WO2017159468A1 - Operation lever - Google Patents

Operation lever Download PDF

Info

Publication number
WO2017159468A1
WO2017159468A1 PCT/JP2017/009085 JP2017009085W WO2017159468A1 WO 2017159468 A1 WO2017159468 A1 WO 2017159468A1 JP 2017009085 W JP2017009085 W JP 2017009085W WO 2017159468 A1 WO2017159468 A1 WO 2017159468A1
Authority
WO
WIPO (PCT)
Prior art keywords
slide plate
slide
base
operation lever
elastic member
Prior art date
Application number
PCT/JP2017/009085
Other languages
French (fr)
Japanese (ja)
Inventor
雅士 渥美
Original Assignee
株式会社タダノ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タダノ filed Critical 株式会社タダノ
Priority to KR1020187018886A priority Critical patent/KR102061161B1/en
Priority to CN201780004938.2A priority patent/CN108473288B/en
Publication of WO2017159468A1 publication Critical patent/WO2017159468A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/52Details of compartments for driving engines or motors or of operator's stands or cabins
    • B66C13/54Operator's stands or cabins
    • B66C13/56Arrangements of handles or pedals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G1/00Controlling members, e.g. knobs or handles; Assemblies or arrangements thereof; Indicating position of controlling members

Definitions

  • the present invention relates to an operation lever for a vehicle-mounted crane or other work device, and particularly to an operation lever having an overstroke function.
  • the vehicle-mounted crane includes an operation lever for the operator to operate the hydraulic control valve.
  • Some of these operation levers have an overstroke function (for example, Patent Document 1).
  • An operation lever having an overstroke function has two modes of a normal stroke and an overstroke.
  • the normal stroke mode corresponds to the operation of the operation lever from the state where the spool of the hydraulic switching valve is in the neutral position until it reaches the stroke end.
  • the overstroke mode corresponds to the operation of the operation lever when the operation lever is further moved from the state where the spool has reached the stroke end.
  • switching of the operation direction such as boom expansion / contraction and undulation and change of the operation speed are performed by operating the operation lever.
  • the overstroke mode only the operation speed is changed by operating the operation lever.
  • FIG. 13 is a view showing an operation lever 101 having a conventional overstroke function.
  • the operation lever 101 includes a lever base 103 (also referred to as “fork”), a handle 112, and a mode switching mechanism 115, and the overstroke function described above is exhibited through the mode switching mechanism 115. .
  • the lever base 103 is supported by a rotation shaft 113 and rotates about the rotation shaft 113 when the handle 112 is operated in the directions of arrows 116 and 117. That is, when the handle 112 is operated in the directions of arrows 116 and 117, the spool 102 of the hydraulic control valve is slid in the directions of arrows 118 and 119, respectively.
  • the sliding direction of the spool 102 determines the operating direction of the hydraulic actuator that performs expansion / contraction / undulation of the boom.
  • the slide amount of the spool 102 is adjusted by operating the handle 112, and the operating speed of the hydraulic actuator is determined by the slide amount.
  • the spool 102 slides as described above.
  • the operation lever 101 is overstroked (in this case, the mode is switched to the overstroke mode), and the spool 102 is maintained in the stroke end state. Only the lever base 103 is rotated as it is.
  • the amount of rotation of the lever base 103 in this mode corresponds to the opening of the engine throttle via a predetermined link mechanism. That is, the discharge amount of the hydraulic pump is adjusted, and the operating speed of the hydraulic actuator is adjusted.
  • the operation lever having the overstroke function can control the operation speed over a wide range without controlling the operation direction of the boom by a single operation of the operation lever.
  • the mode switching mechanism 115 includes a shaft 104 coupled to the spool 102, a cylindrical case 110 to which a handle 112 is attached, a spring 106 and spring seats 107 and 108, a collar 109, and a cylindrical case 110.
  • a bolt 111 that fastens the shaft 104 together with the spring seat 108 and the handle 112, and a lid 105 that closes the end of the cylindrical case 110.
  • One end of the shaft 104 is connected to the spool 102 of the hydraulic control valve, and the other end is in contact with the spring seat 107.
  • the elastic force of the spring 106 is applied to the shaft 104 via the spring seats 107 and 108, and the shaft 104 is always urged so as to protrude outward (to the left in the figure) from the cylindrical case 110. .
  • FIGS. 14 and 15 are enlarged views of the operation lever 101, showing the operation in the overstroke mode.
  • the spring seats 107 and 108 and the cylindrical case 110 are manufactured by drawing, and the shaft 104 and the collar 109 are manufactured by lathe processing. Therefore, the processing cost of these parts increases, and the number of parts increases, so that the number of assembly steps increases. That is, not only the manufacturing cost of the operation lever 101 increases, but also maintenance is not easy.
  • the present invention has been made based on such a background, and an object thereof is to provide an inexpensive operation lever having an overstroke function with a simple and easy-to-maintain structure.
  • An operation lever includes a base that can be rotated about a predetermined rotation axis, a handle that is provided on the base, and that rotates the base about the rotation axis.
  • a slide plate supported by the base in a state where the operation target is connected and can be reciprocated along a slide direction orthogonal to the rotation axis with respect to a predetermined neutral position, and the slide plate reciprocates.
  • a guide plate that guides the movement, and is disposed between the base and the guide plate and is engaged with the slide plate so that the slide plate returns to the neutral position when it slides from the neutral position.
  • an elastic member for urging the slide plate.
  • the slide plate is supported with respect to the base, and the slide plate is slidable in the sliding direction while being supported by the guide plate.
  • the elastic member is arranged between the base and the guide plate, when the slide plate is displaced from the neutral position against the elastic force of the elastic member in the neutral position, The elastic member elastically urges the slide plate to return to the neutral position.
  • the base receives a torque around the rotation axis. Since an operation target (typically, a spool of a hydraulic control valve) is connected to the slide plate, an external force corresponding to the torque acts on the slide plate from the operation target.
  • an operation target typically, a spool of a hydraulic control valve
  • the magnitude of the external force is smaller than the elastic force exerted by the elastic member at the neutral position, only the spool is slid without displacing the slide plate from the neutral position. That is, in this case, the operation mode of the operation lever corresponds to the normal stroke mode.
  • the magnitude of the external force is larger than the elastic force exerted by the elastic member in the neutral position (typically, the handle has a larger force when the spool as the operation target has reached the stroke end.
  • the slide plate is displaced, and the base is further rotated relatively.
  • the spool remains in the stroke end state, and the slide plate returns to the neutral position by the elastic force of the elastic member. That is, in this case, the operation mode of the operation lever corresponds to the overstroke mode.
  • the operation lever exhibits an overstroke function is realized by only a part of the base, the slide plate, the guide plate, and the elastic member.
  • the elastic member does not require a special structure, and the slide plate and the guide plate are the same. Therefore, the manufacture of these parts does not require the conventional drawing, lathe and other machining, and the number of parts of the operation lever is reduced as compared with the prior art.
  • a pair of seat surfaces facing the slide direction are formed on the base and the guide plate, and the elastic member is held on the pair of seat surfaces in a state where the slide plate is in the neutral position.
  • the slide plate has a pair of engaging portions facing each other along the sliding direction, and one engaging portion is formed on the seat surface of the guide plate when the slide plate slides to one side in the sliding direction. Instead, it is formed to engage with the elastic member and sandwich the elastic member with the seat surface of the base, and the other engaging portion is when the slide plate slides to the other side in the sliding direction. It is preferable that the elastic member is engaged with the elastic member instead of the seat surface of the base and is sandwiched between the elastic member and the sheet surface of the guide plate.
  • the elastic member when the slide plate is in the neutral position, the elastic member is held between the seat surface of the base and the seat surface of the guide plate. Since these seat surfaces are constituted by a part of the base and the guide plate, no special parts are required to hold the elastic member.
  • the slide plate In the above-described overstroke mode, the slide plate is slid. At this time, the elastic member is engaged between the seat surface of the base and the other engagement portion of the slide plate or one of the slide plates. It is sandwiched between the joint portion and the sheet surface of the guide plate, exerts the elastic force, and tries to return the slide plate to the neutral position.
  • the seat surface of the base is composed of a wall portion orthogonal to the sliding direction, and the wall portion has a through hole to which the slide plate is slidably fitted and the insertion of the elastic member is restricted. It is preferable.
  • the guide plate has a pair of side portions, and is formed of a mountain-shaped member erected between the base and the handle, and the sheet surface of the guide plate is disposed opposite to the wall portion. It is preferable that the one side portion includes a through hole that is slidably fitted to the slide plate and restricts insertion of the elastic member.
  • the seat surface of the base is constituted by a wall portion of the base
  • the guide plate is constituted by a chevron member used as a general-purpose product
  • the seat surface of the guide plate is formed by the chevron. It consists of one side of the member. That is, the guide plate is also composed of a simple member.
  • through holes are formed in the pair of sheet surfaces, the slide plate is slidably held in the slide direction. That is, the slide plate is supported with a simple structure.
  • An opening penetrating in the direction along the rotational axis is provided at the center of the slide plate, and the pair of engaging portions are formed at portions facing the slide direction on the inner peripheral surface of the opening. It is preferable.
  • the elastic member is preferably disposed in the opening.
  • the elastic member interposed between the base and the guide plate is disposed in the slide plate, and the base, slide plate, guide plate, and elastic member are laid out in a compact layout. Is done. In addition, this layout can be realized very simply by arranging the elastic member in the opening provided in the slide plate.
  • the elastic member is preferably a coil spring having a predetermined inner diameter. It is preferable that the slide member is a flat bar, the opening has a rectangular shape, and the pair of engaging portions are projecting pieces inserted into the coil spring.
  • the number of parts of the operation lever is reduced, and each part can be manufactured without using drawing or lathe processing. Therefore, an inexpensive operation lever having an overstroke function with a simple and easy-to-maintain structure can be provided.
  • FIG. 1 is a side view of a vehicle-mounted crane 10 including an operation lever device 30 according to the present embodiment.
  • FIG. 2 is a rear view of the vehicle-mounted crane 10 including the operation lever device 30.
  • FIG. 3 is a front view showing the operation lever device 30.
  • FIG. 4 is a perspective view showing the operation lever in a stacked state in the operation lever device 30.
  • FIG. 5 is a plan view for explaining the operation of the operation lever 31 that is horizontally rotated.
  • FIG. 6 is a perspective view showing the operation lever 31.
  • 7A and 7B are views showing the fork 32, where FIG. 7A is a plan view and FIG. 7B is a side view.
  • 8A and 8B are views showing the cover 62, in which FIG. 8A is a plan view and FIG.
  • FIG. 8B is a side view.
  • FIG. 9 is a plan view showing the slide plate 63.
  • 10A and 10B are enlarged views of the mode switching mechanism 61, in which FIG. 10A shows a state in which the slide plate 63 has moved to the right, FIG. 10B shows a state in which the slide plate 63 is in the neutral position, and FIG. Shows the state of moving to the left.
  • 11A and 11B are diagrams for explaining the overstroke mode, in which FIG. 11A is a neutral state with respect to rotation, FIG. 11B is a state in which the spool 36 is at the spool end in the spool pushing operation, and FIG. Indicates the overstroke status.
  • 12A and 12B are diagrams illustrating the overstroke mode, where FIG.
  • FIG. 12A is a neutral state with respect to rotation
  • FIG. 12B is a state in which the spool 36 is at the spool end in the spool pulling operation
  • FIG. Indicates the overstroke status
  • FIG. 13 is a plan view showing the operation lever 101 including the mode switching mechanism 115 in the prior art.
  • 14A and 14B are diagrams for explaining the overstroke mode in the prior art.
  • FIG. 14A shows a state where the spool 102 is at the spool end in the spool pushing operation
  • FIG. 14B shows an overstroke state in the spool pushing operation.
  • 15A and 15B are diagrams for explaining the overstroke mode in the prior art, where FIG. 15A shows a state in which the spool 102 is at the spool end in the spool pulling operation, and
  • FIG. 15B shows an overstroke state in the spool pulling operation.
  • 1 and 2 are a left side view and a rear view of the vehicle-mounted crane 10.
  • the vehicle-mounted crane 10 is mounted on a work vehicle and is driven by a hydraulic mechanism that uses the engine of the work vehicle as a drive source.
  • the direction indicated by reference numeral 8 is the traveling direction of the work vehicle on which the vehicle-mounted crane 10 is mounted, and this direction is defined as the front-rear direction 8.
  • a direction indicated by reference numeral 7 is defined as a vertical direction 7 (generally a vertical direction), and a direction orthogonal to the vertical direction 7 and the front-rear direction 8 is defined as a horizontal direction 9.
  • the vehicle-mounted crane 10 includes a main beam 11, a jack 12, a swivel base 13, a swivel post 14, a boom 15, a hoisting cylinder 16, a winch 17, a wire rope 18, and a hook. 19 is mainly provided.
  • the vehicle-mounted crane 10 has a main beam 11 fixed on the frame of the work vehicle.
  • a slide beam extending in the left-right direction 9 is disposed in the main beam 11 formed in a box shape having a rectangular cross section, and the jack 12 supported by the slide beam extends and contacts the ground, thereby ensuring the stability of the vehicle.
  • the swivel base 13 is provided on the main beam 11 and is rotatable around a rotation center axis along the vertical direction 7.
  • the swivel post 14 is erected on the swivel base 13 and rotates together with the swivel base 13.
  • the boom 15 is provided at the upper end of the turning post 14.
  • the base end portion 15A of the boom 15 is connected to the turning post 14 via a undulation center pin, and the undulation operation is possible.
  • the boom 15 includes a base boom 21, an intermediate boom 22, and a top boom 23.
  • the intermediate boom 22 and the top boom 23 are telescopically stored in the base boom 21. Thereby, the boom 15 is comprised so that expansion-contraction is possible.
  • the hoisting cylinder 16 is for hoisting the boom 15.
  • the boom 15 has a built-in telescopic cylinder, and the boom 15 expands and contracts when the telescopic cylinder expands and contracts.
  • the winch 17 is provided inside the turning post 14. The winch 17 extends or retracts the wire rope 18.
  • the wire rope 18 hangs around the tip 15B of the boom 15, and a hook 19 is provided at the tip.
  • the wire rope 18 When the winch 17 is rotated in a predetermined direction, the wire rope 18 is wound around the winch 17 and the hook 19 is raised. When the winch 17 is rotated in the anti-predetermined direction, the wire rope 18 is unwound from the winch 17 and the hook 19 is lowered.
  • FIG. 3 is a front view showing the operation lever device 30,
  • FIG. 4 is a perspective view showing the operation lever 31 in a stacked state in the operation lever device 30, and
  • FIG. 5 is an operation lever that is rotated horizontally. It is a top view for demonstrating the operation
  • FIG. 4 is a perspective view showing the operation lever 31 in a stacked state in the operation lever device 30, and
  • FIG. 5 is an operation lever that is rotated horizontally. It is a top view for demonstrating the operation
  • the vehicle-mounted crane 10 is hydraulically driven by a hydraulic circuit and includes an operation lever device 30 for operating the hydraulic circuit.
  • the operation lever device 30 is for operating expansion and contraction of the boom 15, raising and lowering of the boom 15, rotation of the winch 17, rotation of the swivel base 13, and expansion and contraction of the jack 12.
  • the operation lever device 30 includes a boom telescopic operation lever 31A, a boom raising / lowering operation lever 31B, a winch operation lever 31C, a turning operation lever 31D, and jack operation levers 31E and 31F, and is collectively referred to as an operation lever 31.
  • one operation lever 31 corresponding to each operation is provided on each of the left and right sides of the vehicle-mounted crane 10.
  • a base end portion 56 (see FIG. 5) of the operation lever 31 is provided with a fork 32 (corresponding to a “base” described in claims), which will be described later (see FIG. 4).
  • the fork 32 is rotatably provided on a rotation shaft 33 (corresponding to a “predetermined rotation axis” recited in the claims) extending in the vertical direction 7.
  • a pair of forks 32 arranged on the left and right are connected by a rod 34 (see FIG. 5), and when one operating lever 31 is rotated, the corresponding other operating lever 31 is rotated in conjunction. As a result, the operator can operate from either the left or right side of the vehicle.
  • the operating lever device 30 includes a hydraulic control valve 35 of a hydraulic circuit corresponding to each operating lever 31A, 31B, 31C, 31D, 31E, 31F.
  • the hydraulic control valve 35 includes a spool 36 that extends in the left-right direction 9 and slides in the same direction. The end of each spool 36 is connected to a slide plate 63 (see FIG. 6 described later) supported by a fork 32 of each operation lever 31 via a connection pin 37. Therefore, when the operation lever 31 is turned by the operator, the fork 32 is turned around the turning shaft 33, and the spool 36 is linearly moved leftward or rightward. As a result, the hydraulic control valve 35 is switched.
  • FIG. 6 is a perspective view showing the operation lever 31
  • FIG. 7 is a view showing the shape of the fork 32
  • FIG. 8 is a view showing the shape of the cover 62
  • FIG. It is a figure which shows a shape.
  • the operation lever 31 includes a fork 32, a handle 41, a cover 62 (corresponding to a “guide plate” described in claims), a slide plate 63, and a coil spring 64 (patent). Equivalent to the “elastic member” recited in the claims). In the following description of the operation lever 31, it is assumed that the operation lever 31 provided on the left side of the vehicle is in a neutral position (a state where the operation is not turned).
  • the handle 41 is a round bar in the present embodiment, extends leftward from the base end portion 56, bends in the middle, and extends in a predetermined direction, for example, diagonally upward to the left.
  • a handle 57 may be attached to the grip portion 55 of the handle 41 (the end opposite to the base end portion 56) as shown in FIG.
  • the shape of the handle 57 is formed so that the operator can easily grip the grip portion 55 of the handle 41.
  • the fork 32 includes an upper plate 44, a lower plate 45, and a side plate 46, and has a substantially C-shaped cross section.
  • the upper plate 44, the lower plate 45 and the side plate 46 are integrally formed.
  • the upper plate 44 has a shape in which a central portion at the right end is notched in a trapezoidal shape on the left side.
  • the lower plate 45 is positioned below the upper plate 44 with a space from the upper plate 44.
  • the side plate 46 has a substantially rectangular shape as shown in FIG. 5B, and is spanned between an end edge 47 of the upper plate 44 and an end edge (not shown) of the lower plate 45.
  • the fork 32 includes a rotation shaft insertion hole 51, a handle insertion hole 53, and a slide hole 54 (corresponding to a “through hole” recited in the claims).
  • the rotation shaft insertion hole 51 is a circular hole and penetrates the upper plate 44 and the lower plate 45 along the vertical direction 7.
  • the rotation shaft 33 (see FIGS. 3 and 5) is inserted through the rotation shaft insertion hole 51. Thereby, the fork 32 can be rotated along a plane orthogonal to the rotation shaft 33 around the rotation shaft 33.
  • the handle insertion hole 53 is a circular hole and penetrates the side plate 46 in the left-right direction 9. As shown in FIG. 6, the base end portion 56 of the handle 41 is fitted into the handle insertion hole 53 (see FIG. 7) from the left and welded.
  • the slide hole 54 has an elongated rectangular shape extending in the front-rear direction 8.
  • the slide hole 54 penetrates the side plate 46 in the left-right direction 9.
  • the slide hole 54 will be described in detail later.
  • the operation lever 31 includes a mode switching mechanism 61.
  • the mode switching mechanism 61 By this mode switching mechanism 61, the operation mode of the operation lever 31 is switched to either the normal stroke mode or the overstroke mode.
  • the mode switching mechanism 61 includes a cover 62, a slide plate 63, and a coil spring 64.
  • the cover 62 is stretched between the side plate 46 of the fork 32 and the handle 41. As shown in FIGS. 6 and 8, the cover 62 is a mountain-shaped member formed by bending an elongated plate-shaped member at a right angle.
  • the cover 62 includes a first plate portion 65 extending in the left-right direction 9 and a second plate portion 66 extending in the front-rear direction 8.
  • the right edge 67 of the first plate portion 65 is connected to the left surface 68 of the side plate 46 of the fork 32 (corresponding to “wall portion” and “seat surface” recited in the claims).
  • the rear end portion of the second plate portion 66 has a through hole 71 that penetrates in the left-right direction 9.
  • the base end portion 56 of the handle 41 is inserted into the through hole 71 of the cover 62.
  • the base end portion 56 of the handle 41 and the through hole 71 are fixed by welding, for example.
  • the second plate portion 66 has a slide hole 72 (corresponding to a “through hole” described in claims) that penetrates in the left-right direction 9.
  • the slide hole 72 has the same shape as the slide hole 54 (see FIG. 7) of the fork 32.
  • the slide hole 72 is opposed to the slide hole 54 in the left-right direction, and is disposed at the same position in the up-down direction 7 and the front-rear direction 8 (see FIG. 10).
  • the slide plate 63 is a substantially rectangular plate-shaped flat bar.
  • the slide plate 63 has a rectangular through hole 73 (corresponding to an “opening” recited in the claims) penetrating in the vertical direction 7 (direction perpendicular to the paper surface).
  • a projecting piece 75 (corresponding to an “engagement portion” described in claims) is formed on the right end surface 74A of the inner peripheral surface 74 of the through hole 73.
  • the protruding piece 75 has a rectangular shape and protrudes to the left.
  • a projecting piece 78 (corresponding to an “engagement portion” described in claims) is formed on the left end surface 74B of the inner peripheral surface 74 of the through hole 73.
  • the projecting piece 78 has the same shape as the projecting piece 75, protrudes rightward from the left end surface 74 ⁇ / b> B, and faces the projecting piece 78.
  • the dimensions of the projecting piece 75 and the projecting piece 78 in the front-rear direction 8 are the same, and are substantially the same as the inner diameter of a coil spring 64 described later.
  • An engagement portion 81 is provided on the right end surface 80 of the slide plate 63.
  • the engaging portion 81 protrudes rightward from the right end surface 80.
  • the engaging portion 81 has a through hole 82 that penetrates in the vertical direction 7.
  • the slide plate 63 is described in the left-right direction 9 (described in claims) in the slide hole 54 (see FIG. 7) of the fork 32 and the slide hole 72 (see FIG. 8) of the cover 62. It is slidably inserted in the “sliding direction” (see FIG. 6).
  • the coil spring 64 includes the left surface 68 of the side plate 46 of the fork 32 and the right surface 66A of the second plate portion 66 of the cover 62 (“side portion” and “sheet surface” recited in the claims). Between the left end surface 74B and the right end surface 74A of the through hole 73 (see FIG. 9) of the slide plate 63 in a compressed state by a predetermined initial compression amount. Is done. The right end portion of the coil spring 64 contacts at least one of the left surface 68 of the side plate 46 of the fork 32 and the right end surface 74A of the through hole 73 of the slide plate 63.
  • the left end portion of the coil spring 64 is in contact with at least one of the right surface 66A of the second plate portion 66 of the cover 62 and the left end surface 74B of the through hole 73 of the slide plate 63.
  • the projecting pieces 75 and 78 (see FIG. 9) formed on the inner peripheral surface 74 of the through hole 73 of the slide plate 63 are inserted inside the coil spring 64. Thereby, the movement of the coil spring 64 in the front-rear direction 8 is restricted.
  • FIG. 10A and 10B are plan views showing the operation of the mode switching mechanism 61, where FIG. 10A shows a state where the slide plate 63 has moved to the right from the neutral position, and FIG. 10B shows a steady state where the slide plate 63 is located at the neutral position. (C) shows a state in which the slide plate 63 has moved to the left from the neutral position.
  • the distance between the through hole 82 of the engaging portion 81 and the side plate 46 of the fork 32 in the slide plate 63 is shorter than that in the steady state shown in FIG.
  • the urging force of the coil spring 64 acts on the slide plate 63 so that the slide plate 63 returns to the neutral position shown in FIG.
  • 11 and 12 are diagrams for explaining the operation of the mode switching mechanism 61 in the overstroke mode.
  • FIG. 11 shows a state of the mode switching mechanism 61 when the handle 41 is turned from the neutral position in the direction of the arrow 87 by the operator.
  • FIG. 11A shows the mode switching mechanism 61 in a state where the handle 41 and the slide plate 63 are in the neutral position (see FIG. 10B).
  • the engaging portion 81 of the slide plate 63 does not apply a force for moving the spool 36 to the spool 36, so that no drag force from the spool 36 is applied to the engaging portion 81. Therefore, the mode switching mechanism 61 is in a neutral state, that is, a state in which the slide plate 63 has not moved in the left-right direction 9 from the neutral position.
  • the coil spring 64 is compressed by a predetermined initial compression amount.
  • the work device vehicle-mounted crane 10) does not operate.
  • the engaging portion 81 of the slide plate 63 applies a force to the spool 36 in the direction of the arrow 88. . Therefore, a force in the direction opposite to the arrow 88 is applied to the engaging portion 81 as a drag force from the spool 36.
  • the coil spring 64 of the mode switching mechanism 61 is not compressed even when a force necessary to move the spool 36 in the direction of the arrow 88 is applied. That is, the force required to further compress the coil spring 64 from the initial compression amount is greater than the force required to compress a spring (not shown) that biases the spool 36 to the neutral position in the hydraulic control valve 35.
  • the coil spring 64 is not compressed from the initial compression amount, and the slide plate 63 does not move relative to the fork 32. Therefore, the engaging portion 81 moves in the direction of the arrow 88, and the spool 36 moves linearly in the direction of the arrow 88.
  • the operation mode of the operation lever 31 from the state shown in FIG. 11 (A) to the state shown in FIG. 11 (B) is a normal stroke mode.
  • the state of the hydraulic control valve 35 that determines the operation direction (for example, the turning direction of the turntable 13) and the operation speed (for example, the turn speed of the turntable 13) of the work device is It is determined by the position of the spool 36 in the arrow direction 88. Therefore, the working device operates in a predetermined direction by the turning operation of the operation lever 31 from the state shown in FIG. 11A to the state shown in FIG. Further, the work device operates at a speed corresponding to the movement amount of the spool 36.
  • the spool 36 has already reached the spool end and cannot move in the direction of the arrow 88. Therefore, in the process from the state shown in FIG. 11B to the state shown in FIG. 11C, the coil spring 64 is further compressed from the initial compression amount, and the slide plate 63 slides in the sliding direction 90. Therefore, the interval between the engaging portion 81 and the second plate portion 66 of the cover 62 is shortened. Thereby, the fork 32 further rotates from the position shown in FIG. 11B while the spool 36 is stopped at the spool end.
  • the operation mode of the operation lever 31 from the state shown in FIG. 11 (B) to the state shown in FIG. 11 (C) is an overstroke mode.
  • the opening of the engine throttle that determines the operating speed of the work device is determined by the rotational position of the fork 32. Therefore, the engine throttle is opened by the turning operation of the operation lever 31 from the state shown in FIG. 11B to the state shown in FIG. 11C, and the operating speed of the working device is set according to the opening of the engine throttle. Go up further.
  • FIG. 12 shows the state of the mode switching mechanism 61 when the handle 41 is turned from the neutral position in the direction of the arrow 86 by the operator.
  • the state of the mode switching mechanism 61 shown in FIG. 12 (A) is the same as the state of the mode switching mechanism 61 shown in FIG. 11 (A).
  • the engaging portion 81 of the slide plate 63 applies a force to the spool 36 in the direction of the arrow 89. . Therefore, a force in the direction opposite to the arrow 89 is applied to the engaging portion 81 as a drag force from the spool 36.
  • a coil spring 64 of the mode switching mechanism 61 is used that is not compressed even when a force necessary to move the spool 36 in the direction of the arrow 89 is applied. That is, the force required to further compress the coil spring 64 from the initial compression amount is greater than the force required to compress a spring (not shown) that biases the spool 36 to the neutral position in the hydraulic control valve 35.
  • the coil spring 64 is not compressed from the initial compression amount, and the slide plate 63 does not move relative to the fork 32. Therefore, the engaging portion moves in the direction of the arrow 89, and the spool 36 moves linearly in the direction of the arrow 89.
  • the operation mode of the operation lever 31 from the state shown in FIG. 12 (A) to the state shown in FIG. 12 (B) is the normal stroke mode.
  • the spool 36 has already reached the spool end and cannot move in the direction of the arrow 89. Therefore, in the process from the state shown in FIG. 12B to the state shown in FIG. 12C, the coil spring 64 is further compressed from the initial compression amount, and the slide plate 63 slides in the sliding direction 91. Therefore, the interval between the engaging portion 81 and the second plate portion 66 of the cover 62 becomes long. Thereby, the fork 32 further rotates from the position shown in FIG. 12B while the spool 36 is stopped at the spool end.
  • the operation mode of the operation lever 31 shown in FIG. 12C from the state of the operation lever 31 shown in FIG. 12B is an overstroke mode.
  • the structure in which the operation lever 31 exhibits the overstroke function is realized by only a part of the fork 32, the slide plate 63, the cover 62, and the coil spring 64.
  • the coil spring 64 does not require a special structure, and the slide plate 63 and the cover 62 are the same. Therefore, the manufacture of these parts does not require drawing, lathe, or other machining as in the prior art, and the number of parts of the operating lever 31 is reduced as compared with the prior art.
  • the coil spring 64 has the left surface 68 of the side plate 46 of the fork 32 and the right surface 66 ⁇ / b> A of the second plate portion 66 of the cover 62. Held between.
  • the left surface 68 of the side plate 46 of the fork 32 is constituted by a part of the fork 32
  • the right surface 66A of the second plate portion 66 of the cover 62 is constituted by a part of the cover 62. No parts are required.
  • the coil spring 64 is arranged between the left surface 68 of the side plate 46 of the fork 32 and the left end surface 74B of the through hole 73 of the slide plate 63, or through the through hole 73 of the slide plate 63. Is sandwiched between the right end surface 74A and the right surface 66A of the second plate portion 66 of the cover 62, exerts an elastic force, and attempts to return the slide plate 63 to the neutral position.
  • the left surface 68 of the side plate 46 of the fork 32 and the right surface 66A of the second plate portion 66 of the cover 62 are composed of simple members. Moreover, slide holes 54 and 72 are formed in the left surface 68 of the side plate 46 of the fork 32 and the right surface 66A of the second plate portion 66 of the cover 62, so that the slide plate 63 can slide in the left-right direction 9 (see FIG. 10). Retained. That is, the slide plate 63 is supported with a simple structure.
  • a coil spring 64 interposed between the fork 32 and the cover 62 is disposed in the through hole 73 (see FIG. 9) of the slide plate 63. Therefore, the fork 32, the slide plate 63, the cover 62, and the coil spring 64 are laid out in a compact manner. Moreover, this layout is very easy to implement.
  • the coil spring 64 and the slide plate 63 may be general-purpose products.
  • the coil spring 64 is supported by a pair of protrusions 75 and 78 provided on the slide plate 63, the coil spring 64 is easily and reliably held at the neutral position, and the slide plate 63 is slid. Even if it exists, the coil spring 64 can be elastically deformed stably.
  • the cover 62 has one end fixed to the fork 32 and the other end fixed to the handle 41.
  • the cover 62 may be fixed only to the handle 41 or may be fixed only to the fork 32.
  • the cover 62 is formed in a U-shape and both ends are fixed to the fork 32 or the handle 41, so that the cover 62 is fixed to only one of the fork 32 or the handle 41.
  • the coil spring 64 is used as the elastic body, but various elastic bodies such as rubber and a torsion spring may be used instead of the coil spring 64.
  • projecting pieces to be inserted into the coil spring 64 are also formed on the left surface 68 of the side plate 46 of the fork 32 and the right surface 66 ⁇ / b> A of the second plate portion 66 of the cover 62. It may be.
  • the slide plate 63 is slid, so that one end of the coil spring 64 is supported by the projecting pieces 75 and 78 even in a state where the end of the coil spring 64 is not supported by either one of the projecting pieces 75 and 78 of the slide plate 63. Since the end portion of the coil spring 64 that is not provided is supported by the projecting piece of the fork 32 or the cover 62, the coil spring 64 can be stably elastically deformed.
  • the operation lever 31 according to the present invention may be used in a working device other than the vehicle-mounted crane 10.
  • Rotation axis 32 ... Fork (base) 41 ... handle 36 ... spool (operation target) 9 ... Left-right direction (sliding direction) 63 ... Slide plate 62 ... Cover (guide plate, angle member) 64... Coil spring (elastic member) 31 ... Control lever 68 ... Left surface (wall, sheet surface) 66A ... right side (side, sheet side) 75, 78 ... Projection piece (engagement part) 72 ... slide hole (through hole) 54 ... Slide hole (through hole) 73 ... Through hole (opening) 74 ... Inner peripheral surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Control Devices (AREA)

Abstract

[Problem] To provide an inexpensive operation lever having an overstroke function and a structure that is simple and easy to maintain. [Solution] An operation lever 31 includes: a fork 32 that is rotatable about a rotation shaft 33; a handle 41 that is provided to the fork 32 and rotates the fork 32 about the rotation shaft 33; a slide plate 63 to which a spool 36 of a hydraulic control valve 35 is connected and which is supported by the fork 32 in a state in which the slide plate 63 is reciprocable along a slide direction orthogonal to an axis of the rotation shaft 33 with respect to a predetermined neutral position; a cover 62 that guides the reciprocation of the slide plate 63; and a coil spring 64 that is arranged between the fork 32 and the cover 62 and that is engaged with the slide plate 63 so as to urge the slide plate 63 to return to the neutral position when the slide plate 63 slides from the neutral position.

Description

操作レバーOperation lever
 この発明は、車両搭載用クレーンその他の作業装置の操作レバーに関し、特にオーバーストローク機能を備える操作レバーに関する。 The present invention relates to an operation lever for a vehicle-mounted crane or other work device, and particularly to an operation lever having an overstroke function.
 従来より、車両搭載用クレーンは油圧駆動される。ブームの伸縮・起伏などの操作は、油圧制御弁の切替により行われる。そのため、車両搭載用クレーンは、オペレータが油圧制御弁を操作するための操作レバーを備えている。このような操作レバーの中には、オーバーストローク機能を備えるものがある(たとえば特許文献1)。オーバーストローク機能を備える操作レバーは、ノーマルストローク及びオーバーストロークの2つのモードを有している。 Conventionally, cranes mounted on vehicles are hydraulically driven. Operations such as boom expansion and contraction are performed by switching the hydraulic control valve. Therefore, the vehicle-mounted crane includes an operation lever for the operator to operate the hydraulic control valve. Some of these operation levers have an overstroke function (for example, Patent Document 1). An operation lever having an overstroke function has two modes of a normal stroke and an overstroke.
 ノーマルストロークモードは、油圧切替弁のスプールが中立位置にある状態からストロークエンドに到達するまでの操作レバーの操作に対応する。オーバーストロークモードは、上記スプールがストロークエンドに到達した状態から、さらに操作レバーが移動されたときの当該操作レバーの操作に対応する。ノーマルストロークモードにおいては、ブームの伸縮・起伏などの動作方向の切替及び動作速度の変更が操作レバーの操作により行われる。一方、オーバーストロークモードにおいては、動作速度の変更のみが操作レバーの操作で行われる。 The normal stroke mode corresponds to the operation of the operation lever from the state where the spool of the hydraulic switching valve is in the neutral position until it reaches the stroke end. The overstroke mode corresponds to the operation of the operation lever when the operation lever is further moved from the state where the spool has reached the stroke end. In the normal stroke mode, switching of the operation direction such as boom expansion / contraction and undulation and change of the operation speed are performed by operating the operation lever. On the other hand, in the overstroke mode, only the operation speed is changed by operating the operation lever.
 図13は、従来のオーバーストローク機能を備える操作レバー101を示す図である。 FIG. 13 is a view showing an operation lever 101 having a conventional overstroke function.
 この操作レバー101は、レバー基台103(「フォーク」とも称される。)、ハンドル112並びにモード切替機構115を備えており、このモード切替機構115を介して前述のオーバーストローク機能が発揮される。レバー基台103は、回動軸113に支持されており、ハンドル112が矢印116、117の向きに操作されることによって回動軸113を中心にして回動する。すなわち、ハンドル112が矢印116、117の向きへ操作されることによって、油圧制御弁のスプール102がそれぞれ矢印118、119の向きにスライドされる。このスプール102のスライド方向が、ブームの伸縮・起伏などを行う油圧アクチュエータの動作方向を決定する。ハンドル112の操作によって上記スプール102のスライド量が調整され、当該スライド量によって上記油圧アクチュエータの動作速度が決定される。 The operation lever 101 includes a lever base 103 (also referred to as “fork”), a handle 112, and a mode switching mechanism 115, and the overstroke function described above is exhibited through the mode switching mechanism 115. . The lever base 103 is supported by a rotation shaft 113 and rotates about the rotation shaft 113 when the handle 112 is operated in the directions of arrows 116 and 117. That is, when the handle 112 is operated in the directions of arrows 116 and 117, the spool 102 of the hydraulic control valve is slid in the directions of arrows 118 and 119, respectively. The sliding direction of the spool 102 determines the operating direction of the hydraulic actuator that performs expansion / contraction / undulation of the boom. The slide amount of the spool 102 is adjusted by operating the handle 112, and the operating speed of the hydraulic actuator is determined by the slide amount.
 ノーマルストロークモードにおいてハンドル112が操作されると、前述のようにスプール102がスライドする。スプール102がストークエンドに達したときに、さらにハンドル112が同方向に操作されると、操作レバー101がオーバーストロークされ(このとき、オーバーストロークモードに切り替わる)、スプール102がストロークエンドの状態に維持されたままレバー基台103のみが回動される。当該モードにおけるレバー基台103の回動量は、所定のリンク機構を介してエンジンスロットルの開度に対応されている。つまり、油圧ポンプの吐出量が調整され、上記油圧アクチュエータの動作速度が調整される。 When the handle 112 is operated in the normal stroke mode, the spool 102 slides as described above. When the handle 102 is further operated in the same direction when the spool 102 reaches the stalk end, the operation lever 101 is overstroked (in this case, the mode is switched to the overstroke mode), and the spool 102 is maintained in the stroke end state. Only the lever base 103 is rotated as it is. The amount of rotation of the lever base 103 in this mode corresponds to the opening of the engine throttle via a predetermined link mechanism. That is, the discharge amount of the hydraulic pump is adjusted, and the operating speed of the hydraulic actuator is adjusted.
 このように、オーバーストローク機能を備えた操作レバーは、操作レバーの単一の操作でブームの動作方向の制御ならず、動作速度を広範囲にわたって制御することができる。 As described above, the operation lever having the overstroke function can control the operation speed over a wide range without controlling the operation direction of the boom by a single operation of the operation lever.
実公平3-025210号公報Japanese Utility Model Publication No. 3-025210
 図13が示すように、上記モード切替機構115は、スプール102に連結された軸104、ハンドル112が取り付けられた筒状ケース110、スプリング106及びスプリングシート107,108、カラー109、筒状ケース110をスプリングシート108及びハンドル112と共に軸104に締結するボルト111、並びに筒状ケース110の端部を閉塞する蓋105を備えている。軸104は、一端が油圧制御弁のスプール102に連結され、他端がスプリングシート107に当接している。スプリング106の弾性力は、スプリングシート107,108を介して軸104に付加され、軸104は、常時筒状ケース110から外方に(同図において左側に)突出するように付勢されている。 As shown in FIG. 13, the mode switching mechanism 115 includes a shaft 104 coupled to the spool 102, a cylindrical case 110 to which a handle 112 is attached, a spring 106 and spring seats 107 and 108, a collar 109, and a cylindrical case 110. A bolt 111 that fastens the shaft 104 together with the spring seat 108 and the handle 112, and a lid 105 that closes the end of the cylindrical case 110. One end of the shaft 104 is connected to the spool 102 of the hydraulic control valve, and the other end is in contact with the spring seat 107. The elastic force of the spring 106 is applied to the shaft 104 via the spring seats 107 and 108, and the shaft 104 is always urged so as to protrude outward (to the left in the figure) from the cylindrical case 110. .
 図14及び図15は、操作レバー101の拡大図であって、オーバーストロークモードにおける動作を示している。 FIGS. 14 and 15 are enlarged views of the operation lever 101, showing the operation in the overstroke mode.
 ハンドル112が矢印117の向きに操作され、スプール102がストロークエンドに達した状態で(図14(A)参照)、さらに同向きにハンドル112が操作されると(オーバーストロークされると)、同図(B)が示すように、軸104に押されてスプリング106が撓み、軸104がハンドル112側へスライドする。これにより、スプール102が移動されることなく、図14(A)に示される位置から図14(B)に示される位置までレバー基台103が回動される。ハンドル112が矢印116の向きに操作される場合も同様であり、スプール102がストロークエンドに達したまま移動されることなく、図15(A)に示される位置から図15(B)に示される位置までレバー基台103が回動される。 When the handle 112 is operated in the direction of the arrow 117 and the spool 102 reaches the stroke end (see FIG. 14A), and the handle 112 is further operated in the same direction (overstroke), the same operation is performed. As shown in the figure (B), the spring 106 is bent by being pushed by the shaft 104, and the shaft 104 slides toward the handle 112 side. Thereby, the lever base 103 is rotated from the position shown in FIG. 14A to the position shown in FIG. 14B without moving the spool 102. The same applies to the case where the handle 112 is operated in the direction of the arrow 116, and the spool 102 is shown in FIG. 15 (B) from the position shown in FIG. 15 (A) without being moved while reaching the stroke end. The lever base 103 is rotated to the position.
 ところで、この操作レバー101を構成する部品のうち、スプリングシート107,108及び筒状ケース110は絞り加工によって製造され、軸104及びカラー109は旋盤加工によって製造される。したがって、これらの部品の加工コストが高くなると共に、部品点数が多くなるために組立工数が増える。つまり、操作レバー101の製造コストが増大するばかりか、メンテナンスも容易でない。 By the way, among the components constituting the operation lever 101, the spring seats 107 and 108 and the cylindrical case 110 are manufactured by drawing, and the shaft 104 and the collar 109 are manufactured by lathe processing. Therefore, the processing cost of these parts increases, and the number of parts increases, so that the number of assembly steps increases. That is, not only the manufacturing cost of the operation lever 101 increases, but also maintenance is not easy.
 本発明は、かかる背景のもとになされたものであって、その目的は、簡単且つメンテナンスが容易な構造でオーバーストローク機能を備えた安価な操作レバーを提供することにある。 The present invention has been made based on such a background, and an object thereof is to provide an inexpensive operation lever having an overstroke function with a simple and easy-to-maintain structure.
 (1) 本発明に係る操作レバーは、所定の回動軸線を中心として回動可能な基台と、当該基台に設けられ、当該基台を上記回動軸線を中心として回動させるハンドルと、操作対象が接続されると共に、所定の中立位置を基準として上記回動軸線に直交するスライド方向に沿って往復移動可能な状態で上記基台に支持されたスライド板と、当該スライド板の往復移動を案内する案内板と、上記基台と上記案内板との間に配置されると共に上記スライド板に係合され、上記スライド板が上記中立位置からスライドしたときに当該中立位置に復帰させるように当該スライド板を付勢する弾性部材とを備える。 (1) An operation lever according to the present invention includes a base that can be rotated about a predetermined rotation axis, a handle that is provided on the base, and that rotates the base about the rotation axis. A slide plate supported by the base in a state where the operation target is connected and can be reciprocated along a slide direction orthogonal to the rotation axis with respect to a predetermined neutral position, and the slide plate reciprocates. A guide plate that guides the movement, and is disposed between the base and the guide plate and is engaged with the slide plate so that the slide plate returns to the neutral position when it slides from the neutral position. And an elastic member for urging the slide plate.
 この構成によれば、基台に対してスライド板が支持されており、このスライド板は、案内板にサポートされつつ上記スライド方向へスライド可能である。そして、弾性部材が上記基台と上記案内板との間に配置されていることから、上記中立位置における弾性部材の弾性力に抗して上記スライド板が上記中立位置から変位した場合に、当該弾性部材は、当該スライド板を上記中立位置に復帰させるように弾性付勢する。 According to this configuration, the slide plate is supported with respect to the base, and the slide plate is slidable in the sliding direction while being supported by the guide plate. And since the elastic member is arranged between the base and the guide plate, when the slide plate is displaced from the neutral position against the elastic force of the elastic member in the neutral position, The elastic member elastically urges the slide plate to return to the neutral position.
 さて、ハンドルが操作されると、基台が上記回動軸線を中心とするトルクを受ける。上記スライド板に操作対象(典型的には油圧制御弁のスプール)が連結されているから、当該操作対象から上記スライド板に上記トルクに対応した外力が作用する。この外力の大きさが、上記中立位置において弾性部材が発揮する弾性力よりも小さい場合、上記スライド板は上記中立位置から変位することなく上記スプールのみがスライドされる。すなわち、この場合、操作レバーの操作モードは、ノーマルストロークモードに相当する。また、上記外力の大きさが、上記中立位置において弾性部材が発揮する弾性力よりも大きい場合(典型的には、操作対象としてのスプールがストロークエンドに達した状態で、さらに上記ハンドルが大きな力で操作された場合)、上記スライド板が変位し、相対的に上記基台がさらに回動する。上記ハンドルへの操作力が小さくなると、上記スプールはストロークエンドの状態のままで、上記弾性部材の弾性力によって上記スライド板が中立位置へ復帰する。すなわち、この場合、操作レバーの操作モードは、オーバーストロークモードに相当する。 Now, when the handle is operated, the base receives a torque around the rotation axis. Since an operation target (typically, a spool of a hydraulic control valve) is connected to the slide plate, an external force corresponding to the torque acts on the slide plate from the operation target. When the magnitude of the external force is smaller than the elastic force exerted by the elastic member at the neutral position, only the spool is slid without displacing the slide plate from the neutral position. That is, in this case, the operation mode of the operation lever corresponds to the normal stroke mode. Further, when the magnitude of the external force is larger than the elastic force exerted by the elastic member in the neutral position (typically, the handle has a larger force when the spool as the operation target has reached the stroke end. ), The slide plate is displaced, and the base is further rotated relatively. When the operating force to the handle is reduced, the spool remains in the stroke end state, and the slide plate returns to the neutral position by the elastic force of the elastic member. That is, in this case, the operation mode of the operation lever corresponds to the overstroke mode.
 このように、上記基台の一部と、スライド板と、案内板と、弾性部材のみで当該操作レバーがオーバーストローク機能を発揮する構造が実現されている。しかも、弾性部材は特別な構造が要求されるものではないし、スライド板及び案内板も同様である。したがって、これら部品の製造に、従来のような絞り加工や旋盤加工その他機械加工を必要としないし、操作レバーの部品点数も従来に比べて削減される。 Thus, a structure in which the operation lever exhibits an overstroke function is realized by only a part of the base, the slide plate, the guide plate, and the elastic member. Moreover, the elastic member does not require a special structure, and the slide plate and the guide plate are the same. Therefore, the manufacture of these parts does not require the conventional drawing, lathe and other machining, and the number of parts of the operation lever is reduced as compared with the prior art.
 (2) 上記スライド方向に沿って対向する一対のシート面が上記基台及び案内板に形成されており、上記スライド板が上記中立位置にある状態で上記弾性部材が上記一対のシート面に保持されていてもよい。上記スライド板は、上記スライド方向に沿って対向する一対の係合部を有し、一方の係合部は、上記スライド板が上記スライド方向一方側にスライドしたときに上記案内板のシート面に代わって上記弾性部材と係合し当該弾性部材を上記基台のシート面との間で挟持するように形成され、他方の係合部は、上記スライド板が上記スライド方向他方側にスライドしたときに上記基台のシート面に代わって上記弾性部材と係合し当該弾性部材を上記案内板のシート面との間で挟持するように形成されているのが好ましい。 (2) A pair of seat surfaces facing the slide direction are formed on the base and the guide plate, and the elastic member is held on the pair of seat surfaces in a state where the slide plate is in the neutral position. May be. The slide plate has a pair of engaging portions facing each other along the sliding direction, and one engaging portion is formed on the seat surface of the guide plate when the slide plate slides to one side in the sliding direction. Instead, it is formed to engage with the elastic member and sandwich the elastic member with the seat surface of the base, and the other engaging portion is when the slide plate slides to the other side in the sliding direction. It is preferable that the elastic member is engaged with the elastic member instead of the seat surface of the base and is sandwiched between the elastic member and the sheet surface of the guide plate.
 この構成によれば、上記スライド板が中立位置にあるとき、上記弾性部材は、上記基台のシート面と案内板のシート面との間で保持される。これらシート面は、上記基台及び案内板の一部により構成されるので、弾性部材を保持するために特別の部品を要しない。前述のオーバーストロークモードにおいて上記スライド板がスライドされるが、このとき、上記弾性部材は、上記基台のシート面と上記スライド板の他方の係合部との間あるいは上記スライド板の一方の係合部と案内板のシート面との間で挟み込まれ、上記弾性力を発揮し、上記スライド板を上記中立位置へ復帰させようとする。 According to this configuration, when the slide plate is in the neutral position, the elastic member is held between the seat surface of the base and the seat surface of the guide plate. Since these seat surfaces are constituted by a part of the base and the guide plate, no special parts are required to hold the elastic member. In the above-described overstroke mode, the slide plate is slid. At this time, the elastic member is engaged between the seat surface of the base and the other engagement portion of the slide plate or one of the slide plates. It is sandwiched between the joint portion and the sheet surface of the guide plate, exerts the elastic force, and tries to return the slide plate to the neutral position.
 (3) 上記基台のシート面は、上記スライド方向と直交する壁部からなると共に当該壁部は、上記スライド板がスライド可能に嵌合され且つ上記弾性部材の挿通を規制する貫通孔を有しているのが好ましい。上記案内板は、一対の辺部を有し、上記基台と上記ハンドルとの間に架設された山型部材からなると共に当該案内板のシート面は、上記壁部と対向配置された一方の辺部からなり、当該一方の辺部は、上記スライド板がスライド可能に嵌合され且つ上記弾性部材の挿通を規制する貫通孔を有しているのが好ましい。 (3) The seat surface of the base is composed of a wall portion orthogonal to the sliding direction, and the wall portion has a through hole to which the slide plate is slidably fitted and the insertion of the elastic member is restricted. It is preferable. The guide plate has a pair of side portions, and is formed of a mountain-shaped member erected between the base and the handle, and the sheet surface of the guide plate is disposed opposite to the wall portion. It is preferable that the one side portion includes a through hole that is slidably fitted to the slide plate and restricts insertion of the elastic member.
 この構成では、上記基台のシート面は当該基台の壁部から構成され、上記案内板が汎用品として使用される山型部材から構成されると共に当該案内板のシート面は、この山型部材の一方の辺部から構成される。つまり、案内板も簡単な部材から構成される。しかも、上記一対のシート面に貫通孔が形成されることにより、上記スライド板が上記スライド方向にスライド自在に保持される。つまり、簡単な構造でスライド板が支持される。 In this configuration, the seat surface of the base is constituted by a wall portion of the base, the guide plate is constituted by a chevron member used as a general-purpose product, and the seat surface of the guide plate is formed by the chevron. It consists of one side of the member. That is, the guide plate is also composed of a simple member. In addition, through holes are formed in the pair of sheet surfaces, the slide plate is slidably held in the slide direction. That is, the slide plate is supported with a simple structure.
 (4) 上記スライド板の中央に上記回動軸線に沿う方向に貫通する開口が設けられ、当該開口の内周面のうち上記スライド方向に沿って対向する部位に上記一対の係合部が形成されているのが好ましい。上記弾性部材は、上記開口に配置されているのが好ましい。 (4) An opening penetrating in the direction along the rotational axis is provided at the center of the slide plate, and the pair of engaging portions are formed at portions facing the slide direction on the inner peripheral surface of the opening. It is preferable. The elastic member is preferably disposed in the opening.
 この構成では、上記基台と案内板との間に介在された弾性部材が、上記スライド板の中に配置されることになり、上記基台、スライド板、案内板及び弾性部材がコンパクトにレイアウトされる。しかも、このレイアウトは、上記スライド板に設けられた開口内に上記弾性部材が配置されることにより、きわめて簡単に実現される。 In this configuration, the elastic member interposed between the base and the guide plate is disposed in the slide plate, and the base, slide plate, guide plate, and elastic member are laid out in a compact layout. Is done. In addition, this layout can be realized very simply by arranging the elastic member in the opening provided in the slide plate.
 (5) 上記弾性部材は、所定の内径を有するコイルバネであるのが好ましい。上記スライド材はフラットバーからなり、上記開口は矩形を呈すると共に上記一対の係合部は上記コイルバネに挿入される突片であるのが好ましい。 (5) The elastic member is preferably a coil spring having a predetermined inner diameter. It is preferable that the slide member is a flat bar, the opening has a rectangular shape, and the pair of engaging portions are projecting pieces inserted into the coil spring.
 この構成では、上記弾性部材もスライド板も、材料として汎用品が採用され得る。しかも、上記弾性部材としてのコイルバネは、上記スライド板に設けられた一対の突片により支持されるので、簡単且つ確実にコイルバネが上記中立位置に保持されるし、上記スライド板がスライドした場合であっても、上記コイルバネは安定して弾性変形をすることができる。 In this configuration, general-purpose products can be used as the material for both the elastic member and the slide plate. Moreover, since the coil spring as the elastic member is supported by a pair of projecting pieces provided on the slide plate, the coil spring is easily and reliably held at the neutral position, and the slide plate slides. Even if it exists, the said coil spring can be elastically deformed stably.
 本発明によれば、操作レバーの部品点数が削減されると共に、各部品が絞り加工又は旋盤加工を用いずに製造できる。したがって、簡単且つメンテナンスが容易な構造でオーバーストローク機能を備えた安価な操作レバーが提供され得る。 According to the present invention, the number of parts of the operation lever is reduced, and each part can be manufactured without using drawing or lathe processing. Therefore, an inexpensive operation lever having an overstroke function with a simple and easy-to-maintain structure can be provided.
図1は、本実施形態に係る操作レバー装置30を備えた車両搭載型クレーン10の側面図である。FIG. 1 is a side view of a vehicle-mounted crane 10 including an operation lever device 30 according to the present embodiment. 図2は、操作レバー装置30を備えた車両搭載型クレーン10の背面図である。FIG. 2 is a rear view of the vehicle-mounted crane 10 including the operation lever device 30. 図3は、操作レバー装置30を示す正面図である。FIG. 3 is a front view showing the operation lever device 30. 図4は、操作レバー装置30における積層状態の操作レバーを示す斜視図である。FIG. 4 is a perspective view showing the operation lever in a stacked state in the operation lever device 30. 図5は、水平に回動操作される操作レバー31の動作を説明するための平面図である。FIG. 5 is a plan view for explaining the operation of the operation lever 31 that is horizontally rotated. 図6は、操作レバー31を示す斜視図である。FIG. 6 is a perspective view showing the operation lever 31. 図7は、フォーク32を示す図であり、(A)は平面図、(B)は側面図である。7A and 7B are views showing the fork 32, where FIG. 7A is a plan view and FIG. 7B is a side view. 図8は、カバー62を示す図であり、(A)は平面図、(B)は側面図である。8A and 8B are views showing the cover 62, in which FIG. 8A is a plan view and FIG. 8B is a side view. 図9は、スライド板63を示す平面図である。FIG. 9 is a plan view showing the slide plate 63. 図10は、モード切替機構61の拡大図であり、(A)はスライド板63が右方に移動した状態、(B)はスライド板63が中立位置にある状態、(C)はスライド板63が左方に移動した状態を示す。10A and 10B are enlarged views of the mode switching mechanism 61, in which FIG. 10A shows a state in which the slide plate 63 has moved to the right, FIG. 10B shows a state in which the slide plate 63 is in the neutral position, and FIG. Shows the state of moving to the left. 図11は、オーバーストロークモードを説明する図であり、(A)は回動についてニュートラルな状態、(B)はスプール押動作においてスプール36がスプールエンドにある状態、(C)はスプール押動作におけるオーバーストロークの状態を示す。11A and 11B are diagrams for explaining the overstroke mode, in which FIG. 11A is a neutral state with respect to rotation, FIG. 11B is a state in which the spool 36 is at the spool end in the spool pushing operation, and FIG. Indicates the overstroke status. 図12は、オーバーストロークモードを説明する図であり、(A)は回動についてニュートラルな状態、(B)はスプール引動作においてスプール36がスプールエンドにある状態、(C)はスプール引動作におけるオーバーストロークの状態を示す。12A and 12B are diagrams illustrating the overstroke mode, where FIG. 12A is a neutral state with respect to rotation, FIG. 12B is a state in which the spool 36 is at the spool end in the spool pulling operation, and FIG. Indicates the overstroke status. 図13は、従来技術におけるモード切替機構115を備える操作レバー101を示す平面図である。FIG. 13 is a plan view showing the operation lever 101 including the mode switching mechanism 115 in the prior art. 図14は、従来技術におけるオーバーストロークモードを説明する図であり、(A)はスプール押動作においてスプール102がスプールエンドにある状態、(B)はスプール押動作におけるオーバーストロークの状態を示す。14A and 14B are diagrams for explaining the overstroke mode in the prior art. FIG. 14A shows a state where the spool 102 is at the spool end in the spool pushing operation, and FIG. 14B shows an overstroke state in the spool pushing operation. 図15は、従来技術におけるオーバーストロークモードを説明する図であり、(A)はスプール引動作においてスプール102がスプールエンドにある状態、(B)はスプール引動作におけるオーバーストロークの状態を示す。15A and 15B are diagrams for explaining the overstroke mode in the prior art, where FIG. 15A shows a state in which the spool 102 is at the spool end in the spool pulling operation, and FIG. 15B shows an overstroke state in the spool pulling operation.
 以下、本発明の好ましい実施形態が、適宜図面が参照されつつ説明される。なお、本実施形態は、本発明の一態様にすぎず、本発明の要旨を変更しない範囲で実施態様が変更されてもよいことは言うまでもない。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings as appropriate. In addition, this embodiment is only 1 aspect of this invention, and it cannot be overemphasized that an embodiment may be changed in the range which does not change the summary of this invention.
[車両搭載型クレーン10] [Vehicle-mounted crane 10]
 図1及び図2は、車両搭載型クレーン10の左側面図及び背面図である。 1 and 2 are a left side view and a rear view of the vehicle-mounted crane 10.
 この車両搭載型クレーン10は、作業車両に架装され、当該作業車両のエンジンを駆動源とする油圧機構により駆動される。図1において、参照符合8で示される方向が車両搭載型クレーン10が搭載された作業車両の走行方向であり、当該方向が前後方向8と定義される。また、参照符合7で示される方向が上下方向7(一般に鉛直方向)と定義され、当該上下方向7及び前後方向8と直交する方向が左右方向9と定義される。 The vehicle-mounted crane 10 is mounted on a work vehicle and is driven by a hydraulic mechanism that uses the engine of the work vehicle as a drive source. In FIG. 1, the direction indicated by reference numeral 8 is the traveling direction of the work vehicle on which the vehicle-mounted crane 10 is mounted, and this direction is defined as the front-rear direction 8. A direction indicated by reference numeral 7 is defined as a vertical direction 7 (generally a vertical direction), and a direction orthogonal to the vertical direction 7 and the front-rear direction 8 is defined as a horizontal direction 9.
 本実施形態に係る車両搭載型クレーン10は、メインビーム11と、ジャッキ12と、旋回台13と、旋回ポスト14と、ブーム15と、起伏シリンダ16と、ウインチ17と、ワイヤロープ18と、フック19とを主に備える。 The vehicle-mounted crane 10 according to this embodiment includes a main beam 11, a jack 12, a swivel base 13, a swivel post 14, a boom 15, a hoisting cylinder 16, a winch 17, a wire rope 18, and a hook. 19 is mainly provided.
 車両搭載型クレーン10は、メインビーム11が上記作業車両のフレーム上に固定されている。断面が矩形の箱状に形成されたメインビーム11内には、左右方向9に延びるスライドビームが配置され、スライドビームに支持されたジャッキ12が伸長し接地することにより、車両の安定が確保される。旋回台13は、メインビーム11に設けられ、上下方向7に沿う回動中心軸の周りに回転可能となっている。旋回ポスト14は、旋回台13に立設されており、旋回台13と一体になって回転する。ブーム15は、旋回ポスト14の上端に設けられている。ブーム15の基端部15Aが旋回ポスト14に起伏中心ピンを介して連結されており、起伏動作が可能となっている。 The vehicle-mounted crane 10 has a main beam 11 fixed on the frame of the work vehicle. A slide beam extending in the left-right direction 9 is disposed in the main beam 11 formed in a box shape having a rectangular cross section, and the jack 12 supported by the slide beam extends and contacts the ground, thereby ensuring the stability of the vehicle. The The swivel base 13 is provided on the main beam 11 and is rotatable around a rotation center axis along the vertical direction 7. The swivel post 14 is erected on the swivel base 13 and rotates together with the swivel base 13. The boom 15 is provided at the upper end of the turning post 14. The base end portion 15A of the boom 15 is connected to the turning post 14 via a undulation center pin, and the undulation operation is possible.
 ブーム15は、ベースブーム21、中間ブーム22及びトップブーム23を備えている。中間ブーム22及びトップブーム23は、ベースブーム21内に入れ子式に格納される。これにより、ブーム15は伸縮可能に構成されている。起伏シリンダ16は、ブーム15を起伏させるためのものである。ブーム15は伸縮シリンダを内蔵しており、伸縮シリンダが伸縮することによりブーム15が伸縮する。ウインチ17は、旋回ポスト14の内部に設けられている。ウインチ17は、ワイヤロープ18を繰り出し又は繰り込みするものである。ワイヤロープ18は、ブーム15の先端部15Bに巻き掛けられて垂下しており、その先端にフック19が設けられている。ウインチ17が所定方向に回転されることにより、ワイヤロープ18がウインチ17に巻き込まれ、フック19が上昇する。ウインチ17が反所定方向に回転されることにより、ワイヤロープ18がウインチ17から繰り出され、フック19が下降する。 The boom 15 includes a base boom 21, an intermediate boom 22, and a top boom 23. The intermediate boom 22 and the top boom 23 are telescopically stored in the base boom 21. Thereby, the boom 15 is comprised so that expansion-contraction is possible. The hoisting cylinder 16 is for hoisting the boom 15. The boom 15 has a built-in telescopic cylinder, and the boom 15 expands and contracts when the telescopic cylinder expands and contracts. The winch 17 is provided inside the turning post 14. The winch 17 extends or retracts the wire rope 18. The wire rope 18 hangs around the tip 15B of the boom 15, and a hook 19 is provided at the tip. When the winch 17 is rotated in a predetermined direction, the wire rope 18 is wound around the winch 17 and the hook 19 is raised. When the winch 17 is rotated in the anti-predetermined direction, the wire rope 18 is unwound from the winch 17 and the hook 19 is lowered.
[操作レバー装置30] [Operation lever device 30]
 図3は、操作レバー装置30を示す正面図であり、図4は、操作レバー装置30における積層状態の操作レバー31を示す斜視図であり、図5は、水平に回動操作される操作レバー31の動作を説明するための平面図である。 3 is a front view showing the operation lever device 30, FIG. 4 is a perspective view showing the operation lever 31 in a stacked state in the operation lever device 30, and FIG. 5 is an operation lever that is rotated horizontally. It is a top view for demonstrating the operation | movement of 31. FIG.
 車両搭載型クレーン10は、油圧回路により油圧駆動され、この油圧回路を操作するための操作レバー装置30を備えている。操作レバー装置30は、ブーム15の伸縮、ブーム15の起伏、ウインチ17の回転、旋回台13の旋回、ジャッキ12の伸縮を操作するためのものである。操作レバー装置30は、ブーム伸縮操作レバー31Aと、ブーム起伏操作レバー31Bと、ウインチ操作レバー31Cと、旋回操作レバー31Dと、ジャッキ操作レバー31E,31Fとを備え、総称して操作レバー31と称することがある。 The vehicle-mounted crane 10 is hydraulically driven by a hydraulic circuit and includes an operation lever device 30 for operating the hydraulic circuit. The operation lever device 30 is for operating expansion and contraction of the boom 15, raising and lowering of the boom 15, rotation of the winch 17, rotation of the swivel base 13, and expansion and contraction of the jack 12. The operation lever device 30 includes a boom telescopic operation lever 31A, a boom raising / lowering operation lever 31B, a winch operation lever 31C, a turning operation lever 31D, and jack operation levers 31E and 31F, and is collectively referred to as an operation lever 31. Sometimes.
 図3に示されるように、上記各操作に対応する操作レバー31は、それぞれ車両搭載型クレーン10の左右両側に一本ずつ備えられている。操作レバー31の基端部56(図5参照)に、後述するフォーク32(特許請求の範囲に記載された「基台」に相当)が備えられている(図4参照)。フォーク32は、上下方向7に延びる回動軸33(特許請求の範囲に記載された「所定の回動軸線」に相当)に回動可能に備えられている。左右に配置された一対のフォーク32は、ロッド34により連結され(図5参照)、一方の操作レバー31が回動操作されると、対応する他方の操作レバー31が連動して回動する。これにより、オペレータは、車両の左右どちら側からでも操作可能になっている。 As shown in FIG. 3, one operation lever 31 corresponding to each operation is provided on each of the left and right sides of the vehicle-mounted crane 10. A base end portion 56 (see FIG. 5) of the operation lever 31 is provided with a fork 32 (corresponding to a “base” described in claims), which will be described later (see FIG. 4). The fork 32 is rotatably provided on a rotation shaft 33 (corresponding to a “predetermined rotation axis” recited in the claims) extending in the vertical direction 7. A pair of forks 32 arranged on the left and right are connected by a rod 34 (see FIG. 5), and when one operating lever 31 is rotated, the corresponding other operating lever 31 is rotated in conjunction. As a result, the operator can operate from either the left or right side of the vehicle.
[油圧制御弁35] [Hydraulic control valve 35]
 図3に示されるように、操作レバー装置30は、各操作レバー31A,31B,31C,31D,31E,31Fに対応する油圧回路の油圧制御弁35を備えている。図5に示されるように、油圧制御弁35は、左右方向9に延び、同方向にスライドするスプール36を内蔵している。各スプール36の端部は、各操作レバー31のフォーク32に支持されたスライド板63(後述の図6参照)に連結ピン37を介して連結されている。そのため、操作レバー31がオペレータにより回動操作されると、フォーク32が回動軸33を中心に回動され、スプール36が左方又は右方に直線移動される。その結果、油圧制御弁35が切り換えられる。 As shown in FIG. 3, the operating lever device 30 includes a hydraulic control valve 35 of a hydraulic circuit corresponding to each operating lever 31A, 31B, 31C, 31D, 31E, 31F. As shown in FIG. 5, the hydraulic control valve 35 includes a spool 36 that extends in the left-right direction 9 and slides in the same direction. The end of each spool 36 is connected to a slide plate 63 (see FIG. 6 described later) supported by a fork 32 of each operation lever 31 via a connection pin 37. Therefore, when the operation lever 31 is turned by the operator, the fork 32 is turned around the turning shaft 33, and the spool 36 is linearly moved leftward or rightward. As a result, the hydraulic control valve 35 is switched.
[操作レバー31] [Operation lever 31]
 図6は、操作レバー31を示す斜視図であり、図7は、フォーク32の形状を示す図であり、図8は、カバー62の形状を示す図であり、図9は、スライド板63の形状を示す図である。 6 is a perspective view showing the operation lever 31, FIG. 7 is a view showing the shape of the fork 32, FIG. 8 is a view showing the shape of the cover 62, and FIG. It is a figure which shows a shape.
 図6に示されるように、操作レバー31は、フォーク32と、ハンドル41と、カバー62(特許請求の範囲に記載された「案内板」に相当)と、スライド板63と、コイルバネ64(特許請求の範囲に記載された「弾性部材」に相当)とを備える。以下の操作レバー31の説明には、車両の左側に備えられる操作レバー31がニュートラルな位置にある状態(回動操作されていない状態)を前提とする。 As shown in FIG. 6, the operation lever 31 includes a fork 32, a handle 41, a cover 62 (corresponding to a “guide plate” described in claims), a slide plate 63, and a coil spring 64 (patent). Equivalent to the “elastic member” recited in the claims). In the following description of the operation lever 31, it is assumed that the operation lever 31 provided on the left side of the vehicle is in a neutral position (a state where the operation is not turned).
[ハンドル41] [Handle 41]
 図6に示されるように、ハンドル41は、本実施形態では丸棒からなり、基端部56から左方に延びて途中で屈曲して所定方向、例えば左斜め上方に延びている。ハンドル41の把持部55(基端部56の反対の端部)に、図5に示されるように把手57が取り付けられていてもよい。把手57の形状は、オペレータがハンドル41の把持部55を把持しやすいように形成されている。 As shown in FIG. 6, the handle 41 is a round bar in the present embodiment, extends leftward from the base end portion 56, bends in the middle, and extends in a predetermined direction, for example, diagonally upward to the left. A handle 57 may be attached to the grip portion 55 of the handle 41 (the end opposite to the base end portion 56) as shown in FIG. The shape of the handle 57 is formed so that the operator can easily grip the grip portion 55 of the handle 41.
[フォーク32] [Fork 32]
 図7に示されるように、フォーク32は、上板44と、下板45と、側板46とを備え、断面形状は略C字状である。上板44、下板45及び側板46は、一体的に形成されている。上板44は、右端の中央部が左方に台形状に切り欠かれた形状を呈する。下板45は、上板44と間隔を空けて上板44の下方に位置する。側板46は、同図(B)が示すように略矩形状を呈し、上板44の端縁47と下板45の端縁(不図示)との間に架け渡されている。 7, the fork 32 includes an upper plate 44, a lower plate 45, and a side plate 46, and has a substantially C-shaped cross section. The upper plate 44, the lower plate 45 and the side plate 46 are integrally formed. The upper plate 44 has a shape in which a central portion at the right end is notched in a trapezoidal shape on the left side. The lower plate 45 is positioned below the upper plate 44 with a space from the upper plate 44. The side plate 46 has a substantially rectangular shape as shown in FIG. 5B, and is spanned between an end edge 47 of the upper plate 44 and an end edge (not shown) of the lower plate 45.
 フォーク32は、回動軸挿通孔51と、ハンドル挿通孔53と、スライド孔54(特許請求の範囲に記載された「貫通孔」に相当)とを備える。回動軸挿通孔51は、円形の孔であり、上下方向7に沿って上板44及び下板45を貫通している。回動軸挿通孔51に上記回動軸33(図3、図5参照)が挿通される。これにより、フォーク32は、回動軸33を中心にして当該回動軸33と直交する平面に沿って回動可能である。ハンドル挿通孔53は、円形の孔であり、側板46を左右方向9に貫通している。図6に示されるように、ハンドル41の基端部56が左方からハンドル挿通孔53(図7参照)に嵌入されて溶接される。これにより、ハンドル41がフォーク32に固定される。図7に示されるように、スライド孔54は、前後方向8に延びる細長矩形状を呈する。スライド孔54は、側板46を左右方向9に貫通している。スライド孔54については、後に詳述される。 The fork 32 includes a rotation shaft insertion hole 51, a handle insertion hole 53, and a slide hole 54 (corresponding to a “through hole” recited in the claims). The rotation shaft insertion hole 51 is a circular hole and penetrates the upper plate 44 and the lower plate 45 along the vertical direction 7. The rotation shaft 33 (see FIGS. 3 and 5) is inserted through the rotation shaft insertion hole 51. Thereby, the fork 32 can be rotated along a plane orthogonal to the rotation shaft 33 around the rotation shaft 33. The handle insertion hole 53 is a circular hole and penetrates the side plate 46 in the left-right direction 9. As shown in FIG. 6, the base end portion 56 of the handle 41 is fitted into the handle insertion hole 53 (see FIG. 7) from the left and welded. Thereby, the handle 41 is fixed to the fork 32. As shown in FIG. 7, the slide hole 54 has an elongated rectangular shape extending in the front-rear direction 8. The slide hole 54 penetrates the side plate 46 in the left-right direction 9. The slide hole 54 will be described in detail later.
[モード切替機構61] [Mode switching mechanism 61]
 図6に示されるように、操作レバー31は、モード切替機構61を備える。このモード切替機構61により、操作レバー31の操作モードがノーマルストロークモード及びオーバーストロークモードのいずれかに切り替わる。モード切替機構61は、カバー62と、スライド板63と、コイルバネ64とにより構成される。 As shown in FIG. 6, the operation lever 31 includes a mode switching mechanism 61. By this mode switching mechanism 61, the operation mode of the operation lever 31 is switched to either the normal stroke mode or the overstroke mode. The mode switching mechanism 61 includes a cover 62, a slide plate 63, and a coil spring 64.
 カバー62は、フォーク32の側板46とハンドル41との間に掛け渡されている。図6及び図8に示されるように、カバー62は、細長の板状部材が直角に折り曲げられて形成された山型部材である。カバー62は、左右方向9に延びる第1板部65と、前後方向8に延びる第2板部66とからなる。図6に示されるように、第1板部65の右端縁67は、フォーク32の側板46の左面68(特許請求の範囲に記載された「壁部」及び「シート面」に相当)に接続されている。図8に示されるように、第2板部66の後端部は、左右方向9に貫通する貫通孔71を有している。図6に示されるように、ハンドル41の基端部56は、カバー62の貫通孔71内に挿通されている。ハンドル41の基端部56と貫通孔71とは、例えば溶接により固着されている。図8に示されるように、第2板部66は、左右方向9に貫通するスライド孔72(特許請求の範囲に記載された「貫通孔」に相当)を有している。スライド孔72は、フォーク32のスライド孔54(図7参照)と同一の形状を呈する。スライド孔72は、スライド孔54と左右方向に離間して対向しており、上下方向7及び前後方向8において同一位置に配置され(図10参照)ている。 The cover 62 is stretched between the side plate 46 of the fork 32 and the handle 41. As shown in FIGS. 6 and 8, the cover 62 is a mountain-shaped member formed by bending an elongated plate-shaped member at a right angle. The cover 62 includes a first plate portion 65 extending in the left-right direction 9 and a second plate portion 66 extending in the front-rear direction 8. As shown in FIG. 6, the right edge 67 of the first plate portion 65 is connected to the left surface 68 of the side plate 46 of the fork 32 (corresponding to “wall portion” and “seat surface” recited in the claims). Has been. As shown in FIG. 8, the rear end portion of the second plate portion 66 has a through hole 71 that penetrates in the left-right direction 9. As shown in FIG. 6, the base end portion 56 of the handle 41 is inserted into the through hole 71 of the cover 62. The base end portion 56 of the handle 41 and the through hole 71 are fixed by welding, for example. As shown in FIG. 8, the second plate portion 66 has a slide hole 72 (corresponding to a “through hole” described in claims) that penetrates in the left-right direction 9. The slide hole 72 has the same shape as the slide hole 54 (see FIG. 7) of the fork 32. The slide hole 72 is opposed to the slide hole 54 in the left-right direction, and is disposed at the same position in the up-down direction 7 and the front-rear direction 8 (see FIG. 10).
 図9に示されるように、スライド板63は、略矩形板状のフラットバーである。スライド板63は、上下方向7(紙面に垂直な方向)に貫通する矩形の貫通孔73(特許請求の範囲に記載された「開口」に相当)を有している。貫通孔73の内周面74における右端面74Aに突片75(特許請求の範囲に記載された「係合部」に相当)が形成されている。この突片75は、矩形状を呈し左方に突出している。貫通孔73の内周面74における左端面74Bに突片78(特許請求の範囲に記載された「係合部」に相当)が形成されている。この突片78は、上記突片75と同一の形状であり、上記左端面74Bから右方に突出して上記突片78と対向している。突片75及び突片78の前後方向8の寸法は同一であり、後述するコイルバネ64の内径と略同一である。スライド板63の右端面80に係合部81が設けられている。係合部81は、上記右端面80から右方に突出している。係合部81は、上下方向7に貫通する貫通孔82を有している。図10に示されるように、スライド板63は、フォーク32のスライド孔54(図7参照)及びカバー62のスライド孔72(図8参照)に、左右方向9(特許請求の範囲に記載された「スライド方向」に相当)にスライド可能に挿通される(図6参照)。 As shown in FIG. 9, the slide plate 63 is a substantially rectangular plate-shaped flat bar. The slide plate 63 has a rectangular through hole 73 (corresponding to an “opening” recited in the claims) penetrating in the vertical direction 7 (direction perpendicular to the paper surface). A projecting piece 75 (corresponding to an “engagement portion” described in claims) is formed on the right end surface 74A of the inner peripheral surface 74 of the through hole 73. The protruding piece 75 has a rectangular shape and protrudes to the left. A projecting piece 78 (corresponding to an “engagement portion” described in claims) is formed on the left end surface 74B of the inner peripheral surface 74 of the through hole 73. The projecting piece 78 has the same shape as the projecting piece 75, protrudes rightward from the left end surface 74 </ b> B, and faces the projecting piece 78. The dimensions of the projecting piece 75 and the projecting piece 78 in the front-rear direction 8 are the same, and are substantially the same as the inner diameter of a coil spring 64 described later. An engagement portion 81 is provided on the right end surface 80 of the slide plate 63. The engaging portion 81 protrudes rightward from the right end surface 80. The engaging portion 81 has a through hole 82 that penetrates in the vertical direction 7. As shown in FIG. 10, the slide plate 63 is described in the left-right direction 9 (described in claims) in the slide hole 54 (see FIG. 7) of the fork 32 and the slide hole 72 (see FIG. 8) of the cover 62. It is slidably inserted in the “sliding direction” (see FIG. 6).
 図10に示されるように、コイルバネ64は、フォーク32の側板46の左面68と、カバー62の第2板部66の右面66A(特許請求の範囲に記載された「辺部」及び「シート面」に相当)との間であって、かつ、スライド板63の貫通孔73(図9参照)における左端面74Bと右端面74Aとの間に、所定の初期圧縮量だけ圧縮された状態で配置される。コイルバネ64の右端部は、フォーク32の側板46の左面68及びスライド板63の貫通孔73における右端面74Aの少なくとも一方に当接する。また、コイルバネ64の左端部は、カバー62の第2板部66の右面66A及びスライド板63の貫通孔73の左端面74Bの少なくとも一方に当接する。コイルバネ64がセットされた状態で、スライド板63の貫通孔73の内周面74に形成された突片75,78(図9参照)は、コイルバネ64の内側に挿入される。これにより、コイルバネ64の前後方向8への移動が規制される。 As shown in FIG. 10, the coil spring 64 includes the left surface 68 of the side plate 46 of the fork 32 and the right surface 66A of the second plate portion 66 of the cover 62 (“side portion” and “sheet surface” recited in the claims). Between the left end surface 74B and the right end surface 74A of the through hole 73 (see FIG. 9) of the slide plate 63 in a compressed state by a predetermined initial compression amount. Is done. The right end portion of the coil spring 64 contacts at least one of the left surface 68 of the side plate 46 of the fork 32 and the right end surface 74A of the through hole 73 of the slide plate 63. Further, the left end portion of the coil spring 64 is in contact with at least one of the right surface 66A of the second plate portion 66 of the cover 62 and the left end surface 74B of the through hole 73 of the slide plate 63. With the coil spring 64 set, the projecting pieces 75 and 78 (see FIG. 9) formed on the inner peripheral surface 74 of the through hole 73 of the slide plate 63 are inserted inside the coil spring 64. Thereby, the movement of the coil spring 64 in the front-rear direction 8 is restricted.
[モード切替機構61の動作] [Operation of Mode Switching Mechanism 61]
 図10は、モード切替機構61の動作を示す平面図であり、(A)はスライド板63が中立位置より右方に移動した状態、(B)はスライド板63が中立位置に位置する定常状態、(C)はスライド板63が中立位置より左方に移動した状態を示す。 10A and 10B are plan views showing the operation of the mode switching mechanism 61, where FIG. 10A shows a state where the slide plate 63 has moved to the right from the neutral position, and FIG. 10B shows a steady state where the slide plate 63 is located at the neutral position. (C) shows a state in which the slide plate 63 has moved to the left from the neutral position.
 図10(B)に示される状態から、フォーク32に対してスライド板63が右方に移動すると、図10(A)に示される状態に至る。図10(A)に示される状態では、図10(B)に示される状態と比較して、フォーク32の側板46の左面68と、スライド板63の貫通孔73(図9参照)における左端面74Bとの間隔が縮まる。コイルバネ64の右端は、上記側板46の左面68に当接しており、コイルバネ64が右方に移動することが規制されているため、コイルバネ64が初期圧縮量から更に圧縮される。このとき、スライド板63における係合部81の貫通孔82とフォーク32の側板46との距離は、図10(B)に示される定常状態と比較して長くなる。図10(A)に示される状態では、図10(B)に示される中立位置にスライド板63が復帰するように、スライド板63にコイルバネ64の付勢力が働く。 10B, when the slide plate 63 moves to the right with respect to the fork 32, the state shown in FIG. 10A is reached. 10A, compared with the state shown in FIG. 10B, the left end surface of the left surface 68 of the side plate 46 of the fork 32 and the through-hole 73 of the slide plate 63 (see FIG. 9). The interval with 74B is reduced. The right end of the coil spring 64 is in contact with the left surface 68 of the side plate 46, and the coil spring 64 is restricted from moving to the right, so that the coil spring 64 is further compressed from the initial compression amount. At this time, the distance between the through hole 82 of the engaging portion 81 and the side plate 46 of the fork 32 in the slide plate 63 is longer than that in the steady state shown in FIG. In the state shown in FIG. 10A, the urging force of the coil spring 64 acts on the slide plate 63 so that the slide plate 63 returns to the neutral position shown in FIG.
 図10(B)に示される状態から、フォーク32に対してスライド板63が左方に移動すると、図10(C)に示される状態に至る。図10(C)に示される状態では、図10(B)に示される状態と比較して、カバー62の第2板部66の右面66Aと、スライド板63の貫通孔73(図9参照)における右端面74Aとの間隔が縮まる。コイルバネ64の左端は、カバー62の第2板部66に当接しており、コイルバネ64が左方に移動することが規制されているため、コイルバネ64が初期圧縮量から更に圧縮される。このとき、スライド板63における係合部81の貫通孔82とフォーク32の側板46との距離は、図10(B)に示される定常状態と比較して短くなる。図10(C)に示される状態では、図10(B)に示される中立位置にスライド板63が復帰するように、スライド板63にコイルバネ64の付勢力が働く。 10B, when the slide plate 63 moves to the left with respect to the fork 32, the state shown in FIG. 10C is reached. In the state shown in FIG. 10C, compared to the state shown in FIG. 10B, the right surface 66A of the second plate portion 66 of the cover 62 and the through-hole 73 of the slide plate 63 (see FIG. 9). At the right end surface 74A. Since the left end of the coil spring 64 is in contact with the second plate portion 66 of the cover 62 and the coil spring 64 is restricted from moving leftward, the coil spring 64 is further compressed from the initial compression amount. At this time, the distance between the through hole 82 of the engaging portion 81 and the side plate 46 of the fork 32 in the slide plate 63 is shorter than that in the steady state shown in FIG. In the state shown in FIG. 10C, the urging force of the coil spring 64 acts on the slide plate 63 so that the slide plate 63 returns to the neutral position shown in FIG.
[オーバーストロークモード] [Overstroke mode]
 図11及び図12は、オーバーストロークモードにおけるモード切替機構61の動作を説明する図である。 11 and 12 are diagrams for explaining the operation of the mode switching mechanism 61 in the overstroke mode.
 図11は、オペレータによりハンドル41が中立位置から矢印87の向きへ回動操作されたときのモード切替機構61の状態を示している。 FIG. 11 shows a state of the mode switching mechanism 61 when the handle 41 is turned from the neutral position in the direction of the arrow 87 by the operator.
 図11(A)は、ハンドル41及びスライド板63が中立位置(図10(B)参照)にある状態のモード切替機構61である。この状態において、スライド板63の係合部81は、スプール36を移動させるための力をスプール36に加えていないので、スプール36からの抗力も係合部81に加わっていない。よって、モード切替機構61はニュートラルな状態、すなわち、スライド板63が中立位置から左右方向9に移動していない状態にある。この状態において、コイルバネ64は、所定の初期圧縮量だけ圧縮された状態にある。この状態においては、作業装置(車両搭載用クレーン10)は動作しない。 FIG. 11A shows the mode switching mechanism 61 in a state where the handle 41 and the slide plate 63 are in the neutral position (see FIG. 10B). In this state, the engaging portion 81 of the slide plate 63 does not apply a force for moving the spool 36 to the spool 36, so that no drag force from the spool 36 is applied to the engaging portion 81. Therefore, the mode switching mechanism 61 is in a neutral state, that is, a state in which the slide plate 63 has not moved in the left-right direction 9 from the neutral position. In this state, the coil spring 64 is compressed by a predetermined initial compression amount. In this state, the work device (vehicle-mounted crane 10) does not operate.
 図11(A)が示す状態からハンドル41が矢印87の向きへ回動操作されると、回動軸33を中心にフォーク32が矢印87向きに回動し、スプール36がスプールエンドに達するまで矢印88の向きに移動して、モード切替機構61は、図11(B)が示す状態に至る。 When the handle 41 is rotated in the direction of the arrow 87 from the state shown in FIG. 11A, the fork 32 rotates in the direction of the arrow 87 about the rotation shaft 33 until the spool 36 reaches the spool end. Moving in the direction of the arrow 88, the mode switching mechanism 61 reaches the state shown in FIG.
 具体的には、図11(A)が示す状態から図11(B)が示す状態までの過程において、スライド板63の係合部81は、スプール36に対して矢印88の向きへ力を加える。そのため、スプール36からの抗力として係合部81に対して矢印88と反対の向きへの力が加わる。しかし、モード切替機構61のコイルバネ64には、スプール36を矢印88の向きへ移動させるのに必要な力が加わっても圧縮されないものが使用されている。すなわち、コイルばね64を初期圧縮量から更に圧縮するのに必要な力は、油圧制御弁35においてスプール36を中立位置に付勢するスプリング(不図示)を圧縮するのに必要な力より大きい。そのため、コイルバネ64は初期圧縮量からは圧縮されず、スライド板63は、フォーク32に対して相対的に移動しない。よって、係合部81が矢印88の向きに移動し、スプール36が矢印88の向きに直線移動する。 Specifically, in the process from the state shown in FIG. 11A to the state shown in FIG. 11B, the engaging portion 81 of the slide plate 63 applies a force to the spool 36 in the direction of the arrow 88. . Therefore, a force in the direction opposite to the arrow 88 is applied to the engaging portion 81 as a drag force from the spool 36. However, the coil spring 64 of the mode switching mechanism 61 is not compressed even when a force necessary to move the spool 36 in the direction of the arrow 88 is applied. That is, the force required to further compress the coil spring 64 from the initial compression amount is greater than the force required to compress a spring (not shown) that biases the spool 36 to the neutral position in the hydraulic control valve 35. Therefore, the coil spring 64 is not compressed from the initial compression amount, and the slide plate 63 does not move relative to the fork 32. Therefore, the engaging portion 81 moves in the direction of the arrow 88, and the spool 36 moves linearly in the direction of the arrow 88.
 図11(A)が示す状態から図11(B)が示す状態までの操作レバー31の操作モードは、ノーマルストロークモードである。ノーマルストロークモードにおいては、作業装置の動作方向(例えば、旋回台13の旋回方向)及び動作速度(例えば、旋回台13の旋回速度)を決定する油圧制御弁35(図5参照)の状態が、スプール36の矢印向き88における位置によって決定される。そのため、図11(A)が示す状態から図11(B)が示す状態への操作レバー31の回動操作により、作業装置は所定の向きに動作する。また、スプール36の移動量に相当する速度で作業装置が動作する。 The operation mode of the operation lever 31 from the state shown in FIG. 11 (A) to the state shown in FIG. 11 (B) is a normal stroke mode. In the normal stroke mode, the state of the hydraulic control valve 35 (see FIG. 5) that determines the operation direction (for example, the turning direction of the turntable 13) and the operation speed (for example, the turn speed of the turntable 13) of the work device is It is determined by the position of the spool 36 in the arrow direction 88. Therefore, the working device operates in a predetermined direction by the turning operation of the operation lever 31 from the state shown in FIG. 11A to the state shown in FIG. Further, the work device operates at a speed corresponding to the movement amount of the spool 36.
 図11(B)が示す状態からハンドル41が矢印87の向きへ更に回動操作されると、スプール36がスプールエンド(図11(B)参照)に位置したまま、回動軸33を中心にフォーク32が矢印87の向きに更に回動して、モード切替機構61は、図11(C)が示す状態に至る。 When the handle 41 is further rotated in the direction of the arrow 87 from the state shown in FIG. 11B, the spool 36 remains at the spool end (see FIG. 11B) and the rotation shaft 33 is centered. The fork 32 further rotates in the direction of the arrow 87, and the mode switching mechanism 61 reaches the state shown in FIG.
 具体的には、図11(B)が示す状態において、スプール36は、既にスプールエンドに達しているので矢印88の向きに移動できない。そのため、図11(B)が示す状態から図11(C)が示す状態への過程において、コイルバネ64が初期圧縮量から更に圧縮され、スライド板63がスライド向き90にスライド移動する。そのため、係合部81とカバー62の第2板部66との間隔が短くなる。これにより、スプール36がスプールエンドで停止したまま、フォーク32が図11(B)に示される位置から更に回動する。 Specifically, in the state shown in FIG. 11 (B), the spool 36 has already reached the spool end and cannot move in the direction of the arrow 88. Therefore, in the process from the state shown in FIG. 11B to the state shown in FIG. 11C, the coil spring 64 is further compressed from the initial compression amount, and the slide plate 63 slides in the sliding direction 90. Therefore, the interval between the engaging portion 81 and the second plate portion 66 of the cover 62 is shortened. Thereby, the fork 32 further rotates from the position shown in FIG. 11B while the spool 36 is stopped at the spool end.
 図11(B)が示す状態から図11(C)が示す状態までの操作レバー31の操作モードは、オーバーストロークモードである。オーバーストロークモードにおいては、作業装置の動作速度を決定するエンジンスロットルの開度は、フォーク32の回動位置によって決定される。そのため、図11(B)が示す状態から図11(C)が示す状態への操作レバー31の回動操作により、エンジンスロットルが開かれ、エンジンスロットルの開度に応じて作業装置の動作速度が更に上がる。 The operation mode of the operation lever 31 from the state shown in FIG. 11 (B) to the state shown in FIG. 11 (C) is an overstroke mode. In the overstroke mode, the opening of the engine throttle that determines the operating speed of the work device is determined by the rotational position of the fork 32. Therefore, the engine throttle is opened by the turning operation of the operation lever 31 from the state shown in FIG. 11B to the state shown in FIG. 11C, and the operating speed of the working device is set according to the opening of the engine throttle. Go up further.
 図12は、オペレータによりハンドル41が中立位置から矢印86の向きへ回動操作されたときのモード切替機構61の状態を示している。図12(A)に示されるモード切替機構61の状態は、図11(A)に示されるモード切替機構61の状態と同じである。 FIG. 12 shows the state of the mode switching mechanism 61 when the handle 41 is turned from the neutral position in the direction of the arrow 86 by the operator. The state of the mode switching mechanism 61 shown in FIG. 12 (A) is the same as the state of the mode switching mechanism 61 shown in FIG. 11 (A).
 図12(A)が示す状態からハンドル41が矢印86の向きへ回動操作されると、回動軸33を中心にフォーク32が矢印86の向きに回動し、スプール36がスプールエンドに達するまで矢印89の向きに移動して、モード切替機構61は、図12(B)が示す状態に至る。 When the handle 41 is rotated in the direction of the arrow 86 from the state shown in FIG. 12A, the fork 32 rotates in the direction of the arrow 86 around the rotation shaft 33, and the spool 36 reaches the spool end. Until the mode switching mechanism 61 reaches the state shown in FIG.
 具体的には、図12(A)が示す状態から図12(B)が示す状態までの過程において、スライド板63の係合部81は、スプール36に対して矢印89の向きへ力を加える。そのため、スプール36からの抗力として係合部81に対して矢印89と反対の向きへの力が加わる。しかし、モード切替機構61のコイルバネ64には、スプール36を矢印89の向きへ移動させるのに必要な力が加わっても圧縮されないものが使用されている。すなわち、コイルばね64を初期圧縮量から更に圧縮するのに必要な力は、油圧制御弁35においてスプール36を中立位置に付勢するスプリング(不図示)を圧縮するのに必要な力より大きい。そのため、コイルバネ64は初期圧縮量からは圧縮されず、スライド板63は、フォーク32に対して相対的に移動しない。よって、係合部が矢印89の向きに移動し、スプール36が矢印89の向きに直線移動する。 Specifically, in the process from the state shown in FIG. 12A to the state shown in FIG. 12B, the engaging portion 81 of the slide plate 63 applies a force to the spool 36 in the direction of the arrow 89. . Therefore, a force in the direction opposite to the arrow 89 is applied to the engaging portion 81 as a drag force from the spool 36. However, a coil spring 64 of the mode switching mechanism 61 is used that is not compressed even when a force necessary to move the spool 36 in the direction of the arrow 89 is applied. That is, the force required to further compress the coil spring 64 from the initial compression amount is greater than the force required to compress a spring (not shown) that biases the spool 36 to the neutral position in the hydraulic control valve 35. Therefore, the coil spring 64 is not compressed from the initial compression amount, and the slide plate 63 does not move relative to the fork 32. Therefore, the engaging portion moves in the direction of the arrow 89, and the spool 36 moves linearly in the direction of the arrow 89.
 図12(A)が示す状態から図12(B)が示す状態までの操作レバー31の操作モードは、ノーマルストロークモードである。 The operation mode of the operation lever 31 from the state shown in FIG. 12 (A) to the state shown in FIG. 12 (B) is the normal stroke mode.
 図12(B)が示す状態からハンドル41が矢印86の向きへ更に回動操作されると、スプール36がスプールエンド(図12(B)参照)に位置したまま、回動軸33を中心にフォーク32が矢印86の向きに更に回動して、モード切替機構61は、図11(C)が示す状態に至る。 When the handle 41 is further rotated in the direction of the arrow 86 from the state shown in FIG. 12B, the spool 36 remains at the spool end (see FIG. 12B) and the rotation shaft 33 is set as the center. The fork 32 further rotates in the direction of the arrow 86, and the mode switching mechanism 61 reaches the state shown in FIG.
 具体的には、図12(B)が示す状態において、スプール36は、既にスプールエンドに達しているので矢印89の向きに移動できない。そのため、図12(B)が示す状態から図12(C)が示す状態への過程において、コイルバネ64が初期圧縮量から更に圧縮され、スライド板63がスライド向き91にスライド移動する。そのため、係合部81とカバー62の第2板部66との間隔が長くなる。これにより、スプール36がスプールエンドで停止したまま、フォーク32が図12(B)に示される位置から更に回動する。 Specifically, in the state shown in FIG. 12B, the spool 36 has already reached the spool end and cannot move in the direction of the arrow 89. Therefore, in the process from the state shown in FIG. 12B to the state shown in FIG. 12C, the coil spring 64 is further compressed from the initial compression amount, and the slide plate 63 slides in the sliding direction 91. Therefore, the interval between the engaging portion 81 and the second plate portion 66 of the cover 62 becomes long. Thereby, the fork 32 further rotates from the position shown in FIG. 12B while the spool 36 is stopped at the spool end.
 図12(B)が示す操作レバー31の状態から図12(C)が示す操作レバー31の操作モードは、オーバーストロークモードである。 The operation mode of the operation lever 31 shown in FIG. 12C from the state of the operation lever 31 shown in FIG. 12B is an overstroke mode.
[本実施形態の作用効果] [Operational effects of this embodiment]
 以上のように、図6に示されるように、フォーク32の一部と、スライド板63と、カバー62と、コイルバネ64のみで操作レバー31がオーバーストローク機能を発揮する構造が実現されている。しかも、コイルバネ64は特別な構造が要求されるものではないし、スライド板63及びカバー62も同様である。したがって、これら部品の製造に、従来のような絞り加工や旋盤加工その他機械加工を必要としないし、操作レバー31の部品点数も従来に比べて削減される。 As described above, as shown in FIG. 6, the structure in which the operation lever 31 exhibits the overstroke function is realized by only a part of the fork 32, the slide plate 63, the cover 62, and the coil spring 64. Moreover, the coil spring 64 does not require a special structure, and the slide plate 63 and the cover 62 are the same. Therefore, the manufacture of these parts does not require drawing, lathe, or other machining as in the prior art, and the number of parts of the operating lever 31 is reduced as compared with the prior art.
 図10に示されるように、スライド板63が図10(B)に示される中立位置にあるとき、コイルバネ64は、フォーク32の側板46の左面68とカバー62の第2板部66の右面66Aとの間で保持される。フォーク32の側板46の左面68はフォーク32の一部により構成され、カバー62の第2板部66の右面66Aはカバー62の一部により構成されるので、コイルバネ64を保持するために特別の部品を要しない。オーバーストロークモードにおいてスライド板63がスライドされるとき、コイルバネ64は、フォーク32の側板46の左面68とスライド板63の貫通孔73における左端面74Bとの間、或いは、スライド板63の貫通孔73における右端面74Aとカバー62の第2板部66の右面66Aとの間で挟み込まれ、弾性力を発揮し、スライド板63を中立位置へ復帰させようとする。 As shown in FIG. 10, when the slide plate 63 is in the neutral position shown in FIG. 10B, the coil spring 64 has the left surface 68 of the side plate 46 of the fork 32 and the right surface 66 </ b> A of the second plate portion 66 of the cover 62. Held between. The left surface 68 of the side plate 46 of the fork 32 is constituted by a part of the fork 32, and the right surface 66A of the second plate portion 66 of the cover 62 is constituted by a part of the cover 62. No parts are required. When the slide plate 63 is slid in the overstroke mode, the coil spring 64 is arranged between the left surface 68 of the side plate 46 of the fork 32 and the left end surface 74B of the through hole 73 of the slide plate 63, or through the through hole 73 of the slide plate 63. Is sandwiched between the right end surface 74A and the right surface 66A of the second plate portion 66 of the cover 62, exerts an elastic force, and attempts to return the slide plate 63 to the neutral position.
 フォーク32の側板46の左面68及びカバー62の第2板部66の右面66Aは、簡単な部材から構成される。しかも、フォーク32の側板46の左面68及びカバー62の第2板部66の右面66Aにスライド孔54,72が形成されることにより、スライド板63が左右方向9(図10参照)にスライド自在に保持される。つまり、簡単な構造でスライド板63が支持される。 The left surface 68 of the side plate 46 of the fork 32 and the right surface 66A of the second plate portion 66 of the cover 62 are composed of simple members. Moreover, slide holes 54 and 72 are formed in the left surface 68 of the side plate 46 of the fork 32 and the right surface 66A of the second plate portion 66 of the cover 62, so that the slide plate 63 can slide in the left-right direction 9 (see FIG. 10). Retained. That is, the slide plate 63 is supported with a simple structure.
 フォーク32とカバー62との間に介在されたコイルバネ64が、スライド板63の貫通孔73(図9参照)内に配置される。そのため、フォーク32、スライド板63、カバー62及びコイルバネ64がコンパクトにレイアウトされる。しかも、このレイアウトは、きわめて簡単に実現される。 A coil spring 64 interposed between the fork 32 and the cover 62 is disposed in the through hole 73 (see FIG. 9) of the slide plate 63. Therefore, the fork 32, the slide plate 63, the cover 62, and the coil spring 64 are laid out in a compact manner. Moreover, this layout is very easy to implement.
 コイルバネ64もスライド板63も、材料として汎用品が採用され得る。しかも、コイルバネ64は、スライド板63に設けられた一対の突片75,78により支持されるので、簡単且つ確実にコイルバネ64が上記中立位置に保持されるし、スライド板63がスライドした場合であっても、コイルバネ64は安定して弾性変形をすることができる。 The coil spring 64 and the slide plate 63 may be general-purpose products. In addition, since the coil spring 64 is supported by a pair of protrusions 75 and 78 provided on the slide plate 63, the coil spring 64 is easily and reliably held at the neutral position, and the slide plate 63 is slid. Even if it exists, the coil spring 64 can be elastically deformed stably.
[変形例] [Modification]
 前述の実施形態では、カバー62は、一端部がフォーク32に固定され、他端部がハンドル41に固定されている。しかしながら、カバー62は、ハンドル41のみに固定されていてもよいし、フォーク32のみに固定されていてもよい。例えば、カバー62をU字型に形成し、両端をフォーク32又はハンドル41に固定することにより、カバー62がフォーク32又はハンドル41の一方のみに固定される。 In the above-described embodiment, the cover 62 has one end fixed to the fork 32 and the other end fixed to the handle 41. However, the cover 62 may be fixed only to the handle 41 or may be fixed only to the fork 32. For example, the cover 62 is formed in a U-shape and both ends are fixed to the fork 32 or the handle 41, so that the cover 62 is fixed to only one of the fork 32 or the handle 41.
 前述の実施形態では、弾性体としてコイルバネ64が使用されたが、コイルバネ64に代えてゴムやねじりばね等の種々の弾性体が使用されてもよい。 In the above-described embodiment, the coil spring 64 is used as the elastic body, but various elastic bodies such as rubber and a torsion spring may be used instead of the coil spring 64.
 また、スライド板63の突片75,78に加えて、フォーク32の側板46の左面68、及びカバー62の第2板部66の右面66Aにも、コイルバネ64に挿入される突片が形成されていてもよい。これにより、スライド板63がスライドされたことにより、コイルバネ64の一方の端部がスライド板63の突片75,78のいずれか一方に支持されていない状態においても、突片75,78に支持されていないコイルバネ64の端部がフォーク32又はカバー62の突片に支持されるので、コイルバネ64が安定して弾性変形をすることができる。 In addition to the projecting pieces 75 and 78 of the slide plate 63, projecting pieces to be inserted into the coil spring 64 are also formed on the left surface 68 of the side plate 46 of the fork 32 and the right surface 66 </ b> A of the second plate portion 66 of the cover 62. It may be. As a result, the slide plate 63 is slid, so that one end of the coil spring 64 is supported by the projecting pieces 75 and 78 even in a state where the end of the coil spring 64 is not supported by either one of the projecting pieces 75 and 78 of the slide plate 63. Since the end portion of the coil spring 64 that is not provided is supported by the projecting piece of the fork 32 or the cover 62, the coil spring 64 can be stably elastically deformed.
 本願発明に係る操作レバー31は、車両搭載型クレーン10以外の作業装置に使用されてもよい。 The operation lever 31 according to the present invention may be used in a working device other than the vehicle-mounted crane 10.
 33・・・回動軸(回動軸線)
 32・・・フォーク(基台)
 41・・・ハンドル
 36・・・スプール(操作対象)
 9・・・左右方向(スライド方向)
 63・・・スライド板
 62・・・カバ-(案内板、山型部材)
 64・・・コイルバネ(弾性部材)
 31・・・操作レバー
 68・・・左面(壁部、シート面)
 66A・・・右面(辺部、シート面)
 75,78・・・突片(係合部)
 72・・・スライド孔(貫通孔)
 54・・・スライド孔(貫通孔)
 73・・・貫通孔(開口)
 74・・・内周面
33 ... Rotation axis (rotation axis)
32 ... Fork (base)
41 ... handle 36 ... spool (operation target)
9 ... Left-right direction (sliding direction)
63 ... Slide plate 62 ... Cover (guide plate, angle member)
64... Coil spring (elastic member)
31 ... Control lever 68 ... Left surface (wall, sheet surface)
66A ... right side (side, sheet side)
75, 78 ... Projection piece (engagement part)
72 ... slide hole (through hole)
54 ... Slide hole (through hole)
73 ... Through hole (opening)
74 ... Inner peripheral surface

Claims (5)

  1.  所定の回動軸線を中心として回動可能な基台と、
     当該基台に設けられ、当該基台を上記回動軸線を中心として回動させるハンドルと、
     操作対象が接続されると共に、所定の中立位置を基準として上記回動軸線に直交するスライド方向に沿って往復移動可能な状態で上記基台に支持されたスライド板と、
     当該スライド板の往復移動を案内する案内板と、
     上記基台と上記案内板との間に配置されると共に上記スライド板に係合され、上記スライド板が上記中立位置からスライドしたときに当該中立位置に復帰させるように当該スライド板を付勢する弾性部材とを備えた操作レバー。
    A base that can rotate about a predetermined axis of rotation;
    A handle provided on the base, for rotating the base around the rotation axis;
    A slide plate supported by the base in a state in which the operation target is connected and is capable of reciprocating along a slide direction orthogonal to the rotation axis with respect to a predetermined neutral position;
    A guide plate for guiding the reciprocating movement of the slide plate;
    The slide plate is disposed between the base and the guide plate and engaged with the slide plate, and urges the slide plate to return to the neutral position when the slide plate slides from the neutral position. An operation lever provided with an elastic member.
  2.  上記スライド方向に沿って対向する一対のシート面が上記基台及び案内板に形成されており、上記スライド板が上記中立位置にある状態で上記弾性部材が上記一対のシート面に保持されており、
     上記スライド板は、上記スライド方向に沿って対向する一対の係合部を有し、
     一方の係合部は、上記スライド板が上記スライド方向一方側にスライドしたときに上記案内板のシート面に代わって上記弾性部材と係合し当該弾性部材を上記基台のシート面との間で挟持するように形成され、
     他方の係合部は、上記スライド板が上記スライド方向他方側にスライドしたときに上記基台のシート面に代わって上記弾性部材と係合し当該弾性部材を上記案内板のシート面との間で挟持するように形成されている請求項1に記載の操作レバー。
    A pair of seat surfaces facing the slide direction are formed on the base and the guide plate, and the elastic member is held on the pair of seat surfaces in a state where the slide plate is in the neutral position. ,
    The slide plate has a pair of engaging portions facing along the slide direction,
    One engaging portion engages with the elastic member instead of the seat surface of the guide plate when the slide plate slides to one side in the sliding direction, and the elastic member is placed between the seat surface of the base. Formed to be sandwiched between
    The other engaging portion engages with the elastic member instead of the seat surface of the base when the slide plate slides to the other side in the sliding direction, and the elastic member is placed between the seat surface of the guide plate. The operation lever according to claim 1, wherein the operation lever is formed so as to be held between the two.
  3.  上記基台のシート面は、上記スライド方向と直交する壁部からなると共に当該壁部は、上記スライド板がスライド可能に嵌合され且つ上記弾性部材の挿通を規制する貫通孔を有しており、
     上記案内板は、一対の辺部を有し、上記基台と上記ハンドルとの間に架設された山型部材からなると共に当該案内板のシート面は、上記壁部と対向配置された一方の辺部からなり、当該一方の辺部は、上記スライド板がスライド可能に嵌合され且つ上記弾性部材の挿通を規制する貫通孔を有している請求項2に記載の操作レバー。
    The seat surface of the base is composed of a wall portion orthogonal to the sliding direction, and the wall portion has a through-hole into which the slide plate is slidably fitted and restricts insertion of the elastic member. ,
    The guide plate has a pair of side portions, and is formed of a mountain-shaped member erected between the base and the handle, and the sheet surface of the guide plate is disposed opposite to the wall portion. The operating lever according to claim 2, comprising a side portion, and the one side portion has a through hole into which the slide plate is slidably fitted and restricts insertion of the elastic member.
  4.  上記スライド板の中央に上記回動軸線に沿う方向に貫通する開口が設けられ、当該開口の内周面のうち上記スライド方向に沿って対向する部位に上記一対の係合部が形成されており、
     上記弾性部材は、上記開口に配置されている請求項2又は3に記載の操作レバー。
    An opening penetrating in the direction along the rotation axis is provided at the center of the slide plate, and the pair of engaging portions are formed in a portion of the inner peripheral surface of the opening that is opposed along the slide direction. ,
    The operation lever according to claim 2, wherein the elastic member is disposed in the opening.
  5.  上記弾性部材は、所定の内径を有するコイルバネであり、
     上記スライド材はフラットバーからなり、上記開口は矩形を呈すると共に上記一対の係合部は上記コイルバネに挿入される突片である請求項4に記載の操作レバー。
    The elastic member is a coil spring having a predetermined inner diameter,
    The operation lever according to claim 4, wherein the slide member is a flat bar, the opening has a rectangular shape, and the pair of engaging portions are projecting pieces inserted into the coil spring.
PCT/JP2017/009085 2016-03-14 2017-03-07 Operation lever WO2017159468A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187018886A KR102061161B1 (en) 2016-03-14 2017-03-07 joystick
CN201780004938.2A CN108473288B (en) 2016-03-14 2017-03-07 Operating stick

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016050118A JP6342933B2 (en) 2016-03-14 2016-03-14 Operation lever
JP2016-050118 2016-03-14

Publications (1)

Publication Number Publication Date
WO2017159468A1 true WO2017159468A1 (en) 2017-09-21

Family

ID=59851566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009085 WO2017159468A1 (en) 2016-03-14 2017-03-07 Operation lever

Country Status (4)

Country Link
JP (1) JP6342933B2 (en)
KR (1) KR102061161B1 (en)
CN (1) CN108473288B (en)
WO (1) WO2017159468A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6973125B2 (en) * 2018-01-31 2021-11-24 株式会社タダノ Lever device
JP7119394B2 (en) 2018-01-31 2022-08-17 株式会社タダノ operating valves and cranes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50115341U (en) * 1974-03-06 1975-09-19
JPS62164290U (en) * 1986-04-08 1987-10-19
JPS63239327A (en) * 1986-10-05 1988-10-05 Hitachi Constr Mach Co Ltd Driving controller for hydraulic construction machine
JPH0165291U (en) * 1987-10-16 1989-04-26

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623521Y2 (en) * 1975-10-15 1981-06-03
JPS6093700U (en) * 1983-12-02 1985-06-26 株式会社クボタ Operation structure of work vehicle
JPH0325210U (en) 1989-07-21 1991-03-15
CN202271845U (en) * 2011-10-27 2012-06-13 重庆市大渡口区爱森机械制造有限公司 Operation frame
DE102012002968A1 (en) * 2012-02-16 2013-08-22 Claas Selbstfahrende Erntemaschinen Gmbh Crawler vehicle e.g. combine harvester has control lever that is provided for controlling intermediate speed of speed controllable drive units and degree of displacement in speed difference between speed controllable drive units

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50115341U (en) * 1974-03-06 1975-09-19
JPS62164290U (en) * 1986-04-08 1987-10-19
JPS63239327A (en) * 1986-10-05 1988-10-05 Hitachi Constr Mach Co Ltd Driving controller for hydraulic construction machine
JPH0165291U (en) * 1987-10-16 1989-04-26

Also Published As

Publication number Publication date
CN108473288A (en) 2018-08-31
CN108473288B (en) 2019-08-27
JP6342933B2 (en) 2018-06-13
JP2017165512A (en) 2017-09-21
KR20180097601A (en) 2018-08-31
KR102061161B1 (en) 2019-12-31

Similar Documents

Publication Publication Date Title
WO2017159468A1 (en) Operation lever
US9181963B2 (en) Operation lever lock apparatus
JP4902581B2 (en) Control console with multiple usage positions
JP2021008361A5 (en)
JP6827916B2 (en) Lever device and work machine equipped with it
US8225693B2 (en) Control lever mechanism adapted to be mounted to a cowl of a materials handling vehicle
CN108529454B (en) Boom coupling system for boom storage
JP6756239B2 (en) Jib mooring device
CN110565918A (en) wood floor installation angle adjusting mechanism and wood floor installation robot
JP4827076B2 (en) forklift
RU2730089C2 (en) Working machine control system
US20070006532A1 (en) Earth moving machine
JP2022088775A (en) High lift work vehicle
US20200207245A1 (en) Armrest apparatus and industrial vehicle including the same
JP7409753B2 (en) Outriggers and industrial vehicles equipped with such outriggers
JP7358993B2 (en) Loading truck crane
JP6753070B2 (en) Operation lever
JP6202744B2 (en) Hydraulic actuator speed control device
JP3161926B2 (en) Operation structure for work equipment of work vehicle
KR102229132B1 (en) Apparatus for cargo crane
CN220703056U (en) Throttle allies oneself with accuse mechanism, allies oneself with accuse device and lorry-mounted crane
JP2528724Y2 (en) Work vehicle accelerator control device
JP4108697B2 (en) Control valve operation device
JPH08172808A (en) Operation structure for working device of working vehicle
JP2570918B2 (en) Cargo handling device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187018886

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187018886

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766469

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766469

Country of ref document: EP

Kind code of ref document: A1