WO2017159581A1 - Infrared lens module - Google Patents

Infrared lens module Download PDF

Info

Publication number
WO2017159581A1
WO2017159581A1 PCT/JP2017/009845 JP2017009845W WO2017159581A1 WO 2017159581 A1 WO2017159581 A1 WO 2017159581A1 JP 2017009845 W JP2017009845 W JP 2017009845W WO 2017159581 A1 WO2017159581 A1 WO 2017159581A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
cap
temperature
heater
lens module
Prior art date
Application number
PCT/JP2017/009845
Other languages
French (fr)
Japanese (ja)
Inventor
長谷川 幹人
遼太 山口
明徳 加原
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016131645A external-priority patent/JP6798161B2/en
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN201780016231.3A priority Critical patent/CN108780265A/en
Priority to US16/085,075 priority patent/US20190094484A1/en
Publication of WO2017159581A1 publication Critical patent/WO2017159581A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/55Details of cameras or camera bodies; Accessories therefor with provision for heating or cooling, e.g. in aircraft
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B41/00Special techniques not covered by groups G03B31/00 - G03B39/00; Apparatus therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof

Definitions

  • the present invention relates to an infrared lens module.
  • the infrared camera As a countermeasure when the infrared camera is used in a low temperature environment, the infrared camera is stored in a case having a window that transmits infrared rays, and the window is heated by a heater to prevent condensation and freezing. It has been proposed (see, for example, Japanese Patent Laid-Open No. 2001-57642 (Patent Document 1)).
  • the infrared lens module includes a lens that transmits infrared rays, a lens barrel that holds the lens, and a temperature adjusting device that is disposed on the lens and adjusts the temperature of the lens.
  • FIG. 2 is a schematic cross-sectional view showing a structure of an infrared lens module according to Embodiment 1.
  • FIG. 6 is a schematic cross-sectional view showing a structure of an infrared lens module according to Embodiment 2.
  • FIG. 6 is a schematic cross-sectional view showing a structure of an infrared lens module according to Embodiment 3.
  • FIG. 6 is a schematic cross-sectional view showing a structure of an infrared lens module according to Embodiment 4.
  • FIG. 10 is a schematic cross-sectional view showing the structure of an infrared lens module in a fifth embodiment.
  • FIG. 10 is a schematic cross-sectional view showing the structure of an infrared lens module in a sixth embodiment.
  • FIG. 10 is a schematic cross-sectional view showing the structure of an infrared lens module in a seventh embodiment.
  • FIG. 10 is a schematic cross-sectional view showing the structure of an infrared lens module in an eighth embodiment.
  • FIG. 10 is a schematic cross-sectional view showing the structure of an infrared lens module in a ninth embodiment.
  • FIG. 10 is a schematic cross-sectional view showing the structure of an infrared lens module in a tenth embodiment.
  • FIG. 22 is a schematic cross-sectional view showing the structure of an infrared lens module in an eleventh embodiment.
  • Patent Document 1 does not adjust the temperature of the infrared lens, but adjusts the temperature of the window of the case. For this reason, a case having a window that transmits infrared rays is indispensable, which increases the size of the device and increases the cost. Therefore, an object is to provide an infrared lens module in which the temperature of the infrared lens can be easily adjusted.
  • an infrared lens module in which the temperature of the infrared lens can be easily adjusted can be provided.
  • An infrared lens module includes a lens that transmits infrared rays, a lens barrel that holds the lens, and a temperature adjustment device that is disposed in the lens and adjusts the temperature of the lens.
  • a temperature adjusting device that adjusts the temperature of the lens is arranged in the lens.
  • the temperature adjustment device is installed outside the infrared lens module, and the lens temperature is adjusted by the temperature adjustment device placed on the lens, rather than adjusting the lens temperature from the outside. Easy to do.
  • an infrared lens module in which the temperature of the infrared lens can be easily adjusted can be provided.
  • an interval may be formed between the lens and the lens barrel.
  • the temperature adjusting device may be disposed on at least one of the outer peripheral surface of the lens and the outer edge region of the lens surface.
  • the material constituting the lens may be zinc sulfide (ZnS).
  • ZnS zinc sulfide
  • a lens composed of ZnS has a small change in refractive index with respect to a temperature change. Therefore, by adopting a lens composed of ZnS in the lens module of the present application, it becomes easy to set the focal position of the lens within a desired range.
  • the infrared lens module includes a lens that transmits infrared rays and a lens barrel that holds the lens.
  • the lens barrel includes a lens barrel body and a cap disposed on one end side of the lens barrel body. The lens is held between the lens barrel body and the cap. A heater for adjusting the temperature of the lens is installed in the cap.
  • a heater is installed on the cap that holds the lens. Rather than adjusting the temperature of the lens from the outside of the infrared lens module, adjusting the temperature of the lens with a heater installed in the cap makes it easy to adjust the lens to a desired temperature.
  • adjusting the temperature of the lens with a heater installed in the cap makes it easy to adjust the lens to a desired temperature.
  • the region in contact with the lens of the lens barrel body may be made of a material having a lower thermal conductivity than the region in contact with the lens of the cap.
  • the emissivity of the surface of the cap other than the surface exposed to the outside may be 0.7 or less. By doing so, the amount of heat released from the cap is reduced, and the adjustment of the lens temperature is further facilitated. From the viewpoint of further facilitating adjustment of the lens temperature, the emissivity is preferably 0.5 or less, and more preferably 0.3 or less.
  • the material constituting the lens may be zinc sulfide.
  • a lens composed of ZnS has a small change in refractive index with respect to a temperature change. Therefore, by adopting a lens composed of ZnS in the lens module of the present application, it becomes easy to set the focal position of the lens within a desired range.
  • (Embodiment 1) 1 is a schematic cross-sectional view showing a cross section including the optical axis of the lens module according to Embodiment 1.
  • FIG. 1 the lens module 1 according to the first embodiment includes a lens 10, a lens barrel 50, and a heater 61.
  • the lens 10 is an infrared lens that transmits infrared light, more specifically, light having a wavelength of 8 ⁇ m to 14 ⁇ m.
  • the material constituting the lens 10 is, for example, ZnS.
  • the lens 10 includes a first lens surface 11, a second lens surface 12, and an outer peripheral surface 13.
  • the first lens surface 11 includes a central region 11A that is a convex surface that is located at the center and intersects the optical axis C, and an outer edge region 11B that is a plane surrounding the central region 11A.
  • the second lens surface 12 includes a central region 12A that is a concave surface that is located at the center and intersects the optical axis C, and an outer edge region 12B that is a plane surrounding the central region 12A.
  • the lens barrel 50 includes a cap 20 and a lens barrel body 30.
  • the lens barrel body 30 has a cylindrical shape.
  • the lens barrel body 30 supports the lens 10 by contacting the outer edge region 12B and the outer peripheral surface 13 of the second lens surface 12 at the end.
  • the lens barrel body 30 is made of a metal such as a resin or an aluminum alloy.
  • the cap 20 is cylindrical and has a shape in which a projecting portion 21 projecting radially inward is formed at one end.
  • the cap 20 is made of a metal such as an aluminum alloy.
  • a gap is formed between the inner peripheral surface 22 of the cap 20 and the outer peripheral surface 13 of the lens 10.
  • the protruding portion 21 of the cap 20 and the outer edge region 11B of the first lens surface 11 are in contact with each other.
  • a gap is formed between the outer peripheral side of the region in contact with the outer edge region 11B in the protruding portion 21 and the outer edge region 11B.
  • the cap 20 is fixed to the barrel main body 30 in a state where the end of the barrel main body 30 is fitted to the end opposite to the side on which the protruding portion 21 is formed. In this way, the lens 10 is held by the lens barrel 50.
  • the heater 61 as a temperature adjusting device for adjusting the temperature of the lens 10 is fixed to the outer peripheral surface 13 of the lens 10.
  • a heater 61 is disposed inside a gap formed between the outer peripheral surface 13 of the lens 10 and the inner peripheral surface 22 of the cap 20.
  • the heater 61 is disposed on the outer peripheral surface 13 of the lens 10 so as to extend along the circumferential direction.
  • the heater 61 may be disposed so as to contact the outer peripheral surface 13 over the entire circumference.
  • a wiring 62 is connected to the heater 61.
  • the wiring 62 is connected to a power source (not shown).
  • a heater 61 driven by electric power supplied from the power source via the wiring 62 adjusts the temperature of the lens 10 by heating the lens 10.
  • the heater 61 is, for example, a film heater.
  • a heater 61 that adjusts the temperature of the lens 10 is fixed to the outer peripheral surface 13 of the lens 10.
  • the heater 61 is installed outside the lens module 1, and the temperature of the lens 10 is not adjusted from the outside, but the temperature of the lens 10 is adjusted (heated) by the heater 61 fixed to the lens 10. It is easy to adjust to a desired temperature.
  • a gap is formed between the lens 10 and the lens barrel 50 (cap 20). Thereby, heat conduction with the cap 20 is suppressed, and adjustment of the temperature of the lens 10 is further facilitated.
  • the lens module 1 of the present embodiment is an infrared lens module in which the temperature of the lens 10 can be easily adjusted.
  • the lens barrel body 30 that contacts the lens 10 can be made of resin.
  • a resin having a thermal conductivity smaller than that of a metal as a material constituting the lens barrel body 30 in contact with the lens 10 heat conduction with the lens barrel body 30 is suppressed, and the temperature of the lens 10 is adjusted. Is even easier.
  • FIG. 2 is a schematic cross-sectional view showing a cross section including the optical axis of the lens module according to the second embodiment.
  • the lens module 1 includes a lens 10, a lens barrel 50, and a heater 61.
  • the lens 10 is an infrared lens that transmits infrared rays.
  • the material constituting the lens 10 is, for example, ZnS.
  • the lens 10 includes a first lens surface 11, a second lens surface 12, and an outer peripheral surface 13.
  • the first lens surface 11 includes a central region 11A that is a concave surface that is located at the center and intersects the optical axis C, and an outer edge region 11B that is a plane surrounding the central region 11A.
  • the second lens surface 12 includes a central region 12A that is a convex surface that is located at the center and intersects the optical axis C, and an outer edge region 12B that is a plane surrounding the central region 12A.
  • the lens barrel 50 includes a cap 20 and a lens barrel body 30.
  • the lens barrel body 30 has a cylindrical shape.
  • the lens barrel body 30 includes a cylindrical inner cell 31, a middle cell 32 surrounding the outer periphery of the inner cell 31, and an outer cell 33 surrounding the outer periphery of the middle cell 32.
  • the inner cell 31 and the outer cell 33 are made of a metal such as an aluminum alloy, for example.
  • the middle cell 32 is made of resin, for example.
  • a space is formed between the inner peripheral surface 31 ⁇ / b> B of the inner cell 31 and the outer peripheral surface 13 of the lens 10.
  • the inner peripheral surface 31B of the inner cell 31 and the outer peripheral surface of the lens 10 are formed. 13 is in contact. Further, the inner cell 31 is formed with a protruding portion 31A that protrudes toward the inner peripheral side. The protrusion 31A of the inner cell 31 and the outer edge region 12B of the second lens surface 12 are in contact with each other.
  • the cap 20 has a cylindrical shape.
  • the cap 20 is made of a metal such as an aluminum alloy.
  • the cap 20 contacts the outer edge region 11B of the first lens surface 11 at one end surface. Further, a gap is formed between the outer peripheral side of the region in contact with the outer edge region 11B in the cap 20 and the outer edge region 11B. Further, the cap 20 is fixed to the barrel main body 30 in a state where the cap 20 is fitted to the end of the barrel main body 30 in a region on the outer peripheral side of a region where a gap is formed between the outer edge region 11B and the cap 20. Yes. In this way, the lens 10 is held by the lens barrel 50.
  • a heater 61 that adjusts the temperature of the lens 10 is fixed to the outer peripheral surface 13 of the lens 10.
  • the heater 61 is installed outside the lens module 1, and the temperature of the lens 10 is not adjusted from the outside, but the temperature of the lens 10 is adjusted (heated) by the heater 61 fixed to the lens 10. It is easy to adjust to a desired temperature.
  • a gap is formed between the lens 10 and the lens barrel 50 (inner cell 31). Thereby, heat conduction with the inner cell 31 is suppressed, and the adjustment of the temperature of the lens 10 is further facilitated.
  • the lens module 1 of the present embodiment is an infrared lens module in which the temperature of the lens 10 can be easily adjusted.
  • the inner cell 31 may consist of resin.
  • a resin having a thermal conductivity smaller than that of a metal as a material constituting the inner cell 31 in contact with the lens 10 heat conduction with the inner cell 31 is suppressed, and the temperature of the lens 10 is further adjusted. It becomes easy.
  • FIG. 3 is a schematic cross-sectional view showing a cross section including the optical axis of the lens module according to the third embodiment.
  • the lens module 1 according to the third embodiment includes a lens 10, a lens barrel 50, and a heater 61.
  • the lens 10 is an infrared lens that transmits infrared light, more specifically, light having a wavelength of 8 ⁇ m to 14 ⁇ m.
  • the material constituting the lens 10 is, for example, ZnS.
  • the lens 10 includes a first lens surface 11, a second lens surface 12, and an outer peripheral surface 13.
  • the first lens surface 11 includes a central region 11A that is a convex surface that is located at the center and intersects the optical axis C, and an outer edge region 11B that is a plane surrounding the central region 11A.
  • the second lens surface 12 includes a central region 12A that is a concave surface that is located at the center and intersects the optical axis C, and an outer edge region 12B that is a plane surrounding the central region 12A.
  • the lens barrel 50 includes a cap 20 and a lens barrel body 30.
  • the lens barrel body 30 has a cylindrical shape.
  • the lens barrel body 30 supports the lens 10 by contacting the outer edge region 12B and the outer peripheral surface 13 of the second lens surface 12 at the end.
  • the cap 20 is cylindrical and has a shape in which a projecting portion 21 projecting radially inward is formed at one end.
  • the cap 20 is made of a metal such as an aluminum alloy.
  • the inner peripheral surface 22 of the cap 20 and the outer peripheral surface 13 of the lens 10 are in contact with each other. Further, the protruding portion 21 of the cap 20 and the outer edge region 11B of the first lens surface 11 are in contact with each other.
  • the cap 20 is disposed on one end side of the barrel main body 30.
  • the cap 20 is fixed in contact with the lens barrel body 30 at the end opposite to the side on which the protruding portion 21 is formed. In this way, the lens 10 is held between the lens barrel body 30 and the cap 20 and held by the lens barrel 50.
  • An annular groove 23 is formed in the cap 20 so as to enter the axial direction from the end surface opposite to the side on which the protruding portion 21 is formed.
  • a heater 61 that adjusts the temperature of the lens 10 is installed inside the groove 23.
  • the heater 61 is fixed in contact with the side wall of the groove 23.
  • the heater 61 is disposed so as to extend along the circumferential direction of the annular groove 23.
  • the heater 61 may be disposed so as to contact the side wall of the groove 23 over the entire circumference.
  • a wiring 62 is connected to the heater 61.
  • the wiring 62 is connected to a power source (not shown).
  • a heater 61 driven by electric power supplied from the power source via the wiring 62 adjusts the temperature of the lens 10 by heating the lens 10.
  • the heater 61 is, for example, a film heater.
  • a heater 61 that adjusts the temperature of the lens 10 is fixed in the groove 23 formed in the cap 20. Rather than installing the heater 61 outside the lens module 1 and adjusting the temperature of the lens 10 from the outside, the temperature of the lens 10 is adjusted (heated) by the heater 61 fixed to the cap 20. It is easy to adjust to a desired temperature.
  • the region of the lens barrel body 30 that contacts the lens 10 is preferably made of a material having a lower thermal conductivity than the region of the cap 20 that contacts the lens 10.
  • the cap 20 is made of a metal, specifically, an aluminum alloy
  • the lens barrel body 30 is made of a resin that is a material having a lower thermal conductivity than the metal constituting the cap 20.
  • the emissivity of the surface of the cap 20 other than the surface exposed to the outside is preferably 0.7 or less.
  • a black alumite layer is formed on the inner peripheral surface 26 of the protruding portion 21, the end surface 25 on the protruding portion 21 side, and the outer peripheral surface 24, which are the surfaces exposed to the outside.
  • the black alumite layer can be formed by introducing a black dye into the pores of the alumite layer (oxidized layer) formed by the alumite treatment after the alumite treatment (anodic oxidation treatment). By forming the black alumite layer, the emissivity of these surfaces, which are surfaces exposed to the outside, exceeds 0.7.
  • the black alumite layer is formed on at least a part of the lens holding surface 27 and at least a part of the inner peripheral surface 22 which are surfaces that contact the lens 10 of the protruding portion 21 that is a surface other than the surface exposed to the outside in the cap 20. Not formed.
  • a metal such as an aluminum alloy that is a material constituting the cap 20 may be exposed, or from the black alumite layer.
  • the surface treatment layer having a low emissivity may be exposed.
  • the emissivities of the lens holding surface 27 and the inner peripheral surface 22 which are surfaces of the protruding portion 21 that are in contact with the lens 10 are 0.7 or less.
  • the emissivity is preferably 0.5 or less, and more preferably 0.3 or less.
  • FIG. 4 is a schematic cross-sectional view showing a cross section including the optical axis of the lens module in the fourth embodiment.
  • lens module 1 in the fourth embodiment basically has the same configuration as in the third embodiment, and has the same effects.
  • the lens module 1 according to the fourth embodiment is different from the third embodiment in the structure of the lens barrel body 30.
  • the lens barrel body 30 of the fourth embodiment includes a protruding portion 34 that protrudes radially outward from an end portion on the side facing the cap 20.
  • Projection 34 covers the opening of groove 23 in the third embodiment (see FIGS. 3 and 4).
  • the annular space 28 is formed by the groove 23 and the protrusion 34.
  • the heater 61 is installed in the annular space 28. Rather than installing the heater 61 outside the lens module 1 and adjusting the temperature of the lens 10 from the outside, the temperature of the lens 10 is adjusted (heated) by the heater 61 installed in the cap 20 in this manner. This makes it easy to adjust the lens 10 to a desired temperature.
  • the protrusion 34 since the protrusion 34 is formed, it is possible to prevent the heater 61 from dropping off.
  • FIG. 5 is a schematic cross-sectional view showing a cross section including the optical axis of the lens module according to the fifth embodiment.
  • lens module 1 in the fifth embodiment basically has the same configuration as that in the third embodiment and has the same effects.
  • the lens module 1 according to the fifth embodiment is different from the third embodiment in the structure of the cap 20.
  • cap 20 of the fifth embodiment includes a holding member 29A.
  • a protruding portion that protrudes radially outward is formed at the end of the main body portion of the cap 20 opposite to the lens barrel main body 30.
  • a holding member 29A having a hollow cylindrical shape and having a protruding portion that protrudes radially inward at the end on the lens barrel main body 30 side is disposed.
  • an annular space 28 is formed between the main body portion of the cap 20 and the holding member 29A.
  • the heater 61 is installed in the annular space 28. The heater 61 is supported from the outer peripheral side by the holding member 29A.
  • the holding member 29A may be made of a metal such as an aluminum alloy, or may be made of a resin. By adopting a metal as the material constituting the holding member 29A, high durability can be obtained. By adopting a resin having a low thermal conductivity as a material constituting the holding member 29A, it is easy to suppress heat dissipation from the cap 20 and adjust the lens 10 to a desired temperature.
  • FIG. 6 is a schematic cross-sectional view showing a cross section including the optical axis of the lens module in the sixth embodiment.
  • lens module 1 in the sixth embodiment has basically the same configuration as in the fifth embodiment, and has the same effects.
  • the lens module 1 of the sixth embodiment is different from that of the fifth embodiment in the structure of the lens barrel body 30 and the cap 20 (holding member 29A).
  • the lens barrel body 30 of the sixth embodiment includes a protruding portion 34 that protrudes radially outward from an end portion on the side facing the cap 20.
  • the holding member 29A is not formed with a protruding portion as in the fifth embodiment, and the holding member 29A has a hollow cylindrical shape. Thereby, an annular space 28 is formed between the main body portion of the cap 20 and the holding member 29A.
  • the heater 61 is installed in the annular space 28. The heater 61 is supported from the outer peripheral side by the holding member 29A.
  • the heater 61 is installed outside the lens module 1 and the temperature of the lens 10 is not adjusted from the outside, but the temperature of the lens 10 is adjusted (heated) by the heater 61 installed in the cap 20 in this manner. This makes it easy to adjust the lens 10 to a desired temperature.
  • FIG. 7 is a schematic cross-sectional view showing a cross section including the optical axis of the lens module according to the seventh embodiment. 7 and 3, the lens module 1 according to the seventh embodiment has basically the same configuration as that of the third embodiment and has the same effects. However, the lens module 1 according to the seventh embodiment is different from the third embodiment in the structure of the cap 20.
  • the cap 20 of the seventh embodiment includes a holding member 29B.
  • a groove is formed on the inner peripheral surface of the cap 20, and a holding member 29B having a hollow cylindrical shape is disposed so as to cover the opening of the groove.
  • an annular space 28 is formed between the main body portion of the cap 20 and the holding member 29B.
  • the heater 61 is installed in the annular space 28.
  • the heater 61 is supported from the inner peripheral side by the holding member 29B. Rather than installing the heater 61 outside the lens module 1 and adjusting the temperature of the lens 10 from the outside, the temperature of the lens 10 is adjusted (heated) by the heater 61 installed in the cap 20 in this manner. This makes it easy to adjust the lens 10 to a desired temperature.
  • the holding member 29B may be made of a metal such as an aluminum alloy.
  • FIG. 8 is a schematic sectional view showing a section including the optical axis of the lens module according to the eighth embodiment.
  • the lens module 1 according to the eighth embodiment basically has the same configuration as that of the seventh embodiment and has the same effects.
  • the lens module 1 of the eighth embodiment is different from that of the seventh embodiment in the structure of the lens barrel body 30 and the cap 20.
  • the lens barrel body 30 of the eighth embodiment includes a protruding portion 34 that protrudes radially outward from an end portion on the side facing the cap 20.
  • the cap 20 is not formed with a wall on the lens barrel body 30 side of the groove as in the seventh embodiment.
  • the holding member 29B has a hollow cylindrical shape as in the case of the seventh embodiment. Thereby, an annular space 28 surrounded by the main body portion of the cap 20, the holding member 29 ⁇ / b> B, and the protruding portion 34 of the lens barrel main body 30 is formed.
  • the heater 61 is installed in the annular space 28. The heater 61 is supported from the inner peripheral side by the holding member 29B.
  • the temperature of the lens 10 is adjusted (heated) by the heater 61 installed in the cap 20 in this manner. This makes it easy to adjust the lens 10 to a desired temperature.
  • FIG. 9 is a schematic sectional view showing a section including the optical axis of the lens module according to the ninth embodiment.
  • the lens module 1 according to the ninth embodiment basically has the same configuration as that of the first embodiment and has the same effects.
  • the lens module 1 according to the ninth embodiment is different from the first embodiment in the arrangement of the heater 61.
  • the heater 61 of the ninth embodiment is installed on the inner peripheral surface 22 of the cap 20. Rather than installing the heater 61 outside the lens module 1 and adjusting the temperature of the lens 10 from the outside, the temperature of the lens 10 is adjusted (heated) by the heater 61 installed in the cap 20 in this manner. This makes it easy to adjust the lens 10 to a desired temperature.
  • FIG. 10 is a schematic cross-sectional view showing a cross section including the optical axis of the lens module according to the tenth embodiment.
  • lens module 1 in the tenth embodiment has basically the same configuration as in the ninth embodiment and has the same effects.
  • the lens module 1 of the tenth embodiment differs from the ninth embodiment in the arrangement of the heater 61.
  • heater 61 of the tenth embodiment is installed on the surface facing annular space 28 in protrusion 21 of cap 20 (the surface opposite to outer edge region 11 ⁇ / b> B as viewed from annular space 28). ing. Rather than installing the heater 61 outside the lens module 1 and adjusting the temperature of the lens 10 from the outside, the temperature of the lens 10 is adjusted (heated) by the heater 61 installed in the cap 20 in this manner. This makes it easy to adjust the lens 10 to a desired temperature.
  • FIG. 11 is a schematic sectional view showing a section including the optical axis of the lens module according to the eleventh embodiment.
  • lens module 1 according to the eleventh embodiment has basically the same configuration as that of the third embodiment and has the same effects.
  • the lens module 1 according to the seventh embodiment is different from the third embodiment in the structure of the cap 20.
  • the cap 20 of the eleventh embodiment includes a holding member 29C.
  • the groove portion 23 is not formed in the cap 20.
  • An annular holding member 29 ⁇ / b> C having an annular groove that opens toward the end surface is disposed on the end surface of the main body of the cap 20 opposite to the lens barrel body 30.
  • the holding member 29C is disposed so that the opening of the groove of the holding member 29C is covered by the main body portion of the cap 20.
  • an annular space 28 is formed between the main body portion of the cap 20 and the holding member 29C.
  • the heater 61 is installed in the annular space 28.
  • the holding member 29C may be made of a metal such as an aluminum alloy, or may be made of a resin. By adopting a metal as a material constituting the holding member 29C, high durability can be obtained. By adopting a resin having a low thermal conductivity as a material constituting the holding member 29C, it is easy to suppress heat dissipation from the cap 20 and adjust the lens 10 to a desired temperature.
  • the temperature adjustment device that can be employed is not limited to this, and for example, a thin heater such as a rubber heater or a seat heater.
  • a planar heater or a linear heater may be used. 1 to 11, only one lens 10 is illustrated, but another lens may be present behind the lens 10 (side facing the second lens surface 12).
  • the heater 61 as a temperature adjusting device is disposed (fixed) on the outer peripheral surface 13 of the lens.
  • the temperature adjusting device May be arranged (fixed) in the outer edge region (outer edge region 11B, outer edge region 12B) of the lens surface.
  • 1 lens module 10 lens, 11 first lens surface, 11A central region, 11B outer edge region, 12 second lens surface, 12A central region, 12B outer edge region, 13 outer peripheral surface, 20 cap, 21 protruding portion, 22 inner peripheral surface , 23 groove portion, 24 outer peripheral surface, 25 end surface, 26 inner peripheral surface, 27 lens holding surface, 28 annular space, 29A holding member, 29B holding member, 29C holding member, 30 lens barrel body, 31 inner cell, 31A protruding portion, 31B inner peripheral surface, 32 middle cell, 33 outer cell, 34 protrusion, 50 lens barrel, 61 heater, 62 wiring.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lens Barrels (AREA)

Abstract

Provided is an infrared lens module provided with: a lens that transmits infrared rays; a lens barrel for holding the lens; and a temperature adjustment device for adjusting the temperature of the lens, the temperature adjustment device being disposed in the lens.

Description

赤外線レンズモジュールInfrared lens module
 本発明は赤外線レンズモジュールに関するものである。 The present invention relates to an infrared lens module.
 本出願は、2016年3月15日出願の日本出願第2016-051680号および2016年7月1日出願の日本出願第2016-131645号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。 The present application claims priority based on Japanese Application No. 2016-051680 filed on Mar. 15, 2016 and Japanese Application No. 2016-131645 filed on Jul. 1, 2016, and is described in the aforementioned Japanese application. All the descriptions are incorporated.
 赤外線カメラが低温環境下で使用される場合の対応策として、赤外線カメラを、赤外線を透過する窓を有するケース内に格納し、窓をヒータにより加熱することで、結露や凍結を防止する構造が提案されている(たとえば、特開2001-57642号公報(特許文献1)参照)。 As a countermeasure when the infrared camera is used in a low temperature environment, the infrared camera is stored in a case having a window that transmits infrared rays, and the window is heated by a heater to prevent condensation and freezing. It has been proposed (see, for example, Japanese Patent Laid-Open No. 2001-57642 (Patent Document 1)).
特開2001-57642号公報JP 2001-57642 A
 本発明に従った赤外線レンズモジュールは、赤外線を透過するレンズと、レンズを保持する鏡筒と、レンズに配置され、レンズの温度を調整する温度調整装置と、を備える。 The infrared lens module according to the present invention includes a lens that transmits infrared rays, a lens barrel that holds the lens, and a temperature adjusting device that is disposed on the lens and adjusts the temperature of the lens.
実施の形態1における赤外線レンズモジュールの構造を示す概略断面図である。2 is a schematic cross-sectional view showing a structure of an infrared lens module according to Embodiment 1. FIG. 実施の形態2における赤外線レンズモジュールの構造を示す概略断面図である。6 is a schematic cross-sectional view showing a structure of an infrared lens module according to Embodiment 2. FIG. 実施の形態3における赤外線レンズモジュールの構造を示す概略断面図である。6 is a schematic cross-sectional view showing a structure of an infrared lens module according to Embodiment 3. FIG. 実施の形態4における赤外線レンズモジュールの構造を示す概略断面図である。6 is a schematic cross-sectional view showing a structure of an infrared lens module according to Embodiment 4. FIG. 実施の形態5における赤外線レンズモジュールの構造を示す概略断面図である。FIG. 10 is a schematic cross-sectional view showing the structure of an infrared lens module in a fifth embodiment. 実施の形態6における赤外線レンズモジュールの構造を示す概略断面図である。FIG. 10 is a schematic cross-sectional view showing the structure of an infrared lens module in a sixth embodiment. 実施の形態7における赤外線レンズモジュールの構造を示す概略断面図である。FIG. 10 is a schematic cross-sectional view showing the structure of an infrared lens module in a seventh embodiment. 実施の形態8における赤外線レンズモジュールの構造を示す概略断面図である。FIG. 10 is a schematic cross-sectional view showing the structure of an infrared lens module in an eighth embodiment. 実施の形態9における赤外線レンズモジュールの構造を示す概略断面図である。FIG. 10 is a schematic cross-sectional view showing the structure of an infrared lens module in a ninth embodiment. 実施の形態10における赤外線レンズモジュールの構造を示す概略断面図である。FIG. 10 is a schematic cross-sectional view showing the structure of an infrared lens module in a tenth embodiment. 実施の形態11における赤外線レンズモジュールの構造を示す概略断面図である。FIG. 22 is a schematic cross-sectional view showing the structure of an infrared lens module in an eleventh embodiment.
 [本開示が解決しようとする課題]
 特許文献1に開示された構造は、赤外線レンズの温度を調整するものではなく、ケースの窓の温度を調整するものである。そのため、赤外線を透過する窓を有するケースが必須となり、装置が大型化するとともに、コストも上昇する。そこで、赤外線レンズの温度の調整が容易な赤外線レンズモジュールを提供することを目的の1つとする。
[Problems to be solved by the present disclosure]
The structure disclosed in Patent Document 1 does not adjust the temperature of the infrared lens, but adjusts the temperature of the window of the case. For this reason, a case having a window that transmits infrared rays is indispensable, which increases the size of the device and increases the cost. Therefore, an object is to provide an infrared lens module in which the temperature of the infrared lens can be easily adjusted.
 [本開示の効果]
 本開示の赤外線レンズモジュールによれば、赤外線レンズの温度の調整が容易な赤外線レンズモジュールを提供することができる。
[Effects of the present disclosure]
According to the infrared lens module of the present disclosure, an infrared lens module in which the temperature of the infrared lens can be easily adjusted can be provided.
 [本願発明の実施形態の説明]
 最初に本願発明の実施態様を列記して説明する。本願の第1の局面における赤外線レンズモジュールは、赤外線を透過するレンズと、レンズを保持する鏡筒と、レンズに配置され、レンズの温度を調整する温度調整装置と、を備える。
[Description of Embodiment of Present Invention]
First, embodiments of the present invention will be listed and described. An infrared lens module according to a first aspect of the present application includes a lens that transmits infrared rays, a lens barrel that holds the lens, and a temperature adjustment device that is disposed in the lens and adjusts the temperature of the lens.
 本願の第1の局面における赤外線レンズモジュールにおいては、レンズの温度を調整する温度調整装置がレンズに配置される。温度調整装置を赤外線レンズモジュールの外部に設置し、外部からレンズの温度を調整するのではなく、レンズに配置された温度調整装置によりレンズの温度を調整することで、レンズを所望の温度に調整することが容易となる。このように、本願の赤外線レンズモジュールによれば、赤外線レンズの温度の調整が容易な赤外線レンズモジュールを提供することができる。 In the infrared lens module according to the first aspect of the present application, a temperature adjusting device that adjusts the temperature of the lens is arranged in the lens. The temperature adjustment device is installed outside the infrared lens module, and the lens temperature is adjusted by the temperature adjustment device placed on the lens, rather than adjusting the lens temperature from the outside. Easy to do. Thus, according to the infrared lens module of the present application, an infrared lens module in which the temperature of the infrared lens can be easily adjusted can be provided.
 上記第1の局面における赤外線レンズモジュールにおいて、レンズと鏡筒との間には間隔が形成されていてもよい。このようにすることにより、鏡筒との間の熱伝導が抑制され、赤外線レンズの温度の調整が一層容易となる。 In the infrared lens module according to the first aspect, an interval may be formed between the lens and the lens barrel. By doing so, heat conduction with the lens barrel is suppressed, and the temperature of the infrared lens can be adjusted more easily.
 上記第1の局面における赤外線レンズモジュールにおいて、温度調整装置は、レンズの外周面およびレンズ面の外縁領域の少なくともいずれか一方に配置されてもよい。このようにすることにより、温度調整装置を容易に設置することができる。 In the infrared lens module according to the first aspect, the temperature adjusting device may be disposed on at least one of the outer peripheral surface of the lens and the outer edge region of the lens surface. By doing in this way, a temperature control apparatus can be installed easily.
 上記第1の局面における赤外線レンズモジュールにおいて、レンズを構成する材料は硫化亜鉛(ZnS)であってもよい。ZnSから構成されるレンズは、温度変化に対する屈折率の変化が小さい。そのため、ZnSから構成されるレンズを本願のレンズモジュールに採用することで、レンズの焦点位置を所望の範囲とすることが容易となる。 In the infrared lens module according to the first aspect, the material constituting the lens may be zinc sulfide (ZnS). A lens composed of ZnS has a small change in refractive index with respect to a temperature change. Therefore, by adopting a lens composed of ZnS in the lens module of the present application, it becomes easy to set the focal position of the lens within a desired range.
 本願の第2の局面における赤外線レンズモジュールは、赤外線を透過するレンズと、レンズを保持する鏡筒と、を備える。鏡筒は、鏡筒本体と、鏡筒本体の一方の端部側に配置されるキャップと、を含む。レンズは、鏡筒本体とキャップとに挟まれて保持される。キャップには、レンズの温度を調整するヒータが設置される。 The infrared lens module according to the second aspect of the present application includes a lens that transmits infrared rays and a lens barrel that holds the lens. The lens barrel includes a lens barrel body and a cap disposed on one end side of the lens barrel body. The lens is held between the lens barrel body and the cap. A heater for adjusting the temperature of the lens is installed in the cap.
 本願の第2の局面における赤外線モジュールにおいては、レンズを保持するキャップにヒータが設置される。赤外線レンズモジュールの外部からレンズの温度を調整するのではなく、キャップに設置されたヒータによりレンズの温度を調整することで、レンズを所望の温度に調整することが容易となる。このように、本願の赤外線レンズモジュールによれば、レンズの温度の調整が容易な赤外線レンズモジュールを提供することができる。 In the infrared module according to the second aspect of the present application, a heater is installed on the cap that holds the lens. Rather than adjusting the temperature of the lens from the outside of the infrared lens module, adjusting the temperature of the lens with a heater installed in the cap makes it easy to adjust the lens to a desired temperature. Thus, according to the infrared lens module of the present application, it is possible to provide an infrared lens module in which the lens temperature can be easily adjusted.
 上記第2の局面における赤外線レンズモジュールにおいて、鏡筒本体のレンズに接触する領域は、キャップのレンズに接触する領域よりも熱伝導率が小さい材料からなっていてもよい。このようにすることにより、鏡筒本体との間の熱伝導が抑制され、レンズの温度の調整が一層容易となる。 In the infrared lens module according to the second aspect, the region in contact with the lens of the lens barrel body may be made of a material having a lower thermal conductivity than the region in contact with the lens of the cap. By doing so, heat conduction with the lens barrel body is suppressed, and adjustment of the lens temperature becomes easier.
 上記第2の局面における赤外線レンズモジュールにおいて、キャップの、外部に露出する面以外の面の放射率は0.7以下であってもよい。このようにすることにより、キャップからの放熱量が低減され、レンズの温度の調整が一層容易となる。レンズの温度の調整をさらに容易にする観点から、上記放射率は0.5以下であることが好ましく、0.3以下であることがより好ましい。 In the infrared lens module according to the second aspect, the emissivity of the surface of the cap other than the surface exposed to the outside may be 0.7 or less. By doing so, the amount of heat released from the cap is reduced, and the adjustment of the lens temperature is further facilitated. From the viewpoint of further facilitating adjustment of the lens temperature, the emissivity is preferably 0.5 or less, and more preferably 0.3 or less.
 上記第2の局面における赤外線レンズモジュールにおいて、レンズを構成する材料は硫化亜鉛であってもよい。ZnSから構成されるレンズは、温度変化に対する屈折率の変化が小さい。そのため、ZnSから構成されるレンズを本願のレンズモジュールに採用することで、レンズの焦点位置を所望の範囲とすることが容易となる。 In the infrared lens module according to the second aspect, the material constituting the lens may be zinc sulfide. A lens composed of ZnS has a small change in refractive index with respect to a temperature change. Therefore, by adopting a lens composed of ZnS in the lens module of the present application, it becomes easy to set the focal position of the lens within a desired range.
 [本願発明の実施形態の詳細]
 次に、本発明にかかる赤外線レンズモジュールの一実施の形態を、以下に図面を参照しつつ説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。
[Details of the embodiment of the present invention]
Next, an embodiment of an infrared lens module according to the present invention will be described below with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 (実施の形態1)
 図1は、実施の形態1におけるレンズモジュールの、光軸を含む断面を示す概略断面図である。図1を参照して、実施の形態1におけるレンズモジュール1は、レンズ10と、鏡筒50と、ヒータ61とを備える。
(Embodiment 1)
1 is a schematic cross-sectional view showing a cross section including the optical axis of the lens module according to Embodiment 1. FIG. Referring to FIG. 1, the lens module 1 according to the first embodiment includes a lens 10, a lens barrel 50, and a heater 61.
 レンズ10は、赤外線、より具体的には波長8μm以上14μm以下の光を透過する赤外線レンズである。レンズ10を構成する材料は、たとえばZnSである。レンズ10は、第1レンズ面11と、第2レンズ面12と、外周面13とを含む。第1レンズ面11は、中央に位置し、光軸Cと交差する凸面である中央領域11Aと、中央領域11Aを取り囲む平面である外縁領域11Bとを含む。第2レンズ面12は、中央に位置し、光軸Cと交差する凹面である中央領域12Aと、中央領域12Aを取り囲む平面である外縁領域12Bとを含む。 The lens 10 is an infrared lens that transmits infrared light, more specifically, light having a wavelength of 8 μm to 14 μm. The material constituting the lens 10 is, for example, ZnS. The lens 10 includes a first lens surface 11, a second lens surface 12, and an outer peripheral surface 13. The first lens surface 11 includes a central region 11A that is a convex surface that is located at the center and intersects the optical axis C, and an outer edge region 11B that is a plane surrounding the central region 11A. The second lens surface 12 includes a central region 12A that is a concave surface that is located at the center and intersects the optical axis C, and an outer edge region 12B that is a plane surrounding the central region 12A.
 鏡筒50は、キャップ20と、鏡筒本体30とを含む。鏡筒本体30は、円筒状の形状を有する。鏡筒本体30は、端部において第2レンズ面12の外縁領域12Bおよび外周面13に接触してレンズ10を支持する。本実施の形態において、鏡筒本体30は樹脂またはアルミニウム合金などの金属からなっている。 The lens barrel 50 includes a cap 20 and a lens barrel body 30. The lens barrel body 30 has a cylindrical shape. The lens barrel body 30 supports the lens 10 by contacting the outer edge region 12B and the outer peripheral surface 13 of the second lens surface 12 at the end. In the present embodiment, the lens barrel body 30 is made of a metal such as a resin or an aluminum alloy.
 キャップ20は、円筒状であって一方の端部に径方向内周側に突出する突出部21が形成された形状を有する。キャップ20は、アルミニウム合金などの金属からなっている。キャップ20の内周面22とレンズ10の外周面13との間には、間隔が形成されている。また、キャップ20の突出部21と第1レンズ面11の外縁領域11Bとが接触する。さらに、突出部21において外縁領域11Bに接触する領域の外周側と外縁領域11Bとの間には隙間が形成されている。さらに、突出部21が形成された側とは反対側の端部において鏡筒本体30の端部と嵌め合う状態で、キャップ20は鏡筒本体30に対して固定されている。このようにして、レンズ10は鏡筒50に保持される。 The cap 20 is cylindrical and has a shape in which a projecting portion 21 projecting radially inward is formed at one end. The cap 20 is made of a metal such as an aluminum alloy. A gap is formed between the inner peripheral surface 22 of the cap 20 and the outer peripheral surface 13 of the lens 10. Further, the protruding portion 21 of the cap 20 and the outer edge region 11B of the first lens surface 11 are in contact with each other. Further, a gap is formed between the outer peripheral side of the region in contact with the outer edge region 11B in the protruding portion 21 and the outer edge region 11B. Further, the cap 20 is fixed to the barrel main body 30 in a state where the end of the barrel main body 30 is fitted to the end opposite to the side on which the protruding portion 21 is formed. In this way, the lens 10 is held by the lens barrel 50.
 レンズ10の温度を調整する温度調整装置としてのヒータ61は、レンズ10の外周面13に固定される。レンズ10の外周面13とキャップ20の内周面22との間に形成される間隔の内部に、ヒータ61が配置される。ヒータ61は、レンズ10の外周面13に周方向に沿って延在するように配置される。ヒータ61は、外周面13に全周にわたって接触するように配置されてもよい。ヒータ61には、配線62が接続されている。そして、配線62は、電源(図示しない)に接続されている。電源から配線62を介して供給される電力によって駆動されるヒータ61は、レンズ10を加熱することによりレンズ10の温度を調整する。ヒータ61は、たとえばフィルムヒータである。 The heater 61 as a temperature adjusting device for adjusting the temperature of the lens 10 is fixed to the outer peripheral surface 13 of the lens 10. A heater 61 is disposed inside a gap formed between the outer peripheral surface 13 of the lens 10 and the inner peripheral surface 22 of the cap 20. The heater 61 is disposed on the outer peripheral surface 13 of the lens 10 so as to extend along the circumferential direction. The heater 61 may be disposed so as to contact the outer peripheral surface 13 over the entire circumference. A wiring 62 is connected to the heater 61. The wiring 62 is connected to a power source (not shown). A heater 61 driven by electric power supplied from the power source via the wiring 62 adjusts the temperature of the lens 10 by heating the lens 10. The heater 61 is, for example, a film heater.
 本実施の形態の赤外線レンズモジュールであるレンズモジュール1においては、レンズ10の温度を調整するヒータ61がレンズ10の外周面13に固定される。ヒータ61をレンズモジュール1の外部に設置し、外部からレンズ10の温度を調整するのではなく、レンズ10に固定されたヒータ61によりレンズ10の温度を調整(加熱)することで、レンズ10を所望の温度に調整することが容易となっている。さらに、本実施の形態においては、レンズ10と鏡筒50(キャップ20)との間に間隔が形成されている。これにより、キャップ20との間の熱伝導が抑制され、レンズ10の温度の調整が一層容易となっている。このように、本実施の形態のレンズモジュール1は、レンズ10の温度の調整が容易な赤外線レンズモジュールとなっている。また、レンズ10に接触する鏡筒本体30は樹脂からなるものとすることができる。金属に比べて熱伝導率の小さい樹脂をレンズ10に接触する鏡筒本体30を構成する材料として採用することにより、鏡筒本体30との間の熱伝導が抑制され、レンズ10の温度の調整が一層容易となる。 In the lens module 1 that is the infrared lens module of the present embodiment, a heater 61 that adjusts the temperature of the lens 10 is fixed to the outer peripheral surface 13 of the lens 10. The heater 61 is installed outside the lens module 1, and the temperature of the lens 10 is not adjusted from the outside, but the temperature of the lens 10 is adjusted (heated) by the heater 61 fixed to the lens 10. It is easy to adjust to a desired temperature. Further, in the present embodiment, a gap is formed between the lens 10 and the lens barrel 50 (cap 20). Thereby, heat conduction with the cap 20 is suppressed, and adjustment of the temperature of the lens 10 is further facilitated. Thus, the lens module 1 of the present embodiment is an infrared lens module in which the temperature of the lens 10 can be easily adjusted. The lens barrel body 30 that contacts the lens 10 can be made of resin. By adopting a resin having a thermal conductivity smaller than that of a metal as a material constituting the lens barrel body 30 in contact with the lens 10, heat conduction with the lens barrel body 30 is suppressed, and the temperature of the lens 10 is adjusted. Is even easier.
 (実施の形態2)
 次に、他の実施の形態である実施の形態2について説明する。図2は、実施の形態2におけるレンズモジュールの、光軸を含む断面を示す概略断面図である。
(Embodiment 2)
Next, a second embodiment which is another embodiment will be described. FIG. 2 is a schematic cross-sectional view showing a cross section including the optical axis of the lens module according to the second embodiment.
 図2を参照して、実施の形態2におけるレンズモジュール1は、レンズ10と、鏡筒50と、ヒータ61とを備える。 Referring to FIG. 2, the lens module 1 according to the second embodiment includes a lens 10, a lens barrel 50, and a heater 61.
 レンズ10は、赤外線を透過する赤外線レンズである。レンズ10を構成する材料は、たとえばZnSである。レンズ10は、第1レンズ面11と、第2レンズ面12と、外周面13とを含む。第1レンズ面11は、中央に位置し、光軸Cと交差する凹面である中央領域11Aと、中央領域11Aを取り囲む平面である外縁領域11Bとを含む。第2レンズ面12は、中央に位置し、光軸Cと交差する凸面である中央領域12Aと、中央領域12Aを取り囲む平面である外縁領域12Bとを含む。 The lens 10 is an infrared lens that transmits infrared rays. The material constituting the lens 10 is, for example, ZnS. The lens 10 includes a first lens surface 11, a second lens surface 12, and an outer peripheral surface 13. The first lens surface 11 includes a central region 11A that is a concave surface that is located at the center and intersects the optical axis C, and an outer edge region 11B that is a plane surrounding the central region 11A. The second lens surface 12 includes a central region 12A that is a convex surface that is located at the center and intersects the optical axis C, and an outer edge region 12B that is a plane surrounding the central region 12A.
 鏡筒50は、キャップ20と、鏡筒本体30とを含む。鏡筒本体30は、円筒状の形状を有する。鏡筒本体30は、円筒状の内セル31と、内セル31の外周を取り囲む中セル32と、中セル32の外周を取り囲む外セル33とを含む。内セル31および外セル33は、たとえばアルミニウム合金などの金属からなる。中セル32は、たとえば樹脂からなる。内セル31の内周面31Bとレンズ10の外周面13との間には、間隔が形成されている。レンズ10の外周面13において内セル31の内周面31Bとの間に間隔が形成される領域の第2レンズ面12側の領域において、内セル31の内周面31Bとレンズ10の外周面13とが接触している。また、内セル31には、内周側に突出する突出部31Aが形成されている。内セル31の突出部31Aと第2レンズ面12の外縁領域12Bとが接触する。 The lens barrel 50 includes a cap 20 and a lens barrel body 30. The lens barrel body 30 has a cylindrical shape. The lens barrel body 30 includes a cylindrical inner cell 31, a middle cell 32 surrounding the outer periphery of the inner cell 31, and an outer cell 33 surrounding the outer periphery of the middle cell 32. The inner cell 31 and the outer cell 33 are made of a metal such as an aluminum alloy, for example. The middle cell 32 is made of resin, for example. A space is formed between the inner peripheral surface 31 </ b> B of the inner cell 31 and the outer peripheral surface 13 of the lens 10. In the region on the second lens surface 12 side of the region formed between the outer peripheral surface 13 of the lens 10 and the inner peripheral surface 31B of the inner cell 31, the inner peripheral surface 31B of the inner cell 31 and the outer peripheral surface of the lens 10 are formed. 13 is in contact. Further, the inner cell 31 is formed with a protruding portion 31A that protrudes toward the inner peripheral side. The protrusion 31A of the inner cell 31 and the outer edge region 12B of the second lens surface 12 are in contact with each other.
 キャップ20は、円筒状の形状を有する。キャップ20は、アルミニウム合金などの金属からなっている。キャップ20は、一方の端面において第1レンズ面11の外縁領域11Bに接触する。さらに、キャップ20において外縁領域11Bに接触する領域の外周側と外縁領域11Bとの間には隙間が形成されている。さらに、キャップ20において外縁領域11Bとの間に隙間が形成される領域の外周側の領域において鏡筒本体30の端部と嵌め合う状態で、キャップ20は鏡筒本体30に対して固定されている。このようにして、レンズ10は鏡筒50に保持される。 The cap 20 has a cylindrical shape. The cap 20 is made of a metal such as an aluminum alloy. The cap 20 contacts the outer edge region 11B of the first lens surface 11 at one end surface. Further, a gap is formed between the outer peripheral side of the region in contact with the outer edge region 11B in the cap 20 and the outer edge region 11B. Further, the cap 20 is fixed to the barrel main body 30 in a state where the cap 20 is fitted to the end of the barrel main body 30 in a region on the outer peripheral side of a region where a gap is formed between the outer edge region 11B and the cap 20. Yes. In this way, the lens 10 is held by the lens barrel 50.
 本実施の形態の赤外線レンズモジュールであるレンズモジュール1においては、レンズ10の温度を調整するヒータ61がレンズ10の外周面13に固定される。ヒータ61をレンズモジュール1の外部に設置し、外部からレンズ10の温度を調整するのではなく、レンズ10に固定されたヒータ61によりレンズ10の温度を調整(加熱)することで、レンズ10を所望の温度に調整することが容易となっている。さらに、本実施の形態においては、レンズ10と鏡筒50(内セル31)との間に間隔が形成されている。これにより、内セル31との間の熱伝導が抑制され、レンズ10の温度の調整が一層容易となっている。このように、本実施の形態のレンズモジュール1は、レンズ10の温度の調整が容易な赤外線レンズモジュールとなっている。 In the lens module 1 that is the infrared lens module of the present embodiment, a heater 61 that adjusts the temperature of the lens 10 is fixed to the outer peripheral surface 13 of the lens 10. The heater 61 is installed outside the lens module 1, and the temperature of the lens 10 is not adjusted from the outside, but the temperature of the lens 10 is adjusted (heated) by the heater 61 fixed to the lens 10. It is easy to adjust to a desired temperature. Further, in the present embodiment, a gap is formed between the lens 10 and the lens barrel 50 (inner cell 31). Thereby, heat conduction with the inner cell 31 is suppressed, and the adjustment of the temperature of the lens 10 is further facilitated. Thus, the lens module 1 of the present embodiment is an infrared lens module in which the temperature of the lens 10 can be easily adjusted.
 なお、上記実施の形態2においては、内セル31が金属からなる場合について説明したが、内セル31は樹脂からなっていてもよい。金属に比べて熱伝導率の小さい樹脂をレンズ10に接触する内セル31を構成する材料として採用することにより、内セル31との間の熱伝導が抑制され、レンズ10の温度の調整が一層容易となる。 In addition, in the said Embodiment 2, although the case where the inner cell 31 consists of metals was demonstrated, the inner cell 31 may consist of resin. By adopting a resin having a thermal conductivity smaller than that of a metal as a material constituting the inner cell 31 in contact with the lens 10, heat conduction with the inner cell 31 is suppressed, and the temperature of the lens 10 is further adjusted. It becomes easy.
 (実施の形態3)
 次に、他の実施の形態である実施の形態3について説明する。図3は、実施の形態3におけるレンズモジュールの、光軸を含む断面を示す概略断面図である。図3を参照して、実施の形態3におけるレンズモジュール1は、レンズ10と、鏡筒50と、ヒータ61とを備える。
(Embodiment 3)
Next, Embodiment 3 which is another embodiment will be described. FIG. 3 is a schematic cross-sectional view showing a cross section including the optical axis of the lens module according to the third embodiment. With reference to FIG. 3, the lens module 1 according to the third embodiment includes a lens 10, a lens barrel 50, and a heater 61.
 レンズ10は、赤外線、より具体的には波長8μm以上14μm以下の光を透過する赤外線レンズである。レンズ10を構成する材料は、たとえばZnSである。レンズ10は、第1レンズ面11と、第2レンズ面12と、外周面13とを含む。第1レンズ面11は、中央に位置し、光軸Cと交差する凸面である中央領域11Aと、中央領域11Aを取り囲む平面である外縁領域11Bとを含む。第2レンズ面12は、中央に位置し、光軸Cと交差する凹面である中央領域12Aと、中央領域12Aを取り囲む平面である外縁領域12Bとを含む。 The lens 10 is an infrared lens that transmits infrared light, more specifically, light having a wavelength of 8 μm to 14 μm. The material constituting the lens 10 is, for example, ZnS. The lens 10 includes a first lens surface 11, a second lens surface 12, and an outer peripheral surface 13. The first lens surface 11 includes a central region 11A that is a convex surface that is located at the center and intersects the optical axis C, and an outer edge region 11B that is a plane surrounding the central region 11A. The second lens surface 12 includes a central region 12A that is a concave surface that is located at the center and intersects the optical axis C, and an outer edge region 12B that is a plane surrounding the central region 12A.
 鏡筒50は、キャップ20と、鏡筒本体30とを含む。鏡筒本体30は、円筒状の形状を有する。鏡筒本体30は、端部において第2レンズ面12の外縁領域12Bおよび外周面13に接触してレンズ10を支持する。 The lens barrel 50 includes a cap 20 and a lens barrel body 30. The lens barrel body 30 has a cylindrical shape. The lens barrel body 30 supports the lens 10 by contacting the outer edge region 12B and the outer peripheral surface 13 of the second lens surface 12 at the end.
 キャップ20は、円筒状であって一方の端部に径方向内周側に突出する突出部21が形成された形状を有する。キャップ20は、アルミニウム合金などの金属からなっている。キャップ20の内周面22とレンズ10の外周面13とは接触する。また、キャップ20の突出部21と第1レンズ面11の外縁領域11Bとが接触する。キャップ20は、鏡筒本体30の一方の端部側に配置される。突出部21が形成された側とは反対側の端部において、キャップ20は鏡筒本体30に対して接触して固定される。このようにして、レンズ10は鏡筒本体30とキャップ20とに挟まれて鏡筒50に保持される。 The cap 20 is cylindrical and has a shape in which a projecting portion 21 projecting radially inward is formed at one end. The cap 20 is made of a metal such as an aluminum alloy. The inner peripheral surface 22 of the cap 20 and the outer peripheral surface 13 of the lens 10 are in contact with each other. Further, the protruding portion 21 of the cap 20 and the outer edge region 11B of the first lens surface 11 are in contact with each other. The cap 20 is disposed on one end side of the barrel main body 30. The cap 20 is fixed in contact with the lens barrel body 30 at the end opposite to the side on which the protruding portion 21 is formed. In this way, the lens 10 is held between the lens barrel body 30 and the cap 20 and held by the lens barrel 50.
 キャップ20には、突出部21が形成された側とは反対側の端面から軸方向に入り込むように、円環状の溝部23が形成されている。そして、溝部23の内部に、レンズ10の温度を調整するヒータ61は設置される。ヒータ61は、溝部23の側壁に接触して固定される。ヒータ61は、環状の溝部23の周方向に沿って延在するように配置される。ヒータ61は、溝部23の側壁に全周にわたって接触するように配置されてもよい。ヒータ61には、配線62が接続されている。そして、配線62は、電源(図示しない)に接続されている。電源から配線62を介して供給される電力によって駆動されるヒータ61は、レンズ10を加熱することによりレンズ10の温度を調整する。ヒータ61は、たとえばフィルムヒータである。 An annular groove 23 is formed in the cap 20 so as to enter the axial direction from the end surface opposite to the side on which the protruding portion 21 is formed. A heater 61 that adjusts the temperature of the lens 10 is installed inside the groove 23. The heater 61 is fixed in contact with the side wall of the groove 23. The heater 61 is disposed so as to extend along the circumferential direction of the annular groove 23. The heater 61 may be disposed so as to contact the side wall of the groove 23 over the entire circumference. A wiring 62 is connected to the heater 61. The wiring 62 is connected to a power source (not shown). A heater 61 driven by electric power supplied from the power source via the wiring 62 adjusts the temperature of the lens 10 by heating the lens 10. The heater 61 is, for example, a film heater.
 本実施の形態の赤外線レンズモジュールであるレンズモジュール1においては、レンズ10の温度を調整するヒータ61がキャップ20に形成された溝部23内に固定される。ヒータ61をレンズモジュール1の外部に設置し、外部からレンズ10の温度を調整するのではなく、キャップ20に固定されたヒータ61によりレンズ10の温度を調整(加熱)することで、レンズ10を所望の温度に調整することが容易となっている。 In the lens module 1 that is the infrared lens module of the present embodiment, a heater 61 that adjusts the temperature of the lens 10 is fixed in the groove 23 formed in the cap 20. Rather than installing the heater 61 outside the lens module 1 and adjusting the temperature of the lens 10 from the outside, the temperature of the lens 10 is adjusted (heated) by the heater 61 fixed to the cap 20. It is easy to adjust to a desired temperature.
 また、レンズモジュール1において、鏡筒本体30のレンズ10に接触する領域は、キャップ20のレンズ10に接触する領域よりも熱伝導率が小さい材料からなっていることが好ましい。本実施の形態において、キャップ20は金属、具体的にはアルミニウム合金からなり、鏡筒本体30はキャップ20を構成する金属よりも熱伝導率が小さい材料である樹脂からなっている。これにより、レンズ10と鏡筒本体30との間の熱伝導が抑制され、レンズ10の温度の調整が一層容易となっている。 In the lens module 1, the region of the lens barrel body 30 that contacts the lens 10 is preferably made of a material having a lower thermal conductivity than the region of the cap 20 that contacts the lens 10. In the present embodiment, the cap 20 is made of a metal, specifically, an aluminum alloy, and the lens barrel body 30 is made of a resin that is a material having a lower thermal conductivity than the metal constituting the cap 20. Thereby, the heat conduction between the lens 10 and the lens barrel body 30 is suppressed, and the adjustment of the temperature of the lens 10 is further facilitated.
 さらに、レンズモジュール1において、キャップ20の、外部に露出する面以外の面の放射率は0.7以下であることが好ましい。本実施の形態のキャップ20において外部に露出する面である突出部21の内周面26、突出部21側の端面25および外周面24には黒アルマイト層が形成されている。黒アルマイト層は、アルマイト処理(陽極酸化処理)後に、アルマイト処理によって形成されたアルマイト層(酸化層)の空孔内に黒色の染料を導入することにより形成することができる。黒アルマイト層が形成されることにより、外部に露出する面であるこれらの面の放射率は0.7を超える状態とされている。一方、キャップ20において外部に露出する面以外の面である突出部21のレンズ10に接触する面であるレンズ保持面27の少なくとも一部および内周面22の少なくとも一部には黒アルマイト層は形成されていない。突出部21のレンズ10に接触する面であるレンズ保持面27および内周面22においては、キャップ20を構成する材料であるアルミニウム合金などの金属が露出していてもよいし、黒アルマイト層よりも放射率の低い表面処理層が露出していてもよい。その結果、突出部21のレンズ10に接触する面であるレンズ保持面27および内周面22の放射率は0.7以下となっている。これにより、キャップ20からの放熱量が低減され、レンズ10の温度の調整が一層容易となっている。レンズ10の温度の調整をさらに容易にする観点から、上記放射率は0.5以下であることが好ましく、0.3以下であることがより好ましい。 Furthermore, in the lens module 1, the emissivity of the surface of the cap 20 other than the surface exposed to the outside is preferably 0.7 or less. In the cap 20 of the present embodiment, a black alumite layer is formed on the inner peripheral surface 26 of the protruding portion 21, the end surface 25 on the protruding portion 21 side, and the outer peripheral surface 24, which are the surfaces exposed to the outside. The black alumite layer can be formed by introducing a black dye into the pores of the alumite layer (oxidized layer) formed by the alumite treatment after the alumite treatment (anodic oxidation treatment). By forming the black alumite layer, the emissivity of these surfaces, which are surfaces exposed to the outside, exceeds 0.7. On the other hand, the black alumite layer is formed on at least a part of the lens holding surface 27 and at least a part of the inner peripheral surface 22 which are surfaces that contact the lens 10 of the protruding portion 21 that is a surface other than the surface exposed to the outside in the cap 20. Not formed. On the lens holding surface 27 and the inner peripheral surface 22 that are the surfaces of the protruding portion 21 that are in contact with the lens 10, a metal such as an aluminum alloy that is a material constituting the cap 20 may be exposed, or from the black alumite layer. Alternatively, the surface treatment layer having a low emissivity may be exposed. As a result, the emissivities of the lens holding surface 27 and the inner peripheral surface 22 which are surfaces of the protruding portion 21 that are in contact with the lens 10 are 0.7 or less. Thereby, the amount of heat released from the cap 20 is reduced, and the adjustment of the temperature of the lens 10 is further facilitated. From the viewpoint of further facilitating the adjustment of the temperature of the lens 10, the emissivity is preferably 0.5 or less, and more preferably 0.3 or less.
 (実施の形態4)
 次に、他の実施の形態である実施の形態4について説明する。図4は、実施の形態4におけるレンズモジュールの、光軸を含む断面を示す概略断面図である。図4および図3を参照して、実施の形態4におけるレンズモジュール1は、基本的には実施の形態3の場合と同様の構成を有し、同様の効果を奏する。しかし、実施の形態4のレンズモジュール1は、鏡筒本体30の構造において実施の形態3の場合とは異なっている。
(Embodiment 4)
Next, Embodiment 4 which is another embodiment will be described. FIG. 4 is a schematic cross-sectional view showing a cross section including the optical axis of the lens module in the fourth embodiment. Referring to FIGS. 4 and 3, lens module 1 in the fourth embodiment basically has the same configuration as in the third embodiment, and has the same effects. However, the lens module 1 according to the fourth embodiment is different from the third embodiment in the structure of the lens barrel body 30.
 図4を参照して、実施の形態4の鏡筒本体30は、キャップ20に面する側の端部から径方向外側に突出する突出部34を含む。突出部34は、実施の形態3における溝部23の開口を覆う(図3および図4参照)。その結果、溝部23と突出部34とにより、環状空間28が形成される。本実施の形態において、ヒータ61は、環状空間28内に設置される。ヒータ61をレンズモジュール1の外部に設置し、外部からレンズ10の温度を調整するのではなく、このような態様にてキャップ20に設置されたヒータ61によりレンズ10の温度を調整(加熱)することで、レンズ10を所望の温度に調整することが容易となっている。また、突出部34が形成されることにより、ヒータ61の脱落の発生を抑制することができる。 Referring to FIG. 4, the lens barrel body 30 of the fourth embodiment includes a protruding portion 34 that protrudes radially outward from an end portion on the side facing the cap 20. Projection 34 covers the opening of groove 23 in the third embodiment (see FIGS. 3 and 4). As a result, the annular space 28 is formed by the groove 23 and the protrusion 34. In the present embodiment, the heater 61 is installed in the annular space 28. Rather than installing the heater 61 outside the lens module 1 and adjusting the temperature of the lens 10 from the outside, the temperature of the lens 10 is adjusted (heated) by the heater 61 installed in the cap 20 in this manner. This makes it easy to adjust the lens 10 to a desired temperature. In addition, since the protrusion 34 is formed, it is possible to prevent the heater 61 from dropping off.
 (実施の形態5)
 次に、他の実施の形態である実施の形態5について説明する。図5は、実施の形態5におけるレンズモジュールの、光軸を含む断面を示す概略断面図である。図5および図3を参照して、実施の形態5におけるレンズモジュール1は、基本的には実施の形態3の場合と同様の構成を有し、同様の効果を奏する。しかし、実施の形態5のレンズモジュール1は、キャップ20の構造において実施の形態3の場合とは異なっている。
(Embodiment 5)
Next, Embodiment 5 which is another embodiment will be described. FIG. 5 is a schematic cross-sectional view showing a cross section including the optical axis of the lens module according to the fifth embodiment. Referring to FIGS. 5 and 3, lens module 1 in the fifth embodiment basically has the same configuration as that in the third embodiment and has the same effects. However, the lens module 1 according to the fifth embodiment is different from the third embodiment in the structure of the cap 20.
 図5を参照して、実施の形態5のキャップ20は、保持部材29Aを含む。本実施の形態において、キャップ20の本体部の鏡筒本体30とは反対側の端部には径方向外側に突出する突出部が形成されている。一方、本体部の外周側に、中空円筒状の形状を有し、鏡筒本体30側の端部に径方向内側に突出する突出部が形成された保持部材29Aが配置される。これにより、キャップ20の本体部と保持部材29Aとの間に環状空間28が形成される。本実施の形態において、ヒータ61は、環状空間28内に設置される。ヒータ61は、保持部材29Aによって外周側から支持される。ヒータ61をレンズモジュール1の外部に設置し、外部からレンズ10の温度を調整するのではなく、このような態様にてキャップ20に設置されたヒータ61によりレンズ10の温度を調整(加熱)することで、レンズ10を所望の温度に調整することが容易となっている。保持部材29Aは、アルミニウム合金などの金属からなっていてもよいし、樹脂からなっていてもよい。保持部材29Aを構成する材料として金属を採用することにより、高い耐久性が得られる。保持部材29Aを構成する材料として熱伝導率の小さい樹脂を採用することにより、キャップ20からの放熱を抑制し、レンズ10を所望の温度に調整することが容易となる。 Referring to FIG. 5, cap 20 of the fifth embodiment includes a holding member 29A. In the present embodiment, a protruding portion that protrudes radially outward is formed at the end of the main body portion of the cap 20 opposite to the lens barrel main body 30. On the other hand, on the outer peripheral side of the main body, a holding member 29A having a hollow cylindrical shape and having a protruding portion that protrudes radially inward at the end on the lens barrel main body 30 side is disposed. Thereby, an annular space 28 is formed between the main body portion of the cap 20 and the holding member 29A. In the present embodiment, the heater 61 is installed in the annular space 28. The heater 61 is supported from the outer peripheral side by the holding member 29A. Rather than installing the heater 61 outside the lens module 1 and adjusting the temperature of the lens 10 from the outside, the temperature of the lens 10 is adjusted (heated) by the heater 61 installed in the cap 20 in this manner. This makes it easy to adjust the lens 10 to a desired temperature. The holding member 29A may be made of a metal such as an aluminum alloy, or may be made of a resin. By adopting a metal as the material constituting the holding member 29A, high durability can be obtained. By adopting a resin having a low thermal conductivity as a material constituting the holding member 29A, it is easy to suppress heat dissipation from the cap 20 and adjust the lens 10 to a desired temperature.
 (実施の形態6)
 次に、他の実施の形態である実施の形態6について説明する。図6は、実施の形態6におけるレンズモジュールの、光軸を含む断面を示す概略断面図である。図6および図5を参照して、実施の形態6におけるレンズモジュール1は、基本的には実施の形態5の場合と同様の構成を有し、同様の効果を奏する。しかし、実施の形態6のレンズモジュール1は、鏡筒本体30およびキャップ20(保持部材29A)の構造において実施の形態5の場合とは異なっている。
(Embodiment 6)
Next, Embodiment 6 which is another embodiment will be described. FIG. 6 is a schematic cross-sectional view showing a cross section including the optical axis of the lens module in the sixth embodiment. Referring to FIGS. 6 and 5, lens module 1 in the sixth embodiment has basically the same configuration as in the fifth embodiment, and has the same effects. However, the lens module 1 of the sixth embodiment is different from that of the fifth embodiment in the structure of the lens barrel body 30 and the cap 20 (holding member 29A).
 図6を参照して、実施の形態6の鏡筒本体30は、キャップ20に面する側の端部から径方向外側に突出する突出部34を含む。また、保持部材29Aには実施の形態5の場合のような突出部は形成されておらず、保持部材29Aは中空円筒状の形状を有する。これにより、キャップ20の本体部と保持部材29Aとの間に環状空間28が形成される。本実施の形態において、ヒータ61は、環状空間28内に設置される。ヒータ61は、保持部材29Aによって外周側から支持される。ヒータ61をレンズモジュール1の外部に設置し、外部からレンズ10の温度を調整するのではなく、このような態様にてキャップ20に設置されたヒータ61によりレンズ10の温度を調整(加熱)することで、レンズ10を所望の温度に調整することが容易となっている。 Referring to FIG. 6, the lens barrel body 30 of the sixth embodiment includes a protruding portion 34 that protrudes radially outward from an end portion on the side facing the cap 20. The holding member 29A is not formed with a protruding portion as in the fifth embodiment, and the holding member 29A has a hollow cylindrical shape. Thereby, an annular space 28 is formed between the main body portion of the cap 20 and the holding member 29A. In the present embodiment, the heater 61 is installed in the annular space 28. The heater 61 is supported from the outer peripheral side by the holding member 29A. The heater 61 is installed outside the lens module 1 and the temperature of the lens 10 is not adjusted from the outside, but the temperature of the lens 10 is adjusted (heated) by the heater 61 installed in the cap 20 in this manner. This makes it easy to adjust the lens 10 to a desired temperature.
 (実施の形態7)
 次に、他の実施の形態である実施の形態7について説明する。図7は、実施の形態7におけるレンズモジュールの、光軸を含む断面を示す概略断面図である。図7および図3を参照して、実施の形態7におけるレンズモジュール1は、基本的には実施の形態3の場合と同様の構成を有し、同様の効果を奏する。しかし、実施の形態7のレンズモジュール1は、キャップ20の構造において実施の形態3の場合とは異なっている。
(Embodiment 7)
Next, Embodiment 7 which is another embodiment will be described. FIG. 7 is a schematic cross-sectional view showing a cross section including the optical axis of the lens module according to the seventh embodiment. 7 and 3, the lens module 1 according to the seventh embodiment has basically the same configuration as that of the third embodiment and has the same effects. However, the lens module 1 according to the seventh embodiment is different from the third embodiment in the structure of the cap 20.
 図7を参照して、実施の形態7のキャップ20は、保持部材29Bを含む。本実施の形態において、キャップ20の内周面には溝が形成されており、当該溝の開口を覆うように、中空円筒状の形状を有する保持部材29Bが配置される。これにより、キャップ20の本体部と保持部材29Bとの間に環状空間28が形成される。本実施の形態において、ヒータ61は、環状空間28内に設置される。ヒータ61は、保持部材29Bによって内周側から支持される。ヒータ61をレンズモジュール1の外部に設置し、外部からレンズ10の温度を調整するのではなく、このような態様にてキャップ20に設置されたヒータ61によりレンズ10の温度を調整(加熱)することで、レンズ10を所望の温度に調整することが容易となっている。保持部材29Bは、たとえばアルミニウム合金などの金属からなっていてもよい。 Referring to FIG. 7, the cap 20 of the seventh embodiment includes a holding member 29B. In the present embodiment, a groove is formed on the inner peripheral surface of the cap 20, and a holding member 29B having a hollow cylindrical shape is disposed so as to cover the opening of the groove. Thereby, an annular space 28 is formed between the main body portion of the cap 20 and the holding member 29B. In the present embodiment, the heater 61 is installed in the annular space 28. The heater 61 is supported from the inner peripheral side by the holding member 29B. Rather than installing the heater 61 outside the lens module 1 and adjusting the temperature of the lens 10 from the outside, the temperature of the lens 10 is adjusted (heated) by the heater 61 installed in the cap 20 in this manner. This makes it easy to adjust the lens 10 to a desired temperature. The holding member 29B may be made of a metal such as an aluminum alloy.
 (実施の形態8)
 次に、他の実施の形態である実施の形態8について説明する。図8は、実施の形態8におけるレンズモジュールの、光軸を含む断面を示す概略断面図である。図8および図7を参照して、実施の形態8におけるレンズモジュール1は、基本的には実施の形態7の場合と同様の構成を有し、同様の効果を奏する。しかし、実施の形態8のレンズモジュール1は、鏡筒本体30およびキャップ20の構造において実施の形態7の場合とは異なっている。
(Embodiment 8)
Next, an eighth embodiment, which is another embodiment, will be described. FIG. 8 is a schematic sectional view showing a section including the optical axis of the lens module according to the eighth embodiment. Referring to FIGS. 8 and 7, the lens module 1 according to the eighth embodiment basically has the same configuration as that of the seventh embodiment and has the same effects. However, the lens module 1 of the eighth embodiment is different from that of the seventh embodiment in the structure of the lens barrel body 30 and the cap 20.
 図8を参照して、実施の形態8の鏡筒本体30は、キャップ20に面する側の端部から径方向外側に突出する突出部34を含む。キャップ20には、実施の形態7の場合のような溝の鏡筒本体30側の壁は形成されていない。そして、保持部材29Bは、実施の形態7の場合と同様に中空円筒状の形状を有する。これにより、キャップ20の本体部、保持部材29Bおよび鏡筒本体30の突出部34に取り囲まれる環状空間28が形成される。本実施の形態において、ヒータ61は、環状空間28内に設置される。ヒータ61は、保持部材29Bによって内周側から支持される。ヒータ61をレンズモジュール1の外部に設置し、外部からレンズ10の温度を調整するのではなく、このような態様にてキャップ20に設置されたヒータ61によりレンズ10の温度を調整(加熱)することで、レンズ10を所望の温度に調整することが容易となっている。 Referring to FIG. 8, the lens barrel body 30 of the eighth embodiment includes a protruding portion 34 that protrudes radially outward from an end portion on the side facing the cap 20. The cap 20 is not formed with a wall on the lens barrel body 30 side of the groove as in the seventh embodiment. The holding member 29B has a hollow cylindrical shape as in the case of the seventh embodiment. Thereby, an annular space 28 surrounded by the main body portion of the cap 20, the holding member 29 </ b> B, and the protruding portion 34 of the lens barrel main body 30 is formed. In the present embodiment, the heater 61 is installed in the annular space 28. The heater 61 is supported from the inner peripheral side by the holding member 29B. Rather than installing the heater 61 outside the lens module 1 and adjusting the temperature of the lens 10 from the outside, the temperature of the lens 10 is adjusted (heated) by the heater 61 installed in the cap 20 in this manner. This makes it easy to adjust the lens 10 to a desired temperature.
 (実施の形態9)
 次に、他の実施の形態である実施の形態9について説明する。図9は、実施の形態9におけるレンズモジュールの、光軸を含む断面を示す概略断面図である。図9および図1を参照して、実施の形態9におけるレンズモジュール1は、基本的には実施の形態1の場合と同様の構成を有し、同様の効果を奏する。しかし、実施の形態9のレンズモジュール1は、ヒータ61の配置において実施の形態1の場合とは異なっている。
(Embodiment 9)
Next, Embodiment 9 which is another embodiment will be described. FIG. 9 is a schematic sectional view showing a section including the optical axis of the lens module according to the ninth embodiment. Referring to FIGS. 9 and 1, the lens module 1 according to the ninth embodiment basically has the same configuration as that of the first embodiment and has the same effects. However, the lens module 1 according to the ninth embodiment is different from the first embodiment in the arrangement of the heater 61.
 図9を参照して、実施の形態9のヒータ61は、キャップ20の内周面22に設置されている。ヒータ61をレンズモジュール1の外部に設置し、外部からレンズ10の温度を調整するのではなく、このような態様にてキャップ20に設置されたヒータ61によりレンズ10の温度を調整(加熱)することで、レンズ10を所望の温度に調整することが容易となっている。 Referring to FIG. 9, the heater 61 of the ninth embodiment is installed on the inner peripheral surface 22 of the cap 20. Rather than installing the heater 61 outside the lens module 1 and adjusting the temperature of the lens 10 from the outside, the temperature of the lens 10 is adjusted (heated) by the heater 61 installed in the cap 20 in this manner. This makes it easy to adjust the lens 10 to a desired temperature.
 (実施の形態10)
 次に、他の実施の形態である実施の形態10について説明する。図10は、実施の形態10におけるレンズモジュールの、光軸を含む断面を示す概略断面図である。図10および図9を参照して、実施の形態10におけるレンズモジュール1は、基本的には実施の形態9の場合と同様の構成を有し、同様の効果を奏する。しかし、実施の形態10のレンズモジュール1は、ヒータ61の配置において実施の形態9の場合とは異なっている。
(Embodiment 10)
Next, Embodiment 10 which is another embodiment will be described. FIG. 10 is a schematic cross-sectional view showing a cross section including the optical axis of the lens module according to the tenth embodiment. Referring to FIGS. 10 and 9, lens module 1 in the tenth embodiment has basically the same configuration as in the ninth embodiment and has the same effects. However, the lens module 1 of the tenth embodiment differs from the ninth embodiment in the arrangement of the heater 61.
 図10を参照して、実施の形態10のヒータ61は、キャップ20の突出部21において環状空間28に面する面(環状空間28から見て外縁領域11Bとは反対側の面)に設置されている。ヒータ61をレンズモジュール1の外部に設置し、外部からレンズ10の温度を調整するのではなく、このような態様にてキャップ20に設置されたヒータ61によりレンズ10の温度を調整(加熱)することで、レンズ10を所望の温度に調整することが容易となっている。 Referring to FIG. 10, heater 61 of the tenth embodiment is installed on the surface facing annular space 28 in protrusion 21 of cap 20 (the surface opposite to outer edge region 11 </ b> B as viewed from annular space 28). ing. Rather than installing the heater 61 outside the lens module 1 and adjusting the temperature of the lens 10 from the outside, the temperature of the lens 10 is adjusted (heated) by the heater 61 installed in the cap 20 in this manner. This makes it easy to adjust the lens 10 to a desired temperature.
 (実施の形態11)
 次に、他の実施の形態である実施の形態11について説明する。図11は、実施の形態11におけるレンズモジュールの、光軸を含む断面を示す概略断面図である。図11および図3を参照して、実施の形態11におけるレンズモジュール1は、基本的には実施の形態3の場合と同様の構成を有し、同様の効果を奏する。しかし、実施の形態7のレンズモジュール1は、キャップ20の構造において実施の形態3の場合とは異なっている。
(Embodiment 11)
Next, Embodiment 11 which is another embodiment will be described. FIG. 11 is a schematic sectional view showing a section including the optical axis of the lens module according to the eleventh embodiment. Referring to FIGS. 11 and 3, lens module 1 according to the eleventh embodiment has basically the same configuration as that of the third embodiment and has the same effects. However, the lens module 1 according to the seventh embodiment is different from the third embodiment in the structure of the cap 20.
 図11を参照して、実施の形態11のキャップ20は、保持部材29Cを含む。本実施の形態において、キャップ20には溝部23は形成されていない。そして、キャップ20の本体部の鏡筒本体30とは反対側の端面側に当該端面に向けて開口する環状の溝を有する円環状の保持部材29Cが配置される。保持部材29Cの溝の開口がキャップ20の本体部に覆われるように、保持部材29Cが配置される。これにより、キャップ20の本体部と保持部材29Cとの間に環状空間28が形成される。本実施の形態において、ヒータ61は、環状空間28内に設置される。ヒータ61をレンズモジュール1の外部に設置し、外部からレンズ10の温度を調整するのではなく、このような態様にてキャップ20に設置されたヒータ61によりレンズ10の温度を調整(加熱)することで、レンズ10を所望の温度に調整することが容易となっている。保持部材29Cは、アルミニウム合金などの金属からなっていてもよいし、樹脂からなっていてもよい。保持部材29Cを構成する材料として金属を採用することにより、高い耐久性が得られる。保持部材29Cを構成する材料として熱伝導率の小さい樹脂を採用することにより、キャップ20からの放熱を抑制し、レンズ10を所望の温度に調整することが容易となる。 Referring to FIG. 11, the cap 20 of the eleventh embodiment includes a holding member 29C. In the present embodiment, the groove portion 23 is not formed in the cap 20. An annular holding member 29 </ b> C having an annular groove that opens toward the end surface is disposed on the end surface of the main body of the cap 20 opposite to the lens barrel body 30. The holding member 29C is disposed so that the opening of the groove of the holding member 29C is covered by the main body portion of the cap 20. Thereby, an annular space 28 is formed between the main body portion of the cap 20 and the holding member 29C. In the present embodiment, the heater 61 is installed in the annular space 28. Rather than installing the heater 61 outside the lens module 1 and adjusting the temperature of the lens 10 from the outside, the temperature of the lens 10 is adjusted (heated) by the heater 61 installed in the cap 20 in this manner. This makes it easy to adjust the lens 10 to a desired temperature. The holding member 29C may be made of a metal such as an aluminum alloy, or may be made of a resin. By adopting a metal as a material constituting the holding member 29C, high durability can be obtained. By adopting a resin having a low thermal conductivity as a material constituting the holding member 29C, it is easy to suppress heat dissipation from the cap 20 and adjust the lens 10 to a desired temperature.
 なお、上記実施の形態においては、温度調整装置としてヒータ(フィルムヒータ)が採用される場合について説明したが、採用可能な温度調整装置はこれに限られず、たとえば、ラバーヒータ、シートヒータなどの薄型面状ヒータや線状ヒータであってもよい。また、図1~図11においては、それぞれ一枚のレンズ10のみを図示したが、レンズ10の後方(第2レンズ面12に面する側)に他のレンズが存在してもよい。また、上記実施の形態1および2においては、温度調整装置であるヒータ61がレンズの外周面13に配置(固定)される場合について説明したが、これに代えて、またはこれとともに、温度調整装置がレンズ面の外縁領域(外縁領域11B、外縁領域12B)に配置(固定)されてもよい。 In the above embodiment, the case where a heater (film heater) is employed as the temperature adjustment device has been described. However, the temperature adjustment device that can be employed is not limited to this, and for example, a thin heater such as a rubber heater or a seat heater. A planar heater or a linear heater may be used. 1 to 11, only one lens 10 is illustrated, but another lens may be present behind the lens 10 (side facing the second lens surface 12). In the first and second embodiments, the case where the heater 61 as a temperature adjusting device is disposed (fixed) on the outer peripheral surface 13 of the lens has been described. Instead of this, or in addition to this, the temperature adjusting device. May be arranged (fixed) in the outer edge region (outer edge region 11B, outer edge region 12B) of the lens surface.
 今回開示された実施の形態はすべての点で例示であって、どのような面からも制限的なものではないと理解されるべきである。本発明の範囲は上記した説明ではなく、請求の範囲によって規定され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be understood that the embodiment disclosed herein is illustrative in all respects and is not restrictive in any way. The scope of the present invention is defined by the scope of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the scope of the claims.
 1 レンズモジュール、10 レンズ、11 第1レンズ面、11A 中央領域、11B 外縁領域、12 第2レンズ面、12A 中央領域、12B 外縁領域、13 外周面、20 キャップ、21 突出部、22 内周面、23 溝部、24 外周面、25 端面、26 内周面、27 レンズ保持面、28 環状空間、29A 保持部材、29B 保持部材、29C 保持部材、30 鏡筒本体、31 内セル、31A 突出部、31B 内周面、32 中セル、33 外セル、34 突出部、50 鏡筒、61 ヒータ、62 配線。 1 lens module, 10 lens, 11 first lens surface, 11A central region, 11B outer edge region, 12 second lens surface, 12A central region, 12B outer edge region, 13 outer peripheral surface, 20 cap, 21 protruding portion, 22 inner peripheral surface , 23 groove portion, 24 outer peripheral surface, 25 end surface, 26 inner peripheral surface, 27 lens holding surface, 28 annular space, 29A holding member, 29B holding member, 29C holding member, 30 lens barrel body, 31 inner cell, 31A protruding portion, 31B inner peripheral surface, 32 middle cell, 33 outer cell, 34 protrusion, 50 lens barrel, 61 heater, 62 wiring.

Claims (4)

  1.  赤外線を透過するレンズと、
     前記レンズを保持する鏡筒と、
     前記レンズに配置され、前記レンズの温度を調整する温度調整装置と、を備える、赤外線レンズモジュール。
    A lens that transmits infrared rays;
    A lens barrel for holding the lens;
    An infrared lens module, comprising: a temperature adjusting device that is disposed on the lens and adjusts the temperature of the lens.
  2.  前記レンズと前記鏡筒との間には間隔が形成される、請求項1に記載の赤外線レンズモジュール。 The infrared lens module according to claim 1, wherein a gap is formed between the lens and the lens barrel.
  3.  前記温度調整装置は、前記レンズの外周面およびレンズ面の外縁領域の少なくともいずれか一方に配置される、請求項1または請求項2に記載の赤外線レンズモジュール。 3. The infrared lens module according to claim 1, wherein the temperature adjusting device is disposed on at least one of an outer peripheral surface of the lens and an outer edge region of the lens surface.
  4.  前記レンズを構成する材料は硫化亜鉛である、請求項1~請求項3のいずれか1項に記載の赤外線レンズモジュール。 The infrared lens module according to any one of claims 1 to 3, wherein a material constituting the lens is zinc sulfide.
PCT/JP2017/009845 2016-03-15 2017-03-10 Infrared lens module WO2017159581A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780016231.3A CN108780265A (en) 2016-03-15 2017-03-10 Infrared lenses component
US16/085,075 US20190094484A1 (en) 2016-03-15 2017-03-10 Infrared lens module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016051680 2016-03-15
JP2016-051680 2016-03-15
JP2016-131645 2016-07-01
JP2016131645A JP6798161B2 (en) 2016-03-15 2016-07-01 Infrared lens module

Publications (1)

Publication Number Publication Date
WO2017159581A1 true WO2017159581A1 (en) 2017-09-21

Family

ID=59851455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009845 WO2017159581A1 (en) 2016-03-15 2017-03-10 Infrared lens module

Country Status (1)

Country Link
WO (1) WO2017159581A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114051597A (en) * 2019-04-25 2022-02-15 麦克赛尔株式会社 Lens unit and camera module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325603A (en) * 2003-04-22 2004-11-18 Kyocera Corp Lens module and camera using the same
JP2010139566A (en) * 2008-12-09 2010-06-24 Sumitomo Electric Ind Ltd Lens unit
JP2011149975A (en) * 2010-01-19 2011-08-04 Panasonic Corp Infrared ray camera
JP2012189987A (en) * 2011-02-22 2012-10-04 Tamron Co Ltd Infrared lens unit and infrared camera system with the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325603A (en) * 2003-04-22 2004-11-18 Kyocera Corp Lens module and camera using the same
JP2010139566A (en) * 2008-12-09 2010-06-24 Sumitomo Electric Ind Ltd Lens unit
JP2011149975A (en) * 2010-01-19 2011-08-04 Panasonic Corp Infrared ray camera
JP2012189987A (en) * 2011-02-22 2012-10-04 Tamron Co Ltd Infrared lens unit and infrared camera system with the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114051597A (en) * 2019-04-25 2022-02-15 麦克赛尔株式会社 Lens unit and camera module

Similar Documents

Publication Publication Date Title
JP6798161B2 (en) Infrared lens module
US10694084B2 (en) Imaging apparatus capable of efficiently radiating heat of an image sensor without an increase in size
JP2017167503A (en) Infrared lens module
WO2018198625A1 (en) Imaging device
JP2017167504A5 (en)
WO2017159581A1 (en) Infrared lens module
WO2017094638A1 (en) Blade drive module, imaging unit provided with blade drive module, and imaging device
KR20220071165A (en) Camera lens module
JP2018045132A (en) Imaging device
JP2010211003A (en) Lens barrel device and imaging unit
JP2020060639A (en) Lens unit and camera module
JP2010230751A (en) Imaging apparatus
JP2019168619A (en) Infrared-lens module
JP6893982B2 (en) Cooler with variable thermal resistance
WO2020218212A1 (en) Lens unit and camera module
WO2017094314A1 (en) Camera
JP2016511439A5 (en)
JP5702841B2 (en) Molding machine with molding material temperature control jacket
JP2008233237A (en) Optical member, imaging apparatus, and lens barrel for camera mounted in vehicle
JP2021036284A (en) Lens with film, lens unit, and camera module
JP7481816B2 (en) Intermediate ring, lens unit and camera module
JP2017215397A (en) Imaging apparatus
JP7329749B2 (en) Shading unit, lens barrel equipped with same, method for manufacturing movable vane
JP2019028318A (en) Lens device and imaging apparatus having the same
JP2014164267A (en) Optical device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766581

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766581

Country of ref document: EP

Kind code of ref document: A1