WO2017158809A1 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
WO2017158809A1
WO2017158809A1 PCT/JP2016/058656 JP2016058656W WO2017158809A1 WO 2017158809 A1 WO2017158809 A1 WO 2017158809A1 JP 2016058656 W JP2016058656 W JP 2016058656W WO 2017158809 A1 WO2017158809 A1 WO 2017158809A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
discharge port
compressor
oil supply
valve body
Prior art date
Application number
PCT/JP2016/058656
Other languages
French (fr)
Japanese (ja)
Inventor
雷人 河村
関屋 慎
渉 岩竹
佐々木 圭
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018505178A priority Critical patent/JPWO2017158809A1/en
Priority to PCT/JP2016/058656 priority patent/WO2017158809A1/en
Publication of WO2017158809A1 publication Critical patent/WO2017158809A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents

Definitions

  • the present invention relates to a compressor having an oil pump attached to a rotating shaft.
  • Patent Document 1 discloses a compressor in which a valve path communicating with an oil supply path and extending in a radial direction is formed at a position above the oil supply pump of the rotating shaft, and a valve body is provided at the outlet of the valve path. ing.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a highly reliable compressor with a small amount of oil rising.
  • the compressor of the present invention includes a sealed container having an oil sump space for storing oil at the bottom, a compression mechanism unit that compresses the fluid that flows into the sealed container and is stored in the sealed container, and is stored in the sealed container and rotates.
  • An electric motor that generates a force, and a rotational force generated by the electric motor are transmitted to the compression mechanism unit, and a rotation shaft that is provided with an oil supply passage that extends in the axial direction from the end portion is provided on the end portion side of the rotation shaft.
  • An oil supply pump that operates by rotating the shaft, sucks oil in the oil sump space, and supplies it to the oil supply passage, and has an oil passage through which oil flows and an oil outlet provided in the oil passage;
  • the valve mechanism is provided with a housing having a hollow portion communicating with the oil outlet and having a discharge port leading to the oil sump space, and the pressure of the oil at the oil outlet accommodated in the housing. And a valve body that is moved by rotation of the rotating shaft The oil outlet is opened by the movement of the valve body when the pressure exceeds the specified value, and the oil is discharged from the discharge port to the oil sump space.
  • the discharge port of the valve mechanism is located in the oil sump space. It is.
  • oil is returned from the valve mechanism to the inside of the oil sump space, so that mist-like oil can be prevented from being mixed into the refrigerant gas space when returning oil. Therefore, it is possible to improve reliability with a small amount of oil rising while reducing power loss due to oil agitation.
  • FIG. 1 is a schematic longitudinal sectional view showing a compressor according to Embodiment 1 of the present invention.
  • a compressor 1 in FIG. 1 is a so-called vertical scroll compressor, and compresses and discharges a working gas such as a refrigerant.
  • the compressor 1 includes a sealed container 2, a rotating shaft 7, an electric motor 8, a compression mechanism unit 10, and an oil supply pump 20.
  • the sealed container 2 is formed in a cylindrical shape, for example, and has pressure resistance.
  • a suction pipe 2 a for taking the working gas into the sealed container 2 is connected to the side surface of the sealed container 2, and a discharge pipe 2 b for discharging the compressed working gas from the sealed container 2 is connected to the upper surface.
  • an oil sump space 2c for storing refrigeration oil is formed at the bottom of the sealed container 2.
  • the rotating shaft 7, the electric motor 8, the compression mechanism part 10, and the oil supply pump 20 are accommodated in the airtight container 2.
  • the frame 3 is fixed to the upper part of the electric motor 8, and the sub-frame 4 that holds the rotating shaft 7 is fixed to the lower part of the electric motor 8.
  • the frame 3 is provided with a flow path 3 a for supplying the working gas flowing in from the suction pipe 2 a to the compression mechanism unit 10.
  • An insertion hole for inserting the rotary shaft 7 is formed in the frame 3, and a main bearing 5 made of a sliding bearing such as a copper-lead alloy is fixed to the insertion hole by press-fitting or the like.
  • the sub frame 4 is provided with a sub bearing 6 made of, for example, a ball bearing. The main bearing 5 and the sub bearing 6 pivotally support the rotating shaft 7.
  • the oil sump space 2 c is a space below the subframe 4 that supports the end of the rotating shaft 7, below the sub-bearing 6, below the end of the rotating shaft 7, and the like.
  • the oil is often contained in the oil sump space 2c.
  • the oil is not always stored in the oil sump space 2c, and the upper surface of the oil is higher than the sump space 2c depending on the amount of oil put in the compressor, the operating conditions of the refrigerant system using the compressor, and the like. That is, it may be above the subframe 4 or the sub-bearing 6.
  • an oil supply passage 7x extending in the axial direction (arrow Z direction) from the end of the rotary shaft 7 and a plurality of supply passages 7y extending in the radial direction leading to the oil supply passage 7x are formed. .
  • Oil is supplied to the sliding parts such as the main bearing 5 and the auxiliary bearing 6 through the oil supply path 7x and the supply path 7y.
  • An oil supply passage 7x is opened at the axial end of the rotary shaft 7, and oil pressurized by the oil supply pump 20 is supplied from this opening.
  • An eccentric shaft portion 7 a is attached to one end side of the rotating shaft 7 in an eccentric state with respect to the rotating shaft 7, and the eccentric shaft portion 7 a is connected to the compression mechanism portion 10. Note that a first balance weight 9 a is fixed to the rotating shaft 7 in order to balance the entire rotating system in the compressor 1.
  • the electric motor 8 rotates the rotary shaft 7, and has an electric motor rotor 8a and an electric motor stator 8b to generate a rotational force.
  • the rotating shaft 7 transmits the rotational force generated by the electric motor 8 to the compression mechanism unit 10.
  • the electric motor rotor 8a is fixed to the rotary shaft 7 by shrink fitting or the like, and the electric motor stator 8b is fixed to the sealed container 2 by shrink fitting or the like.
  • the motor stator 8b is connected to a glass terminal (not shown) that exists between the motor stator 8b and the glass terminal, and the glass terminal is connected to a lead wire for obtaining electric power from the outside.
  • a second balance weight 9b is fixed to the motor rotor 8a.
  • the compression mechanism unit 10 compresses a fluid (for example, a refrigerant) sucked into the sealed container 2 from the suction pipe 2a, and includes a rocking scroll 11 and a fixed scroll 12.
  • the swing scroll 11 is supported by the frame 3 so as to be capable of revolving, and a cylindrical swing bearing 11 a is provided on the lower surface of the swing scroll 11.
  • the eccentric shaft portion 7a of the rotary shaft 7 is inserted into the rocking bearing 11a, and the rocking scroll 11 performs a revolving motion by the rotation of the eccentric shaft portion 7a.
  • An Oldham ring (not shown) is supported between the frame 3 and the orbiting scroll 11 so as to be swingable on the frame 3 in order to give a swinging motion while preventing the swinging scroll 11 from rotating. Is provided. Further, a slider 9 is provided between the rotary shaft 7 and the swing scroll 11, and the swing radius of the slider 9 is increased by the force due to the pressure of the working gas and the centrifugal force acting on the swing scroll 11.
  • a variable crank mechanism is configured that moves in the direction and converts the rotation of the rotary shaft 7 into a revolving motion.
  • the fixed scroll 12 is arranged on the top of the swing scroll 11 and is fixed to the frame 3.
  • a discharge port 12a for discharging the working gas is formed at the center of the fixed scroll 12, and a baffle 13 and a discharge valve 14 for preventing a back flow of the compressed working gas are disposed on the discharge port 12a.
  • a discharge muffler container 15 is provided above the discharge valve 14. Then, the working gas compressed in the compression mechanism unit 10 is discharged from the discharge pipe 2b through the discharge port 12a, the baffle 13 and the discharge muffler container 15.
  • the orbiting scroll 11 has a spiral body 11b
  • the fixed scroll 12 has a spiral body 12b
  • the orbiting scroll 11 and the fixed scroll 12 are arranged so that the spiral bodies 11b and 12b face each other.
  • the spiral body 11 b and the spiral body 12 b are combined in opposite phases, and a compression chamber is formed between the spiral portion of the fixed scroll 12 and the spiral portion of the orbiting scroll 11.
  • the oil supply pump 20 is attached to the other end side of the rotary shaft 7, and oil stored in the oil sump space 2 c of the hermetic container 2 in the oil supply path 7 x in the rotary shaft 7 is supplied to the main bearing 5, the sub-bearing 6, and the rocker. It is supplied to each sliding part such as the dynamic bearing 11a.
  • the oil supply pump 20 is composed of a rotary positive displacement pump, for example, and the oil supply pump 20 is operated by the rotation of the rotary shaft 7.
  • the oil supply pump 20 has a characteristic that the amount of oil supplied to the oil supply passage 7x increases as the rotational speed of the rotary shaft 7 increases.
  • the oil supply pump 20 is a so-called trochoid pump, and includes a holder 21, an outer rotor 22, an inner rotor 23, and an inflow pipe 24.
  • the holder 21 is housed in the subframe 4 and supports the rotary shaft 7 in the axial direction on the upper end surface.
  • the outer rotor 22 has an outer peripheral surface formed in a circular cross section, and is rotatably accommodated in the holder 21.
  • the outer rotor 22 is housed in the holder 21 in an eccentric state with respect to the rotating shaft 7.
  • a plurality of teeth formed with a trochoid curve are formed on the inner peripheral surface of the outer rotor 22.
  • the inner rotor 23 is accommodated in the outer rotor 22 and is fixed to the rotary shaft 7.
  • a plurality of teeth formed in a tocoloid curve are formed on the outer peripheral surface of the inner rotor 23, and the number of teeth of the inner rotor 23 is, for example, one less than the number of teeth of the outer rotor 22.
  • the volume of the gap defined by the inner rotor 23 and the outer rotor 22 is enlarged / reduced in accordance with these rotations.
  • the rotary pump mechanism such as the inner rotor 23 and the outer rotor 22 is provided with a suction port and a discharge port so that oil is sucked in at a rotation angle position where the gap is enlarged and discharged at a reduction angle position.
  • the suction port is connected to the inflow pipe 24.
  • An oil inflow passage 21 a is formed between the bottom of the holder 21 and the outer rotor 22 and the inner rotor 23.
  • the oil inflow path 21 a is a flow path that connects a space formed between the outer rotor 22 and the inner rotor 23 and the oil supply path 7 x of the rotating shaft 7. That is, the oil inflow path 21a is a flow path in the oil supply pump 20 until oil pressurized from the discharge port of the pump mechanism flows into the internal oil supply path 7x.
  • An oil outlet 21 x formed of a through hole through which a part of the oil flowing through the oil inflow passage 21 a flows out to the outside of the holder 21 is provided at the bottom of the holder 21.
  • the oil outlet 21x is provided in the bottom part of the holder 21, as long as it leads to the oil inflow path 21a, a formation position is not ask
  • the trochoid type gear pump excellent in quietness and durability was shown as a pump mechanism of the oil supply pump 20, another pump mechanism using the rotation of the rotating shaft 7 may be used.
  • the inflow pipe 24 flows oil stored in the oil sump space 2c into the holder 21 and has, for example, a shape extending in the axial direction to the lower part of the oil sump space 2c. Thereby, even if it is an operating condition where oil decreases to the lower part of the oil sump space 2c, the oil can be immediately led to the inflow pipe 24, and an insufficient supply of oil can be prevented.
  • the working gas flows from the suction pipe 2 a into the lower space of the frame 3 in the sealed container 2, and flows into the middle space of the frame 3 through the two flow paths 3 a installed in the frame 3.
  • the rotating shaft 7 rotates when electric power is supplied from the inverter device to the electric motor 8.
  • the eccentric shaft portion 7a is rotated by the rotation of the rotating shaft 7, and the swing scroll 11 performs swing motion (revolution motion).
  • the working gas is sucked into the compression chamber (not shown) in the compression chamber formed between the orbiting scroll 11 and the fixed scroll 12.
  • the working gas is pressurized from a low pressure to a high pressure by the geometric volume change of the compression chamber accompanying the operation of both spiral bodies formed by the spiral bodies 11 b and 12 b, and the high pressure refrigerant is discharged from the discharge pipe 2 b of the fixed scroll 12. Is discharged to the outside of the sealed container 2.
  • the oil supply pump 20 is operated, and oil is supplied to the oil supply passage 7 x of the rotating shaft 7.
  • This oil is supplied from the oil supply passage 7x and the supply passage 7y to the main bearing 5, the auxiliary bearing 6, the rocking bearing 11a, and the compression mechanism portion 10, respectively.
  • the oil supplied to the auxiliary bearing 6 lubricates the auxiliary bearing 6 and then returns to the oil sump space 2 c below the sealed container 2.
  • the oil that has flowed into the compression mechanism 10 and the oil after the rocking bearing 11 a has been lubricated flows into the space formed by the rocking scroll 11 and the frame 3 (the space in the frame 3). Oil is returned to the lower oil sump space 2c.
  • the remaining part of the oil passes between the thrust surface of the orbiting scroll 11 and the frame 3, is taken into the compression chamber, and is then discharged to the outside of the compressor 1.
  • the compressor 1 when the oil supply pump 20 is a positive displacement pump, the amount of oil supplied to the oil supply passage 7x increases as the rotational speed of the rotary shaft 7 increases. Then, when the compressor 1 rotates at a high speed, the amount of oil supply becomes excessive, and as the amount of oil discharged to the outside of the compressor 1 (the amount of oil rising) increases, the refrigerating capacity and performance may decrease. Further, the space in which the rocking bearing 11a is stored is filled with oil, and power loss occurs due to the rocking bearing stirring the oil. Therefore, the compressor 1 is provided with a valve mechanism 30 that bypasses and discharges the oil supplied to the oil supply passage 7x directly into the oil sump space 2c in accordance with the rotational speed.
  • the valve mechanism 30 in FIG. 2 opens and closes the oil outlet 21x in accordance with the oil pressure applied from the oil supply pump 20, and returns the oil in the oil inflow passage 21a to the oil sump space 2c.
  • a housing 31, a valve body 32, and an elastic member 33 are included.
  • the valve mechanism 30 is a mechanism that opens and closes the mouth with the valve body 32, and may be rephrased as the valve mechanism 30.
  • the housing 31 is disposed so as to cover the oil outlet 21x of the oil supply pump 20, and has a hollow portion 31a that communicates with the oil outlet 21x.
  • the hollow portion 31a is formed to extend in the axial direction (arrow Z direction), for example.
  • a discharge port 31x communicating with the oil sump space 2c is formed on the side wall of the housing 31, and the discharge port 31x is located inside the oil sump space 2c.
  • the entire oil pump 20 and valve mechanism 30 are located in the oil sump space 2c, and as a result, the discharge port 31x is also located in the oil sump space 2c.
  • the height of the oil level in the oil sump space 2c varies depending on the operating conditions. For this reason, it is preferable to install the discharge port 31x as low as possible. Thereby, the oil discharged from the discharge port 31x is returned to the inside of the oil sump space 2c even under the operating condition where the oil level is lowered.
  • the valve body 32 is moved by the oil pressure at the oil outlet 21x. It should be noted that the amount of movement of the valve body 32 only needs to change according to the magnitude of the oil pressure at the oil outlet 21x. Good.
  • the valve body 32 is accommodated in the hollow portion 31a of the housing 31 so as to be movable in the axial direction (direction of arrow Z), and opens and closes the oil outlet 21x provided in the housing 31.
  • the valve body 32 has, for example, approximately the same size as the cross-sectional area of the hollow portion 31 a of the housing 31, and restricts oil from flowing between the inner wall of the housing 31 and the valve body 32.
  • the elastic member 33 is provided between the housing 31 and the valve body 32, and biases the valve body 32 toward the oil outlet 21x.
  • FIGS. 4 and 5 are schematic views showing an operation example of the valve mechanism in the compressor of FIG. FIG. 4 shows a state in low speed operation
  • FIG. 5 shows a state in high speed operation.
  • the valve body 32 when the valve body 32 is located between the oil outlet 21x and the discharge port 31x, the valve body 32 regulates the flow of oil from the oil outlet 21x to the discharge port 31x, and the oil outlet 21x is in a closed state.
  • the valve body 32 when the valve body 32 is positioned between the discharge port 31x and the elastic member 33, the oil outlet 21x is opened, and the oil flows from the oil outlet 21x to the discharge port 31x.
  • the position of the valve body 32 in FIGS. 4 and 5 is determined by the pump pressure in the oil supply pump 20.
  • the position of the valve body 32 is determined according to the relationship between the pressure of the oil flowing into the housing 31 from the oil outlet 21x and the urging force of the elastic member 33, and the pressure of the oil is determined according to the rotation of the rotary shaft 7. Determined.
  • FIG. 6 is a graph showing the relationship between the rotational speed of the compressor using the valve mechanism of FIGS. 2 to 5 and the amount of oil supplied by the oil pump.
  • the oil supply pump 20 is a positive displacement pump
  • the rotational speed and the amount of oil supplied by the oil pump 20 are substantially proportional to each other, and the amount of oil increases as the rotational speed increases.
  • the valve mechanism 30 is provided in the oil supply pump 20
  • the discharge port 31x is opened during high speed operation when the rotation speed threshold value N1 is exceeded (see FIG. 5), which increases the rotation speed. Accordingly, the amount of oil supply will be reduced. Further, the discharge port 31x is closed during low-speed operation that is less than the rotation speed threshold N1.
  • the rotation speed threshold value N1 is a rotation speed at which the valve body 32 urged by the elastic member 33 is pressed down (moved) to a position where the discharge port is opened by the hydraulic pressure from the oil supply pump 20. Yes.
  • the rotation speed threshold value N1 can be set by, for example, the elastic force of the elastic member 33 or the axial position of the discharge port 31x.
  • the rotation speed threshold value N1 may be a value within a range of 10 to 50% of the rated rotation frequency of the compressor 1, for example. Note that the rotation speed threshold value N1 is not completely fixed to one value. In different compressors 1, the rotation speed threshold value N1 may be slightly different.
  • the rotation speed threshold value N1 may slightly change depending on operating conditions such as the pressure of the refrigerant to be sucked.
  • the valve mechanism 30 may be adjusted so that the rotation speed threshold value N1 is kept within a predetermined range under a specific operating condition.
  • the valve mechanism 30 is not attached to the rotary shaft 7 but is provided in the oil supply pump 20, so that power loss can be reduced with a simple structure.
  • FIG. 7 is a schematic view showing an example of a conventional valve mechanism.
  • a valve passage 7z that communicates with the oil supply passage and extends in the radial direction is formed at a position above the oil supply pump of the rotary shaft 7, and a valve body 51 is provided at the outlet of the valve passage 7z. Yes. Therefore, when the rotating shaft 7 rotates, the valve body also rotates simultaneously. For this reason, not only pump pressure but also centrifugal force acts on the valve body 51, and it becomes difficult to control the degree of opening and closing of the valve body 51. Furthermore, since the valve path 7z and the valve body 51 are located in the refrigerant gas space, the oil discharged from the valve path 7z is scattered into the refrigerant gas space inside the sealed container 2.
  • valve mechanism 30 shown in FIGS. 2 to 5 the movement of the valve body 32 is not influenced by the centrifugal force but moves in the axial direction using the pump pressure, and the oil inflow passage 21a and the discharge port 31x are moved. Can be opened and closed. For this reason, it is not necessary to newly attach a valve mechanism to the rotating shaft 7 which is a rotating body, and it can be configured integrally with the oil supply pump 20, and power loss due to oil agitation can be reduced with a simple configuration.
  • oil return to the oil sump space 2c is performed by the valve body 32 moving in the axial direction to adjust the oil return amount. Therefore, it becomes easy to arrange the discharge port 31x of the valve mechanism 30 in the oil sump space 2c, and when returning oil from the valve mechanism 30 to the oil sump space 2c, mist-like oil is mixed into the refrigerant gas space. Can be prevented. As a result, it is possible to improve the reliability with a small amount of oil rising while reducing the power loss due to the stirring of the oil. Further, even if the operating condition is such that the oil decreases to the lower part of the oil sump space 2c, the oil can be immediately led to the inflow pipe 24 by returning directly to the oil sump space 2c, resulting in insufficient oil supply. Can be prevented.
  • FIG. 8 to 10 are schematic views showing an example of the valve mechanism of the compressor according to Embodiment 2 of the present invention.
  • the valve mechanism will be described with reference to FIGS. 8 to 10, the same parts as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • FIG. 8 shows a state in low speed operation
  • FIG. 9 shows a state in medium speed operation
  • FIG. 10 shows a state in high speed operation.
  • the housing 31 has a plurality of discharge ports 131x and 131y arranged on the same straight line in the axial direction (arrow Z direction).
  • the several discharge port 131x, 131y has illustrated about the case where it arrange
  • the valve body 32 is positioned at different positions in the axial direction according to the position corresponding to the magnitude of the pump pressure, and from the plurality of discharge ports 131x and 131y to the oil sump space 2c according to the position of the valve body 32. The amount of oil returned is adjusted.
  • the valve element 32 is positioned at a position where all of the plurality of discharge ports 131x and 131y are closed. 9 is positioned at a position where the upper discharge port 131x is opened and the lower discharge port 131y is closed. Therefore, oil return is performed from the discharge port 31x and oil return from the discharge port 131y is not performed.
  • the plurality of discharge ports 131x and 131y are positioned at positions where both are opened, and oil is returned from the discharge ports 131x and 131y.
  • FIG. 11 is a graph showing the relationship between the number of revolutions and the amount of oil supply in the valve mechanism of FIGS.
  • the rotational speed is smaller than the rotational speed threshold value N1
  • the plurality of outlets 131x and 131y are closed (see FIG. 8), so the amount of oil supply is proportional to the rotational speed.
  • the rotational speed is equal to or higher than the first threshold value N11 and smaller than the second threshold value N12
  • the upper discharge port 131x is opened and 131y is closed (see FIG. 9), so that oil is returned from the discharge port 131x.
  • the amount of refueling decreases by the amount.
  • both of the plurality of discharge ports 131x and 131y are opened (see FIG. 10), so that only the amount of oil return from the plurality of discharge ports 131x and 131y.
  • the amount of lubrication becomes smaller.
  • discontinuous oil supply characteristics as shown in FIG. 6 can be obtained, for example, by changing the total opening area of the discharge ports 131x and 131y stepwise according to the number of rotations. Thereby, the freedom degree of oil supply design can be improved. Further, even in the case of the second embodiment, as in the first embodiment, the oil return is performed directly from the discharge ports 131x and 131y to the oil sump space 2c. A small improvement in reliability can be achieved.
  • FIG. 12 to 14 are schematic views showing the shape of the discharge port of the valve mechanism of the compressor according to Embodiment 3 of the present invention.
  • the same components as those in the first and second embodiments are denoted by the same reference numerals, and the description thereof is omitted.
  • the housing 31 is provided with two discharge ports 231x and 231y at the same position in the axial direction, and discharge ports 231z are formed at different positions in the axial direction. Therefore, when the rotation speed becomes equal to or higher than the predetermined first threshold value N11, oil corresponding to the total opening area of the discharge ports 231x and 231y is returned.
  • the case where two discharge ports 231x and 231y are formed on the upper side and one discharge port 231z is formed on the lower side is illustrated, one is located at a different position in the axial direction according to the specification and the like. What is necessary is just to provide the above discharge port.
  • the housing 31 is formed with a rectangular discharge port 231p extending in the axial direction. Then, as the rotational speed increases and the pump pressure increases, the opening area of the discharge port 231p due to the movement of the valve body 32 increases. Therefore, it is possible to obtain an oil supply characteristic in which the oil return amount increases as the rotational speed increases and the pump pressure increases.
  • the housing 31 is formed with one discharge port 231r extending in the axial direction and having a different width for each position in the axial direction, for example, having a trapezoidal cross section. Then, the amount of increase in the opening area of the discharge port 231r due to the movement of the valve body 32 decreases as the rotational speed increases and the pump pressure increases. Therefore, it is possible to obtain an oil supply characteristic such that the amount of increase in the oil return amount decreases as the rotational speed increases and the pump pressure increases.
  • FIG. 15 and 16 are schematic views showing an example of the valve mechanism of the compressor according to Embodiment 4 of the present invention.
  • FIG. 15 shows a state where the compressor is stopped
  • FIG. 16 shows a state where the compressor is operating.
  • parts having the same configuration as in the first to third embodiments are denoted by the same reference numerals, and the description thereof is omitted.
  • the valve mechanism 330 includes a reed valve 331.
  • the holder 21 of the oil supply pump 20 is located in the oil sump space 2c.
  • the oil outlet 21x is not open.
  • the reed valve 331 is deformed by the pump pressure, and the oil outlet 21x is opened. Further, as the rotational speed increases, the displacement amount of the reed valve 331 increases as the pump pressure increases, and the opening area of the oil outlet 21x also increases.
  • FIG. 17 is a graph showing the relationship between the rotation speed of the compressor using the valve mechanism of FIGS. 15 and 16 and the amount of oil supplied by the oil supply pump. As shown in FIG. 17, as the rotational speed increases, the ratio of the amount of oil supplied to the bearing with respect to the amount of oil sucked in the oil supply pump 20 can be continuously reduced. As in the third embodiment, the number and shape of the oil outlets 21x provided in the holder 21 may be changed. Thereby, the freedom degree of oil supply design can be improved.
  • FIG. FIG. 18 is a schematic diagram illustrating an example of an oil supply pump in a compressor according to Embodiment 5 of the present invention.
  • the same reference numerals are given to portions having the same configurations as those of the oil supply pump and valve mechanism of FIG.
  • the holder 21 of the oil supply pump 20 has an inclined surface 421 at a site serving as a seat surface on which the reed valve 331 located on the oil outlet 21x is installed. As a result, a load can be applied even in a stopped state (see FIG. 16). Therefore, the predetermined rotation speed threshold value N1 that opens the oil outlet 21x can be set by the angle of the inclined surface 421.
  • the degree of freedom in oil supply design can be improved. Further, even in the case of the fifth embodiment, as in the first embodiment, since oil is returned directly from the oil outlet 21x to the oil sump space 2c, the amount of oil rising is small while reducing power loss. Reliability can be improved.
  • FIG. 19 is a cross-sectional view showing an example of a compressor according to Embodiment 6 of the present invention.
  • the compressor in FIG. 19 is a so-called horizontal compressor whose axial direction extends in the horizontal direction (arrow X direction).
  • the valve mechanism 530 has a pipe 531 that communicates with the oil outlet 21 x, and a discharge port 531 x is formed in the pipe 531. And the discharge port 531x is arrange
  • the inflow pipe 24 also has a shape extending in the axial direction to the lower part of the oil sump space 2c.
  • the embodiment of the present invention is not limited to the above embodiment, and various modifications can be made.
  • the first to sixth embodiments have been described with respect to the scroll type compressor, but the present invention can also be applied to a compressor having a different compression method such as a rotary type or a vane type.
  • the compressor in which the internal pressure of the sealed container 2 is low is described.
  • the same effect can be obtained even in a compressor in which the internal pressure of the sealed container 2 is low.
  • the oil supply pump 20 and the valve mechanism 30 are accommodated in the oil sump space 2c, it may be located above the oil sump space 2c. In this case, a pipe extending from the discharge port 31x of the housing 31 to the bottom of the sealed container 2 may be provided.
  • the oil supply pump 20 is illustrated as a trochoid type positive displacement pump. However, for example, it is a known positive displacement type positive displacement pump such as a vane type. Also good.

Abstract

This compressor is provided with: a sealed container having an oil reservoir space for collecting oil in the bottom; a compression mechanism part accommodated in the sealed container, the compression mechanism part compressing a fluid that flows into the sealed container; an electric motor accommodated in the sealed container, the electric motor generating rotational force; a rotating shaft which transmits the rotational force generated by the electric motor to the compression mechanism part, the inside of the rotating shaft being formed an oil supply path extending in an axial direction from an end part; an oil supply pump provided to the end-part side of the rotating shaft, the oil supply pump being actuated by the rotation of the rotating shaft, drawing out the oil in the oil reservoir space to supply the oil to the oil supply path, and having an oil flow path through which the oil flows and an oil outlet provided to the oil flow path; and a valve mechanism provided to the oil outlet. The valve mechanism has: a housing having a hollow part leading to the oil outlet, the housing having a discharge port leading to the oil reservoir space formed therein; and a valve body accommodated in the housing and moved by the pressure of the oil in the oil outlet. When the rotational speed of the rotating shaft is equal to or greater than a prescribed speed, the oil outlet is opened by the movement of the valve body, the oil is discharged from the discharge port to the oil reservoir space, and the discharge port of the valve mechanism is positioned inside the oil reservoir space.

Description

圧縮機Compressor
 本発明は、回転軸に給油ポンプが取り付けられた圧縮機に関するものである。 The present invention relates to a compressor having an oil pump attached to a rotating shaft.
 従来から、底部に油が溜められる密閉容器と、内部に給油路を有する回転軸と、回転軸の回転により流体を圧縮する圧縮機構部と、回転軸の下端に設けられ、油溜めの油を給油路を介して圧縮機構部に供給する給油ポンプとを備える圧縮機が知られている。この圧縮機において、圧縮機構部への過剰な給油を抑制するために、種々の手法が用いられている(例えば特許文献1参照)。特許文献1において、回転軸の給油ポンプより上の位置には、給油路に連通し径方向に延びるバルブ路が形成されており、バルブ路の出口に弁体が設けられた圧縮機が開示されている。 Conventionally, a sealed container in which oil is stored at the bottom, a rotary shaft having an oil supply passage inside, a compression mechanism that compresses fluid by rotation of the rotary shaft, and a lower end of the rotary shaft are provided at the bottom of the oil reservoir. There is known a compressor that includes an oil supply pump that supplies an oil supply path to a compression mechanism unit. In this compressor, various methods are used in order to suppress excessive oil supply to the compression mechanism (see, for example, Patent Document 1). Patent Document 1 discloses a compressor in which a valve path communicating with an oil supply path and extending in a radial direction is formed at a position above the oil supply pump of the rotating shaft, and a valve body is provided at the outlet of the valve path. ing.
国際公開第2015/104863号International Publication No. 2015/104863
 しかしながら、特許文献1の圧縮機において、バルブ路は給油ポンプより上に位置しているため、バルブ路から排出された油は、密閉容器の内部の冷媒ガス空間へ飛散する。すると、冷媒ガス空間にミスト状の油が浮遊してしまい、冷媒ガスと油とが一緒に圧縮機構へ流入する。その結果、圧縮機の外部へ流出する油上り量が増大して圧縮機内の油が枯渇し、信頼性が低下する。 However, in the compressor of Patent Document 1, since the valve path is located above the oil supply pump, the oil discharged from the valve path is scattered into the refrigerant gas space inside the sealed container. Then, mist-like oil floats in the refrigerant gas space, and the refrigerant gas and the oil flow into the compression mechanism together. As a result, the amount of oil that flows out of the compressor increases, the oil in the compressor is depleted, and the reliability decreases.
 本発明は、上記のような課題を解決するためになされたものであり、油上り量の少なく信頼性の高い圧縮機を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a highly reliable compressor with a small amount of oil rising.
 本発明の圧縮機は、底部に油を貯留する油溜め空間を有する密閉容器と、密閉容器に収容され、密閉容器内に流入する流体を圧縮する圧縮機構部と、密閉容器に収容され、回転力を発生する電動機と、電動機により発生する回転力を圧縮機構部に伝え、端部から軸方向に延びる給油路が内部に形成された回転軸と、回転軸の端部側に設けられ、回転軸の回転により作動し、油溜め空間の油を吸引して給油路に供給するものであり、油が流通する油流路及び油流路に設けられた油出口を有する給油ポンプと、油出口に設けられたバルブ機構と、を備え、バルブ機構は、油出口に通じる中空部を有し、油溜め空間へ通じる排出口が形成されたハウジングと、ハウジングに収容され、油出口の油の圧力によって動く弁体と、を有し、回転軸の回転数が所定以上になったときに、弁体の動きによって油出口が開いて油が排出口から油溜め空間へ排出されるものであり、バルブ機構の排出口は、油溜め空間内に位置するものである。 The compressor of the present invention includes a sealed container having an oil sump space for storing oil at the bottom, a compression mechanism unit that compresses the fluid that flows into the sealed container and is stored in the sealed container, and is stored in the sealed container and rotates. An electric motor that generates a force, and a rotational force generated by the electric motor are transmitted to the compression mechanism unit, and a rotation shaft that is provided with an oil supply passage that extends in the axial direction from the end portion is provided on the end portion side of the rotation shaft. An oil supply pump that operates by rotating the shaft, sucks oil in the oil sump space, and supplies it to the oil supply passage, and has an oil passage through which oil flows and an oil outlet provided in the oil passage; The valve mechanism is provided with a housing having a hollow portion communicating with the oil outlet and having a discharge port leading to the oil sump space, and the pressure of the oil at the oil outlet accommodated in the housing. And a valve body that is moved by rotation of the rotating shaft The oil outlet is opened by the movement of the valve body when the pressure exceeds the specified value, and the oil is discharged from the discharge port to the oil sump space. The discharge port of the valve mechanism is located in the oil sump space. It is.
 本発明の圧縮機によれば、油がバルブ機構から油溜め空間の内部に返油されることにより、返油する際に冷媒ガス空間にミスト状の油が混入するのを防止することができるため、油撹拌による動力損失を低減しながら、油上り量の少ない信頼性の向上を図ることができる。 According to the compressor of the present invention, oil is returned from the valve mechanism to the inside of the oil sump space, so that mist-like oil can be prevented from being mixed into the refrigerant gas space when returning oil. Therefore, it is possible to improve reliability with a small amount of oil rising while reducing power loss due to oil agitation.
本発明の実施の形態1に係る圧縮機を示す縦断面模式図である。It is a longitudinal cross-sectional schematic diagram which shows the compressor which concerns on Embodiment 1 of this invention. 図1の圧縮機における給油ポンプの一例を示す模式図である。It is a schematic diagram which shows an example of the oil supply pump in the compressor of FIG. 図1の圧縮機における給油ポンプの一例を示す模式図である。It is a schematic diagram which shows an example of the oil supply pump in the compressor of FIG. 図1の圧縮機におけるバルブ機構の動作例を示す模式図である。It is a schematic diagram which shows the operation example of the valve mechanism in the compressor of FIG. 図1の圧縮機におけるバルブ機構の動作例を示す模式図である。It is a schematic diagram which shows the operation example of the valve mechanism in the compressor of FIG. 図2~図5のバルブ機構を用いた圧縮機の回転数と給油ポンプによる給油量との関係を示すグラフである。6 is a graph showing the relationship between the rotational speed of a compressor using the valve mechanism of FIGS. 2 to 5 and the amount of oil supplied by an oil supply pump. 従来のバルブ機構の一例を示す模式図である。It is a schematic diagram which shows an example of the conventional valve mechanism. 本発明の実施の形態2に係る圧縮機のバルブ機構の一例を示す模式図である。It is a schematic diagram which shows an example of the valve mechanism of the compressor which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る圧縮機のバルブ機構の一例を示す模式図である。It is a schematic diagram which shows an example of the valve mechanism of the compressor which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る圧縮機のバルブ機構の一例を示す模式図である。It is a schematic diagram which shows an example of the valve mechanism of the compressor which concerns on Embodiment 2 of this invention. 図8~図10のバルブ機構における回転数と給油量の関係を示すグラフである。11 is a graph showing the relationship between the number of revolutions and the amount of oil supply in the valve mechanism of FIGS. 本発明の実施の形態3に係る圧縮機のバルブ機構の排出口の形状を示す模式図である。It is a schematic diagram which shows the shape of the discharge port of the valve mechanism of the compressor which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る圧縮機のバルブ機構の排出口の形状を示す模式図である。It is a schematic diagram which shows the shape of the discharge port of the valve mechanism of the compressor which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る圧縮機のバルブ機構の排出口の形状を示す模式図である。It is a schematic diagram which shows the shape of the discharge port of the valve mechanism of the compressor which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る圧縮機のバルブ機構の一例を示す模式図である。It is a schematic diagram which shows an example of the valve mechanism of the compressor which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る圧縮機のバルブ機構の一例を示す模式図である。It is a schematic diagram which shows an example of the valve mechanism of the compressor which concerns on Embodiment 4 of this invention. 図15及び図16のバルブ機構を用いた圧縮機の回転数と給油ポンプによる給油量との関係を示すグラフである。It is a graph which shows the relationship between the rotation speed of the compressor using the valve mechanism of FIG.15 and FIG.16, and the amount of oil supply by an oil supply pump. 本発明の実施の形態5に係る圧縮機における給油ポンプの一例を示す模式図である。It is a schematic diagram which shows an example of the oil supply pump in the compressor which concerns on Embodiment 5 of this invention. 本発明の実施の形態6に係る圧縮機の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of the compressor which concerns on Embodiment 6 of this invention.
実施の形態1.
 以下、図面を参照しながら本発明の圧縮機の実施の形態について説明する。図1は、本発明の実施の形態1に係る圧縮機を示す縦断面模式図である。図1の圧縮機1は、いわゆる縦型のスクロール圧縮機であって、例えば冷媒等の作動ガスを圧縮し吐出するものである。圧縮機1は、密閉容器2と、回転軸7と、電動機8と、圧縮機構部10と、給油ポンプ20とを備える。
Embodiment 1 FIG.
Hereinafter, embodiments of a compressor of the present invention will be described with reference to the drawings. FIG. 1 is a schematic longitudinal sectional view showing a compressor according to Embodiment 1 of the present invention. A compressor 1 in FIG. 1 is a so-called vertical scroll compressor, and compresses and discharges a working gas such as a refrigerant. The compressor 1 includes a sealed container 2, a rotating shaft 7, an electric motor 8, a compression mechanism unit 10, and an oil supply pump 20.
 密閉容器2は、例えば円筒形状に形成されており、耐圧性を有している。密閉容器2の側面には作動ガスを密閉容器2内に取り込むための吸入配管2aが接続されており、上面には圧縮した作動ガスを密閉容器2から吐き出す吐出配管2bが接続されている。また、密閉容器2の底部には、冷凍機油を貯留する油溜め空間2cが形成されている。そして、密閉容器2内に回転軸7、電動機8、圧縮機構部10及び給油ポンプ20が収容されている。 The sealed container 2 is formed in a cylindrical shape, for example, and has pressure resistance. A suction pipe 2 a for taking the working gas into the sealed container 2 is connected to the side surface of the sealed container 2, and a discharge pipe 2 b for discharging the compressed working gas from the sealed container 2 is connected to the upper surface. Further, an oil sump space 2c for storing refrigeration oil is formed at the bottom of the sealed container 2. And the rotating shaft 7, the electric motor 8, the compression mechanism part 10, and the oil supply pump 20 are accommodated in the airtight container 2. FIG.
 密閉容器2内において、電動機8の上部にはフレーム3が固定されており、電動機8の下部には回転軸7を保持するサブフレーム4が固定されている。フレーム3には、吸入配管2aから流入した作動ガスを圧縮機構部10へ供給するための流路3aが設けられている。また、フレーム3には、回転軸7を挿入する挿入穴が形成されており、挿入穴には例えば銅鉛合金等の滑り軸受からなる主軸受5が圧入等により固定されている。一方、サブフレーム4には例えば玉軸受からなる副軸受6が設けられている。そして、主軸受5及び副軸受6が、回転軸7を回転可能に軸支している。なお、主軸受5が滑り軸受からなり、副軸受6が玉軸受からなっている場合について例示しているが、別の公知の軸受構造によって軸支してもよい。なお、油溜め空間2cは回転軸7の端部を支持するサブフレーム4よりも下、副軸受6よりも下、回転軸7の端部よりも下などにある空間である。回転軸7が鉛直方向となる縦置きの配置では、油は油溜め空間2c内に収まっていることが多い。しかし、油は常に油溜め空間2c内に収まっているわけではなく、圧縮機に入れた油の量、圧縮機を用いる冷媒システムの運転条件等によって、油の上面が油溜め空間2cよりも上、つまりサブフレーム4、または副軸受6よりも上となることもある。 In the sealed container 2, the frame 3 is fixed to the upper part of the electric motor 8, and the sub-frame 4 that holds the rotating shaft 7 is fixed to the lower part of the electric motor 8. The frame 3 is provided with a flow path 3 a for supplying the working gas flowing in from the suction pipe 2 a to the compression mechanism unit 10. An insertion hole for inserting the rotary shaft 7 is formed in the frame 3, and a main bearing 5 made of a sliding bearing such as a copper-lead alloy is fixed to the insertion hole by press-fitting or the like. On the other hand, the sub frame 4 is provided with a sub bearing 6 made of, for example, a ball bearing. The main bearing 5 and the sub bearing 6 pivotally support the rotating shaft 7. In addition, although illustrated about the case where the main bearing 5 consists of a sliding bearing and the subbearing 6 consists of a ball bearing, you may support by another well-known bearing structure. The oil sump space 2 c is a space below the subframe 4 that supports the end of the rotating shaft 7, below the sub-bearing 6, below the end of the rotating shaft 7, and the like. In the vertical arrangement in which the rotary shaft 7 is in the vertical direction, the oil is often contained in the oil sump space 2c. However, the oil is not always stored in the oil sump space 2c, and the upper surface of the oil is higher than the sump space 2c depending on the amount of oil put in the compressor, the operating conditions of the refrigerant system using the compressor, and the like. That is, it may be above the subframe 4 or the sub-bearing 6.
 回転軸7の内部には、回転軸7の端部から軸方向(矢印Z方向)に延びる給油路7xと、給油路7xに通じた径方向に延びる複数の供給路7yとが形成されている。給油路7x及び供給路7yを介して主軸受5及び副軸受6等の各摺動部位に油が供給される。回転軸7の軸方向端部には給油路7xが開口し、この開口から給油ポンプ20により加圧した油が供給される。回転軸7の一端側には回転軸7に対し偏心した状態で偏心軸部7aが取付けられており、偏心軸部7aが圧縮機構部10に接続される。なお、圧縮機1における回転系全体のバランシングを行うため、回転軸7には第1バランスウェイト9aが固定されている。 Inside the rotary shaft 7, an oil supply passage 7x extending in the axial direction (arrow Z direction) from the end of the rotary shaft 7 and a plurality of supply passages 7y extending in the radial direction leading to the oil supply passage 7x are formed. . Oil is supplied to the sliding parts such as the main bearing 5 and the auxiliary bearing 6 through the oil supply path 7x and the supply path 7y. An oil supply passage 7x is opened at the axial end of the rotary shaft 7, and oil pressurized by the oil supply pump 20 is supplied from this opening. An eccentric shaft portion 7 a is attached to one end side of the rotating shaft 7 in an eccentric state with respect to the rotating shaft 7, and the eccentric shaft portion 7 a is connected to the compression mechanism portion 10. Note that a first balance weight 9 a is fixed to the rotating shaft 7 in order to balance the entire rotating system in the compressor 1.
 電動機8は、回転軸7を回転駆動させるものであって、電動機回転子8a及び電動機固定子8bを有して回転力を発生する。回転軸7は電動機8が発生した回転力を圧縮機構部10へ伝える。電動機回転子8aは焼嵌め等により回転軸7に固定されており、電動機固定子8bは焼嵌め等により密閉容器2に固定されている。電動機固定子8bには、フレーム3との間に存在する図示しないガラス端子に接続されており、ガラス端子は外部から電力を得るためのリード線に接続されている。そして、電動機固定子8bに電力が供給されたとき、回転軸7及び電動機回転子8aが電動機固定子8bに対し回転する。なお、電動機回転子8aには第2バランスウェイト9bが固定されている。 The electric motor 8 rotates the rotary shaft 7, and has an electric motor rotor 8a and an electric motor stator 8b to generate a rotational force. The rotating shaft 7 transmits the rotational force generated by the electric motor 8 to the compression mechanism unit 10. The electric motor rotor 8a is fixed to the rotary shaft 7 by shrink fitting or the like, and the electric motor stator 8b is fixed to the sealed container 2 by shrink fitting or the like. The motor stator 8b is connected to a glass terminal (not shown) that exists between the motor stator 8b and the glass terminal, and the glass terminal is connected to a lead wire for obtaining electric power from the outside. When electric power is supplied to the motor stator 8b, the rotating shaft 7 and the motor rotor 8a rotate with respect to the motor stator 8b. A second balance weight 9b is fixed to the motor rotor 8a.
 圧縮機構部10は、吸入配管2aから密閉容器2内に吸入される流体(例えば冷媒)を圧縮するものであり、揺動スクロール11及び固定スクロール12を備えている。揺動スクロール11は、フレーム3に公転運動可能に支持されており、揺動スクロール11の下面には筒状の揺動軸受11aが設けられている。揺動軸受11aには回転軸7の偏心軸部7aが挿入されており、偏心軸部7aの回転により揺動スクロール11が公転運動を行う。なお、フレーム3と揺動スクロール11との間には、揺動スクロール11の自転を防止しながら揺動運動を与えるために、フレーム3に揺動自在に支持されたオルダムリング(図示せず)が設けられている。さらに、回転軸7と揺動スクロール11との間にはスライダ9が設けられており、スライダ9は作動ガスの圧力による力と揺動スクロール11に作用する遠心力とにより揺動半径が大きくなる方向に移動し、回転軸7の回転を公転運動に変換する可変クランク機構を構成している。 The compression mechanism unit 10 compresses a fluid (for example, a refrigerant) sucked into the sealed container 2 from the suction pipe 2a, and includes a rocking scroll 11 and a fixed scroll 12. The swing scroll 11 is supported by the frame 3 so as to be capable of revolving, and a cylindrical swing bearing 11 a is provided on the lower surface of the swing scroll 11. The eccentric shaft portion 7a of the rotary shaft 7 is inserted into the rocking bearing 11a, and the rocking scroll 11 performs a revolving motion by the rotation of the eccentric shaft portion 7a. An Oldham ring (not shown) is supported between the frame 3 and the orbiting scroll 11 so as to be swingable on the frame 3 in order to give a swinging motion while preventing the swinging scroll 11 from rotating. Is provided. Further, a slider 9 is provided between the rotary shaft 7 and the swing scroll 11, and the swing radius of the slider 9 is increased by the force due to the pressure of the working gas and the centrifugal force acting on the swing scroll 11. A variable crank mechanism is configured that moves in the direction and converts the rotation of the rotary shaft 7 into a revolving motion.
 固定スクロール12は、揺動スクロール11の上部に配置されたものであってフレーム3に固定されている。固定スクロール12の中心には作動ガスを吐出するための吐出口12aが形成されており、吐出口12a上にはバッフル13及び圧縮された作動ガスの逆流を防止する吐出バルブ14が配置されている。さらに吐出バルブ14の上部には吐出マフラー容器15が設けられている。そして、圧縮機構部10において圧縮された作動ガスは、吐出口12a、バッフル13及び吐出マフラー容器15を介して吐出配管2bから吐出される。 The fixed scroll 12 is arranged on the top of the swing scroll 11 and is fixed to the frame 3. A discharge port 12a for discharging the working gas is formed at the center of the fixed scroll 12, and a baffle 13 and a discharge valve 14 for preventing a back flow of the compressed working gas are disposed on the discharge port 12a. . Further, a discharge muffler container 15 is provided above the discharge valve 14. Then, the working gas compressed in the compression mechanism unit 10 is discharged from the discharge pipe 2b through the discharge port 12a, the baffle 13 and the discharge muffler container 15.
 揺動スクロール11は渦巻体11bを有し、固定スクロール12は渦巻体12bを有するものであり、揺動スクロール11及び固定スクロール12は渦巻体11b、12bが互いに向き合うように配置されている。そして、渦巻体11bと渦巻体12bとが逆位相で組み合わされており、固定スクロール12の渦巻部および揺動スクロール11の渦巻部との間に圧縮室が形成される。 The orbiting scroll 11 has a spiral body 11b, the fixed scroll 12 has a spiral body 12b, and the orbiting scroll 11 and the fixed scroll 12 are arranged so that the spiral bodies 11b and 12b face each other. The spiral body 11 b and the spiral body 12 b are combined in opposite phases, and a compression chamber is formed between the spiral portion of the fixed scroll 12 and the spiral portion of the orbiting scroll 11.
 給油ポンプ20は、回転軸7の他端側に取り付けられており、回転軸7内の給油路7xに密閉容器2の油溜め空間2cに貯留された油を主軸受5、副軸受6及び揺動軸受11a等の各摺動部位に供給するものである。給油ポンプ20は、例えば回転容積式ポンプからなっており、回転軸7の回転により給油ポンプ20が作動する。給油ポンプ20は、回転軸7の回転数が大きくなるにつれて給油路7xに供給する油量が多くなるような特性を有している。 The oil supply pump 20 is attached to the other end side of the rotary shaft 7, and oil stored in the oil sump space 2 c of the hermetic container 2 in the oil supply path 7 x in the rotary shaft 7 is supplied to the main bearing 5, the sub-bearing 6, and the rocker. It is supplied to each sliding part such as the dynamic bearing 11a. The oil supply pump 20 is composed of a rotary positive displacement pump, for example, and the oil supply pump 20 is operated by the rotation of the rotary shaft 7. The oil supply pump 20 has a characteristic that the amount of oil supplied to the oil supply passage 7x increases as the rotational speed of the rotary shaft 7 increases.
 図2及び図3は、図1の圧縮機における給油ポンプの一例を示す模式図であり、図1~図3を参照して給油ポンプ20について説明する。給油ポンプ20は、いわゆるトロコイド型のポンプであり、保持具21、アウターロータ22、インナーロータ23、流入パイプ24を有する。保持具21は、サブフレーム4に収納され、上端面で回転軸7を軸方向に支承している。アウターロータ22は、外周面が断面円形状に形成されており、保持具21内に回転可能に収容されている。なお、アウターロータ22は、回転軸7に対し偏心した状態で保持具21内に収容されている。また、アウターロータ22の内周面にはトロコイド曲線で形成された複数の歯が形成されている。 2 and 3 are schematic views showing an example of an oil supply pump in the compressor of FIG. 1, and the oil supply pump 20 will be described with reference to FIGS. The oil supply pump 20 is a so-called trochoid pump, and includes a holder 21, an outer rotor 22, an inner rotor 23, and an inflow pipe 24. The holder 21 is housed in the subframe 4 and supports the rotary shaft 7 in the axial direction on the upper end surface. The outer rotor 22 has an outer peripheral surface formed in a circular cross section, and is rotatably accommodated in the holder 21. The outer rotor 22 is housed in the holder 21 in an eccentric state with respect to the rotating shaft 7. A plurality of teeth formed with a trochoid curve are formed on the inner peripheral surface of the outer rotor 22.
 インナーロータ23は、アウターロータ22内に収容されており、回転軸7に固定されている。インナーロータ23の外周面には、トコロイド曲線で形成された複数の歯が形成されており、インナーロータ23の歯数はアウターロータ22の歯数より例えば1つ少ない数になっている。インナーロータ23と、アウターロータ22とによって区切られる隙間の体積は、これらの回転にあわせて拡大・縮小する。インナーロータ23と、アウターロータ22などの回転型のポンプ機構は、隙間が拡大する回転角度位置で油を吸込み、縮小する角度位置で油を吐き出すように内部に吸入口と吐出口とが設けられている(図3に点線で囲む部分)。吸入口は流入パイプ24に接続されている。隙間が縮小すると油に圧力がかかるため、油は加圧されて吐き出される。保持具21の底部とアウターロータ22及びインナーロータ23との間には油流入路21aが形成されている。油流入路21aは、アウターロータ22とインナーロータ23との間に形成される空間と、回転軸7の給油路7xとを接続する流路である。つまり、油流入路21aは、給油ポンプ20内にあって、ポンプ機構の吐出口から加圧した油が内部給油路7xに流入するまでの流路である。保持具21の底部には、油流入路21aに流れる油の一部を保持具21の外部へ流出させる貫通孔からなる油出口21xが設けられている。なお、油出口21xが保持具21の底部に設けられた場合について例示しているが、油流入路21aに通じていれば、形成位置を問わない。また、給油ポンプ20のポンプ機構として、静穏性、耐久性に優れるトロコイド型のギヤポンプを示したが、回転軸7の回転を利用する別のポンプ機構であってもよい。 The inner rotor 23 is accommodated in the outer rotor 22 and is fixed to the rotary shaft 7. A plurality of teeth formed in a tocoloid curve are formed on the outer peripheral surface of the inner rotor 23, and the number of teeth of the inner rotor 23 is, for example, one less than the number of teeth of the outer rotor 22. The volume of the gap defined by the inner rotor 23 and the outer rotor 22 is enlarged / reduced in accordance with these rotations. The rotary pump mechanism such as the inner rotor 23 and the outer rotor 22 is provided with a suction port and a discharge port so that oil is sucked in at a rotation angle position where the gap is enlarged and discharged at a reduction angle position. (Part surrounded by a dotted line in FIG. 3). The suction port is connected to the inflow pipe 24. When the gap is reduced, pressure is applied to the oil, so that the oil is pressurized and discharged. An oil inflow passage 21 a is formed between the bottom of the holder 21 and the outer rotor 22 and the inner rotor 23. The oil inflow path 21 a is a flow path that connects a space formed between the outer rotor 22 and the inner rotor 23 and the oil supply path 7 x of the rotating shaft 7. That is, the oil inflow path 21a is a flow path in the oil supply pump 20 until oil pressurized from the discharge port of the pump mechanism flows into the internal oil supply path 7x. An oil outlet 21 x formed of a through hole through which a part of the oil flowing through the oil inflow passage 21 a flows out to the outside of the holder 21 is provided at the bottom of the holder 21. In addition, although illustrated about the case where the oil outlet 21x is provided in the bottom part of the holder 21, as long as it leads to the oil inflow path 21a, a formation position is not ask | required. Moreover, although the trochoid type gear pump excellent in quietness and durability was shown as a pump mechanism of the oil supply pump 20, another pump mechanism using the rotation of the rotating shaft 7 may be used.
 流入パイプ24は、油溜め空間2cに貯留された油を保持具21の内部に流入するものであり、例えば軸方向に油溜め空間2cの下部まで延びた形状を有する。これにより、油が油溜め空間2cの下部まで減少するような運転条件であっても、油をすぐに流入パイプ24に導くことができ、油の供給不足を防ぐことができる。 The inflow pipe 24 flows oil stored in the oil sump space 2c into the holder 21 and has, for example, a shape extending in the axial direction to the lower part of the oil sump space 2c. Thereby, even if it is an operating condition where oil decreases to the lower part of the oil sump space 2c, the oil can be immediately led to the inflow pipe 24, and an insufficient supply of oil can be prevented.
 そして、回転軸7が回転するとインナーロータ23が回転し、インナーロータ23の歯とアウターロータ22の歯がかみ合うことにより、アウターロータ22が回転する。この際、アウターロータ22とインナーロータ23との間の空間は、歯数の違いにより回転位置に応じて容積の拡大及び縮小が生じる。これにより、密閉容器2の底部の油溜め空間2cの油が流入パイプ24から保持具21内へ吸い上げられる。そして、保持具21内の油は、油流入路21aを通過して回転軸7の給油路7xに供給される。 When the rotating shaft 7 rotates, the inner rotor 23 rotates, and the teeth of the inner rotor 23 and the teeth of the outer rotor 22 mesh with each other, whereby the outer rotor 22 rotates. At this time, the space between the outer rotor 22 and the inner rotor 23 is expanded and contracted in volume according to the rotational position due to the difference in the number of teeth. Thereby, the oil in the oil sump space 2 c at the bottom of the sealed container 2 is sucked up from the inflow pipe 24 into the holder 21. The oil in the holder 21 is supplied to the oil supply passage 7x of the rotary shaft 7 through the oil inflow passage 21a.
 図1~図3を参照して圧縮機1の動作例について説明する。まず、作動ガスが吸入配管2aから密閉容器2内のフレーム3の下部空間に流入し、フレーム3内に設置された2つの流路3aを通ってフレーム3の中部空間に流入する。一方、インバータ装置から電動機8へ電力が供給されることにより回転軸7が回転する。回転軸7の回転により偏心軸部7aが回転し、揺動スクロール11が揺動運動(公転運動)を行う。このとき、揺動スクロール11と固定スクロール12との間に形成された圧縮室に作動ガスが圧縮室(図示せず)へと吸い込まれる。そして、作動ガスは渦巻体11b、12bが形成する両渦巻体の動作に伴う圧縮室の幾何学的な容積変化によって冷媒は低圧から高圧へと昇圧され、固定スクロール12の吐出配管2bから高圧冷媒として密閉容器2の外部へ吐出される。 An example of the operation of the compressor 1 will be described with reference to FIGS. First, the working gas flows from the suction pipe 2 a into the lower space of the frame 3 in the sealed container 2, and flows into the middle space of the frame 3 through the two flow paths 3 a installed in the frame 3. On the other hand, the rotating shaft 7 rotates when electric power is supplied from the inverter device to the electric motor 8. The eccentric shaft portion 7a is rotated by the rotation of the rotating shaft 7, and the swing scroll 11 performs swing motion (revolution motion). At this time, the working gas is sucked into the compression chamber (not shown) in the compression chamber formed between the orbiting scroll 11 and the fixed scroll 12. The working gas is pressurized from a low pressure to a high pressure by the geometric volume change of the compression chamber accompanying the operation of both spiral bodies formed by the spiral bodies 11 b and 12 b, and the high pressure refrigerant is discharged from the discharge pipe 2 b of the fixed scroll 12. Is discharged to the outside of the sealed container 2.
 図1~図3を参照して圧縮機1の動作時における油の流れについて説明する。まず、回転軸7の回転に伴い給油ポンプ20が作動し、回転軸7の給油路7xに油が供給される。この油が給油路7x及び供給路7yから主軸受5、副軸受6、揺動軸受11a及び圧縮機構部10にそれぞれ給油される。副軸受6に給油された油は副軸受6を潤滑した後、密閉容器2の下部の油溜め空間2cに戻される。さらに、圧縮機構部10に流れた油及び揺動軸受11aを潤滑した後の油は、揺動スクロール11とフレーム3とで形成される空間(フレーム3内の空間)に流れ、密閉容器2の下部の油溜め空間2cに返油される。残りの一部の油は揺動スクロール11のスラスト面とフレーム3との間を通り、圧縮室に取込まれた後、圧縮機1の外部に吐出される。 The oil flow during the operation of the compressor 1 will be described with reference to FIGS. First, with the rotation of the rotating shaft 7, the oil supply pump 20 is operated, and oil is supplied to the oil supply passage 7 x of the rotating shaft 7. This oil is supplied from the oil supply passage 7x and the supply passage 7y to the main bearing 5, the auxiliary bearing 6, the rocking bearing 11a, and the compression mechanism portion 10, respectively. The oil supplied to the auxiliary bearing 6 lubricates the auxiliary bearing 6 and then returns to the oil sump space 2 c below the sealed container 2. Further, the oil that has flowed into the compression mechanism 10 and the oil after the rocking bearing 11 a has been lubricated flows into the space formed by the rocking scroll 11 and the frame 3 (the space in the frame 3). Oil is returned to the lower oil sump space 2c. The remaining part of the oil passes between the thrust surface of the orbiting scroll 11 and the frame 3, is taken into the compression chamber, and is then discharged to the outside of the compressor 1.
 上述のように、給油ポンプ20が容積式ポンプである場合、回転軸7の回転数が大きくなるほど給油路7xに供給される油量は多くなる特性を有する。すると、圧縮機1の高回転時に給油量が過大となり、圧縮機1の外部に吐出される油量(油上がり量)の増加に伴い、冷凍能力低下及び性能低下を招いてしまう場合がある。また、揺動軸受11aが格納されている空間が油で充満してしまい、揺動軸受が油を撹拌することによる動力損失が生じる。そこで、圧縮機1は、回転数に応じて給油路7xに供給される油を油溜め空間2cの内部へ直接バイパスして排出するバルブ機構30が設けられている。 As described above, when the oil supply pump 20 is a positive displacement pump, the amount of oil supplied to the oil supply passage 7x increases as the rotational speed of the rotary shaft 7 increases. Then, when the compressor 1 rotates at a high speed, the amount of oil supply becomes excessive, and as the amount of oil discharged to the outside of the compressor 1 (the amount of oil rising) increases, the refrigerating capacity and performance may decrease. Further, the space in which the rocking bearing 11a is stored is filled with oil, and power loss occurs due to the rocking bearing stirring the oil. Therefore, the compressor 1 is provided with a valve mechanism 30 that bypasses and discharges the oil supplied to the oil supply passage 7x directly into the oil sump space 2c in accordance with the rotational speed.
 図2のバルブ機構30は、給油ポンプ20から印加される油の圧力に応じて油出口21xの開閉を行い、油流入路21a内の油を油溜め空間2c内へ返油するものであり、ハウジング31、弁体32、弾性部材33を有する。バルブ機構30は弁体32で口を開閉する機構であり、バルブ機構30と言い換えてもよい。ハウジング31は、給油ポンプ20の油出口21xを覆うように配置されており、油出口21xに通じる中空部31aを有する。中空部31aは、例えば軸方向(矢印Z方向)に延びて形成されている。 The valve mechanism 30 in FIG. 2 opens and closes the oil outlet 21x in accordance with the oil pressure applied from the oil supply pump 20, and returns the oil in the oil inflow passage 21a to the oil sump space 2c. A housing 31, a valve body 32, and an elastic member 33 are included. The valve mechanism 30 is a mechanism that opens and closes the mouth with the valve body 32, and may be rephrased as the valve mechanism 30. The housing 31 is disposed so as to cover the oil outlet 21x of the oil supply pump 20, and has a hollow portion 31a that communicates with the oil outlet 21x. The hollow portion 31a is formed to extend in the axial direction (arrow Z direction), for example.
 ハウジング31の側壁には油溜め空間2cへ通じる排出口31xが形成されており、排出口31xは油溜め空間2cの内部に位置している。なお、図1においては、給油ポンプ20及びバルブ機構30の全体が油溜め空間2c内に位置し、その結果、排出口31xも油溜め空間2cの内部に位置した状態になっている。ここで、油溜め空間2cにおける油面の高さは運転条件によって変動する。このため、排出口31xはできるだけ下方に設置することが好ましい。これにより、油面が低くなる運転条件においても排出口31xから排出された油は、油溜め空間2cの内部へ返油されることになる。 A discharge port 31x communicating with the oil sump space 2c is formed on the side wall of the housing 31, and the discharge port 31x is located inside the oil sump space 2c. In FIG. 1, the entire oil pump 20 and valve mechanism 30 are located in the oil sump space 2c, and as a result, the discharge port 31x is also located in the oil sump space 2c. Here, the height of the oil level in the oil sump space 2c varies depending on the operating conditions. For this reason, it is preferable to install the discharge port 31x as low as possible. Thereby, the oil discharged from the discharge port 31x is returned to the inside of the oil sump space 2c even under the operating condition where the oil level is lowered.
 弁体32は油出口21xの油の圧力によって動く。なお、弁体32が動く量が油出口21xの油の圧力の大きさに応じて変化すればよく、弁体32が受ける油の圧力が油出口21xの油の圧力と完全に同一でなくともよい。弁体32は、ハウジング31の中空部31aの内部を軸方向(矢印Z方向)に移動可能に収容されており、ハウジング31に設けられた油出口21xの開閉を行うものである。弁体32は、例えばハウジング31の中空部31aの断面積とほぼ同一の大きさを有し、ハウジング31の内壁と弁体32との間から油が流通するのを規制する。弾性部材33は、ハウジング31と弁体32との間に設けられており、弁体32を油出口21x側へ付勢する。 The valve body 32 is moved by the oil pressure at the oil outlet 21x. It should be noted that the amount of movement of the valve body 32 only needs to change according to the magnitude of the oil pressure at the oil outlet 21x. Good. The valve body 32 is accommodated in the hollow portion 31a of the housing 31 so as to be movable in the axial direction (direction of arrow Z), and opens and closes the oil outlet 21x provided in the housing 31. The valve body 32 has, for example, approximately the same size as the cross-sectional area of the hollow portion 31 a of the housing 31, and restricts oil from flowing between the inner wall of the housing 31 and the valve body 32. The elastic member 33 is provided between the housing 31 and the valve body 32, and biases the valve body 32 toward the oil outlet 21x.
 図4及び図5は、図1の圧縮機におけるバルブ機構の動作例を示す模式図である。なお、図4は低速運転での状態を示し、図5は高速運転での状態をそれぞれ示している。図4に示すように、弁体32が油出口21xと排出口31xとの間に位置している場合、弁体32が油出口21xから排出口31xへの油の流通を規制し、油出口21xは閉止された状態になる。一方、図5に示すように、弁体32が排出口31xと弾性部材33との間に位置する場合、油出口21xは開放された状態になり、油出口21xから排出口31xへ油が流れる。図4及び図5における弁体32の位置は、給油ポンプ20におけるポンプ圧により定まる。すなわち、弁体32の位置は、油出口21xからハウジング31内に流入する油の圧力と、弾性部材33の付勢力との関係に応じて定まり、油の圧力は回転軸7の回転するに応じて定まる。 4 and 5 are schematic views showing an operation example of the valve mechanism in the compressor of FIG. FIG. 4 shows a state in low speed operation, and FIG. 5 shows a state in high speed operation. As shown in FIG. 4, when the valve body 32 is located between the oil outlet 21x and the discharge port 31x, the valve body 32 regulates the flow of oil from the oil outlet 21x to the discharge port 31x, and the oil outlet 21x is in a closed state. On the other hand, as shown in FIG. 5, when the valve body 32 is positioned between the discharge port 31x and the elastic member 33, the oil outlet 21x is opened, and the oil flows from the oil outlet 21x to the discharge port 31x. . The position of the valve body 32 in FIGS. 4 and 5 is determined by the pump pressure in the oil supply pump 20. That is, the position of the valve body 32 is determined according to the relationship between the pressure of the oil flowing into the housing 31 from the oil outlet 21x and the urging force of the elastic member 33, and the pressure of the oil is determined according to the rotation of the rotary shaft 7. Determined.
 圧縮機1が低速運転している場合、容積型の給油ポンプ20の油くみ上げ量が小さく、油流入路21aで生じるポンプ圧は小さい。このため、図4に示すように、弾性部材33の付勢力はポンプ圧より大きい状態になり、弁体32によって油出口21xは閉止される。 When the compressor 1 is operating at a low speed, the pumping amount of the positive displacement oil pump 20 is small, and the pump pressure generated in the oil inflow passage 21a is small. For this reason, as shown in FIG. 4, the urging force of the elastic member 33 becomes larger than the pump pressure, and the oil outlet 21 x is closed by the valve body 32.
 一方で、圧縮機1が高速運転している場合、容積型の給油ポンプ20の油くみ上げ量は大きく、油流入路21aで生じるポンプ圧が増加する。このため、図5に示すように、ポンプ圧が弾性部材33の付勢力より大きくなり、弁体32が弾性部材33側へ軸方向に移動し、排出口31xが開放される。すると、油流入路21aの油の一部が、油出口21x及び排出口31xを介して油溜め空間2cの内部へ返油される。 On the other hand, when the compressor 1 is operating at high speed, the oil pumping amount of the positive displacement oil pump 20 is large, and the pump pressure generated in the oil inflow passage 21a increases. Therefore, as shown in FIG. 5, the pump pressure becomes larger than the urging force of the elastic member 33, the valve body 32 moves in the axial direction toward the elastic member 33, and the discharge port 31x is opened. Then, a part of the oil in the oil inflow path 21a is returned to the inside of the oil sump space 2c through the oil outlet 21x and the outlet 31x.
 図6は、図2~図5のバルブ機構を用いた圧縮機の回転数と給油ポンプによる給油量との関係を示すグラフである。図6において、給油ポンプ20が容積型ポンプである場合、回転数と給油ポンプ20による給油量とはほぼ比例関係になり、回転数が大きくなるほど給油量が多くなる。上述のように、給油ポンプ20にバルブ機構30が設けられている場合、回転数しきい値N1以上になった高速運転時に、排出口31xが開口し(図5参照)、回転数の増加に応じて給油量が低減されていく。また、回転数しきい値N1未満となった低速運転時は排出口31xが閉止する。この回転数しきい値N1は、給油ポンプ20による油圧により、弾性部材33により付勢された弁体32が排出口を開放させる位置まで押し下げる(移動する)油圧になるような回転数になっている。回転数しきい値N1は例えば弾性部材33の弾性力、もしくは排出口31xの軸方向の形成位置等により設定することができる。この回転数しきい値N1として、たとえば圧縮機1の定格回転周波数の10~50%の範囲内の値などとしてもよい。なお、回転数しきい値N1を完全に1つの値に固定するものではない。異なる圧縮機1において、この回転数しきい値N1が、少し異なっていてもよい。また、同じ圧縮機1においても、吸入する冷媒の圧力などの運転条件によって、回転数しきい値N1が、多少の変化をしてもよい。たとえば、特定の運転条件で、回転数しきい値N1が、ある所定の範囲内に保つようにバルブ機構30を調整してもよい。 FIG. 6 is a graph showing the relationship between the rotational speed of the compressor using the valve mechanism of FIGS. 2 to 5 and the amount of oil supplied by the oil pump. In FIG. 6, when the oil supply pump 20 is a positive displacement pump, the rotational speed and the amount of oil supplied by the oil pump 20 are substantially proportional to each other, and the amount of oil increases as the rotational speed increases. As described above, when the valve mechanism 30 is provided in the oil supply pump 20, the discharge port 31x is opened during high speed operation when the rotation speed threshold value N1 is exceeded (see FIG. 5), which increases the rotation speed. Accordingly, the amount of oil supply will be reduced. Further, the discharge port 31x is closed during low-speed operation that is less than the rotation speed threshold N1. The rotation speed threshold value N1 is a rotation speed at which the valve body 32 urged by the elastic member 33 is pressed down (moved) to a position where the discharge port is opened by the hydraulic pressure from the oil supply pump 20. Yes. The rotation speed threshold value N1 can be set by, for example, the elastic force of the elastic member 33 or the axial position of the discharge port 31x. The rotation speed threshold value N1 may be a value within a range of 10 to 50% of the rated rotation frequency of the compressor 1, for example. Note that the rotation speed threshold value N1 is not completely fixed to one value. In different compressors 1, the rotation speed threshold value N1 may be slightly different. Even in the same compressor 1, the rotation speed threshold value N1 may slightly change depending on operating conditions such as the pressure of the refrigerant to be sucked. For example, the valve mechanism 30 may be adjusted so that the rotation speed threshold value N1 is kept within a predetermined range under a specific operating condition.
 上記実施の形態1によれば、高速運転での過剰給油が抑制されるため、揺動軸受11aが格納される空間を油で充満することを回避し、揺動軸受11aが油を撹拌することによる動力損失を低減することができる。この際、バルブ機構30が、回転軸7に取り付けられるのではなく、給油ポンプ20に設けられることにより、簡単な構造で動力損失を低減することができる。 According to the first embodiment, since excessive lubrication in high-speed operation is suppressed, it is avoided that the space in which the rocking bearing 11a is stored is filled with oil, and the rocking bearing 11a stirs the oil. Power loss due to can be reduced. At this time, the valve mechanism 30 is not attached to the rotary shaft 7 but is provided in the oil supply pump 20, so that power loss can be reduced with a simple structure.
 ここで、図7は従来のバルブ機構の一例を示す模式図である。図7に示すように、回転軸7の給油ポンプより上の位置に、給油路に連通し径方向に延びるバルブ路7zが形成されており、バルブ路7zの出口に弁体51が設けられている。したがって、回転軸7が回転したとき、弁体も同時に回転することになる。このため、弁体51にはポンプ圧のみならず遠心力も働くことになり、弁体51の開閉度合いの制御が難しくなる。さらに、バルブ路7z及び弁体51は、冷媒ガス空間に位置しているため、バルブ路7zから排出された油は、密閉容器2の内部の冷媒ガス空間へ飛散してしまう。 Here, FIG. 7 is a schematic view showing an example of a conventional valve mechanism. As shown in FIG. 7, a valve passage 7z that communicates with the oil supply passage and extends in the radial direction is formed at a position above the oil supply pump of the rotary shaft 7, and a valve body 51 is provided at the outlet of the valve passage 7z. Yes. Therefore, when the rotating shaft 7 rotates, the valve body also rotates simultaneously. For this reason, not only pump pressure but also centrifugal force acts on the valve body 51, and it becomes difficult to control the degree of opening and closing of the valve body 51. Furthermore, since the valve path 7z and the valve body 51 are located in the refrigerant gas space, the oil discharged from the valve path 7z is scattered into the refrigerant gas space inside the sealed container 2.
 一方、図2~図5に示すバルブ機構30は、弁体32の移動は遠心力に左右されることなく、ポンプ圧を利用して軸方向に移動し、油流入路21aと排出口31xを開閉することができる。このため、回転体である回転軸7に新たにバルブ機構を取り付ける必要がなく、給油ポンプ20と一体で構成することができ、簡便な構成で油撹拌による動力損失を低減することができる。 On the other hand, in the valve mechanism 30 shown in FIGS. 2 to 5, the movement of the valve body 32 is not influenced by the centrifugal force but moves in the axial direction using the pump pressure, and the oil inflow passage 21a and the discharge port 31x are moved. Can be opened and closed. For this reason, it is not necessary to newly attach a valve mechanism to the rotating shaft 7 which is a rotating body, and it can be configured integrally with the oil supply pump 20, and power loss due to oil agitation can be reduced with a simple configuration.
 また、弁体32が軸方向に移動して返油量が調整されることにより、油溜め空間2cへの返油が行われる。したがって、バルブ機構30の排出口31xを油溜め空間2c内に配置することが容易になり、バルブ機構30から油溜め空間2cへ返油する際に、冷媒ガス空間にミスト状の油が混入するのを防止することができる。これにより、油の撹拌による動力損失を低減しながら、油上り量の少ない信頼性の向上を図ることができる。また、油が油溜め空間2cの下部まで減少するような運転条件であっても、直接に油溜め空間2cへ戻すことにより、油をすぐに流入パイプ24に導くことができ、油の供給不足を防ぐことができる。 Further, oil return to the oil sump space 2c is performed by the valve body 32 moving in the axial direction to adjust the oil return amount. Therefore, it becomes easy to arrange the discharge port 31x of the valve mechanism 30 in the oil sump space 2c, and when returning oil from the valve mechanism 30 to the oil sump space 2c, mist-like oil is mixed into the refrigerant gas space. Can be prevented. As a result, it is possible to improve the reliability with a small amount of oil rising while reducing the power loss due to the stirring of the oil. Further, even if the operating condition is such that the oil decreases to the lower part of the oil sump space 2c, the oil can be immediately led to the inflow pipe 24 by returning directly to the oil sump space 2c, resulting in insufficient oil supply. Can be prevented.
 さらに、給油ポンプ20の排除容積を拡大しながら実施の形態1の構成を適用することにより、低速運転での給油不足と、高速運転での過剰給油との双方を抑制することができる。これにより、漏れ損失比率の大きい低速運転において、圧縮機構部の内部に積極的に油が流入して圧縮機1の内部の隙間のシール性を確保することができ、漏れ損失を低減することができる。 Furthermore, by applying the configuration of the first embodiment while expanding the excluded volume of the oil supply pump 20, it is possible to suppress both of insufficient oil supply at low speed operation and excessive oil supply at high speed operation. As a result, in low speed operation with a large leakage loss ratio, oil can actively flow into the compression mechanism section to ensure the sealing performance of the gap inside the compressor 1 and reduce leakage loss. it can.
実施の形態2.
 図8~図10は、本発明の実施の形態2に係る圧縮機のバルブ機構の一例を示す模式図であり、図8~図10を参照してバルブ機構について説明する。なお、図8~図10において、実施の形態1と同一の部位には同一の符号を付してその説明を省略する。図8は低速運転での状態、図9は中速運転での状態、図10は高速運転での状態をそれぞれ示している。
Embodiment 2. FIG.
8 to 10 are schematic views showing an example of the valve mechanism of the compressor according to Embodiment 2 of the present invention. The valve mechanism will be described with reference to FIGS. 8 to 10, the same parts as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. FIG. 8 shows a state in low speed operation, FIG. 9 shows a state in medium speed operation, and FIG. 10 shows a state in high speed operation.
 図8~図10のバルブ機構130において、ハウジング31は、軸方向(矢印Z方向)に同一直線上に配列された複数の排出口131x、131yを有している。なお、複数の排出口131x、131yは、同一直線上に並んで配置されている場合について例示しているが、軸方向の異なる位置に配置されていればよい。そして、弁体32は、ポンプ圧の大きさに応じた位置に応じて、軸方向の異なる位置に位置決めされ、弁体32の位置に応じて複数の排出口131x、131yから油溜め空間2cへ排出される返油量が調整される。 8 to 10, in the valve mechanism 130, the housing 31 has a plurality of discharge ports 131x and 131y arranged on the same straight line in the axial direction (arrow Z direction). In addition, although the several discharge port 131x, 131y has illustrated about the case where it arrange | positions along with the same straight line, it should just be arrange | positioned in the position where an axial direction differs. The valve body 32 is positioned at different positions in the axial direction according to the position corresponding to the magnitude of the pump pressure, and from the plurality of discharge ports 131x and 131y to the oil sump space 2c according to the position of the valve body 32. The amount of oil returned is adjusted.
 具体的には、図8の低速回転時において、弁体32は複数の排出口131x、131yのいずれも閉止する位置に位置決めされる。図9の中速回転時において、上側の排出口131xを開放し下側の排出口131yを閉止する位置に位置決めされる。したがって、排出口31xから返油が行われ、排出口131yからの返油は行われない。図10の高速回転時において、複数の排出口131x、131yの双方を開放する位置のそれぞれに位置決めされ、排出口131x、131yから返油が行われる。 Specifically, during low-speed rotation in FIG. 8, the valve element 32 is positioned at a position where all of the plurality of discharge ports 131x and 131y are closed. 9 is positioned at a position where the upper discharge port 131x is opened and the lower discharge port 131y is closed. Therefore, oil return is performed from the discharge port 31x and oil return from the discharge port 131y is not performed. At the time of high speed rotation in FIG. 10, the plurality of discharge ports 131x and 131y are positioned at positions where both are opened, and oil is returned from the discharge ports 131x and 131y.
 図11は、図8~図10のバルブ機構における回転数と給油量との関係を示すグラフである。図11に示すように、回転数が回転数しきい値N1より小さいとき、複数の排出口131x、131yが閉止しているため(図8参照)、給油量は回転数に比例したものになる。回転数が第1しきい値N11以上であり第2しきい値N12より小さいとき、上側の排出口131xが開放され131yが閉止しているため(図9参照)、排出口131xからの返油量分だけ給油量は小さくなる。さらに、回転数が第2しきい値N12以上であるとき、複数の排出口131x、131yの双方が開放されるため(図10参照)、複数の排出口131x、131yからの返油量分だけ給油量は小さくなる。 FIG. 11 is a graph showing the relationship between the number of revolutions and the amount of oil supply in the valve mechanism of FIGS. As shown in FIG. 11, when the rotational speed is smaller than the rotational speed threshold value N1, the plurality of outlets 131x and 131y are closed (see FIG. 8), so the amount of oil supply is proportional to the rotational speed. . When the rotational speed is equal to or higher than the first threshold value N11 and smaller than the second threshold value N12, the upper discharge port 131x is opened and 131y is closed (see FIG. 9), so that oil is returned from the discharge port 131x. The amount of refueling decreases by the amount. Further, when the rotational speed is equal to or greater than the second threshold value N12, both of the plurality of discharge ports 131x and 131y are opened (see FIG. 10), so that only the amount of oil return from the plurality of discharge ports 131x and 131y. The amount of lubrication becomes smaller.
 上記実施の形態2によれば、回転数によって段階的に排出口131x、131yの合計の開口面積を変化させることにより、例えば図6に示すような不連続の給油特性を得ることができる。これにより、給油設計の自由度を向上させることができる。また、実施の形態2の場合であっても、実施の形態1と同様、排出口131x、131yから直接油溜め空間2cへ返油が行われるため、動力損失を低減しながら、油上り量の少ない信頼性の向上を図ることができる。 According to the second embodiment, discontinuous oil supply characteristics as shown in FIG. 6 can be obtained, for example, by changing the total opening area of the discharge ports 131x and 131y stepwise according to the number of rotations. Thereby, the freedom degree of oil supply design can be improved. Further, even in the case of the second embodiment, as in the first embodiment, the oil return is performed directly from the discharge ports 131x and 131y to the oil sump space 2c. A small improvement in reliability can be achieved.
実施の形態3.
 図12~図14は、本発明の実施の形態3に係る圧縮機のバルブ機構の排出口の形状を示す模式図である。なお、図12~図14の実施の形態3において、実施の形態1、2と同一の構成には同一の符号を付してその説明を省略する。
Embodiment 3 FIG.
12 to 14 are schematic views showing the shape of the discharge port of the valve mechanism of the compressor according to Embodiment 3 of the present invention. In the third embodiment shown in FIGS. 12 to 14, the same components as those in the first and second embodiments are denoted by the same reference numerals, and the description thereof is omitted.
 図12において、ハウジング31には、軸方向の同じ位置に2つの排出口231x、231yが設けられているとともに、軸方向の異なる位置に排出口231zが形成されている。したがって、回転数が所定の第1しきい値N11以上になったとき、排出口231x、231yの合計の開口面積に応じた油が返油されることになる。なお、上側に2つの排出口231x、231yが形成され、下側に1つの排出口231zが形成されている場合について例示しているが、仕様等に合わせて、軸方向の異なる位置に1つ以上の排出口が設けられていればよい。 12, the housing 31 is provided with two discharge ports 231x and 231y at the same position in the axial direction, and discharge ports 231z are formed at different positions in the axial direction. Therefore, when the rotation speed becomes equal to or higher than the predetermined first threshold value N11, oil corresponding to the total opening area of the discharge ports 231x and 231y is returned. In addition, although the case where two discharge ports 231x and 231y are formed on the upper side and one discharge port 231z is formed on the lower side is illustrated, one is located at a different position in the axial direction according to the specification and the like. What is necessary is just to provide the above discharge port.
 図13において、ハウジング31には、軸方向に延びる長方形状の排出口231pが形成されている。すると、回転数が高くなりポンプ圧が高くなるほど、弁体32の移動による排出口231pの開口面積が大きくなる。よって、回転数が高くなりポンプ圧が高くなるほど、返油量が多くなる給油特性を得ることができる。さらに、図14において、ハウジング31には、軸方向に延び軸方向の位置毎に異なる幅を有する例えば断面台形状の1つの排出口231rが形成されている。すると、回転数が高くなりポンプ圧が高くなるほど、弁体32の移動による排出口231rの開口面積の増加量が小さくなっていく。よって、回転数が高くなりポンプ圧が高くなるほど、返油量の増加量が小さくなるような給油特性を得ることができる。 In FIG. 13, the housing 31 is formed with a rectangular discharge port 231p extending in the axial direction. Then, as the rotational speed increases and the pump pressure increases, the opening area of the discharge port 231p due to the movement of the valve body 32 increases. Therefore, it is possible to obtain an oil supply characteristic in which the oil return amount increases as the rotational speed increases and the pump pressure increases. Further, in FIG. 14, the housing 31 is formed with one discharge port 231r extending in the axial direction and having a different width for each position in the axial direction, for example, having a trapezoidal cross section. Then, the amount of increase in the opening area of the discharge port 231r due to the movement of the valve body 32 decreases as the rotational speed increases and the pump pressure increases. Therefore, it is possible to obtain an oil supply characteristic such that the amount of increase in the oil return amount decreases as the rotational speed increases and the pump pressure increases.
 上記実施の形態3の場合であっても、上記実施の形態2と同様、給油及び返油量の設計の自由度を更に向上させることができる。また、実施の形態3の場合であっても、実施の形態1と同様、各排出口231x~231eから直接油溜め空間2cへ返油が行われるため、動力損失を低減しながら、油上り量の少ない信頼性の向上を図ることができる。 Even in the case of the third embodiment, as in the second embodiment, the degree of freedom in designing the oil supply and the amount of oil return can be further improved. Even in the case of the third embodiment, as in the first embodiment, oil return is performed directly from the discharge ports 231x to 231e to the oil sump space 2c. Therefore, the reliability can be improved.
実施の形態4.
 図15及び図16は、本発明の実施の形態4に係る圧縮機のバルブ機構の一例を示す模式図である。なお、図15は圧縮機が停止している状態を示し、図16は圧縮機が運転している状態を示している。また、図15及び図16の実施の形態4において、実施の形態1~3と同一の構成を有する部位には同一の符号を付してその説明を省略する。
Embodiment 4 FIG.
15 and 16 are schematic views showing an example of the valve mechanism of the compressor according to Embodiment 4 of the present invention. FIG. 15 shows a state where the compressor is stopped, and FIG. 16 shows a state where the compressor is operating. Further, in the fourth embodiment shown in FIGS. 15 and 16, parts having the same configuration as in the first to third embodiments are denoted by the same reference numerals, and the description thereof is omitted.
 図15及び図16において、バルブ機構330は、リード弁331からなっている。なお、給油ポンプ20の保持具21は、油溜め空間2c内に位置している。図15の圧縮機が停止状態である場合、油出口21xは開口していない。一方、図16の圧縮機が運転状態である場合、リード弁331がポンプ圧により変形し、油出口21xが開放される。さらに、回転数が上昇することにより、ポンプ圧の増加に伴いリード弁331の変位量は大きくなり、油出口21xの開口面積も拡大していく。 15 and 16, the valve mechanism 330 includes a reed valve 331. The holder 21 of the oil supply pump 20 is located in the oil sump space 2c. When the compressor in FIG. 15 is in a stopped state, the oil outlet 21x is not open. On the other hand, when the compressor of FIG. 16 is in an operating state, the reed valve 331 is deformed by the pump pressure, and the oil outlet 21x is opened. Further, as the rotational speed increases, the displacement amount of the reed valve 331 increases as the pump pressure increases, and the opening area of the oil outlet 21x also increases.
 図17は、図15及び図16のバルブ機構を用いた圧縮機の回転数と給油ポンプによる給油量との関係を示すグラフである。図17に示すように、回転数が増加するに伴い、給油ポンプ20の油の吸込み量に対する軸受への給油量の比率を連続的に低下させることができる。なお、実施の形態3と同様、保持具21に設けられる油出口21xの数や形状を変えてもよい。これにより、給油設計の自由度を向上させることができる。 FIG. 17 is a graph showing the relationship between the rotation speed of the compressor using the valve mechanism of FIGS. 15 and 16 and the amount of oil supplied by the oil supply pump. As shown in FIG. 17, as the rotational speed increases, the ratio of the amount of oil supplied to the bearing with respect to the amount of oil sucked in the oil supply pump 20 can be continuously reduced. As in the third embodiment, the number and shape of the oil outlets 21x provided in the holder 21 may be changed. Thereby, the freedom degree of oil supply design can be improved.
 上記実施の形態4の場合であっても、実施の形態1と同様、油出口21xから直接油溜め空間2cへ返油が行われるため、動力損失を低減しながら、油上り量の少ない信頼性の向上を図ることができる。さらに、バルブ機構330がリード弁331のみで構成されることにより、簡便な構成で油撹拌による動力損失を低減することができる。 Even in the case of the fourth embodiment, as in the first embodiment, since oil is returned directly from the oil outlet 21x to the oil sump space 2c, reliability with a small amount of oil rising while reducing power loss. Can be improved. Furthermore, since the valve mechanism 330 is configured only by the reed valve 331, power loss due to oil agitation can be reduced with a simple configuration.
実施の形態5.
 図18は、本発明の実施の形態5に係る圧縮機における給油ポンプの一例を示す模式図である。なお、図18の給油ポンプ及びバルブ機構において、図16の給油ポンプ及びバルブ機構と同一の構成を有する部位には同一の符号を付してその説明を省略する。
Embodiment 5 FIG.
FIG. 18 is a schematic diagram illustrating an example of an oil supply pump in a compressor according to Embodiment 5 of the present invention. In the oil supply pump and valve mechanism of FIG. 18, the same reference numerals are given to portions having the same configurations as those of the oil supply pump and valve mechanism of FIG.
 図18において、給油ポンプ20の保持具21は、油出口21x上に位置するリード弁331を設置する座面になる部位に傾斜面421を有している。これにより、停止状態(図16参照)においても与荷重を与えることができる。したがって、傾斜面421の角度により、油出口21xを開口する所定の回転数しきい値N1を設定することができる。 18, the holder 21 of the oil supply pump 20 has an inclined surface 421 at a site serving as a seat surface on which the reed valve 331 located on the oil outlet 21x is installed. As a result, a load can be applied even in a stopped state (see FIG. 16). Therefore, the predetermined rotation speed threshold value N1 that opens the oil outlet 21x can be set by the angle of the inclined surface 421.
 上記実施の形態5によれば、実施の形態4と同様、傾斜面421を設けることにより、給油設計の自由度を向上させることができる。また、上記実施の形態5の場合であっても、実施の形態1と同様、油出口21xから直接油溜め空間2cへ返油が行われるため、動力損失を低減しながら、油上り量の少ない信頼性の向上を図ることができる。 According to the fifth embodiment, as in the fourth embodiment, by providing the inclined surface 421, the degree of freedom in oil supply design can be improved. Further, even in the case of the fifth embodiment, as in the first embodiment, since oil is returned directly from the oil outlet 21x to the oil sump space 2c, the amount of oil rising is small while reducing power loss. Reliability can be improved.
実施の形態6.
 図19は、本発明の実施の形態6に係る圧縮機の一例を示す断面図である。なお、図19の圧縮機500において、図1の圧縮機1と同一の構成を有する部位には同一の符号を付してその説明を省略する。図19の圧縮機は、軸方向が横方向(矢印X方向)に延びるいわゆる横型の圧縮機である。
Embodiment 6 FIG.
FIG. 19 is a cross-sectional view showing an example of a compressor according to Embodiment 6 of the present invention. In the compressor 500 of FIG. 19, parts having the same configuration as the compressor 1 of FIG. The compressor in FIG. 19 is a so-called horizontal compressor whose axial direction extends in the horizontal direction (arrow X direction).
 図19のように、回転軸7が横方向に延びている場合、油溜め空間2c及び油面は軸方向(矢印Z方向)に形成される。バルブ機構530は、油出口21xに連通する配管531を有し、配管531に排出口531xが形成されている。そして、排出口531xが油溜め空間2cの油面よりも下方に配置され、油溜め空間2cの内部に直接油が返油されることになる。なお、流入パイプ24も軸方向に油溜め空間2cの下部まで延びた形状を有する。これにより、油が油溜め空間2cの下部まで減少するような運転条件であっても、油をすぐに流入パイプ24に導くことができ、油の供給不足を防ぐことができる。 As shown in FIG. 19, when the rotary shaft 7 extends in the lateral direction, the oil sump space 2 c and the oil surface are formed in the axial direction (arrow Z direction). The valve mechanism 530 has a pipe 531 that communicates with the oil outlet 21 x, and a discharge port 531 x is formed in the pipe 531. And the discharge port 531x is arrange | positioned below the oil level of the oil sump space 2c, and oil returns directly to the inside of the oil sump space 2c. The inflow pipe 24 also has a shape extending in the axial direction to the lower part of the oil sump space 2c. Thereby, even if it is an operating condition where oil decreases to the lower part of the oil sump space 2c, the oil can be immediately led to the inflow pipe 24, and an insufficient supply of oil can be prevented.
 上記実施の形態6のような、いわゆる横型の圧縮機500であっても、実施の形態1と同様、油出口21xから直接油溜め空間2cへ返油が行われるため、動力損失を低減しながら、油上り量の少ない信頼性の向上を図ることができる。 Even in the so-called horizontal compressor 500 as in the sixth embodiment, since oil is returned directly from the oil outlet 21x to the oil sump space 2c as in the first embodiment, power loss is reduced. Therefore, it is possible to improve the reliability with a small amount of oil rising.
 本発明の実施の形態は、上記実施の形態に限定されず、種々の変更を加えることができる。例えば、上記実施の形態1~6は、スクロール型の圧縮機について記載したが、例えばロータリー型もしくはベーン型のように圧縮方式が異なる圧縮機にも適用することができる。また、実施の形態1~6は、密閉容器2の内部圧力が低圧である圧縮機について記載したが、密閉容器2の内部圧力が低圧である圧縮機であっても同様の効果が得られる。 The embodiment of the present invention is not limited to the above embodiment, and various modifications can be made. For example, the first to sixth embodiments have been described with respect to the scroll type compressor, but the present invention can also be applied to a compressor having a different compression method such as a rotary type or a vane type. In the first to sixth embodiments, the compressor in which the internal pressure of the sealed container 2 is low is described. However, the same effect can be obtained even in a compressor in which the internal pressure of the sealed container 2 is low.
 さらに、図1において、給油ポンプ20及びバルブ機構30が油溜め空間2c内に収容されている場合について例示しているが、油溜め空間2cより上方に位置していても良い。この場合、ハウジング31の排出口31xから密閉容器2の底部へ延びる配管が設けられるようにしてもよい。また、上記実施の形態1~6において、給油ポンプ20が、トロコイド型の容積型ポンプである場合について例示しているが、例えばベーン型のような他の公知の方式の容積型ポンプであってもよい。 Furthermore, in FIG. 1, although the case where the oil supply pump 20 and the valve mechanism 30 are accommodated in the oil sump space 2c is illustrated, it may be located above the oil sump space 2c. In this case, a pipe extending from the discharge port 31x of the housing 31 to the bottom of the sealed container 2 may be provided. In the first to sixth embodiments, the oil supply pump 20 is illustrated as a trochoid type positive displacement pump. However, for example, it is a known positive displacement type positive displacement pump such as a vane type. Also good.
 1、500 圧縮機、2 密閉容器、2a 吸入配管、2b 吐出配管、2c 油溜め空間、3 フレーム、3a 流路、4 サブフレーム、5 主軸受、6 副軸受、7 回転軸、7a 偏心軸部、7x 給油路、7y 供給路、7z バルブ路、8 電動機、8a 電動機回転子、8b 電動機固定子、9 スライダ、9a 第1バランスウェイト、9b 第2バランスウェイト、10 圧縮機構部、11 揺動スクロール、11a 揺動軸受、11b 渦巻体、12 固定スクロール、12a 吐出口、12b 渦巻体、13 バッフル、14 吐出バルブ、15 吐出マフラー容器、20 給油ポンプ、21 保持具、21a 油流入路、21x 油出口、22 アウターロータ、23 インナーロータ、24 流入パイプ、30、130、330、530 バルブ機構、31 ハウジング、31a 中空部、31x 排出口、32 弁体、33 弾性部材、51 弁体、131x、131y、231p、231r、231x、231y、231z、531x 排出口、331 リード弁、421 傾斜面、531 配管、N1 回転しきい値、N11 第1回転数しきい値、N12 第2回転数しきい値。 1,500 compressor, 2 sealed container, 2a suction pipe, 2b discharge pipe, 2c oil sump space, 3 frame, 3a flow path, 4 subframe, 5 main bearing, 6 sub bearing, 7 rotating shaft, 7a eccentric shaft 7x oil supply path, 7y supply path, 7z valve path, 8 motor, 8a motor rotor, 8b motor stator, 9 slider, 9a first balance weight, 9b second balance weight, 10 compression mechanism, 11 swing scroll , 11a rocking bearing, 11b spiral body, 12 fixed scroll, 12a discharge port, 12b spiral body, 13 baffle, 14 discharge valve, 15 discharge muffler container, 20 oil supply pump, 21 retainer, 21a oil inflow path, 21x oil outlet , 22 Outer rotor, 23 Inner rotor, 24 Inflow pipe, 30 130, 330, 530 valve mechanism, 31 housing, 31a hollow part, 31x discharge port, 32 valve body, 33 elastic member, 51 valve body, 131x, 131y, 231p, 231r, 231x, 231y, 231z, 231x discharge port, 331 Reed valve, 421 inclined surface, 531 piping, N1 rotation threshold, N11 first rotation speed threshold, N12 second rotation speed threshold.

Claims (11)

  1.  底部に油を貯留する油溜め空間を有する密閉容器と、
     前記密閉容器に収容され、前記密閉容器内に流入する流体を圧縮する圧縮機構部と、
     前記密閉容器に収容され、回転力を発生する電動機と、
     前記電動機により発生する回転力を前記圧縮機構部に伝え、端部から軸方向に延びる給油路が内部に形成された回転軸と、
     前記回転軸の前記端部側に設けられ、前記回転軸の回転により作動し、前記油溜め空間の前記油を吸引して前記給油路に供給するものであり、前記油が流通する油流路及び前記油流路に設けられた油出口を有する給油ポンプと、
     前記油出口に設けられたバルブ機構と、
     を備え、
     前記バルブ機構は、
     前記油出口に通じる中空部を有し、前記油溜め空間へ通じる排出口が形成されたハウジングと、
     前記ハウジングに収容され、前記油出口の前記油の圧力によって動く弁体と、
     を有し、
     前記回転軸の回転数が所定以上になったときに、前記弁体の動きによって前記油出口が開いて前記油が前記排出口から前記油溜め空間へ排出されるものであり、
     前記バルブ機構の前記排出口は、前記油溜め空間内に位置する圧縮機。
    A sealed container having an oil sump space for storing oil at the bottom;
    A compression mechanism that compresses the fluid that is contained in the sealed container and flows into the sealed container;
    An electric motor housed in the sealed container and generating a rotational force;
    A rotational shaft that transmits a rotational force generated by the electric motor to the compression mechanism portion and has an oil supply passage extending in an axial direction from an end portion therein,
    An oil passage that is provided on the end side of the rotary shaft, operates by the rotation of the rotary shaft, sucks the oil in the oil sump space, and supplies the oil to the oil supply passage. And an oil supply pump having an oil outlet provided in the oil flow path,
    A valve mechanism provided at the oil outlet;
    With
    The valve mechanism is
    A housing having a hollow portion communicating with the oil outlet, and having a discharge port communicating with the oil sump space;
    A valve body housed in the housing and moved by the pressure of the oil at the oil outlet;
    Have
    When the number of rotations of the rotating shaft exceeds a predetermined value, the oil outlet is opened by the movement of the valve body, and the oil is discharged from the discharge port to the oil sump space,
    The discharge port of the valve mechanism is a compressor located in the oil sump space.
  2.  前記バルブ機構は、
     前記ハウジングと前記弁体との間に設けられ、前記弁体を前記油出口側へ付勢する弾性部材を有するものである請求項1に記載の圧縮機。
    The valve mechanism is
    The compressor according to claim 1, further comprising an elastic member that is provided between the housing and the valve body and biases the valve body toward the oil outlet side.
  3.  前記ハウジングは、前記給油ポンプと一体的に形成されている請求項2に記載の圧縮機。 The compressor according to claim 2, wherein the housing is formed integrally with the oil supply pump.
  4.  前記ハウジングには、前記排出口が軸方向に複数設けられている請求項2又は3に記載の圧縮機。 The compressor according to claim 2 or 3, wherein the housing is provided with a plurality of discharge ports in the axial direction.
  5.  前記排出口は、軸方向に延びた形状を有する請求項2~4のいずれか1項に記載の圧縮機。 The compressor according to any one of claims 2 to 4, wherein the discharge port has a shape extending in an axial direction.
  6.  前記排出口は、前記油出口から前記油溜め空間へ向かうにつれて開口幅が狭くなるように形成されている請求項5に記載の圧縮機。 The compressor according to claim 5, wherein the discharge port is formed so that an opening width becomes narrower from the oil outlet toward the oil sump space.
  7.  前記給油ポンプ及び前記バルブ機構は、前記油溜め空間の内部に位置しており、
     前記バルブ機構は、軸方向に弾性変形して前記油出口の開閉を行う弁体を有する請求項1に記載の圧縮機。
    The oil pump and the valve mechanism are located inside the oil sump space,
    The compressor according to claim 1, wherein the valve mechanism includes a valve body that elastically deforms in an axial direction to open and close the oil outlet.
  8.  前記給油ポンプにおける前記弁体の取付部位には、前記弁体に予荷重を付与する傾斜面が形成されている請求項7に記載の圧縮機。 The compressor according to claim 7, wherein an inclined surface for applying a preload to the valve body is formed at an attachment portion of the valve body in the oil pump.
  9.  前記給油ポンプは、前記回転軸の回転数が高くなるほど高い圧力で前記給油路に油を供給するものであり、
     前記バルブ機構は、前記回転数が前記所定未満である低速運転時は前記油出口を閉止し、前記回転数が前記所定以上である高速運転時は前記油出口を開口する請求項1~8のいずれか1項に記載の圧縮機。
    The oil supply pump supplies oil to the oil supply passage at a higher pressure as the number of rotations of the rotary shaft increases.
    The valve mechanism closes the oil outlet during low-speed operation when the rotational speed is less than the predetermined value, and opens the oil outlet during high-speed operation when the rotational speed is greater than or equal to the predetermined value. The compressor according to any one of the above.
  10.  前記給油ポンプは、容積型ポンプである請求項1~9のいずれか1項に記載の圧縮機。 The compressor according to any one of claims 1 to 9, wherein the oil supply pump is a positive displacement pump.
  11.  前記給油ポンプは、トロコイド型のポンプである請求項10に記載の圧縮機。 The compressor according to claim 10, wherein the oil supply pump is a trochoid pump.
PCT/JP2016/058656 2016-03-18 2016-03-18 Compressor WO2017158809A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018505178A JPWO2017158809A1 (en) 2016-03-18 2016-03-18 Compressor
PCT/JP2016/058656 WO2017158809A1 (en) 2016-03-18 2016-03-18 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/058656 WO2017158809A1 (en) 2016-03-18 2016-03-18 Compressor

Publications (1)

Publication Number Publication Date
WO2017158809A1 true WO2017158809A1 (en) 2017-09-21

Family

ID=59850794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058656 WO2017158809A1 (en) 2016-03-18 2016-03-18 Compressor

Country Status (2)

Country Link
JP (1) JPWO2017158809A1 (en)
WO (1) WO2017158809A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017020A1 (en) * 2018-07-20 2020-01-23 三菱電機株式会社 Compressor
CN111089058A (en) * 2018-10-24 2020-05-01 艾默生环境优化技术(苏州)有限公司 Oil supply mechanism for rotary machine and rotary machine
US20210131412A1 (en) * 2019-11-05 2021-05-06 Lg Electronics Inc. Compressor
JP7399193B2 (en) 2020-01-22 2023-12-15 三菱電機株式会社 compressor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154566U (en) * 1984-09-14 1986-04-12
JPH1182350A (en) * 1997-09-05 1999-03-26 Sanyo Electric Co Ltd Oil pump of compressor
US20050034770A1 (en) * 2003-08-15 2005-02-17 Stares James Albert Fluid flow regulation
JP2008128314A (en) * 2006-11-20 2008-06-05 Pacific Ind Co Ltd Check valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154566U (en) * 1984-09-14 1986-04-12
JPH1182350A (en) * 1997-09-05 1999-03-26 Sanyo Electric Co Ltd Oil pump of compressor
US20050034770A1 (en) * 2003-08-15 2005-02-17 Stares James Albert Fluid flow regulation
JP2008128314A (en) * 2006-11-20 2008-06-05 Pacific Ind Co Ltd Check valve

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017020A1 (en) * 2018-07-20 2020-01-23 三菱電機株式会社 Compressor
CN112424475A (en) * 2018-07-20 2021-02-26 三菱电机株式会社 Compressor
CN112424475B (en) * 2018-07-20 2022-09-02 三菱电机株式会社 Compressor
CN111089058A (en) * 2018-10-24 2020-05-01 艾默生环境优化技术(苏州)有限公司 Oil supply mechanism for rotary machine and rotary machine
US20210131412A1 (en) * 2019-11-05 2021-05-06 Lg Electronics Inc. Compressor
US11713752B2 (en) * 2019-11-05 2023-08-01 Lg Electronics Inc. Scroll compressor of lower compression type enabling active oil supply
JP7399193B2 (en) 2020-01-22 2023-12-15 三菱電機株式会社 compressor
US11953005B2 (en) 2020-01-22 2024-04-09 Mitsubishi Electric Corporation Compressor having orbiting scroll supply hole to lubricate thrust surface

Also Published As

Publication number Publication date
JPWO2017158809A1 (en) 2018-09-27

Similar Documents

Publication Publication Date Title
JP5491420B2 (en) Scroll compressor
JP5006444B2 (en) Compressor and oil supply structure thereof
EP3032104A1 (en) Scroll compressor
WO2017158809A1 (en) Compressor
CN111133197B (en) Scroll compressor having a scroll compressor with a suction chamber
JP4454818B2 (en) Positive displacement fluid machine
JPH0472998B2 (en)
JP5433604B2 (en) Scroll compressor
JP2007138868A (en) Scroll compressor
JP6180630B2 (en) Compressor
JP2007085297A (en) Scroll compressor
JP2018021493A (en) Scroll compressor
JP7057532B2 (en) Scroll compressor
JP6625218B2 (en) Compressor
JP2014152747A (en) Displacement type compressor
JP2021014801A (en) Scroll compressor
JP4604968B2 (en) Scroll compressor
JP7051005B2 (en) Compressor
JP5863436B2 (en) Fluid machinery
JP2005201171A (en) Lubricating mechanism of compressor
JP2006177239A (en) Hermetic compressor
JP6972391B2 (en) Scroll compressor
JP2000027776A (en) Scroll type fluid machinery
WO2020017020A1 (en) Compressor
JP2001349291A (en) Scroll compressor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018505178

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894427

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16894427

Country of ref document: EP

Kind code of ref document: A1