WO2017159615A1 - Route generation device - Google Patents

Route generation device Download PDF

Info

Publication number
WO2017159615A1
WO2017159615A1 PCT/JP2017/009985 JP2017009985W WO2017159615A1 WO 2017159615 A1 WO2017159615 A1 WO 2017159615A1 JP 2017009985 W JP2017009985 W JP 2017009985W WO 2017159615 A1 WO2017159615 A1 WO 2017159615A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
path
traveling
route
vehicle
Prior art date
Application number
PCT/JP2017/009985
Other languages
French (fr)
Japanese (ja)
Inventor
敏史 平松
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016052818A external-priority patent/JP6675135B2/en
Priority claimed from JP2016057086A external-priority patent/JP6437479B2/en
Priority claimed from JP2016060797A external-priority patent/JP6531055B2/en
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Publication of WO2017159615A1 publication Critical patent/WO2017159615A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0219Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • A01B69/001Steering by means of optical assistance, e.g. television cameras
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • A01B69/007Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow
    • A01B69/008Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow automatic

Definitions

  • the present invention relates to route generation in the case where there is a work area smaller than the work width in a work route where an unmanned travel work vehicle works in a work system where work is performed by the unmanned travel work vehicle.
  • a working vehicle coordination system has been known in which work on the ground is performed by a parent work vehicle and an unmanned operation type sub-work vehicle that follows the parent work vehicle (see, for example, Patent Document 2).
  • the parent work vehicle has a parent work travel route that travels in a straight line while performing ground work between turning areas at both ends in the turning area in the turning areas at both ends of the field by manned steering by the driver.
  • the travel path of the sub work vehicle consists of a sub work travel path that follows the parent work vehicle while performing work on the ground between the turn areas at both ends, and a child turn travel path in the turn area, and that path by unmanned operation I was going to travel.
  • the present invention has been made in view of the above circumstances, and when generating a work path, when a work area smaller than the work width of the work machine of the autonomous traveling work vehicle (unmanned travel production vehicle) is generated, It is possible to set how to process a work area that does not meet the work width, and when creating work paths for one work vehicle and the other work vehicle, one work vehicle turns at the end of the field and the other works.
  • An object of the present invention is to provide a work path and a path generation device capable of generating an optimum turning path so that a collision does not occur when traveling in a direction opposite to a work vehicle.
  • a storage unit capable of storing information on a traveling region in which a vehicle body portion travels, a width of the vehicle body portion, and / or a width of a traveling work which is a width of a working machine mounted on the vehicle body portion
  • a control unit capable of generating a work path by the work machine in the travel area;
  • the travel area includes a first area including the work path, and a second area set around the first area, and the control unit generates a work path in the first area.
  • the storage unit stores information of a traveling working length which is a length from a front end to a rear end in a state where a working machine is mounted on the vehicle body portion, and the control unit is a path length of the narrow working path However, if the traveling working length is less than a predetermined length, the working path is not generated in the narrow working path.
  • control unit can generate the work path based on a work start position, a work direction, and a work end position set for the traveling region, and the work path is set in the narrow work path. If not generated, the work end position set for the travel area can be set to a position different from the end position of the work by the work machine in the work path.
  • a setting unit configured to set a traveling mode by the first traveling working vehicle and the second traveling working vehicle, and a first traveling working vehicle according to the traveling mode set by the setting unit.
  • a plurality of work paths traveled by the second traveling work vehicle are arranged in parallel adjacently, and a work path generation unit capable of generating a work path to which a continuous work order is assigned to the adjacent work paths
  • a control unit for performing predetermined control and the setting unit sets that the work path along which the first traveling work vehicle and the second traveling work vehicle travel is a common work path as the traveling mode.
  • a setting unit configured to set a traveling mode by the first traveling working vehicle and the second traveling working vehicle, and a first traveling working vehicle according to the traveling mode set by the setting unit.
  • a plurality of work paths traveled by the second traveling work vehicle are arranged in parallel adjacently, and a work path generation unit capable of generating a work path to which a continuous work order is assigned to the adjacent work paths
  • a control unit for performing predetermined control and the setting unit sets that the work path along which the first traveling work vehicle and the second traveling work vehicle travel is a common work path as the traveling mode.
  • the control unit can generate, as the predetermined control, the work path in the case where the work paths traveled by the first traveling work vehicle and the second traveling work vehicle are different work paths.
  • the work path generation unit works the work path in which the first traveling work vehicle and the second traveling work vehicle are adjacent to each other, and the work path length of the first traveling work vehicle and the first travel
  • the difference in the length of the work path of the work vehicle is equal to or greater than the predetermined length and the work path becomes shorter, the work path that becomes the work path of the first traveling work vehicle is the work path of the second traveling work vehicle
  • the work path can be set according to the length of
  • the work path generation unit when the work path generation unit is an adjacent work path with different travel modes, the work path of the second traveling work vehicle is continuous to the adjacent work path in the first reciprocation.
  • the work path of the first traveling work vehicle is attached with a sequential work order to the two work paths disposed apart from the first one reciprocating path of the second traveling work vehicle. It is a thing.
  • a traveling region in which a vehicle body portion travels a storage unit capable of storing a turning radius preset for the vehicle body portion, a traveling route of the vehicle body portion in the traveling region, and the vehicle body portion
  • a control unit capable of generating a work path by a mounted working machine, the control unit generating a first area in which the work path is generated in the travel area, and a second area in which the travel path is generated It is possible to set an area, and of the plurality of work paths set in the first area, the movement of the vehicle body in the second area is necessary for the movement from the first work path to the second work path.
  • the first turning path without going straight and going backward and the second turning go without going straight straight Between the turning path and the third turning path with reverse It is possible to generate the traveling path including a Re of the turning path.
  • control unit includes a fourth turning path different from the first to third turning paths by changing the area ratio of the first area and the second area to widen the second area.
  • the travel route can be generated.
  • the present invention is characterized in that the control unit includes the traveling path including a fifth turning path including turning in a first turning direction and turning in a second turning direction opposite to the first turning direction. It is possible.
  • control unit performs the work by the work machine in the order of the first work path, the second work path, and the third work path, and the (n + 1) th work path from the predetermined n-th work path
  • Outline side view of autonomous traveling working vehicle and traveling working vehicle Control block diagram Diagram showing the initial screen Diagram showing farm setting Diagram showing the field area Figure showing a field where the last work path in the work area is a narrow work path Diagram showing the field when the work area is trapezoidal Figure showing the field when the work area is stepped Diagram showing the field when the first work path length is short Figure showing a field where a traveling work vehicle follows and works after an autonomously traveling work vehicle and turns to an adjacent strip
  • the figure which shows a field when the length of the work path of the adjacent strip differs by a predetermined length The figure which shows the field when the length of the work path of the adjacent strip differs by a predetermined length at the work end side Figure showing the field when the width of the work path of the adjacent strip is narrow by a predetermined length Diagram showing the field of collaborative work in which the autonomous traveling work vehicle performs the first work route Figure showing a field where there is an obstacle in the field and the work starting position of the autonomous mobile work vehicle is shifted
  • a diagram showing a first turning path without going straight and going backward A diagram showing a second turning path without going reverse and with going straight Diagram showing a third turning path with reverse Diagram showing details of the third turning path with reverse
  • Diagram showing the turning path when the third turning path is set in the modified field A diagram showing the turning path when the fifth turning path is set in the modified field Diagram showing the turning path when the third turning path can be set and not permitted Figure showing a field where the reverse side is the work start position to avoid the creation of a third turning path with reverse
  • An autonomous traveling work vehicle (which may be referred to as "unmanned vehicle” hereinafter) 1 capable of autonomous traveling unmanned and autonomously, and a manned traveling working vehicle operated by a worker (user) in coordination with the autonomous traveling work vehicle 1
  • the autonomous traveling working vehicle 1 and the traveling working vehicle 100 are respectively equipped with a rotary cultivating device as a working machine with the tractor 100 (which may be hereinafter referred to as a manned vehicle).
  • the working vehicle is not limited to a tractor, and may be a combine, etc.
  • the working machine is not limited to a rotary tiller, and may be a setting machine, a mower, a rake, a planter, a fertilizing machine, etc. May be
  • autonomous traveling means that the control unit (ECU) of the tractor controls a configuration related to traveling of the tractor and the tractor travels along a predetermined route.
  • ECU control unit
  • Performing agricultural work in a single field with unmanned vehicles and manned vehicles may be referred to as cooperative work of agricultural work, follow-up work, accompanying work, and the like.
  • unmanned vehicles and manned vehicles at the same time farming operations in different fields such as adjacent fields "To perform” may be included.
  • FIG. 1 is a side view showing a schematic configuration of an autonomous traveling working vehicle and a traveling working vehicle
  • FIG. 2 is a control block diagram showing a control configuration of them.
  • FIG. 1 and FIG. 2 an overall configuration of a tractor serving as the autonomous traveling work vehicle 1 will be described.
  • the engine 3 is installed inside the bonnet 2
  • the dashboard 14 is provided in the cabin 11 at the rear of the bonnet 2
  • the steering handle 4 serving as steering operation means is provided on the dashboard 14 It is done.
  • the turning of the steering wheel 4 turns the direction of the front wheels 9 and 9 via the steering device.
  • a steering actuator 40 for operating the steering device is connected to a steering controller 301 constituting the control unit 30.
  • the steering direction of the autonomous mobile work vehicle 1 is detected by the steering sensor 20.
  • the steering sensor 20 is an angle sensor such as a rotary encoder, and is disposed at the rotation base of the front wheel 9.
  • the detection configuration of the steering sensor 20 is not limited as long as the steering direction is recognized, and the rotation of the steering wheel 4 may be detected or the operation amount of the power steering may be detected.
  • the detected value obtained by the steering sensor 20 is input to the steering controller 301 of the control unit 30.
  • the control unit 30 includes a steering controller 301, an engine controller 302, a transmission control controller 303, a horizontal control controller 304, a work control controller 305, a positioning control unit 306, an autonomous traveling control controller 307, etc. And a storage device such as a RAM or a ROM, an interface, and the like, and the storage device stores programs, data, and the like for operation, and can be communicated so as to transmit and receive information, data, and the like by CAN communication.
  • a storage device such as a RAM or a ROM, an interface, and the like, and the storage device stores programs, data, and the like for operation, and can be communicated so as to transmit and receive information, data, and the like by CAN communication.
  • a driver's seat 5 is disposed behind the steering wheel 4, and a transmission case 6 is disposed below the driver's seat 5.
  • Rear axle cases 8 are connected to both left and right sides of the transmission case 6, and rear wheels 10 are supported by the rear axle cases 8 via axles.
  • the power from the engine 3 is shifted by the transmission (main transmission or sub transmission) in the transmission case 6 to drive the rear wheels 10 and 10.
  • the transmission is, for example, a hydraulic stepless transmission, in which a movable swash plate of a variable displacement hydraulic pump is operated by transmission means 44 such as a motor so as to be shiftable.
  • the transmission means 44 is connected to the transmission control controller 303 of the control unit 30.
  • the rotational speed of the rear wheel 10 is detected by the vehicle speed sensor 27 and is input to the transmission control controller 303 as the traveling speed.
  • the detection method of the vehicle speed and the arrangement position of the vehicle speed sensor 27 are not limited.
  • a PTO clutch and a PTO transmission are accommodated in the transmission case 6, the PTO clutch is turned on and off by the PTO ON / OFF unit 45, and the PTO ON / OFF unit 45 and the autonomous traveling controller 307 of the control unit 30 via the display unit 49. It is connected and control of connection and disconnection of power to the PTO shaft is possible.
  • the work machine controller 308 is provided so that control unique to the work machine can be performed, and the work machine controller 308 uses information communication wiring (so-called ISOBUS). And the work control controller 305.
  • a front axle case 7 is supported on a front frame 13 supporting the engine 3, front wheels 9 and 9 are supported on both sides of the front axle case 7, and power from the transmission case 6 can be transmitted to the front wheels 9 and 9. It is composed of
  • the front wheels 9 and 9 are steering wheels, and can be turned by the turning operation of the steering handle 4, and the front wheels 9 and 9 are steered left and right by a steering actuator 40 composed of a power steering cylinder serving as a driving means of a steering device. It is rotatable.
  • the steering actuator 40 is connected to the steering controller 301 of the control unit 30 and controlled.
  • An engine rotation number sensor 61, a water temperature sensor, an oil pressure sensor, and the like are connected to an engine controller 302 serving as an engine rotation control means so that the state of the engine can be detected.
  • the engine controller 302 detects the load from the set number of revolutions and the actual number of revolutions and controls the load so as not to be overloaded, and transmits the state of the engine 3 to the remote control device 112 described later so that the display device 113 can display it. ing.
  • a level sensor 29 for detecting the liquid level of fuel is disposed in the fuel tank 15 disposed below the step and connected to the display means 49.
  • the display means 49 is provided on the dashboard of the autonomous traveling work vehicle 1 Display the remaining amount of. Then, the remaining amount of fuel is calculated as the workable time by the autonomous traveling controller 307, information is transmitted to the remote control device 112 through the communication device 110, and the remaining amount of fuel and work are displayed on the display device 113 of the remote control device 112. The available time can be displayed.
  • the tachometer, the fuel gauge, the oil pressure, the display means for displaying an abnormality, and the display means capable of displaying the current position or the like may be configured separately.
  • the dashboard 14 there are disposed an engine tachometer, a fuel gauge, a hydraulic pressure, a monitor indicating an abnormality, and a display means 49 for displaying a set value or the like.
  • the display means 49 is a touch panel type, which also enables data input / selection, switch operation, button operation and the like.
  • a rotary tilling device 24 as a working machine is movably mounted on the rear of the vehicle body portion of the tractor as a working machine via a working machine mounting device 23.
  • a lift cylinder 26 is provided on the transmission case 6, and by extending and retracting the lift cylinder 26, a lift arm constituting the work implement mounting device 23 is turned to be able to lift and lower the rotary cultivator 24.
  • the lift cylinder 26 is expanded and contracted by the operation of the lift actuator 25, and the lift actuator 25 is connected to the horizontal control controller 304 of the control unit 30.
  • tilt cylinders are provided, and a tilt actuator 47 for operating the tilt cylinders is connected to the horizontal control controller 304.
  • a mobile GPS antenna (positioning antenna) 34 for enabling detection of position information and a data reception antenna 38 are connected to the positioning control unit 306 serving as a position detection unit, and the mobile GPS antenna 34 and data reception antenna 38 Provided on top.
  • the positioning control unit 306 is provided with a position calculation unit to calculate latitude and longitude, and can display the current position on the display unit 49 or the display device 113 of the remote control device 112.
  • GNSS satellite positioning systems
  • GPS is used. explain.
  • the autonomous traveling working vehicle 1 includes a gyro sensor 31 for obtaining posture change information of a vehicle body portion, and an azimuth angle detection unit 32 for detecting a traveling direction, and is connected to a control unit 30.
  • the traveling direction can be calculated from GPS position measurement, the azimuth detection unit 32 can be omitted.
  • the gyro sensor 31 detects an angular velocity of inclination (pitch) in the longitudinal direction of the vehicle body portion of the autonomous traveling work vehicle 1, an angular velocity of inclination (roll) in the lateral direction of the vehicle body portion, and an angular velocity of turning (yaw). By integrating and calculating the three angular velocities, it is possible to determine the inclination angle in the front-rear direction and the left-right direction of the vehicle body portion of the autonomous traveling working vehicle 1 and the turning angle.
  • Specific examples of the gyro sensor 31 include a mechanical gyro sensor, an optical gyro sensor, a fluid gyro sensor, a vibration gyro sensor, and the like.
  • the gyro sensor 31 is connected to the control unit 30, and inputs information on the three angular velocities to the control unit 30.
  • the azimuth detecting unit 32 detects the direction (advancing direction) of the autonomously traveling working vehicle 1.
  • a magnetic azimuth sensor or the like can be mentioned.
  • the azimuth detecting unit 32 inputs information to the autonomous traveling control controller 307 via CAN communication means.
  • the autonomous traveling control controller 307 calculates the signals acquired from the gyro sensor 31 and the azimuth angle detection unit 32 by the attitude / orientation calculation means, and the attitude of the autonomous traveling work vehicle 1 (direction, vehicle body front and rear direction and vehicle body left and right Find the inclination of the direction, the turning direction).
  • GPS Global Positioning System
  • Positioning methods using GPS include various methods such as single positioning, relative positioning, DGPS (differential GPS) positioning, RTK-GPS (real-time kinematic-GPS) positioning, and any of these methods can be used.
  • DGPS differential GPS
  • RTK-GPS real-time kinematic-GPS
  • RTK-GPS positioning simultaneously performs GPS observation with a reference station whose position is known and a mobile station whose position is to be determined, and transmits data observed by the reference station to the mobile station in real time by a method such as radio, etc. Is a method of obtaining the position of the mobile station in real time based on the position result of.
  • a positioning control unit 306 serving as a mobile station, a mobile GPS antenna 34 and a data receiving antenna 38 are disposed in the autonomous traveling work vehicle 1, and a fixed communication device 35 serving as a reference station, a fixed GPS antenna 36 and a data transmitting antenna 39 are disposed at predetermined positions.
  • phase measurement relative positioning
  • data measured by the fixed communication device 35 of the reference station is transmitted from the data transmission antenna 39 to the data reception antenna 38 .
  • the mobile GPS antenna 34 disposed on the autonomous mobile work vehicle 1 receives signals from the GPS satellites 37, 37. This signal is transmitted to the positioning control unit 306 and positioned. Then, at the same time, signals from the GPS satellites 37 are received by the fixed GPS antenna 36 serving as a reference station, measured by the fixed communication device 35 and transmitted to the positioning control unit 306, and the observed data is analyzed and moved Determine the station's position.
  • the autonomous traveling controller 307 is provided as an autonomous traveling means for causing the autonomous traveling work vehicle 1 to autonomously travel. That is, the traveling state of the autonomous traveling working vehicle 1 is acquired as various information by the various information acquiring units connected to the autonomous traveling controller 307, and the autonomous traveling working vehicle 1 is acquired by the various control units connected to the autonomous traveling controller 307. Control autonomous driving. Specifically, the radio waves transmitted from the GPS satellites 37, 37, ...
  • the position control unit 306 obtains position information of the vehicle body portion at set time intervals, and the vehicle body from the gyro sensor 31 and the azimuth angle detector 32
  • the steering actuator 40 and the gear shift so that the vehicle body section travels along a preset route (traveling route and working route) R based on the position information, displacement information, and orientation information.
  • Means 44, raising and lowering actuator 25, PTO on / off means 45, engine controller 302 and the like are controlled to enable autonomous traveling and automatic work.
  • an obstacle sensor 41 is disposed on the autonomous traveling work vehicle 1 and connected to the control unit 30 so as not to collide with the obstacle.
  • the obstacle sensor 41 is configured by a laser sensor, an ultrasonic sensor, or a camera, disposed at the front, side or rear of the vehicle body and connected to the controller 30, and the controller 30 controls the front or side of the vehicle It detects whether there is an obstacle on the side or the back, and controls to stop traveling when the obstacle approaches within the set distance.
  • the autonomous traveling work vehicle 1 is also connected to the control unit 30 with a camera 42F for photographing the front, a work machine for the rear, and a camera 42R for photographing the field condition after work.
  • the cameras 42F and 42R are disposed on the front and rear of the roof of the cabin 11 in this embodiment, but the arrangement position is not limited, and the front and rear of the cabin 11 and one camera 42 may be arranged around the body portion and rotated around the vertical axis to photograph the surroundings, or a plurality of cameras 42 may be arranged at the four corners of the body portion to photograph the periphery of the body portion.
  • the cameras 42F and 42R may be disposed on the back side of the emblem.
  • a through hole or a predetermined gap is set in the emblem, and the lenses of the cameras 42F and 42R correspond to the position of the through hole or the gap, so that photographing is not hindered.
  • the images taken by the cameras 42F and 42R are displayed on the display device 113 of the remote control device 112 provided on the traveling work vehicle 100.
  • the remote control device 112 sets a route R of the autonomous traveling work vehicle 1 described later, remotely operates the autonomous traveling work vehicle 1, monitors the traveling state of the autonomous traveling work vehicle 1, and monitors the working state of the working machine. , And stores operation data, and includes a control unit (CPU or memory) 130 on the operation side, a communication device 111, a display device 113, a storage unit 114, and the like.
  • a control unit CPU or memory
  • the remote operating device 112 is mounted on the traveling working vehicle 100 to enable the autonomous traveling working vehicle 1 to be operated.
  • the basic configuration of the traveling working vehicle 100 is substantially the same as that of the autonomous traveling working vehicle 1, and thus the detailed description will be omitted.
  • the traveling work vehicle 100 (or the remote control device 112) may be configured to include a control unit for GPS.
  • the remote control device 112 can be attached to and detached from an attachment portion (an arm member capable of attaching and fixing, for example, the remote control device 112, not shown) provided on a dashboard of the traveling working vehicle 100 and the autonomous traveling working vehicle 1 or a pillar of the cabin 11. And The remote control device 112 may be operated while attached to the mounting portion of the traveling work vehicle 100 or may be carried out by carrying it out of the traveling working vehicle 100 and attached to the mounting portion of the autonomous traveling work vehicle 1 It is also possible to operate.
  • the remote control device 112 can be configured by, for example, a wireless communication terminal such as a laptop computer or a tablet personal computer. In this embodiment, it is configured by a tablet computer.
  • the remote control device 112 and the autonomous traveling work vehicle 1 are configured to be able to communicate with each other wirelessly, and the autonomous traveling work vehicle 1 and the remote control device 112 are respectively provided with communication devices 110 and 111 for communicating.
  • the communication device 111 is integrally configured with the remote control device 112.
  • the communication means are configured to be able to communicate with each other via a wireless LAN such as WiFi.
  • the remote control device 112 is provided with a display device 113 as a touch panel type operation screen that can be operated by touching a screen, and the communication device 111, the control unit 130, the storage unit 114, a battery, etc. in the case.
  • specifications of the autonomous traveling working vehicle 1, the traveling working vehicle 100, and the working machine (total length of the main body and the working machine, various lengths such as width and height, engine type and horsepower, gear ratio, working The capability etc.), the set value related to the route setting described later, the route after setting and the like are stored.
  • the information is also stored in the storage unit included in the control unit 30.
  • FIG. 3 shows an initial screen displayed on the display device of the remote control device.
  • the display device 113 of the remote control device 112 is a touch panel type, and when the power is turned on to activate the remote control device 112, an initial screen appears.
  • a tractor setting button 201, a field setting button 202, a route generation setting button 203, a data transfer button 204, a work start button 205, and an end button 206 are displayed.
  • tractor setting will be described.
  • the tractor setting button 201 when the remote control device 112 performs work using a tractor in the past, that is, when there is a tractor set in the past, the tractor name (model) is displayed.
  • the tractor name to be used this time is touched and selected from among the displayed plurality of tractor names, it is possible to thereafter advance to field setting described later or return to the initial screen.
  • setting a new tractor specify the tractor model. In this case, enter the model name directly.
  • the model of a plurality of tractors is displayed in a list on the display device 113 so that a desired model can be selected.
  • a screen for setting the size, shape, and position of the working machine to be mounted on the tractor appears.
  • the position of the working machine is selected, for example, from the front, between the front wheel and the rear wheel, or from the rear, or offset.
  • a setting screen for the vehicle speed during work, the engine speed during work, the vehicle speed during turning, and the engine speed during turning appears.
  • the vehicle speed during work may be different between the forward and return routes.
  • FIG. 4 shows a state of traveling on the periphery performed by the user riding on the autonomous traveling work vehicle at the time of farmland setting.
  • FIG. 5 shows a set area in the field such as a work area and a headland area.
  • the tractor autonomous traveling work vehicle 1
  • the tractor is positioned at one of the four corners in the field H, and the button "measurement start” is touched. Thereafter, the tractor is caused to travel along the outer periphery of the field H to register the field shape.
  • the operator registers the corner positions A, B, C, D and the inflection point from the registered field shape and specifies the field shape.
  • the work start position S, the work start direction F, and the work end position G are set. If there is an obstacle in the field H, move the tractor to the position of the obstacle, touch the "set obstacle” button, travel around it, and set the obstacle.
  • a confirmation screen is displayed, and an OK (confirmation) button and an "edit / add” button are displayed. If there is a change in the field registered in the past, touch the "Edit / Add" button.
  • the route generation setting can also be made by touching the route generation setting button 203 on the initial screen.
  • a selection screen as to which position the traveling working vehicle 100 travels with respect to the autonomous traveling working vehicle 1 is displayed. That is, the positional relationship between the autonomously traveling working vehicle 1 and the traveling working vehicle 100 is set. Specifically, (1) the traveling work vehicle 100 is located at the left rear of the autonomously traveling work vehicle 1. (2) The traveling working vehicle 100 is located at the right rear of the autonomous traveling working vehicle 1. (3) The traveling work vehicle 100 is positioned directly behind the autonomously traveling work vehicle 1. (4) The traveling working vehicle 100 does not accompany (work is performed only with the autonomous traveling working vehicle 1). 4 types are displayed and can be selected by touching.
  • the width of the work machine of the traveling work vehicle 100 is set. That is, the width of the working machine is entered numerically.
  • set the number of skips That is, when the autonomously traveling work vehicle 1 reaches the field outer peripheral end (pillow) and moves from the first route to the second route, how many routes are to be skipped is set. Specifically, (1) do not skip.
  • set the overlap That is, the overlap amount of the work width in the work route adjacent to the work route is set. Specifically, (1) there is no overlap. (2) Overlap. Choose If "Overlap" is selected, a numerical value input screen is displayed, and it is impossible to proceed to the next step without inputting a numerical value.
  • perimeter setting is performed. That is, an area outside the work area HA where work is performed by the autonomous traveling work vehicle 1 and the traveling work vehicle 100 or by the autonomous traveling work vehicle 1 as shown in FIG. 5 is set.
  • a headland HB that turns in a non-working state at the end of the field
  • autonomous traveling vehicle 1 and traveling working vehicle 100 have width Wb of headland HB and width Wc of side margin HC as a length equal to or less than twice the width of the working machine mounted by traveling working vehicle 100. After the completion of the accompanying work by the worker, the operator gets into the traveling work vehicle 100, and can finish by manually circling the outer circumference twice.
  • the shape of the field outer periphery is not complicated, it is also possible to work the outer periphery with the autonomous traveling work vehicle 1.
  • the width Wb of the headland HB and the width Wc of the side margin HC are automatically calculated to a predetermined width according to the width of the work machine, but the calculated width of the headland HB
  • the width Wc of the margin Wb and the side margin HC can be changed to any width, and the user changes the width Wb and the width Wc after the change to the desired width, respectively. It can be set as the width of the headroom HC.
  • the width can not be set smaller than the minimum setting width calculated in consideration of traveling, work and safety in the field. For example, when the autonomous traveling work vehicle 1 travels or turns in the headland HB or the side surplus land HC, a width that guarantees that the working machine does not fly out of the farmland is calculated as the minimum setting width.
  • the route R includes a work route Ra and a travel route Rb.
  • the work route Ra is a route generated in the work area HA, and is a route that travels while performing work, and is a straight route. However, if the work area HA is not rectangular, it may be projected to an area outside the work area HA (headland HB and side margin HC).
  • the travel route Rb is a route generated in an area outside the work area HA, and travels without any work, and is a combination of straight lines and curves. It mainly turns around in the headland HB.
  • a route R of the autonomous traveling working vehicle 1 and the traveling working vehicle 100 is generated. If it is desired to view the work path after the work path is generated, a simulated image can be displayed and confirmed by touching the path generation setting button 203. Note that the route R is generated without touching the route generation setting button 203.
  • the route generation setting is displayed, and “route setting button”, “transfer data”, and “return to home” are displayed selectable below it.
  • the data transfer can be performed by touching the data transfer button 204 provided on the initial screen. Since this transfer is performed by the remote control device 112, it is necessary to transfer the set information to the control device of the autonomous mobile work vehicle 1.
  • the control device of the traveling work vehicle 1 is directly connected or temporarily stored in a USB memory, and then connected to the USB terminal of the autonomous traveling work vehicle 1 and transferred.
  • transfer is performed using WiFi (wireless LAN).
  • the width of the work area on the work route Ra is the work area width Wr
  • the predetermined width is the work width of the work machine (rotary cultivator 24) mounted on the autonomous traveling work vehicle 1 or the traveling work vehicle 100 (hereinafter referred to as traveling work
  • the width of the work machine is longer than the width of the main body, the same work machine is mounted on the autonomous traveling work vehicle 1 and the traveling work vehicle 100, and the overlap is described as zero.
  • line which has a part (work area) which does not reach a predetermined width is called narrow work path Rc.
  • the route generation setting when there is a narrow work route Rc in which a strip or a narrow portion narrower than a predetermined width (in the following embodiment, a traveling work width W1) is present in the work route Ra, the route R is displayed and the work is performed. You can choose to do or not do it. That is, if the autonomous traveling working vehicle 1 does not set in advance whether the autonomous traveling working vehicle 1 works the narrow working route Rc or not, when the autonomous traveling working vehicle 1 reaches the near side of the narrow working route Rc, the operation Since the route Ra is less than the traveling operation width W1, it is determined that the operation is impossible, and there is a possibility that the operation may be interrupted by stopping before entering the narrow operation route Rc.
  • a traveling work width W1 a traveling work width
  • the work is carried out by protruding into the side margin HC (second region).
  • the work area HA of the narrow work route Rc is performed when working the headland HB and the side margin HC after the work of the work area HA is completed. .
  • the width of the side margin HC after change is the running operation It does not become less than the limit width specified based on the width W1 and the traveling work length L1.
  • the narrow work route Rc does not become the traveling work width W1 unless the width of the side margin HC is not more than the limit width, the width of the left and right side margin HC is not adjusted.
  • a work route Ra of reciprocating operation work width W1 is generated in the work area HA.
  • the work area width Wr becomes shorter than the traveling work width W1 (predetermined width), and a narrow work route Rc is generated.
  • a narrow work path Rc is formed in the final row.
  • the control unit 130 on the operation side displays a selection screen as to whether or not to work in the narrow work route Rc.
  • the narrow work route Rc is generated as the work route Ra such that the control unit 130 on the operation side protrudes to the side margin HC and carries out the work.
  • the narrow work route Rc is not set, unlike the work end position G (FIG. 5, FIG. 6) set for the field H, it becomes the end of the strip one step before The work end position Ga is set in the work path Ra.
  • the control unit 130 on the operation side determines that the final row is less than the traveling operation width W1 (predetermined width) and sets it as a narrow operation route Rc.
  • a screen for selecting whether or not to work in the narrow work path Rc is displayed.
  • the control unit 130 on the operation side generates the narrow work route Rc as the work route Ra so that the work is performed by protruding into the side margin HC.
  • a narrow work path Rc which does not satisfy the traveling work width W1 can be formed in the protruding convex area.
  • the control unit 130 on the operation side determines that the work area width Wr is less than the traveling work width W1 (predetermined width) and sets it as a narrow work route Rc.
  • a screen for selecting whether to work the narrow work route Rc or not is displayed.
  • the narrow work route Rc is generated as the work route Ra such that the control unit 130 on the operation side protrudes to the side margin HC and carries out the work.
  • the traveling work length Lc of the narrow work path Rc does not reach a length obtained by multiplying the traveling work length L1 by a predetermined length, the work path Ra is not generated in the narrow work path Rc. That is, the traveling work length L1 is the length from the front end to the rear end of the state where the work machine is mounted on the vehicle body, and is stored in the storage unit 114 of the remote control device 112.
  • the working route Ra is set to the narrow work route Rc if the length is less than a predetermined multiple. It does not generate.
  • the predetermined multiple is, for example, double. With such a short work path, it is possible for the worker to work more efficiently if the worker drives the traveling work vehicle 100 to perform work processing, back and return to the work start position and perform the coordinated work.
  • the narrow working route Rc can be excluded from the extension of the working route Ra as shown in FIGS. 7 and 8.
  • the work may be performed in the narrow work path Rc without allowing the worker to select, and the work may not be performed in the narrow work path Rc under predetermined conditions.
  • a predetermined condition the case where the path length of the narrow work path Rc mentioned above is less than a constant multiple of traveling work length L1 is illustrated.
  • the field H serving as the traveling area for traveling the vehicle body of the autonomous traveling work vehicle 1 capable of traveling the set route R, the width of the vehicle body, and / or A storage unit 114 capable of storing information on a traveling work width W1 which is the width of a work machine (a rotary cultivator 24) mounted on the vehicle body, and generation of a work path Ra by the work machine in the field H
  • the field H is a work area HA which is a first area including the work path Ra, and a headland HB which is a second area set around the first area.
  • the side margin HC, and the control unit 130 on the operation side generates a narrow work path Rc narrower than the traveling work width W1 when the work path Ra is generated in the first area
  • the route generation setting is performed according to which no uncultivated land remains.
  • the storage unit 114 stores information of a traveling work length L1 which is a length from the front end to the rear end in a state where the work machine is mounted on the vehicle body portion, and the control unit 130 on the operation side performs the narrow work If the path length Lc of the path Rc is less than a length obtained by multiplying the traveling work length L1 by a predetermined length, a work path is not generated in the narrow work path Rc, so a particularly short work path does not repeat U-turns or turning Work can be done in another form to improve work efficiency.
  • control unit 130 on the operation side can generate the work route Ra based on the work start position S, the work direction F, and the work end position G set for the traveling area (field H).
  • the work path Ra is not generated in the narrow work path Rc
  • the work end of the work end position G set for the travel area and the work end of the work path at a position different from the end position of the work by the work machine Since it is possible to set at the position Ga, there is no need to move the work to the work end position G without performing work on the narrow work route Rc after the work is finished at the work end position Ga. It can prevent traveling.
  • the vehicle may travel from the work end position Ga to the work end position G through the headland HB and the side margin HC.
  • the autonomous traveling work vehicle 1 is moved to the work end position G set in the field setting by the work vehicle, and the worker operates the autonomous traveling work when the field exit is near the work end position G etc. There is no need to move the vehicle 1 to the work end position G, and it is possible to save the labor of the operator.
  • one autonomous traveling working vehicle 1 travels earlier than the other traveling working vehicle 100 (early departs), and the other traveling working vehicle 100
  • the control for avoiding a collision when traveling behind the autonomous traveling work vehicle 1 starting late and starting work late
  • work routes Ra for working in work area HA are generated in parallel adjacently, and as shown in FIG. 10 and FIG. Numbers are assigned (work path numbers 1 2 3 ). Then, in the control unit 130 (or the control unit 30) serving as the route generation device, the work route Ra on which the autonomous traveling work vehicle 1 works is assigned the work order (hereinafter, work order X1, X2, 7) And a second work order setting unit for assigning the work order (hereinafter referred to as work order Y1, Y2,9) To the work route Ra along which the traveling work vehicle 100 carries out the work.
  • the work route number is an odd number (1 ⁇ 3 ⁇ 5 ⁇ ) for the work order X1 ⁇ X2 ⁇ of the work vehicle 1 and the work path for the work order Y1 ⁇ Y2 ⁇ of the traveling work vehicle 100
  • the number is an even number (2/4 6 ).
  • the control unit 130 performs the above-mentioned traveling traveling vehicle 100 which is the other traveling working vehicle.
  • the difference between the work path numbers allocated in the work order immediately before the predetermined work order is calculated, and when the difference is 1, when the work path generation unit creates the work path Ra, the predetermined It is possible to execute a predetermined notification as control of. That is, in the case where the traveling work vehicle 100 works behind the autonomous traveling work vehicle 1 in FIG.
  • the operation route number is 2
  • travel When the work order of the work vehicle 100 is one before, the work path number is 1 in the work order Y1.
  • the difference (2-1) in the work path number at this time is 1, and as described above, “overlap” is selected in the path generation setting, so that the autonomous traveling work vehicle 1 turns at the headland HB. As it travels from the opposite direction, it will partially collide with the traveling work vehicle 100.
  • the difference between the work path numbers becomes 1 it is possible to notify by the notifying means.
  • the notification means and the notification mode are not particularly limited, and for example, when the notification means is the display device 113, the display device 113 performs a display prompting attention such as "collision" as the notification manner. .
  • the notification means is an audio output means such as a speaker, a sound or an alarm sound is emitted as the notification mode.
  • the notification means is an issuing means such as an LED
  • a light emission mode can be mentioned as a notification mode, and specifically, lighting is performed by combining lighting, blinking, a light emitting color and the like.
  • the notification means and the notification mode are not limited to the above.
  • when notification is unnecessary it is possible to set so as not to notify.
  • the operator drives the vehicle even when "the traveling work vehicle 100 is positioned directly behind the autonomous traveling work vehicle 1", "do not skip", and "do not overlap” is selected. If a shift occurs in the traveling position of the traveling working vehicle 100, there is a possibility that the autonomous traveling working vehicle 1 and the working vehicle 100 facing each other in the adjacent work route Ra may partially collide with each other.
  • the notification may be performed by the notification means.
  • the traveling work vehicle 100 works diagonally rearward of the autonomous traveling working vehicle 1 in FIG. 11, as a predetermined work order of the autonomous traveling working vehicle 1, for example, the work route number is 3, when the work order is X2, and traveling When the work order of the work vehicle 100 is one before, the work path number is 2 in the work order Y1.
  • the difference (3-2) in the work path number at this time is 1, and the autonomous traveling work vehicle 1 makes a partial collision with the traveling work vehicle 100 when it turns on the headland HB and proceeds from the opposite direction. Become. Also in such a case, it is possible to notify by the notification means in the same manner as described above.
  • the control unit 130 performs display to propose that the difference in work path number is 2 or more so as not to cause a collision. For example, if the difference between the work path numbers is 1 and a collision is expected, a warning such as "Set to 1 column skip or 2 columns skip" should be displayed and suggested. May be At this time, a selection screen of whether to adopt the proposal or not to be adopted is simultaneously displayed, and if “1 column skip” is adopted, a route R of “1 column skip” is displayed, and “2 column skip” is adopted. For example, a route R of “skip 2 rows” is displayed, and a selection screen of whether to adopt this proposal or not is also displayed simultaneously.
  • the traveling working vehicle 100 has the autonomous traveling working vehicle 1 next to the work route so that the traveling working vehicle 100 and the autonomous traveling working vehicle 1 do not collide. It is also possible to set to wait at a position where there is no collision until the operation of the work path having a path number larger by one is completed.
  • the notification means gives notification before the traveling working vehicle 100 enters the work route Ra where the collision may occur. That is, there is a possibility of a collision on the display device 113 of the remote control device 112, and the display on the route R is displayed so as to stop traveling or notified by voice or the like.
  • the control unit 30 executes a predetermined notification as the predetermined control. Since the ability notification of alarm or the like it is made as a path R that may collision is generated.
  • the autonomous traveling working vehicle 1 serving as one traveling working vehicle having first traveled and equipped with the rotary cultivating device 24 as a working machine and the rotary tilling equipment attached as the working machine behind the autonomous traveling working vehicle 1
  • a plurality of work paths Ra to be operated by the traveling work vehicle 100 serving as the other traveling work vehicle traveling in parallel are arranged in parallel and adjacent to each other, and a work path number continuous to each work path Ra is attached
  • a second work order setting unit that assigns a route number, and a control unit 130 (or control unit 30) that performs predetermined control, the control unit 130 is an autonomous traveling work vehicle When the difference between the work path numbers allocated in the work order immediately preceding the predetermined work order of the traveling work vehicle 100 from the work path numbers allocated in the predetermined work order of 1 is 1, the work path generation unit Since a predetermined notification can be
  • the autonomous traveling working vehicle 1 as the first traveling working vehicle and the working route Ra along which the traveling working vehicle 100 as the second traveling working vehicle travels are common working routes Ra.
  • the control unit 30 (or the control unit 130) sets the work route Ra on which the autonomous traveling work vehicle 1 and the traveling work vehicle 100 travel as mutually different work routes as the predetermined control. Can be generated. That is, even if the work route Ra in which the work route Ra of the autonomous traveling working vehicle 1 and the work route Ra of the traveling working vehicle 100 are adjacent is generated, the work route Ra of the autonomous traveling working vehicle 1 and the work route Ra of the traveling working vehicle 100 May generate a work route Ra that is not adjacent to each other.
  • the control unit 130 (or the control unit 30) is one in front of the predetermined work order of the traveling work vehicle 100 from the work path number allocated to the autonomous traveling work vehicle 1 in the predetermined work order. If the difference between the work path numbers assigned in the work order is 1, the work order may be set as the predetermined control so that the difference is 2 or more. In this case, the operator at the time of path generation setting By setting the difference, that is, the number of skips presented, it is possible to create a work path Ra that does not collide with certainty, and path generation setting can be easily performed.
  • the work route generation unit calculates the length of each work route Ra, or the length of each work route Ra is stored in the storage unit 114, and the autonomous traveling work vehicle 1
  • the control unit 130 calculates the difference between the length of the work route Ra of the autonomous running work vehicle 1 and the length of the work route Ra of the running work vehicle 100 If the difference is equal to or greater than the predetermined length L and the next work route Ra becomes shorter, the work route Ra that becomes the long work route Ra is adjusted to the length of the short work route Ra.
  • the route Ra can be set. Thus, the work vehicle traveling on the long side is prevented from stopping as a dead end.
  • the length L4 of the working path No. 1 of the traveling working vehicle 100 and the autonomous traveling When the difference L3 of the length L2 of the work path No. 2 of the work vehicle 1 becomes shorter than the predetermined length L (L3 ⁇ L), the work path No. 1 on the long side is the length L2 of the work path No. 2 on the short side
  • the work path Ra is set to the combined length.
  • the predetermined length L becomes a dead end, and it turns without stepping on the cultivated land at the field end. Length which can not move to the next work route Ra.
  • the traveling work vehicle 100 can easily move to the next work route No. 3 It is possible to move and improve work efficiency.
  • the change from the long work route Ra to the short work route Ra is similarly set in the work route number 2 and later.
  • the length of the work route Ra when moving to the adjacent work route Ra as described above
  • the difference L3 of the distance L3 is shorter than the predetermined length L
  • the length of the work path Ra before the shortening is made to be the work path Ra in accordance with the length of the next work path Ra.
  • the work can be completed by performing the work until the end of the long work route Ra as it is. , Do not adjust the working path length.
  • the decision to shorten the work route Ra when moving to the adjacent work route Ra instead of calculating the difference in the length of the work route Ra, the autonomous traveling work vehicle 1
  • the width of the work route Ra or the width of the work route Ra of the traveling work vehicle 100 may be calculated, and it may be determined whether the width of the work route Ra narrows in the range of a predetermined length halfway. In this case, when a narrow working route Ra is generated from the middle to the headland, the working route Ra is matched to the length of the next working route Ra except for the narrow portion. That is, as shown in FIG.
  • the width of the work route Ra of the autonomous traveling working vehicle 1 which is one working vehicle (or the working route Ra of the traveling working vehicle 100 which is the other working vehicle) becomes narrow in the middle
  • the width W of the autonomous traveling working vehicle 1 (or the traveling working vehicle 100) is W1
  • the width Wr of the working path to be narrowed is within a predetermined range.
  • the predetermined range is, for example, not less than the overlap and less than the work width W1.
  • the work path generation unit works on the work path Ra where the autonomous traveling working vehicle 1 as the first traveling working vehicle and the traveling working vehicle 100 as the second traveling working vehicle are adjacent to each other.
  • the difference between the length of the working route Ra of the first traveling working vehicle and the length of the working route Ra of the second traveling working vehicle is equal to or greater than a predetermined length and the working route Ra becomes short
  • the autonomous traveling working vehicle 1 Since the length of the work route Ra can be set in accordance with the length of the work route Ra of the traveling working vehicle 100, the autonomous traveling working vehicle 1 can be set to a dead end at the end of the blind alley way along the work path. As a result, cooperation work between the autonomously traveling working vehicle 1 and the traveling working vehicle 100 can be efficiently performed without interruption of work.
  • the control unit 130 terminates the work path number 1 (work order X1)
  • the process is skipped from the second column to the work path number 4 (work order X2), and then the skip by one column is repeated (work path number 1 ⁇ 4 ⁇ 6 ⁇ 8 ).
  • Mandatory traveling work vehicle 100 is adjacent to work path number 2 (work order Y1) with work path number 3 (work order Y2) adjacent to work path number 2 (work order Y1) along with diagonally rearward of autonomous traveling work vehicle 1 on the center side of work area HA. Then, the process skips one column repeatedly (work path number 2 ⁇ 3 ⁇ 5 ⁇ 7...) To generate a path R.
  • the work route No. 1 on the work start position S side of the work area HA can be finished cleanly, and a substantially straight straight line is formed, and the autonomous traveling work vehicle 1 runs with Even when the outer periphery of the headland HB and the side margin HC is processed after completion of the coordination work with the work vehicle 100, the finish can be finished cleanly.
  • the route R of the traveling work vehicle 100 serving as the second traveling work vehicle is adjacent in the first one reciprocation.
  • a working order is assigned to the working route Ra continuously, and the route R of the autonomous traveling working vehicle 1 as the first traveling working vehicle is arranged to be separated from the first one reciprocating route of the traveling working vehicle 100 Since the continuous work order is attached to the work path Ra, the work path number 1 on the work start position S side of the work area HA can be finished cleanly.
  • an entry prohibited area K for prohibiting entry of the work vehicle around the obstacle 400, and the entry prohibition An obstacle area J in which the travel route Rb is generated but the work route Ra is not generated is set around the area K.
  • the work start position S is set to one end of the work path number 1 at the end of the work area HA, one of the paths R of the autonomous traveling work vehicle 1 or the traveling work vehicle 100 is stopped by the obstacle area J halfway In some cases, it may not be possible to generate a route.
  • the autonomous traveling work vehicle 1 and the traveling work vehicle 100 can turn in the obstacle area J and continue the work It becomes possible to generate a route. Then, a route is generated around the obstacle area J, and the work by the autonomous traveling working vehicle 1 and the traveling working vehicle 100 can be completed.
  • the type of turning in the second region is determined based on the number of skips, the separation distance between the working path and the working path, the turning radius, and the like.
  • a travel route Rb is generated by selecting from the turning route.
  • the first turning route Rb1 without going straight and going backward is mainly the traveling route Rb when turning to the adjacent strip in the second region.
  • the first turning route Rb1 half the length (Wt / 2) of the distance (inter-strip distance) Wt between the working route Ra and the working route Ra is compared with the preset turning radius Tr, and the length The difference is selected in the case where the difference of height is within the predetermined range ⁇ (Tr + ⁇ ⁇ Wt / 2 ⁇ Tr ⁇ ).
  • Tr ⁇ must be set to a minimum turning radius of the autonomous traveling working vehicle 1 (or the traveling working vehicle 100) or a length equal to or more than the minimum turning radius using a shorter single brake. That is, even if the autonomous traveling working vehicle 1 or the traveling working vehicle 100 is turned at the end of the work route Ra at a distance equal to or less than the minimum turning radius, the next working route Ra can not be entered even if maximum turning operation is performed. It is because
  • the second turning route Rb2 accompanied by going straight is mainly a traveling route Rb when the working route Ra (stripe) is skipped and turned in the second region, as shown in FIG. 18.
  • a half length (Wt / 2) of the distance Wt between the working route Ra and the working route Ra after the route is generated has a predetermined range ⁇ to the preset turning radius Tr. It is selected if it is longer than the added length (Wt / 2> Tr + ⁇ ).
  • the second step is straight ahead and not accompanied by reverse travel
  • the turning route Rb2 is selected to generate a route R, and as shown in FIG. 18, the autonomous traveling work vehicle 1 changes from work route No. 2 to work route No. 4 in the second area, and the traveling work vehicle 100 does work route No.
  • it becomes a semi-elliptical curve in plan view turns 90 degrees right (or left turn) from the end of work path No. 1 and 2 and travels a straight line for a predetermined distance, Turn 90 degrees right (or left) on the curve and move to the beginning of the work path number 3 ⁇ 4.
  • the third turning route Rb3 with reverse travel is mainly the traveling route Ra when turning to the adjacent strip in the second region.
  • a half length (Wt / 2) of the distance (inter-strip distance) Wt between the working route Ra and the working route Ra subtracts a predetermined range ⁇ from the preset turning radius Tr It is selected if the length is smaller than the length (Tr- ⁇ ). That is, even if the maximum turning operation is performed at the end of the work path Ra, the next work path Ra can not be entered, and it is selected when it is necessary to switch back.
  • the traveling work vehicle 100 when “the traveling work vehicle 100 is positioned directly behind the autonomous traveling work vehicle 1”, “does not skip”, and “overlap” is selected, between the work route Ra and the work route Ra.
  • a half length (Wt / 2) of the distance Wt and a length (Tr ⁇ ) obtained by subtracting a predetermined range ⁇ from a preset turning radius Tr are compared and calculated, and the distance between the work route Ra and the work route Ra is calculated.
  • the half length (Wt / 2) of the distance Wt is shorter than the length obtained by subtracting the predetermined range ⁇ from the preset turning radius Tr (Wt / 2 ⁇ Tr- ⁇ )
  • the third turning route Rb3 with reverse movement Is selected to generate a route R when “the traveling work vehicle 100 is positioned directly behind the autonomous traveling work vehicle 1”, “does not skip”, and “overlap” is selected, between the work route Ra and the work route Ra.
  • the autonomous traveling working vehicle 1 (the traveling working vehicle 100 travels one row later so as not to collide) in the second region is the working route number 1 to the working route number 2,
  • the curve is 90 degrees right from the end of the work route Ra Turn (or turn left), travel a straight line for a predetermined distance and then stop, then straight back a predetermined distance on a straight line and stop, then turn right 90 degrees (or turn left) on a curve to move to the next work route Ra Do the work.
  • it when it reaches the end of the work path Ra, it is turned along the third turning path Rb3 in the same manner as described above, and the work is repeated.
  • the third turning path Rb3 will be described in more detail.
  • the width of the headland HB is the shortest at the end of the work path Ra, and the third turning path Rb3 is generated by turning at the set turning radius Tr, as shown in FIG. Turn 90 degrees with radius Tr.
  • the rear end of the rotary cultivating device 24 passes inside the safety boundary line hb of the headland set inside the boundary line h of the field, and at the time of turning, the rotary cultivating device 24 I try not to hit an obstacle. Then, the vehicle travels a predetermined distance (about 1 meter) and stops until the posture of the vehicle body portion is stabilized.
  • the route generation device includes the storage unit 114 capable of storing the traveling area (the identified field H) in which the vehicle body unit is to travel and the turning radius set in advance for the vehicle body unit; And a control unit 130 (or control unit 30) capable of generating a working route Ra of the vehicle body unit and a work route Ra by a working machine attached to the vehicle unit, the control unit 130 (or control unit 30) In the travel area, it is possible to set a first area (work area HA) in which the work route Ra is generated and a second area (headland HB and side margin HC) in which the travel path Rb is generated When it is necessary for the movement from the first work path Ra to the second work path Ra among the plurality of work paths Ra set in the first area, the turning of the vehicle body in the second area is necessary.
  • First work route Ra Based on the distance Wt between the second working route Ra and the swing radius Tr, a first swing route Rb1 without going straight and moving backward, and a second swing route Rb2 not going straight with reverse and not going backward Since it is possible to generate the traveling route Rb including any turning route with the third turning route Rb3 accompanied by reverse movement, the turning route which can travel and work most efficiently can be selected according to the field shape and work. Route generation.
  • the control unit 130 changes the area ratio of the first area (working area HA) to the second area (headland HB and side margin HC) to widen the second area. Since it is possible to generate the traveling route Rb including the fourth turning route Rb4 different from the first to third turning routes Rb1, Rb2, Rb3, the time required for turning back is shortened to achieve smooth turning. It is possible to generate an efficient route R.
  • a narrow work route Rc may occur in which the width of the work route Ra generated in the work area HA is narrower on the way or on the final strip than the work width (the distance Wt between the work route Ra and the work route Ra). .
  • the work is carried out by protruding into the side margin HC, and the area for turning substantially becomes narrow.
  • the first turning path Rb1 or the third turning path Rb3 when the first turning path Rb1 or the third turning path Rb3 is generated, the first turning path Rb1 or the third turning path Rb3 may be protruded from the field or to the existing cultivated land.
  • it is possible to turn within the range of the side margin HC by making extensive use of turning it takes time for turning and it may also damage the field.
  • Such a fourth turning route Rb4 has a hook shape in a plan view, and performs a right turn (or a left turn) within a range of 180 degrees or more and less than 270 degrees from the end of the work path Ra and turns left in the opposite direction (Or turn right) to enter the next work path Ra.
  • a fourth turning path Rb4 like this, it is possible to quickly enter the next working path without using a lot of turning and working.
  • the side margin HC may be a little rough, so it is possible to save time and effort after the expanded side margin HC and to make a turn within the range of the side margin HC.
  • the control unit 30 may move the traveling route Rb including the fifth pivoting path Rb5 accompanied by the pivoting in the first pivoting direction and the pivoting in the second pivoting direction opposite to the first pivoting direction. It is possible to generate. That is, as shown in FIG. 23, the fifth turning route Rb5, which uses many rounds (two rounds in the present embodiment), is generated within the range of the side margin HC.
  • control unit 130 performs the work by the work machine in the order of the first work route Ra, the second work route Ra, and the third work route Ra, and the predetermined n-th If it is necessary to move from the work route Ra to the (n + 1) th work route Ra by turning along the third turning route Rb3, setting is made across the (n + 1) th work route Ra and the second area
  • the traveling route Rb including the third turning route Rb3 can be generated, while the traveling route Rb including the third turning route Rb3 set across the nth working route and the second region Not to generate That is, although the turning path over the existing cultivated land is not generated and set, the turning path over the uncultivated land can be generated and set.
  • n is an integer of 1 or more.
  • the autonomous traveling work vehicle 1 it becomes possible for the autonomous traveling work vehicle 1 to enter the fourth work route Ra (work route number 4) of the uncultivated area, and then reverse and then stop and perform a turn of less than 90 degrees. It is possible to generate and set a travel route Rb. However, route generation is not permitted in the following cases. That is, when the third turning route Rb3 is adopted when moving from the fifth work route Ra (work route number 5) to the sixth work route Ra (work route number 6), first 90 Does not permit the autonomous traveling work vehicle 1 to enter the fifth work route Ra (work route number 5) of the cultivated land when it stops by turning less than 50 degrees and then reverses, and generates the running route Rb I am trying not to set it.
  • the work start position S is opposite to the work end position G. It is also possible to arrange and create a path which starts from the opposite side and pivots in the opposite direction. In this case, it is possible to generate the first turning path Rb1 or the third turning path Rb3. By generating such a path, the final finishing operation can be performed only by making two rounds of the outer circumference which becomes the second area (the headland HB and the side margin HC).
  • the present invention is applicable to a route generation device capable of generating a traveling and working route of an agricultural work vehicle that enables autonomous traveling and automatic work in a field.

Abstract

In order to enable route generation such that when a work route is generated, no uncultivated land is left even in a case where a work region is generated which is smaller than the work width of a work machine of an autonomous-travel working vehicle, the present invention is provided with: a storage unit 114 capable of storing information about a field H that is a travel region where a vehicle body part travels and information about a travel work width W1 that is the width of the vehicle body part and/or the width of a rotary tillage device 24 attached to the vehicle body part; and an operation-side control unit 130 capable of generating a work route Ra which is taken by the work machine in the field H. The field H includes a work region HA which is a first region including the work route Ra, and a head land HB and a side margin land HC which are a second region set around the first region. In a case where, when the work route Ra is generated in the first region, a narrow work route Rc that is narrower than the travel work width W1 is generated, the operation-side control unit 130 can generate, for the narrow work route Rc, the work route Ra entering the second region so as to have the travel work width W1.

Description

経路生成装置Path generator
 本発明は、無人走行作業車両により作業を行う作業システムにおいて、無人走行作業車両が作業を行う作業経路に、作業幅に満たない作業領域が存在する場合の経路生成に関する。 The present invention relates to route generation in the case where there is a work area smaller than the work width in a work route where an unmanned travel work vehicle works in a work system where work is performed by the unmanned travel work vehicle.
 従来、所定の作業を行う作業車両を所定区画の作業現場内で無人走行させることにより、この作業現場内に上記所定の作業を施し、上記作業を、作業現場の中央部を、枕地での180度旋回を行って直進作業を繰り返す往復直進作業を行う技術が公知となっている(特許文献1参照)。 Conventionally, by causing the work vehicle performing a predetermined work to run unmannedly in the work site of the predetermined section, the above-described predetermined work is performed in the work site, and the above-described work is performed There is known a technique for performing a rectilinear rectilinear rectilinear operation repeating a rectilinear rectilinear operation by turning 180 degrees (see Patent Document 1).
 また、親作業車とこの親作業車に追従する無人操縦式の子作業車とにより対地作業を行う作業車協調システムが公知となっている(例えば、特許文2参照)。該作業車協調システムにおいては、親作業車は運転者による有人操縦によって、圃場両端の転回エリアでの親転回走行経路と、両端の転回エリア間を対地作業しながら直線走行する親作業走行経路が作り出され、子作業車の走行経路は、両端の転回エリアの間を対地作業しながら親作業車を追従する子作業走行経路と、転回エリアでの子転回走行経路からなり、無人操縦によってその経路を走行するようにしていた。 In addition, a working vehicle coordination system has been known in which work on the ground is performed by a parent work vehicle and an unmanned operation type sub-work vehicle that follows the parent work vehicle (see, for example, Patent Document 2). In the work vehicle coordination system, the parent work vehicle has a parent work travel route that travels in a straight line while performing ground work between turning areas at both ends in the turning area in the turning areas at both ends of the field by manned steering by the driver. The travel path of the sub work vehicle consists of a sub work travel path that follows the parent work vehicle while performing work on the ground between the turn areas at both ends, and a child turn travel path in the turn area, and that path by unmanned operation I was going to travel.
特開平10-66405号公報Japanese Patent Application Laid-Open No. 10-66405 特開2014-178759号公報JP, 2014-178759, A
 前記技術において、枕地での旋回時には、180度のUターンを行っていた。ところが、実際の圃場では、台形等の変形形状もあり、このような形状では、旋回時に既耕地や圃場をはみだして旋回を行う経路を生成してしまう可能性があった。また、旋回経路の形態を間違うと、旋回に要する時間が長くなることになる。
 また、親作業車と子作業車とにより圃場内の作業領域を協調作業し、最終の作業経路に小作業車となる無人走行作車両が位置したとき、その経路の作業幅が小作業車が備える作業機の作業幅より短い場合、無人走行作車両は作業領域をはみ出して作業をしてしまうため、自動走行を停止し、作業を終了してしまうことがあった。この場合未作業地が残ることになる。また、最終の経路が斜めの作業領域を通過するような場合においては、どの位置から作業を始めるか、または、終了するかが明確に設定されていないと、未作業地が発生するおそれがあった。また、親作業車の斜め後方を子作業車が走行し、親作業車の作業機幅と子作業車の作業機幅は一部オーバーラップさせているため、親作業車が子作業車に隣接した条に移り作業を行うと、作業機同士が衝突してしまうおそれがあった。
In the above technology, when turning on a headland, a 180-degree U-turn was performed. However, in an actual field, there is also a deformed shape such as a trapezoid, and in such a shape, there is a possibility that a path to be turned may be generated by turning out an existing cultivated land or a field when turning. In addition, if the form of the turning path is wrong, the time required for turning becomes long.
In addition, when the unmanned traveling production vehicle that is a small work vehicle is located in the final work route, the work width of the route is small. If the work width of the work machine provided is shorter than the work width of the work machine, the unmanned travel production vehicle may work out of the work area, and thus the automatic travel may be stopped and the work may be finished. In this case, an unworked place will remain. In addition, when the final route passes through the diagonal work area, there is a risk that an unworked site may occur if it is not clearly set at which position to start or end work. The In addition, because the child work vehicle runs diagonally behind the parent work vehicle, and the work machine width of the parent work vehicle and the work machine width of the child work vehicle overlap partially, the parent work vehicle is adjacent to the child work vehicle There is a risk that the working machines will collide with each other if the work is shifted to the vertical direction.
 本発明は以上の如き状況に鑑みてなされたものであり、作業経路を生成するときに、自律走行作業車両(無人走行作車両)の作業機の作業幅に満たない作業領域が発生する場合、作業幅に満たない作業領域をどのように処理するかを設定でき、一方の作業車両と他方の作業車両の作業経路を生成するときに、一方の作業車両が圃場端で旋回して、他方の作業車両と反対方向に進行するときに、衝突が発生しないように作業経路、および、最適の旋回経路が生成できる経路生成装置を提供しようとする。 The present invention has been made in view of the above circumstances, and when generating a work path, when a work area smaller than the work width of the work machine of the autonomous traveling work vehicle (unmanned travel production vehicle) is generated, It is possible to set how to process a work area that does not meet the work width, and when creating work paths for one work vehicle and the other work vehicle, one work vehicle turns at the end of the field and the other works. An object of the present invention is to provide a work path and a path generation device capable of generating an optimum turning path so that a collision does not occur when traveling in a direction opposite to a work vehicle.
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。
 即ち、本発明は、車体部を走行させる走行領域、並びに、前記車体部の幅、及び/もしくは、前記車体部に装着される作業機の幅となる走行作業幅の情報を記憶可能な記憶部と、
 前記走行領域内における前記作業機による作業経路を生成可能な制御部と、を備え、
 前記走行領域は、前記作業経路を含む第1領域と、第1領域の周囲に設定される第2領域とを含み、前記制御部は、前記第1領域に作業経路を生成したときに所定幅よりも狭い狭作業経路が生じる場合、該狭作業経路と前記第2領域に跨る走行作業幅の作業経路を生成可能とする。
The problem to be solved by the present invention is as described above, and next, means for solving the problem will be described.
That is, according to the present invention, a storage unit capable of storing information on a traveling region in which a vehicle body portion travels, a width of the vehicle body portion, and / or a width of a traveling work which is a width of a working machine mounted on the vehicle body portion When,
A control unit capable of generating a work path by the work machine in the travel area;
The travel area includes a first area including the work path, and a second area set around the first area, and the control unit generates a work path in the first area. When a narrower work path occurs more narrowly, it is possible to generate a work path of a travel work width across the narrow work path and the second area.
 本発明は、前記記憶部は、前記車体部に作業機を装着した状態の前端から後端までの長さとなる走行作業長の情報を記憶し、前記制御部は、前記狭作業経路の経路長が、前記走行作業長を所定倍した長さに満たない場合、前記狭作業経路に作業経路を生成しないようにする。 In the present invention, the storage unit stores information of a traveling working length which is a length from a front end to a rear end in a state where a working machine is mounted on the vehicle body portion, and the control unit is a path length of the narrow working path However, if the traveling working length is less than a predetermined length, the working path is not generated in the narrow working path.
 本発明は、前記制御部は、前記走行領域に対して設定される作業開始位置と作業方向と作業終了位置とに基づいて前記作業経路を生成可能であって、前記狭作業経路に作業経路を生成しない場合、前記走行領域に対して設定された前記作業終了位置と、前記作業経路における前記作業機による作業の終了位置と異なる位置に設定可能とする。 In the present invention, the control unit can generate the work path based on a work start position, a work direction, and a work end position set for the traveling region, and the work path is set in the narrow work path. If not generated, the work end position set for the travel area can be set to a position different from the end position of the work by the work machine in the work path.
 また、本発明は、第1の走行作業車両及び第2の走行作業車両による走行形態を設定する設定部と、前記設定部により設定された前記走行形態に応じて、第1の走行作業車両及び第2の走行作業車両により走行される複数の作業経路を平行に隣接して配するとともに、隣接する作業経路に対して連続する作業順が付された作業経路を生成可能な作業経路生成部と、所定の制御を行う制御部と、を備え、前記設定部により前記走行形態として、第1の走行作業車両及び第2の走行作業車両が走行する作業経路が共通の作業経路であることが設定された場合、前記制御部は前記所定の制御として所定の報知を実行可能とする。 Further, according to the present invention, there is provided a setting unit configured to set a traveling mode by the first traveling working vehicle and the second traveling working vehicle, and a first traveling working vehicle according to the traveling mode set by the setting unit. A plurality of work paths traveled by the second traveling work vehicle are arranged in parallel adjacently, and a work path generation unit capable of generating a work path to which a continuous work order is assigned to the adjacent work paths And a control unit for performing predetermined control, and the setting unit sets that the work path along which the first traveling work vehicle and the second traveling work vehicle travel is a common work path as the traveling mode. When the control unit is turned on, the control unit can execute predetermined notification as the predetermined control.
 また、本発明は、第1の走行作業車両及び第2の走行作業車両による走行形態を設定する設定部と、前記設定部により設定された前記走行形態に応じて、第1の走行作業車両及び第2の走行作業車両により走行される複数の作業経路を平行に隣接して配するとともに、隣接する作業経路に対して連続する作業順が付された作業経路を生成可能な作業経路生成部と、所定の制御を行う制御部と、を備え、前記設定部により前記走行形態として、第1の走行作業車両及び第2の走行作業車両が走行する作業経路が共通の作業経路であることが設定された場合、前記制御部は前記所定の制御として、第1の走行作業車両及び第2の走行作業車両が走行する作業経路が互いに異なる作業経路である場合の前記作業経路を生成可能とする。 Further, according to the present invention, there is provided a setting unit configured to set a traveling mode by the first traveling working vehicle and the second traveling working vehicle, and a first traveling working vehicle according to the traveling mode set by the setting unit. A plurality of work paths traveled by the second traveling work vehicle are arranged in parallel adjacently, and a work path generation unit capable of generating a work path to which a continuous work order is assigned to the adjacent work paths And a control unit for performing predetermined control, and the setting unit sets that the work path along which the first traveling work vehicle and the second traveling work vehicle travel is a common work path as the traveling mode. In the case where it is determined, the control unit can generate, as the predetermined control, the work path in the case where the work paths traveled by the first traveling work vehicle and the second traveling work vehicle are different work paths.
 本発明は、前記作業経路生成部は、前記第1の走行作業車両及び第2の走行作業車両が隣接した作業経路の作業を行い、第1の走行作業車両の作業経路長さと第1の走行作業車両の作業経路の長さの差が所定長さ以上であって、作業経路が短くなる場合、第1の走行作業車両の作業経路となる作業経路を、第2の走行作業車両の作業経路の長さに合わせて作業経路を設定可能とするものである。 In the present invention, the work path generation unit works the work path in which the first traveling work vehicle and the second traveling work vehicle are adjacent to each other, and the work path length of the first traveling work vehicle and the first travel When the difference in the length of the work path of the work vehicle is equal to or greater than the predetermined length and the work path becomes shorter, the work path that becomes the work path of the first traveling work vehicle is the work path of the second traveling work vehicle The work path can be set according to the length of
 本発明は、前記作業経路生成部は、走行態様が互いに異なり隣接する作業経路である場合に、最初の一往復において第2の走行作業車両の作業経路は隣接する作業経路に対して連続する作業順が付され、第1の走行作業車両の作業経路は前記第2の走行作業車両の最初の一往復経路を隔てて配される2本の作業経路に対して連続する作業順が付されるものである。 In the present invention, when the work path generation unit is an adjacent work path with different travel modes, the work path of the second traveling work vehicle is continuous to the adjacent work path in the first reciprocation. The work path of the first traveling work vehicle is attached with a sequential work order to the two work paths disposed apart from the first one reciprocating path of the second traveling work vehicle. It is a thing.
 また、本発明は、車体部を走行させる走行領域と前記車体部に対して予め設定された旋回半径を記憶可能な記憶部と、前記走行領域内における前記車体部の走行経路及び前記車体部に装着される作業機による作業経路を生成可能な制御部と、を備え、前記制御部は、前記走行領域において、前記作業経路が生成される第1領域と、前記走行経路が生成される第2領域とを設定可能であり、前記第1領域に設定される複数の作業経路のうち、第1の作業経路から第2の作業経路への移動に、第2領域における前記車体部の旋回が必要な場合、第1の作業経路と第2の作業経路との条間距離及び前記旋回半径に基づいて、直進及び後進を伴わない第1の旋回経路と、直進を伴い後進を伴わない第2の旋回経路と、後進を伴う第3の旋回経路との何れかの旋回経路を含む前記走行経路を生成可能である。 Further, according to the present invention, a traveling region in which a vehicle body portion travels, a storage unit capable of storing a turning radius preset for the vehicle body portion, a traveling route of the vehicle body portion in the traveling region, and the vehicle body portion A control unit capable of generating a work path by a mounted working machine, the control unit generating a first area in which the work path is generated in the travel area, and a second area in which the travel path is generated It is possible to set an area, and of the plurality of work paths set in the first area, the movement of the vehicle body in the second area is necessary for the movement from the first work path to the second work path. In this case, based on the distance between the first working path and the second working path and the turning radius, the first turning path without going straight and going backward and the second turning go without going straight Between the turning path and the third turning path with reverse It is possible to generate the traveling path including a Re of the turning path.
 本発明は、前記制御部は、第1領域および第2領域の面積比を変更して第2の領域を広くすることで第1乃至第3の旋回経路とは異なる第4の旋回経路を含む前記走行経路を生成可能である。 In the present invention, the control unit includes a fourth turning path different from the first to third turning paths by changing the area ratio of the first area and the second area to widen the second area. The travel route can be generated.
 本発明は、前記制御部は、第1の旋回方向への旋回、及び、第1の旋回方向とは反対の第2の旋回方向への旋回を伴う第5の旋回経路を含む前記走行経路を可能である。 The present invention is characterized in that the control unit includes the traveling path including a fifth turning path including turning in a first turning direction and turning in a second turning direction opposite to the first turning direction. It is possible.
 本発明は、前記制御部は、前記作業機による作業が第1の作業経路、第2の作業経路、第3の作業経路の順に行われ、所定の第n番目の作業経路から第(n+1)番目の作業経路への移動に、第3の旋回経路による旋回が必要な場合に、第(n+1)番目の作業経路と第2領域とに跨って設定される第3の旋回経路を含む前記走行経路を生成可能である一方、第n番目の作業経路と第2領域とに跨って設定される第3の旋回経路を含む前記走行経路を生成しないものである。 In the present invention, the control unit performs the work by the work machine in the order of the first work path, the second work path, and the third work path, and the (n + 1) th work path from the predetermined n-th work path The traveling including the third turning path set across the (n + 1) th working path and the second region, when the movement to the second working path requires turning by the third turning path While the route can be generated, the travel route including the third turning route set across the n-th work route and the second area is not generated.
 以上のような手段を用いることにより、経路に応じて最適な旋回経路を生成できるようになる。つまり、圃場端で旋回する時に切り返しの回数を減少したり、旋回に要する距離や時間を短くできたり、ブレーキターンを減少して圃場面を荒らすのを抑えることができる。また、一方の走行作業車両が圃場端で旋回して、次の作業経路に移り作業を開始した後に、他方の走行作業車両に衝突することを未然に防ぐことができ、両走行作業車両が衝突を回避できる経路生成設定が可能となる。また、第一領域内に狭作業経路が発生する場合であっても、自律走行作業車両による作業経路の設定が所定の原則に従って行われるようになり、未耕地が残ることがない経路生成設定が行われる。 By using the means as described above, it is possible to generate an optimal turning path according to the path. In other words, it is possible to reduce the number of turns when turning at the end of the field, shorten the distance and time required for turning, and reduce the number of brake turns to prevent the scene from being damaged. In addition, after one traveling working vehicle turns at the end of the field and starts moving to the next working route, collision with the other traveling working vehicle can be prevented in advance, and both traveling working vehicles collide This enables route generation settings that can avoid the problem. In addition, even when a narrow work route occurs in the first area, the work route setting by the autonomous traveling work vehicle is performed according to a predetermined principle, and the route generation setting in which the uncultivated land does not remain To be done.
自律走行作業車両と走行作業車両の概略側面図Outline side view of autonomous traveling working vehicle and traveling working vehicle 制御ブロック図Control block diagram 初期画面を示す図Diagram showing the initial screen 圃場設定を示す図Diagram showing farm setting 圃場の領域を示す図Diagram showing the field area 作業領域内の最終条の作業経路が狭作業経路となる場合の圃場を示す図Figure showing a field where the last work path in the work area is a narrow work path 作業領域が台形となる場合の圃場を示す図Diagram showing the field when the work area is trapezoidal 作業領域が階段状となる場合の圃場を示す図Figure showing the field when the work area is stepped 最初の作業経路長が短い場合の圃場を示す図Diagram showing the field when the first work path length is short 自律走行作業車両の後に走行作業車両が追従して作業行い、隣接条に旋回する場合の圃場を示す図Figure showing a field where a traveling work vehicle follows and works after an autonomously traveling work vehicle and turns to an adjacent strip 自律走行作業車両の斜め後方に走行作業車両が随伴して作業行い、自律走行作業車両が1作業経路飛ばして旋回する場合の圃場を示す図A diagram showing a field where a traveling working vehicle accompanies and performs work diagonally to the rear of the autonomous traveling working vehicle, and the autonomous traveling working vehicle jumps one working route and turns. 隣接条の作業経路の長さが所定長さ異なる場合の圃場を示す図The figure which shows a field when the length of the work path of the adjacent strip differs by a predetermined length 作業終了側で隣接条の作業経路の長さが所定長さ異なる場合の圃場を示す図The figure which shows the field when the length of the work path of the adjacent strip differs by a predetermined length at the work end side 隣接条の作業経路の幅が所定長さ狭い場合の圃場を示す図Figure showing the field when the width of the work path of the adjacent strip is narrow by a predetermined length 最初の作業経路を自律走行作業車両が作業行う協調作業の圃場を示す図Diagram showing the field of collaborative work in which the autonomous traveling work vehicle performs the first work route 圃場内に障害物が存在し、自律走行作業車両の作業開始位置をずらせる場合の圃場を示す図Figure showing a field where there is an obstacle in the field and the work starting position of the autonomous mobile work vehicle is shifted 直進及び後進を伴わない第1の旋回経路を示す図A diagram showing a first turning path without going straight and going backward 直進を伴い後進を伴わない第2の旋回経路を示す図A diagram showing a second turning path without going reverse and with going straight 後進を伴う第3の旋回経路を示す図Diagram showing a third turning path with reverse 後進を伴う第3の旋回経路の詳細を示す図Diagram showing details of the third turning path with reverse 第2の領域を広くして旋回を行う第4の旋回経路を示す図The figure which shows the 4th turning path which widens a 2nd field and turns. 変形圃場で第3の旋回経路を設定した場合の旋回経路を示す図Diagram showing the turning path when the third turning path is set in the modified field 変形圃場で第5の旋回経路を設定した場合の旋回経路を示す図A diagram showing the turning path when the fifth turning path is set in the modified field 第3の旋回経路が設定可能な場合と許可しない場合の旋回経路を示す図Diagram showing the turning path when the third turning path can be set and not permitted 後進を伴う第3の旋回経路の生成を避けるために逆側を作業開始位置とした場合の圃場を示す図Figure showing a field where the reverse side is the work start position to avoid the creation of a third turning path with reverse
 無人で自律走行可能な自律走行作業車両(以下、無人車両と称することがある)1、及び、この自律走行作業車両1に協調して作業者(ユーザ)が操向操作する有人の走行作業車両(以下、有人車両と称することがある)100をトラクタとし、自律走行作業車両1及び走行作業車両100には作業機としてロータリ耕耘装置がそれぞれ装着されている実施例について説明する。但し、作業車両はトラクタに限定するものではなく、コンバイン等でもよく、また、作業機はロータリ耕耘装置に限定するものではなく、畝立て機や草刈機やレーキや播種機や施肥機等であってもよい。 An autonomous traveling work vehicle (which may be referred to as "unmanned vehicle" hereinafter) 1 capable of autonomous traveling unmanned and autonomously, and a manned traveling working vehicle operated by a worker (user) in coordination with the autonomous traveling work vehicle 1 An embodiment will be described in which the autonomous traveling working vehicle 1 and the traveling working vehicle 100 are respectively equipped with a rotary cultivating device as a working machine with the tractor 100 (which may be hereinafter referred to as a manned vehicle). However, the working vehicle is not limited to a tractor, and may be a combine, etc. The working machine is not limited to a rotary tiller, and may be a setting machine, a mower, a rake, a planter, a fertilizing machine, etc. May be
 本明細書において「自律走行」とは、トラクタが備える制御部(ECU)によりトラクタが備える走行に関する構成が制御されて予め定められた経路に沿ってトラクタが走行することを意味する。
 単一の圃場における農作業を、無人車両及び有人車両で実行することを、農作業の協調作業、追従作業、随伴作業などと称することがある。なお、農作業の協調作業としては、「単一圃場における農作業を、無人車両及び有人車両で実行すること」に加え、「隣接する圃場等の異なる圃場における農作業を同時期に無人車両及び有人車両で実行すること」が含まれてもよい。
In the present specification, “autonomous traveling” means that the control unit (ECU) of the tractor controls a configuration related to traveling of the tractor and the tractor travels along a predetermined route.
Performing agricultural work in a single field with unmanned vehicles and manned vehicles may be referred to as cooperative work of agricultural work, follow-up work, accompanying work, and the like. In addition to "Performing farming work in a single field with unmanned vehicles and manned vehicles" as cooperative work of farming work, unmanned vehicles and manned vehicles at the same time farming operations in different fields such as adjacent fields "To perform" may be included.
 図1は、自律走行作業車両及び走行作業車両の概略構成を示す側面図であり、図2は、それらの制御構成を示す制御ブロック図である。図1、図2において、自律走行作業車両1となるトラクタの全体構成について説明する。トラクタの車体部は、ボンネット2内にエンジン3が内設され、該ボンネット2の後部のキャビン11内にダッシュボード14が設けられ、ダッシュボード14上に操向操作手段となるステアリングハンドル4が設けられている。該ステアリングハンドル4の回動により操舵装置を介して前輪9・9の向きが回動される。操舵装置を作動させる操舵アクチュエータ40は制御部30を構成するステアリングコントローラ301と接続される。自律走行作業車両1の操舵方向は操向センサ20により検知される。操向センサ20はロータリエンコーダ等の角度センサからなり、前輪9の回動基部に配置される。但し、操向センサ20の検知構成は限定するものではなく操舵方向が認識されるものであればよく、ステアリングハンドル4の回動を検知したり、パワーステアリングの作動量を検知してもよい。操向センサ20により得られた検出値は制御部30のステアリングコントローラ301に入力される。 FIG. 1 is a side view showing a schematic configuration of an autonomous traveling working vehicle and a traveling working vehicle, and FIG. 2 is a control block diagram showing a control configuration of them. In FIG. 1 and FIG. 2, an overall configuration of a tractor serving as the autonomous traveling work vehicle 1 will be described. In the body part of the tractor, the engine 3 is installed inside the bonnet 2, the dashboard 14 is provided in the cabin 11 at the rear of the bonnet 2, and the steering handle 4 serving as steering operation means is provided on the dashboard 14 It is done. The turning of the steering wheel 4 turns the direction of the front wheels 9 and 9 via the steering device. A steering actuator 40 for operating the steering device is connected to a steering controller 301 constituting the control unit 30. The steering direction of the autonomous mobile work vehicle 1 is detected by the steering sensor 20. The steering sensor 20 is an angle sensor such as a rotary encoder, and is disposed at the rotation base of the front wheel 9. However, the detection configuration of the steering sensor 20 is not limited as long as the steering direction is recognized, and the rotation of the steering wheel 4 may be detected or the operation amount of the power steering may be detected. The detected value obtained by the steering sensor 20 is input to the steering controller 301 of the control unit 30.
 制御部30は、ステアリングコントローラ301、エンジンコントローラ302、変速制御コントローラ303、水平制御コントローラ304、作業制御コントローラ305、測位制御ユニット306、自律走行制御コントローラ307等を備え、それぞれCPU(中央演算処理装置)やRAMやROM等の記憶装置やインターフェース等を備え、記憶装置には動作させるためのプログラムやデータ等が記憶され、CAN通信によりそれぞれ情報やデータ等を送受信できるように通信可能としている。 The control unit 30 includes a steering controller 301, an engine controller 302, a transmission control controller 303, a horizontal control controller 304, a work control controller 305, a positioning control unit 306, an autonomous traveling control controller 307, etc. And a storage device such as a RAM or a ROM, an interface, and the like, and the storage device stores programs, data, and the like for operation, and can be communicated so as to transmit and receive information, data, and the like by CAN communication.
 前記ステアリングハンドル4の後方に運転席5が配設され、運転席5下方にミッションケース6が配置される。ミッションケース6の左右両側にリアアクスルケース8・8が連設され、該リアアクスルケース8・8には車軸を介して後輪10・10が支承される。エンジン3からの動力はミッションケース6内の変速装置(主変速装置や副変速装置)により変速されて、後輪10・10を駆動可能としている。変速装置は例えば油圧式無段変速装置で構成して、可変容量型の油圧ポンプの可動斜板をモータ等の変速手段44により作動させて変速可能としている。変速手段44は制御部30の変速制御コントローラ303と接続されている。後輪10の回転数は車速センサ27により検知され、走行速度として変速制御コントローラ303に入力される。但し、車速の検知方法や車速センサ27の配置位置は限定するものではない。 A driver's seat 5 is disposed behind the steering wheel 4, and a transmission case 6 is disposed below the driver's seat 5. Rear axle cases 8 are connected to both left and right sides of the transmission case 6, and rear wheels 10 are supported by the rear axle cases 8 via axles. The power from the engine 3 is shifted by the transmission (main transmission or sub transmission) in the transmission case 6 to drive the rear wheels 10 and 10. The transmission is, for example, a hydraulic stepless transmission, in which a movable swash plate of a variable displacement hydraulic pump is operated by transmission means 44 such as a motor so as to be shiftable. The transmission means 44 is connected to the transmission control controller 303 of the control unit 30. The rotational speed of the rear wheel 10 is detected by the vehicle speed sensor 27 and is input to the transmission control controller 303 as the traveling speed. However, the detection method of the vehicle speed and the arrangement position of the vehicle speed sensor 27 are not limited.
 ミッションケース6内にはPTOクラッチやPTO変速装置が収納され、PTOクラッチはPTO入切手段45により入り切りされ、PTO入切手段45は表示手段49を介して制御部30の自律走行制御コントローラ307と接続され、PTO軸への動力の断接を制御可能としている。また、作業機として播種機や畦塗機等を装着した場合、作業機独自の制御ができるように作業機コントローラ308が備えられ、該作業機コントローラ308は情報通信配線(所謂、ISOBUS)を介して作業制御コントローラ305と接続される。 A PTO clutch and a PTO transmission are accommodated in the transmission case 6, the PTO clutch is turned on and off by the PTO ON / OFF unit 45, and the PTO ON / OFF unit 45 and the autonomous traveling controller 307 of the control unit 30 via the display unit 49. It is connected and control of connection and disconnection of power to the PTO shaft is possible. In addition, when a seeding machine or a coating machine is attached as a work machine, the work machine controller 308 is provided so that control unique to the work machine can be performed, and the work machine controller 308 uses information communication wiring (so-called ISOBUS). And the work control controller 305.
 前記エンジン3を支持するフロントフレーム13にはフロントアクスルケース7が支持され、該フロントアクスルケース7の両側に前輪9・9が支承され、前記ミッションケース6からの動力が前輪9・9に伝達可能に構成している。前記前輪9・9は操舵輪となっており、ステアリングハンドル4の回動操作により回動可能とするとともに、操舵装置の駆動手段となるパワステシリンダからなる操舵アクチュエータ40により前輪9・9が左右操舵回動可能となっている。操舵アクチュエータ40は制御部30のステアリングコントローラ301と接続されて制御される。 A front axle case 7 is supported on a front frame 13 supporting the engine 3, front wheels 9 and 9 are supported on both sides of the front axle case 7, and power from the transmission case 6 can be transmitted to the front wheels 9 and 9. It is composed of The front wheels 9 and 9 are steering wheels, and can be turned by the turning operation of the steering handle 4, and the front wheels 9 and 9 are steered left and right by a steering actuator 40 composed of a power steering cylinder serving as a driving means of a steering device. It is rotatable. The steering actuator 40 is connected to the steering controller 301 of the control unit 30 and controlled.
 エンジン回転制御手段となるエンジンコントローラ302にはエンジン回転数センサ61や水温センサや油圧センサ等が接続され、エンジンの状態を検知できるようにしている。エンジンコントローラ302では設定回転数と実回転数から負荷を検出し、過負荷とならないように制御するとともに、後述する遠隔操作装置112にエンジン3の状態を送信して表示装置113で表示できるようにしている。 An engine rotation number sensor 61, a water temperature sensor, an oil pressure sensor, and the like are connected to an engine controller 302 serving as an engine rotation control means so that the state of the engine can be detected. The engine controller 302 detects the load from the set number of revolutions and the actual number of revolutions and controls the load so as not to be overloaded, and transmits the state of the engine 3 to the remote control device 112 described later so that the display device 113 can display it. ing.
 また、ステップ下方に配置した燃料タンク15には燃料の液面を検知するレベルセンサ29が配置されて表示手段49と接続され、表示手段49は自律走行作業車両1のダッシュボードに設けられ、燃料の残量を表示する。そして、燃料の残量は自律走行コントローラ307で作業可能時間が演算され、通信装置110を介して遠隔操作装置112に情報が送信されて、遠隔操作装置112の表示装置113に燃料残量と作業可能時間が表示可能とされる。なお、回転計、燃料計、油圧、異常を表示する表示手段と、現在位置等を表示可能な表示手段とは別構成でもよい。 Further, a level sensor 29 for detecting the liquid level of fuel is disposed in the fuel tank 15 disposed below the step and connected to the display means 49. The display means 49 is provided on the dashboard of the autonomous traveling work vehicle 1 Display the remaining amount of. Then, the remaining amount of fuel is calculated as the workable time by the autonomous traveling controller 307, information is transmitted to the remote control device 112 through the communication device 110, and the remaining amount of fuel and work are displayed on the display device 113 of the remote control device 112. The available time can be displayed. The tachometer, the fuel gauge, the oil pressure, the display means for displaying an abnormality, and the display means capable of displaying the current position or the like may be configured separately.
 前記ダッシュボード14上にはエンジンの回転計や燃料計や油圧等や異常を示すモニタや設定値等を表示する表示手段49が配置されている。表示手段49は遠隔操作装置112と同様にタッチパネル式として、データの入力や選択やスイッチ操作やボタン操作等も可能としている。 On the dashboard 14, there are disposed an engine tachometer, a fuel gauge, a hydraulic pressure, a monitor indicating an abnormality, and a display means 49 for displaying a set value or the like. Like the remote control device 112, the display means 49 is a touch panel type, which also enables data input / selection, switch operation, button operation and the like.
 また、トラクタの車体部の後部に作業機装着装置23を介して作業機としてロータリ耕耘装置24が昇降可能に装設させている。前記ミッションケース6上に昇降シリンダ26が設けられ、該昇降シリンダ26を伸縮させることにより、作業機装着装置23を構成する昇降アームを回動させてロータリ耕耘装置24を昇降できるようにしている。昇降シリンダ26は昇降アクチュエータ25の作動により伸縮され、昇降アクチュエータ25は制御部30の水平制御コントローラ304と接続されている。また、前記作業機装着装置23の左右一側のリフトリンクには傾斜シリンダが設けられ、該傾斜シリンダを作動させる傾斜アクチュエータ47は水平制御コントローラ304と接続されている。 In addition, a rotary tilling device 24 as a working machine is movably mounted on the rear of the vehicle body portion of the tractor as a working machine via a working machine mounting device 23. A lift cylinder 26 is provided on the transmission case 6, and by extending and retracting the lift cylinder 26, a lift arm constituting the work implement mounting device 23 is turned to be able to lift and lower the rotary cultivator 24. The lift cylinder 26 is expanded and contracted by the operation of the lift actuator 25, and the lift actuator 25 is connected to the horizontal control controller 304 of the control unit 30. Further, on the lift links on one side in the left and right of the work implement mounting device 23, tilt cylinders are provided, and a tilt actuator 47 for operating the tilt cylinders is connected to the horizontal control controller 304.
 位置検出部となる測位制御ユニット306には位置情報を検出可能とするための移動GPSアンテナ(測位アンテナ)34とデータ受信アンテナ38が接続され、移動GPSアンテナ34とデータ受信アンテナ38は前記キャビン11上に設けられる。測位制御ユニット306には、位置算出手段を備えて緯度と経度を算出し、現在位置を表示手段49や遠隔操作装置112の表示装置113で表示できるようにしている。なお、GPS(米国)に加えて準天頂衛星(日本)やグロナス衛星(ロシア)等の衛星測位システム(GNSS)を利用することで精度の高い測位ができるが、本実施形態ではGPSを用いて説明する。 A mobile GPS antenna (positioning antenna) 34 for enabling detection of position information and a data reception antenna 38 are connected to the positioning control unit 306 serving as a position detection unit, and the mobile GPS antenna 34 and data reception antenna 38 Provided on top. The positioning control unit 306 is provided with a position calculation unit to calculate latitude and longitude, and can display the current position on the display unit 49 or the display device 113 of the remote control device 112. In addition to GPS (US), precise positioning can be performed using satellite positioning systems (GNSS) such as Quasi-Zenith Satellite (Japan) and Glonass Satellite (Russia), but in this embodiment GPS is used. explain.
 自律走行作業車両1は、車体部の姿勢変化情報を得るためにジャイロセンサ31、および進行方向を検知するために方位角検出部32を具備し制御部30と接続されている。但し、GPSの位置計測から進行方向を算出できるので、方位角検出部32を省くことができる。 The autonomous traveling working vehicle 1 includes a gyro sensor 31 for obtaining posture change information of a vehicle body portion, and an azimuth angle detection unit 32 for detecting a traveling direction, and is connected to a control unit 30. However, since the traveling direction can be calculated from GPS position measurement, the azimuth detection unit 32 can be omitted.
 ジャイロセンサ31は自律走行作業車両1の車体部前後方向の傾斜(ピッチ)の角速度、車体部左右方向の傾斜(ロール)の角速度、および旋回(ヨー)の角速度、を検出するものである。該三つの角速度を積分計算することにより、自律走行作業車両1の車体部の前後方向および左右方向への傾斜角度、および旋回角度を求めることが可能である。ジャイロセンサ31の具体例としては、機械式ジャイロセンサ、光学式ジャイロセンサ、流体式ジャイロセンサ、振動式ジャイロセンサ等が挙げられる。ジャイロセンサ31は制御部30に接続され、当該三つの角速度に係る情報を制御部30に入力する。 The gyro sensor 31 detects an angular velocity of inclination (pitch) in the longitudinal direction of the vehicle body portion of the autonomous traveling work vehicle 1, an angular velocity of inclination (roll) in the lateral direction of the vehicle body portion, and an angular velocity of turning (yaw). By integrating and calculating the three angular velocities, it is possible to determine the inclination angle in the front-rear direction and the left-right direction of the vehicle body portion of the autonomous traveling working vehicle 1 and the turning angle. Specific examples of the gyro sensor 31 include a mechanical gyro sensor, an optical gyro sensor, a fluid gyro sensor, a vibration gyro sensor, and the like. The gyro sensor 31 is connected to the control unit 30, and inputs information on the three angular velocities to the control unit 30.
 方位角検出部32は自律走行作業車両1の向き(進行方向)を検出するものである。方位角検出部32の具体例としては磁気方位センサ等が挙げられる。方位角検出部32はCAN通信手段を介して自律走行制御コントローラ307に情報が入力される。 The azimuth detecting unit 32 detects the direction (advancing direction) of the autonomously traveling working vehicle 1. As a specific example of the azimuth angle detection unit 32, a magnetic azimuth sensor or the like can be mentioned. The azimuth detecting unit 32 inputs information to the autonomous traveling control controller 307 via CAN communication means.
 こうして自律走行制御コントローラ307は、上記ジャイロセンサ31、方位角検出部32から取得した信号を姿勢・方位演算手段により演算し、自律走行作業車両1の姿勢(向き、車体部前後方向及び車体部左右方向の傾斜、旋回方向)を求める。 In this way, the autonomous traveling control controller 307 calculates the signals acquired from the gyro sensor 31 and the azimuth angle detection unit 32 by the attitude / orientation calculation means, and the attitude of the autonomous traveling work vehicle 1 (direction, vehicle body front and rear direction and vehicle body left and right Find the inclination of the direction, the turning direction).
 次に、自律走行作業車両1の位置情報を衛星測位システムの一つであるGPS(グローバル・ポジショニング・システム)を用いて取得する。
 GPSを用いた測位方法としては、単独測位、相対測位、DGPS(ディファレンシャルGPS)測位、RTK-GPS(リアルタイムキネマティック-GPS)測位など種々の方法が挙げられ、これらいずれの方法を用いることも可能であるが、本実施形態では測定精度の高いRTK-GPS測位方式を採用する。
Next, the position information of the autonomous mobile work vehicle 1 is acquired using GPS (Global Positioning System) which is one of the satellite positioning systems.
Positioning methods using GPS include various methods such as single positioning, relative positioning, DGPS (differential GPS) positioning, RTK-GPS (real-time kinematic-GPS) positioning, and any of these methods can be used. However, in this embodiment, the RTK-GPS positioning method with high measurement accuracy is adopted.
 RTK-GPS測位は、位置が判っている基準局と、位置を求めようとする移動局とで同時にGPS観測を行い、基準局で観測したデータを無線等の方法で移動局にリアルタイムで送信し、基準局の位置成果に基づいて移動局の位置をリアルタイムに求める方法である。 RTK-GPS positioning simultaneously performs GPS observation with a reference station whose position is known and a mobile station whose position is to be determined, and transmits data observed by the reference station to the mobile station in real time by a method such as radio, etc. Is a method of obtaining the position of the mobile station in real time based on the position result of.
 本実施形態においては、自律走行作業車両1に移動局となる測位制御ユニット306と移動GPSアンテナ34とデータ受信アンテナ38が配置され、基準局となる固定通信機35と固定GPSアンテナ36とデータ送信アンテナ39が所定位置に配設される。本実施形態のRTK-GPS測位は、基準局および移動局の両方で位相の測定(相対測位)を行い、基準局の固定通信機35で測位したデータをデータ送信アンテナ39からデータ受信アンテナ38に送信する。 In this embodiment, a positioning control unit 306 serving as a mobile station, a mobile GPS antenna 34 and a data receiving antenna 38 are disposed in the autonomous traveling work vehicle 1, and a fixed communication device 35 serving as a reference station, a fixed GPS antenna 36 and a data transmitting antenna 39 are disposed at predetermined positions. In the RTK-GPS positioning of this embodiment, phase measurement (relative positioning) is performed in both the reference station and the mobile station, and data measured by the fixed communication device 35 of the reference station is transmitted from the data transmission antenna 39 to the data reception antenna 38 .
 自律走行作業車両1に配置された移動GPSアンテナ34はGPS衛星37・37・・・からの信号を受信する。この信号は測位制御ユニット306に送信され測位される。そして、同時に基準局となる固定GPSアンテナ36でGPS衛星37・37・・・からの信号を受信し、固定通信機35で測位し測位制御ユニット306に送信し、観測されたデータを解析して移動局の位置を決定する。 The mobile GPS antenna 34 disposed on the autonomous mobile work vehicle 1 receives signals from the GPS satellites 37, 37. This signal is transmitted to the positioning control unit 306 and positioned. Then, at the same time, signals from the GPS satellites 37 are received by the fixed GPS antenna 36 serving as a reference station, measured by the fixed communication device 35 and transmitted to the positioning control unit 306, and the observed data is analyzed and moved Determine the station's position.
 こうして、自律走行コントローラ307は自律走行作業車両1を自律走行させる自律走行手段として備えられる。つまり、自律走行コントローラ307と接続された各種情報取得ユニットによって、自律走行作業車両1の走行状態を各種情報として取得し、自律走行コントローラ307と接続された各種制御ユニットによって、自律走行作業車両1の自律走行を制御する。具体的には、GPS衛星37・37・・・から送信される電波を受信して測位制御ユニット306において設定時間間隔で車体部の位置情報を求め、ジャイロセンサ31及び方位角検出部32から車体部の変位情報および方位情報を求め、これら位置情報と変位情報と方位情報に基づいて車体部が予め設定した経路(走行経路と作業経路)Rに沿って走行するように、操舵アクチュエータ40、変速手段44、昇降アクチュエータ25、PTO入切手段45、エンジンコントローラ302等を制御して自律走行し自動で作業できるようにしている。 Thus, the autonomous traveling controller 307 is provided as an autonomous traveling means for causing the autonomous traveling work vehicle 1 to autonomously travel. That is, the traveling state of the autonomous traveling working vehicle 1 is acquired as various information by the various information acquiring units connected to the autonomous traveling controller 307, and the autonomous traveling working vehicle 1 is acquired by the various control units connected to the autonomous traveling controller 307. Control autonomous driving. Specifically, the radio waves transmitted from the GPS satellites 37, 37, ... are received, and the position control unit 306 obtains position information of the vehicle body portion at set time intervals, and the vehicle body from the gyro sensor 31 and the azimuth angle detector 32 The steering actuator 40 and the gear shift so that the vehicle body section travels along a preset route (traveling route and working route) R based on the position information, displacement information, and orientation information. Means 44, raising and lowering actuator 25, PTO on / off means 45, engine controller 302 and the like are controlled to enable autonomous traveling and automatic work.
 また、自律走行作業車両1には障害物センサ41が配置されて制御部30と接続され、障害物に衝突しないようにしている。例えば、障害物センサ41はレーザセンサや超音波センサやカメラで構成して車体部の前部や側部や後部に配置して制御部30と接続し、制御部30によって車体部の前方や側方や後方に障害物があるかどうかを検出し、障害物が設定距離以内に近づくと走行を停止させるように制御する。 In addition, an obstacle sensor 41 is disposed on the autonomous traveling work vehicle 1 and connected to the control unit 30 so as not to collide with the obstacle. For example, the obstacle sensor 41 is configured by a laser sensor, an ultrasonic sensor, or a camera, disposed at the front, side or rear of the vehicle body and connected to the controller 30, and the controller 30 controls the front or side of the vehicle It detects whether there is an obstacle on the side or the back, and controls to stop traveling when the obstacle approaches within the set distance.
 また、自律走行作業車両1には前方を撮影するカメラ42Fや後方の作業機や作業後の圃場状態を撮影するカメラ42Rが搭載され制御部30と接続されている。カメラ42F・42Rは本実施形態ではキャビン11のルーフの前部上と後部上に配置しているが、配置位置は限定するものではなく、キャビン11内の前部上と後部上や一つのカメラ42を車体部中心に配置して鉛直軸を中心に回転させて周囲を撮影しても、複数のカメラ42を車体部の四隅に配置して車体部周囲を撮影する構成であってもよい。また、キャビン11やボンネット2等に自律走行作業車両1の製造社のエンブレムが取り付けられている場合、当該エンブレムの背面側にカメラ42F・42Rを配することとしてもよい。その場合、エンブレム内には貫通穴或いは所定の隙間が設定され、カメラ42F・42Rのレンズが当該貫通穴或いは隙間の位置に相当することで撮影が妨げられない。カメラ42F・42Rで撮影された映像は走行作業車両100に備えられた遠隔操作装置112の表示装置113に表示される。 The autonomous traveling work vehicle 1 is also connected to the control unit 30 with a camera 42F for photographing the front, a work machine for the rear, and a camera 42R for photographing the field condition after work. The cameras 42F and 42R are disposed on the front and rear of the roof of the cabin 11 in this embodiment, but the arrangement position is not limited, and the front and rear of the cabin 11 and one camera 42 may be arranged around the body portion and rotated around the vertical axis to photograph the surroundings, or a plurality of cameras 42 may be arranged at the four corners of the body portion to photograph the periphery of the body portion. In addition, when an emblem of a manufacturer of the autonomous traveling work vehicle 1 is attached to the cabin 11, the hood 2, etc., the cameras 42F and 42R may be disposed on the back side of the emblem. In that case, a through hole or a predetermined gap is set in the emblem, and the lenses of the cameras 42F and 42R correspond to the position of the through hole or the gap, so that photographing is not hindered. The images taken by the cameras 42F and 42R are displayed on the display device 113 of the remote control device 112 provided on the traveling work vehicle 100.
 遠隔操作装置112は前記自律走行作業車両1の後述する経路Rを設定したり、自律走行作業車両1を遠隔操作したり、自律走行作業車両1の走行状態や作業機の作動状態を監視したり、作業データを記憶したりするものであり、操作側の制御部(CPUやメモリ)130や通信装置111や表示装置113や記憶部114等を備える。 The remote control device 112 sets a route R of the autonomous traveling work vehicle 1 described later, remotely operates the autonomous traveling work vehicle 1, monitors the traveling state of the autonomous traveling work vehicle 1, and monitors the working state of the working machine. , And stores operation data, and includes a control unit (CPU or memory) 130 on the operation side, a communication device 111, a display device 113, a storage unit 114, and the like.
 有人走行車両となる走行作業車両100は作業者が乗車して運転操作するとともに、走行作業車両100に遠隔操作装置112を搭載して自律走行作業車両1を操作可能としている。走行作業車両100の基本構成は自律走行作業車両1と略同じ構成であるので詳細な説明は省略する。なお、走行作業車両100(または遠隔操作装置112)にGPS用の制御ユニットを備える構成とすることも可能である。 While the operator gets on and operates the traveling working vehicle 100 to be a manned traveling vehicle, the remote operating device 112 is mounted on the traveling working vehicle 100 to enable the autonomous traveling working vehicle 1 to be operated. The basic configuration of the traveling working vehicle 100 is substantially the same as that of the autonomous traveling working vehicle 1, and thus the detailed description will be omitted. The traveling work vehicle 100 (or the remote control device 112) may be configured to include a control unit for GPS.
 遠隔操作装置112は、走行作業車両100及び自律走行作業車両1のダッシュボードやキャビン11のピラー等に設けられる取付部(不図示の例えば遠隔操作装置112を取り付け固定可能なアーム部材)に着脱可能としている。遠隔操作装置112は走行作業車両100の取付部に取り付けたまま操作することも、走行作業車両100の外に持ち出して携帯して操作することも、自律走行作業車両1の取付部に取り付けたまま操作することも可能である。遠隔操作装置112は例えばノート型やタブレット型のパーソナルコンピュータ等の無線通信端末で構成することができる。本実施形態ではタブレット型のコンピュータで構成している。 The remote control device 112 can be attached to and detached from an attachment portion (an arm member capable of attaching and fixing, for example, the remote control device 112, not shown) provided on a dashboard of the traveling working vehicle 100 and the autonomous traveling working vehicle 1 or a pillar of the cabin 11. And The remote control device 112 may be operated while attached to the mounting portion of the traveling work vehicle 100 or may be carried out by carrying it out of the traveling working vehicle 100 and attached to the mounting portion of the autonomous traveling work vehicle 1 It is also possible to operate. The remote control device 112 can be configured by, for example, a wireless communication terminal such as a laptop computer or a tablet personal computer. In this embodiment, it is configured by a tablet computer.
 さらに、遠隔操作装置112と自律走行作業車両1は無線で相互に通信可能に構成しており、自律走行作業車両1と遠隔操作装置112には通信するための通信装置110・111がそれぞれ設けられている。通信装置111は遠隔操作装置112に一体的に構成されている。通信手段は例えばWiFi等の無線LANで相互に通信可能に構成されている。遠隔操作装置112は画面に触れることで操作可能なタッチパネル式の操作画面とした表示装置113を筐体表面に設け、筐体内に通信装置111や制御部130や記憶部114やバッテリ等を備える。記憶部114には、自律走行作業車両1や走行作業車両100や作業機の仕様(本体部及び作業機の全長や幅や高さ等の各種長さ、エンジンの種類や馬力、変速比、作業能力等)や後述する経路設定に関わる設定値や設定後の経路等が記憶される。なお、経路生成設定後に自律走行作業車両1の制御部30に転送した後は、制御部30に備える記憶部にも記憶される。 Furthermore, the remote control device 112 and the autonomous traveling work vehicle 1 are configured to be able to communicate with each other wirelessly, and the autonomous traveling work vehicle 1 and the remote control device 112 are respectively provided with communication devices 110 and 111 for communicating. ing. The communication device 111 is integrally configured with the remote control device 112. The communication means are configured to be able to communicate with each other via a wireless LAN such as WiFi. The remote control device 112 is provided with a display device 113 as a touch panel type operation screen that can be operated by touching a screen, and the communication device 111, the control unit 130, the storage unit 114, a battery, etc. in the case. In the storage unit 114, specifications of the autonomous traveling working vehicle 1, the traveling working vehicle 100, and the working machine (total length of the main body and the working machine, various lengths such as width and height, engine type and horsepower, gear ratio, working The capability etc.), the set value related to the route setting described later, the route after setting and the like are stored. In addition, after transferring to the control unit 30 of the autonomous traveling work vehicle 1 after the route generation setting, the information is also stored in the storage unit included in the control unit 30.
 次に、経路生成装置となる遠隔操作装置112により経路Rを設定する手順について説明する。図3は、遠隔操作装置の表示装置に表示される初期画面を示す。但し、自律走行作業車両1が備える制御部30によって経路Rを設定できるようにすることも可能である。
 遠隔操作装置112の表示装置113はタッチパネル式としており、電源をオンして遠隔操作装置112を起動させると初期画面が現れるようにしている。初期画面では、図3に示すように、トラクタ設定ボタン201、圃場設定ボタン202、経路生成設定ボタン203、データ転送ボタン204、作業開始ボタン205、終了ボタン206が表示される。
Next, a procedure for setting the route R by the remote control device 112 as a route generation device will be described. FIG. 3 shows an initial screen displayed on the display device of the remote control device. However, it is also possible to set the route R by the control unit 30 of the autonomous traveling work vehicle 1.
The display device 113 of the remote control device 112 is a touch panel type, and when the power is turned on to activate the remote control device 112, an initial screen appears. In the initial screen, as shown in FIG. 3, a tractor setting button 201, a field setting button 202, a route generation setting button 203, a data transfer button 204, a work start button 205, and an end button 206 are displayed.
 まず、トラクタ設定について説明する。
 トラクタ設定ボタン201をタッチすると、過去にこの遠隔操作装置112によりトラクタを用いて作業を行った場合、つまり、過去に設定したトラクタが存在する場合、そのトラクタ名(機種)が表示される。表示された複数のトラクタ名から今回使用するトラクタ名をタッチして選択すると、その後、後述する圃場設定に進み、或いは、初期画面に戻ることが可能である。
 新規にトラクタ設定を行う場合には、トラクタの機種を特定する。この場合、機種名を直接入力する。或いは、複数のトラクタの機種を表示装置113に一覧表示させて所望の機種を選択できるようにしている。
First, tractor setting will be described.
When the tractor setting button 201 is touched, when the remote control device 112 performs work using a tractor in the past, that is, when there is a tractor set in the past, the tractor name (model) is displayed. When the tractor name to be used this time is touched and selected from among the displayed plurality of tractor names, it is possible to thereafter advance to field setting described later or return to the initial screen.
When setting a new tractor, specify the tractor model. In this case, enter the model name directly. Alternatively, the model of a plurality of tractors is displayed in a list on the display device 113 so that a desired model can be selected.
 トラクタの機種が設定されると、トラクタに装着される作業機のサイズ、形状、作業機の位置の設定画面が現れる。作業機の位置は例えば前部か、前輪と後輪の間か、後部か、オフセットか、を選択する。
 作業機の設定が終了すると、作業中の車速、作業中のエンジン回転数、旋回時の車速、旋回時のエンジン回転数の設定画面が現れる。作業中の車速は往路と復路で異なる車速とすることも可能である。
 車速、及び、エンジン回転数の設定が終了すると、後述する圃場設定に進み、或いは、初期画面に戻ることが可能である。
When the type of tractor is set, a screen for setting the size, shape, and position of the working machine to be mounted on the tractor appears. The position of the working machine is selected, for example, from the front, between the front wheel and the rear wheel, or from the rear, or offset.
When the setting of the work machine is completed, a setting screen for the vehicle speed during work, the engine speed during work, the vehicle speed during turning, and the engine speed during turning appears. The vehicle speed during work may be different between the forward and return routes.
When the setting of the vehicle speed and the engine speed is completed, it is possible to proceed to the field setting described later or return to the initial screen.
 次に、圃場設定について、説明する。図4は、圃場設定時において自律走行作業車両にユーザが搭乗して行う外周走行の様子を示す。図5は、作業領域、枕地領域等、圃場内の設定される領域を示す。
 圃場設定ボタン202をタッチすると、過去にこの遠隔操作装置112によりトラクタを用いて作業行った場合、つまり、過去に設定した圃場が存在する場合、設定されている圃場の名前が表示される。表示された複数の圃場名から今回作業を行う圃場名をタッチして選択すると、その後、後述する経路生成設定に進み、或いは、初期画面に戻ることが可能である。なお、設定された圃場を編集又は新規に設定することも可能である。
Next, the field setting will be described. FIG. 4 shows a state of traveling on the periphery performed by the user riding on the autonomous traveling work vehicle at the time of farmland setting. FIG. 5 shows a set area in the field such as a work area and a headland area.
When the field setting button 202 is touched, when the remote control device 112 performs work using a tractor in the past, that is, when there is a field set in the past, the name of the field set is displayed. If a farm field name to be worked this time is touched and selected from a plurality of farm field names displayed, then it is possible to proceed to path generation setting described later or return to the initial screen. In addition, it is also possible to edit or newly set the set field.
 登録された圃場がない場合には、新規の圃場設定となる。新規の圃場設定を選択すると、図4に示すように、トラクタ(自律走行作業車両1)を圃場H内の四隅のうちの一つの隅Aに位置させ、「測定開始」のボタンをタッチする。その後、トラクタを圃場Hの外周に沿って走行させて圃場形状を登録する。次に、作業者は、登録された圃場形状から、角位置A・B・C・Dや変曲点を登録して圃場形状を特定する。 If there is no registered field, it will be a new field setting. When a new field setting is selected, as shown in FIG. 4, the tractor (autonomous traveling work vehicle 1) is positioned at one of the four corners in the field H, and the button "measurement start" is touched. Thereafter, the tractor is caused to travel along the outer periphery of the field H to register the field shape. Next, the operator registers the corner positions A, B, C, D and the inflection point from the registered field shape and specifies the field shape.
 圃場Hが特定されると、図5に示すように、作業開始位置Sと、作業開始方向Fと、作業終了位置Gを設定する。この圃場H内に障害物が存在する場合には、障害物の位置までトラクタを移動させ、「障害物設定」ボタンをタッチして、その周囲を走行して、障害物設定を行う。なお、表示装置113には圃場の地図画像を表示することが可能であり、当該地図画像に、上記特定された圃場形状が重畳表示される場合、表示装置113上で障害物の周囲を指定することで、障害物設定を行うことができてもよい。
 上記作業が終了すると、または、過去に登録した圃場を選択すると、確認画面となり、OK(確認)ボタンと「編集/追加」ボタンが表示される。過去に登録した圃場に変更がある場合には、「編集/追加」ボタンをタッチする。
When the field H is specified, as shown in FIG. 5, the work start position S, the work start direction F, and the work end position G are set. If there is an obstacle in the field H, move the tractor to the position of the obstacle, touch the "set obstacle" button, travel around it, and set the obstacle. In addition, it is possible to display a map image of a field on the display device 113, and when the field shape specified above is displayed superimposed on the map image, the periphery of the obstacle is designated on the display device 113. To set an obstacle.
When the above work is completed, or when a field registered in the past is selected, a confirmation screen is displayed, and an OK (confirmation) button and an "edit / add" button are displayed. If there is a change in the field registered in the past, touch the "Edit / Add" button.
 前記圃場設定においてOKボタンをタッチすると、経路生成設定となる。経路生成設定は初期画面で経路生成設定ボタン203をタッチすることによっても経路生成設定が可能となる。
 経路生成設定では、自律走行作業車両1に対して走行作業車両100がどの位置で走行するかの選択画面が表示される。つまり、自律走行作業車両1と走行作業車両100の位置関係を設定する。具体的には、(1)走行作業車両100が自律走行作業車両1の左後方に位置する。(2)走行作業車両100が自律走行作業車両1の右後方に位置する。(3)走行作業車両100が自律走行作業車両1の真後ろに位置する。(4)走行作業車両100は随伴しない(自律走行作業車両1のみで作業を行う)。の4種類が表示され、タッチすることにより選択できる。
When the OK button is touched in the field setting, it becomes route generation setting. The route generation setting can also be made by touching the route generation setting button 203 on the initial screen.
In the route generation setting, a selection screen as to which position the traveling working vehicle 100 travels with respect to the autonomous traveling working vehicle 1 is displayed. That is, the positional relationship between the autonomously traveling working vehicle 1 and the traveling working vehicle 100 is set. Specifically, (1) the traveling work vehicle 100 is located at the left rear of the autonomously traveling work vehicle 1. (2) The traveling working vehicle 100 is located at the right rear of the autonomous traveling working vehicle 1. (3) The traveling work vehicle 100 is positioned directly behind the autonomously traveling work vehicle 1. (4) The traveling working vehicle 100 does not accompany (work is performed only with the autonomous traveling working vehicle 1). 4 types are displayed and can be selected by touching.
 次に、走行作業車両100の作業機の幅を設定する。つまり、作業機の幅を数字で入力する。
 次に、スキップ数を設定する。つまり、自律走行作業車両1が圃場外周端部(枕地)に至り第一の経路から第二の経路に移動する時に、経路を何本飛ばすかを設定する。具体的には、(1)スキップしない。(2)1列スキップ。(3)2列スキップ。のいずれかを選択する。
 次に、オーバーラップの設定を行う。つまり、作業経路と隣接する作業経路における作業幅の重複量の設定を行う。具体的には、(1)オーバーラップしない。(2)オーバーラップする。を選択する。なお、「オーバーラップする」を選択すると、数値入力画面が表示され、数値を入力しないと次に進むことができない。
Next, the width of the work machine of the traveling work vehicle 100 is set. That is, the width of the working machine is entered numerically.
Next, set the number of skips. That is, when the autonomously traveling work vehicle 1 reaches the field outer peripheral end (pillow) and moves from the first route to the second route, how many routes are to be skipped is set. Specifically, (1) do not skip. (2) Skip one column. (3) Skip 2 columns. Choose one.
Next, set the overlap. That is, the overlap amount of the work width in the work route adjacent to the work route is set. Specifically, (1) there is no overlap. (2) Overlap. Choose If "Overlap" is selected, a numerical value input screen is displayed, and it is impossible to proceed to the next step without inputting a numerical value.
 次に、外周設定が行われる。つまり、図5に示すような、自律走行作業車両1と走行作業車両100とにより、または、自律走行作業車両1により作業を行う作業領域HAの外側の領域が設定される。言い換えれば、圃場端で非作業状態として旋回走行する枕地HBと、枕地HBと枕地HBとの間の左右両側の圃場外周に接する非作業領域とする側部余裕地HCが設定される。よって、圃場H=作業領域HA+枕地HB+枕地HB+側部余裕地HC+側部余裕地HCとなる。通常、枕地HBの幅Wbと側部余裕地HCの幅Wcは、走行作業車両100が装着した作業機の幅の二倍以下の長さとして、自律走行作業車両1と走行作業車両100とによる随伴作業が終了した後に、作業者が走行作業車両100に乗り込み、手動操作で外周を二周することで、仕上げることができるようにしている。但し、圃場外周の形状が複雑でない場合には、自律走行作業車両1で外周を作業することも可能である。なお、外周設定において、枕地HBの幅Wb及び側部余裕地HCの幅Wcは、作業機の幅に応じて自動的に所定の幅に算出されるが、算出された枕地HBの幅Wb及び側部余裕地HCの幅Wcは、任意の幅に変更可能であり、ユーザは所望の幅に変更した上で、変更後の幅Wb、幅Wcを夫々、枕地HBの幅、側部余裕地HCの幅として設定可能である。但し、任意の幅に変更可能である場合、圃場内における走行、作業並びに安全性を考慮して算出される最小設定幅以下に設定することはできない。例えば、枕地HBや側部余裕地HCにおいて自律走行作業車両1が走行や旋回した場合に、作業機が圃場外に飛び出ないことを保証する幅が最小設定幅として算出される。 Next, perimeter setting is performed. That is, an area outside the work area HA where work is performed by the autonomous traveling work vehicle 1 and the traveling work vehicle 100 or by the autonomous traveling work vehicle 1 as shown in FIG. 5 is set. In other words, there is set a headland HB that turns in a non-working state at the end of the field, and a side margin HC that serves as a non-working area in contact with the field outer circumference on both left and right sides between the headland HB and the headland HB. . Therefore, it becomes field H = working area HA + headland HB + headland HB + side margin HC + side margin HC. Normally, autonomous traveling vehicle 1 and traveling working vehicle 100 have width Wb of headland HB and width Wc of side margin HC as a length equal to or less than twice the width of the working machine mounted by traveling working vehicle 100. After the completion of the accompanying work by the worker, the operator gets into the traveling work vehicle 100, and can finish by manually circling the outer circumference twice. However, when the shape of the field outer periphery is not complicated, it is also possible to work the outer periphery with the autonomous traveling work vehicle 1. In the outer circumference setting, the width Wb of the headland HB and the width Wc of the side margin HC are automatically calculated to a predetermined width according to the width of the work machine, but the calculated width of the headland HB The width Wc of the margin Wb and the side margin HC can be changed to any width, and the user changes the width Wb and the width Wc after the change to the desired width, respectively. It can be set as the width of the headroom HC. However, when the width can be changed to any width, the width can not be set smaller than the minimum setting width calculated in consideration of traveling, work and safety in the field. For example, when the autonomous traveling work vehicle 1 travels or turns in the headland HB or the side surplus land HC, a width that guarantees that the working machine does not fly out of the farmland is calculated as the minimum setting width.
 上記の各種設定の入力が終了すると、確認画面が現れ、確認をタッチすると、自動で経路Rが生成される。経路Rは作業経路Raと走行経路Rbからなり、作業経路Raは作業領域HA内で生成される経路で、作業を行いながら走行する経路であり、直線の経路となる。但し、作業領域HAが矩形でない場合には作業領域HA外の領域(枕地HBと側部余裕地(サイドマージン)HC)にはみ出すこともある。走行経路Rbは作業領域HA外の領域で生成される経路で、作業を行わずに走行する経路であり、直線と曲線を組み合わせた経路となる。主に、枕地HBでの旋回走行となる。 When the input of the above-described various settings is completed, a confirmation screen appears, and when the confirmation is touched, the route R is automatically generated. The route R includes a work route Ra and a travel route Rb. The work route Ra is a route generated in the work area HA, and is a route that travels while performing work, and is a straight route. However, if the work area HA is not rectangular, it may be projected to an area outside the work area HA (headland HB and side margin HC). The travel route Rb is a route generated in an area outside the work area HA, and travels without any work, and is a combination of straight lines and curves. It mainly turns around in the headland HB.
 前記経路Rは自律走行作業車両1と走行作業車両100の経路Rが生成される。
 前記作業経路生成後にその作業経路を見たい場合は、経路生成設定ボタン203をタッチすることでシミユレーション画像が表示され、確認することができる。なお、経路生成設定ボタン203をタッチしなくても経路Rは生成されている。経路生成設定の各項目を設定すると、経路生成設定が表示され、その下部に、「経路設定ボタン」「データ転送する」「ホームへ戻る」が選択可能に表示される。
As the route R, a route R of the autonomous traveling working vehicle 1 and the traveling working vehicle 100 is generated.
If it is desired to view the work path after the work path is generated, a simulated image can be displayed and confirmed by touching the path generation setting button 203. Note that the route R is generated without touching the route generation setting button 203. When each item of the route generation setting is set, the route generation setting is displayed, and “route setting button”, “transfer data”, and “return to home” are displayed selectable below it.
 経路生成設定で生成された経路(経路R)に関する情報を転送するときは、初期画面において設けられたデータ転送ボタン204をタッチすることで転送できる。この転送は遠隔操作装置112で行われるため、これら設定した情報を自律走行作業車両1の制御装置に転送する必要がある。この転送は、(1)端子を用いて転送する方法と、(2)無線で転送する方法があり、本実施形態では、端子を用いる場合には、USBケーブルを用いて遠隔操作装置112と自律走行作業車両1の制御装置を直接つなぐ、あるいは、USBメモリに一旦記憶させてから、自律走行作業車両1のUSB端子に接続して転送する。また、無線で転送する場合は、WiFi(無線LAN)を用いて転送する。 When transferring information on the route (route R) generated in the route generation setting, the data transfer can be performed by touching the data transfer button 204 provided on the initial screen. Since this transfer is performed by the remote control device 112, it is necessary to transfer the set information to the control device of the autonomous mobile work vehicle 1. There are (1) a method of transferring using a terminal and (2) a method of transferring wirelessly, and in this embodiment, when using a terminal, the remote control device 112 is autonomous with the remote control device 112 using a USB cable. The control device of the traveling work vehicle 1 is directly connected or temporarily stored in a USB memory, and then connected to the USB terminal of the autonomous traveling work vehicle 1 and transferred. Moreover, in the case of wireless transfer, transfer is performed using WiFi (wireless LAN).
 次に、前記経路生成設定において、自律走行作業車両1の作業経路Raに所定幅より狭い条または狭い部分が存在する場合の処理について説明する。作業経路Ra上の作業領域の幅を作業域幅Wrとし、前記所定幅は、自律走行作業車両1または走行作業車両100に装着される作業機(ロータリ耕耘装置24)の作業幅(以下走行作業幅W1)、または、作業機が本体部(トラクタ)の幅よりも狭い場合は本体部の幅とする。本実施形態では、作業機の幅は本体部の幅よりも長く、自律走行作業車両1と走行作業車両100には同じ作業機が装着されるものとし、オーバーラップは0として説明する。また、所定幅に満たない部分(作業領域)を有する条の経路を狭作業経路Rcと称する。 Next, in the route generation setting, processing in the case where a strip or a narrow portion narrower than a predetermined width is present in the work route Ra of the autonomous traveling work vehicle 1 will be described. The width of the work area on the work route Ra is the work area width Wr, and the predetermined width is the work width of the work machine (rotary cultivator 24) mounted on the autonomous traveling work vehicle 1 or the traveling work vehicle 100 (hereinafter referred to as traveling work The width W1) or the width of the main body when the work machine is narrower than the width of the main body (tractor). In the present embodiment, the width of the work machine is longer than the width of the main body, the same work machine is mounted on the autonomous traveling work vehicle 1 and the traveling work vehicle 100, and the overlap is described as zero. Moreover, the path | route of the strip | line which has a part (work area) which does not reach a predetermined width is called narrow work path Rc.
 経路生成設定において、作業経路Raに所定幅(以下の本実施形態では走行作業幅W1)より狭い条または狭い部分が存在する狭作業経路Rcがある場合、その経路Rを表示して、作業を行うか、行わないかを選択できるようにしている。つまり、狭作業経路Rcを自律走行作業車両1が作業するか、作業しないかを、予め設定しておかないと、自律走行作業車両1が狭作業経路Rcの手前に到達したときに、その作業経路Raが走行作業幅W1に満たないので作業不可能と判断して、狭作業経路Rcに入る手前で停止して作業を中断してしまうおそれがあるからである。また、狭作業経路Rcの作業を行わずに終了すると、未耕地が残ってしまうことになる。そこで、経路生成設定において、狭作業経路Rcが存在する場合には、作業を行うか、行わないかを予め選択できるようにしている。なお、有人の走行作業車両100の作業経路Raに狭作業経路Rcが存在する場合には、作業者が決め、選択画面は表示されない。但し、選択できるようにしてもよい。 In the route generation setting, when there is a narrow work route Rc in which a strip or a narrow portion narrower than a predetermined width (in the following embodiment, a traveling work width W1) is present in the work route Ra, the route R is displayed and the work is performed. You can choose to do or not do it. That is, if the autonomous traveling working vehicle 1 does not set in advance whether the autonomous traveling working vehicle 1 works the narrow working route Rc or not, when the autonomous traveling working vehicle 1 reaches the near side of the narrow working route Rc, the operation Since the route Ra is less than the traveling operation width W1, it is determined that the operation is impossible, and there is a possibility that the operation may be interrupted by stopping before entering the narrow operation route Rc. Moreover, if it is complete | finished without doing work of narrow work route Rc, an uncultivated land will remain. Therefore, in the route generation setting, when there is a narrow work route Rc, it is possible to select in advance whether to perform the operation or not. When the narrow work route Rc exists in the work route Ra of the traveling work vehicle 100 with man, the operator decides and the selection screen is not displayed. However, it may be selectable.
 前記狭作業経路Rcを作業すると設定した場合には、側部余裕地HC(第2領域)にはみ出して作業が行われる。狭作業経路Rcを作業しないと設定した場合には、狭作業経路Rcの作業領域HAは、作業領域HAの作業が終了した後に、枕地HBと側部余裕地HCを作業するときに行われる。若しくは、左右の側部余裕地HCの幅を調整して、狭作業経路Rcが走行作業幅W1となるように幅を広げて狭作業経路Rcをなくすようにすることもできる。左右の側部余裕地HCの幅を狭くして、狭作業経路Rcが走行作業幅W1となるように幅を広げる場合、変更後(狭くした後)の側部余裕地HCの幅が走行作業幅W1及び走行作業長L1に基づいて特定される制限幅以下とならないようにされる。言い換えれば、側部余裕地HCの幅を制限幅以下としなければ狭作業経路Rcが走行作業幅W1とならない場合、左右の側部余裕地HCの幅を調整しないこととする。 When it is set that the narrow work route Rc is to be worked, the work is carried out by protruding into the side margin HC (second region). When it is set that the narrow work route Rc is not set, the work area HA of the narrow work route Rc is performed when working the headland HB and the side margin HC after the work of the work area HA is completed. . Alternatively, it is possible to adjust the width of the left and right side margin HC to widen the narrow work route Rc so as to have the traveling work width W1 and eliminate the narrow work route Rc. When narrowing the width of left and right side margin HC and widening the narrow work route Rc so as to become the traveling work width W1, the width of the side margin HC after change (after narrowing) is the running operation It does not become less than the limit width specified based on the width W1 and the traveling work length L1. In other words, when the narrow work route Rc does not become the traveling work width W1 unless the width of the side margin HC is not more than the limit width, the width of the left and right side margin HC is not adjusted.
 具体的に、圃場Hの形状に応じた処理を説明する。まず、矩形の圃場で経路Rが生成される場合、作業領域HAで走行作業幅W1の往復の作業経路Raが生成される。図6に示すように、最終作業経路Ra(最終条)において、作業域幅Wrは走行作業幅W1(所定幅)より短くなり、狭作業経路Rcが発生する。言い換えれば、作業領域HAの幅は走行作業幅W1の整数倍となることは殆どないため、最終条には狭作業経路Rcができてしまう。 The process according to the shape of the field H is demonstrated concretely. First, in the case where the route R is generated in a rectangular field, a work route Ra of reciprocating operation work width W1 is generated in the work area HA. As shown in FIG. 6, in the final work route Ra (final row), the work area width Wr becomes shorter than the traveling work width W1 (predetermined width), and a narrow work route Rc is generated. In other words, since the width of the work area HA is hardly an integral multiple of the traveling work width W1, a narrow work path Rc is formed in the final row.
 この経路生成設定時に、操作側の制御部130は、狭作業経路Rcの作業を行うか、行わないかの選択画面を表示する。作業者が「作業を行う」を選択すると、操作側の制御部130は側部余裕地HCにはみ出して作業を実施するように、狭作業経路Rcは作業経路Raとして生成される。なお、狭作業経路Rcを作業しないと設定した場合には、前記圃場Hに対して設定された前記作業終了位置G(図5、図6)とは異なり、1工程手前の条の終端となる前記作業経路Raに作業の終了位置Gaが設定される。 At the time of this route generation setting, the control unit 130 on the operation side displays a selection screen as to whether or not to work in the narrow work route Rc. When the worker selects “work”, the narrow work route Rc is generated as the work route Ra such that the control unit 130 on the operation side protrudes to the side margin HC and carries out the work. In addition, when it is set that the narrow work route Rc is not set, unlike the work end position G (FIG. 5, FIG. 6) set for the field H, it becomes the end of the strip one step before The work end position Ga is set in the work path Ra.
 また、圃場Hの形状が台形等、終了側の圃場端の辺が斜めの形状の場合、図7に示すように、走行作業幅W1に満たない三角形状の作業領域ができる。この場合も経路生成設定時に、操作側の制御部130は最終条が走行作業幅W1(所定幅)に満たないと判断して狭作業経路Rcとし、この狭作業経路Rcを自律走行作業車両1が作業するとなった場合、狭作業経路Rcの作業を行うか、行わないかの選択画面を表示する。作業者が「作業を行う」を選択すると、操作側の制御部130は側部余裕地HCにはみ出して作業を実施するように、狭作業経路Rcを作業経路Raとして生成する。 Further, when the shape of the field H is a trapezoidal shape and the side of the field end on the end side is an oblique shape, as shown in FIG. 7, a triangular work area smaller than the traveling work width W1 is formed. Also in this case, at the time of route generation setting, the control unit 130 on the operation side determines that the final row is less than the traveling operation width W1 (predetermined width) and sets it as a narrow operation route Rc. When the work is to be performed, a screen for selecting whether or not to work in the narrow work path Rc is displayed. When the worker selects “work”, the control unit 130 on the operation side generates the narrow work route Rc as the work route Ra so that the work is performed by protruding into the side margin HC.
 また、作業領域HAの形状が、図8に示すような階段状である場合、飛び出た凸部領域において、走行作業幅W1に満たない狭作業経路Rcができる。この場合も経路生成設定時に、操作側の制御部130は、作業域幅Wrが走行作業幅W1(所定幅)に満たないと判断して狭作業経路Rcとし、この狭作業経路Rcを自律走行作業車両1が作業するとなった場合、狭作業経路Rcの作業を行うか、行わないかの選択画面を表示する。作業者が「作業を行う」を選択すると、操作側の制御部130は側部余裕地HCにはみ出して作業を実施するように、狭作業経路Rcは作業経路Raとして生成される。 In addition, when the shape of the work area HA is stepped as shown in FIG. 8, a narrow work path Rc which does not satisfy the traveling work width W1 can be formed in the protruding convex area. Also in this case, at the time of route generation setting, the control unit 130 on the operation side determines that the work area width Wr is less than the traveling work width W1 (predetermined width) and sets it as a narrow work route Rc. When the work vehicle 1 is to work, a screen for selecting whether to work the narrow work route Rc or not is displayed. When the worker selects “work”, the narrow work route Rc is generated as the work route Ra such that the control unit 130 on the operation side protrudes to the side margin HC and carries out the work.
 また、圃場Hの形状が台形等、開始側の圃場端の辺が斜めの形状の場合、図9に示すように、走行作業幅W1に満たない部分を有する三角形状の作業領域ができ狭作業経路Rcとなる。この狭作業経路Rcの経路長(進行方向長さ)Lcが、走行作業長L1を所定倍した長さに満たない場合、前記狭作業経路Rcに作業経路Raを生成しないようにしている。つまり、走行作業長L1とは、前記車体部に作業機を装着した状態の前端から後端までの長さとし、遠隔操作装置112の記憶部114に記憶されており、操作側の制御部130は、経路生成設定時に前記狭作業経路Rcの経路長Lcが、前記走行作業長L1の何倍になるか演算し、所定倍した長さに満たない場合、前記狭作業経路Rcに作業経路Raを生成しないものである。所定倍は、例えば、2倍とする。このような短い作業経路では、走行作業車両100を作業者が運転して作業処理し、バックして作業開始位置に戻って、協調作業を行うほうが、効率良く作業ができるからである。但し、図7、図8のような、作業経路Raの延長上に狭作業経路Rcができる場合は除外する。 In addition, when the shape of the field H is trapezoidal or the side of the field end on the start side is oblique, as shown in FIG. 9, a triangular work area having a portion less than the traveling work width W1 can be created and narrow work It becomes route Rc. If the path length (traveling direction length) Lc of the narrow work path Rc does not reach a length obtained by multiplying the traveling work length L1 by a predetermined length, the work path Ra is not generated in the narrow work path Rc. That is, the traveling work length L1 is the length from the front end to the rear end of the state where the work machine is mounted on the vehicle body, and is stored in the storage unit 114 of the remote control device 112. If the route length Lc of the narrow work route Rc becomes equal to the traveling work length L1 at the time of route generation setting, the working route Ra is set to the narrow work route Rc if the length is less than a predetermined multiple. It does not generate. The predetermined multiple is, for example, double. With such a short work path, it is possible for the worker to work more efficiently if the worker drives the traveling work vehicle 100 to perform work processing, back and return to the work start position and perform the coordinated work. However, the narrow working route Rc can be excluded from the extension of the working route Ra as shown in FIGS. 7 and 8.
 本実施形態では狭作業経路Rcの作業を行うか行わないかを選択可能としたが、上述したように、作業領域HAの幅が走行作業幅W1の定数倍となることは殆どないことから、作業者に選択させることなく、原則として狭作業経路Rcで作業を行うこととし、所定条件下では狭作業経路Rcで作業を行わないことしてもよい。所定条件としては上述した狭作業経路Rcの経路長が走行作業長L1の定数倍に満たない場合が例示される。 In this embodiment, it is possible to select whether or not to work in the narrow work route Rc, but as described above, since the width of the work area HA is hardly a constant multiple of the traveling work width W1, In principle, the work may be performed in the narrow work path Rc without allowing the worker to select, and the work may not be performed in the narrow work path Rc under predetermined conditions. As a predetermined condition, the case where the path length of the narrow work path Rc mentioned above is less than a constant multiple of traveling work length L1 is illustrated.
 以上のように、衛星測位システムを利用して、設定した経路Rを走行可能な自律走行作業車両1の車体部を走行させる走行領域となる圃場H、並びに、前記車体部の幅、及び/もしくは、前記車体部に装着される作業機(ロータリ耕耘装置24)の幅となる走行作業幅W1の情報を記憶可能な記憶部114と、前記圃場H内における前記作業機による作業経路Raを生成可能な操作側の制御部130と、を備え、前記圃場Hは、前記作業経路Raを含む第1領域となる作業領域HAと、第1領域の周囲に設定される第2領域となる枕地HBと側部余裕地HCとを含み、前記操作側の制御部130は、前記第1領域に作業経路Raを生成したときに前記走行作業幅W1よりも狭い狭作業経路Rcが生じる場合、該狭作業経路Rcには前記第2領域に跨る走行作業幅W1の作業経路Raを生成可能とするので、第一領域に狭作業経路Rcが発生する場合であっても、自律走行作業車両1による作業経路Raの設定が所定の原則に従って行われ、未耕地が残ることがない経路生成設定が行われる。 As described above, using the satellite positioning system, the field H serving as the traveling area for traveling the vehicle body of the autonomous traveling work vehicle 1 capable of traveling the set route R, the width of the vehicle body, and / or A storage unit 114 capable of storing information on a traveling work width W1 which is the width of a work machine (a rotary cultivator 24) mounted on the vehicle body, and generation of a work path Ra by the work machine in the field H And the field H is a work area HA which is a first area including the work path Ra, and a headland HB which is a second area set around the first area. And the side margin HC, and the control unit 130 on the operation side generates a narrow work path Rc narrower than the traveling work width W1 when the work path Ra is generated in the first area In the work route Rc, the second Since the work route Ra of the travel work width W1 straddling the area can be generated, even if the narrow work route Rc occurs in the first area, the setting of the work route Ra by the autonomous traveling work vehicle 1 is predetermined in principle. The route generation setting is performed according to which no uncultivated land remains.
 また、前記記憶部114は、前記車体部に作業機を装着した状態の前端から後端までの長さとなる走行作業長L1の情報を記憶し、前記操作側の制御部130は、前記狭作業経路Rcの経路長Lcが、前記走行作業長L1を所定倍した長さに満たない場合、前記狭作業経路Rcに作業経路を生成しないので、特に短い作業経路はUターンや切り返しを繰り返すことなく別の形態で作業を行って、作業効率を向上させることができる。 Further, the storage unit 114 stores information of a traveling work length L1 which is a length from the front end to the rear end in a state where the work machine is mounted on the vehicle body portion, and the control unit 130 on the operation side performs the narrow work If the path length Lc of the path Rc is less than a length obtained by multiplying the traveling work length L1 by a predetermined length, a work path is not generated in the narrow work path Rc, so a particularly short work path does not repeat U-turns or turning Work can be done in another form to improve work efficiency.
 また、前記操作側の制御部130は、前記走行領域(圃場H)に対して設定される作業開始位置Sと作業方向Fと作業終了位置Gとに基づいて前記作業経路Raを生成可能であって、前記狭作業経路Rcに作業経路Raを生成しない場合、前記走行領域に対して設定された前記作業終了位置Gと、前記作業経路における前記作業機による作業の終了位置と異なる位置の作業終了位置Gaに設定可能とするので、作業終了位置Gaで作業を終了してから狭作業経路Rcの作業を行わずに作業終了位置Gまで移動させる必要がなくなり、作業を速く終了して、無駄な走行を防止できる。なお、作業終了位置Gaから作業終了位置Gまで枕地HB及び側部余裕地HCを通って走行させることとしてもよい。これにより作業車が圃場設定において設定した作業終了位置Gに自律走行作業車両1が移動することとなって圃場出口が作業終了位置G付近にある場合等に作業者が自ら操作して自律走行作業車両1を作業終了位置Gに移動させる必要がなくなり、作業者の手間を省くことができる。 In addition, the control unit 130 on the operation side can generate the work route Ra based on the work start position S, the work direction F, and the work end position G set for the traveling area (field H). When the work path Ra is not generated in the narrow work path Rc, the work end of the work end position G set for the travel area and the work end of the work path at a position different from the end position of the work by the work machine Since it is possible to set at the position Ga, there is no need to move the work to the work end position G without performing work on the narrow work route Rc after the work is finished at the work end position Ga. It can prevent traveling. It should be noted that the vehicle may travel from the work end position Ga to the work end position G through the headland HB and the side margin HC. As a result, the autonomous traveling work vehicle 1 is moved to the work end position G set in the field setting by the work vehicle, and the worker operates the autonomous traveling work when the field exit is near the work end position G etc. There is no need to move the vehicle 1 to the work end position G, and it is possible to save the labor of the operator.
 次に、制御部130が備える経路生成装置による前記経路生成設定において、一方の自律走行作業車両1が他方の走行作業車両100よりも先に走行し(早く出発し)、他方の走行作業車両100が自律走行作業車両1よりも遅れて走行する(遅く出発して遅く作業を開始する)場合の衝突を回避するための制御について説明する。 Next, in the route generation setting by the route generation device included in the control unit 130, one autonomous traveling working vehicle 1 travels earlier than the other traveling working vehicle 100 (early departs), and the other traveling working vehicle 100 The control for avoiding a collision when traveling behind the autonomous traveling work vehicle 1 (starting late and starting work late) will be described.
 経路生成設定時には、作業領域HAに作業を行う作業経路Raが平行に隣接して生成され、図10、図11に示すように、各作業経路に作業開始位置S側から順番に作業経路Raに番号が割り付けられる(作業経路番号1・2・3・・・)。そして、経路生成装置となる制御部130(または制御部30)には、自律走行作業車両1が作業を行う作業経路Raに作業の順番(以下作業順X1・X2・・・)を割り付ける第1の作業順設定部と、走行作業車両100が作業を行う作業経路Raに作業の順番(以下作業順Y1・Y2・・・)を割り付ける第2の作業順設定部が備えられる。 At the time of route generation setting, work routes Ra for working in work area HA are generated in parallel adjacently, and as shown in FIG. 10 and FIG. Numbers are assigned (work path numbers 1 2 3 ...). Then, in the control unit 130 (or the control unit 30) serving as the route generation device, the work route Ra on which the autonomous traveling work vehicle 1 works is assigned the work order (hereinafter, work order X1, X2, ...) And a second work order setting unit for assigning the work order (hereinafter referred to as work order Y1, Y2,...) To the work route Ra along which the traveling work vehicle 100 carries out the work.
 例えば、前記経路生成設定において、「走行作業車両100が自律走行作業車両1の真後ろに位置する」「スキップしない」「オーバーラップする」を選択した場合、図6に示すように、自律走行作業車両1の作業順X1・X2・・・と走行作業車両100の作業順Y1・Y2・・・と作業経路番号1・2・3・・・は同じ順の番号となる。 For example, as shown in FIG. 6, when the traveling work vehicle 100 is positioned directly behind the autonomous traveling work vehicle 1, "do not skip" and "overlap" are selected in the route generation setting, as shown in FIG. The work order of X1, X2 and so on 1 and the work order Y1, Y2 and so on of the traveling working vehicle 100 and the work route numbers 1, 2, 3 and so on become numbers in the same order.
 また、前記経路生成設定において、「走行作業車両100が自律走行作業車両1の左後方に位置する」「1列スキップ」「オーバーラップする」を選択した場合、図7に示すように、自律走行作業車両1の作業順X1・X2・・・に対して作業経路番号は奇数(1・3・5・・・)となり、走行作業車両100の作業順Y1・Y2・・・に対して作業経路番号は偶数(2・4・6・・・)となる。 In addition, as shown in FIG. 7, in the case where “running work vehicle 100 is positioned at the rear left of autonomous traveling work vehicle 1”, “skip one row” and “overlap” are selected in the route generation setting, as shown in FIG. The work route number is an odd number (1 · 3 · 5 ···) for the work order X1 · X2 ··· of the work vehicle 1 and the work path for the work order Y1 · Y2 ··· of the traveling work vehicle 100 The number is an even number (2/4 6 ...).
 そして、制御部130は、経路生成設定において、一方の走行作業車両となる自律走行作業車両1の所定の作業順に割り付けられた作業経路番号から、他方の走行作業車両となる走行作業車両100の前記所定の作業順の一つ前の作業順に割り付けられた作業経路番号の差を演算しており、その差が1となる場合、前記作業経路生成部により作業経路Raが作成される時に、前記所定の制御として所定の報知を実行することを可能としている。つまり、図10の自律走行作業車両1の後方を走行作業車両100が作業する場合では、自律走行作業車両1の所定の作業順として、例えば、作業順がX2のとき作業経路番号は2、走行作業車両100の作業順が一つ前では作業順Y1で作業経路番号は1となる。このときの作業経路番号の差(2-1)は1となり、上述したように経路生成設定において「オーバーラップする」が選択されていることにより、自律走行作業車両1が枕地HBで旋回して反対方向から進んでくると走行作業車両100と一部衝突してしまうことになる。このように作業経路番号の差が1となる場合には、報知手段により報知することを可能としている。報知手段及び報知態様は特に限定されるものではなく、例えば、報知手段が表示装置113である場合、報知態様としては「衝突します」等のように注意を促す表示を表示装置113にて行う。また、報知手段がスピーカ等の音声出力手段である場合、報知態様としては音声または警報音を発する。また、報知手段がLED等の発行手段である場合、報知態様としては発光態様が挙げられ、具体的には、点灯、点滅、発光色等を組み合わせて発光する。当然ながら報知手段及び報知態様は上記に限定するものではない。また、報知が不要な場合には、報知しないように設定することも可能である。 Then, from the work route number assigned in the predetermined work order of the autonomous traveling working vehicle 1 which is one traveling working vehicle in the route generation setting, the control unit 130 performs the above-mentioned traveling traveling vehicle 100 which is the other traveling working vehicle. The difference between the work path numbers allocated in the work order immediately before the predetermined work order is calculated, and when the difference is 1, when the work path generation unit creates the work path Ra, the predetermined It is possible to execute a predetermined notification as control of. That is, in the case where the traveling work vehicle 100 works behind the autonomous traveling work vehicle 1 in FIG. 10, as the predetermined operation sequence of the autonomous traveling work vehicle 1, for example, when the operation order is X2, the operation route number is 2, travel When the work order of the work vehicle 100 is one before, the work path number is 1 in the work order Y1. The difference (2-1) in the work path number at this time is 1, and as described above, “overlap” is selected in the path generation setting, so that the autonomous traveling work vehicle 1 turns at the headland HB. As it travels from the opposite direction, it will partially collide with the traveling work vehicle 100. As described above, when the difference between the work path numbers becomes 1, it is possible to notify by the notifying means. The notification means and the notification mode are not particularly limited, and for example, when the notification means is the display device 113, the display device 113 performs a display prompting attention such as "collision" as the notification manner. . When the notification means is an audio output means such as a speaker, a sound or an alarm sound is emitted as the notification mode. In addition, when the notification means is an issuing means such as an LED, a light emission mode can be mentioned as a notification mode, and specifically, lighting is performed by combining lighting, blinking, a light emitting color and the like. Naturally, the notification means and the notification mode are not limited to the above. In addition, when notification is unnecessary, it is possible to set so as not to notify.
 なお、経路生成設定において、「走行作業車両100が自律走行作業車両1の真後ろに位置する」「スキップしない」「オーバーラップしない」が選択された場合であっても、例えば、作業者により運転される走行作業車両100の走行位置にズレが発生すると、隣接する作業経路Raで対向する自律走行作業車両1と作業車両100とが一部衝突する可能性があるため、このような場合も前記同様に報知手段により報知を行うこととしてもよい。 In the route generation setting, for example, the operator drives the vehicle even when "the traveling work vehicle 100 is positioned directly behind the autonomous traveling work vehicle 1", "do not skip", and "do not overlap" is selected. If a shift occurs in the traveling position of the traveling working vehicle 100, there is a possibility that the autonomous traveling working vehicle 1 and the working vehicle 100 facing each other in the adjacent work route Ra may partially collide with each other. The notification may be performed by the notification means.
 また、図11の自律走行作業車両1の斜め後方を走行作業車両100が作業する場合、自律走行作業車両1の所定の作業順として、例えば、作業順がX2のとき作業経路番号は3、走行作業車両100の作業順が一つ前では作業順Y1で作業経路番号は2となる。このときの作業経路番号の差(3-2)は1となり、自律走行作業車両1が枕地HBで旋回して反対方向から進んでくると走行作業車両100と一部衝突してしまうことになる。このような場合も前記同様に報知手段により報知することを可能としている。 Further, when the traveling work vehicle 100 works diagonally rearward of the autonomous traveling working vehicle 1 in FIG. 11, as a predetermined work order of the autonomous traveling working vehicle 1, for example, the work route number is 3, when the work order is X2, and traveling When the work order of the work vehicle 100 is one before, the work path number is 2 in the work order Y1. The difference (3-2) in the work path number at this time is 1, and the autonomous traveling work vehicle 1 makes a partial collision with the traveling work vehicle 100 when it turns on the headland HB and proceeds from the opposite direction. Become. Also in such a case, it is possible to notify by the notification means in the same manner as described above.
 また、上記のように、衝突が予想される場合、制御部130は、衝突しないように作業経路番号の差が2以上となるように提案する表示を行う。例えば、前記作業経路番号の差が1となり衝突が予想される場合には、警報を発した後に、「1列スキップまたは2列スキップ」に設定してください」のような表示をして提案してもよい。このとき、提案を採用するか、採用しないかの選択画面が同時に表示され、「1列スキップ」を採用すれば、「1列スキップ」の経路Rが表示され、「2列スキップ」を採用すれば、「2列スキップ」の経路Rが表示され、この提案を採用するか、採用しないかの選択画面も同時に表示される。 In addition, as described above, when a collision is expected, the control unit 130 performs display to propose that the difference in work path number is 2 or more so as not to cause a collision. For example, if the difference between the work path numbers is 1 and a collision is expected, a warning such as "Set to 1 column skip or 2 columns skip" should be displayed and suggested. May be At this time, a selection screen of whether to adopt the proposal or not to be adopted is simultaneously displayed, and if “1 column skip” is adopted, a route R of “1 column skip” is displayed, and “2 column skip” is adopted. For example, a route R of “skip 2 rows” is displayed, and a selection screen of whether to adopt this proposal or not is also displayed simultaneously.
 また、「1列スキップ」以外の提案(または選択)としては、走行作業車両100と自律走行作業車両1が衝突しないように、走行作業車両100は自律走行作業車両1が隣の作業経路(作業経路番号が一つ大きい作業経路)の作業が終了するまで衝突しない位置で待つように設定することもできる。この設定を行った場合には、走行作業車両100が衝突する可能性のある作業経路Raに入る前に報知手段により報知する。つまり、遠隔操作装置112の表示装置113で衝突の可能性があり、経路R上の走行を停止するように表示したり音声等で知らせたりする。 In addition, as a proposal (or selection) other than “one row skip”, the traveling working vehicle 100 has the autonomous traveling working vehicle 1 next to the work route so that the traveling working vehicle 100 and the autonomous traveling working vehicle 1 do not collide. It is also possible to set to wait at a position where there is no collision until the operation of the work path having a path number larger by one is completed. When this setting is performed, the notification means gives notification before the traveling working vehicle 100 enters the work route Ra where the collision may occur. That is, there is a possibility of a collision on the display device 113 of the remote control device 112, and the display on the route R is displayed so as to stop traveling or notified by voice or the like.
 以上のように、第1の走行作業車両となる自律走行作業車両1及び第2の走行作業車両となる走行作業車両100による走行形態を設定する設定部となる遠隔操作装置112と、前記設定部により設定された前記走行形態に応じて、第1の走行作業車両及び第2の走行作業車両により走行される複数の作業経路Raを平行に隣接して配するとともに、隣接する作業経路Raに対して連続する作業順が付された作業経路Raを生成可能な作業経路生成部と、所定の制御を行う制御部30(または制御部130)とを備え、前記設定部により前記走行形態として、第1の走行作業車両及び第2の走行作業車両が走行する作業経路Raが共通の作業経路Raであることが設定された場合、前記制御部30は前記所定の制御として所定の報知を実行可能としているので、衝突する可能性がある経路Rが生成されたとして警報等の報知がなされる。 As described above, the autonomous mobile work vehicle 1 serving as the first mobile work vehicle and the remote control device 112 serving as a setting unit for setting the travel mode by the mobile work vehicle 100 serving as the second mobile work vehicle, and the setting unit And a plurality of work paths Ra traveled by the first traveling work vehicle and the second traveling work vehicle are arranged in parallel and adjacent to each other according to the traveling mode set by And a control unit 30 (or control unit 130) for performing predetermined control, and the setting unit performs the traveling mode as the traveling mode, When it is set that the work route Ra along which the first traveling working vehicle and the second traveling working vehicle travel is a common work route Ra, the control unit 30 executes a predetermined notification as the predetermined control. Since the ability notification of alarm or the like it is made as a path R that may collision is generated.
 言い換えれば、先に走行し作業機としてロータリ耕耘装置24を装着した一方の走行作業車両となる自律走行作業車両1と、該自律走行作業車両1よりも遅れて作業機としてロータリ耕耘装置を装着して走行する他方の走行作業車両となる走行作業車両100とにより作業される複数の作業経路Raが平行に隣接して配されるとともに、各作業経路Raに連続した作業経路番号が付されて作業経路Raが設定される作業経路生成部と、前記自律走行作業車両1による作業の順番を前記作業経路番号に割り付ける第1の作業順設定部と、前記走行作業車両100による作業の順番を前記作業経路番号に割り付ける第2の作業順設定部と、所定の制御を行う制御部130(または制御部30)とを備え、前記制御部130は、自律走行作業車両1の所定の作業順に割り付けられた作業経路番号から、走行作業車両100の前記所定の作業順の一つ前の作業順に割り付けられた作業経路番号の差が1となる場合、前記作業経路生成部により作業経路Raが作成される前に、前記所定の制御として所定の報知を実行可能であるので、経路生成設定時に、スキップ数の選択や自律走行作業車両1と走行作業車両100との位置関係の選択によって衝突する可能性があるかないかが容易に認識することができ、経路生成設定時に衝突する経路Rを生成することを未然に防ぐことができる。 In other words, the autonomous traveling working vehicle 1 serving as one traveling working vehicle having first traveled and equipped with the rotary cultivating device 24 as a working machine and the rotary tilling equipment attached as the working machine behind the autonomous traveling working vehicle 1 A plurality of work paths Ra to be operated by the traveling work vehicle 100 serving as the other traveling work vehicle traveling in parallel are arranged in parallel and adjacent to each other, and a work path number continuous to each work path Ra is attached A work route generation unit in which a route Ra is set, a first work order setting unit for allocating the work order by the autonomous traveling work vehicle 1 to the work path number, and the work order by the traveling work vehicle 100 A second work order setting unit that assigns a route number, and a control unit 130 (or control unit 30) that performs predetermined control, the control unit 130 is an autonomous traveling work vehicle When the difference between the work path numbers allocated in the work order immediately preceding the predetermined work order of the traveling work vehicle 100 from the work path numbers allocated in the predetermined work order of 1 is 1, the work path generation unit Since a predetermined notification can be executed as the predetermined control before the work route Ra is created, the selection of the skip number and the positional relationship between the autonomous traveling working vehicle 1 and the traveling working vehicle 100 can be performed at the time of route generation setting. Whether or not there is a possibility of collision by selection can be easily recognized, and generation of a collision path R at the time of path generation setting can be prevented in advance.
 また、前記設定部により前記走行形態として、第1の走行作業車両となる自律走行作業車両1及び第2の走行作業車両となる走行作業車両100が走行する作業経路Raが共通の作業経路Raであることが設定された場合、前記制御部30(または制御部130)は前記所定の制御として、自律走行作業車両1及び走行作業車両100が走行する作業経路Raが互いに異なる作業経路Raである場合の前記作業経路Raを生成可能である。つまり、自律走行作業車両1の作業経路Raと走行作業車両100の作業経路Raが隣接する作業経路Raを生成しても、自律走行作業車両1の作業経路Raと走行作業車両100の作業経路Raが隣接しない作業経路Raを生成してもよい。例えば、オーバーラップがない場合は隣接した作業経路Raを生成することが可能であり、オーバーラップがある場合には衝突の可能性があるので、隣接しない作業経路Raを生成するほうが好ましく、隣接させても走行作業車両100を待たせるようにしてもよい。こうして、両車両が互いに衝突しない作業経路Raが生成されることで、安心して作業ができることになる。
 また具体的に、前記制御部130(または制御部30)は、自律走行作業車両1の所定の作業順に割り付けられた作業経路番号から、走行作業車両100の前記所定の作業順の一つ前の作業順に割り付けられた作業経路番号の差が1となる場合、前記所定の制御として、前記差が2以上となるように作業順を設定してもよく、この場合、経路生成設定時に、作業者は前記差、つまり、提示されたスキップ数を設定するだけで、確実に衝突しない作業経路Raが作成され、経路生成設定が容易に行えるようになる。
Further, as the traveling mode by the setting unit, the autonomous traveling working vehicle 1 as the first traveling working vehicle and the working route Ra along which the traveling working vehicle 100 as the second traveling working vehicle travels are common working routes Ra. When there is a setting, the control unit 30 (or the control unit 130) sets the work route Ra on which the autonomous traveling work vehicle 1 and the traveling work vehicle 100 travel as mutually different work routes as the predetermined control. Can be generated. That is, even if the work route Ra in which the work route Ra of the autonomous traveling working vehicle 1 and the work route Ra of the traveling working vehicle 100 are adjacent is generated, the work route Ra of the autonomous traveling working vehicle 1 and the work route Ra of the traveling working vehicle 100 May generate a work route Ra that is not adjacent to each other. For example, if there is no overlap, it is possible to generate an adjacent work path Ra, and if there is an overlap, there is a possibility of collision, so it is preferable to generate a non-adjacent work path Ra. However, the traveling work vehicle 100 may be kept waiting. In this way, the work path Ra in which both vehicles do not collide with each other is generated, so that work can be performed with ease.
Further, specifically, the control unit 130 (or the control unit 30) is one in front of the predetermined work order of the traveling work vehicle 100 from the work path number allocated to the autonomous traveling work vehicle 1 in the predetermined work order. If the difference between the work path numbers assigned in the work order is 1, the work order may be set as the predetermined control so that the difference is 2 or more. In this case, the operator at the time of path generation setting By setting the difference, that is, the number of skips presented, it is possible to create a work path Ra that does not collide with certainty, and path generation setting can be easily performed.
 また、経路生成設定時に、作業経路生成部は、各作業経路Raの長さを演算しており、または、各作業経路Raの長さが記憶部114に記憶されており、自律走行作業車両1と走行作業車両100が隣接した条を併走して作業を行う場合、制御部130は、自律走行作業車両1の作業経路Raの長さと走行作業車両100の作業経路Raの長さの差を演算し、その差が所定長さL以上であって、次の作業経路Raが短くなる場合、長い側の作業経路Raとなる作業経路Raを、短い側の作業経路Raの長さに合わせて作業経路Raを設定可能とする。こうして、長い側を走行した作業車両が行き止まりとなって停止しないようにしている。 In addition, at the time of route generation setting, the work route generation unit calculates the length of each work route Ra, or the length of each work route Ra is stored in the storage unit 114, and the autonomous traveling work vehicle 1 When working with parallel running work vehicles 100 in parallel, the control unit 130 calculates the difference between the length of the work route Ra of the autonomous running work vehicle 1 and the length of the work route Ra of the running work vehicle 100 If the difference is equal to or greater than the predetermined length L and the next work route Ra becomes shorter, the work route Ra that becomes the long work route Ra is adjusted to the length of the short work route Ra. The route Ra can be set. Thus, the work vehicle traveling on the long side is prevented from stopping as a dead end.
 例えば、図8に示すような、階段状の圃場を自律走行作業車両1と走行作業車両100とによる併走作業を行うときに、走行作業車両100の作業経路番号1の長さL4と、自律走行作業車両1の作業経路番号2の長さL2の差L3が所定長さLよりも短くなる場合(L3<L)、長い側の作業経路番号1は短い側の作業経路番号2の長さL2合わせた長さの作業経路Raに設定される。前記所定長さLは機体の全長や最小旋回半径や作業機の幅等を考慮して、作業経路Raの終端まで作業を行うと行き止まりとなり、圃場端で作業後の耕地を踏まずに旋回して次の作業経路Raに移ることができない長さである。こうして、作業経路番号1の作業経路Raの長さを隣接の作業経路番号2(作業経路Ra)の長さL2と同じ長さとすることで走行作業車両100は次の作業経路番号3へ容易に移動することができ、作業効率も向上できるようになる。なお、長い作業経路Raから短い作業経路Raへの変化は、作業経路番号2以降でも同様に設定される。 For example, when the autonomous traveling working vehicle 1 and the traveling working vehicle 100 carry out parallel running work with a step-like farmland as shown in FIG. 8, the length L4 of the working path No. 1 of the traveling working vehicle 100 and the autonomous traveling When the difference L3 of the length L2 of the work path No. 2 of the work vehicle 1 becomes shorter than the predetermined length L (L3 <L), the work path No. 1 on the long side is the length L2 of the work path No. 2 on the short side The work path Ra is set to the combined length. When the work is performed up to the end of the work route Ra in consideration of the total length of the machine body, the minimum turning radius, the width of the working machine, etc., the predetermined length L becomes a dead end, and it turns without stepping on the cultivated land at the field end. Length which can not move to the next work route Ra. Thus, by setting the length of the work route Ra of the work route No. 1 to the same length as the length L2 of the adjacent work route No. 2 (work route Ra), the traveling work vehicle 100 can easily move to the next work route No. 3 It is possible to move and improve work efficiency. The change from the long work route Ra to the short work route Ra is similarly set in the work route number 2 and later.
 また、自律走行作業車両1の後方を走行作業車両100が追従して作業を行う場合も、前記圃場形状の場合、前記同様に、隣接する作業経路Raに移るときに、作業経路Raの長さの差L3が所定長さLよりも短くなるときは、短くなる手前の作業経路Raの長さを次の作業経路Raの長さに合せた作業経路Raとするのである。
 なお、隣接する次の作業経路Raの長さが、所定長よりも長くなる場合は、図13に示すように、長くなる作業経路Raはそのまま終端まで作業を行うことで、作業は完了できるので、作業経路の長さ調節は行わない。
Further, also in the case where the traveling work vehicle 100 follows the rear of the autonomous traveling working vehicle 1 to work in the field shape, the length of the work route Ra when moving to the adjacent work route Ra as described above When the difference L3 of the distance L3 is shorter than the predetermined length L, the length of the work path Ra before the shortening is made to be the work path Ra in accordance with the length of the next work path Ra.
When the length of the next adjacent work route Ra is longer than a predetermined length, as shown in FIG. 13, the work can be completed by performing the work until the end of the long work route Ra as it is. , Do not adjust the working path length.
 また、前述のように、階段状の圃場において、隣接する作業経路Raに移るときの作業経路Raを短くする判断は、作業経路Raの長さの差を演算する代わりに、自律走行作業車両1の作業経路Raの幅、または、走行作業車両100の作業経路Raの幅を演算し、途中から所定長さの範囲で狭くなるかを判断してもよい。この場合、途中から枕地まで幅の狭い作業経路Raが生じる場合には、その作業経路Raを狭い部分を除いて次の作業経路Raの長さに合せるようにするのである。つまり、図14に示すように、一方の作業車両である自律走行作業車両1の作業経路Ra(または、他方の作業車両である走行作業車両100の作業経路Ra)の幅が途中で狭くなる場合の幅をWrとし、自律走行作業車両1(または走行作業車両100)の作業幅をW1とすると、狭くなる作業経路の幅Wrが所定の範囲にあるか判断する。所定の範囲は、例えばオーバーラップ以上で作業幅W1未満とする。こうして、作業経路Raの幅が、作業経路Raの途中から枕地まで所定の範囲で狭くなるときは、その狭い部分を除いた作業経路Raとするのである。 Further, as described above, in the step field, the decision to shorten the work route Ra when moving to the adjacent work route Ra, instead of calculating the difference in the length of the work route Ra, the autonomous traveling work vehicle 1 The width of the work route Ra or the width of the work route Ra of the traveling work vehicle 100 may be calculated, and it may be determined whether the width of the work route Ra narrows in the range of a predetermined length halfway. In this case, when a narrow working route Ra is generated from the middle to the headland, the working route Ra is matched to the length of the next working route Ra except for the narrow portion. That is, as shown in FIG. 14, when the width of the work route Ra of the autonomous traveling working vehicle 1 which is one working vehicle (or the working route Ra of the traveling working vehicle 100 which is the other working vehicle) becomes narrow in the middle Assuming that the width W of the autonomous traveling working vehicle 1 (or the traveling working vehicle 100) is W1, it is determined whether the width Wr of the working path to be narrowed is within a predetermined range. The predetermined range is, for example, not less than the overlap and less than the work width W1. Thus, when the width of the work route Ra is narrowed in a predetermined range from the middle of the work route Ra to the headland, the work route Ra excluding the narrow portion is taken.
 上記のように、前記作業経路生成部は、前記第1の走行作業車両となる自律走行作業車両1及び第2の走行作業車両となる走行作業車両100が隣接した作業経路Raの作業を行い、第1の走行作業車両の作業経路Raの長さと第2の走行作業車両の作業経路Raの長さの差が所定長さ以上であって、作業経路Raが短くなる場合、自律走行作業車両1の作業経路Raの長さを、走行作業車両100の作業経路Raの長さに合わせて作業経路を設定可能とするので、自律走行作業車両1が作業途中で袋小路状の作業経路終端で行き止まりとなって、作業が中断することがなく、自律走行作業車両1と走行作業車両100とによる協調作業が効率よく行えるようになる。 As described above, the work path generation unit works on the work path Ra where the autonomous traveling working vehicle 1 as the first traveling working vehicle and the traveling working vehicle 100 as the second traveling working vehicle are adjacent to each other. When the difference between the length of the working route Ra of the first traveling working vehicle and the length of the working route Ra of the second traveling working vehicle is equal to or greater than a predetermined length and the working route Ra becomes short, the autonomous traveling working vehicle 1 Since the length of the work route Ra can be set in accordance with the length of the work route Ra of the traveling working vehicle 100, the autonomous traveling working vehicle 1 can be set to a dead end at the end of the blind alley way along the work path. As a result, cooperation work between the autonomously traveling working vehicle 1 and the traveling working vehicle 100 can be efficiently performed without interruption of work.
 次に、作業開始位置S側の作業領域HAと側部余裕地HCの境界部分をきれいに仕上げる作業経路設定について説明する。
 走行作業車両100が側部余裕地HC側に位置して、走行作業車両100の斜め前方の作業領域HAの内側を自律走行作業車両1が作業を行う場合、作業者が走行作業車両100を操作して作業を行うため、真っ直ぐにならないときがある。そのため、自律走行作業車両1が側部余裕地HC側を作業し、走行作業車両100が作業領域HAの内側の斜め後方を随伴して作業を行うことで、作業領域HAと側部余裕地HCの境界部分をきれいに仕上げることができる。
Next, setting of the work path for finishing the boundary between the work area HA on the work start position S side and the side margin HC will be described.
When the traveling work vehicle 100 is located on the side margin HC side and the autonomous traveling work vehicle 1 works inside the work area HA obliquely ahead of the traveling work vehicle 100, the operator operates the traveling work vehicle 100 Sometimes do not get straight to work. For this reason, the autonomous traveling work vehicle 1 works on the side margin HC side, and the traveling work vehicle 100 works with the diagonally backward inside of the work area HA, thereby the work area HA and the side margin HC The boundary part of can be finished cleanly.
 ところが、自律走行作業車両1が作業経路番号1から1列スキップして、作業経路番号3に移ると前述のように、走行作業車両100と衝突してしまう。そこで、制御部130は、図15に示すように、自律走行作業車両1は最初に作業領域HAの側部余裕地HC側から作業を開始するときには、作業経路番号1(作業順X1)の終端から2列スキップして作業経路番号4(作業順X2)に移り、その後は1列スキップを繰り返す(作業経路番号1→4→6→8・・・)。有人の走行作業車両100は作業領域HAの中央側で自律走行作業車両1の斜め後方を随伴して作業経路番号2(作業順Y1)から0スキップで隣接する作業経路番号3(作業順Y2)に移り、その後は1列スキップを繰り返す(作業経路番号2→3→5→7・・・)経路Rを生成する。このような経路Rを生成することで、作業領域HAの作業開始位置S側の作業経路番号1をきれいに仕上げることができ、ほぼ、正確で直線の条が形成され、自律走行作業車両1と走行作業車両100とによる協調作業終了後に、枕地HBと側部余裕地HCの外周を処理する時も、きれいに仕上げることができる。 However, when the autonomous traveling work vehicle 1 skips one row from the work route number 1 and shifts to the work route number 3, as described above, it collides with the traveling work vehicle 100. Therefore, as shown in FIG. 15, when the autonomous traveling work vehicle 1 first starts work from the side margin HC side of the work area HA, the control unit 130 terminates the work path number 1 (work order X1) The process is skipped from the second column to the work path number 4 (work order X2), and then the skip by one column is repeated (work path number 1 → 4 → 6 → 8 ...). Mandatory traveling work vehicle 100 is adjacent to work path number 2 (work order Y1) with work path number 3 (work order Y2) adjacent to work path number 2 (work order Y1) along with diagonally rearward of autonomous traveling work vehicle 1 on the center side of work area HA. Then, the process skips one column repeatedly (work path number 2 → 3 → 5 → 7...) To generate a path R. By generating such a route R, the work route No. 1 on the work start position S side of the work area HA can be finished cleanly, and a substantially straight straight line is formed, and the autonomous traveling work vehicle 1 runs with Even when the outer periphery of the headland HB and the side margin HC is processed after completion of the coordination work with the work vehicle 100, the finish can be finished cleanly.
 なお、この経路Rの場合、作業精度は高くなるが、有人の走行作業車両100は変速的な旋回となるので、経路走行に間違いが生じる可能性があるので、旋回時には作業者が遠隔操作装置112の表示装置113に表示される経路Rを見て、走行すべき経路Rを認識するように、報知手段で報知するようにすることもできる。 In the case of this route R, the working accuracy is high, but since the traveling work vehicle 100 with human beings turns like a gear shift, there is a possibility that an error will occur in the route traveling, so the operator operates the remote control device at the time of turning It is also possible to notify by notification means so that the route R to be traveled can be recognized by looking at the route R displayed on the display device 113 at 112.
 以上のように、前記作業経路生成部は、走行態様が互いに異なり隣接する作業経路Raである場合に、最初の一往復において第2の走行作業車両となる走行作業車両100の経路Rは隣接する作業経路Raに対して連続する作業順が付され、第1の走行作業車両となる自律走行作業車両1の経路Rは前記走行作業車両100の最初の一往復経路を隔てて配される2本の作業経路Raに対して連続する作業順が付されるので、作業領域HAの作業開始位置S側の作業経路番号1をきれいに仕上げることができる。 As described above, when the travel route is different from each other and the work route Ra is adjacent to each other, the route R of the traveling work vehicle 100 serving as the second traveling work vehicle is adjacent in the first one reciprocation. A working order is assigned to the working route Ra continuously, and the route R of the autonomous traveling working vehicle 1 as the first traveling working vehicle is arranged to be separated from the first one reciprocating route of the traveling working vehicle 100 Since the continuous work order is attached to the work path Ra, the work path number 1 on the work start position S side of the work area HA can be finished cleanly.
 また、図16に示すように、作業不可能な障害物400が、作業領域HA内に存在する場合、障害物400の周囲には作業車両の進入を禁止する進入禁止領域Kと、該進入禁止領域Kの周囲に走行経路Rbは生成されるが作業経路Raは生成されない障害物領域Jが設定される。この場合、作業開始位置Sを作業領域HAの端の作業経路番号1の一端に設定すると、自律走行作業車両1または走行作業車両100の経路Rの一方が途中で障害物領域Jにより止められて、経路生成ができない場合が生じることがある。このような場合、作業開始位置Sを作業経路番号1から隣接する作業経路番号8にずらせることにより、自律走行作業車両1と走行作業車両100は障害物領域Jで旋回して作業を続行できるようになり、経路生成が可能となる。そして、障害物領域Jの周囲に経路が生成されて自律走行作業車両1と走行作業車両100とによる作業が完了できるようになる。 Further, as shown in FIG. 16, when there is an inoperable obstacle 400 in the work area HA, an entry prohibited area K for prohibiting entry of the work vehicle around the obstacle 400, and the entry prohibition An obstacle area J in which the travel route Rb is generated but the work route Ra is not generated is set around the area K. In this case, when the work start position S is set to one end of the work path number 1 at the end of the work area HA, one of the paths R of the autonomous traveling work vehicle 1 or the traveling work vehicle 100 is stopped by the obstacle area J halfway In some cases, it may not be possible to generate a route. In such a case, by shifting the work start position S from the work path number 1 to the adjacent work path number 8, the autonomous traveling work vehicle 1 and the traveling work vehicle 100 can turn in the obstacle area J and continue the work It becomes possible to generate a route. Then, a route is generated around the obstacle area J, and the work by the autonomous traveling working vehicle 1 and the traveling working vehicle 100 can be completed.
 次に、制御部130が備える経路生成装置による前記経路生成設定において、スキップ数や、作業経路と作業経路との離間距離や、旋回半径等に基づいて、第2領域における旋回形態を複数種類の旋回経路から選択して走行経路Rbが生成される。 Next, in the route generation setting performed by the route generation device included in the control unit 130, the type of turning in the second region is determined based on the number of skips, the separation distance between the working path and the working path, the turning radius, and the like. A travel route Rb is generated by selecting from the turning route.
 旋回形態としては、図17に示す、直進及び後進を伴わない第1の旋回経路Rb1、図18に示す、直進を伴い後進を伴わない第2の旋回経路Rb2、図19に示す、後進を伴う第3の旋回経路Rb3、図21に示す、直進と左右の旋回を伴い後進を伴わない第4の旋回経路Rb4、図23に示す、切り返しを多用した第5の旋回経路Rb5がある。 As a turning form, a first turning path Rb1 without going straight and going backward as shown in FIG. 17 and a second turning path Rb2 not going with reverse and going straight as shown in FIG. 18 and going backward as shown in FIG. There are a third turning route Rb3, a fourth turning route Rb4 without going reverse and a straight movement with left and right turning shown in FIG. 21, and a fifth turning route Rb5 using many turns as shown in FIG.
 直進及び後進を伴わない第1の旋回経路Rb1は、図6に示すように、主に、第2領域で隣接条に旋回するときの走行経路Rbとなる。第1の旋回経路Rb1は、作業経路Raと作業経路Raとの間の距離(条間距離)Wtの半分の長さ(Wt/2)が、予め設定した旋回半径Trと比較され、その長さの差が所定範囲α内にある場合(Tr+α≧Wt/2≧Tr-α)に選択される。 As shown in FIG. 6, the first turning route Rb1 without going straight and going backward is mainly the traveling route Rb when turning to the adjacent strip in the second region. In the first turning route Rb1, half the length (Wt / 2) of the distance (inter-strip distance) Wt between the working route Ra and the working route Ra is compared with the preset turning radius Tr, and the length The difference is selected in the case where the difference of height is within the predetermined range α (Tr + α ≧ Wt / 2 ≧ Tr−α).
 具体的には、前記経路生成設定において、「走行作業車両100が自律走行作業車両1の真後ろに位置する」「スキップしない」「オーバーラップする」を選択した場合、作業経路Raと作業経路Raとの間の距離Wtの半分の長さ(Wt/2)と予め設定した旋回半径Trとが比較演算され、その差が所定の範囲α以下であると(Tr+α≧Wt/2≧Tr-α)、直進及び後進を伴わない第1の旋回経路Rb1が選択されて経路Rが生成され、図17に示すように、第2領域で自律走行作業車両1及び走行作業車両100は作業経路番号1から作業経路番号2、作業経路番号2から作業経路番号3・・・のように隣接した作業経路Ra(隣接条)に移るときに、平面視で半円状(または半楕円状)の曲線の経路Rのみで180度右旋回(または左旋回)する。なお、前記(Tr-α)は自律走行作業車両1(または走行作業車両100)の最小旋回半径、または、更に短い片ブレーキを使用した最小旋回半径以上の長さとしなければならない。つまり、この最小旋回半径以下の距離では自律走行作業車両1または走行作業車両100を作業経路Ra端で、最大旋回操作をしても、次の作業経路Raに入ることができず、切り返しが必要となるからである。 Specifically, in the route generation setting, when “running work vehicle 100 is positioned directly behind autonomous traveling work vehicle 1”, “do not skip”, and “overlap” is selected, work route Ra and work route Ra The half length (Wt / 2) of the distance Wt between them and the preset turning radius Tr are compared and calculated, and if the difference is equal to or less than the predetermined range α (Tr + αtWt / 2-Tr−α) , The first turning route Rb1 without going straight and going backward is selected, and a route R is generated, and as shown in FIG. 17, the autonomous traveling work vehicle 1 and the traveling work vehicle 100 in the second region A path of a semicircular (or semi-elliptical) curve in plan view when moving from the work route No. 2 and the work route No. 2 to the work route Ra adjacent to the work route No. 3 etc. Turn right 180 degrees with R only (R The other is a left turn) to. The above (Tr−α) must be set to a minimum turning radius of the autonomous traveling working vehicle 1 (or the traveling working vehicle 100) or a length equal to or more than the minimum turning radius using a shorter single brake. That is, even if the autonomous traveling working vehicle 1 or the traveling working vehicle 100 is turned at the end of the work route Ra at a distance equal to or less than the minimum turning radius, the next working route Ra can not be entered even if maximum turning operation is performed. It is because
 直進を伴い後進を伴わない第2の旋回経路Rb2は、図18に示すように、主に、第2領域で作業経路Ra(条)を飛ばして旋回するときの走行経路Rbとなる。第2の旋回経路Rb2は、経路生成された後の作業経路Raと作業経路Raとの間の距離Wtの半分の長さ(Wt/2)が、予め設定した旋回半径Trに所定範囲αを加えた長さよりも長い場合(Wt/2>Tr+α)に選択される。例えば、前記経路生成設定において、「走行作業車両100が自律走行作業車両1の左後方に位置する」「1列スキップ」「オーバーラップする」を選択した場合、直進を伴い後進を伴わない第2の旋回経路Rb2が選択されて経路Rが生成され、図18に示すように、第2領域で自律走行作業車両1は作業経路番号2から作業経路番号4に、走行作業車両100は作業経路番号1から作業経路番号3に移るときに、平面視で半小判形状の曲線となり、作業経路番号1・2の終端から90度右旋回(または左旋回)し、直線で所定距離走行した後、曲線で90度右旋回(または左旋回)し、作業経路番号3・4の始端に移る。 As shown in FIG. 18, the second turning route Rb2 accompanied by going straight is mainly a traveling route Rb when the working route Ra (stripe) is skipped and turned in the second region, as shown in FIG. 18. In the second turning route Rb2, a half length (Wt / 2) of the distance Wt between the working route Ra and the working route Ra after the route is generated has a predetermined range α to the preset turning radius Tr. It is selected if it is longer than the added length (Wt / 2> Tr + α). For example, in the route generation setting, when “traveling work vehicle 100 is positioned to the left rear of autonomous traveling work vehicle 1”, “skip in a single row”, and “overlap” is selected, the second step is straight ahead and not accompanied by reverse travel The turning route Rb2 is selected to generate a route R, and as shown in FIG. 18, the autonomous traveling work vehicle 1 changes from work route No. 2 to work route No. 4 in the second area, and the traveling work vehicle 100 does work route No. When moving from 1 to work path No. 3, it becomes a semi-elliptical curve in plan view, turns 90 degrees right (or left turn) from the end of work path No. 1 and 2 and travels a straight line for a predetermined distance, Turn 90 degrees right (or left) on the curve and move to the beginning of the work path number 3 · 4.
 後進を伴う第3の旋回経路Rb3は、図19に示すように、主に、第2領域で隣接条に旋回するときの走行経路Raとなる。第3の旋回経路Rb3は、作業経路Raと作業経路Raとの間の距離(条間距離)Wtの半分の長さ(Wt/2)が、予め設定した旋回半径Trから所定範囲αを引いた長さ(Tr-α)よりも短い場合に選択される。つまり、作業経路Ra端で最大旋回操作をしても次の作業経路Raに入ることができず、切り返しが必要な場合に選択される。例えば、前記経路生成設定において、「走行作業車両100が自律走行作業車両1の真後ろに位置する」「スキップしない」「オーバーラップする」を選択した場合、作業経路Raと作業経路Raとの間の距離Wtの半分の長さ(Wt/2)と予め設定した旋回半径Trから所定範囲αを引いた長さ(Tr-α)とが比較演算され、作業経路Raと作業経路Raとの間の距離Wtの半分の長さ(Wt/2)が予め設定した旋回半径Trから所定範囲αを引いた長さよりも短い場合(Wt/2<Tr-α)、後進を伴う第3の旋回経路Rb3が選択されて経路Rが生成される。この経路Rは、図19に示すように、第2領域で自律走行作業車両1(走行作業車両100は1条遅れて走行し衝突しないようにする)は作業経路番号1から作業経路番号2、作業経路番号2から作業経路番号3・・・のように隣接した作業経路Ra(隣接条)に移るときに、平面視で魚の尻尾形状のように、作業経路Raの終端から曲線で90度右旋回(または左旋回)し、直線で所定距離走行した後停止し、直線で所定距離後進して停止し、その後、曲線で90度右旋回(または左旋回)して次の作業経路Raに入り作業を行う。そして、その作業経路Raの終端に至ると前記同様に第3の旋回経路Rb3で旋回されて、作業が繰り返される。 As shown in FIG. 19, the third turning route Rb3 with reverse travel is mainly the traveling route Ra when turning to the adjacent strip in the second region. In the third turning route Rb3, a half length (Wt / 2) of the distance (inter-strip distance) Wt between the working route Ra and the working route Ra subtracts a predetermined range α from the preset turning radius Tr It is selected if the length is smaller than the length (Tr-α). That is, even if the maximum turning operation is performed at the end of the work path Ra, the next work path Ra can not be entered, and it is selected when it is necessary to switch back. For example, in the route generation setting, when “the traveling work vehicle 100 is positioned directly behind the autonomous traveling work vehicle 1”, “does not skip”, and “overlap” is selected, between the work route Ra and the work route Ra. A half length (Wt / 2) of the distance Wt and a length (Tr−α) obtained by subtracting a predetermined range α from a preset turning radius Tr are compared and calculated, and the distance between the work route Ra and the work route Ra is calculated. When the half length (Wt / 2) of the distance Wt is shorter than the length obtained by subtracting the predetermined range α from the preset turning radius Tr (Wt / 2 <Tr-α), the third turning route Rb3 with reverse movement Is selected to generate a route R. In this route R, as shown in FIG. 19, the autonomous traveling working vehicle 1 (the traveling working vehicle 100 travels one row later so as not to collide) in the second region is the working route number 1 to the working route number 2, When moving from the work route No. 2 to the work route Ra (adjacent bars) adjacent as in the work route No. 3 ..., like the tail shape of a fish in plan view, the curve is 90 degrees right from the end of the work route Ra Turn (or turn left), travel a straight line for a predetermined distance and then stop, then straight back a predetermined distance on a straight line and stop, then turn right 90 degrees (or turn left) on a curve to move to the next work route Ra Do the work. Then, when it reaches the end of the work path Ra, it is turned along the third turning path Rb3 in the same manner as described above, and the work is repeated.
 前記第3の旋回経路Rb3を更に詳述する。作業経路Raの終端で枕地HBの幅が最も短く、設定旋回半径Trで旋回して第3の旋回経路Rb3を生成する場合、図20に示すように、作業経路Raの終端位置から設定旋回半径Trで90度旋回する。この旋回時にはロータリ耕耘装置24の後端は圃場の境界線hよりも内側に設定された枕地の安全境界線hbよりも内側を通過するようにして、旋回時にロータリ耕耘装置24が畦等の障害物に当たらないようにしている。そして、車体部の姿勢が安定するまで所定距離(約1メートル程度)直進して停止する。つまり、90度旋回した直後に停止して次の工程となる後進を行うと、前輪9が直進位置に戻る前に後進して蛇行するおそれがあるから、90度旋回した後に所定距離直進するようにしている。次に、前記旋回前の作業経路Raの延長上付近(再度90度旋回を行うことで次の作業経路Raに入ることが可能な位置)まで直進で後進して停止する。次に、作業経路Raに入るように90度旋回する。こうして、幅の狭い条の場合であっても少ない切り返し操作(1回の切り返し操作)で180度の旋回ができるようになる。 The third turning path Rb3 will be described in more detail. When the width of the headland HB is the shortest at the end of the work path Ra, and the third turning path Rb3 is generated by turning at the set turning radius Tr, as shown in FIG. Turn 90 degrees with radius Tr. At the time of this turning, the rear end of the rotary cultivating device 24 passes inside the safety boundary line hb of the headland set inside the boundary line h of the field, and at the time of turning, the rotary cultivating device 24 I try not to hit an obstacle. Then, the vehicle travels a predetermined distance (about 1 meter) and stops until the posture of the vehicle body portion is stabilized. In other words, if you stop immediately after turning 90 degrees and reverse in the next step, there is a risk that the front wheel 9 will move backward and meander before returning to the straight-ahead position, so go straight a predetermined distance after turning 90 degrees I have to. Next, the robot travels straight to the rear and stops at a position near the extension of the work path Ra before turning (a position where it is possible to enter the next work path Ra by turning 90 degrees again). Next, it turns 90 degrees so as to enter the work path Ra. Thus, even in the case of a narrow strip, it is possible to turn 180 degrees with a small number of turning operations (one turning operation).
 以上のように、経路生成装置は、車体部を走行させる走行領域(特定された圃場H)と前記車体部に対して予め設定された旋回半径を記憶可能な記憶部114と、前記走行領域内における前記車体部の走行経路Rb及び前記車体部に装着される作業機による作業経路Raを生成可能な制御部130(または制御部30)とを備え、前記制御部130(または制御部30)は、前記走行領域において、前記作業経路Raが生成される第1領域(作業領域HA)と、前記走行経路Rbが生成される第2領域(枕地HBと側部余裕地HC)とを設定可能であり、前記第1領域に設定される複数の作業経路Raのうち、第1の作業経路Raから第2の作業経路Raへの移動に、第2領域における前記車体部の旋回が必要な場合、第1の作業経路Raと第2の作業経路Raとの条間距離Wt及び前記旋回半径Trに基づいて、直進及び後進を伴わない第1の旋回経路Rb1と、直進を伴い後進を伴わない第2の旋回経路Rb2と、後進を伴う第3の旋回経路Rb3との何れかの旋回経路を含む前記走行経路Rbを生成可能であるので、圃場形状や作業に合わせて最も効率よく走行及び作業が可能な旋回経路を選択して経路生成することができるようになる。 As described above, the route generation device includes the storage unit 114 capable of storing the traveling area (the identified field H) in which the vehicle body unit is to travel and the turning radius set in advance for the vehicle body unit; And a control unit 130 (or control unit 30) capable of generating a working route Ra of the vehicle body unit and a work route Ra by a working machine attached to the vehicle unit, the control unit 130 (or control unit 30) In the travel area, it is possible to set a first area (work area HA) in which the work route Ra is generated and a second area (headland HB and side margin HC) in which the travel path Rb is generated When it is necessary for the movement from the first work path Ra to the second work path Ra among the plurality of work paths Ra set in the first area, the turning of the vehicle body in the second area is necessary. , First work route Ra Based on the distance Wt between the second working route Ra and the swing radius Tr, a first swing route Rb1 without going straight and moving backward, and a second swing route Rb2 not going straight with reverse and not going backward Since it is possible to generate the traveling route Rb including any turning route with the third turning route Rb3 accompanied by reverse movement, the turning route which can travel and work most efficiently can be selected according to the field shape and work. Route generation.
 また、前記制御部130(または制御部30)は、第1領域(作業領域HA)および第2領域(枕地HBと側部余裕地HC)の面積比を変更して第2の領域を広くすることで前記第1乃至第3の旋回経路Rb1・Rb2・Rb3とは異なる第4の旋回経路Rb4を含む前記走行経路Rbを生成可能であるので、切り返しにかかる時間を短縮してスムースな旋回ができて、効率のよい経路Rを生成することが可能となる。 The control unit 130 (or the control unit 30) changes the area ratio of the first area (working area HA) to the second area (headland HB and side margin HC) to widen the second area. Since it is possible to generate the traveling route Rb including the fourth turning route Rb4 different from the first to third turning routes Rb1, Rb2, Rb3, the time required for turning back is shortened to achieve smooth turning. It is possible to generate an efficient route R.
 つまり、作業領域HAに生成した作業経路Raの幅は、途中または最終条で作業幅(作業経路Raと作業経路Raとの間の距離Wt)よりも狭くなる狭作業経路Rcが生じることがある。このような場合、図22に示すように、側部余裕地HCにはみ出して作業が行われ、実質的に旋回するための領域が狭くなる。このような場合、前記第1の旋回経路Rb1、または、第3の旋回経路Rb3を生成すると、圃場からはみ出したり、既耕地にはみ出したりすることになる。また、切り返しを多用することで側部余裕地HCの範囲内で旋回することは可能であるが、旋回に時間がかり、圃場を荒らしてしまうことにもなる。 That is, a narrow work route Rc may occur in which the width of the work route Ra generated in the work area HA is narrower on the way or on the final strip than the work width (the distance Wt between the work route Ra and the work route Ra). . In such a case, as shown in FIG. 22, the work is carried out by protruding into the side margin HC, and the area for turning substantially becomes narrow. In such a case, when the first turning path Rb1 or the third turning path Rb3 is generated, the first turning path Rb1 or the third turning path Rb3 may be protruded from the field or to the existing cultivated land. In addition, although it is possible to turn within the range of the side margin HC by making extensive use of turning, it takes time for turning and it may also damage the field.
 このような場合、図21に示すように、側部余裕地HCの幅を広げて、直進と左右の旋回を伴い後進を伴わない第4の旋回経路Rb4を生成することで180度旋回が可能となる。このような第4の旋回経路Rb4は、平面視でフック状として、作業経路Raの終端から180度以上270度未満の範囲で右旋回(または左旋回)を行った後に逆方向に左旋回(または右旋回)して次の作業経路Raに入る。このような、第4の旋回経路Rb4を生成することで、切り返しを多用することなく素早く次の作業経路に入って作業を行うことができる。 In such a case, as shown in FIG. 21, it is possible to turn 180 degrees by widening the width of the side margin HC and generating a fourth turning path Rb4 without going backwards with going straight and turning left and right. It becomes. Such a fourth turning route Rb4 has a hook shape in a plan view, and performs a right turn (or a left turn) within a range of 180 degrees or more and less than 270 degrees from the end of the work path Ra and turns left in the opposite direction (Or turn right) to enter the next work path Ra. By generating the fourth turning path Rb4 like this, it is possible to quickly enter the next working path without using a lot of turning and working.
 また、側部余裕地HCは多少荒れてもしかたなく、拡げた側部余裕地HCの後作業の手間を省き、側部余裕地HCの範囲内で旋回したい場合には、前記制御部130(または制御部30)は、第1の旋回方向への旋回、及び、第1の旋回方向とは反対の第2の旋回方向への旋回を伴う第5の旋回経路Rb5を含む前記走行経路Rbを生成可能としている。つまり、図23に示すように、切り返しを多用した(本実施形態では2回の切り返し)第5の旋回経路Rb5を側部余裕地HCの範囲内で生成するのである。こうして、多少時間はかかり、前後進の切換を頻繁に行う必要はあるが、既耕地や圃場外にはみ出すことなく作業が行える。 In addition, the side margin HC may be a little rough, so it is possible to save time and effort after the expanded side margin HC and to make a turn within the range of the side margin HC. Alternatively, the control unit 30) may move the traveling route Rb including the fifth pivoting path Rb5 accompanied by the pivoting in the first pivoting direction and the pivoting in the second pivoting direction opposite to the first pivoting direction. It is possible to generate. That is, as shown in FIG. 23, the fifth turning route Rb5, which uses many rounds (two rounds in the present embodiment), is generated within the range of the side margin HC. Thus, although it takes some time and it is necessary to switch between forward and reverse travel frequently, work can be performed without spilling onto existing cultivated land or outside the field.
 また、制御部130(または制御部30)は、前記作業機による作業が第1の作業経路Ra、第2の作業経路Ra、第3の作業経路Raの順に行われ、所定の第n番目の作業経路Raから第(n+1)番目の作業経路Raへの移動に、第3の旋回経路Rb3による旋回が必要な場合に、第(n+1)番目の作業経路Raと第2領域とに跨って設定される第3の旋回経路Rb3を含む前記走行経路Rbを生成可能である一方、第n番目の作業経路と第2領域とに跨って設定される第3の旋回経路Rb3を含む前記走行経路Rbを生成しないようにしている。つまり、既耕地に跨る旋回経路は生成設定しないが、未耕地に跨る旋回経路は生成設定可能としている。なお、nは1以上の整数である。 Further, the control unit 130 (or the control unit 30) performs the work by the work machine in the order of the first work route Ra, the second work route Ra, and the third work route Ra, and the predetermined n-th If it is necessary to move from the work route Ra to the (n + 1) th work route Ra by turning along the third turning route Rb3, setting is made across the (n + 1) th work route Ra and the second area The traveling route Rb including the third turning route Rb3 can be generated, while the traveling route Rb including the third turning route Rb3 set across the nth working route and the second region Not to generate That is, although the turning path over the existing cultivated land is not generated and set, the turning path over the uncultivated land can be generated and set. Here, n is an integer of 1 or more.
 例えば、図24に示すように、作業経路番号1・3・5は既耕地とし、作業経路番号2・4・6・は未耕地とすると、第1の作業経路Ra(作業経路番号1)から第2の作業経路Ra(作業経路番号2)に移動するときに第3の旋回経路Rb3が採用される場合、90度旋回して後進し、次に90度旋回するときに、未耕地の第2の作業経路Ra(作業経路番号2)に自律走行作業車両1が進入するような走行経路Rbを生成設定することを可能としている。また、第3の作業経路(作業経路番号3)から第4の作業経路Ra(作業経路番号4)に移動するときに第3の旋回経路Rb3が採用される場合、最初に180度以上旋回して停止する。このとき自律走行作業車両1が未耕地の第4の作業経路Ra(作業経路番号4)に進入することを可能とし、次に、後進してから停止し、90度未満の旋回を行うような走行経路Rbを生成設定することを可能としている。しかしながら、次のような場合は経路生成を許可しない。つまり、第5の作業経路Ra(作業経路番号5)から第6の作業経路Ra(作業経路番号6)に移動するときに第3の旋回経路Rb3が採用されるような場合において、最初に90度未満の旋回をして停止し、次に後進するとき自律走行作業車両1が既耕地の第5の作業経路Ra(作業経路番号5)に進入することは許可せず、走行経路Rbを生成設定しないようにしている。 For example, as shown in FIG. 24, assuming that work route No. 1 3. 5 is an existing cultivated land and work route No. 2. 4 6 .. is an uncultivated land, from the first work route Ra (work route No. 1) When the third turning route Rb3 is adopted when moving to the second work route Ra (working route No. 2), when turning 90 degrees backward and going backward, and turning 90 degrees next time, It is possible to generate and set a travel route Rb such that the autonomously traveling work vehicle 1 enters the work route Ra (work route number 2) of 2. When the third swing route Rb3 is adopted when moving from the third work route (work route No. 3) to the fourth work route Ra (work route No. 4), the vehicle first turns 180 degrees or more. Stop. At this time, it becomes possible for the autonomous traveling work vehicle 1 to enter the fourth work route Ra (work route number 4) of the uncultivated area, and then reverse and then stop and perform a turn of less than 90 degrees. It is possible to generate and set a travel route Rb. However, route generation is not permitted in the following cases. That is, when the third turning route Rb3 is adopted when moving from the fifth work route Ra (work route number 5) to the sixth work route Ra (work route number 6), first 90 Does not permit the autonomous traveling work vehicle 1 to enter the fifth work route Ra (work route number 5) of the cultivated land when it stops by turning less than 50 degrees and then reverses, and generates the running route Rb I am trying not to set it.
 また、前記側部余裕地HCを拡げたくなく、また、前記第5の旋回経路Rb5も採用したくない場合は、図25に示すように、作業開始位置Sを作業終了位置Gと反対側に配置して、反対側から開始し、逆方向へ旋回する経路を生成することも可能である。この場合、第1の旋回経路Rb1、または、第3の旋回経路Rb3を生成することが可能となる。このような経路を生成することにより、第2領域(枕地HBと側部余裕地HC)となる外周を、2周回るだけで最後の仕上げ作業ができることとなる。 Further, if it is not desired to expand the side margin HC and do not want to adopt the fifth turning route Rb5, as shown in FIG. 25, the work start position S is opposite to the work end position G. It is also possible to arrange and create a path which starts from the opposite side and pivots in the opposite direction. In this case, it is possible to generate the first turning path Rb1 or the third turning path Rb3. By generating such a path, the final finishing operation can be performed only by making two rounds of the outer circumference which becomes the second area (the headland HB and the side margin HC).
 本発明は、圃場内を自律走行及び自動作業を可能とする農用作業車の走行及び作業経路を生成可能とする経路生成装置に利用可能である。 INDUSTRIAL APPLICABILITY The present invention is applicable to a route generation device capable of generating a traveling and working route of an agricultural work vehicle that enables autonomous traveling and automatic work in a field.
 1   自律走行作業車両
 30  制御部
 110・111 通信装置
 112 遠隔操作装置
 114 記憶部
 130 操作側の制御部
 G・Ga 作業終了位置
 H   圃場
 L1 走行作業長
 R   経路
 Ra  作業経路
 Rb  走行経路
 Rc 狭作業経路
 HA  作業領域
 W1 走行作業幅
 
Reference Signs List 1 autonomous traveling working vehicle 30 control unit 110 · 111 communication device 112 remote control device 114 storage unit 130 control unit on operation side G · Ga work end position H field L1 running work length R route Ra work route Rb travel route Rc narrow work route HA work area W1 travel work width

Claims (11)

  1.  車体部を走行させる走行領域、並びに、前記車体部の幅、及び/もしくは、前記車体部に装着される作業機の幅となる走行作業幅の情報を記憶可能な記憶部と、
     前記走行領域内における前記作業機による作業経路を生成可能な制御部と、を備え、
     前記走行領域は、前記作業経路を含む第1領域と、第1領域の周囲に設定される第2領域とを含み、
     前記制御部は、前記第1領域に作業経路を生成したときに所定幅よりも狭い狭作業経路が生じる場合、該狭作業経路と前記第2領域に跨る走行作業幅の作業経路を生成可能とすることを特徴とする経路生成装置。
    A storage area capable of storing information of a travel area in which a vehicle body section is traveled, a width of the vehicle body section, and / or a width of a traveling work which is a width of a work machine mounted on the vehicle body section;
    A control unit capable of generating a work path by the work machine in the travel area;
    The travel area includes a first area including the work path, and a second area set around the first area.
    When the narrow work path narrower than a predetermined width occurs when the work path is generated in the first area, the control unit can generate the work path of the traveling work width across the narrow work path and the second area. What is claimed is:
  2.  前記記憶部は、前記車体部に作業機を装着した状態の前端から後端までの長さとなる走行作業長の情報を記憶し、
     前記制御部は、前記狭作業経路の経路長が、前記走行作業長を所定倍した長さに満たない場合、前記狭作業経路に作業経路を生成しないことを特徴とする請求項1に記載の経路生成装置。
    The storage unit stores information of a traveling working length which is a length from a front end to a rear end in a state where the work machine is mounted on the vehicle body portion,
    The control unit according to claim 1, wherein when the path length of the narrow work path is less than a length obtained by multiplying the traveling work length by a predetermined length, the control unit does not generate the work path in the narrow work path. Path generator.
  3.  前記制御部は、前記走行領域に対して設定される作業開始位置と作業方向と作業終了位置とに基づいて前記作業経路を生成可能であって、
     前記狭作業経路に作業経路を生成しない場合、前記走行領域に対して設定された前記作業終了位置と、前記作業経路における前記作業機による作業の終了位置と異なる位置に設定可能とすることを特徴とする請求項1に記載の経路生成装置。
    The control unit can generate the work path based on a work start position, a work direction, and a work end position set for the traveling region,
    When the work path is not generated in the narrow work path, the work end position set for the traveling area can be set to a position different from the end position of the work by the work machine in the work path. The path generation device according to claim 1, wherein
  4.  第1の走行作業車両及び第2の走行作業車両による走行形態を設定する設定部と、
     前記設定部により設定された前記走行形態に応じて、第1の走行作業車両及び第2の走行作業車両により走行される複数の作業経路を平行に隣接して配するとともに、隣接する作業経路に対して連続する作業順が付された作業経路を生成可能な作業経路生成部と、
     所定の制御を行う制御部と、を備え、
     前記設定部により前記走行形態として、第1の走行作業車両及び第2の走行作業車両が走行する作業経路が共通の作業経路であることが設定された場合、
     前記制御部は前記所定の制御として所定の報知を実行可能であることを特徴とする経路生成装置。
    A setting unit configured to set a traveling mode by the first traveling work vehicle and the second traveling work vehicle;
    According to the traveling mode set by the setting unit, a plurality of work paths traveled by the first traveling work vehicle and the second traveling work vehicle are arranged in parallel and adjacent to each other, and adjacent work paths A work path generation unit capable of generating a work path to which a continuous work order is attached;
    A control unit that performs predetermined control;
    When it is set by the setting unit that the work path on which the first traveling work vehicle and the second traveling work vehicle travel is a common work path as the traveling mode,
    The route generation device, wherein the control unit can execute a predetermined notification as the predetermined control.
  5.  第1の走行作業車両及び第2の走行作業車両による走行形態を設定する設定部と、
     前記設定部により設定された前記走行形態に応じて、第1の走行作業車両及び第2の走行作業車両により走行される複数の作業経路を平行に隣接して配するとともに、隣接する作業経路に対して連続する作業順が付された作業経路を生成可能な作業経路生成部と、
     所定の制御を行う制御部と、を備え、
     前記設定部により前記走行形態として、第1の走行作業車両及び第2の走行作業車両が走行する作業経路が共通の作業経路であることが設定された場合、
     前記制御部は前記所定の制御として、第1の走行作業車両及び第2の走行作業車両が走行する作業経路が互いに異なる作業経路である場合の前記作業経路を生成可能であることを特徴とする経路生成装置。
    A setting unit configured to set a traveling mode by the first traveling work vehicle and the second traveling work vehicle;
    According to the traveling mode set by the setting unit, a plurality of work paths traveled by the first traveling work vehicle and the second traveling work vehicle are arranged in parallel and adjacent to each other, and adjacent work paths A work path generation unit capable of generating a work path to which a continuous work order is attached;
    A control unit that performs predetermined control;
    When it is set by the setting unit that the work path on which the first traveling work vehicle and the second traveling work vehicle travel is a common work path as the traveling mode,
    The control unit is capable of generating the work path when the work paths traveled by the first traveling work vehicle and the second traveling work vehicle are different work paths as the predetermined control. Path generator.
  6.  前記作業経路生成部は、
     前記第1の走行作業車両及び第2の走行作業車両が隣接した作業経路の作業を行い、第1の走行作業車両の作業経路長さと第1の走行作業車両の作業経路の長さの差が所定長さ以上であって、作業経路が短くなる場合、
     第1の走行作業車両の作業経路となる作業経路を、第2の走行作業車両の作業経路の長さに合わせて作業経路を設定可能とすることを特徴とする請求項1または請求項2に記載の経路生成装置。
    The work path generation unit
    The first traveling working vehicle and the second traveling working vehicle work in an adjacent work path, and the difference between the working path length of the first traveling working vehicle and the working path length of the first traveling working vehicle is When the working path is shorter than a predetermined length,
    The work route which becomes the work route of the first traveling work vehicle can be set according to the length of the work route of the second traveling work vehicle so that the work route can be set. The path generation device as described.
  7.  前記作業経路生成部は、
     走行態様が互いに異なり隣接する作業経路である場合に、最初の一往復において第2の走行作業車両の作業経路は隣接する作業経路に対して連続する作業順が付され、第1の走行作業車両の作業経路は前記第2の走行作業車両の最初の一往復経路を隔てて配される2本の作業経路に対して連続する作業順が付されることを特徴とする請求項1に記載の経路生成装置。
    The work path generation unit
    When the traveling modes are mutually different work paths, the work path of the second traveling work vehicle is given a continuous work order with respect to the adjacent work path in the first one reciprocation, and the first traveling work vehicle The work path according to claim 1, wherein a continuous work order is given to two work paths arranged apart from the first one reciprocating path of the second traveling work vehicle. Path generator.
  8.  車体部を走行させる走行領域と前記車体部に対して予め設定された旋回半径を記憶可能な記憶部と、
     前記走行領域内における前記車体部の走行経路及び前記車体部に装着される作業機による作業経路を生成可能な制御部と、を備え、
     前記制御部は、前記走行領域において、前記作業経路が生成される第1領域と、前記走行経路が生成される第2領域とを設定可能であり、
     前記第1領域に設定される複数の作業経路のうち、第1の作業経路から第2の作業経路への移動に、第2領域における前記車体部の旋回が必要な場合、第1の作業経路と第2の作業経路との条間距離及び前記旋回半径に基づいて、直進及び後進を伴わない第1の旋回経路と、直進を伴い後進を伴わない第2の旋回経路と、後進を伴う第3の旋回経路との何れかの旋回経路を含む前記走行経路を生成可能であることを特徴とする経路生成装置。
    A traveling region in which a vehicle body unit travels and a storage unit capable of storing a turning radius preset for the vehicle body unit;
    And a control unit capable of generating a travel path of the vehicle body portion in the travel region and a work path by a work machine mounted on the vehicle body portion.
    The control unit can set, in the travel area, a first area in which the work path is generated and a second area in which the travel path is generated.
    Among the plurality of work paths set in the first area, when it is necessary to move the vehicle body in the second area to move from the first work path to the second work path, the first work path Based on the distance between the bars and the second working path and the turning radius, a first turning path without going straight and going backward, a second turning path not going with going straight and a second turning path, and going back A route generating device characterized in that it is possible to generate the traveling route including any turning route with three turning routes.
  9.  前記制御部は、第1領域および第2領域の面積比を変更して第2の領域を広くすることで第1乃至第3の旋回経路とは異なる第4の旋回経路を含む前記走行経路を生成可能であることを特徴とする請求項1に記載の経路生成装置。 The control unit changes the area ratio of the first region and the second region to widen the second region, thereby including the traveling route including a fourth turning route different from the first to third turning routes. The path generation device according to claim 1, which can be generated.
  10.  前記制御部は、第1の旋回方向への旋回、及び、第1の旋回方向とは反対の第2の旋回方向への旋回を伴う第5の旋回経路を含む前記走行経路を可能であることを特徴とする請求項1に記載の経路生成装置。 The control unit is capable of the travel path including a fifth turning path including turning in a first turning direction and turning in a second turning direction opposite to the first turning direction. The path generation device according to claim 1, characterized in that
  11.  前記制御部は、前記作業機による作業が第1の作業経路、第2の作業経路、第3の作業経路の順に行われ、所定の第n番目の作業経路から第(n+1)番目の作業経路への移動に、第3の旋回経路による旋回が必要な場合に、第(n+1)番目の作業経路と第2領域とに跨って設定される第3の旋回経路を含む前記走行経路を生成可能である一方、第n番目の作業経路と第2領域とに跨って設定される第3の旋回経路を含む前記走行経路を生成しないことを特徴とする請求項1に記載の経路生成装置。 The control unit performs the work by the work machine in the order of the first work path, the second work path, and the third work path, and an (n + 1) th work path from a predetermined n-th work path When it is necessary to move to a third turning route, it is possible to generate the traveling route including a third turning route set across the (n + 1) th working route and the second region The route generation device according to claim 1, wherein the travel route including the third turning route set across the n-th work route and the second area is not generated.
PCT/JP2017/009985 2016-03-16 2017-03-13 Route generation device WO2017159615A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016-052818 2016-03-16
JP2016052818A JP6675135B2 (en) 2016-03-16 2016-03-16 Route generator
JP2016-057086 2016-03-22
JP2016057086A JP6437479B2 (en) 2016-03-22 2016-03-22 Route generator
JP2016-060797 2016-03-24
JP2016060797A JP6531055B2 (en) 2016-03-24 2016-03-24 Path generator

Publications (1)

Publication Number Publication Date
WO2017159615A1 true WO2017159615A1 (en) 2017-09-21

Family

ID=59851636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009985 WO2017159615A1 (en) 2016-03-16 2017-03-13 Route generation device

Country Status (1)

Country Link
WO (1) WO2017159615A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124273A1 (en) * 2017-12-18 2019-06-27 株式会社クボタ Automatic traveling system, automatic traveling management system, recording medium having automatic traveling management program recorded therein, automatic traveling management method, region determination system, region determination program, recording medium having region determination program recorded therein, region determination method, combine harvester control system, combine harvester control program, recording medium having combine harvester control program recorded therein, and combine harvester control method
JP2019106926A (en) * 2017-12-18 2019-07-04 株式会社クボタ Automatic traveling system
JP2020086875A (en) * 2018-11-22 2020-06-04 井関農機株式会社 Farm work supporting system
WO2021025108A1 (en) * 2019-08-08 2021-02-11 ヤンマーパワーテクノロジー株式会社 Automatic travel system for work vehicle
WO2023127266A1 (en) * 2021-12-28 2023-07-06 株式会社クボタ Agricultural work assistance system, agricultural machine, agricultural work assistance device
EP4252510A1 (en) * 2022-03-30 2023-10-04 Yanmar Holdings Co., Ltd. Control device and work vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10243708A (en) * 1997-03-03 1998-09-14 Kubota Corp Traveling pathway-preparing apparatus for working vehicle and traveling controller
WO2015119266A1 (en) * 2014-02-06 2015-08-13 ヤンマー株式会社 Parallel travel work system
JP2015194981A (en) * 2014-03-26 2015-11-05 ヤンマー株式会社 Controller for work vehicle
US20150319913A1 (en) * 2014-05-11 2015-11-12 Cnh Industrial America Llc Mission control system and method for an agricultural system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10243708A (en) * 1997-03-03 1998-09-14 Kubota Corp Traveling pathway-preparing apparatus for working vehicle and traveling controller
WO2015119266A1 (en) * 2014-02-06 2015-08-13 ヤンマー株式会社 Parallel travel work system
JP2015194981A (en) * 2014-03-26 2015-11-05 ヤンマー株式会社 Controller for work vehicle
US20150319913A1 (en) * 2014-05-11 2015-11-12 Cnh Industrial America Llc Mission control system and method for an agricultural system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124273A1 (en) * 2017-12-18 2019-06-27 株式会社クボタ Automatic traveling system, automatic traveling management system, recording medium having automatic traveling management program recorded therein, automatic traveling management method, region determination system, region determination program, recording medium having region determination program recorded therein, region determination method, combine harvester control system, combine harvester control program, recording medium having combine harvester control program recorded therein, and combine harvester control method
JP2019106926A (en) * 2017-12-18 2019-07-04 株式会社クボタ Automatic traveling system
CN111386030A (en) * 2017-12-18 2020-07-07 株式会社久保田 Automatic travel system, automatic travel management program, recording medium having automatic travel management program recorded thereon, automatic travel management method, area specifying system, area specifying program, recording medium having area specifying program recorded thereon, area specifying method, combine control system, combine control program, recording medium having combine control program recorded thereon, and combine control method
CN111386030B (en) * 2017-12-18 2023-01-31 株式会社久保田 Automatic travel system, automatic travel management program and method, and recording medium
JP2020086875A (en) * 2018-11-22 2020-06-04 井関農機株式会社 Farm work supporting system
JP7265347B2 (en) 2018-11-22 2023-04-26 井関農機株式会社 Agricultural work support system
WO2021025108A1 (en) * 2019-08-08 2021-02-11 ヤンマーパワーテクノロジー株式会社 Automatic travel system for work vehicle
JP2021026674A (en) * 2019-08-08 2021-02-22 ヤンマーパワーテクノロジー株式会社 Automatic travel system for work vehicle
JP7132191B2 (en) 2019-08-08 2022-09-06 ヤンマーパワーテクノロジー株式会社 Automated driving system for work vehicles
WO2023127266A1 (en) * 2021-12-28 2023-07-06 株式会社クボタ Agricultural work assistance system, agricultural machine, agricultural work assistance device
EP4252510A1 (en) * 2022-03-30 2023-10-04 Yanmar Holdings Co., Ltd. Control device and work vehicle

Similar Documents

Publication Publication Date Title
JP6531055B2 (en) Path generator
WO2017159615A1 (en) Route generation device
KR102144244B1 (en) Route generating device
CN108777935B (en) Work vehicle and travel area determination device
JP6437479B2 (en) Route generator
JP6557622B2 (en) Route generator
JP6675135B2 (en) Route generator
JP6507109B2 (en) Running area shape registration system for work vehicle
JP6267626B2 (en) Travel route setting device
JP6594805B2 (en) Work vehicle
JP6557621B2 (en) Route generator
WO2016017408A1 (en) Work vehicle cooperation system
JP2021099844A (en) Travel region shape registration system
JP6605375B2 (en) Autonomous traveling work vehicle
JP2016095659A (en) Plurality-of-vehicles accompanying travel work system
JP2019096363A (en) Travel area specification device
JP6605364B2 (en) Route generation method for work vehicle
JP6886626B2 (en) Travel area registration system for work vehicles
JP7397919B2 (en) route generation device
JP7229119B2 (en) automatic driving system
JP2018050632A (en) Traveling route setting device
JP2019201667A (en) Travel route setting device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766615

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766615

Country of ref document: EP

Kind code of ref document: A1