WO2017159204A1 - Control device for automatic transmission - Google Patents

Control device for automatic transmission Download PDF

Info

Publication number
WO2017159204A1
WO2017159204A1 PCT/JP2017/005799 JP2017005799W WO2017159204A1 WO 2017159204 A1 WO2017159204 A1 WO 2017159204A1 JP 2017005799 W JP2017005799 W JP 2017005799W WO 2017159204 A1 WO2017159204 A1 WO 2017159204A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase advance
advance amount
phase
compensation
control unit
Prior art date
Application number
PCT/JP2017/005799
Other languages
French (fr)
Japanese (ja)
Inventor
謙 岡原
Original Assignee
ジヤトコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社 filed Critical ジヤトコ株式会社
Priority to JP2018505366A priority Critical patent/JP6637588B2/en
Publication of WO2017159204A1 publication Critical patent/WO2017159204A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings

Definitions

  • the present invention relates to a control device for an automatic transmission having a continuously variable transmission mechanism mounted on a vehicle.
  • Patent Document 1 discloses a technique for performing shift control by performing phase advance compensation when controlling to achieve a target gear ratio.
  • phase advance compensation since the optimum value of the phase advance amount when performing phase advance compensation differs depending on the traveling state, appropriate phase advance compensation cannot be performed depending on the traveling state, which may give the driver a sense of incongruity.
  • a control device for an automatic transmission includes a controller that controls a continuously variable transmission mechanism, and the controller calculates a target gear ratio calculation unit that calculates a target gear ratio based on a running state;
  • a feedback control unit that performs feedback control based on an actual value representing a state of the continuously variable transmission mechanism, and phase compensation that performs phase advance compensation based on a predetermined phase advance amount to a command value based on the feedback control based on a running state
  • a stability limit that is larger than a first phase advance amount that becomes a vibration suppression limit capable of suppressing resonance of a power transmission path between the power source and the drive wheel, and that can avoid divergence of the feedback control unit
  • a phase compensation control unit that sets the predetermined phase advance amount so that the phase advance amount is smaller than the second phase advance amount.
  • phase lead compensation is performed based on an appropriate amount of phase lead, the uncomfortable feeling given to the driver can be suppressed.
  • FIG. 1 is a system diagram illustrating a control device for a continuously variable transmission according to a first embodiment.
  • FIG. FIG. 2 is a control block diagram illustrating an outline in a control unit according to the first embodiment.
  • the amplitude of the vibration component of the longitudinal acceleration G when the phase advance amount ⁇ is changed in a predetermined traveling state determined by the vehicle speed VSP and the accelerator pedal opening APO is shown.
  • it is a figure showing the magnitude
  • 10 is a flowchart illustrating a phase advance amount correction process according to the second embodiment.
  • 12 is a flowchart illustrating a phase advance amount learning process according to the third embodiment. 12 is a flowchart illustrating a phase advance amount learning process according to the fourth embodiment.
  • FIG. 1 is a system diagram illustrating a control device for an automatic transmission according to a first embodiment.
  • the vehicle according to the first embodiment includes an engine 1 that is an internal combustion engine and an automatic transmission, and transmits driving force to tires 8 that are driving wheels via a differential gear.
  • a power transmission path connecting the automatic transmission to the tire 8 is generically referred to as a power train PT.
  • the automatic transmission has a torque converter 2, an oil pump 3, a forward / reverse switching mechanism 4, and a continuously variable transmission mechanism (belt type continuously variable transmission mechanism) CVT.
  • the torque converter 2 is connected to the engine 1 and connected to the pump impeller 2b that rotates integrally with the drive claw that drives the oil pump 3, and the input side of the forward / reverse switching mechanism 4 (the input shaft of the continuously variable transmission mechanism CVT).
  • a turbine runner 2c and a lockup clutch 2a capable of integrally connecting the pump impeller 2b and the turbine runner 2c are provided.
  • the forward / reverse switching mechanism 4 includes a planetary gear mechanism and a plurality of clutches 4a, and switches between forward and reverse depending on the engagement state of the clutch 4a.
  • the continuously variable transmission mechanism CVT includes a primary pulley 5 connected to the output side of the forward / reverse switching mechanism 4 (input shaft of the continuously variable transmission), a secondary pulley 6 that rotates integrally with the drive wheels, and a primary pulley 5 and a secondary pulley.
  • the belt 7 is wound between the pulley 6 and transmits power, and the control valve unit 20 supplies control pressure to each hydraulic actuator.
  • the control unit 10 includes a range position signal from the shift lever 11 that selects the range position by the driver's operation (hereinafter, the range position signal is described as P range, R range, N range, and D range, respectively), and an accelerator.
  • Accelerator pedal opening signal (hereinafter referred to as APO) from the pedal opening sensor 12, brake pedal ON / OFF signal from the brake switch 17, and primary pulley pressure from the primary pulley pressure sensor 15 that detects the hydraulic pressure of the primary pulley 5 A signal, a secondary pulley pressure signal from the secondary pulley pressure sensor 16 that detects the hydraulic pressure of the secondary pulley 6, a primary rotation speed signal Npri from the primary pulley rotation speed sensor 13 that detects the rotation speed of the primary pulley 5, and the secondary pulley Secondary rotational speed signal from secondary pulley rotational speed sensor 14 that detects rotational speed of 6 Read and Nsec, and an engine speed signal Ne from the engine speed sensor 18 for detecting an engine speed, an acceleration signal from the G sensor 19 for detecting a
  • the control unit 10 controls the engaged state of the clutch 4a according to the range position signal. Specifically, in the P range or N range, the clutch 4a is released, and in the R range, a control signal is output to the control valve unit 20 so that the forward / reverse switching mechanism 4 outputs reverse rotation, and the reverse clutch (Or brake). In the D range, a control signal is output to the control valve unit 20 so that the forward / reverse switching mechanism 4 rotates integrally and outputs a normal rotation, and the clutch 4a is engaged. Further, the vehicle speed VSP is calculated based on the secondary rotational speed.
  • FIG. 2 is a block diagram showing a control configuration in the control unit 10 of the first embodiment.
  • the control unit 10 includes a target gear ratio calculation unit 101, a deviation calculation unit 102, a feedback control unit 103, a phase compensation unit 104, an addition unit 105, a command signal divergence detection unit 106, and an oil vibration detection unit 107.
  • the vehicle vibration detection unit 108, the phase compensation control unit 109, and the lockup control unit 110 that controls the engagement state of the lockup clutch 2a.
  • the target gear ratio calculation unit 101 calculates a target gear ratio ir * from a gear shift map that can achieve an optimal fuel consumption state based on the APO signal and the vehicle speed VSP.
  • the deviation calculation unit 102 detects the actual speed ratio ir based on the primary speed signal Npri and the secondary speed signal Nsec, which are actual values representing the state of the continuously variable transmission mechanism CVT, and the actual speed ratio ir and the target speed ratio ir Calculate the deviation from *.
  • the feedback control unit 103 calculates the feedback command signal for the solenoid that controls the pulley hydraulic pressure so that the set target speed ratio ir * and the actual speed ratio ir that is the actual value representing the state of the continuously variable transmission mechanism CVT coincide with each other. To do.
  • the phase compensation unit 104 calculates a phase advance amount ⁇ corresponding to the traveling state with respect to the command signal calculated by the feedback control unit 103, and calculates a phase compensation signal based on the phase advance amount ⁇ .
  • Adder 105 adds the phase compensation signal to the feedback command signal to calculate the final command signal.
  • the command signal divergence detection unit 106 detects whether or not the final command signal diverges. If not, the divergence flag F1 is turned off. If it is divergence, the divergence flag F1 is turned on. .
  • the divergence of the command signal is detected based on whether or not the state where the frequency is equal to or higher than the predetermined value and the amplitude is equal to or higher than the predetermined value continues for a predetermined time.
  • the oil vibration detection unit 107 first, the voltage signal detected by the primary pulley pressure sensor 15 and the secondary pulley pressure sensor 16 is converted into a hydraulic signal, and the DC component (variation component corresponding to the control command) is converted by band-pass filter processing. Remove and extract only the vibration component. Then, the amplitude of the vibration component is calculated, and if the state where the amplitude of either the primary pulley pressure or the secondary pulley pressure is greater than or equal to a predetermined amplitude continues for a predetermined time or longer, the oil vibration flag F2 is turned ON. On the other hand, when the oil vibration flag F2 is ON and the state where the amplitude is less than the predetermined amplitude continues for a predetermined time or longer, the oil vibration flag F2 is turned OFF.
  • the vehicle vibration detection unit 108 extracts the vibration component of the longitudinal acceleration G detected by the G sensor 19, and when the state where the amplitude of the vibration component is a predetermined value or more continues for a predetermined time or longer, the vibration flag F3 is turned ON. To do. On the other hand, when the state where the amplitude of the vibration component is less than a predetermined value continues for a predetermined time or longer, the vibration flag F3 is turned OFF.
  • the phase compensation control unit 109 reads information on the divergence flag F1, the oil vibration flag F2, and the vibration flag F3 and the range position signal, and calculates an operating point defined by VSP and APO. Then, after the engine is started, when all the various flags are OFF, a signal permitting the output of the phase compensation signal in the phase compensation unit 104 is output. On the other hand, when any one of the flags is turned ON, a signal for prohibiting the output of the phase compensation signal in the phase compensation unit 104 is output and a command for releasing the lockup clutch 2a is output.
  • FIG. 3 is a diagram showing the amplitude of the vibration component of the longitudinal acceleration G when the phase advance amount ⁇ is changed in a predetermined traveling state determined by the vehicle speed VSP and the accelerator pedal opening APO in the automatic transmission of the first embodiment. It is.
  • the vibration suppression function by phase advance compensation cannot be obtained, and vibration is caused by overlapping with the resonance frequency of the power train PT.
  • FIG. 3 is a diagram showing the amplitude of the vibration component of the longitudinal acceleration G when the phase advance amount ⁇ is changed in a predetermined traveling state determined by the vehicle speed VSP and the accelerator pedal opening APO in the automatic transmission of the first embodiment. It is.
  • the vibration suppression function by phase advance compensation cannot be obtained, and vibration is caused by overlapping with the resonance frequency of the power train PT.
  • phase advance amount ⁇ is larger than the second phase advance amount ⁇ 2 representing the stability limit, the vibration control function by phase advance compensation cannot be obtained due to the divergence of the command signal, and it becomes difficult to output an appropriate command signal. Therefore, when the phase advance amount ⁇ is set, a value larger than the first phase advance amount ⁇ 1 and smaller than the second phase advance amount ⁇ 2 is set.
  • the inventors have intensively studied in the driving state considered to be the most during normal driving. As a result, the relationship ⁇ 1 ⁇ 2 is obtained in most driving states, so that ⁇ satisfying the condition can be set. However, it has been understood that ⁇ 1 ⁇ ⁇ 2 in a specific traveling state. Therefore, when a traveling state having a relationship of ⁇ 1 ⁇ ⁇ 2 is detected, the phase compensation unit 104 prohibits the output of the phase compensation signal and outputs a command to release the lockup clutch 2a.
  • phase compensation signal is output from the unit 104, the vibration of the command signal may be increased, and the vibration may be amplified. Therefore, when the traveling state where ⁇ 1 ⁇ ⁇ 2 is detected, only the feedback control is made to function by prohibiting the output of the phase compensation signal. Thereby, a highly robust control configuration can be obtained. Further, by releasing the lock-up clutch 2a, the mass of the power train PT can be changed from the mass obtained by adding the engine mass to the mass obtained by excluding the engine mass.
  • the resonance frequency Since the resonance frequency has a correlation with the mass of the power train PT, the resonance frequency can be moved and the vibration can be suppressed by changing the mass.
  • a stop condition indicating the corresponding driving state is set in advance based on experiments or the like, and when the vehicle speed VSP and the accelerator pedal opening APO satisfy the stop condition, the phase compensation signal
  • the output may be prohibited and the lock-up clutch 2a may be released, the ⁇ 1 and ⁇ 2 corresponding to the running state are always calculated, and the output of the phase compensation signal is prohibited and locked by determining the magnitude relationship.
  • the up clutch 2a may be released.
  • a control unit 10 that controls a continuously variable transmission mechanism CVT that shifts by controlling a belt clamping pressure between the primary pulley 5 and the secondary pulley 6 by winding a belt 7 between the primary pulley 5 and the secondary pulley 6.
  • the control unit 10 includes a target transmission ratio calculation unit 101 that calculates the target transmission ratio ir * based on the running state, and an actual value that represents the state of the continuously variable transmission mechanism CVT so as to achieve the target transmission ratio ir *.
  • phase compensation unit 104 that performs phase advance compensation of feedback control based on the running state, and a power train PT (power source and Greater than the first phase advance amount ⁇ 1 (first phase advance amount), which becomes a vibration suppression limit capable of suppressing the resonance of the power transmission path with the drive wheel), and Phase compensation control that sets a predetermined phase advance amount ⁇ so that the phase advance amount is smaller than the second phase advance amount ⁇ 2 (second phase advance amount) that is a stability limit that can avoid the divergence of the back-back control unit 103. Part 109. Therefore, it is possible to stabilize the control and to stabilize the vehicle behavior.
  • phase compensation controller 109 stops the phase advance compensation by the phase compensator 104 when the first phase advance amount ⁇ 1 is larger than the second phase advance amount ⁇ 2. Therefore, it is possible to avoid phase advance compensation in a traveling state where an appropriate vibration suppression state cannot be obtained, and the vehicle behavior can be stabilized.
  • a torque converter 2 having a lock-up clutch 2a is provided between the engine 1 (power source) and the continuously variable transmission mechanism CVT, and the phase compensation controller 109 has a first phase advance amount ⁇ 1 When it is larger than the two-phase advance amount ⁇ 2, the lockup clutch 2a is released. Therefore, the resonance frequency can be changed by changing the mass of the power train PT, and vibration can be suppressed.
  • Example 2 Next, Example 2 will be described. Since the basic configuration is the same as that of the first embodiment, only different points will be described.
  • the phase advance amount ⁇ is set to a value corresponding to the traveling state in advance, and in the traveling state where the appropriate phase advance amount ⁇ is considered not to exist, the divergence flag F1, the oil vibration flag F2, and the vibration flag When either F3 is ON, the output of the phase compensation signal is prohibited and the lockup clutch 2a is released.
  • the phase advance amount ⁇ is corrected to output the phase compensation signal and the lockup clutch 2a is engaged. Is to try to continue.
  • FIG. 5 is a flowchart showing the phase lead amount correction processing according to the second embodiment.
  • step S1 it is determined whether or not the divergence flag F1 is ON. If OFF, the process proceeds to step S2, and if ON, the process proceeds to step S4.
  • step S2 it is determined whether or not the vibration flag F3 is ON. If it is ON, the process proceeds to step S3. If it is OFF, this control flow is terminated.
  • step S3 the phase advance amount ⁇ is increased (UP) by a predetermined amount. That is, when the divergence flag F1 is OFF and the vibration flag F3 is ON, there is a high possibility that the phase advance amount is insufficient and the resonance of the power train PT cannot be sufficiently suppressed. Therefore, the resonance of the power train PT is suppressed by increasing and correcting the phase advance amount ⁇ to advance the phase more.
  • step S4 it is determined whether or not the vibration flag F3 is ON. If ON, the process proceeds to step S6, and if OFF, the process proceeds to step S5.
  • step S5 the phase advance amount ⁇ is corrected to decrease (DOWN) by a predetermined amount. That is, when the divergence flag F1 is ON and the vibration flag F3 is OFF, there is a high possibility that the command signal is diverging because the phase advance amount is too large. Therefore, the divergence of the command signal is suppressed by reducing and correcting the phase advance amount ⁇ and suppressing the phase advance amount.
  • step S6 since the divergence flag F1 is ON and the vibration flag F3 is also ON, there is a high possibility of ⁇ 1 ⁇ ⁇ 2. Therefore, in this case, the vehicle behavior is stabilized by prohibiting the output of the phase advance compensation signal and releasing the lockup clutch 2a.
  • phase advance amount ⁇ As described above, in the second embodiment, by correcting the phase advance amount ⁇ using the divergence flag F1 and the vibration flag F3, it is possible to set an appropriate phase advance amount ⁇ according to the traveling state. More stable vehicle behavior can be provided.
  • Example 3 Next, Example 3 will be described. Since the basic configuration is the same as that of the second embodiment, only different points will be described.
  • the phase advance amount ⁇ as an initial value is corrected according to the traveling state. However, if the initial value deviates from the actual vehicle state, after running the vehicle, correction will be performed once the divergence flag F1 and vibration flag F3 are turned on. It may not be possible. Therefore, in the third embodiment, the phase advance amount ⁇ as an initial value is updated by learning correction, thereby avoiding that the divergence flag F1 and the vibration flag F3 are turned on after the vehicle travels.
  • FIG. 6 is a flowchart showing the phase advance amount learning process of the third embodiment. Since steps S1 to S6 are the same as those in the second embodiment, only different steps will be described.
  • step S0 the stored phase advance amount ⁇ is read. Thereafter, steps S1 to S6 of the second embodiment are performed to correct the phase advance amount ⁇ .
  • step S7 the corrected phase advance amount ⁇ is updated and stored as an initial value. As a result, the phase advance amount ⁇ read at the start of control is a value after correction, so that the vehicle behavior can be stabilized.
  • FIG. 7 is a flowchart illustrating a phase advance amount learning process according to the fourth embodiment. Since steps S0 to S7 are the same as those in the third embodiment, only the differences will be described.
  • step S8 the phase advance amount ⁇ immediately before the increase correction in step S3 is stored as ⁇ 1, and the phase advance amount ⁇ immediately before the decrease correction is stored in step S5 as ⁇ 2.
  • step S9 it is determined whether or not ( ⁇ 2 ⁇ 1) is equal to or less than a predetermined value ⁇ 0. If it is equal to or less than ⁇ 0, the process proceeds to step S10. If it is greater than ⁇ 0, the control flow ends. In step S10, the ATF replacement request lamp is turned on.
  • the phase advance amount ⁇ immediately before the increase correction is estimated to be a value close to the first phase advance amount ⁇ 1 representing the damping limit.
  • the phase advance amount ⁇ immediately before the decrease correction is estimated to be a value close to the second phase advance amount ⁇ 2 representing the stability limit.
  • the region sandwiched between ⁇ 1 and ⁇ 2 is an ⁇ existence possible region with an appropriate phase advance amount ⁇ .
  • the size of the ⁇ -existable region is equal to or smaller than a predetermined value ⁇ 0 considering the safety factor, there is a possibility that an appropriate phase advance amount ⁇ cannot be set. This is considered to be due to the narrowing of the ⁇ -existing region due to degradation of ATF, which is the hydraulic fluid of the automatic transmission. Therefore, in the fourth embodiment, when the ⁇ existence possible area becomes narrow, the stabilization of the vehicle behavior can be continued in advance by turning on the ATF replacement request lamp and prompting the driver to replace the ATF. It was decided to keep the state.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

This control device for an automatic transmission comprises a control unit (10) that controls a continuously variable transmission mechanism (CVT). The control unit (10) has: a target transmission ratio calculation unit (101) that calculates a target transmission ratio on the basis of a traveling state; a feedback control unit (103) that provides feedback control on the basis of an actual value, said actual value expressing the state of the continuously variable transmission mechanism (CVT); a phase compensation unit (104) that, on the basis of the traveling state, performs phase lead compensation on a command value from the feedback control, said phase lead compensation being based on a prescribed phase lead amount; and a phase compensation control unit (109) that sets the prescribed phase lead amount such that the prescribed phase lead amount is greater than a first phase lead amount, with which a controllability limit would be reached, said controllability limit being the limit of the possibility of suppressing the resonance of a power transmission pathway between a power source and a drive wheel, and such that the prescribed phase lead amount is less than a second phase lead amount, with which a stability limit would be reached, said stability limit being the limit of the possibility of avoiding divergence of the feedback control unit (103).

Description

自動変速機の制御装置Control device for automatic transmission
 本発明は、車両に搭載される無段変速機構を備えた自動変速機の制御装置に関する。 The present invention relates to a control device for an automatic transmission having a continuously variable transmission mechanism mounted on a vehicle.
 従来、特許文献1には、目標変速比となるように制御する際、位相進み補償を行って変速制御を行う技術が開示されている。 Conventionally, Patent Document 1 discloses a technique for performing shift control by performing phase advance compensation when controlling to achieve a target gear ratio.
 しかしながら、位相進み補償を行う際の位相進み量は、走行状態に応じて最適値が異なるため、走行状態によっては適切な位相進み補償が行えず、運転者に違和感を与えるおそれがあった。 However, since the optimum value of the phase advance amount when performing phase advance compensation differs depending on the traveling state, appropriate phase advance compensation cannot be performed depending on the traveling state, which may give the driver a sense of incongruity.
特開2002-106700号公報JP 2002-106700 A
 本発明は上記課題に着目してなされたもので、走行状態に寄らず運転者に与える違和感を抑制することができる自動変速機の制御装置を提供することを目的とする。上記目的を達成するため、本発明の自動変速機の制御装置では、無段変速機構を制御するコントローラを備え、前記コントローラは、走行状態に基づいて目標変速比を演算する目標変速比演算部と、前記無段変速機構の状態を表す実値に基づいてフィードバック制御するフィードバック制御部と、走行状態に基づいて前記フィードバック制御による指令値に、所定の位相進み量に基づく位相進み補償を行う位相補償部と、動力源と駆動輪との間の動力伝達経路の共振を抑制可能な制振限界となる第1の位相進み量よりも大きく、かつ、前記フィードバック制御部の発散を回避可能な安定限界となる第2の位相進み量よりも小さな位相進み量となるように前記所定の位相進み量を設定する位相補償制御部と、を有する。 This invention was made paying attention to the said subject, and it aims at providing the control apparatus of the automatic transmission which can suppress the discomfort given to a driver | operator irrespective of a driving | running | working state. In order to achieve the above object, a control device for an automatic transmission according to the present invention includes a controller that controls a continuously variable transmission mechanism, and the controller calculates a target gear ratio calculation unit that calculates a target gear ratio based on a running state; A feedback control unit that performs feedback control based on an actual value representing a state of the continuously variable transmission mechanism, and phase compensation that performs phase advance compensation based on a predetermined phase advance amount to a command value based on the feedback control based on a running state And a stability limit that is larger than a first phase advance amount that becomes a vibration suppression limit capable of suppressing resonance of a power transmission path between the power source and the drive wheel, and that can avoid divergence of the feedback control unit A phase compensation control unit that sets the predetermined phase advance amount so that the phase advance amount is smaller than the second phase advance amount.
 よって、適切な位相進み量に基づいて位相進み補償を行うため、運転者に与える違和感を抑制できる。 Therefore, since the phase lead compensation is performed based on an appropriate amount of phase lead, the uncomfortable feeling given to the driver can be suppressed.
実施例1の無段変速機の制御装置を表すシステム図である。1 is a system diagram illustrating a control device for a continuously variable transmission according to a first embodiment. FIG. 実施例1のコントロールユニット内の概略を表す制御ブロック図である。FIG. 2 is a control block diagram illustrating an outline in a control unit according to the first embodiment. 実施例1の自動変速機において、車速VSPとアクセルペダル開度APOによって定まる所定の走行状態で位相進み量αを変更したときの前後加速度Gの振動成分の振幅の大きさを表す図である。In the automatic transmission according to the first embodiment, the amplitude of the vibration component of the longitudinal acceleration G when the phase advance amount α is changed in a predetermined traveling state determined by the vehicle speed VSP and the accelerator pedal opening APO is shown. 実施例1の自動変速機において、車速VSPとアクセルペダル開度APOによって定まる所定の走行状態で位相進み量αを変更したときの指令信号の振幅の大きさを表す図である。In the automatic transmission of Embodiment 1, it is a figure showing the magnitude | size of the amplitude of a command signal when phase advance amount (alpha) is changed in the predetermined driving | running | working state defined by vehicle speed VSP and accelerator pedal opening APO. 実施例2の位相進み量補正処理を表すフローチャートである。10 is a flowchart illustrating a phase advance amount correction process according to the second embodiment. 実施例3の位相進み量学習処理を表すフローチャートである。12 is a flowchart illustrating a phase advance amount learning process according to the third embodiment. 実施例4の位相進み量学習処理を表すフローチャートである。12 is a flowchart illustrating a phase advance amount learning process according to the fourth embodiment.
 〔実施例1〕
 図1は実施例1の自動変速機の制御装置を表すシステム図である。実施例1の車両は、内燃機関であるエンジン1と、自動変速機とを有し、ディファレンシャルギヤを介して駆動輪であるタイヤ8に駆動力を伝達する。自動変速機からタイヤ8へと接続する動力伝達経路を総称してパワートレーンPTと記載する。
[Example 1]
FIG. 1 is a system diagram illustrating a control device for an automatic transmission according to a first embodiment. The vehicle according to the first embodiment includes an engine 1 that is an internal combustion engine and an automatic transmission, and transmits driving force to tires 8 that are driving wheels via a differential gear. A power transmission path connecting the automatic transmission to the tire 8 is generically referred to as a power train PT.
 自動変速機は、トルクコンバータ2と、オイルポンプ3と、前後進切替機構4と、無段変速機構(ベルト式無段変速機構)CVTとを有する。トルクコンバータ2は、エンジン1に連結されオイルポンプ3を駆動する駆動爪と一体に回転するポンプインペラ2bと、前後進切替機構4の入力側(無段変速機構CVTの入力軸)と接続されるタービンランナ2cと、これらポンプインペラ2bとタービンランナ2cとを一体的に連結可能なロックアップクラッチ2aとを有する。前後進切替機構4は、遊星歯車機構と複数のクラッチ4aから構成されており、クラッチ4aの締結状態によって前進と後進とを切り替える。無段変速機構CVTは、前後進切替機構4の出力側(無段変速機の入力軸)と接続されたプライマリプーリ5と、駆動輪と一体に回転するセカンダリプーリ6と、プライマリプーリ5とセカンダリプーリ6との間に巻回され動力伝達を行うベルト7と、各油圧アクチュエータに対して制御圧を供給するコントロールバルブユニット20と、を有する。 The automatic transmission has a torque converter 2, an oil pump 3, a forward / reverse switching mechanism 4, and a continuously variable transmission mechanism (belt type continuously variable transmission mechanism) CVT. The torque converter 2 is connected to the engine 1 and connected to the pump impeller 2b that rotates integrally with the drive claw that drives the oil pump 3, and the input side of the forward / reverse switching mechanism 4 (the input shaft of the continuously variable transmission mechanism CVT). A turbine runner 2c and a lockup clutch 2a capable of integrally connecting the pump impeller 2b and the turbine runner 2c are provided. The forward / reverse switching mechanism 4 includes a planetary gear mechanism and a plurality of clutches 4a, and switches between forward and reverse depending on the engagement state of the clutch 4a. The continuously variable transmission mechanism CVT includes a primary pulley 5 connected to the output side of the forward / reverse switching mechanism 4 (input shaft of the continuously variable transmission), a secondary pulley 6 that rotates integrally with the drive wheels, and a primary pulley 5 and a secondary pulley. The belt 7 is wound between the pulley 6 and transmits power, and the control valve unit 20 supplies control pressure to each hydraulic actuator.
 コントロールユニット10は、運転者の操作によりレンジ位置を選択するシフトレバー11からのレンジ位置信号(以下、レンジ位置信号をそれぞれPレンジ,Rレンジ,Nレンジ,Dレンジと記載する。)と、アクセルペダル開度センサ12からのアクセルペダル開度信号(以下、APO)と、ブレーキスイッチ17からのブレーキペダルON・OFF信号と、プライマリプーリ5の油圧を検出するプライマリプーリ圧センサ15からのプライマリプーリ圧信号と、セカンダリプーリ6の油圧を検出するセカンダリプーリ圧センサ16からのセカンダリプーリ圧信号と、プライマリプーリ5の回転数を検出するプライマリプーリ回転数センサ13からのプライマリ回転数信号Npriと、セカンダリプーリ6の回転数を検出するセカンダリプーリ回転数センサ14からのセカンダリ回転数信号Nsecと、エンジン回転数を検出するエンジン回転数センサ18からのエンジン回転数信号Neと、車両の前後加速度Gを検出するGセンサ19からの加速度信号とを読み込む。尚、プライマリ回転数信号Npriは、Dレンジの場合、クラッチ4aの締結によりタービン回転数と一致することから、以下、タービン回転数Ntとも記載する。 The control unit 10 includes a range position signal from the shift lever 11 that selects the range position by the driver's operation (hereinafter, the range position signal is described as P range, R range, N range, and D range, respectively), and an accelerator. Accelerator pedal opening signal (hereinafter referred to as APO) from the pedal opening sensor 12, brake pedal ON / OFF signal from the brake switch 17, and primary pulley pressure from the primary pulley pressure sensor 15 that detects the hydraulic pressure of the primary pulley 5 A signal, a secondary pulley pressure signal from the secondary pulley pressure sensor 16 that detects the hydraulic pressure of the secondary pulley 6, a primary rotation speed signal Npri from the primary pulley rotation speed sensor 13 that detects the rotation speed of the primary pulley 5, and the secondary pulley Secondary rotational speed signal from secondary pulley rotational speed sensor 14 that detects rotational speed of 6 Read and Nsec, and an engine speed signal Ne from the engine speed sensor 18 for detecting an engine speed, an acceleration signal from the G sensor 19 for detecting a longitudinal acceleration G of the vehicle. In the case of the D range, the primary rotational speed signal Npri coincides with the turbine rotational speed when the clutch 4a is engaged, and is also referred to as the turbine rotational speed Nt hereinafter.
 コントロールユニット10は、レンジ位置信号に応じたクラッチ4aの締結状態を制御する。具体的にはPレンジもしくはNレンジであればクラッチ4aは解放状態とし、Rレンジであれば前後進切替機構4が逆回転を出力するようにコントロールバルブユニット20に制御信号を出力し、後進クラッチ(もしくはブレーキ)を締結する。また、Dレンジであれば前後進切替機構4が一体回転して正回転を出力するようにコントロールバルブユニット20に制御信号を出力し、クラッチ4aを締結する。また、セカンダリ回転数に基づいて車速VSPを算出する。 The control unit 10 controls the engaged state of the clutch 4a according to the range position signal. Specifically, in the P range or N range, the clutch 4a is released, and in the R range, a control signal is output to the control valve unit 20 so that the forward / reverse switching mechanism 4 outputs reverse rotation, and the reverse clutch (Or brake). In the D range, a control signal is output to the control valve unit 20 so that the forward / reverse switching mechanism 4 rotates integrally and outputs a normal rotation, and the clutch 4a is engaged. Further, the vehicle speed VSP is calculated based on the secondary rotational speed.
 図2は実施例1のコントロールユニット10内における制御構成を表すブロック図である。コントロールユニット10は、目標変速比演算部101と、偏差演算部102と、フィードバック制御部103と、位相補償部104と、加算部105と、指令信号発散検知部106と、油振検知部107と、車両振動検知部108と、位相補償制御部109と、ロックアップクラッチ2aの締結状態を制御するロックアップ制御部110と、を有する。 FIG. 2 is a block diagram showing a control configuration in the control unit 10 of the first embodiment. The control unit 10 includes a target gear ratio calculation unit 101, a deviation calculation unit 102, a feedback control unit 103, a phase compensation unit 104, an addition unit 105, a command signal divergence detection unit 106, and an oil vibration detection unit 107. The vehicle vibration detection unit 108, the phase compensation control unit 109, and the lockup control unit 110 that controls the engagement state of the lockup clutch 2a.
 目標変速比演算部101では、APO信号と車速VSPとに基づいて最適な燃費状態を達成可能な変速マップから目標変速比ir*を演算する。偏差演算部102では、無段変速機構CVTの状態を表す実値であるプライマリ回転数信号Npriとセカンダリ回転数信号Nsecとに基づく実変速比irを検出し、実変速比irと目標変速比ir*との偏差を演算する。フィードバック制御部103では、設定された目標変速比ir*と無段変速機構CVTの状態を表す実値である実変速比irとが一致するようにプーリ油圧を制御するソレノイドに対するフィードバック指令信号を演算する。 The target gear ratio calculation unit 101 calculates a target gear ratio ir * from a gear shift map that can achieve an optimal fuel consumption state based on the APO signal and the vehicle speed VSP. The deviation calculation unit 102 detects the actual speed ratio ir based on the primary speed signal Npri and the secondary speed signal Nsec, which are actual values representing the state of the continuously variable transmission mechanism CVT, and the actual speed ratio ir and the target speed ratio ir Calculate the deviation from *. The feedback control unit 103 calculates the feedback command signal for the solenoid that controls the pulley hydraulic pressure so that the set target speed ratio ir * and the actual speed ratio ir that is the actual value representing the state of the continuously variable transmission mechanism CVT coincide with each other. To do.
 位相補償部104では、フィードバック制御部103により演算された指令信号に対し、走行状態に応じた位相進み量αを演算し、位相進み量αに基づく位相補償信号を演算する。加算部105では、フィードバック指令信号に位相補償信号を加算して最終的な指令信号を演算する。指令信号発散検知部106では、最終的な指令信号が発散しているか否かを検知し、発散していない場合は発散フラグF1をOFFとし、発散している場合は発散フラグF1をONとする。ここで、指令信号の発散は、周波数が所定値以上で、かつ、振幅が所定値以上の状態が所定時間継続したか否かに基づいて検知する。 The phase compensation unit 104 calculates a phase advance amount α corresponding to the traveling state with respect to the command signal calculated by the feedback control unit 103, and calculates a phase compensation signal based on the phase advance amount α. Adder 105 adds the phase compensation signal to the feedback command signal to calculate the final command signal. The command signal divergence detection unit 106 detects whether or not the final command signal diverges. If not, the divergence flag F1 is turned off. If it is divergence, the divergence flag F1 is turned on. . Here, the divergence of the command signal is detected based on whether or not the state where the frequency is equal to or higher than the predetermined value and the amplitude is equal to or higher than the predetermined value continues for a predetermined time.
 油振検知部107では、まず、プライマリプーリ圧センサ15及びセカンダリプーリ圧センサ16によって検出された電圧信号を油圧信号に変換し、バンドバスフィルタ処理によってDC成分(制御指令に応じた変動成分)を除去し、振動成分のみを抽出する。そして、振動成分の振幅を算出し、プライマリプーリ圧もしくはセカンダリプーリ圧のいずれかの振幅が所定振幅以上の状態が所定時間以上継続した場合には、油振フラグF2をONとする。一方、油振フラグF2がONの状態で、振幅が所定振幅未満の状態が所定時間以上継続した場合には、油振フラグF2をOFFとする。 In the oil vibration detection unit 107, first, the voltage signal detected by the primary pulley pressure sensor 15 and the secondary pulley pressure sensor 16 is converted into a hydraulic signal, and the DC component (variation component corresponding to the control command) is converted by band-pass filter processing. Remove and extract only the vibration component. Then, the amplitude of the vibration component is calculated, and if the state where the amplitude of either the primary pulley pressure or the secondary pulley pressure is greater than or equal to a predetermined amplitude continues for a predetermined time or longer, the oil vibration flag F2 is turned ON. On the other hand, when the oil vibration flag F2 is ON and the state where the amplitude is less than the predetermined amplitude continues for a predetermined time or longer, the oil vibration flag F2 is turned OFF.
 車両振動検知部108では、Gセンサ19により検出された前後加速度Gの振動成分を抽出し、振動成分の振幅が所定値以上の状態が所定時間以上継続した場合には、振動フラグF3をONとする。一方、振動成分の振幅が所定未満の状態が所定時間以上継続した場合には、振動フラグF3をOFFとする。 The vehicle vibration detection unit 108 extracts the vibration component of the longitudinal acceleration G detected by the G sensor 19, and when the state where the amplitude of the vibration component is a predetermined value or more continues for a predetermined time or longer, the vibration flag F3 is turned ON. To do. On the other hand, when the state where the amplitude of the vibration component is less than a predetermined value continues for a predetermined time or longer, the vibration flag F3 is turned OFF.
 位相補償制御部109では、発散フラグF1,油振フラグF2,振動フラグF3の情報及びレンジ位置信号を読み込むと共に、VSPとAPOにより規定される動作点を演算する。そして、エンジン始動後、各種フラグが全てOFFの場合には、位相補償部104での位相補償信号の出力を許可する信号を出力する。一方、いずれか一つのフラグがONとなった場合には、位相補償部104での位相補償信号の出力を禁止する信号を出力すると共に、ロックアップクラッチ2aを解放する指令を出力する。 The phase compensation control unit 109 reads information on the divergence flag F1, the oil vibration flag F2, and the vibration flag F3 and the range position signal, and calculates an operating point defined by VSP and APO. Then, after the engine is started, when all the various flags are OFF, a signal permitting the output of the phase compensation signal in the phase compensation unit 104 is output. On the other hand, when any one of the flags is turned ON, a signal for prohibiting the output of the phase compensation signal in the phase compensation unit 104 is output and a command for releasing the lockup clutch 2a is output.
 また、位相補償制御部109は、走行状態に応じた位相進み量αを設定する位相進み量設定処理を行う。図3は実施例1の自動変速機において、車速VSPとアクセルペダル開度APOによって定まる所定の走行状態で位相進み量αを変更したときの前後加速度Gの振動成分の振幅の大きさを表す図である。位相進み量αが制振限界を表す第1位相進み量α1よりも小さくなると、位相進み補償による制振機能が得られず、パワートレーンPTの共振周波数と重なることによって振動を招く。図4は実施例1の自動変速機において、車速VSPとアクセルペダル開度APOによって定まる所定の走行状態で位相進み量αを変更したときの指令信号の振幅の大きさを表す図である。位相進み量αが安定限界を表す第2位相進み量α2よりも大きくなると、指令信号の発散により位相進み補償による制振機能が得られず、適切な指令信号を出力することが困難となる。よって、位相進み量αを設定する際は、第1位相進み量α1よりも大きく、第2位相進み量α2よりも小さな値を設定することとした。 Further, the phase compensation control unit 109 performs a phase advance amount setting process for setting the phase advance amount α according to the traveling state. FIG. 3 is a diagram showing the amplitude of the vibration component of the longitudinal acceleration G when the phase advance amount α is changed in a predetermined traveling state determined by the vehicle speed VSP and the accelerator pedal opening APO in the automatic transmission of the first embodiment. It is. When the phase advance amount α is smaller than the first phase advance amount α1 representing the vibration suppression limit, the vibration suppression function by phase advance compensation cannot be obtained, and vibration is caused by overlapping with the resonance frequency of the power train PT. FIG. 4 is a diagram illustrating the amplitude of the command signal when the phase advance amount α is changed in a predetermined traveling state determined by the vehicle speed VSP and the accelerator pedal opening APO in the automatic transmission of the first embodiment. If the phase advance amount α is larger than the second phase advance amount α2 representing the stability limit, the vibration control function by phase advance compensation cannot be obtained due to the divergence of the command signal, and it becomes difficult to output an appropriate command signal. Therefore, when the phase advance amount α is set, a value larger than the first phase advance amount α1 and smaller than the second phase advance amount α2 is set.
 尚、通常の走行時に最も多いと考えられる走行状態において、発明者が鋭意検討したところ、殆どの走行状態では、α1<α2の関係が得られるため、条件を満たすαを設定できる。しかしながら、特定の走行状態では、α1≧α2の関係となることが把握された。よって、α1≧α2の関係となる走行状態を検出した場合には、位相補償部104での位相補償信号の出力を禁止すると共に、ロックアップクラッチ2aを解放する指令を出力する。 It should be noted that the inventors have intensively studied in the driving state considered to be the most during normal driving. As a result, the relationship α1 <α2 is obtained in most driving states, so that α satisfying the condition can be set. However, it has been understood that α1 ≧ α2 in a specific traveling state. Therefore, when a traveling state having a relationship of α1 ≧ α2 is detected, the phase compensation unit 104 prohibits the output of the phase compensation signal and outputs a command to release the lockup clutch 2a.
 すなわち、α1≧α2となった場合、パワートレーンPTの共振及び制御信号の発散の両方に対して効果的な位相進み量が存在せず、一方にのみ対応した位相進み量を設定し、位相補償部104から位相補償信号が出力すると、かえって指令信号の振動が大きくなるおそれがあり、振動が増幅されるおそれがある。よって、α1≧α2となる走行状態を検出したときは、位相補償信号の出力を禁止することで、フィードバック制御のみを機能させることとした。これにより、ロバスト性の高い制御構成を得ることができる。また、ロックアップクラッチ2aを解放することで、パワートレーンPTの質量は、エンジン質量が加算された質量からエンジン質量を除いた質量へと変更することができる。共振周波数はパワートレーンPTの質量と相関を有するため、質量を変更することで共振周波数を移動させることができ、振動を抑制することができる。尚、α1≧α2となる走行状態は、予め実験等に基づいて該当する走行状態を表す中止条件を設定し、車速VSPやアクセルペダル開度APOが中止条件を満たしたときは、位相補償信号の出力を禁止すると共に、ロックアップクラッチ2aを解放することとしてもよいし、走行状態に応じたα1及びα2を常時演算し、大小関係を判定することで位相補償信号の出力を禁止すると共に、ロックアップクラッチ2aを解放することとしてもよい。 That is, when α1 ≧ α2, there is no effective phase advance amount for both the resonance of the power train PT and the divergence of the control signal, and a phase advance amount corresponding to only one is set to compensate the phase. When the phase compensation signal is output from the unit 104, the vibration of the command signal may be increased, and the vibration may be amplified. Therefore, when the traveling state where α1 ≧ α2 is detected, only the feedback control is made to function by prohibiting the output of the phase compensation signal. Thereby, a highly robust control configuration can be obtained. Further, by releasing the lock-up clutch 2a, the mass of the power train PT can be changed from the mass obtained by adding the engine mass to the mass obtained by excluding the engine mass. Since the resonance frequency has a correlation with the mass of the power train PT, the resonance frequency can be moved and the vibration can be suppressed by changing the mass. For the driving state where α1 ≧ α2, a stop condition indicating the corresponding driving state is set in advance based on experiments or the like, and when the vehicle speed VSP and the accelerator pedal opening APO satisfy the stop condition, the phase compensation signal The output may be prohibited and the lock-up clutch 2a may be released, the α1 and α2 corresponding to the running state are always calculated, and the output of the phase compensation signal is prohibited and locked by determining the magnitude relationship. The up clutch 2a may be released.
 以上説明したように、実施例にあっては下記に列挙する作用効果が得られる。
 (1)プライマリプーリ5とセカンダリプーリ6との間にベルト7を巻装し、プライマリプーリ5とセカンダリプーリ6とにおけるベルト挟持圧を制御して変速する無段変速機構CVTを制御するコントロールユニット10を備え、コントロールユニット10は、走行状態に基づいて目標変速比ir*を演算する目標変速比演算部101と、目標変速比ir*となるように無段変速機構CVTの状態を表す実値に基づいて、プライマリプーリ5とセカンダリプーリ6のベルト挟持圧をフィードバック制御するフィードバック制御部103と、走行状態に基づいてフィードバック制御の位相進み補償を行う位相補償部104と、パワートレーンPT(動力源と駆動輪との間の動力伝達経路)の共振を抑制可能な制振限界となる第1位相進み量α1(第1の位相進み量)よりも大きく、かつ、フィードバック制御部103の発散を回避可能な安定限界となる第2位相進み量α2(第2の位相進み量)よりも小さな位相進み量となるように所定の位相進み量αを設定する位相補償制御部109と、を有する。よって、制御の安定化を図ることが可能となり、車両挙動を安定化できる。
As described above, the effects listed below can be obtained in the embodiment.
(1) A control unit 10 that controls a continuously variable transmission mechanism CVT that shifts by controlling a belt clamping pressure between the primary pulley 5 and the secondary pulley 6 by winding a belt 7 between the primary pulley 5 and the secondary pulley 6. The control unit 10 includes a target transmission ratio calculation unit 101 that calculates the target transmission ratio ir * based on the running state, and an actual value that represents the state of the continuously variable transmission mechanism CVT so as to achieve the target transmission ratio ir *. Based on the feedback control unit 103 that feedback-controls the belt clamping pressure of the primary pulley 5 and the secondary pulley 6, a phase compensation unit 104 that performs phase advance compensation of feedback control based on the running state, and a power train PT (power source and Greater than the first phase advance amount α1 (first phase advance amount), which becomes a vibration suppression limit capable of suppressing the resonance of the power transmission path with the drive wheel), and Phase compensation control that sets a predetermined phase advance amount α so that the phase advance amount is smaller than the second phase advance amount α2 (second phase advance amount) that is a stability limit that can avoid the divergence of the back-back control unit 103. Part 109. Therefore, it is possible to stabilize the control and to stabilize the vehicle behavior.
 (2)位相補償制御部109は、第1位相進み量α1が第2位相進み量α2よりも大きいときは、位相補償部104による位相進み補償を停止する。よって、適正な制振状態が得られない走行状態での位相進み補償を回避することが可能となり、車両挙動を安定化できる。 (2) The phase compensation controller 109 stops the phase advance compensation by the phase compensator 104 when the first phase advance amount α1 is larger than the second phase advance amount α2. Therefore, it is possible to avoid phase advance compensation in a traveling state where an appropriate vibration suppression state cannot be obtained, and the vehicle behavior can be stabilized.
 (3)エンジン1(動力源)と無段変速機構CVTとの間に設けられ、ロックアップクラッチ2aを有するトルクコンバータ2を有し、位相補償制御部109は、第1位相進み量α1が第2位相進み量α2よりも大きいときは、ロックアップクラッチ2aを解放する。よって、パワートレーンPTの質量を変更することで共振周波数を変更することが可能となり、振動を抑制できる。 (3) A torque converter 2 having a lock-up clutch 2a is provided between the engine 1 (power source) and the continuously variable transmission mechanism CVT, and the phase compensation controller 109 has a first phase advance amount α1 When it is larger than the two-phase advance amount α2, the lockup clutch 2a is released. Therefore, the resonance frequency can be changed by changing the mass of the power train PT, and vibration can be suppressed.
 〔実施例2〕
 次に、実施例2について説明する。基本的な構成は実施例1と同じであるため、異なる点についてのみ説明する。実施例1では、位相進み量αを予め走行状態に応じた値に設定し、適正な位相進み量αが存在しないと考えられる走行状態の場合、及び発散フラグF1,油振フラグF2,振動フラグF3のいずれかがONとなった場合には、位相補償信号の出力を禁止すると共にロックアップクラッチ2aを解放した。これに対し、実施例2では、発散フラグF1もしくは振動フラグF3のいずれか一方のみがONとなった場合には、位相進み量αを補正して位相補償信号の出力やロックアップクラッチ2aの締結の継続を試みるものである。
[Example 2]
Next, Example 2 will be described. Since the basic configuration is the same as that of the first embodiment, only different points will be described. In the first embodiment, the phase advance amount α is set to a value corresponding to the traveling state in advance, and in the traveling state where the appropriate phase advance amount α is considered not to exist, the divergence flag F1, the oil vibration flag F2, and the vibration flag When either F3 is ON, the output of the phase compensation signal is prohibited and the lockup clutch 2a is released. In contrast, in the second embodiment, when only one of the divergence flag F1 or the vibration flag F3 is turned ON, the phase advance amount α is corrected to output the phase compensation signal and the lockup clutch 2a is engaged. Is to try to continue.
 図5は実施例2の位相進み量補正処理を表すフローチャートである。ステップS1では、発散フラグF1がONか否かを判断し、OFFの場合はステップS2に進み、ONの場合はステップS4に進む。ステップS2では、振動フラグF3がONか否かを判断し、ONの場合はステップS3に進み、OFFの場合は本制御フローを終了する。ステップS3では、位相進み量αを所定量だけ増加補正(UP)する。すなわち、発散フラグF1がOFFで、かつ、振動フラグF3がONのときは、位相進み量が不足して十分にパワートレーンPTの共振を抑制出来ていない可能性が高い。よって、位相進み量αを増加補正し、位相をより多く進ませることで、パワートレーンPTの共振を抑制する。 FIG. 5 is a flowchart showing the phase lead amount correction processing according to the second embodiment. In step S1, it is determined whether or not the divergence flag F1 is ON. If OFF, the process proceeds to step S2, and if ON, the process proceeds to step S4. In step S2, it is determined whether or not the vibration flag F3 is ON. If it is ON, the process proceeds to step S3. If it is OFF, this control flow is terminated. In step S3, the phase advance amount α is increased (UP) by a predetermined amount. That is, when the divergence flag F1 is OFF and the vibration flag F3 is ON, there is a high possibility that the phase advance amount is insufficient and the resonance of the power train PT cannot be sufficiently suppressed. Therefore, the resonance of the power train PT is suppressed by increasing and correcting the phase advance amount α to advance the phase more.
 ステップS4では、振動フラグF3がONか否かを判断し、ONの場合はステップS6に進み、OFFの場合はステップS5に進む。ステップS5では、位相進み量αを所定量だけ減少補正(DOWN)する。すなわち、発散フラグF1がONで、かつ、振動フラグF3がOFFのときは、位相進み量が大きすぎることで指令信号が発散している可能性が高い。よって、位相進み量αを減少補正し、位相進み量を抑制することで指令信号の発散を抑制する。ステップS6では、発散フラグF1がONで、かつ、振動フラグF3もONであることから、α1≧α2の可能性が高い。よって、この場合は位相進み補償信号の出力を禁止すると共にロックアップクラッチ2aを解放することで、車両挙動を安定化させる。 In step S4, it is determined whether or not the vibration flag F3 is ON. If ON, the process proceeds to step S6, and if OFF, the process proceeds to step S5. In step S5, the phase advance amount α is corrected to decrease (DOWN) by a predetermined amount. That is, when the divergence flag F1 is ON and the vibration flag F3 is OFF, there is a high possibility that the command signal is diverging because the phase advance amount is too large. Therefore, the divergence of the command signal is suppressed by reducing and correcting the phase advance amount α and suppressing the phase advance amount. In step S6, since the divergence flag F1 is ON and the vibration flag F3 is also ON, there is a high possibility of α1 ≧ α2. Therefore, in this case, the vehicle behavior is stabilized by prohibiting the output of the phase advance compensation signal and releasing the lockup clutch 2a.
 以上説明したように、実施例2にあっては、発散フラグF1と振動フラグF3により位相進み量αを補正することで、走行状態に応じた適切な位相進み量αを設定することができ、より安定した車両挙動を提供できる。 As described above, in the second embodiment, by correcting the phase advance amount α using the divergence flag F1 and the vibration flag F3, it is possible to set an appropriate phase advance amount α according to the traveling state. More stable vehicle behavior can be provided.
 〔実施例3〕
 次に、実施例3について説明する。基本的な構成は実施例2と同じであるため、異なる点についてのみ説明する。実施例2では、走行状態に応じて初期値としての位相進み量αを補正することとした。しかしながら、初期値が実際の車両状態と乖離している場合、車両走行後、一旦、発散フラグF1や振動フラグF3がONとなってから補正が行われることとなり、車両挙動の安定化を十分に図れない場合がある。そこで、実施例3では、学習補正により初期値としての位相進み量αを更新することで、車両走行開始後に発散フラグF1や振動フラグF3がONとなることを回避することとした。
Example 3
Next, Example 3 will be described. Since the basic configuration is the same as that of the second embodiment, only different points will be described. In the second embodiment, the phase advance amount α as an initial value is corrected according to the traveling state. However, if the initial value deviates from the actual vehicle state, after running the vehicle, correction will be performed once the divergence flag F1 and vibration flag F3 are turned on. It may not be possible. Therefore, in the third embodiment, the phase advance amount α as an initial value is updated by learning correction, thereby avoiding that the divergence flag F1 and the vibration flag F3 are turned on after the vehicle travels.
 図6は実施例3の位相進み量学習処理を表すフローチャートである。尚、ステップS1からS6までは実施例2と同じであるため、異なるステップについてのみ説明する。ステップS0では、記憶された位相進み量αを読み込む。その後、実施例2のステップS1からS6を行い、位相進み量αを補正する。ステップS7では、補正された位相進み量αを初期値として更新して記憶する。これにより、制御開始時に読み込まれる位相進み量αは、補正後の値であるため、車両挙動の安定化を図ることができる。 FIG. 6 is a flowchart showing the phase advance amount learning process of the third embodiment. Since steps S1 to S6 are the same as those in the second embodiment, only different steps will be described. In step S0, the stored phase advance amount α is read. Thereafter, steps S1 to S6 of the second embodiment are performed to correct the phase advance amount α. In step S7, the corrected phase advance amount α is updated and stored as an initial value. As a result, the phase advance amount α read at the start of control is a value after correction, so that the vehicle behavior can be stabilized.
 〔実施例4〕
 次に、実施例4について説明する。基本的な構成は実施例3と同じであるため、異なる点についてのみ説明する。図7は実施例4の位相進み量学習処理を表すフローチャートである。尚、ステップS0からステップS7までは実施例3と同じであるため、異なる点についてのみ説明する。ステップS8では、ステップS3で増加補正する直前の位相進み量αをα1として記憶すると共に、ステップS5で減少補正する直前の位相進み量αをα2として記憶する。ステップS9では、(α2-α1)が所定値α0以下か否かを判断し、α0以下のときはステップS10に進み、α0よりも大きいときは本制御フローを終了する。ステップS10では、ATFの交換要求ランプを点灯する。
Example 4
Next, Example 4 will be described. Since the basic configuration is the same as that of the third embodiment, only different points will be described. FIG. 7 is a flowchart illustrating a phase advance amount learning process according to the fourth embodiment. Since steps S0 to S7 are the same as those in the third embodiment, only the differences will be described. In step S8, the phase advance amount α immediately before the increase correction in step S3 is stored as α1, and the phase advance amount α immediately before the decrease correction is stored in step S5 as α2. In step S9, it is determined whether or not (α2−α1) is equal to or less than a predetermined value α0. If it is equal to or less than α0, the process proceeds to step S10. If it is greater than α0, the control flow ends. In step S10, the ATF replacement request lamp is turned on.
 すなわち、増加補正する直前の位相進み量αは、制振限界を表す第1位相進み量α1と近い値であると推定される。また、減少補正する直前の位相進み量αは、安定限界を表す第2位相進み量α2と近い値であると推定される。このα1とα2とで挟まれた領域が、適切な位相進み量αのα存在可能領域となる。このα存在可能領域の大きさが、安全率を考慮した所定値α0以下となると、適切な位相進み量αが設定できないおそれがある。これは、自動変速機の作動油であるATFの劣化等によってα存在可能領域が狭まることが考えられる。そこで、実施例4では、α存在可能領域が狭くなった場合には、ATFの交換要求ランプを点灯し、運転者にATFの交換を促すことで、事前に車両挙動の安定化を継続可能な状態を保つこととした。 That is, the phase advance amount α immediately before the increase correction is estimated to be a value close to the first phase advance amount α1 representing the damping limit. Further, the phase advance amount α immediately before the decrease correction is estimated to be a value close to the second phase advance amount α2 representing the stability limit. The region sandwiched between α1 and α2 is an α existence possible region with an appropriate phase advance amount α. When the size of the α-existable region is equal to or smaller than a predetermined value α0 considering the safety factor, there is a possibility that an appropriate phase advance amount α cannot be set. This is considered to be due to the narrowing of the α-existing region due to degradation of ATF, which is the hydraulic fluid of the automatic transmission. Therefore, in the fourth embodiment, when the α existence possible area becomes narrow, the stabilization of the vehicle behavior can be continued in advance by turning on the ATF replacement request lamp and prompting the driver to replace the ATF. It was decided to keep the state.
 尚、α存在可能領域が狭まってきたことを検知した際には、制御応答性が低下していることも懸念されるため、フィードバック制御部103におけるゲイン調整や、位相補償部104におけるゲイン調整を同時に行うことで、更に車両挙動の安定化を図ってもよい。 Note that when it is detected that the α-existable region has narrowed, there is a concern that the control responsiveness is reduced, so that the gain adjustment in the feedback control unit 103 or the gain adjustment in the phase compensation unit 104 is performed. By carrying out simultaneously, you may aim at stabilization of vehicle behavior further.

Claims (4)

  1.  無段変速機構を制御するコントローラを備え、
     前記コントローラは、
     走行状態に基づいて目標変速比を演算する目標変速比演算部と、
     前記無段変速機構の状態を表す実値に基づいてフィードバック制御するフィードバック制御部と、
     走行状態に基づいて前記フィードバック制御による指令値に、所定の位相進み量に基づく位相進み補償を行う位相補償部と、
     動力源と駆動輪との間の動力伝達経路の共振を抑制可能な制振限界となる第1の位相進み量よりも大きく、かつ、前記フィードバック制御部の発散を回避可能な安定限界となる第2の位相進み量よりも小さな位相進み量となるように前記所定の位相進み量を設定する位相補償制御部と、
     を有する自動変速機の制御装置。
    A controller for controlling the continuously variable transmission mechanism;
    The controller is
    A target gear ratio calculation unit for calculating a target gear ratio based on the running state;
    A feedback control unit that performs feedback control based on an actual value representing a state of the continuously variable transmission mechanism;
    A phase compensation unit that performs phase advance compensation based on a predetermined phase advance amount to a command value based on the feedback control based on a running state;
    The first phase advance amount that is greater than the first phase advance amount that is a vibration suppression limit capable of suppressing the resonance of the power transmission path between the power source and the drive wheels, and that is a stability limit that can avoid the divergence of the feedback control unit. A phase compensation controller configured to set the predetermined phase advance amount so that the phase advance amount is smaller than the phase advance amount of 2;
    A control device for an automatic transmission having
  2.  請求項1に記載の自動変速機の制御装置において、
     前記位相補償制御部は、走行状態に基づいて前記所定の位相進み量を設定する自動変速機の制御装置。
    The control apparatus for an automatic transmission according to claim 1,
    The phase compensation control unit is a control device for an automatic transmission that sets the predetermined phase advance amount based on a running state.
  3.  請求項1または2に記載の自動変速機の制御装置において、
     前記位相補償制御部は、前記第1の位相進み量が前記第2の位相進み量よりも大きいときは、前記位相補償部による位相進み補償を停止する自動変速機の制御装置。
    The control apparatus for an automatic transmission according to claim 1 or 2,
    The phase compensation control unit is an automatic transmission control device that stops phase advance compensation by the phase compensation unit when the first phase advance amount is larger than the second phase advance amount.
  4.  請求項1ないし3いずれか一つに記載の自動変速機の制御装置において、
     前記動力源と前記無段変速機構との間に設けられたロックアップクラッチを有するトルクコンバータを有し、
     前記位相補償制御部は、前記第1の位相進み量が前記第2の位相進み量よりも大きいときは、前記ロックアップクラッチを解放する自動変速機の制御装置。
    The control apparatus for an automatic transmission according to any one of claims 1 to 3,
    A torque converter having a lock-up clutch provided between the power source and the continuously variable transmission mechanism;
    The phase compensation control unit is an automatic transmission control device that releases the lockup clutch when the first phase advance amount is larger than the second phase advance amount.
PCT/JP2017/005799 2016-03-17 2017-02-17 Control device for automatic transmission WO2017159204A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018505366A JP6637588B2 (en) 2016-03-17 2017-02-17 Control device for automatic transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016053192 2016-03-17
JP2016-053192 2016-03-17

Publications (1)

Publication Number Publication Date
WO2017159204A1 true WO2017159204A1 (en) 2017-09-21

Family

ID=59851133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005799 WO2017159204A1 (en) 2016-03-17 2017-02-17 Control device for automatic transmission

Country Status (2)

Country Link
JP (1) JP6637588B2 (en)
WO (1) WO2017159204A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10252880A (en) * 1997-03-14 1998-09-22 Nissan Motor Co Ltd Transmission control device of toroidal continuously variable transmission
JP2000027983A (en) * 1998-07-08 2000-01-25 Nissan Motor Co Ltd Speed change control device for continuously variable transmission
JP2002081538A (en) * 2000-09-05 2002-03-22 Nissan Motor Co Ltd Speed change ratio control system for continuously variable transmission

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3942005B2 (en) * 2000-09-29 2007-07-11 ジヤトコ株式会社 Shift control device for continuously variable transmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10252880A (en) * 1997-03-14 1998-09-22 Nissan Motor Co Ltd Transmission control device of toroidal continuously variable transmission
JP2000027983A (en) * 1998-07-08 2000-01-25 Nissan Motor Co Ltd Speed change control device for continuously variable transmission
JP2002081538A (en) * 2000-09-05 2002-03-22 Nissan Motor Co Ltd Speed change ratio control system for continuously variable transmission

Also Published As

Publication number Publication date
JP6637588B2 (en) 2020-01-29
JPWO2017159204A1 (en) 2018-10-04

Similar Documents

Publication Publication Date Title
US8914203B2 (en) Device and method for controlling a belt-type continuously variable transmission for a vehicle
US8914204B2 (en) Device and method for controlling a belt-type continuously variable transmission for a vehicle
US8892318B2 (en) Controller and control method of belt type continuously variable transmission
WO2010125668A1 (en) Belt‑based, continuously-variable transmission control device and control method
JP5790670B2 (en) Vehicle control device
JP2009002451A (en) Control device for lock-up clutch
JP6212640B2 (en) Control device for continuously variable transmission
WO2016006346A1 (en) Control device for continuously variable transmission
WO2017159203A1 (en) Control device for automatic transmission
US20170158198A1 (en) Vehicle control apparatus
JP6071918B2 (en) Control device for continuously variable transmission
WO2017159204A1 (en) Control device for automatic transmission
JP2010261586A (en) Control device and control method for belt type continuously variable transmission
JP4850468B2 (en) Vehicle control system
JP6131965B2 (en) Control device for continuously variable transmission
WO2016125379A1 (en) Control device for automatic transmission
US11137071B2 (en) Control device and control method for continuously variable transmission
WO2016017201A1 (en) Vehicle control device and control method
JP6922071B2 (en) Control device and control method for automatic transmission
WO2012176559A1 (en) Vehicle control device
JP2006336796A (en) Control unit of belt-type continuous variable transmission
JP2022001765A (en) Slip control device of torque converter
WO2019054356A1 (en) Device and method for controlling continuously variable transmission
JP7036922B2 (en) Control device for automatic transmission
JP2011174574A (en) Controller and control method of belt-type continuously variable transmission for vehicle

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018505366

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766211

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766211

Country of ref document: EP

Kind code of ref document: A1