WO2017158875A1 - Nozzle head module and electrospinning device - Google Patents

Nozzle head module and electrospinning device Download PDF

Info

Publication number
WO2017158875A1
WO2017158875A1 PCT/JP2016/075853 JP2016075853W WO2017158875A1 WO 2017158875 A1 WO2017158875 A1 WO 2017158875A1 JP 2016075853 W JP2016075853 W JP 2016075853W WO 2017158875 A1 WO2017158875 A1 WO 2017158875A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle head
electrode
raw material
material liquid
nozzle
Prior art date
Application number
PCT/JP2016/075853
Other languages
French (fr)
Japanese (ja)
Inventor
義英 中村
具道 中
浩秋 小林
八幡 浩
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to CN201680011575.0A priority Critical patent/CN107429428B/en
Priority to US15/460,565 priority patent/US20170268131A1/en
Publication of WO2017158875A1 publication Critical patent/WO2017158875A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D4/00Spinnerette packs; Cleaning thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/04Dry spinning methods
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning

Definitions

  • Embodiments of the present invention relate to a nozzle head module and an electrospinning apparatus.
  • an electrospinning apparatus that deposits fine fibers on the surface of a member by an electrospinning method (also referred to as an electrospinning method, a charge induction spinning method, or the like).
  • the electrospinning apparatus is provided with a nozzle head for discharging the raw material liquid.
  • the raw material liquid is sucked by an electrostatic force (Coulomb force) acting along an electric force line between the nozzle head and the collecting unit.
  • the solvent contained in the raw material liquid is volatilized to form a fiber, and the formed fiber is deposited on the collecting part and the member to form a deposit.
  • the fiber moves in the air by electrostatic force, it is difficult to control the fiber deposition state.
  • the problem to be solved by the present invention is to provide a nozzle head module and an electrospinning apparatus that facilitate the control of the fiber deposition state.
  • a nozzle head module has a hole for discharging a raw material liquid, and is configured to be applied with a voltage of a predetermined polarity.
  • the nozzle head module is relative to the nozzle head in a three-dimensional direction.
  • an electrode configured to be applied with a voltage having the same polarity as the voltage applied to the nozzle head.
  • FIG. 6 is a schematic diagram for illustrating another movement mode of the electrode 30.
  • FIG. 6 is a schematic diagram for illustrating another movement mode of the electrode 30.
  • FIG. 6 is a schematic diagram for illustrating an equipotential line 220 when the electrode 30 moves in a direction approaching the nozzle head 2.
  • 5 is a schematic diagram for illustrating an equipotential line 220 when the electrode 30 moves in a direction away from the nozzle head 2.
  • FIG. It is a schematic diagram for illustrating control of the position which deposits the fiber 200, and the deposition amount in a predetermined area
  • (A), (b) is a schematic diagram for demonstrating control of the orientation state of the deposited fiber 200.
  • FIG. (A), (b) is a schematic diagram for demonstrating control of the orientation state of the deposited fiber 200.
  • FIG. (A) to (d) are schematic views for illustrating the form of the deposit 210.
  • (A), (b) is a model perspective view for illustrating the counter electrode 37.
  • FIG. 1 is a schematic view for illustrating an electrospinning apparatus 100 according to the present embodiment.
  • 2 and 3 are schematic views for illustrating another movement mode of the electrode 30.
  • the electrospinning apparatus 100 includes a nozzle head module 1, a raw material liquid supply unit 4, a power supply 5, a collection unit 6, and a control unit 7.
  • the nozzle head module 1 includes a nozzle head 2 and an electric field control unit 3.
  • the nozzle head 2 has a hole for discharging the raw material liquid.
  • a hole for discharging the raw material liquid is provided inside the nozzle 20.
  • the nozzle 20 and the connection part 21 are not provided, and a hole for discharging the raw material liquid is provided in the main body part 22.
  • the nozzle head 2 which is a needle type nozzle head, has a nozzle 20, a connection part 21, and a main body part 22.
  • the nozzle 20 has a needle shape. Inside the nozzle 20, a hole for discharging the raw material liquid is provided. The hole for discharging the raw material liquid penetrates between the end portion of the nozzle 20 on the connection portion 21 side and the end portion (tip end) of the nozzle 20 on the collection portion 6 side. The opening on the collection unit 6 side of the hole for discharging the raw material liquid becomes the discharge port 20a.
  • the outer diameter of the nozzle 20 (diameter when the nozzle 20 is cylindrical) is not particularly limited, but a smaller outer diameter is preferable. If the outer diameter is reduced, electric field concentration tends to occur near the outlet 20a of the nozzle 20. If electric field concentration occurs in the vicinity of the discharge port 20a of the nozzle 20, the strength of the electric field formed between the nozzle 20 and the collecting unit 6 can be increased. Therefore, the voltage applied by the power supply 5 can be lowered. That is, the drive voltage can be reduced. In this case, the outer diameter dimension of the nozzle 20 can be set to about 0.3 mm to 1.3 mm, for example.
  • the dimension of the discharge port 20a can be appropriately changed according to the cross-sectional dimension of the fiber 200 to be formed.
  • the dimension of the discharge port 20a (the inner diameter dimension of the nozzle 20) can be, for example, about 0.1 mm to 1 mm.
  • the nozzle 20 is made of a conductive material. It is preferable that the material of the nozzle 20 has conductivity and resistance to a raw material liquid described later.
  • the nozzle 20 can be formed from, for example, stainless steel.
  • the number of the nozzles 20 is not particularly limited, and can be appropriately changed according to the size of the collection unit 6 and the like. It is sufficient that at least one nozzle 20 is provided. When a plurality of nozzles 20 are provided, the plurality of nozzles 20 are provided side by side at a predetermined interval. In addition, the arrangement
  • connection portion 21 is provided between the nozzle 20 and the main body portion 22.
  • the connecting portion 21 is not always necessary, and the nozzle 20 may be provided directly on the main body portion 22.
  • Inside the connection portion 21 a hole for supplying the raw material liquid from the main body portion 22 to the nozzle 20 is provided.
  • the hole provided in the connection part 21 is connected to the hole provided in the nozzle 20 and the space provided in the main body part 22.
  • the connection part 21 is formed from a conductive material. It is preferable that the material of the connection portion 21 has conductivity and resistance to the raw material liquid.
  • the connection part 21 can be formed from stainless steel etc., for example.
  • the main body 22 has a plate shape. A space for storing the raw material liquid is provided inside the main body 22.
  • the main body 22 is provided with a supply port 22a.
  • the raw material liquid supplied from the raw material liquid supply unit 4 is introduced into the main body 22 through the supply port 22a.
  • the supply port 22a can be provided, for example, on the side of the main body 22 opposite to the side where the nozzle 20 is provided.
  • the main body 22 is formed from a material having resistance to the raw material liquid.
  • the main body 22 can be formed from, for example, stainless steel.
  • the electric field control unit 3 controls the electric field formed between the nozzle head 2 and the collecting unit 6 to control the deposition state of the fiber 200.
  • the electric field control unit 3 includes an electrode 30, a holding unit 31, a guide unit 32, a moving unit 33, a conducting unit 34, a driving unit 35, and a power source 36.
  • the electrode 30 is provided on the side of the nozzle head 2 (the side of the main body 22 that intersects the surface to which the nozzle 20 is connected). There is no particular limitation on the number of electrodes 30. It is sufficient that at least one electrode 30 is provided. The electrode 30 may be provided on at least one side surface of the nozzle head 2. However, if the number of the electrodes 30 and the number of positions where the electrodes 30 are provided are increased, variations regarding the control of the deposition state of the fiber 200 can be increased.
  • the position of the end (tip) of the electrode 30 on the collecting unit 6 side is not particularly limited.
  • the position of the tip of the electrode 30 may be the same as the position of the tip of the nozzle 20, or the position of the tip of the electrode 30 may be closer to the main body 22 than the position of the tip of the nozzle 20. That is, in the direction in which the hole for discharging the raw material liquid extends, the tip of the electrode 30 is on the side opposite to the side of discharging the raw material liquid from the tip of the nozzle head 2 (the direction away from the direction of discharging the raw material liquid). Can be. If it does in this way, it will control so that the influence to the electric field around the nozzle 20 may be suppressed as needed, and it can also suppress that the raw material liquid pulled out from the nozzle 20 adheres to the electrode 30, etc. .
  • the shape of the electrode 30 is not particularly limited, and for example, it can be a solid needle-like electrode.
  • the needle-like electrode 30 extends in a direction in which a hole for discharging the raw material liquid extends.
  • the outer diameter of the electrode 30 having a needle shape, but a smaller outer diameter is preferable. If the outer diameter is reduced, electric field concentration tends to occur at the tip of the electrode 30. If electric field concentration occurs at the tip of the electrode 30, the strength of the electric field formed between the electrode 30 and the collecting unit 6 (or the counter electrode 37) can be increased. Therefore, it becomes easy to control the deposition state of the fiber 200 described later. Further, the voltage applied by the power source 36 can be lowered. That is, the drive voltage can be reduced. In this case, the outer diameter of the electrode 30 can be set to about 0.3 mm to 1.3 mm, for example. The electrode 30 can also have a pointed tip. In this case, the outer diameter of the tip can be set to about 0.3 mm to 1.3 mm, for example. The electrode 30 has conductivity. The electrode 30 can be formed from metals, such as a copper alloy and stainless steel, for example.
  • the holding unit 31 holds the electrode 30.
  • the electrode 30 can be provided in the vicinity of one end of the holding portion 31.
  • the holding portion 31 can be formed from a material having electrical insulation properties such as resin.
  • the holding unit 31 can be formed from a conductive material such as metal. In this case, the electrode 30 is electrically connected to the nozzle head 2.
  • the guide part 32 is provided between the main body part 22 and the holding part 31.
  • the guide part 32 defines the moving direction of the electrode 30.
  • the guide portion 32 can be, for example, a linear motion bearing.
  • the moving unit 33 moves the electrode 30 through the holding unit 31.
  • the moving part 33 can have, for example, a screw mechanism.
  • the moving part 33 has a rod shape, and may have a left-hand thread on one end side and a right-hand thread on the other end side. In this way, by rotating the moving part 33 in one direction, the two electrodes 30 provided facing each other can be moved in a direction approaching the nozzle head 2. Further, by rotating the moving part 33 in the other direction, the two electrodes 30 provided facing each other can be moved in a direction away from the nozzle head 2.
  • the conduction unit 34 is provided between the drive unit 35 and the moving unit 33.
  • the conduction unit 34 transmits the power from the drive unit 35 to the moving unit 33.
  • the conductive portion 34 can be, for example, a timing belt and a timing pulley. It is preferable that at least a part of the conductive portion 34 has electrical insulation so that the power source 5 and the power source 36 are electrically insulated from the drive unit 35. In the case illustrated in FIG. 1, the power source 5 and the power source 36 are electrically insulated from the driving unit 35 by a timing belt made of rubber or the like. In this way, the drive unit 35 can be protected.
  • the drive unit 35 may be a control motor such as a servo motor, for example.
  • a detector or the like that directly or indirectly detects the position of the electrode 30 can be provided as appropriate.
  • the electrode 30 moves in a direction (for example, horizontal direction) intersecting with a direction in which a hole for discharging the raw material liquid extends (corresponding to a direction in which the raw material liquid is discharged)
  • the electrode 30 is illustrated.
  • the electrode 30 moves in the direction in which the hole for discharging the raw material liquid extends (for example, the vertical direction), or the electrode 30 discharges the raw material liquid in the direction in which the hole for discharging the raw material liquid extends. It is also possible to move in a direction intersecting with the direction in which the holes extend. Further, as shown in FIG. 2, the electrode 30 may move around the nozzle head 2 in the rotation direction ( ⁇ direction).
  • the electrode 30 is provided on the nozzle head 2 via the holding portion 31.
  • the holding unit 31 is configured to rotate in the nozzle head 2 with the direction substantially along the direction of discharging the raw material liquid from the hole as an axis.
  • the electrode 30 it becomes possible for the front-end
  • the electrode 30 is provided in the nozzle head 2 via the holding portion 31, and the holding portion 31 rotates about the direction intersecting the direction in which the holes for discharging the raw material liquid are arranged. It is configured. By doing so, the nozzle head 2 rotates in a circular arc shape with the tip of the electrode 30 as an axis intersecting the direction in which the holes for discharging the raw material liquid are arranged, and the raw material liquid is discharged. It is configured to be movable so that the distance between the holes changes.
  • the movement control of the electrode 30 may be uniaxial control or multi-axis control.
  • the nozzle head 2 may move with respect to the electrode 30. That is, the electrode 30 only needs to be movable relative to the nozzle head 2.
  • the nozzle head 2 is attached to a housing (not shown) of the electrospinning apparatus 100 via a bracket having electrical insulation, and the bracket having electrical insulation.
  • the electrode 30, the holding unit 31, the guide unit 32, the moving unit 33, the conducting unit 34, the driving unit 35, the power source 36, and the like may be attached to the casing.
  • the nozzle head 2 moves with respect to the electrode 30, it becomes easy to adjust the process conditions (for example, the distance between the nozzle head 2 and the collecting unit 6).
  • the electrode 30 is moved relative to the nozzle head 2, the deposition state of the fiber 200 can be controlled with the process conditions fixed.
  • the power source 36 applies a voltage to the electrode 30.
  • the power source 36 applies a voltage to the plurality of electrodes 30.
  • the polarity of the voltage applied to the electrode 30 is the same as the polarity of the voltage applied to the nozzle 20.
  • the power source 36 illustrated in FIG. 1 applies a positive voltage to the electrode 30.
  • the voltage applied to the electrode 30 There is no particular limitation on the voltage applied to the electrode 30. In this case, if the voltage applied to the electrode 30 is approximately the same as the voltage applied to the nozzle 20, it is possible to suppress discharge from occurring between the electrode 30 and the nozzle 20. Further, the power source 36 can change the voltage applied to the electrode 30.
  • the power source 36 can be, for example, a DC high voltage power source.
  • the power source 36 can output a DC voltage of 10 kV to 100 kV, for example.
  • the power source 36 is not necessarily required and can be omitted.
  • the power source 5 applies a voltage to the electrode 30. If the power source 36 is omitted, the configuration of the nozzle head module 1 can be simplified, and the manufacturing cost can be reduced. Moreover, if the power supply 36 is provided and the voltage applied to the electrode 30 is changed, the variation regarding control of the deposition state of the fiber 200 can be increased.
  • the raw material liquid supply unit 4 includes a storage unit 41, a supply unit 42, a raw material liquid control unit 43, and a pipe 44.
  • the storage unit 41 stores the raw material liquid.
  • the storage part 41 is formed from a material having resistance to the raw material liquid.
  • the storage part 41 can be formed from, for example, stainless steel.
  • the raw material liquid is obtained by dissolving a polymer substance in a solvent.
  • a polymer substance there is no particular limitation on the polymer material, and it can be changed as appropriate according to the material of the fiber 200 to be formed.
  • the solvent may be any solvent that can dissolve the polymer substance.
  • the solvent can be appropriately changed according to the polymer substance to be dissolved.
  • the raw material liquid is allowed to remain in the vicinity of the discharge port 20a due to surface tension. Therefore, the viscosity of the raw material liquid can be appropriately changed according to the size of the discharge port 20a.
  • the viscosity of the raw material liquid can be obtained by performing experiments and simulations.
  • the viscosity of the raw material liquid can be controlled by the mixing ratio of the solvent and the polymer material.
  • the supply unit 42 supplies the raw material liquid stored in the storage unit 41 to the main body unit 22.
  • the supply unit 42 can be, for example, a pump having resistance to the raw material liquid.
  • the supply unit 42 may supply gas to the storage unit 41 and pump the raw material liquid stored in the storage unit 41, for example.
  • the raw material liquid control unit 43 controls the flow rate, pressure, and the like of the raw material liquid supplied to the main body 22, and when a new raw material liquid is supplied into the main body 22, the raw material in the main body 22 The liquid is prevented from being pushed out from the discharge port 20a.
  • the control amount with respect to the raw material liquid control part 43 can be suitably changed with the dimension of the discharge port 20a, the viscosity of a raw material liquid, etc.
  • the control amount for the raw material liquid control unit 43 can be obtained through experiments and simulations.
  • the raw material liquid control unit 43 can switch between the start of supply of the raw material liquid and the stop of supply.
  • the supply part 42 and the raw material liquid control part 43 are not necessarily required.
  • the storage unit 41 is provided at a position higher than the position of the main body 22, the raw material liquid can be supplied to the main body 22 using gravity. Then, by appropriately setting the height position of the storage part 41, when a new raw material liquid is supplied into the main body part 22, the raw material liquid inside the main body part 22 is not pushed out from the discharge port 20a. Can be. In this case, the height position of the storage part 41 can be appropriately changed depending on the dimensions of the discharge port 20a, the viscosity of the raw material liquid, and the like. The height position of the storage unit 41 can be obtained by performing experiments and simulations.
  • the piping 44 is provided between the storage unit 41 and the supply unit 42, between the supply unit 42 and the raw material liquid control unit 43, and between the raw material liquid control unit 43 and the main body unit 22.
  • the pipe 44 serves as a flow path for the raw material liquid.
  • the pipe 44 is made of a material having resistance to the raw material liquid.
  • the power supply 5 applies a voltage to the nozzle 20 via the main body 22 and the connection part 21. That is, a voltage having a predetermined polarity is applied to the nozzle head 2.
  • a terminal (not shown) electrically connected to the plurality of nozzles 20 may be provided.
  • the power source 5 applies a voltage to the nozzle 20 via a terminal (not shown). That is, it is only necessary that a voltage can be applied from the power source 5 to the plurality of nozzles 20. Further, when the power source 36 is not provided, the power source 5 applies a voltage to the electrode 30 as well.
  • the polarity of the voltage applied to the nozzle 20 can be positive or negative.
  • the power supply 5 illustrated in FIG. 1 applies a positive voltage to the nozzle 20.
  • the voltage applied to the nozzle 20 can be appropriately changed according to the type of the polymer substance contained in the raw material liquid, the distance between the nozzle 20 and the collection unit 6, and the like.
  • the power source 5 can apply a voltage to the nozzle 20 so that the potential difference between the nozzle 20 and the collecting unit 6 is 10 kV or more.
  • the power source 5 can be a DC high-voltage power source, for example.
  • the power supply 5 can output a DC voltage of 10 kV to 100 kV, for example.
  • the collection unit 6 is provided on the side from which the raw material liquid of the plurality of nozzles 20 is discharged.
  • the collecting unit 6 is grounded.
  • a voltage having a reverse polarity to the voltage applied to the nozzle 20 may be applied to the collecting unit 6.
  • the collection unit 6 can be formed from a conductive material. It is preferable that the material of the collecting unit 6 has conductivity and resistance to the raw material liquid.
  • the material of the collection unit 6 can be stainless steel, for example.
  • the collection unit 6 may have a plate shape or a sheet shape. In the case of the collecting unit 6 having a sheet shape, the fiber 200 may be deposited on the collecting unit 6 wound around a roll or the like.
  • the collection unit 6 may be moved.
  • a pair of rotating drums and a drive unit that rotates the rotating drums may be provided, and the sheet-like collecting unit 6 may move between the pair of rotating drums like a belt of a belt conveyor.
  • the region in which the fiber 200 is deposited can be moved, so that a continuous deposition operation can be performed. Therefore, the production efficiency of the deposit 210 made of the fiber 200 can be improved.
  • the deposit 210 formed on the collecting unit 6 is removed from the collecting unit 6.
  • the deposit 210 is used for a nonwoven fabric, a filter, etc., for example.
  • the use of the deposit 210 is not limited to the example illustrated.
  • the collecting unit 6 can be omitted.
  • the deposit 210 made of the fibers 200 can be directly formed on the surface of a member having conductivity.
  • the conductive member may be grounded, or a voltage having a polarity opposite to that applied to the nozzle 20 may be applied to the conductive member.
  • a base material may be provided on the collection unit 6 and the fiber 200 may be deposited on the base material to form the deposit 210.
  • the deposit 210 can be formed even on a substrate having electrical insulation.
  • the base material may move on the collection unit 6.
  • a rotating drum around which a sheet-like substrate is wound and a rotating drum that winds up the sheet-like substrate on which the deposit 210 is formed are provided, and the sheet-like substrate passes over the collection unit 6. Can be. In this way, continuous deposition work is possible. Therefore, the production efficiency of the deposit 210 made of the fiber 200 can be improved.
  • the control unit 7 controls operations of the drive unit 35, the power source 36, the supply unit 42, the raw material liquid control unit 43, and the power source 5.
  • the control unit 7 can be, for example, a computer including a CPU (Central Processing Unit) and a memory.
  • the electrospinning apparatus 100 can further include a photographing apparatus 8 such as a CCD camera.
  • the imaging device 8 images the deposition state of the fiber 200 described later, and transmits the captured image data to the control unit 7.
  • the control unit 7 controls the position, moving direction, moving speed, applied voltage, and the like of the electrode 30 based on the received image data so that the deposition state of the fiber 200 becomes a predetermined one.
  • the control amount related to the electrode 30 such as the position, moving direction, moving speed, and applied voltage of the electrode 30 is determined by process conditions such as components of the raw material liquid, voltage applied to the nozzle 20, distance between the nozzle 20 and the collecting unit 6 Affected by. Therefore, it is preferable to determine the control amount related to the electrode 30 by performing experiments and simulations.
  • the raw material liquid remains in the vicinity of the discharge port 20a of the nozzle 20 due to surface tension.
  • the power source 5 applies a voltage to the nozzle 20.
  • the raw material liquid in the vicinity of the discharge port 20a is charged with a predetermined polarity. In the case illustrated in FIG. 1, the raw material liquid in the vicinity of the discharge port 20a is positively charged.
  • a deposited body 210 is formed by depositing the formed fiber 200 on the collection unit 6.
  • the stretched raw material liquid (fiber 200) is sucked by the electrostatic force acting along the electric lines of force between the nozzle 20 and the collecting unit 6 and reaches the collecting unit 6. Therefore, it is difficult to control the position where the fiber 200 is deposited, the deposition amount in a predetermined region, the orientation state of the deposited fiber 200, and the like. That is, it is difficult to control the deposition state of the fiber 200. Therefore, in the electrospinning apparatus 100 according to the present embodiment, the electric field control unit 3 controls the electric field formed between the nozzle head 2 and the collection unit 6 to control the deposition state of the fiber 200. I have to.
  • FIG. 4 is a schematic diagram for illustrating the equipotential lines 220 when the electrode 30 moves in a direction approaching the nozzle head 2.
  • FIG. 5 is a schematic diagram for illustrating the equipotential lines 220 when the electrode 30 moves in a direction away from the nozzle head 2.
  • the electric field formed between the nozzle 20 and the collecting unit 6 changes under the influence of the electric field formed between the electrode 30 and the collecting unit 6.
  • a voltage having the same polarity as the voltage applied to the nozzle 20 is applied to the electrode 30, so that the electric lines of force going out from the nozzle 20 toward the collecting unit 6,
  • the lines of electric force toward the collecting unit 6 repel each other. That is, an electric field formed between the nozzle 20 and the collecting unit 6 is defined by the electric lines of force that exit from the electrode 30 and travel toward the collecting unit 6.
  • the deposition amount in a predetermined region Etc. can be controlled.
  • FIG. 6 is a schematic diagram for illustrating the position where the fiber 200 is deposited and the control of the deposition amount in a predetermined region.
  • FIG. 6 is a view of the nozzle head 2 as viewed from above. As shown in FIG. 6, when the electrode 30 is moved, the position where the fiber 200 is deposited moves in the reverse direction. Therefore, the position 230 where the fiber 200 is deposited can be moved. In this case, the deposition amount in a predetermined region can be controlled by the position 230 where the fiber 200 is deposited and the deposition time. That is, a local thickening or a local thinning is possible.
  • FIGS. 7A and 7B are schematic views for illustrating the control of the orientation state of the deposited fiber 200.
  • FIG. FIG. 7A is a view of the nozzle head 2 as viewed from above.
  • the position where the fiber 200 is deposited moves in the reverse direction. Therefore, as shown in FIG. 7A, by reciprocating the electrode 30, the extending direction of the deposited fibers 200 can be aligned as shown in FIG. 7B.
  • the nozzle head 2 it is assumed that a plurality of nozzles 20 are arranged so as to be provided in the main body portion 22 via the connection portion 21.
  • each electrode 30 can be reciprocated in a direction crossing the direction in which the plurality of nozzles 20 are arranged. In this case, the reciprocating movement of the electrode 30 needs to be faster than the discharge speed of the raw material liquid.
  • FIG. 8A and 8B are schematic views for illustrating the control of the orientation state of the deposited fiber 200.
  • FIG. FIG. 8A is a view of the nozzle head 2 as viewed from above. As shown in FIG. 8A, if the direction in which the one electrode 30 is reciprocated and the direction in which the other electrode 30 is reciprocated are changed, as shown in FIG. The extending direction of the deposited fiber 200 can be aligned. Further, the fiber 200 can be knitted in the region where both overlap.
  • a plurality of nozzles 20 are arranged so as to be provided in the main body portion 22 via the connection portion 21. In this case, each electrode 30 can be independently reciprocated in the direction along the direction in which the plurality of nozzles 20 are arranged and the direction in which the plurality of nozzles 20 are arranged. .
  • FIGS. 9A to 9D are schematic views for illustrating the form of the deposit 210.
  • 9A to 9D are views of the deposited body 210 as viewed from above.
  • the electric field control unit 3 controls the electric field formed between the nozzle head 2 and the collection unit 6, the deposition state of the fiber 200 can be changed.
  • the deposit 210 can be formed in accordance with the planar shape of the collection unit 6.
  • FIGS. 9B and 9C a deposit 210 having an arbitrary planar shape can be formed on the collection unit 6.
  • a plurality of deposits 210 separated from each other can be formed on the collection unit 6.
  • local thickening or local thinning can be performed by depositing the fiber 200 at an arbitrary position on the collecting unit 6 or not depositing the fiber 200.
  • a base material may be provided on the collecting unit 6 or a sheet-like base material may move on the collecting unit 6.
  • a deposit 210 having an arbitrary shape can be formed on the substrate in accordance with the shape and dimensions of the substrate. That is, the fiber 200 is deposited at an arbitrary position on the base material on the collecting unit 6, for example, a sheet-like base material, or the fiber 200 is not deposited. It is also possible to make a thin film.
  • the deposit 210 having an arbitrary shape can be formed without stopping the electrospinning apparatus 100. Moreover, the deposit 210 can be formed without protruding from the collection unit 6 or the base material. Therefore, the consumption of the raw material liquid can be reduced and the productivity can be improved.
  • FIGS. 10A and 10B are schematic perspective views for illustrating the counter electrode 37.
  • the counter electrodes 37, 38 a, and 38 b are provided on the side surface side of the collection unit 6.
  • the counter electrodes 37, 38 a, 38 b are opposed to the electrode 30.
  • the shape, size, number, and the like of the counter electrodes 37, 38a, and 38b can be appropriately changed according to the number of electrodes 30, a moving range, and the like.
  • the counter electrodes 37, 38a, 38b are grounded.
  • a voltage having a polarity opposite to that applied to the electrode 30 may be applied to the counter electrodes 37, 38a, and 38b by a power source (not shown).
  • the voltage applied to the counter electrodes 37, 38a, 38b is not particularly limited. However, if the voltage applied to the counter electrodes 37, 38 a, 38 b and the voltage applied to the collection unit 6 are approximately the same, a discharge is generated between the counter electrodes 37, 38 a, 38 b and the collection unit 6. Can be suppressed. Moreover, if the voltage applied to the counter electrodes 37, 38a, and 38b is changed, variations relating to the control of the deposition state of the fiber 200 can be increased.
  • the counter electrodes 37, 38a, and 38b can be formed of a conductive material.
  • the material of the counter electrodes 37, 38a, and 38b is preferably conductive and resistant to the raw material liquid.
  • the material of the counter electrodes 37, 38a, 38b can be stainless steel, for example.
  • the counter electrodes 37, 38a, and 38b can be fixed, or can be moved in a predetermined direction.
  • the counter electrode 37 can be moved in the X direction and the Y direction.
  • the counter electrode 38a provided in the vicinity of the collecting unit 6 is fixed, and the counter electrode 38b provided at a more distant position can be moved in a predetermined direction. You can also.

Abstract

This nozzle head module (1) according to an embodiment is provided with: a nozzle head (2) having a hole for discharging a raw material liquid and configured to be applied with a voltage of a predetermined polarity; and electrodes (30) provided so as to be relatively moveable in a three-dimensional direction with respect to the nozzle head (2), and configured to be applied with a voltage of the same polarity as that of the voltage applied to the nozzle head (2).

Description

ノズルヘッドモジュール、および電界紡糸装置Nozzle head module and electrospinning apparatus
 本発明の実施形態は、ノズルヘッドモジュール、および電界紡糸装置に関する。 Embodiments of the present invention relate to a nozzle head module and an electrospinning apparatus.
 エレクトロスピニング法(電界紡糸法、電荷誘導紡糸法などとも称される)により、微細なファイバを部材の表面に堆積させる電界紡糸装置がある。
 電界紡糸装置には、原料液を排出するノズルヘッドが設けられている。
 原料液は、ノズルヘッドと収集部との間の電気力線に沿って作用する静電力(クーロン力)により吸引される。そして、原料液に含まれる溶媒が揮発することでファイバが形成され、形成されたファイバが収集部や部材の上に堆積することで堆積体が形成される。
 この場合、ファイバは、静電力により空中を移動するので、ファイバの堆積状態の制御が困難となっていた。
There is an electrospinning apparatus that deposits fine fibers on the surface of a member by an electrospinning method (also referred to as an electrospinning method, a charge induction spinning method, or the like).
The electrospinning apparatus is provided with a nozzle head for discharging the raw material liquid.
The raw material liquid is sucked by an electrostatic force (Coulomb force) acting along an electric force line between the nozzle head and the collecting unit. Then, the solvent contained in the raw material liquid is volatilized to form a fiber, and the formed fiber is deposited on the collecting part and the member to form a deposit.
In this case, since the fiber moves in the air by electrostatic force, it is difficult to control the fiber deposition state.
特開2008-88600号公報JP 2008-88600 A
 本発明が解決しようとする課題は、ファイバの堆積状態の制御が容易となるノズルヘッドモジュール、および電界紡糸装置を提供することである。 The problem to be solved by the present invention is to provide a nozzle head module and an electrospinning apparatus that facilitate the control of the fiber deposition state.
 実施形態に係るノズルヘッドモジュールは、原料液を排出する孔を有し、所定の極性の電圧が印加されるように構成されたノズルヘッドと、前記ノズルヘッドに対して、三次元方向に相対的に移動可能に設けられ、前記ノズルヘッドに印加される電圧と同じ極性の電圧が印加されるように構成された電極と、を備えている。 A nozzle head module according to an embodiment has a hole for discharging a raw material liquid, and is configured to be applied with a voltage of a predetermined polarity. The nozzle head module is relative to the nozzle head in a three-dimensional direction. And an electrode configured to be applied with a voltage having the same polarity as the voltage applied to the nozzle head.
本実施の形態に係る電界紡糸装置100を例示するための模式図である。It is a mimetic diagram for illustrating electrospinning device 100 concerning this embodiment. 電極30の他の移動形態を例示するための模式図である。6 is a schematic diagram for illustrating another movement mode of the electrode 30. FIG. 電極30の他の移動形態を例示するための模式図である。6 is a schematic diagram for illustrating another movement mode of the electrode 30. FIG. 電極30がノズルヘッド2に近づく方向に移動した場合の等電位線220を例示するための模式図である。FIG. 6 is a schematic diagram for illustrating an equipotential line 220 when the electrode 30 moves in a direction approaching the nozzle head 2. 電極30がノズルヘッド2から離れる方向に移動した場合の等電位線220を例示するための模式図である。5 is a schematic diagram for illustrating an equipotential line 220 when the electrode 30 moves in a direction away from the nozzle head 2. FIG. ファイバ200を堆積させる位置、および所定の領域における堆積量の制御を例示するための模式図である。It is a schematic diagram for illustrating control of the position which deposits the fiber 200, and the deposition amount in a predetermined area | region. (a)、(b)は、堆積させたファイバ200の配向状態の制御を例示するための模式図である。(A), (b) is a schematic diagram for demonstrating control of the orientation state of the deposited fiber 200. FIG. (a)、(b)は、堆積させたファイバ200の配向状態の制御を例示するための模式図である。(A), (b) is a schematic diagram for demonstrating control of the orientation state of the deposited fiber 200. FIG. (a)~(d)は、堆積体210の形態を例示するための模式図である。(A) to (d) are schematic views for illustrating the form of the deposit 210. (a)、(b)は、対向電極37を例示するための模式斜視図である。(A), (b) is a model perspective view for illustrating the counter electrode 37. FIG.
 以下、図面を参照しつつ、実施の形態について例示をする。なお、各図面中、同様の構成要素には同一の符号を付して詳細な説明は適宜省略する。
 また、以下においては、一例として、いわゆるニードル型ノズルヘッドを例示するが、ノズルヘッドの形式はこれに限定されるわけではない。ノズルヘッドは、例えば、いわゆるブレード型ノズルヘッドなどであってもよい。
Hereinafter, embodiments will be illustrated with reference to the drawings. In addition, in each drawing, the same code | symbol is attached | subjected to the same component and detailed description is abbreviate | omitted suitably.
In the following, a so-called needle type nozzle head is illustrated as an example, but the type of the nozzle head is not limited to this. The nozzle head may be, for example, a so-called blade type nozzle head.
 図1は、本実施の形態に係る電界紡糸装置100を例示するための模式図である。
 図2および図3は、電極30の他の移動形態を例示するための模式図である。
 図1に示すように、電界紡糸装置100には、ノズルヘッドモジュール1、原料液供給部4、電源5、収集部6、および制御部7が設けられている。
FIG. 1 is a schematic view for illustrating an electrospinning apparatus 100 according to the present embodiment.
2 and 3 are schematic views for illustrating another movement mode of the electrode 30.
As shown in FIG. 1, the electrospinning apparatus 100 includes a nozzle head module 1, a raw material liquid supply unit 4, a power supply 5, a collection unit 6, and a control unit 7.
 ノズルヘッドモジュール1は、ノズルヘッド2、および電界制御部3を有する。
 ノズルヘッド2は、原料液を排出するための孔を有する。ニードル型ノズルヘッドであるノズルヘッド2の場合には、原料液を排出するための孔はノズル20の内部に設けられる。ブレード型ノズルヘッドの場合には、ノズル20および接続部21は設けられておらず、原料液を排出するための孔は本体部22の内部に設けられる。
The nozzle head module 1 includes a nozzle head 2 and an electric field control unit 3.
The nozzle head 2 has a hole for discharging the raw material liquid. In the case of the nozzle head 2 which is a needle type nozzle head, a hole for discharging the raw material liquid is provided inside the nozzle 20. In the case of a blade type nozzle head, the nozzle 20 and the connection part 21 are not provided, and a hole for discharging the raw material liquid is provided in the main body part 22.
 ニードル型ノズルヘッドであるノズルヘッド2は、ノズル20、接続部21、および本体部22を有する。
 ノズル20は、針状を呈している。ノズル20の内部には、原料液を排出するための孔が設けられている。原料液を排出するための孔は、ノズル20の接続部21側の端部と、ノズル20の収集部6側の端部(先端)との間を貫通している。原料液を排出するための孔の、収集部6側の開口が排出口20aとなる。
The nozzle head 2, which is a needle type nozzle head, has a nozzle 20, a connection part 21, and a main body part 22.
The nozzle 20 has a needle shape. Inside the nozzle 20, a hole for discharging the raw material liquid is provided. The hole for discharging the raw material liquid penetrates between the end portion of the nozzle 20 on the connection portion 21 side and the end portion (tip end) of the nozzle 20 on the collection portion 6 side. The opening on the collection unit 6 side of the hole for discharging the raw material liquid becomes the discharge port 20a.
 ノズル20の外径寸法(ノズル20が円筒状の場合には直径寸法)には特に限定はないが、外径寸法は小さい方が好ましい。外径寸法を小さくすれば、ノズル20の排出口20aの近傍において電界集中が生じ易くなる。ノズル20の排出口20aの近傍において電界集中が生じれば、ノズル20と収集部6の間に形成される電界の強度を高めることができる。そのため、電源5により印加される電圧を低くすることができる。すなわち、駆動電圧を低減することができる。この場合、ノズル20の外径寸法は、例えば、0.3mm~1.3mm程度とすることができる。 The outer diameter of the nozzle 20 (diameter when the nozzle 20 is cylindrical) is not particularly limited, but a smaller outer diameter is preferable. If the outer diameter is reduced, electric field concentration tends to occur near the outlet 20a of the nozzle 20. If electric field concentration occurs in the vicinity of the discharge port 20a of the nozzle 20, the strength of the electric field formed between the nozzle 20 and the collecting unit 6 can be increased. Therefore, the voltage applied by the power supply 5 can be lowered. That is, the drive voltage can be reduced. In this case, the outer diameter dimension of the nozzle 20 can be set to about 0.3 mm to 1.3 mm, for example.
 排出口20aの寸法(排出口20aが円形の場合には直径寸法)には特に限定はない。排出口20aの寸法は、形成したいファイバ200の断面寸法に応じて適宜変更することができる。排出口20aの寸法(ノズル20の内径寸法)は、例えば、0.1mm~1mm程度とすることができる。 There is no particular limitation on the size of the discharge port 20a (diameter size when the discharge port 20a is circular). The dimension of the discharge port 20a can be appropriately changed according to the cross-sectional dimension of the fiber 200 to be formed. The dimension of the discharge port 20a (the inner diameter dimension of the nozzle 20) can be, for example, about 0.1 mm to 1 mm.
 ノズル20は、導電性材料から形成されている。ノズル20の材料は、導電性と、後述する原料液に対する耐性を有するものとすることが好ましい。ノズル20は、例えば、ステンレスなどから形成することができる。 The nozzle 20 is made of a conductive material. It is preferable that the material of the nozzle 20 has conductivity and resistance to a raw material liquid described later. The nozzle 20 can be formed from, for example, stainless steel.
 ノズル20の数には特に限定がなく、収集部6の大きさなどに応じて適宜変更することができる。ノズル20は、少なくとも1つ設けられていればよい。
 複数のノズル20を設ける場合には、複数のノズル20は、所定の間隔を空けて並べて設けられる。なお、複数のノズル20の配設形態は例示をしたものに限定されるわけではない。例えば、本実施形態においては、複数のノズル20は、一列に並べて設けることもできるし、円周上あるいは同心円上に並べて設けることもできるし、千鳥状あるいはマトリクス状に並べて設けることもできる。
The number of the nozzles 20 is not particularly limited, and can be appropriately changed according to the size of the collection unit 6 and the like. It is sufficient that at least one nozzle 20 is provided.
When a plurality of nozzles 20 are provided, the plurality of nozzles 20 are provided side by side at a predetermined interval. In addition, the arrangement | positioning form of the some nozzle 20 is not necessarily limited to what was illustrated. For example, in the present embodiment, the plurality of nozzles 20 can be provided in a line, can be provided on a circumference or concentric circles, or can be provided in a zigzag or matrix form.
 接続部21は、ノズル20と本体部22の間に設けられている。接続部21は、必ずしも必要ではなく、ノズル20が本体部22に直接設けられるようにしてもよい。接続部21の内部には、原料液を本体部22からノズル20に供給するための孔が設けられている。接続部21の内部に設けられた孔は、ノズル20の内部に設けられた孔、および、本体部22の内部に設けられた空間と繋がっている。
 接続部21は、導電性材料から形成されている。接続部21の材料は、導電性と原料液に対する耐性を有するものとすることが好ましい。接続部21は、例えば、ステンレスなどから形成することができる。
The connection portion 21 is provided between the nozzle 20 and the main body portion 22. The connecting portion 21 is not always necessary, and the nozzle 20 may be provided directly on the main body portion 22. Inside the connection portion 21, a hole for supplying the raw material liquid from the main body portion 22 to the nozzle 20 is provided. The hole provided in the connection part 21 is connected to the hole provided in the nozzle 20 and the space provided in the main body part 22.
The connection part 21 is formed from a conductive material. It is preferable that the material of the connection portion 21 has conductivity and resistance to the raw material liquid. The connection part 21 can be formed from stainless steel etc., for example.
 本体部22は、板状を呈している。本体部22の内部には、原料液が収納される空間が設けられている。 The main body 22 has a plate shape. A space for storing the raw material liquid is provided inside the main body 22.
 また、本体部22には、供給口22aが設けられている。原料液供給部4から供給された原料液は、供給口22aを介して本体部22の内部に導入される。供給口22aの配設位置と数には、特に限定はない。供給口22aは、例えば、本体部22の、ノズル20が設けられる側とは反対側に設けることができる。
 本体部22は、原料液に対する耐性を有する材料から形成されている。本体部22は、例えば、ステンレスなどから形成することができる。
The main body 22 is provided with a supply port 22a. The raw material liquid supplied from the raw material liquid supply unit 4 is introduced into the main body 22 through the supply port 22a. There are no particular restrictions on the location and number of the supply ports 22a. The supply port 22a can be provided, for example, on the side of the main body 22 opposite to the side where the nozzle 20 is provided.
The main body 22 is formed from a material having resistance to the raw material liquid. The main body 22 can be formed from, for example, stainless steel.
 電界制御部3は、ノズルヘッド2と収集部6との間に形成される電界を制御して、ファイバ200の堆積状態の制御を行う。
 電界制御部3は、電極30、保持部31、案内部32、移動部33、伝導部34、駆動部35、および電源36を有する。
The electric field control unit 3 controls the electric field formed between the nozzle head 2 and the collecting unit 6 to control the deposition state of the fiber 200.
The electric field control unit 3 includes an electrode 30, a holding unit 31, a guide unit 32, a moving unit 33, a conducting unit 34, a driving unit 35, and a power source 36.
 電極30は、ノズルヘッド2の側面側(本体部22の、ノズル20が接続される面と交差する面の側)に設けられている。電極30の数には特に限定はない。電極30は、少なくとも1つ設けられていればよい。
 電極30は、ノズルヘッド2の少なくとも一方の側面側に設けられていればよい。
 ただし、電極30の数や、電極30を設ける位置の数を増やせば、ファイバ200の堆積状態の制御に関するバリエーションを増やすことができる。
The electrode 30 is provided on the side of the nozzle head 2 (the side of the main body 22 that intersects the surface to which the nozzle 20 is connected). There is no particular limitation on the number of electrodes 30. It is sufficient that at least one electrode 30 is provided.
The electrode 30 may be provided on at least one side surface of the nozzle head 2.
However, if the number of the electrodes 30 and the number of positions where the electrodes 30 are provided are increased, variations regarding the control of the deposition state of the fiber 200 can be increased.
 電極30の収集部6側の端部(先端)の位置には特に限定はない。ただし、電極30の先端の位置がノズル20の先端の位置と同じ、または、電極30の先端の位置がノズル20の先端の位置よりも本体部22側にあるようにすることができる。
 すなわち、原料液を排出する孔が延びる方向において、電極30の先端は、ノズルヘッド2の先端よりも原料液を排出する側とは反対側(原料液を排出する方向からより遠ざかる方向)にあるようにすることができる。
 この様にすれば、必要に応じて、ノズル20の周辺の電界への影響を抑制するように制御し、ノズル20から引き出された原料液が電極30に付着することなども抑制することができる。
The position of the end (tip) of the electrode 30 on the collecting unit 6 side is not particularly limited. However, the position of the tip of the electrode 30 may be the same as the position of the tip of the nozzle 20, or the position of the tip of the electrode 30 may be closer to the main body 22 than the position of the tip of the nozzle 20.
That is, in the direction in which the hole for discharging the raw material liquid extends, the tip of the electrode 30 is on the side opposite to the side of discharging the raw material liquid from the tip of the nozzle head 2 (the direction away from the direction of discharging the raw material liquid). Can be.
If it does in this way, it will control so that the influence to the electric field around the nozzle 20 may be suppressed as needed, and it can also suppress that the raw material liquid pulled out from the nozzle 20 adheres to the electrode 30, etc. .
 電極30の形状には特に限定はないが、例えば、中実の針状を呈する電極とすることができる。針状を呈する電極30は、原料液を排出するための孔が延びる方向に延びている。 The shape of the electrode 30 is not particularly limited, and for example, it can be a solid needle-like electrode. The needle-like electrode 30 extends in a direction in which a hole for discharging the raw material liquid extends.
 針状を呈する電極30の外径寸法には特に限定はないが、外径寸法は小さい方が好ましい。外径寸法を小さくすれば、電極30の先端において電界集中が生じ易くなる。電極30の先端において電界集中が生じれば、電極30と収集部6(または、対向電極37)の間に形成される電界の強度を高めることができる。そのため、後述するファイバ200の堆積状態の制御が容易となる。また、電源36により印加される電圧を低くすることができる。すなわち、駆動電圧を低減することができる。この場合、電極30の外径寸法は、例えば、0.3mm~1.3mm程度とすることができる。
 また、電極30は、尖った先端部を有するものとすることもできる。この場合、先端部の外径寸法は、例えば、0.3mm~1.3mm程度とすることができる。
 電極30は、導電性を有する。電極30は、例えば、銅合金やステンレスなどの金属から形成することができる。
There is no particular limitation on the outer diameter of the electrode 30 having a needle shape, but a smaller outer diameter is preferable. If the outer diameter is reduced, electric field concentration tends to occur at the tip of the electrode 30. If electric field concentration occurs at the tip of the electrode 30, the strength of the electric field formed between the electrode 30 and the collecting unit 6 (or the counter electrode 37) can be increased. Therefore, it becomes easy to control the deposition state of the fiber 200 described later. Further, the voltage applied by the power source 36 can be lowered. That is, the drive voltage can be reduced. In this case, the outer diameter of the electrode 30 can be set to about 0.3 mm to 1.3 mm, for example.
The electrode 30 can also have a pointed tip. In this case, the outer diameter of the tip can be set to about 0.3 mm to 1.3 mm, for example.
The electrode 30 has conductivity. The electrode 30 can be formed from metals, such as a copper alloy and stainless steel, for example.
 保持部31は、電極30を保持する。例えば、電極30は、保持部31の一方の端部の近傍に設けることができる。電源36が設けられる場合には、保持部31は樹脂などの電気絶縁性を有する材料から形成することができる。電源36が設けられず、電源5がノズル20と電極30に電圧を印加する場合には、保持部31は金属などの導電性を有する材料から形成することができる。この場合、電極30は、ノズルヘッド2と電気的に接続される。 The holding unit 31 holds the electrode 30. For example, the electrode 30 can be provided in the vicinity of one end of the holding portion 31. In the case where the power source 36 is provided, the holding portion 31 can be formed from a material having electrical insulation properties such as resin. When the power source 36 is not provided and the power source 5 applies a voltage to the nozzle 20 and the electrode 30, the holding unit 31 can be formed from a conductive material such as metal. In this case, the electrode 30 is electrically connected to the nozzle head 2.
 案内部32は、本体部22と保持部31との間に設けられている。案内部32は、電極30の移動方向を規定する。案内部32は、例えば、直線運動軸受などとすることができる。 The guide part 32 is provided between the main body part 22 and the holding part 31. The guide part 32 defines the moving direction of the electrode 30. The guide portion 32 can be, for example, a linear motion bearing.
 移動部33は、保持部31を介して電極30を移動させる。移動部33は、例えば、ネジ機構を有するものとすることができる。この場合、移動部33は、棒状を呈し、一方の端部側に左ネジを有し、他方の端部側に右ネジを有したものとすることができる。この様にすれば、移動部33を一方の方向に回転させることで、対向して設けられた2つの電極30をノズルヘッド2に近づく方向に移動させることができる。また、移動部33を他方の方向に回転させることで、対向して設けられた2つの電極30をノズルヘッド2から離れる方向に移動させることができる。 The moving unit 33 moves the electrode 30 through the holding unit 31. The moving part 33 can have, for example, a screw mechanism. In this case, the moving part 33 has a rod shape, and may have a left-hand thread on one end side and a right-hand thread on the other end side. In this way, by rotating the moving part 33 in one direction, the two electrodes 30 provided facing each other can be moved in a direction approaching the nozzle head 2. Further, by rotating the moving part 33 in the other direction, the two electrodes 30 provided facing each other can be moved in a direction away from the nozzle head 2.
 伝導部34は、駆動部35と移動部33との間に設けられている。伝導部34は、駆動部35からの動力を移動部33に伝達する。伝導部34は、例えば、タイミングベルトとタイミングプーリなどとすることができる。伝導部34は、少なくとも一部が電気絶縁性を有し、電源5および電源36と、駆動部35との間が電気的に絶縁されるようにすることが好ましい。図1に例示をしたものの場合には、ゴムなどからなるタイミングベルトにより、電源5および電源36と、駆動部35との間が電気的に絶縁されている。この様にすれば、駆動部35の保護を図ることができる。 The conduction unit 34 is provided between the drive unit 35 and the moving unit 33. The conduction unit 34 transmits the power from the drive unit 35 to the moving unit 33. The conductive portion 34 can be, for example, a timing belt and a timing pulley. It is preferable that at least a part of the conductive portion 34 has electrical insulation so that the power source 5 and the power source 36 are electrically insulated from the drive unit 35. In the case illustrated in FIG. 1, the power source 5 and the power source 36 are electrically insulated from the driving unit 35 by a timing belt made of rubber or the like. In this way, the drive unit 35 can be protected.
 駆動部35は、例えば、サーボモータなどの制御モータとすることができる。
 その他、電極30の位置を直接的または間接的に検出する検出器などを適宜設けることができる。
The drive unit 35 may be a control motor such as a servo motor, for example.
In addition, a detector or the like that directly or indirectly detects the position of the electrode 30 can be provided as appropriate.
 なお、電極30が、原料液を排出するための孔が延びる方向(原料液が排出される方向に相当する)と交差する方向(例えば、水平方向)に移動する場合を例示したが、電極30が、原料液を排出するための孔が延びる方向(例えば、鉛直方向)に移動するようにしたり、電極30が、原料液を排出するための孔が延びる方向、および、原料液を排出するための孔が延びる方向と交差する方向に移動したりすることもできる。
 また、図2に示すように、電極30が、ノズルヘッド2の周囲を回転方向(θ方向)に移動するようにしてもよい。この場合、電極30は保持部31を介して、ノズルヘッド2に設けられている。保持部31は、ノズルヘッド2において、孔から原料液を排出する方向に略沿った方向を軸として回動するように構成されている。このようにすることで、ノズルヘッド2において、電極30の先端が、孔から原料液が排出される方向に略沿った方向の周りを円弧状に回動することが可能となる。即ち、図2に示すように、電極30は、ノズルヘッド2の周囲をθ方向において回転移動することが可能に構成されている。
 また、図3に示すように、電極30が、ノズルヘッド2に対して揺動するようにしてもよい。この場合、電極30は保持部31を介して、ノズルヘッド2に設けられており、保持部31は、原料液を排出する孔が配列される方向と交差する方向を軸として回動するように構成されている。このようにすることで、ノズルヘッド2は、電極30の先端が、原料液を排出する孔が配列される方向と交差する方向を軸として円弧状に回動し、前記原料液が排出される孔との距離間隔が変化するように移動可能に構成されている。
 ここでは、電極30の移動の制御は、一軸制御であってもよいし、多軸制御であってもよい。
In addition, although the case where the electrode 30 moves in a direction (for example, horizontal direction) intersecting with a direction in which a hole for discharging the raw material liquid extends (corresponding to a direction in which the raw material liquid is discharged) is illustrated, the electrode 30 is illustrated. However, the electrode 30 moves in the direction in which the hole for discharging the raw material liquid extends (for example, the vertical direction), or the electrode 30 discharges the raw material liquid in the direction in which the hole for discharging the raw material liquid extends. It is also possible to move in a direction intersecting with the direction in which the holes extend.
Further, as shown in FIG. 2, the electrode 30 may move around the nozzle head 2 in the rotation direction (θ direction). In this case, the electrode 30 is provided on the nozzle head 2 via the holding portion 31. The holding unit 31 is configured to rotate in the nozzle head 2 with the direction substantially along the direction of discharging the raw material liquid from the hole as an axis. By doing in this way, in the nozzle head 2, it becomes possible for the front-end | tip of the electrode 30 to rotate circularly around the direction substantially along the direction in which raw material liquid is discharged | emitted from a hole. That is, as shown in FIG. 2, the electrode 30 is configured to be able to rotate around the nozzle head 2 in the θ direction.
Further, as shown in FIG. 3, the electrode 30 may swing with respect to the nozzle head 2. In this case, the electrode 30 is provided in the nozzle head 2 via the holding portion 31, and the holding portion 31 rotates about the direction intersecting the direction in which the holes for discharging the raw material liquid are arranged. It is configured. By doing so, the nozzle head 2 rotates in a circular arc shape with the tip of the electrode 30 as an axis intersecting the direction in which the holes for discharging the raw material liquid are arranged, and the raw material liquid is discharged. It is configured to be movable so that the distance between the holes changes.
Here, the movement control of the electrode 30 may be uniaxial control or multi-axis control.
 また、ノズルヘッド2に対して電極30が移動する場合を例示したが、電極30に対してノズルヘッド2が移動するようにしてもよい。すなわち、電極30は、ノズルヘッド2に対して相対的に移動可能となっていればよい。
 なお、電極30に対してノズルヘッド2を移動させる場合には、電気絶縁性を有するブラケットなどを介して、電界紡糸装置100の図示しない筐体にノズルヘッド2を取り付け、電気絶縁性を有するブラケットなどを介して、筐体に電極30、保持部31、案内部32、移動部33、伝導部34、駆動部35、および電源36などを取り付ければよい。
Moreover, although the case where the electrode 30 moves with respect to the nozzle head 2 is illustrated, the nozzle head 2 may move with respect to the electrode 30. That is, the electrode 30 only needs to be movable relative to the nozzle head 2.
When the nozzle head 2 is moved with respect to the electrode 30, the nozzle head 2 is attached to a housing (not shown) of the electrospinning apparatus 100 via a bracket having electrical insulation, and the bracket having electrical insulation. The electrode 30, the holding unit 31, the guide unit 32, the moving unit 33, the conducting unit 34, the driving unit 35, the power source 36, and the like may be attached to the casing.
 電極30に対してノズルヘッド2が移動するようにすれば、プロセス条件(例えば、ノズルヘッド2と収集部6との間の距離)を調整することが容易となる。
 一方、ノズルヘッド2に対して電極30が移動するようにすれば、プロセス条件を固定した状態でファイバ200の堆積状態を制御することができる。
If the nozzle head 2 moves with respect to the electrode 30, it becomes easy to adjust the process conditions (for example, the distance between the nozzle head 2 and the collecting unit 6).
On the other hand, if the electrode 30 is moved relative to the nozzle head 2, the deposition state of the fiber 200 can be controlled with the process conditions fixed.
 電源36は、電極30に電圧を印加する。電極30が複数設けられる場合には、電源36は、複数の電極30に電圧を印加する。電極30に印加する電圧の極性は、ノズル20に印加する電圧の極性と同じである。なお、図1に例示をした電源36は、電極30にプラスの電圧を印加する。電極30に印加する電圧には特に限定はない。この場合、電極30に印加する電圧と、ノズル20に印加する電圧とが同程度であれば、電極30とノズル20との間に放電が生じるのを抑制することができる。
 また、電源36は、電極30に印加する電圧を変化させることができるものとすることもできる。電極30に印加する電圧を変化させることができれば、ファイバ200の堆積状態の制御に関するバリエーションを増やすことができる。
 電源36は、例えば、直流高圧電源とすることができる。電源36は、例えば、10kV以上100kV以下の直流電圧を出力するものとすることができる。
The power source 36 applies a voltage to the electrode 30. When a plurality of electrodes 30 are provided, the power source 36 applies a voltage to the plurality of electrodes 30. The polarity of the voltage applied to the electrode 30 is the same as the polarity of the voltage applied to the nozzle 20. The power source 36 illustrated in FIG. 1 applies a positive voltage to the electrode 30. There is no particular limitation on the voltage applied to the electrode 30. In this case, if the voltage applied to the electrode 30 is approximately the same as the voltage applied to the nozzle 20, it is possible to suppress discharge from occurring between the electrode 30 and the nozzle 20.
Further, the power source 36 can change the voltage applied to the electrode 30. If the voltage applied to the electrode 30 can be changed, variations regarding the control of the deposition state of the fiber 200 can be increased.
The power source 36 can be, for example, a DC high voltage power source. The power source 36 can output a DC voltage of 10 kV to 100 kV, for example.
 なお、電源36は、必ずしも必要ではなく省くこともできる。電源36が設けられない場合には、電源5が電極30に電圧を印加する。電源36を省けば、ノズルヘッドモジュール1の構成を簡略化することができ、製造コストも低減させることができる。また、電源36を設け、電極30に印加する電圧を変化させれば、ファイバ200の堆積状態の制御に関するバリエーションを増やすことができる。 Note that the power source 36 is not necessarily required and can be omitted. When the power source 36 is not provided, the power source 5 applies a voltage to the electrode 30. If the power source 36 is omitted, the configuration of the nozzle head module 1 can be simplified, and the manufacturing cost can be reduced. Moreover, if the power supply 36 is provided and the voltage applied to the electrode 30 is changed, the variation regarding control of the deposition state of the fiber 200 can be increased.
 原料液供給部4は、収納部41、供給部42、原料液制御部43、および配管44を有する。
 収納部41は、原料液を収納する。収納部41は、原料液に対する耐性を有する材料から形成されている。収納部41は、例えば、ステンレスなどから形成することができる。
The raw material liquid supply unit 4 includes a storage unit 41, a supply unit 42, a raw material liquid control unit 43, and a pipe 44.
The storage unit 41 stores the raw material liquid. The storage part 41 is formed from a material having resistance to the raw material liquid. The storage part 41 can be formed from, for example, stainless steel.
 原料液は、高分子物質を溶媒に溶解したものである。
 高分子物質には特に限定がなく、形成したいファイバ200の材質に応じて適宜変更することができる。
The raw material liquid is obtained by dissolving a polymer substance in a solvent.
There is no particular limitation on the polymer material, and it can be changed as appropriate according to the material of the fiber 200 to be formed.
 溶媒は、高分子物質を溶解することができるものであればよい。溶媒は、溶解させる高分子物質に応じて適宜変更することができる。 The solvent may be any solvent that can dissolve the polymer substance. The solvent can be appropriately changed according to the polymer substance to be dissolved.
 後述するように、原料液は、表面張力により排出口20aの近傍に留まる様にされる。そのため、原料液の粘度は、排出口20aの寸法などに応じて適宜変更することができる。原料液の粘度は、実験やシミュレーションを行うことで求めることができる。また、原料液の粘度は、溶媒と高分子物質の混合割合により制御することができる。 As will be described later, the raw material liquid is allowed to remain in the vicinity of the discharge port 20a due to surface tension. Therefore, the viscosity of the raw material liquid can be appropriately changed according to the size of the discharge port 20a. The viscosity of the raw material liquid can be obtained by performing experiments and simulations. The viscosity of the raw material liquid can be controlled by the mixing ratio of the solvent and the polymer material.
 供給部42は、収納部41に収納されている原料液を本体部22に供給する。供給部42は、例えば、原料液に対する耐性を有するポンプなどとすることができる。また、供給部42は、例えば、収納部41にガスを供給し、収納部41に収納されている原料液を圧送するものとすることもできる。 The supply unit 42 supplies the raw material liquid stored in the storage unit 41 to the main body unit 22. The supply unit 42 can be, for example, a pump having resistance to the raw material liquid. The supply unit 42 may supply gas to the storage unit 41 and pump the raw material liquid stored in the storage unit 41, for example.
 原料液制御部43は、本体部22に供給される原料液の流量、圧力などを制御して、新しい原料液が本体部22の内部に供給された際に、本体部22の内部にある原料液が排出口20aから押し出されないようにする。なお、原料液制御部43に対する制御量は、排出口20aの寸法や原料液の粘度などにより適宜変更することができる。原料液制御部43に対する制御量は、実験やシミュレーションを行うことで求めることができる。
 また、原料液制御部43は、原料液の供給の開始と、供給の停止を切り替えるものとすることもできる。
The raw material liquid control unit 43 controls the flow rate, pressure, and the like of the raw material liquid supplied to the main body 22, and when a new raw material liquid is supplied into the main body 22, the raw material in the main body 22 The liquid is prevented from being pushed out from the discharge port 20a. In addition, the control amount with respect to the raw material liquid control part 43 can be suitably changed with the dimension of the discharge port 20a, the viscosity of a raw material liquid, etc. The control amount for the raw material liquid control unit 43 can be obtained through experiments and simulations.
In addition, the raw material liquid control unit 43 can switch between the start of supply of the raw material liquid and the stop of supply.
 なお、供給部42および原料液制御部43は、必ずしも必要ではない。例えば、本体部22の位置より高い位置に収納部41を設けるようにすれば、重力を利用して原料液を本体部22に供給することができる。そして、収納部41の高さ位置を適宜設定することで、新しい原料液が本体部22の内部に供給された際に、本体部22の内部にある原料液が排出口20aから押し出されないようにすることができる。この場合、収納部41の高さ位置は、排出口20aの寸法や原料液の粘度などにより適宜変更することができる。収納部41の高さ位置は、実験やシミュレーションを行うことで求めることができる。 In addition, the supply part 42 and the raw material liquid control part 43 are not necessarily required. For example, if the storage unit 41 is provided at a position higher than the position of the main body 22, the raw material liquid can be supplied to the main body 22 using gravity. Then, by appropriately setting the height position of the storage part 41, when a new raw material liquid is supplied into the main body part 22, the raw material liquid inside the main body part 22 is not pushed out from the discharge port 20a. Can be. In this case, the height position of the storage part 41 can be appropriately changed depending on the dimensions of the discharge port 20a, the viscosity of the raw material liquid, and the like. The height position of the storage unit 41 can be obtained by performing experiments and simulations.
 配管44は、収納部41と供給部42との間、供給部42と原料液制御部43との間、原料液制御部43と本体部22との間に設けられている。配管44は、原料液の流路となる。配管44は、原料液に対する耐性を有する材料から形成されている。 The piping 44 is provided between the storage unit 41 and the supply unit 42, between the supply unit 42 and the raw material liquid control unit 43, and between the raw material liquid control unit 43 and the main body unit 22. The pipe 44 serves as a flow path for the raw material liquid. The pipe 44 is made of a material having resistance to the raw material liquid.
 電源5は、本体部22および接続部21を介してノズル20に電圧を印加する。すなわち、ノズルヘッド2には、所定の極性の電圧が印加される。なお、複数のノズル20と電気的に接続された図示しない端子を設けるようにしてもよい。この場合、電源5は、図示しない端子を介してノズル20に電圧を印加する。すなわち、電源5から複数のノズル20に電圧が印加できるようになっていればよい。
 また、電源36が設けられない場合には、電源5は、電極30にも電圧を印加する。
The power supply 5 applies a voltage to the nozzle 20 via the main body 22 and the connection part 21. That is, a voltage having a predetermined polarity is applied to the nozzle head 2. A terminal (not shown) electrically connected to the plurality of nozzles 20 may be provided. In this case, the power source 5 applies a voltage to the nozzle 20 via a terminal (not shown). That is, it is only necessary that a voltage can be applied from the power source 5 to the plurality of nozzles 20.
Further, when the power source 36 is not provided, the power source 5 applies a voltage to the electrode 30 as well.
 ノズル20に印加する電圧の極性は、プラスとすることもできるし、マイナスとすることもできる。なお、図1に例示をした電源5は、ノズル20にプラスの電圧を印加する。
 ノズル20に印加する電圧は、原料液に含まれる高分子物質の種類、ノズル20と収集部6との間の距離などに応じて適宜変更することができる。例えば、電源5は、ノズル20と収集部6との間の電位差が10kV以上となるように、ノズル20に電圧を印加するものとすることができる。
 電源5は、例えば、直流高圧電源とすることができる。電源5は、例えば、10kV以上100kV以下の直流電圧を出力するものとすることができる。
The polarity of the voltage applied to the nozzle 20 can be positive or negative. The power supply 5 illustrated in FIG. 1 applies a positive voltage to the nozzle 20.
The voltage applied to the nozzle 20 can be appropriately changed according to the type of the polymer substance contained in the raw material liquid, the distance between the nozzle 20 and the collection unit 6, and the like. For example, the power source 5 can apply a voltage to the nozzle 20 so that the potential difference between the nozzle 20 and the collecting unit 6 is 10 kV or more.
The power source 5 can be a DC high-voltage power source, for example. The power supply 5 can output a DC voltage of 10 kV to 100 kV, for example.
 収集部6は、複数のノズル20の原料液が排出される側に設けられている。収集部6は、接地されている。収集部6には、ノズル20に印加する電圧と逆極性の電圧を印加するようにしてもよい。収集部6は、導電性材料から形成することができる。収集部6の材料は、導電性と原料液に対する耐性を有するものとすることが好ましい。収集部6の材料は、例えば、ステンレスなどとすることができる。
 収集部6は、例えば、板状やシート状を呈するものとすることができる。シート状を呈する収集部6の場合には、ロール等に巻きつけられた収集部6にファイバ200を堆積させるようにしてもよい。
The collection unit 6 is provided on the side from which the raw material liquid of the plurality of nozzles 20 is discharged. The collecting unit 6 is grounded. A voltage having a reverse polarity to the voltage applied to the nozzle 20 may be applied to the collecting unit 6. The collection unit 6 can be formed from a conductive material. It is preferable that the material of the collecting unit 6 has conductivity and resistance to the raw material liquid. The material of the collection unit 6 can be stainless steel, for example.
For example, the collection unit 6 may have a plate shape or a sheet shape. In the case of the collecting unit 6 having a sheet shape, the fiber 200 may be deposited on the collecting unit 6 wound around a roll or the like.
 また、収集部6は、移動するものであってもよい。例えば、一対の回転ドラムと、回転ドラムを回転させる駆動部を設け、ベルトコンベアのベルトように一対の回転ドラムの間をシート状の収集部6が移動するようにしてもよい。この様にすれば、ファイバ200を堆積させる領域を移動させることができるので、連続的な堆積作業が可能となる。そのため、ファイバ200からなる堆積体210の生産効率を向上させることができる。 Further, the collection unit 6 may be moved. For example, a pair of rotating drums and a drive unit that rotates the rotating drums may be provided, and the sheet-like collecting unit 6 may move between the pair of rotating drums like a belt of a belt conveyor. In this way, the region in which the fiber 200 is deposited can be moved, so that a continuous deposition operation can be performed. Therefore, the production efficiency of the deposit 210 made of the fiber 200 can be improved.
 収集部6の上に形成された堆積体210は、収集部6から取り外される。堆積体210は、例えば、不織布やフィルタなどに用いられる。なお、堆積体210の用途は例示をしたものに限定されるわけではない。 The deposit 210 formed on the collecting unit 6 is removed from the collecting unit 6. The deposit 210 is used for a nonwoven fabric, a filter, etc., for example. In addition, the use of the deposit 210 is not limited to the example illustrated.
 また、収集部6は、省くこともできる。例えば、導電性を有する部材の表面に、ファイバ200からなる堆積体210を直接形成することもできる。この様な場合には、導電性を有する部材を接地したり、導電性を有する部材にノズル20に印加する電圧と逆極性の電圧を印加したりすればよい。 Also, the collecting unit 6 can be omitted. For example, the deposit 210 made of the fibers 200 can be directly formed on the surface of a member having conductivity. In such a case, the conductive member may be grounded, or a voltage having a polarity opposite to that applied to the nozzle 20 may be applied to the conductive member.
 また、収集部6の上に基材を設け、基材の上にファイバ200を堆積させて堆積体210を形成することもできる。この様にすれば、電気絶縁性を有する基材の上であっても堆積体210を形成することができる。
 この場合、基材は、収集部6の上を移動するものであってもよい。例えば、シート状の基材が巻き付けられた回転ドラムと、堆積体210が形成されたシート状の基材を巻き取る回転ドラムとを設け、収集部6の上をシート状の基材が通過するようにすることができる。この様にすれば、連続的な堆積作業が可能となる。そのため、ファイバ200からなる堆積体210の生産効率を向上させることができる。
Alternatively, a base material may be provided on the collection unit 6 and the fiber 200 may be deposited on the base material to form the deposit 210. In this way, the deposit 210 can be formed even on a substrate having electrical insulation.
In this case, the base material may move on the collection unit 6. For example, a rotating drum around which a sheet-like substrate is wound and a rotating drum that winds up the sheet-like substrate on which the deposit 210 is formed are provided, and the sheet-like substrate passes over the collection unit 6. Can be. In this way, continuous deposition work is possible. Therefore, the production efficiency of the deposit 210 made of the fiber 200 can be improved.
 制御部7は、駆動部35、電源36、供給部42、原料液制御部43、および電源5の動作を制御する。
 制御部7は、例えば、CPU(Central Processing Unit)やメモリなどを備えたコンピュータとすることができる。
The control unit 7 controls operations of the drive unit 35, the power source 36, the supply unit 42, the raw material liquid control unit 43, and the power source 5.
The control unit 7 can be, for example, a computer including a CPU (Central Processing Unit) and a memory.
 またさらに、電界紡糸装置100は、CCDカメラなどの撮影装置8をさらに備えることができる。
 撮影装置8は、後述するファイバ200の堆積状態を撮影し、撮影した画像データを制御部7に送信する。制御部7は、受信した画像データに基づいて、電極30の位置、移動方向、移動速度、印加電圧などを制御して、ファイバ200の堆積状態が所定のものとなるようにする。
 電極30の位置、移動方向、移動速度、印加電圧などの電極30に関する制御量は、原料液の成分、ノズル20に印加される電圧、ノズル20と収集部6との間の距離などのプロセス条件の影響を受ける。そのため、電極30に関する制御量は、実験やシミュレーションを行うことで決定することが好ましい。
Furthermore, the electrospinning apparatus 100 can further include a photographing apparatus 8 such as a CCD camera.
The imaging device 8 images the deposition state of the fiber 200 described later, and transmits the captured image data to the control unit 7. The control unit 7 controls the position, moving direction, moving speed, applied voltage, and the like of the electrode 30 based on the received image data so that the deposition state of the fiber 200 becomes a predetermined one.
The control amount related to the electrode 30 such as the position, moving direction, moving speed, and applied voltage of the electrode 30 is determined by process conditions such as components of the raw material liquid, voltage applied to the nozzle 20, distance between the nozzle 20 and the collecting unit 6 Affected by. Therefore, it is preferable to determine the control amount related to the electrode 30 by performing experiments and simulations.
 次に、電界紡糸装置100の作用について説明する。
 原料液は、表面張力によりノズル20の排出口20aの近傍に留まっている。
 電源5は、ノズル20に電圧を印加する。すると、排出口20aの近傍にある原料液が所定の極性に帯電する。図1に例示をしたものの場合には、排出口20aの近傍にある原料液がプラスに帯電する。
Next, the operation of the electrospinning apparatus 100 will be described.
The raw material liquid remains in the vicinity of the discharge port 20a of the nozzle 20 due to surface tension.
The power source 5 applies a voltage to the nozzle 20. Then, the raw material liquid in the vicinity of the discharge port 20a is charged with a predetermined polarity. In the case illustrated in FIG. 1, the raw material liquid in the vicinity of the discharge port 20a is positively charged.
 収集部6は、接地されているので、ノズル20と収集部6の間に電界が形成される。そして、電気力線に沿って作用する静電力が表面張力より大きくなると、排出口20aの近傍にある原料液が静電力により収集部6に向けて引き出される。引き出された原料液は、引き伸ばされ、原料液に含まれる溶媒が揮発することでファイバ200が形成される。形成されたファイバ200が収集部6の上に堆積することで、堆積体210が形成される。 Since the collecting unit 6 is grounded, an electric field is formed between the nozzle 20 and the collecting unit 6. And if the electrostatic force which acts along an electric force line becomes larger than surface tension, the raw material liquid in the vicinity of the discharge port 20a will be drawn out toward the collection part 6 by an electrostatic force. The drawn raw material liquid is stretched, and the solvent contained in the raw material liquid volatilizes to form the fiber 200. A deposited body 210 is formed by depositing the formed fiber 200 on the collection unit 6.
 ここで、引き伸ばされた原料液(ファイバ200)は、ノズル20と収集部6との間の電気力線に沿って作用する静電力により吸引され、収集部6に到達する。そのため、ファイバ200を堆積させる位置、所定の領域における堆積量、堆積させたファイバ200の配向状態などを制御することが難しい。すなわち、ファイバ200の堆積状態の制御が難しい。
 そこで、本実施の形態に係る電界紡糸装置100においては、電界制御部3により、ノズルヘッド2と収集部6との間に形成される電界を制御して、ファイバ200の堆積状態を制御するようにしている。
Here, the stretched raw material liquid (fiber 200) is sucked by the electrostatic force acting along the electric lines of force between the nozzle 20 and the collecting unit 6 and reaches the collecting unit 6. Therefore, it is difficult to control the position where the fiber 200 is deposited, the deposition amount in a predetermined region, the orientation state of the deposited fiber 200, and the like. That is, it is difficult to control the deposition state of the fiber 200.
Therefore, in the electrospinning apparatus 100 according to the present embodiment, the electric field control unit 3 controls the electric field formed between the nozzle head 2 and the collection unit 6 to control the deposition state of the fiber 200. I have to.
 図4は、電極30がノズルヘッド2に近づく方向に移動した場合の等電位線220を例示するための模式図である。
 図5は、電極30がノズルヘッド2から離れる方向に移動した場合の等電位線220を例示するための模式図である。
 ノズル20と収集部6の間に形成される電界は、電極30と収集部6の間に形成される電界の影響を受けて変化する。この場合、前述したように、電極30には、ノズル20に印加する電圧と同じ極性の電圧が印加されるので、ノズル20から出て収集部6に向かう電気力線と、電極30から出て収集部6に向かう電気力線は反発し合う。すなわち、電極30から出て収集部6に向かう電気力線により、ノズル20と収集部6の間に形成される電界が画される。
FIG. 4 is a schematic diagram for illustrating the equipotential lines 220 when the electrode 30 moves in a direction approaching the nozzle head 2.
FIG. 5 is a schematic diagram for illustrating the equipotential lines 220 when the electrode 30 moves in a direction away from the nozzle head 2.
The electric field formed between the nozzle 20 and the collecting unit 6 changes under the influence of the electric field formed between the electrode 30 and the collecting unit 6. In this case, as described above, a voltage having the same polarity as the voltage applied to the nozzle 20 is applied to the electrode 30, so that the electric lines of force going out from the nozzle 20 toward the collecting unit 6, The lines of electric force toward the collecting unit 6 repel each other. That is, an electric field formed between the nozzle 20 and the collecting unit 6 is defined by the electric lines of force that exit from the electrode 30 and travel toward the collecting unit 6.
 そのため、図4に示すように、電極30がノズルヘッド2に近づく方向に移動した場合には、ノズル20から出て収集部6に向かう電気力線が収集部6の中央側方向に曲げられ、ノズル20と収集部6の間に形成される電界が狭められる。この場合、引き伸ばされた原料液(ファイバ200)は、ノズル20と収集部6との間の電気力線に沿って作用する静電力により吸引されるので、収集部6における堆積位置が収集部6の中央側に移動する。 Therefore, as shown in FIG. 4, when the electrode 30 moves in a direction approaching the nozzle head 2, the electric lines of force exiting from the nozzle 20 toward the collecting unit 6 are bent toward the central side of the collecting unit 6, The electric field formed between the nozzle 20 and the collecting unit 6 is narrowed. In this case, since the stretched raw material liquid (fiber 200) is sucked by the electrostatic force acting along the electric lines of force between the nozzle 20 and the collection unit 6, the deposition position in the collection unit 6 is the collection position. Move to the center of the.
 一方、図5に示すように、電極30がノズルヘッド2から離れる方向に移動した場合には、ノズル20から出て収集部6に向かう電気力線が収集部6の外側方向に曲げられ、ノズル20と収集部6の間に形成される電界が拡げられる。この場合、引き伸ばされた原料液(ファイバ200)は、ノズル20と収集部6との間の電気力線に沿って作用する静電力により吸引されるので、収集部6における堆積位置が収集部6の外側に移動する。 On the other hand, as shown in FIG. 5, when the electrode 30 moves in a direction away from the nozzle head 2, the electric lines of force exiting the nozzle 20 toward the collecting unit 6 are bent outwardly of the collecting unit 6, The electric field formed between 20 and the collection unit 6 is expanded. In this case, since the stretched raw material liquid (fiber 200) is sucked by the electrostatic force acting along the electric lines of force between the nozzle 20 and the collection unit 6, the deposition position in the collection unit 6 is the collection position. Move outside of.
 そのため、電極30の移動方向、電極30とノズルヘッド2(ノズル20)との間の距離、電極30に印加する電圧などを制御することで、ファイバ200を堆積させる位置、所定の領域における堆積量などを制御することができる。 Therefore, by controlling the moving direction of the electrode 30, the distance between the electrode 30 and the nozzle head 2 (nozzle 20), the voltage applied to the electrode 30, the position where the fiber 200 is deposited, the deposition amount in a predetermined region Etc. can be controlled.
 図6は、ファイバ200を堆積させる位置、および所定の領域における堆積量の制御を例示するための模式図である。
 なお、図6は、ノズルヘッド2を上方から見た図である。
 図6に示すように、電極30を移動すると、ファイバ200を堆積させる位置が逆方向に移動する。そのため、ファイバ200を堆積させる位置230を移動させることができる。この場合、ファイバ200を堆積させる位置230と堆積時間とにより、所定の領域における堆積量を制御することができる。すなわち、局所的な厚膜化や局所的な薄膜化が可能となる。
FIG. 6 is a schematic diagram for illustrating the position where the fiber 200 is deposited and the control of the deposition amount in a predetermined region.
FIG. 6 is a view of the nozzle head 2 as viewed from above.
As shown in FIG. 6, when the electrode 30 is moved, the position where the fiber 200 is deposited moves in the reverse direction. Therefore, the position 230 where the fiber 200 is deposited can be moved. In this case, the deposition amount in a predetermined region can be controlled by the position 230 where the fiber 200 is deposited and the deposition time. That is, a local thickening or a local thinning is possible.
 図7(a)、(b)は、堆積させたファイバ200の配向状態の制御を例示するための模式図である。
 なお、図7(a)は、ノズルヘッド2を上方から見た図である。
 前述したように、電極30を移動すると、ファイバ200を堆積させる位置が逆方向に移動する。そのため、図7(a)に示すように、電極30の往復移動を繰り返し行うことで、図7(b)に示すように、堆積させたファイバ200の延びる方向を揃えることができる。ここでは一例として、ノズルヘッド2においては、複数のノズル20が、接続部21を介して本体部22に設けられるようにして配列されているものとする。この場合は、各電極30は複数ノズル20が配列されている方向と交差する方向に往復運動させることができる。この場合、電極30の往復移動は、原料液の排出速度よりも速くする必要がある。
FIGS. 7A and 7B are schematic views for illustrating the control of the orientation state of the deposited fiber 200. FIG.
FIG. 7A is a view of the nozzle head 2 as viewed from above.
As described above, when the electrode 30 is moved, the position where the fiber 200 is deposited moves in the reverse direction. Therefore, as shown in FIG. 7A, by reciprocating the electrode 30, the extending direction of the deposited fibers 200 can be aligned as shown in FIG. 7B. Here, as an example, in the nozzle head 2, it is assumed that a plurality of nozzles 20 are arranged so as to be provided in the main body portion 22 via the connection portion 21. In this case, each electrode 30 can be reciprocated in a direction crossing the direction in which the plurality of nozzles 20 are arranged. In this case, the reciprocating movement of the electrode 30 needs to be faster than the discharge speed of the raw material liquid.
 図8(a)、(b)は、堆積させたファイバ200の配向状態の制御を例示するための模式図である。
 なお、図8(a)は、ノズルヘッド2を上方から見た図である。
 図8(a)に示すように、一方の電極30を往復移動させる方向と、他方の電極30を往復移動させる方向とを変えれば、図8(b)に示すように、複数の方向において、堆積させたファイバ200の延びる方向を揃えることができる。また、両者が重なる領域においては、ファイバ200の編み込みを行うことができる。ここでは一例として、ノズルヘッド2においては、複数のノズル20が接続部21を介して本体部22に設けられるようにして配列されている。この場合は、各電極30は独立して、複数のノズル20が配列されている方向に沿った方向と、複数のノズル20が配列されている方向とは交差する方向に往復運動させることができる。
8A and 8B are schematic views for illustrating the control of the orientation state of the deposited fiber 200. FIG.
FIG. 8A is a view of the nozzle head 2 as viewed from above.
As shown in FIG. 8A, if the direction in which the one electrode 30 is reciprocated and the direction in which the other electrode 30 is reciprocated are changed, as shown in FIG. The extending direction of the deposited fiber 200 can be aligned. Further, the fiber 200 can be knitted in the region where both overlap. Here, as an example, in the nozzle head 2, a plurality of nozzles 20 are arranged so as to be provided in the main body portion 22 via the connection portion 21. In this case, each electrode 30 can be independently reciprocated in the direction along the direction in which the plurality of nozzles 20 are arranged and the direction in which the plurality of nozzles 20 are arranged. .
 図9(a)~(d)は、堆積体210の形態を例示するための模式図である。
 なお、図9(a)~(d)は、堆積体210を上方から見た図である。
 前述したように、電界制御部3により、ノズルヘッド2と収集部6との間に形成される電界を制御すれば、ファイバ200の堆積状態を変化させることができる。
 例えば、図9(a)に示すように、収集部6の平面形状に合わせて堆積体210を形成することができる。
 また、図9(b)、(c)に示すように、収集部6の上に任意の平面形状を有する堆積体210を形成することができる。
 また、図9(c)に示すように、収集部6の上に、互いに離隔した複数の堆積体210を形成することができる。
 その他、収集部6の上の任意の位置にファイバ200を堆積させたり、ファイバ200を堆積させなかったりすることで、局所的な厚膜化や局所的な薄膜化などを行うこともできる。
FIGS. 9A to 9D are schematic views for illustrating the form of the deposit 210.
9A to 9D are views of the deposited body 210 as viewed from above.
As described above, when the electric field control unit 3 controls the electric field formed between the nozzle head 2 and the collection unit 6, the deposition state of the fiber 200 can be changed.
For example, as illustrated in FIG. 9A, the deposit 210 can be formed in accordance with the planar shape of the collection unit 6.
Further, as shown in FIGS. 9B and 9C, a deposit 210 having an arbitrary planar shape can be formed on the collection unit 6.
Further, as shown in FIG. 9C, a plurality of deposits 210 separated from each other can be formed on the collection unit 6.
In addition, local thickening or local thinning can be performed by depositing the fiber 200 at an arbitrary position on the collecting unit 6 or not depositing the fiber 200.
 また、前述したように、収集部6の上に基材を設けたり、収集部6の上をシート状の基材が移動する場合もある。この様な場合には、基材の形状や寸法に合わせて、任意の形状を有する堆積体210を基材の上に形成することができる。即ち、収集部6上の基材、例えばシート状の基材の上において、任意の位置にファイバ200を堆積させたり、ファイバ200を堆積させなかったりすることで、局所的な厚膜化や局所的な薄膜化などを行うこともできる。 Also, as described above, a base material may be provided on the collecting unit 6 or a sheet-like base material may move on the collecting unit 6. In such a case, a deposit 210 having an arbitrary shape can be formed on the substrate in accordance with the shape and dimensions of the substrate. That is, the fiber 200 is deposited at an arbitrary position on the base material on the collecting unit 6, for example, a sheet-like base material, or the fiber 200 is not deposited. It is also possible to make a thin film.
 この場合、電界紡糸装置100を停止することなく任意の形状を有する堆積体210を形成することができる。また、収集部6や基材からはみ出すことなく堆積体210を形成することができる。そのため、原料液の消費量の低減や生産性の向上を図ることができる。 In this case, the deposit 210 having an arbitrary shape can be formed without stopping the electrospinning apparatus 100. Moreover, the deposit 210 can be formed without protruding from the collection unit 6 or the base material. Therefore, the consumption of the raw material liquid can be reduced and the productivity can be improved.
 図10(a)、(b)は、対向電極37を例示するための模式斜視図である。
 図10(a)、(b)に示すように、対向電極37、38a、38bは、収集部6の側面側に設けられている。対向電極37、38a、38bは、電極30と対向している。対向電極37、38a、38bの形状、大きさ、数などには特に限定はない。対向電極37、38a、38bの形状、大きさ、数などは、電極30の数、移動範囲などに応じて適宜変更することができる。
FIGS. 10A and 10B are schematic perspective views for illustrating the counter electrode 37.
As shown in FIGS. 10A and 10B, the counter electrodes 37, 38 a, and 38 b are provided on the side surface side of the collection unit 6. The counter electrodes 37, 38 a, 38 b are opposed to the electrode 30. There are no particular limitations on the shape, size, number, etc. of the counter electrodes 37, 38a, 38b. The shape, size, number, and the like of the counter electrodes 37, 38a, and 38b can be appropriately changed according to the number of electrodes 30, a moving range, and the like.
 対向電極37、38a、38bは、接地されている。また、図示しない電源により、対向電極37、38a、38bに電極30に印加する電圧と逆極性の電圧を印加するようにしてもよい。この場合、対向電極37、38a、38bに印加する電圧には特に限定はない。ただし、対向電極37、38a、38bに印加する電圧と、収集部6に印加する電圧とが同程度であれば、対向電極37、38a、38bと収集部6との間に放電が生じるのを抑制することができる。また、対向電極37、38a、38bに印加する電圧を変化させれば、ファイバ200の堆積状態の制御に関するバリエーションを増やすことができる。 The counter electrodes 37, 38a, 38b are grounded. In addition, a voltage having a polarity opposite to that applied to the electrode 30 may be applied to the counter electrodes 37, 38a, and 38b by a power source (not shown). In this case, the voltage applied to the counter electrodes 37, 38a, 38b is not particularly limited. However, if the voltage applied to the counter electrodes 37, 38 a, 38 b and the voltage applied to the collection unit 6 are approximately the same, a discharge is generated between the counter electrodes 37, 38 a, 38 b and the collection unit 6. Can be suppressed. Moreover, if the voltage applied to the counter electrodes 37, 38a, and 38b is changed, variations relating to the control of the deposition state of the fiber 200 can be increased.
 対向電極37、38a、38bは、導電性材料から形成することができる。対向電極37、38a、38bの材料は、導電性と原料液に対する耐性を有するものとすることが好ましい。対向電極37、38a、38bの材料は、例えば、ステンレスなどとすることができる。 The counter electrodes 37, 38a, and 38b can be formed of a conductive material. The material of the counter electrodes 37, 38a, and 38b is preferably conductive and resistant to the raw material liquid. The material of the counter electrodes 37, 38a, 38b can be stainless steel, for example.
 また、対向電極37、38a、38bは固定されたものとすることもできるし、所定の方向に移動できるものとすることもできる。例えば、図10(a)に示すように、対向電極37は、X方向およびY方向に移動できるものとすることができる。
 また、図10(b)に示すように、収集部6の近傍に設けられた対向電極38aを固定し、より離隔した位置に設けられた対向電極38bを所定の方向に移動できるものとすることもできる。
Further, the counter electrodes 37, 38a, and 38b can be fixed, or can be moved in a predetermined direction. For example, as shown in FIG. 10A, the counter electrode 37 can be moved in the X direction and the Y direction.
Further, as shown in FIG. 10 (b), the counter electrode 38a provided in the vicinity of the collecting unit 6 is fixed, and the counter electrode 38b provided at a more distant position can be moved in a predetermined direction. You can also.
 以上、本発明のいくつかの実施形態を例示したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更などを行うことができる。これら実施形態やその変形例は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。また、前述の各実施形態は、相互に組み合わせて実施することができる。 As mentioned above, although some embodiment of this invention was illustrated, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, changes, and the like can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof. Further, the above-described embodiments can be implemented in combination with each other.

Claims (11)

  1.  原料液を排出する孔を有し、所定の極性の電圧が印加されるように構成されたノズルヘッドと、
     前記ノズルヘッドに対して、三次元方向に相対的に移動可能に設けられ、前記ノズルヘッドに印加される電圧と同じ極性の電圧が印加されるように構成された電極と、
     を備えたノズルヘッドモジュール。
    A nozzle head having a hole for discharging the raw material liquid and configured to be applied with a voltage of a predetermined polarity;
    An electrode configured to be movable relative to the nozzle head in a three-dimensional direction and configured to be applied with a voltage having the same polarity as the voltage applied to the nozzle head;
    Nozzle head module with
  2.  前記電極は、前記ノズルヘッドの側面側に設けられている請求項1記載のノズルヘッドモジュール。 The nozzle head module according to claim 1, wherein the electrode is provided on a side surface side of the nozzle head.
  3.  前記電極は、前記ノズルヘッドと電気的に接続されている請求項1または2に記載のノズルヘッドモジュール。 The nozzle head module according to claim 1 or 2, wherein the electrode is electrically connected to the nozzle head.
  4.  前記原料液を排出する孔が延びる方向において、前記電極の先端は、前記ノズルヘッドの先端よりも前記原料液を排出する方向とは反対側の位置にある請求項1~3のいずれか1つに記載のノズルヘッドモジュール。 The tip of the electrode is in a position opposite to the direction of discharging the raw material liquid from the front end of the nozzle head in the direction in which the hole for discharging the raw material liquid extends. Nozzle head module according to.
  5.  前記電極の先端は、前記ノズルヘッドの前記原料液を排出する孔が配列される方向とは交差する方向において、移動可能に構成される請求項1~4のいずれか1つに記載のノズルヘッドモジュール。 The nozzle head according to any one of claims 1 to 4, wherein the tip of the electrode is configured to be movable in a direction intersecting a direction in which holes for discharging the raw material liquid of the nozzle head are arranged. module.
  6.  前記電極の先端は、前記ノズルヘッドの前記原料液を排出する孔が配列される方向と交差する方向、及び前記ノズルヘッドの前記原料液を排出する孔が配列される方向に沿って移動可能に構成される請求項1~5のいずれか1つに記載のノズルヘッドモジュール。 The tip of the electrode is movable along a direction intersecting a direction in which the holes for discharging the raw material liquid of the nozzle head are arranged and a direction in which the holes for discharging the raw material liquid of the nozzle head are arranged. The nozzle head module according to any one of claims 1 to 5, wherein the nozzle head module is configured.
  7.  前記電極の先端は、前記原料液を排出する孔が配列される方向と交差する方向を軸として回動し、前記原料液が排出される孔との間隔を変化させるように移動可能に構成される請求項1~6のいずれか1つに記載のノズルヘッドモジュール。 The tip of the electrode is configured to be movable so as to rotate about the direction intersecting the direction in which the holes for discharging the raw material liquid are arranged, and to change the distance from the hole for discharging the raw material liquid. The nozzle head module according to any one of claims 1 to 6.
  8.  前記電極の先端は、前記ノズルヘッドの前記原料液を排出する孔が配列される方向と交差する方向、及び前記ノズルヘッドの前記原料液を排出する孔が配列される方向の少なくとも何れか一方に沿って往復移動することが可能に構成される請求項1~7のいずれか1つに記載のノズルヘッドモジュール。 The tip of the electrode is at least one of a direction intersecting a direction in which the holes for discharging the raw material liquid of the nozzle head are arranged and a direction in which the holes for discharging the raw material liquid of the nozzle head are arranged. The nozzle head module according to claim 1, wherein the nozzle head module is configured to be capable of reciprocating along the nozzle head module.
  9.  前記1~8のいずれか1つに記載のノズルヘッドモジュールと、
     前記ノズルヘッドに前記原料液を供給する原料液供給部と、
     前記ノズルヘッドに前記所定の極性の電圧を印加する電源と、を備えた電界紡糸装置。
    The nozzle head module according to any one of 1 to 8, and
    A raw material liquid supply unit for supplying the raw material liquid to the nozzle head;
    An electrospinning apparatus comprising: a power source that applies a voltage of the predetermined polarity to the nozzle head.
  10.  前記電極と対向して設けられ、接地、または前記電極に印加される電圧と逆極性の電圧が印加される対向電極をさらに備えた請求項9記載の電界紡糸装置。 10. The electrospinning apparatus according to claim 9, further comprising a counter electrode provided opposite to the electrode and applied with ground or a voltage having a polarity opposite to that of the voltage applied to the electrode.
  11.  前記対向電極は、移動可能に設けられている請求項10記載の電界紡糸装置。 The electrospinning apparatus according to claim 10, wherein the counter electrode is movably provided.
PCT/JP2016/075853 2016-03-17 2016-09-02 Nozzle head module and electrospinning device WO2017158875A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680011575.0A CN107429428B (en) 2016-03-17 2016-09-02 Nozzle head module and electric field spinning device
US15/460,565 US20170268131A1 (en) 2016-03-17 2017-03-16 Nozzle head module and electrospinning apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-054365 2016-03-17
JP2016054365A JP6427518B2 (en) 2016-03-17 2016-03-17 Nozzle head module and electrospinning apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/460,565 Continuation US20170268131A1 (en) 2016-03-17 2017-03-16 Nozzle head module and electrospinning apparatus

Publications (1)

Publication Number Publication Date
WO2017158875A1 true WO2017158875A1 (en) 2017-09-21

Family

ID=59850605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075853 WO2017158875A1 (en) 2016-03-17 2016-09-02 Nozzle head module and electrospinning device

Country Status (3)

Country Link
JP (1) JP6427518B2 (en)
CN (1) CN107429428B (en)
WO (1) WO2017158875A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018059221A (en) * 2016-10-03 2018-04-12 花王株式会社 Manufacturing device of sheet-like fiber deposition body and manufacturing method of sheet-like fiber deposition body
WO2019077884A1 (en) * 2017-10-20 2019-04-25 株式会社 東芝 Electrospinning device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019167641A (en) * 2018-03-22 2019-10-03 パナソニックIpマネジメント株式会社 Electrospinning device and manufacturing method of fiber assembly
JP6811742B2 (en) * 2018-04-20 2021-01-13 株式会社東芝 Electric field spinning head and electric field spinning device
CN109385670B (en) * 2018-10-12 2021-04-23 青岛科技大学 Device and method for increasing efficiency of needle-free electrostatic spinning nozzle by uniformly distributing Taylor cones
JP7374672B2 (en) * 2019-09-05 2023-11-07 株式会社東芝 Electrospinning head and electrospinning device
CN112030243B (en) * 2020-08-26 2021-08-20 广东工业大学 Multi-needle head staggered direct-writing electrostatic spinning device and grating line manufacturing method
CN112481710B (en) * 2020-11-19 2022-07-22 广州初曲科技有限公司 Adjustable multi-nozzle single-fiber blending electrostatic spinning device for special-shaped fabric
JP2023034887A (en) * 2021-08-31 2023-03-13 株式会社東芝 Electrolytic capacitor manufacturing method, electrolytic capacitor, and electrolytic capacitor manufacturing apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2142870A (en) * 1983-07-06 1985-01-30 Ethicon Inc Manufacturing vascular prosthesis by electrostatic spinning
JP2005534828A (en) * 2002-08-16 2005-11-17 サンシン クリエーション カンパニーリミテッド Nanofiber manufacturing apparatus using electrospinning method and spinning nozzle pack employed in the same
WO2011058708A1 (en) * 2009-11-10 2011-05-19 パナソニック株式会社 Nanofiber manufacturing device and nanofiber manufacturing method
WO2013055506A1 (en) * 2011-10-14 2013-04-18 Applied Materials, Inc. Method and apparatus for aligning nanowires deposited by an electrospinning process

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100619186B1 (en) * 2005-05-16 2006-08-31 한국기계연구원 Apparatus for manufacturing nano fiber
US7582247B2 (en) * 2005-08-17 2009-09-01 E. I. Du Pont De Nemours And Company Electroblowing fiber spinning process
KR101390532B1 (en) * 2012-08-23 2014-04-30 성균관대학교산학협력단 Apparatus for forming patterns
CN203144667U (en) * 2013-03-11 2013-08-21 尼卡斯特医疗科技(天津)有限公司 Device for manufacturing liquefied polymer into non-woven materials
CN203382864U (en) * 2013-05-03 2014-01-08 北京化工大学 Multi-electric field coupling strong drawing electrostatic spinning device
CN103541026B (en) * 2013-10-17 2016-07-06 北京纳米能源与系统研究所 A kind of electrostatic spinning system with auxiliary electrode and electrospinning process
CN105369480A (en) * 2015-11-01 2016-03-02 上海工程技术大学 Method and device for manufacture of functional spun-bond non-woven fiber mesh

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2142870A (en) * 1983-07-06 1985-01-30 Ethicon Inc Manufacturing vascular prosthesis by electrostatic spinning
JP2005534828A (en) * 2002-08-16 2005-11-17 サンシン クリエーション カンパニーリミテッド Nanofiber manufacturing apparatus using electrospinning method and spinning nozzle pack employed in the same
WO2011058708A1 (en) * 2009-11-10 2011-05-19 パナソニック株式会社 Nanofiber manufacturing device and nanofiber manufacturing method
WO2013055506A1 (en) * 2011-10-14 2013-04-18 Applied Materials, Inc. Method and apparatus for aligning nanowires deposited by an electrospinning process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018059221A (en) * 2016-10-03 2018-04-12 花王株式会社 Manufacturing device of sheet-like fiber deposition body and manufacturing method of sheet-like fiber deposition body
WO2019077884A1 (en) * 2017-10-20 2019-04-25 株式会社 東芝 Electrospinning device

Also Published As

Publication number Publication date
CN107429428B (en) 2020-06-16
CN107429428A (en) 2017-12-01
JP2017166100A (en) 2017-09-21
JP6427518B2 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
WO2017158875A1 (en) Nozzle head module and electrospinning device
JP6577889B2 (en) Electrospinning device
JP6612715B2 (en) Electrospinning device
US20160068998A1 (en) Nanofiber producing apparatus and method of producing nanofibers
US20170268131A1 (en) Nozzle head module and electrospinning apparatus
CN103194806A (en) Polymer solution electrostatic spinning component, device and method
US10513800B2 (en) Method of manufacturing a deposited body
JP6740419B2 (en) Nozzle head and electrospinning device
CN106062259B (en) Nano-fiber manufacturing apparatus and nanofiber manufacturing method
JP6089054B2 (en) Nanofiber manufacturing equipment
WO2017134852A1 (en) Electrospinning device
JP6378229B2 (en) Nozzle head and electrospinning apparatus
WO2018100830A1 (en) Nozzle head and electrospinning device
JP5368504B2 (en) Nanofiber manufacturing apparatus and nanofiber manufacturing method
JP2017145533A (en) Nozzle head and electrospinning apparatus
JP2019194387A (en) Electrospinning device
JP4811248B2 (en) Antistatic method and apparatus for metal equipment
JP5838349B2 (en) Nanofiber manufacturing method
CN105063772A (en) Bubble electrostatic spinning device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894492

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16894492

Country of ref document: EP

Kind code of ref document: A1