blade 3b, an increase in the absolute value of the circumferential speed of the gas due to contact between the gas and the cover 3c does not occur.
  • FIG. 4 is a flowchart showing a method for manufacturing an impeller in the first embodiment of the present invention.
  • a base material on which the outer peripheral surface 12 and the front end surface 13 of the cover 3c are formed is formed of a metal such as stainless steel (step S01).
  • the blade 3b, the inner peripheral surface 11 of the cover 3c, and the disk 3a are formed by cutting using a cutting tool T as shown in FIG. 2 (step S02).
  • the blade 3b is formed by cutting so that the front edge portion 20 of the blade 3b extends radially inward from the boundary K between the inner peripheral surface 11 and the tip surface 13 of the cover 3c.
  • finishing processing such as surface polishing is performed as necessary.
  • the cover 3c it is possible to prevent the cover 3c from projecting toward the first end 2a side in the axis O direction from the front edge 20 of the blade 3b. Therefore, it can suppress that a tool interferes with cover 3c, and can process it easily. Further, the rotation of the cover 3c can reduce the swirling flow generated immediately before the front edge 20 of the blade 3b due to the rotation of the cover 3c. Therefore, the boundary layer in the vicinity of the front edge portion 20 of the blade 3b can be thinned on the cover 3c side, and the performance of the impeller 3A can be improved.
  • FIG. 5 is an enlarged view corresponding to FIG. 2 in the second embodiment of the present invention.
  • the impeller 3B in the second embodiment includes a disk 3a, a blade 3b, and a cover 103c.
  • the cover 103c covers the plurality of blades 3b from the side close to the first end 2a in the axis O direction (the left side in FIG. 3).
  • the cover 103c is provided so as to face the disk 3a, and includes an inner peripheral surface 11, an outer peripheral surface 12, a front end surface 113, and a rear end surface 14.
  • the inner peripheral surface 11, the outer peripheral surface 12, and the rear end surface 14 have the same configuration as in the first embodiment described above. That is, the inner peripheral surface 11 is formed so as to decrease in diameter from the side close to the second end 2b in the axis O direction (the right side in FIG. 3) toward the side close to the first end 2a. From this inner peripheral surface 11, the blade 3b extends toward the disk 3a.
  • the outer peripheral surface 12 is formed so that its diameter decreases from the side close to the second end 2b in the axis O direction toward the side close to the first end 2a.
  • the outer peripheral surface 12 is disposed so as to face the inner peripheral surface 6g of the casing 6 to be accommodated with a slight gap. Since the outer peripheral surface 12 is close to the second end 2b side in the axis O direction, the outer peripheral surface 12 is gradually separated from the inner peripheral surface 11 toward the side close to the first end 2a.
  • the rear end surface 14 is formed across the end 11b of the inner peripheral surface 11 and the end 12b of the outer peripheral surface 12 on the side close to the second end 2b in the axis O direction.
  • the front end surface 113 extends from the end portion 11a of the inner peripheral surface 11 near the first end portion 2a in the axis O direction toward the outside in the radial direction with the axis O as the center. This front end surface 113 faces the first end portion 2a side in the axis O direction.
  • the tip surface 113 is formed across the end portion 11a of the inner peripheral surface 11 and the end portion 12a on the side of the outer peripheral surface 12 near the first end portion 2a. At least a part of the front end surface 113 in the second embodiment is a convex curved surface in a cross section including the axis O.
  • the cover 103c in the second embodiment has an outer periphery on the side where the end 11a of the inner peripheral surface 11 on the side close to the first end 2a is close to the first end 2a in the axis O direction. It arrange
  • the tip surface 113 formed across the end portion 11a and the end portion 12a is a first inner portion in the axis O direction from the outer side in the radial direction toward the inner side in the radial direction around the axis O.
  • a convex curved surface is formed so as to curve from the side close to the end 2a toward the side close to the second end 2b.
  • the blade 3b extends from the boundary K between the tip surface 113 and the inner peripheral surface 11 inward in the radial direction with the axis O as the center, as in the first embodiment. Also in the second embodiment, the front edge portion 20 of the blade 3b is formed in a curved shape that is slightly curved close to a straight line. The blade 3b is further inclined with respect to a plane perpendicular to the axis O so as to be arranged closer to the second end portion 2b as it goes inward from the outer side in the radial direction around the axis O.
  • the tip surface 113 has a convex curved surface, so that interference of the cutting tool T can be suppressed when performing cutting or the like. Even if the cutting tool T interferes, since it is a convex curved surface, it is possible to suppress the movement of the cutting tool T or the like, or the cutting tool T from being damaged.
  • FIG. 6 is an enlarged view corresponding to FIG. 2 in a modification of the first embodiment of the present invention.
  • the front edge portion 20 ⁇ / b> C of the impeller 3 ⁇ / b> C may include a protruding edge portion 22 that protrudes on the outer side in the radial direction on the side close to the first end portion 2 a in the axis O direction.
  • the protruding edge portion 22 is formed so as to protrude toward the first end portion 2a side in the axis O direction from the extension line E of the remaining portion 20Cb of the front edge portion 20C, and the axis O is centered from the boundary K. It is formed so as to extend obliquely toward the inner side in the radial direction and closer to the second end 2b and to be continuous with the remaining portion 20Cb.
  • the front edge 20C cannot be arranged on the side close to the first end 2a in the direction of the axis O as in the first embodiment, for example.
  • the front edge portion 20C can be formed so as to extend from the boundary portion K inward in the radial direction with the axis O as the center.
  • the present invention is not limited to the above-described embodiments, and includes various modifications made to the above-described embodiments without departing from the spirit of the present invention. That is, the specific shapes, configurations, and the like given in the embodiment are merely examples, and can be changed as appropriate.
  • the centrifugal compressor has been described as an example.
  • the present invention is not limited to the compressor, and can be applied to a rotating machine such as a turbine.
  • the centrifugal compressor 1 only needs to have at least one impeller 3 ⁇ / b> A with respect to the rotating shaft 2.
  • the impellers 3B and 3C are provided, only one impeller 3B and 3C may be provided.
  • the impellers 3A, 3B, and 3C are cut has been described.
  • they may be formed by electric discharge machining.
  • it is not necessary to form the discharge electrode in a complicated shape, and an increase in cost can be suppressed.
  • This invention can be applied to an impeller. According to this invention, it becomes possible to process easily.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

An impeller equipped with: a disc (3a) forming a discoid shape centered around an axial line; multiple blades (3b) formed in the circumferential direction of the axial line, with intervals therebetween, on the surface of the disk (3a) facing a first side in the axial line direction; and a cover (3c) enclosing these multiple blades (3b) from the first side in the axial line direction. The cover (3c) has an inner circumferential surface (11), the diameter of which decreases from the second side toward the first side in the axial line direction, and which is connected to the blades (3b), and a tip-end surface (13), which extends from the end part of the inner circumferential surface (11) on the first side in the axial line direction toward the outside in the radial direction, and faces the first side in the axial line direction. A front-edge part (20), which is the edge part of the blades (3b) on the first side in the axial line direction, extends from the boundary (K) of the inner circumferential surface (11) and the tip-end surface (13) toward the inside in the radial direction.

Description

インペラ、回転機械、およびインペラの製造方法Impeller, rotating machine, and method of manufacturing impeller
 この発明は、インペラ、回転機械、およびインペラの製造方法に関する。
 本願は、2016年3月18日に、日本に出願された特願2016-56045号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an impeller, a rotating machine, and a method for manufacturing an impeller.
This application claims priority on March 18, 2016 based on Japanese Patent Application No. 2016-56045 filed in Japan, the contents of which are incorporated herein by reference.
 産業用圧縮機やターボ冷凍機、小型ガスタービンなどに用いられる回転機械として、回転軸に固定されたディスクに複数のブレードを取り付けたインペラを具備したものが知られている。上記回転機械は、インペラを回転させることで、ガスに圧力エネルギー及び速度エネルギーを与えている。 2. Description of the Related Art As rotary machines used for industrial compressors, turbo refrigerators, small gas turbines, etc., those equipped with an impeller in which a plurality of blades are attached to a disk fixed to a rotary shaft are known. The rotating machine gives pressure energy and velocity energy to the gas by rotating the impeller.
 特許文献1には、ブレードにカバーを一体的に取り付けた、いわゆるクローズドインペラを備えた遠心圧縮機が記載されている。
 このようなインペラにおいては、カバーとブレードとディスクとをそれぞれ個別に成形した後に組み立てる3ピース製法や、カバーのみを個別に成形して組み立てる2ピース製法ではなく、カバーとブレードとディスクとを初めから一体の状態で成形する1ピース製法が採用される場合がある。特に、作動流体が腐食性ガスである場合は、耐腐食性材料の溶接が困難であるため、1ピース製法が採用されることが多い。
 この1ピース製法は、小径のインペラなど流路幅が極端に狭くなり、溶接部の脚長が流路幅に対して大きくなり過ぎ、性能信頼性への懸念がある場合などにも採用される。
Patent Document 1 describes a centrifugal compressor having a so-called closed impeller in which a cover is integrally attached to a blade.
In such an impeller, the cover, the blade, and the disk are not formed by the three-piece manufacturing method that is assembled after individually forming the cover, the blade, and the disk, or the cover, the blade, and the disk are formed from the beginning. There is a case where a one-piece manufacturing method of forming in an integrated state is adopted. In particular, when the working fluid is a corrosive gas, it is difficult to weld a corrosion-resistant material, and thus a one-piece manufacturing method is often employed.
This one-piece manufacturing method is also adopted when the flow path width becomes extremely narrow, such as a small-diameter impeller, and the leg length of the welded portion becomes too large with respect to the flow path width, and there is a concern about performance reliability.
特開2015-175250号公報JP 2015-175250 A
 特許文献1に記載のクローズドインペラは、特に、1ピース化しようとした場合などに、複雑な削りだし加工や放電加工等の加工が必要となる場合がある。この削り出し加工の際、工具の根元が太いことから、ブレード間のインペラの軸方向に工具を挿入できる深さが制限される。そのため、インペラのディスク側やカバー側を加工する際に、工具をインペラの軸線に対して斜めに挿入して加工することとなる。しかし、インペラのカバーなどに切削工具が干渉してしまう場合があり、インペラの加工に熟練を要するという課題がある。また、放電加工の場合には、放電極の形状を複雑に形成する必要が生じて、コストが増加してしまう場合がある。
 この発明は、容易に加工を行うことができるインペラ、回転機械、およびインペラの製造方法を提供することを目的とする。
The closed impeller described in Patent Document 1 may require complicated machining, electrical discharge machining, or the like, particularly when trying to make a single piece. At the time of this machining, since the root of the tool is thick, the depth at which the tool can be inserted in the axial direction of the impeller between the blades is limited. For this reason, when machining the disk side or the cover side of the impeller, the tool is inserted obliquely with respect to the impeller axis line. However, a cutting tool may interfere with the impeller cover or the like, and there is a problem that skill is required for processing the impeller. In the case of electric discharge machining, it is necessary to form the discharge electrode in a complicated shape, which may increase the cost.
An object of this invention is to provide the impeller which can be processed easily, a rotary machine, and the manufacturing method of an impeller.
 この発明の第一態様によれば、インペラは、ディスクと、複数のブレードと、カバーと、を備える。ディスクは、軸線を中心とした円盤状をなす。複数のブレードは、前記ディスクの軸線方向の第一側を向く面に、前記軸線の周方向に間隔をあけて形成されている。カバーは、これら複数のブレードを軸線方向の第一側から囲う。前記カバーは、内周面と先端面とを有している。内周面は、前記軸線方向他方側からの第一側に向かうに従って縮径して前記ブレードと接続されている。先端面は、前記内周面の前記軸線方向の第一側の端部から径方向外側に向かって延びて前記軸線方向の第一側を向いている。前記ブレードの前記軸線方向の第一側の縁部である前縁部は、前記内周面と前記先端面との境界から径方向内側に向かって延びている。
 このように構成することで、ブレードの前縁よりも軸線方向の第一側にカバーが突出することを抑制できる。そのため、工具がカバーに干渉したり、放電極の形状が複雑化したりすることを抑制して、容易に加工を行うことができる。また、カバーの回転によりブレードの前縁の直前で生じていた旋回流を低減できる。そのため、カバー側において、ブレード前縁付近における境界層を薄くすることができ、インペラ性能を向上できる。
According to the first aspect of the present invention, the impeller includes a disk, a plurality of blades, and a cover. The disc has a disk shape centered on the axis. The plurality of blades are formed on the surface facing the first side in the axial direction of the disk at intervals in the circumferential direction of the axial line. The cover surrounds the plurality of blades from the first side in the axial direction. The cover has an inner peripheral surface and a tip surface. The inner peripheral surface is reduced in diameter toward the first side from the other side in the axial direction and connected to the blade. The distal end surface extends radially outward from the first axial end of the inner peripheral surface and faces the first axial direction. A front edge portion, which is a first edge portion in the axial direction of the blade, extends radially inward from a boundary between the inner peripheral surface and the tip surface.
By comprising in this way, it can suppress that a cover protrudes in the 1st side of an axial direction rather than the front edge of a braid | blade. Therefore, it is possible to easily perform the processing while suppressing the tool from interfering with the cover and the discharge electrode from becoming complicated in shape. In addition, the swirling flow generated immediately before the front edge of the blade can be reduced by the rotation of the cover. Therefore, the boundary layer in the vicinity of the blade leading edge can be thinned on the cover side, and the impeller performance can be improved.
 この発明の第二態様によれば、第一態様に係る先端面が、径方向内側ほど前記軸線方向他方側に配置される凸曲面を備えていてもよい。
 このように構成することで、工具等の干渉を更に抑制できる。
According to the second aspect of the present invention, the distal end surface according to the first aspect may include a convex curved surface that is disposed on the other side in the axial direction toward the radially inner side.
By comprising in this way, interference, such as a tool, can further be suppressed.
 この発明の第三態様によれば、第一又は第二態様に係る縁部が、その径方向外側に、前記軸線方向の第一側に突出する突出縁部を備えていてもよい。
 このようにブレードの前縁部の径方向外側の部分に突出縁部が設けられていることで、ブレードの前縁部の形状によらず、突出縁部を介して前記内周面と前記先端面との境界からブレードの前縁部を連続するように形成することができる。
According to the third aspect of the present invention, the edge according to the first or second aspect may be provided with a protruding edge that protrudes radially outward on the first side in the axial direction.
As described above, since the protruding edge portion is provided on the radially outer portion of the front edge portion of the blade, the inner peripheral surface and the tip end are provided via the protruding edge portion regardless of the shape of the front edge portion of the blade. The leading edge of the blade can be formed continuously from the boundary with the surface.
 この発明の第四態様によれば、回転機械は、第一から第三態様の何れか一つの態様のインペラを備えている。
 このように構成することで、回転機械を容易に作成することができるとともに、インペラ性能向上に伴い、回転機械の効率向上を図ることができる。
According to the fourth aspect of the present invention, the rotating machine includes the impeller according to any one of the first to third aspects.
With this configuration, it is possible to easily create a rotating machine, and it is possible to improve the efficiency of the rotating machine as the impeller performance is improved.
 この発明の第五態様によれば、インペラの製造方法は、ディスクと、複数のブレードと、カバーと、を備えるインペラの製造方法である。ディスクは、軸線を中心とした円盤状をなす。複数のブレードは、前記ディスクの軸線方向の第一側を向く面に、前記軸線の周方向に間隔をあけて形成されている。カバーは、これら複数のブレードを軸線方向の第一側から囲う。前記カバーは、内周面と先端面とを備える。内周面は、前記軸線方向他方側からの第一側に向かうに従って縮径して前記ブレードと接続されている。先端面は、前記内周面の前記軸線方向の第一側の端部から径方向外側に向かって延びて前記軸線方向の第一側を向いている。このインペラの製造方法は、前記ブレードの前記軸線方向の第一側の縁部である前縁部を、前記内周面と前記先端面との境界から径方向内側に向かって延びるように形成する工程を含む。
 このようにすることで、ディスクへの工具の干渉を抑制できる。そのため、容易にインペラを製造することができる。
According to a fifth aspect of the present invention, an impeller manufacturing method is an impeller manufacturing method including a disk, a plurality of blades, and a cover. The disc has a disk shape centered on the axis. The plurality of blades are formed on the surface facing the first side in the axial direction of the disk at intervals in the circumferential direction of the axial line. The cover surrounds the plurality of blades from the first side in the axial direction. The cover includes an inner peripheral surface and a tip surface. The inner peripheral surface is reduced in diameter toward the first side from the other side in the axial direction and connected to the blade. The distal end surface extends radially outward from the first axial end of the inner peripheral surface and faces the first axial direction. In this impeller manufacturing method, a front edge, which is a first edge in the axial direction of the blade, is formed so as to extend radially inward from the boundary between the inner peripheral surface and the tip surface. Process.
By doing in this way, the interference of the tool to a disk can be suppressed. Therefore, the impeller can be easily manufactured.
 上記インペラによれば、容易に加工を行うことが可能となる。 According to the impeller, it is possible to easily process.
この発明の第一実施形態における遠心圧縮機の概略構成を示す構成図である。It is a block diagram which shows schematic structure of the centrifugal compressor in 1st embodiment of this invention. この発明の第一実施形態におけるインペラの拡大図である。It is an enlarged view of the impeller in 1st embodiment of this invention. 横軸をブレードに対するスパン方向の位置(Span Normalized)、縦軸をガスの周方向速度の絶対値(Vt_abs)としたグラフである。It is a graph in which the horizontal axis represents the position in the span direction relative to the blade (Span Normalized), and the vertical axis represents the absolute value (Vt_abs) of the circumferential speed of the gas. この発明の第一実施形態におけるインペラの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the impeller in 1st embodiment of this invention. この発明の第二実施形態における図2に相当する拡大図である。It is an enlarged view equivalent to FIG. 2 in 2nd embodiment of this invention. この発明の第一実施形態の変形例における図2に相当する拡大図である。It is an enlarged view equivalent to FIG. 2 in the modification of 1st embodiment of this invention.
(第一実施形態)
 次に、この発明の第一実施形態におけるインペラおよび回転機械を図面に基づき説明する。
 図1は、この発明の第一実施形態における遠心圧縮機の概略構成を示す構成図である。
 図1に示すように、遠心圧縮機1は、回転軸2と、インペラ3Aと、ジャーナル軸受5Aと、スラスト軸受5Bと、ケーシング6と、を備えている。
(First embodiment)
Next, an impeller and a rotary machine according to a first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram showing a schematic configuration of a centrifugal compressor in the first embodiment of the present invention.
As shown in FIG. 1, the centrifugal compressor 1 includes a rotating shaft 2, an impeller 3 </ b> A, a journal bearing 5 </ b> A, a thrust bearing 5 </ b> B, and a casing 6.
 回転軸2は、軸線O方向に延びる柱状に形成されている。この回転軸2は、軸線O方向の第一端部2a側(軸線方向の第一側)および第二端部2b側(軸線方向の第二側)で、ジャーナル軸受5Aによって回転自在に支持されている。さらに、回転軸2は、その第一端部2aがスラスト軸受5Bによって支持されている。 The rotary shaft 2 is formed in a column shape extending in the axis O direction. The rotary shaft 2 is rotatably supported by the journal bearing 5A on the first end portion 2a side (first side in the axial direction) and the second end portion 2b side (second side in the axial direction) in the axis O direction. ing. Further, the rotary shaft 2 has a first end 2a supported by a thrust bearing 5B.
 インペラ3Aは、回転軸2に対してその軸線O方向に複数設けられている。これらインペラ3Aは、回転軸2に対して嵌め合い等により取り付けられている。インペラ3Aは、ディスク3aと、ブレード3bと、カバー3cと、をそれぞれ有している。 A plurality of impellers 3A are provided in the direction of the axis O with respect to the rotating shaft 2. These impellers 3A are attached to the rotary shaft 2 by fitting or the like. The impeller 3A includes a disk 3a, a blade 3b, and a cover 3c.
 ディスク3aは、軸線Oを中心とした円盤状に形成されている。より具体的には、ディスク3aは、軸線O方向における回転軸2の第一端部2aに近い側から回転軸2の第二端部2bに近い側に向かうにつれて、軸線Oを中心とした径方向で漸次拡径するように形成されている。ディスク3aの中心軸は、回転軸2の軸線Oと重なっている。そのため、以下の説明においては、ディスク3aの軸線についても「軸線O」と称する。 The disk 3a is formed in a disk shape centered on the axis O. More specifically, the disk 3a has a diameter centered on the axis O as it goes from the side near the first end 2a of the rotary shaft 2 toward the side close to the second end 2b of the rotary shaft 2 in the direction of the axis O. It is formed so as to gradually expand in the direction. The central axis of the disk 3 a overlaps the axis O of the rotary shaft 2. Therefore, in the following description, the axis of the disk 3a is also referred to as “axis O”.
 ブレード3bは、軸線O方向の第一端部2a側を向くディスク3aの面に形成されるとともに、軸線Oの周方向に間隔をあけて複数形成されている。これらブレード3bは、ディスク3aから離間するように延びるとともに、軸線Oを中心に放射状に配置されている。 The blade 3b is formed on the surface of the disk 3a facing the first end 2a side in the axis O direction, and a plurality of blades 3b are formed at intervals in the circumferential direction of the axis O. These blades 3b extend away from the disk 3a and are arranged radially about the axis O.
 カバー3cは、上記複数のブレード3bを軸線O方向の第一端部2a側から覆う。言い換えれば、カバー3cは、ブレード3bを間に挟んでディスク3aと対向するように設けられている。カバー3cの内周面11は、軸線O方向の第二端部2bに近い側から第一端部2aに近い側に向かうに従って縮径するように形成されている。この内周面11から、上述したブレード3bがディスク3aへ向かって延びている。 The cover 3c covers the plurality of blades 3b from the first end 2a side in the axis O direction. In other words, the cover 3c is provided so as to face the disk 3a with the blade 3b interposed therebetween. The inner peripheral surface 11 of the cover 3c is formed so as to decrease in diameter from the side close to the second end 2b in the axis O direction toward the side close to the first end 2a. From the inner peripheral surface 11, the blade 3b described above extends toward the disk 3a.
 インペラ3Aには、軸線O方向の第一端部2a側を向くディスク3aの面と、ブレード3bと、カバー3cの内周面11とによって、軸線O方向の第一端部2aに近い側から第二端部2bに近い側に向かうにつれて径方向外側に向かうように延びる流路が形成されている。
 この実施形態における遠心圧縮機1の回転軸2は、軸線O方向に複数のインペラ3Aを備えており、これにより多段式インペラ群3Gが構成されている。
The impeller 3A has a surface of the disk 3a facing the first end portion 2a in the axis O direction, the blade 3b, and the inner peripheral surface 11 of the cover 3c from the side close to the first end portion 2a in the axis O direction. A flow path extending toward the radially outer side is formed toward the side closer to the second end 2b.
The rotary shaft 2 of the centrifugal compressor 1 in this embodiment is provided with a plurality of impellers 3A in the direction of the axis O, thereby constituting a multistage impeller group 3G.
 ケーシング6は、筒状に形成され、回転軸2、インペラ3A、および、ジャーナル軸受5A等を収容する。ケーシング6は、ジャーナル軸受5Aを介して回転軸2を回転自在に支持している。これによりケーシング6に対して回転軸2に取り付けられたインペラ3Aが相対回転可能となっている。 The casing 6 is formed in a cylindrical shape and accommodates the rotating shaft 2, the impeller 3A, the journal bearing 5A, and the like. The casing 6 rotatably supports the rotary shaft 2 via the journal bearing 5A. As a result, the impeller 3A attached to the rotary shaft 2 can rotate relative to the casing 6.
 ケーシング6は、吸込み口6aと、接続流路6bと、ケーシング流路6cと、接続流路6dと、排出口6eとを備えている。 The casing 6 includes a suction port 6a, a connection channel 6b, a casing channel 6c, a connection channel 6d, and a discharge port 6e.
 吸込み口6aは、軸線O方向においてケーシング6の第一端部2aに近い側に形成されている。この吸込み口6aは、外部から供給されるガスを受け入れる。この吸込み口6aは、ケーシング6の外周面6fのうち、軸線O方向における最も第一端部2aに近い側に配置されている。 The suction port 6a is formed on the side close to the first end 2a of the casing 6 in the axis O direction. The suction port 6a receives gas supplied from the outside. The suction port 6a is disposed on the outermost surface 6f of the casing 6 on the side closest to the first end portion 2a in the axis O direction.
 接続流路6bは、吸込み口6aと、複数のインペラ3Aのうち最も第一端部2aに近い側に配置された一段目のインペラ3Aとを接続する。つまり、この接続流路6bは、吸込み口6aが受け入れたガスを一段目のインペラ3Aに供給する。 The connection flow path 6b connects the suction port 6a and the first stage impeller 3A arranged closest to the first end 2a among the plurality of impellers 3A. That is, the connection flow path 6b supplies the gas received by the suction port 6a to the first stage impeller 3A.
 ケーシング流路6cは、軸線O方向で隣り合うインペラ3Aの流路同士を接続する。より具体的には、上流側に配置されるインペラ3Aの外周端部付近のインペラ収容空間と、下流側に配置されるインペラ3Aの前端部付近のインペラ収容空間とを連通させる。ケーシング流路6cは、上流側に配置されたインペラ3Aにより昇圧されたガスを一旦径方向外側に導いた後、径方向内側に導いて下流側に配置されたインペラ3Aの前端部に供給する。これにより、ケーシング流路6cを流れるガスは、複数のインペラ3Aによって段階的に昇圧される。ケーシング流路6cには、ディフューザ、リターンベーン等を設けても良い。 The casing flow path 6c connects the flow paths of the impellers 3A adjacent in the axis O direction. More specifically, the impeller accommodating space near the outer peripheral end of the impeller 3A arranged on the upstream side and the impeller accommodating space near the front end of the impeller 3A arranged on the downstream side are communicated. The casing flow path 6c guides the gas boosted by the impeller 3A disposed on the upstream side to the radially outer side, then guides the gas to the radially inner side and supplies it to the front end portion of the impeller 3A disposed on the downstream side. Thereby, the gas flowing through the casing flow path 6c is stepped up stepwise by the plurality of impellers 3A. A diffuser, a return vane, or the like may be provided in the casing flow path 6c.
 接続流路6dは、最も第二端部2bに近い側に配置された最終段のインペラ3Aと、排出口6eとを接続する。つまり、この接続流路6dは、多段式インペラ群3Gにより昇圧されたガスを排出口6eへ導く。
 排出口6eは、接続流路6dにより導かれたガスを、ケーシング6の外部へ排出する。この排出口6eは、ケーシング6の外周面6fのうち、軸線O方向における最も第二端部2bに近い側に配置されている。
The connection flow path 6d connects the final stage impeller 3A disposed on the side closest to the second end 2b and the discharge port 6e. That is, the connection flow path 6d guides the gas boosted by the multistage impeller group 3G to the discharge port 6e.
The discharge port 6 e discharges the gas guided by the connection flow path 6 d to the outside of the casing 6. The outlet 6e is disposed on the outermost surface 6f of the casing 6 on the side closest to the second end 2b in the axis O direction.
 図2は、この発明の第一実施形態におけるインペラの拡大図である。
 図2に示すように、インペラ3Aのカバー3cは、内周面11と、外周面12と、先端面13と、後端面14と、をそれぞれ備えている。内周面11は、上記した通りの形状であり、図2に示す軸線Oを含む断面では凸曲面となっている。
FIG. 2 is an enlarged view of the impeller in the first embodiment of the present invention.
As shown in FIG. 2, the cover 3 c of the impeller 3 </ b> A includes an inner peripheral surface 11, an outer peripheral surface 12, a front end surface 13, and a rear end surface 14. The inner peripheral surface 11 has a shape as described above, and is a convex curved surface in a cross section including the axis O shown in FIG.
 外周面12は、内周面11と同様に、軸線O方向の第二端部2bに近い側(図2における紙面右側)から第一端部2aに近い側(図2における紙面左側)に向かうに従って縮径するように形成されている。この外周面12は、図2に示す軸線Oを含む断面では凹曲面となっている。外周面12は、インペラ3Aが収容されるケーシング6の内周面6gと僅かな隙間を介して対向するように配置されている。外周面12は、軸線O方向の第二端部2bに近い側から第一端部2aに近い側に向かうに従って、内周面11から漸次離間している。言い換えれば、カバー3cは、第二端部2bに近い側から第一端部2aに近い側に向かって徐々にその厚さが増加するように形成されている。ケーシング6の内周面6gとカバー3cの外周面12との間には、ラビリンスシール等のシール機構を設けても良い。 As with the inner peripheral surface 11, the outer peripheral surface 12 is directed from the side close to the second end 2 b in the axis O direction (the right side in FIG. 2) to the side close to the first end 2 a (the left side in FIG. 2). The diameter is reduced according to the above. The outer peripheral surface 12 is a concave curved surface in a cross section including the axis O shown in FIG. The outer peripheral surface 12 is disposed so as to face the inner peripheral surface 6g of the casing 6 in which the impeller 3A is accommodated via a slight gap. The outer peripheral surface 12 is gradually separated from the inner peripheral surface 11 as it goes from the side close to the second end 2b in the direction of the axis O toward the side close to the first end 2a. In other words, the cover 3c is formed so that its thickness gradually increases from the side close to the second end 2b toward the side close to the first end 2a. A seal mechanism such as a labyrinth seal may be provided between the inner peripheral surface 6g of the casing 6 and the outer peripheral surface 12 of the cover 3c.
 先端面13は、軸線O方向の第一端部2aに近い側の内周面11の端部11aから軸線Oを中心とした径方向の外側に向かって延びている。つまり、この先端面13は、軸線O方向の第一端部2a側を向いている。この先端面13は、内周面11の端部11aと、軸線O方向の第一端部2aに近い側の外周面12の端部12aとに渡って形成されている。この実施形態において先端面13は、軸線Oに垂直な平面で形成されている。この実施形態におけるケーシング6の内周面6gには、先端面13と対向する平面が形成されている。 The front end surface 13 extends from the end portion 11a of the inner peripheral surface 11 on the side close to the first end portion 2a in the axis O direction toward the outer side in the radial direction with the axis O as the center. That is, the tip surface 13 faces the first end 2a side in the axis O direction. The tip surface 13 is formed across the end 11a of the inner peripheral surface 11 and the end 12a of the outer peripheral surface 12 on the side close to the first end 2a in the axis O direction. In this embodiment, the tip surface 13 is formed by a plane perpendicular to the axis O. A flat surface facing the tip surface 13 is formed on the inner peripheral surface 6g of the casing 6 in this embodiment.
 後端面14は、軸線O方向における第二端部2bに近い側において、内周面11の端部11bと外周面12の端部12bとに渡るように形成されている。 The rear end surface 14 is formed so as to extend over the end portion 11b of the inner peripheral surface 11 and the end portion 12b of the outer peripheral surface 12 on the side close to the second end portion 2b in the axis O direction.
 ブレード3bは、軸線O方向における第一端部2aに近い側の縁部である前縁部20を備えている。この前縁部20は、内周面11と先端面13との交わる境界部Kから、軸線Oを中心とした径方向内側に向かって延びている。前縁部20は、先端面13と連続するように形成することができる。この実施形態における前縁部20は、直線に近い僅かに湾曲した曲線状で形成される。前縁部20は、更に、軸線Oに垂直な平面に対して、軸線Oを中心とする径方向の外側から内側に向かうほど第二端部2b側に配置されるように傾斜している。このように前縁部20が傾斜していることで、ブレード3bにおいて、カバー3cに近い側の前縁部20からブレード3bの後縁部21までの距離と、ディスク3aに近い側の前縁部20からブレード3bの後縁部21までの距離との差が小さくなっている。上述した境界部Kは、内周面11と先端面13との交わる位置のみではなく、例えば、内周面11と先端面13との交わる位置から、1mmから2mm程度ずれた位置も含んでいる(以下、第二実施形態も同様)。 The blade 3b includes a front edge portion 20 that is an edge portion on the side close to the first end portion 2a in the axis O direction. The front edge portion 20 extends from the boundary portion K where the inner peripheral surface 11 and the tip surface 13 intersect toward the radially inner side with the axis O as the center. The front edge portion 20 can be formed so as to be continuous with the distal end surface 13. The front edge portion 20 in this embodiment is formed in a slightly curved shape close to a straight line. The front edge 20 is further inclined with respect to a plane perpendicular to the axis O so as to be arranged on the second end 2b side from the radially outer side centering on the axis O toward the inner side. As the front edge 20 is inclined in this manner, in the blade 3b, the distance from the front edge 20 on the side close to the cover 3c to the rear edge 21 of the blade 3b and the front edge on the side close to the disk 3a. The difference from the distance from the portion 20 to the rear edge portion 21 of the blade 3b is small. The boundary K described above includes not only the position where the inner peripheral surface 11 and the tip surface 13 intersect, but also includes, for example, a position shifted by about 1 mm to 2 mm from the position where the inner peripheral surface 11 and the tip surface 13 intersect. (The same applies to the second embodiment below).
 図3は、横軸をブレードに対するスパン方向の位置(Span Normalized)、縦軸をガスの周方向速度の絶対値(Vt_abs)としたグラフである。
 図3のグラフにおいて、破線は、比較例である。この比較例は、ブレード3bの前縁部20が、境界部Kよりも第二端部2bに近い側の位置から径方向内側に延びる場合である。図3のグラフにおいて、実線は、上述した実施形態(実施例)の場合である。図3に示すように、比較例では、スパン方向において、ブレード3bの前縁部20の位置(図3中、矢印で示す)の直前に、ガスの周方向速度の絶対値が上昇する領域がある。これは、ブレード3bの前縁部20よりも第一端部2aに近い側に配置されたカバー3cと、ガスと、が接触してしまうことで、ガスの周方向速度の絶対値が上昇していると考えられる。
FIG. 3 is a graph in which the horizontal axis represents the position in the span direction with respect to the blade (Span Normalized), and the vertical axis represents the absolute value (Vt_abs) of the circumferential velocity of the gas.
In the graph of FIG. 3, a broken line is a comparative example. In this comparative example, the front edge 20 of the blade 3b extends radially inward from a position closer to the second end 2b than the boundary K. In the graph of FIG. 3, the solid line is the case of the above-described embodiment (example). As shown in FIG. 3, in the comparative example, in the span direction, there is a region in which the absolute value of the circumferential velocity of the gas increases immediately before the position of the front edge 20 of the blade 3b (indicated by an arrow in FIG. 3). is there. This is because the absolute value of the circumferential speed of the gas increases because the cover 3c disposed closer to the first end 2a than the front edge 20 of the blade 3b comes into contact with the gas. It is thought that.
 これに対して、この実施形態におけるインペラ3Aは、境界部Kから径方向内側に向かって前縁部20が延びている。そのため、ブレード3bの前縁部20の直前において、ガスとカバー3cとの接触によるガスの周方向速度の絶対値の上昇が発生していない。 On the other hand, in the impeller 3A in this embodiment, the front edge 20 extends from the boundary K toward the inside in the radial direction. Therefore, immediately before the front edge portion 20 of the blade 3b, an increase in the absolute value of the circumferential speed of the gas due to contact between the gas and the cover 3c does not occur.
 次に、上述したインペラ3Aの製造方法について説明する。
 図4は、この発明の第一実施形態におけるインペラの製造方法を示すフローチャートである。
 まず、ステンレス等の金属により、例えば、カバー3cの外周面12と先端面13とが形成された母材を形成する(ステップS01)。
 次いで、図2に示すような切削工具Tを用いてブレード3b、カバー3cの内周面11、および、ディスク3aを切削加工により成形する(ステップS02)。この際、ブレード3bの前縁部20を、カバー3cの内周面11と先端面13との境界部Kから径方向内側に向かって延びるように、ブレード3bを切削により形成する。その後、必要に応じて、表面研摩等の仕上げ加工を行う。
Next, a method for manufacturing the impeller 3A described above will be described.
FIG. 4 is a flowchart showing a method for manufacturing an impeller in the first embodiment of the present invention.
First, a base material on which the outer peripheral surface 12 and the front end surface 13 of the cover 3c are formed is formed of a metal such as stainless steel (step S01).
Next, the blade 3b, the inner peripheral surface 11 of the cover 3c, and the disk 3a are formed by cutting using a cutting tool T as shown in FIG. 2 (step S02). At this time, the blade 3b is formed by cutting so that the front edge portion 20 of the blade 3b extends radially inward from the boundary K between the inner peripheral surface 11 and the tip surface 13 of the cover 3c. Then, finishing processing such as surface polishing is performed as necessary.
 上述した第一実施形態によれば、ブレード3bの前縁部20よりも軸線O方向の第一端部2a側にカバー3cが突出することを抑制できる。そのため、工具がカバー3cに干渉することを抑制して、容易に加工を行うことができる。また、カバー3cの回転によりカバー3cの回転によりブレード3bの前縁部20の直前で生じていた旋回流を低減できる。そのため、カバー3c側において、ブレード3bの前縁部20付近における境界層を薄くすることができ、インペラ3Aの性能を向上できる。 According to the first embodiment described above, it is possible to prevent the cover 3c from projecting toward the first end 2a side in the axis O direction from the front edge 20 of the blade 3b. Therefore, it can suppress that a tool interferes with cover 3c, and can process it easily. Further, the rotation of the cover 3c can reduce the swirling flow generated immediately before the front edge 20 of the blade 3b due to the rotation of the cover 3c. Therefore, the boundary layer in the vicinity of the front edge portion 20 of the blade 3b can be thinned on the cover 3c side, and the performance of the impeller 3A can be improved.
(第二実施形態)
 次に、この発明の第二実施形態におけるインペラを図面に基づき説明する。この第二実施形態は、上述した第一実施形態と先端面13の形状が異なるだけである。そのため、第一実施形態と同一部分に同一符号を付して説明するとともに、重複説明を省略する。
(Second embodiment)
Next, an impeller according to a second embodiment of the present invention will be described with reference to the drawings. This second embodiment differs from the first embodiment described above only in the shape of the tip surface 13. For this reason, the same parts as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
 図5は、この発明の第二実施形態における図2に相当する拡大図である。
 図5に示すように、第二実施形態におけるインペラ3Bは、ディスク3aと、ブレード3bと、カバー103cと、をそれぞれ有している。
 カバー103cは、複数のブレード3bを軸線O方向の第一端部2aに近い側(図3における紙面左側)から覆っている。カバー103cは、ディスク3aと対向するように設けられ、内周面11と、外周面12と、先端面113と、後端面14と、をそれぞれ備えている。
FIG. 5 is an enlarged view corresponding to FIG. 2 in the second embodiment of the present invention.
As shown in FIG. 5, the impeller 3B in the second embodiment includes a disk 3a, a blade 3b, and a cover 103c.
The cover 103c covers the plurality of blades 3b from the side close to the first end 2a in the axis O direction (the left side in FIG. 3). The cover 103c is provided so as to face the disk 3a, and includes an inner peripheral surface 11, an outer peripheral surface 12, a front end surface 113, and a rear end surface 14.
 内周面11、外周面12、および、後端面14は、上述した第一実施形態と同様の構成である。すなわち、内周面11は、軸線O方向の第二端部2bに近い側(図3における紙面右側)から第一端部2aに近い側に向かうに従って縮径するように形成されている。この内周面11から、ブレード3bがディスク3aに向かって延びている。 The inner peripheral surface 11, the outer peripheral surface 12, and the rear end surface 14 have the same configuration as in the first embodiment described above. That is, the inner peripheral surface 11 is formed so as to decrease in diameter from the side close to the second end 2b in the axis O direction (the right side in FIG. 3) toward the side close to the first end 2a. From this inner peripheral surface 11, the blade 3b extends toward the disk 3a.
 外周面12は、内周面11と同様に、軸線O方向の第二端部2bに近い側から第一端部2aに近い側に向かうに従って縮径するように形成されている。この外周面12は、収容されるケーシング6の内周面6gと僅かな隙間を介して対向するように配置されている。外周面12は、軸線O方向の第二端部2b側に近いから第一端部2aに近い側に向かうに従って、内周面11から漸次離間している。 As with the inner peripheral surface 11, the outer peripheral surface 12 is formed so that its diameter decreases from the side close to the second end 2b in the axis O direction toward the side close to the first end 2a. The outer peripheral surface 12 is disposed so as to face the inner peripheral surface 6g of the casing 6 to be accommodated with a slight gap. Since the outer peripheral surface 12 is close to the second end 2b side in the axis O direction, the outer peripheral surface 12 is gradually separated from the inner peripheral surface 11 toward the side close to the first end 2a.
 後端面14は、軸線O方向における第二端部2bに近い側において内周面11の端部11bと外周面12の端部12bとに渡って形成されている。 The rear end surface 14 is formed across the end 11b of the inner peripheral surface 11 and the end 12b of the outer peripheral surface 12 on the side close to the second end 2b in the axis O direction.
 先端面113は、内周面11の軸線O方向の第一端部2aに近い側の端部11aから軸線Oを中心とした径方向の外側に向かって延びている。この先端面113は、軸線O方向の第一端部2a側を向いている。この先端面113は、内周面11の端部11aと、外周面12の第一端部2aに近い側の端部12aとに渡って形成されている。この第二実施形態における先端面113は、その少なくとも一部が、軸線Oを含む断面において凸状の曲面となっている。 The front end surface 113 extends from the end portion 11a of the inner peripheral surface 11 near the first end portion 2a in the axis O direction toward the outside in the radial direction with the axis O as the center. This front end surface 113 faces the first end portion 2a side in the axis O direction. The tip surface 113 is formed across the end portion 11a of the inner peripheral surface 11 and the end portion 12a on the side of the outer peripheral surface 12 near the first end portion 2a. At least a part of the front end surface 113 in the second embodiment is a convex curved surface in a cross section including the axis O.
 より具体的には、この第二実施形態におけるカバー103cは、軸線O方向において、第一端部2aに近い側の内周面11の端部11aが、第一端部2aに近い側の外周面12の端部12aよりも、第二端部2bに近い側に配置されている。これら端部11aと端部12aとに渡って形成される先端面113は、軸線Oを中心とした径方向の内側の部分に、径方向の外側から内側に向かうにつれて、軸線O方向における第一端部2aに近い側から第二端部2bに近い側に向かうように湾曲する凸曲面が形成されている。 More specifically, the cover 103c in the second embodiment has an outer periphery on the side where the end 11a of the inner peripheral surface 11 on the side close to the first end 2a is close to the first end 2a in the axis O direction. It arrange | positions rather than the edge part 12a of the surface 12 at the side near the 2nd edge part 2b. The tip surface 113 formed across the end portion 11a and the end portion 12a is a first inner portion in the axis O direction from the outer side in the radial direction toward the inner side in the radial direction around the axis O. A convex curved surface is formed so as to curve from the side close to the end 2a toward the side close to the second end 2b.
 ブレード3bは、第一実施形態と同様に、上記先端面113と内周面11との境界部Kから軸線Oを中心とした径方向内側に向かって延びている。この第二実施形態においても、ブレード3bの前縁部20は、直線に近い僅かに湾曲した曲線状に形成されている。ブレード3bは、更に、軸線Oに垂直な平面に対して、軸線Oを中心とする径方向の外側から内側に向かうにつれて第二端部2bに近い側に配置されるように傾斜している。 The blade 3b extends from the boundary K between the tip surface 113 and the inner peripheral surface 11 inward in the radial direction with the axis O as the center, as in the first embodiment. Also in the second embodiment, the front edge portion 20 of the blade 3b is formed in a curved shape that is slightly curved close to a straight line. The blade 3b is further inclined with respect to a plane perpendicular to the axis O so as to be arranged closer to the second end portion 2b as it goes inward from the outer side in the radial direction around the axis O.
 上述した第二実施形態によれば、先端面113が凸曲面を備えることで、切削加工等を行う際に、切削工具Tの干渉を抑制できる。仮に切削工具Tが干渉したとしても凸曲面であることから切削工具Tの移動などが妨げられたり、切削工具Tが損傷したりすることを抑制できる。 According to the second embodiment described above, the tip surface 113 has a convex curved surface, so that interference of the cutting tool T can be suppressed when performing cutting or the like. Even if the cutting tool T interferes, since it is a convex curved surface, it is possible to suppress the movement of the cutting tool T or the like, or the cutting tool T from being damaged.
(その他の変形例)
 上述した各実施形態においては、ブレード3bの前縁部20の全体が、境界部Kから径方向内側に延びる場合を一例に説明した。しかし、この構成に限られない。
 図6は、この発明の第一実施形態の変形例における図2に相当する拡大図である。
 図6に示すように、インペラ3Cの前縁部20Cが、その径方向外側に、軸線O方向の第一端部2aに近い側に突出する突出縁部22を備えていても良い。
 この突出縁部22は、前縁部20Cの残部20Cbの延長線Eよりも、軸線O方向の第一端部2a側に突出するように形成されており、境界部Kから軸線Oを中心とした径方向の内側、且つ、第二端部2bに近い側に斜めに延びて、残部20Cbに連続するように形成されている。この突出縁部22を設けることで、前縁部20Cを、例えば、第一実施形態のように軸線O方向で前縁部20の全体を第一端部2aに近い側に配置できない場合であっても、境界部Kから軸線Oを中心とした径方向の内側に延びるように前縁部20Cを形成することができる。
(Other variations)
In each embodiment mentioned above, the case where the whole front edge part 20 of the braid | blade 3b extended in the radial direction inner side from the boundary part K was demonstrated to an example. However, it is not limited to this configuration.
FIG. 6 is an enlarged view corresponding to FIG. 2 in a modification of the first embodiment of the present invention.
As shown in FIG. 6, the front edge portion 20 </ b> C of the impeller 3 </ b> C may include a protruding edge portion 22 that protrudes on the outer side in the radial direction on the side close to the first end portion 2 a in the axis O direction.
The protruding edge portion 22 is formed so as to protrude toward the first end portion 2a side in the axis O direction from the extension line E of the remaining portion 20Cb of the front edge portion 20C, and the axis O is centered from the boundary K. It is formed so as to extend obliquely toward the inner side in the radial direction and closer to the second end 2b and to be continuous with the remaining portion 20Cb. By providing the protruding edge 22, the front edge 20C cannot be arranged on the side close to the first end 2a in the direction of the axis O as in the first embodiment, for example. However, the front edge portion 20C can be formed so as to extend from the boundary portion K inward in the radial direction with the axis O as the center.
 この発明は、上述した各実施形態に限定されるものではなく、この発明の趣旨を逸脱しない範囲において、上述した実施形態に種々の変更を加えたものを含む。すなわち、実施形態で挙げた具体的な形状や構成等は一例にすぎず、適宜変更が可能である。
 上述した実施形態においては、遠心圧縮機を一例に説明したが、圧縮機に限られず、例えば、タービン等の回転機械にも適用できる。
The present invention is not limited to the above-described embodiments, and includes various modifications made to the above-described embodiments without departing from the spirit of the present invention. That is, the specific shapes, configurations, and the like given in the embodiment are merely examples, and can be changed as appropriate.
In the embodiment described above, the centrifugal compressor has been described as an example. However, the present invention is not limited to the compressor, and can be applied to a rotating machine such as a turbine.
 上述した実施形態において、遠心圧縮機1の回転軸2に、インペラ3Aが直列に6個設けられた一例を示した。しかし、遠心圧縮機1は、インペラ3Aが、回転軸2に対して少なくとも1個設けられていればよい。同様に、インペラ3B,3Cを備える場合についても、インペラ3B,3Cを一つだけ設けるようにしても良い。 In the above-described embodiment, an example in which six impellers 3A are provided in series on the rotary shaft 2 of the centrifugal compressor 1 is shown. However, the centrifugal compressor 1 only needs to have at least one impeller 3 </ b> A with respect to the rotating shaft 2. Similarly, in the case where the impellers 3B and 3C are provided, only one impeller 3B and 3C may be provided.
 さらに、上述した各実施形態においてはインペラ3A,3B,3Cを切削加工する場合について説明したが、放電加工で成形するようにしても良い。この放電加工の場合も、この発明を適用することで、放電極の形状を複雑に形成する必要が無くなり、コスト増加を抑制できる。 Further, in each of the above-described embodiments, the case where the impellers 3A, 3B, and 3C are cut has been described. However, they may be formed by electric discharge machining. Also in the case of this electric discharge machining, by applying the present invention, it is not necessary to form the discharge electrode in a complicated shape, and an increase in cost can be suppressed.
 この発明は、インペラに適用できる。この発明によれば、容易に加工を行うことが可能となる。 This invention can be applied to an impeller. According to this invention, it becomes possible to process easily.
 1 遠心圧縮機
 2 回転軸
 2a 第一端部
 2b 第二端部
 3A,3B,3C インペラ
 3a ディスク
 3b ブレード
 3c,103c カバー
 3G 多段式インペラ群
 5A ジャーナル軸受
 5B スラスト軸受
 6 ケーシング
 6a 吸込み口
 6b 接続流路
 6c ケーシング流路
 6d 接続流路
 6e 排出口
 6f 外周面
 6g 内周面
 7 シール装置
 11 内周面
 11a 端部
 11b 端部
 12 外周面
 12a 端部
 12b 端部
 13 先端面
 14 後端面
 20 前縁部
 21 後縁部
 22 突出縁部
 E 延長線
 T 切削工具 
DESCRIPTION OF SYMBOLS 1 Centrifugal compressor 2 Rotating shaft 2a 1st end part 2b 2nd end part 3A, 3B, 3C Impeller 3a Disk 3b Blade 3c, 103c Cover 3G Multistage impeller group 5A Journal bearing 5B Thrust bearing 6 Casing 6a Inlet 6b Connection flow Road 6c Casing flow path 6d Connection flow path 6e Discharge port 6f Outer peripheral surface 6g Inner peripheral surface 7 Sealing device 11 Inner peripheral surface 11a End portion 11b End portion 12 Outer peripheral surface 12a End portion 12b End portion 13 Front end surface 14 Rear end surface 20 Front edge Part 21 Rear edge 22 Projecting edge E Extension line T Cutting tool

Claims (5)

  1.  軸線を中心とした円盤状をなすディスクと、
     前記ディスクの軸線方向の第一側を向く面に、前記軸線の周方向に間隔をあけて形成された複数のブレードと、
     これら複数のブレードを軸線方向の第一側から囲うカバーと、を備え、
     前記カバーは、
     前記軸線方向の第二側からの第一側に向かうに従って縮径して前記ブレードと接続された内周面と、
     前記内周面の前記軸線方向の第一側の端部から径方向外側に向かって延びて前記軸線方向の第一側を向く先端面と、を有し、
     前記ブレードの前記軸線方向の第一側の縁部である前縁部は、前記内周面と前記先端面との境界から径方向内側に向かって延びているインペラ。
    A disc having a disc shape centered on the axis,
    A plurality of blades formed on the surface facing the first side in the axial direction of the disk, spaced apart in the circumferential direction of the axial line;
    A cover surrounding the plurality of blades from the first side in the axial direction,
    The cover is
    An inner peripheral surface connected to the blade with a reduced diameter toward the first side from the second side in the axial direction;
    A distal end surface extending radially outward from the end on the first axial side of the inner peripheral surface and facing the first side in the axial direction,
    A front edge portion that is an edge portion on a first side in the axial direction of the blade is an impeller that extends radially inward from a boundary between the inner peripheral surface and the tip surface.
  2.  前記先端面は、
     径方向内側ほど前記軸線方向の第二側に配置される凸曲面を備える請求項1に記載のインペラ。
    The tip surface is
    2. The impeller according to claim 1, further comprising a convex curved surface arranged on the second side in the axial direction toward a radially inner side.
  3.  前記前縁部は、
     その径方向外側に、前記軸線方向の第一側に突出する突出縁部を備える請求項1又は2に記載のインペラ。
    The front edge is
    3. The impeller according to claim 1, further comprising a protruding edge that protrudes to a first side in the axial direction on a radially outer side thereof.
  4.  請求項1から3の何れか一項に記載のインペラを備える回転機械。 A rotary machine comprising the impeller according to any one of claims 1 to 3.
  5.  軸線を中心とした円盤状をなすディスクと、
     前記ディスクの軸線方向の第一側を向く面に、前記軸線の周方向に間隔をあけて形成された複数のブレードと、
     これら複数のブレードを軸線方向の第一側から囲うカバーと、を有し、
     前記カバーが、前記軸線方向の第二側からの第一側に向かうに従って縮径して前記ブレードと接続された内周面と、前記内周面の前記軸線方向の第一側の端部から径方向外側に向かって延びて前記軸線方向の第一側を向く先端面と、を備えるインペラの製造方法であって、 前記ブレードの前記軸線方向の第一側の縁部である前縁部を、前記内周面と前記先端面との境界から径方向内側に向かって延びるように形成する工程を含むインペラの製造方法。
    A disc having a disc shape centered on the axis,
    A plurality of blades formed on the surface facing the first side in the axial direction of the disk, spaced apart in the circumferential direction of the axial line;
    A cover surrounding the plurality of blades from the first side in the axial direction,
    The cover is reduced in diameter toward the first side from the second side in the axial direction and is connected to the blade, and from the end on the first side in the axial direction of the inner peripheral surface A front end surface extending radially outward and facing a first side in the axial direction, the front edge being an edge on the first side in the axial direction of the blade. A method for manufacturing an impeller, including a step of forming a radially inner side from a boundary between the inner peripheral surface and the tip surface.
PCT/JP2017/010391 2016-03-18 2017-03-15 Impeller, rotary machine, and impeller manufacturing method WO2017159730A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17766726.8A EP3415767A4 (en) 2016-03-18 2017-03-15 Impeller, rotary machine, and impeller manufacturing method
US16/083,412 US20190078583A1 (en) 2016-03-18 2017-03-15 Impeller, rotary machine, and impeller manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016056045A JP2017172344A (en) 2016-03-18 2016-03-18 Impeller, rotary machine, and process of manufacturing impeller
JP2016-056045 2016-03-18

Publications (1)

Publication Number Publication Date
WO2017159730A1 true WO2017159730A1 (en) 2017-09-21

Family

ID=59851979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010391 WO2017159730A1 (en) 2016-03-18 2017-03-15 Impeller, rotary machine, and impeller manufacturing method

Country Status (4)

Country Link
US (1) US20190078583A1 (en)
EP (1) EP3415767A4 (en)
JP (1) JP2017172344A (en)
WO (1) WO2017159730A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116710660A (en) * 2021-04-22 2023-09-05 株式会社Ihi Impeller, centrifugal compressor, and method for manufacturing impeller

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB690951A (en) * 1950-04-26 1953-04-29 Carrier Engineering Co Ltd Improvements in or relating to centrifugal compressors
JPH0219696A (en) * 1988-07-06 1990-01-23 Matsushita Electric Ind Co Ltd Impeller of centrifugal fan

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB636290A (en) * 1947-01-09 1950-04-26 Lysholm Alf Improvements in diffusers for centrifugal compressors
US3884595A (en) * 1974-05-15 1975-05-20 Dresser Ind Impeller and shaft assembly
JP4146284B2 (en) * 2003-05-30 2008-09-10 三菱重工業株式会社 Centrifugal compressor
JP5606358B2 (en) * 2011-02-24 2014-10-15 三菱重工業株式会社 Impeller, rotor provided with the same, and method for manufacturing impeller
US10087950B2 (en) * 2013-01-28 2018-10-02 Mitsubishi Heavy Industries Compressor Corporation Centrifugal rotation machine
ITFI20130261A1 (en) * 2013-10-28 2015-04-29 Nuovo Pignone Srl "CENTRIFUGAL COMPRESSOR IMPELLER WITH BLADES HAVING AN S-SHAPED TRAILING EDGE"

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB690951A (en) * 1950-04-26 1953-04-29 Carrier Engineering Co Ltd Improvements in or relating to centrifugal compressors
JPH0219696A (en) * 1988-07-06 1990-01-23 Matsushita Electric Ind Co Ltd Impeller of centrifugal fan

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3415767A4 *

Also Published As

Publication number Publication date
JP2017172344A (en) 2017-09-28
EP3415767A1 (en) 2018-12-19
EP3415767A4 (en) 2019-03-06
US20190078583A1 (en) 2019-03-14

Similar Documents

Publication Publication Date Title
EP3009686B1 (en) Impeller and fluid machine
US9611742B2 (en) Impeller, rotor comprising same, and impeller manufacturing method
JP6716220B2 (en) Centrifugal compressor stage
JP2005307967A (en) Manufacturing method of centrifugal compressor and impeller
WO2018181343A1 (en) Centrifugal compressor
JP2008303767A (en) Rotary fluid machine and seal device therefor
JP2008309123A (en) Centrifugal compressor casing
JP2016053359A (en) Radial compressor stage
EP3096022A1 (en) Impeller and rotating machine provided with same
WO2017159730A1 (en) Impeller, rotary machine, and impeller manufacturing method
EP3567260B1 (en) Centrifugal rotary machine
US20170284412A1 (en) Radial compressor impeller and associated radial compressor
WO2016157584A1 (en) Impeller and centrifugal compressor
JP2017180155A (en) Centrifugal compressor
US20220372992A1 (en) Rotating machinery
JP5726242B2 (en) Impeller and rotating machine
JP2014238066A (en) Rotary machine
US11041497B1 (en) Centrifugal rotary machine
CN108884718B (en) Steam turbine rotor blade, steam turbine, and method for manufacturing steam turbine rotor blade
JP2003083292A (en) Impeller for high speed centrifugal pump
JP5951449B2 (en) Steam turbine
JP2016217132A (en) Steam turbine
JP2019002361A (en) Turbomachine
JP5409265B2 (en) Impeller and rotating machine
WO2019107132A1 (en) Impeller and rotary machine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017766726

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017766726

Country of ref document: EP

Effective date: 20180910

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766726

Country of ref document: EP

Kind code of ref document: A1