WO2017158265A1 - Procede de fabrication d'une plaque abradable et de reparation d'un anneau de turbine - Google Patents

Procede de fabrication d'une plaque abradable et de reparation d'un anneau de turbine Download PDF

Info

Publication number
WO2017158265A1
WO2017158265A1 PCT/FR2017/050548 FR2017050548W WO2017158265A1 WO 2017158265 A1 WO2017158265 A1 WO 2017158265A1 FR 2017050548 W FR2017050548 W FR 2017050548W WO 2017158265 A1 WO2017158265 A1 WO 2017158265A1
Authority
WO
WIPO (PCT)
Prior art keywords
abradable
plate
ring
mold
equal
Prior art date
Application number
PCT/FR2017/050548
Other languages
English (en)
Inventor
Jean-Baptiste Mottin
Yannick Marcel BEYNET
Geoffroy CHEVALLIER
Romain EPHERRE
Claude Estournes
Original Assignee
Safran Aircraft Engines
Centre National De La Recherche Scientifique
Universite Paul Sabatier - Toulouse Iii
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines, Centre National De La Recherche Scientifique, Universite Paul Sabatier - Toulouse Iii filed Critical Safran Aircraft Engines
Priority to EP17713747.8A priority Critical patent/EP3429787B1/fr
Priority to US16/084,583 priority patent/US20190076930A1/en
Priority to CN201780023919.4A priority patent/CN109070228A/zh
Publication of WO2017158265A1 publication Critical patent/WO2017158265A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/009Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/008Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression characterised by the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • F01D11/122Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with erodable or abradable material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/22Manufacture essentially without removing material by sintering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05D2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • F05D2230/237Brazing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/60Assembly methods
    • F05D2230/61Assembly methods using limited numbers of standard modules which can be adapted by machining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/11Shroud seal segments

Definitions

  • the present disclosure relates to a method of manufacturing a turbine ring for turbomachine.
  • thermal barrier type coating whose materials and high density, too important for the coating to be effectively abradable, allow to protect the ring against erosion and corrosion.
  • the coating can be damaged and less well protect the stator.
  • the present disclosure aims to remedy at least in part these drawbacks.
  • the present disclosure relates to a method of manufacturing an abradable plate for a turbomachine turbine ring, comprising the following steps:
  • cobalt-based is meant a metal powder whose cobalt has the highest percentage by mass.
  • nickel-based means a metal powder whose nickel has the highest mass percentage.
  • a metal powder comprising 38% by weight of cobalt and 32% by weight of nickel will be designated as a cobalt-based powder, cobalt being the chemical element whose mass percentage is the most important in the powder. metallic.
  • the metal powders based on cobalt or nickel are powders which, once sintered, have good resistance to high temperature. They can thus fulfill the double function of abradabie and heat shield. For example, mention may be made of CoNiCrAlY superalloys. These metal powders also have the advantage of having a chemical composition similar to the chemical composition of the material forming the turbine ring, for example superalloys AMI or N5.
  • the powder based on a melting element makes it possible to reduce the sintering temperature of the mixture of powders.
  • SPS spark Plasma Sintering
  • sintering FAST Field Assisted Sintering Technology
  • sintering flash is a sintering process wherein a powder is simultaneously subjected to a pulsed current of high intensity and a uniaxial pressure to form a sintered material.
  • SPS sintering is generally performed under a controlled atmosphere and may be assisted by a heat treatment.
  • SPS sintering time SPS is relatively short and SPS sintering allows a choice of starting powders which is relatively limited.
  • SPS sintering makes it possible in particular to sinter, that is to say densify, materials whose welding is relatively complicated to achieve, if not impossible, because these materials easily crack when heated. Because of the choice of SPS sintering and the short duration of this sintering, it is therefore possible to produce an abradable layer with a very large variety of materials.
  • the SPS sintering being carried out under uniaxial pressure exerted by the mold on the powder layer, the shrinkage due to the sintering of the powder layer to give the abradable plate is limited to the direction of application of the pressure. . There is therefore no removal of the powder layer in directions perpendicular to the direction of application of the pressure. Also, the size control of the abradable plate is relatively simple.
  • each layer of powder mixture being separated from the adjacent layer by a chemically inert insert the powder mixture layers do not sinter on one another and can therefore easily achieve several abradable plates that do not stick one to the other.
  • the chemically inert insert may also be disposed between the powder mixture layer and the mold.
  • the chemically inert insert makes it possible to reduce, or even eliminate, the chemical reactions between the powder mixture layer and the mold during SPS sintering and thus to reduce, or even to avoid, the bonding of the abradable plate with parts of the mold.
  • the chemically inert insert also reduces or even avoid the formation of a carbide layer on the surface of the abradable plate in contact with the mold. It is sought to avoid the formation of this layer of carbide which, if it is formed, must be removed from the abradable plate before use.
  • the chemically inert insert may comprise boron nitride or corundum.
  • chemically inert insert comprising boron nitride is meant an insert which comprises at least 95% by weight of boron nitride.
  • chemically inert insert comprising corundum means an insert which comprises at least 95% by weight of corundum.
  • the chemically inert insert may take the form of a layer of boron nitride deposited with a spray on the mold.
  • the chemically inert insert may also take the form of a plaque reproducing the shape of the abradable plaque.
  • the chemically inert insert makes it possible, during the SPS sintering step, to shape the abradable plate.
  • Boron nitride may form an outer layer of the chemically inert insert.
  • the chemically inert insert may be a plate of dense material covered with a layer of boron nitride deposited with a spray on the plate.
  • the melting element may be silicon or boron.
  • the powder mixture may comprise a mass percentage of the melting element less than or equal to 5% by weight, preferably less than or equal to 3% by weight.
  • the mold may be graphite and SPS sintering may be performed at a temperature greater than or equal to 800 ° C, preferably greater than or equal to 900 ° C.
  • the SPS sintering is performed at a pressure greater than or equal to 10 MPa, preferably greater than or equal to 20 MPa, more preferably greater than or equal to 30M Pa.
  • the mold may be tungsten carbide and the SPS sintering may be performed at a temperature greater than or equal to 500 ° C, preferably greater than or equal to 600 ° C.
  • the SPS sintering may be performed at a pressure greater than or equal to 100 MPa, preferably greater than or equal to 200 MPa, more preferably greater than or equal to 300 MPa.
  • the present disclosure also relates to a method of repairing a turbomachine turbine ring, comprising the following steps:
  • the melting element included in the powder mixture used to form the abradable plate also facilitates the brazing process of the abradable plate on the turbine ring.
  • the abradable plate that has just been brazed on the turbine ring may have a free surface that may not be in the extension of the free surface of the adjacent undamaged abradable coating.
  • the free surfaces of the abradable plate and the abradable coating are machined so as to present a surface intended to face the turbine wheel which has the least discontinuity possible. Indeed, if such discontinuities are present, the blade wheel could come to butter against these discontinuities and thus cause shocks in the turbine, which is not desirable.
  • FIG. 1 is a schematic longitudinal sectional view of a turbomachine
  • FIG. 2 is a schematic perspective view of a turbine ring sector comprising an abradable plate
  • FIG. 3 is a schematic perspective view of a stack of abradable plates and chemically inert inserts
  • FIG. 4 is a schematic sectional view of a stack in the SPS sintering mold, according to a sectional plane similar to the sectional plane IV-IV of Figure 3;
  • FIGS. 5A-5D are images made using a scanning electron microscope of the microstructure of various abradable plates
  • FIG. 6 is a schematic view of a ring sector comprising a damaged abradable coating
  • FIGS. 7A and 7B are schematic lateral views of a turbine ring of which part of the abradable coating has been replaced by an abradable plate, respectively before and after machining of a free surface of the abradable plate. Detailed description of the invention
  • FIG. 1 represents, in section along a vertical plane passing through its main axis A, a turbofan engine 10.
  • the turbofan engine 10 comprises, from upstream to downstream according to the flow of air flow, a blower 12, a low pressure compressor 14, a high pressure compressor 16, a combustion chamber 18, a high pressure turbine 20, and a low pressure turbine 22.
  • the high pressure turbine 20 comprises a plurality of blades 20A rotating with the rotor and 20B rectifiers mounted on the stator.
  • the stator of the turbine 20 comprises a plurality of stator rings 24 arranged vis-à-vis the blades 20A of the turbine 20.
  • each stator ring 24 is made of a plurality of ring sectors 26.
  • Each ring sector 26 has an inner surface 28, an outer surface 30 and an abradable plate 32 on which can come to rub the blades 20A rotor.
  • the abradable plate 32 is brazed to the ring sector 26.
  • the abradable plate 32 comprises a free surface 34 and a surface 36 intended to be soldered on the ring sector 26.
  • the ring sector 26 is made of a superalloy based on cobalt or nickel, such as the AMI superalloy or the N5 superalloy and the abradable plate 32 is obtained from a metal powder based on cobalt or nickel.
  • the ring 24 is composed of a plurality of ring sectors 26 joined to each other to form a ring 24.
  • the ring 24 can also be made in one piece .
  • a mixture comprising a metal powder based on cobalt or nickel and a powder based on a melting element.
  • the cobalt or nickel-based powder may be a powder of the CoNiCrAlY family and the melting element may be boron or silicon.
  • the mixture of powders may for example comprise 2% by weight of boron.
  • the mixture of powders is deposited in the form of layers in a SPS mold sintering 42.
  • the mold 42 is for example graphite.
  • the mold 42 comprises an outer mold 44 forming a chamber in which the mixture of powders is deposited.
  • the mold 42 also has an upper piston 46 and a lower piston 48 which allow axial pressure to be applied to the powder mixture layers during the SPS sintering step.
  • FIG. 3 represents a stack 38 comprising two abradable plates 32 between which is inserted a first chemically inert insert 40.
  • a second chemically inert insert 40 and a third chemically inert insert 40 are also arranged on both sides. other of the stack 38 so that each layer of powder mixture is sandwiched between two chemically inert inserts 40.
  • the chemically inert inserts 40 may for example be formed from sintered boron nitride plates.
  • each abradable plate 32 is obtained by depositing a powder mixture layer between two chemically inert inserts 40 and by performing an SPS sintering step.
  • FIGS. 3 and 4 show two stacks 38 respectively comprising two and four abradable plates 32 after SPS sintering.
  • boron nitride Before the deposition of the powder mixture layer, it is also possible to deposit a layer of boron nitride with a spray on the mold 42, in particular on the surfaces of the mold 42 which will come into contact with the powder mixture during SPS sintering. This layer of boron nitride also forms a chemically inert insert between the mixture of powders and the mold 42.
  • the chemically inert inserts 40 may also be made of a material other than boron nitride.
  • the chemically inert inserts 40 may or may not be covered with a layer of boron nitride.
  • the chemically inert inserts 40 make it possible to reduce the chemical reactions between the layer of powder mixture and the mold 42 during SPS sintering.
  • the chemically inert inserts 40 make it possible to reduce, or even avoid, the bonding of the powder mixture layer with the parts of the mold before SPS sintering and the bonding of the abradable plate 32 with the parts of the mold 42 after SPS sintering.
  • the chemically inert inserts 40 also reduce or even prevent the formation of a carbide layer on the surface of the abradable plate 32.
  • the thickness of the abradable plate 32 obtained after SPS sintering depends in particular on the thickness of each layer of powder mixture deposited in the mold 42 as well as SPS sintering parameters.
  • the thickness of the abradable plate 32 obtained after SPS sintering may also depend on the particle size and the morphology of the powder used. In particular, the morphology of the powder may depend on the method of manufacturing the powder. Thus a powder produced by gas atomization or rotating electrode will have grains of substantially spherical shape while a powder made by liquid atomization will have grains of less regular shape.
  • Figures 5A-5D show different microstructures of abradable plates 32 whose open porosity is respectively about 10%, about 7%, about 3% and almost zero.
  • FIG. 7A shows an abradable plate 32 obtained in a SPS sintering step at 925 ° C for 10 minutes applying a pressure of 20 MPa.
  • Figure 7D shows an abradable plate 32 obtained during a SPS sintering step at 950 ° C for 30 minutes applying a pressure of 40 MPa.
  • Figure 6 shows a top view of a ring sector 26 having a damaged abradable coating 50.
  • the abradable coating 50 can be obtained by the method described above.
  • the abradable coating 50 may also have been deposited directly on the ring sector 26 by a known method.
  • the abradable coating 50 comprises a zone 52 of damage due to the friction for example of a blade with the abradable coating 50 and a zone 54 of damage due to thermal degradation of the abradable coating 50 under the effect of hot gases.
  • the abradable coating 50 is damaged, i.e., its thickness is reduced with respect to the original thickness of the abradable coating 50.
  • the abradable coating 50 may have been completely removed and the ring 24 is then exposed.
  • the abradable coating 50 is removed, for example by machining, and an abradable plate 32 is brazed, for example at 1205 ° C. and under vacuum. the inner surface 28 of the ring sector 26.
  • the ring sector 26 comprising a brazed abradable plate 32 is then mounted to form the ring 24.
  • a sector 26 ring comprising an abradable plate 32 brazed disposed between two ring sectors 26 comprising an abradable coating 50.
  • the abradable plate 32 has a free surface 34 which may not be in line with the free surfaces 56 of the coatings. abradable 50 of adjacent ring sectors 26.
  • the free surfaces 34, 56 of the different ring sectors 26 are machined so as to have a machined surface 58 for facing the turbine wheel. As shown in FIG. 7B, this machined surface 58 has the least possible discontinuity. Indeed, if such discontinuities are present, the blade wheel could come to butter against these discontinuities and thus cause shocks in the turbine, which is not desirable.
  • FIGS. 7A and 7B show only one ring sector 26 on which an abradable plate 32 has been soldered. Of course, several ring sectors 26 may be repaired, or even all ring sectors 26. . The repaired ring sectors 26 may be adjacent or not.
  • the ring 24 When the ring 24 is not divided or divided into sectors, one can remove a portion of the abradable coating 50 of the ring corresponding to an abradable plate 32 and solder the abradable plate 32 on the inner surface 28 of the 24. The portion of the damaged abradable coating 50 can also be removed and several abradable plates 32 cut or assembled to cover the inner surface 28 of the ring thus exposed. The inner surface 28 of the ring and the blades are again effectively protected by an abradable coating 50 and an abradable plate 32 brazed to the ring. Ring 24 is repaired.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Powder Metallurgy (AREA)

Abstract

L'invention concerne un procédé de fabrication d'une plaque abradable (32) pour un anneau (24, 26) de turbine de turbomachine, comprenant la préparation d'un mélange comprenant une poudre métallique à base de cobalt ou de nickel et une poudre à base d'un élément fondant, le dépôt d'une couche du mélange de poudres dans un moule et la réalisation de la plaque abradable (32) par un procédé de frittage SPS de la couche de mélange de poudre. L'invention concerne également un procédé de réparation d'un anneau (24, 26) de turbine pour turbomachine.

Description

PROCEDE DE FABRICATION D NE PLAQUE ABRADABLE ET DE REPARATION D'UN ANNEAU DE TURBINE
Arrière-plan de l'invention
[0001] Le présent exposé concerne un procédé de fabrication d'un anneau de turbine pour turbomachine.
[0002] Dans de nombreuses machines tournantes, il est désormais connu de munir l'anneau du stator de pistes abradables en regard du sommet des aubes du rotor. De telles pistes sont réalisées à l'aide de matériaux dit « abradables » qui, lorsqu'ils entrent en contact avec les aubes tournantes, s'usent plus facilement que ces dernières. On assure ainsi un jeu minimal entre le rotor et le stator, améliorant les performances de la machine tournante, sans risquer de détériorer les aubes en cas de frottement de ces dernières sur le stator. Au contraire, un tel frottement érode la piste abradable, ce qui permet d'ajuster automatiquement le diamètre de l'anneau du stator au plus proche du rotor. Ainsi, de telles pistes abradables sont souvent mises en place dans les compresseurs de turbomachines.
[0003] En revanche, leur emploi est plus rare dans les turbines de telles turbomachines, et surtout dans les turbines haute pression dans lesquelles régnent des conditions physico-chimiques extrêmes.
[0004] En effet, les gaz brûlés issus de la chambre de combustion débouchent dans la turbine haute pression à des niveaux de température et de pression très élevés, ce qui entraîne l'érosion prématurée des pistes abradables conventionnelles.
[0005] Dès lors, afin de protéger l'anneau de turbine, il est souvent préféré de munir ce dernier d'un revêtement du type barrière thermique dont les matériaux et la densité élevée, trop importante pour que le revêtement soit efficacement abradable, permettent de protéger l'anneau contre l'érosion et la corrosion.
[0006] Toutefois, on comprend naturellement que dans un tel cas l'intégrité des aubes n'est plus assurée en cas de contact avec le stator, ce qui nécessite de prévoir un jeu plus important entre le rotor et le stator et augmente donc le débit de fuite en sommet d'aubes et réduit ainsi les performances de la turbine.
[0007] Par ailleurs, du fait du frottement ponctuel avec les aubes et la chaleur des gaz brûlés, le revêtement peut être endommagé et moins bien protéger le stator.
Objet et résumé de l'invention
[0008] Le présent exposé vise à remédier au moins en partie à ces inconvénients.
[0009] A cet effet, le présent exposé concerne un procédé de fabrication d'une plaque abradable pour un anneau de turbine de turbomachine, comprenant les étapes suivantes :
- préparation d'un mélange comprenant une poudre métallique à base de cobalt ou de nickel et une poudre à base d'un élément fondant ;
- dépôt d'une couche du mélange de poudres dans un moule ; et
- réalisation de la plaque abradable par un procédé de frittage SPS de la couche de mélange de poudres.
[0010] Par « à base de cobalt », on entend une poudre métallique dont le cobalt présente le pourcentage massique le plus important. De même, par « à base de nickel », on entend une poudre métallique dont le nickel présente le pourcentage massique le plus important. Ainsi, par exemple, une poudre métallique comportant 38% en masse de cobalt et 32% en masse de nickel sera désignée comme une poudre à base de cobalt, le cobalt étant l'élément chimique dont le pourcentage massique est le plus important dans la poudre métallique.
[0011] Les poudres métalliques à base de cobalt ou de nickel sont des poudres qui, une fois frittées, présentent une bonne résistance à haute température. Elles peuvent ainsi remplir la double fonction d'abradabie et de bouclier thermique. Par exemple, on peut citer les superalliages CoNiCrAlY. Ces poudres métalliques ont également l'avantage de présenter une composition chimique similaire à la composition chimique du matériau formant l'anneau de turbine, par exemple les superalliages AMI ou N5. [0012] La poudre à base d'un élément fondant permet de réduire la température de frittage du mélange de poudres.
[0013] Le procédé de frittage SPS, conformément au sigle anglais pour « Spark Plasma Sintering », aussi connu sous le nom de frittage FAST, conformément au sigle anglais pour « Field Assisted Sintering Technology », ou frittage flash, est un procédé de frittage au cours duquel, une poudre est soumise simultanément à un courant puisé de forte intensité et à une pression uniaxiale afin de former un matériau fritté. Le frittage SPS est généralement réalisé sous atmosphère contrôlée et peut être assisté par un traitement thermique.
[0014] La durée de frittage SPS est relativement courte et le frittage SPS permet un choix des poudres de départ qui est relativement peu limité. En effet, le frittage SPS permet notamment de fritter, c'est-à-dire de densifier, des matériaux dont le soudage est relativement compliqué à réaliser, voire impossible, du fait que ces matériaux se fissurent facilement lorsqu'ils sont chauffés. Du fait du choix du frittage SPS et de la courte durée de ce frittage, il est donc possible de réaliser une couche d'abradable avec une très grande variété de matériaux.
[0015] Par ailleurs, le frittage SPS étant réalisé sous pression uniaxiale exercée par le moule sur la couche de poudre, le retrait dû au frittage de la couche de poudre pour donner la plaque abradable est limité à la direction d'application de la pression. On ne constate donc pas de retrait de la couche de poudre dans des directions perpendiculaires à la direction d'application de la pression. Aussi, le contrôle des dimensions de la plaque abradable est relativement simple.
[0016] On peut déposer au moins deux couches du mélange de poudres dans le moule, les deux couches étant espacées l'une de l'autre par un insert chimiquement inerte.
[0017] On peut ainsi réaliser plusieurs plaques abradables en une seule étape de frittage SPS. Par exemple, on peut déposer ainsi dix couches du mélange de poudres, chaque couche étant séparée de la couche adjacente par un insert chimiquement inerte. On peut ainsi former dix plaques abradables ayant chacune une épaisseur pouvant varier de 1 à 5 mm, chacune des plaques abradables étant séparées d'une plaque abradable adjacente par un insert chimiquement inerte. [0018] L'insert chimiquement inerte permet de réduire, voire de supprimer, les réactions chimiques entre les couches de mélange de poudres pendant le frittage SPS.
[0019] Chaque couche de mélange de poudres étant séparée de la couche adjacente par un insert chimiquement inerte, les couches de mélange de poudres ne frittent pas l'une sur l'autre et on peut donc facilement réaliser plusieurs plaques abradables qui ne collent pas l'une à l'autre.
[0020] L'insert chimiquement inerte peut également être disposé entre la couche de mélange de poudres et le moule.
[0021] L'insert chimiquement inerte permet de réduire, voire de supprimer, les réactions chimiques entre la couche de mélange de poudres et le moule pendant le frittage SPS et donc de réduire, voire d'éviter, le collage de la plaque abradable avec les parties du moule.
[0022] L'insert chimiquement inerte permet également de réduire, voire d'éviter, la formation d'une couche de carbure en surface de la plaque abradable en contact avec le moule. On cherche à éviter la formation de cette couche de carbure qui, si elle se forme, doit être retirée de la plaque abradable avant son utilisation.
[0023] L'insert chimiquement inerte peut comprendre du nitrure de bore ou du corindon.
[0024] On entend par insert chimiquement inerte comprenant du nitrure de bore un insert qui comprend au moins 95% en masse de nitrure de bore. De même, on entend par insert chimiquement inerte comprenant du corindon un insert qui comprend au moins 95% en masse de corindon.
[0025] L'insert chimiquement inerte peut prendre la forme d'une couche de nitrure de bore déposée à l'aide d'un spray sur le moule. L'insert chimiquement inerte peut également prendre la forme d'une plaque reproduisant la forme de la plaque abradable. Ainsi, l'insert chimiquement inerte permet, lors de l'étape de frittage SPS, de donner sa forme à la plaque abradable.
[0026] Le nitrure de bore peut former une couche externe de l'insert chimiquement inerte.
[0027] L'insert chimiquement inerte peut être une plaque en matériau dense recouverte d'une couche de nitrure de bore déposée à l'aide d'un spray sur la plaque. [0028] L'élément fondant peut être du silicium ou du bore.
[0029] Le mélange de poudres peut comprendre un pourcentage massique de l'élément fondant inférieur ou égal à 5% en masse, de préférence inférieur ou égal à 3% en masse.
[0030] Le moule peut être en graphite et le frittage SPS peut être réalisé à une température supérieure ou égale à 800°C, de préférence supérieure ou égale à 900°C.
[0031] Le frittage SPS est réalisé à une pression supérieure ou égale à 10 MPa, de préférence supérieure ou égale à 20 MPa, encore plus de préférence supérieure ou égale à 30M Pa.
[0032] Le moule peut être en carbure de tungstène et le frittage SPS peut être réalisé à une température supérieure ou égale à 500°C, de préférence supérieure ou égale à 600°C.
[0033] Le frittage SPS peut être réalisé à une pression supérieure ou égale à 100 MPa, de préférence supérieure ou égale à 200 MPa, encore plus de préférence supérieure ou égale à 300 MPa.
[0034] Le présent exposé concerne également un procédé de réparation d'un anneau de turbine pour turbomachine, comprenant les étapes suivantes :
- retrait d'un revêtement abradable endommagé ;
- brasage sur l'anneau de turbine d'une plaque abradable obtenue selon le procédé précédemment défini.
[0035] L'élément fondant compris dans le mélange de poudres utilisé pour former la plaque abradable permet également de faciliter le procédé de brasage de la plaque abradable sur l'anneau de turbine.
[0036] Le brasage de la plaque abradable sur l'anneau de turbine permet d'éviter le dépôt direct d'un nouveau revêtement abradable sur l'anneau ou le secteur d'anneau. En effet,
[0037] Après brasage de la plaque d'abradable sur l'anneau de turbine, une surface libre de la plaque abradable brasée peut être usinée.
[0038] La plaque abradable qui vient d'être brasée sur l'anneau de turbine peut présenter une surface libre qui peut ne pas être dans le prolongement de la surface libre du revêtement abradable non endommagé adjacent. Aussi, les surfaces libres de la plaque abradable et du revêtement abradable sont usinées de sorte à présenter une surface destinée à faire face à la roue de turbine qui présente le moins de discontinuité possible. En effet, si de telles discontinuités sont présentes, la roue d'aube pourrait venir butter contre ces discontinuités et ainsi provoquer des chocs dans la turbine, ce qui n'est pas désirable.
Brève description des dessins
[0039] D'autres caractéristiques et avantages de l'invention ressortiront de la description suivante de modes de réalisation de l'invention, donnés à titre d'exemples non limitatifs, en référence aux figures annexées, sur lesquelles :
- la figure 1 est une vue schématique en coupe longitudinale d'une turbomachine ;
- la figure 2 est une vue schématique en perspective d'un secteur d'anneau de turbine comportant une plaque abradable ;
- la figure 3 est une vue schématique en perspective d'un empilement de plaques abradables et d'inserts chimiquement inerte ;
- la figure 4 est une vue schématique en coupe d'un empilement dans le moule pour frittage SPS, selon un plan de coupe similaire au plan de coupe IV-IV de la figure 3 ;
- les figures 5A-5D sont des images réalisées au microscope électronique à balayage de la microstructure de différentes plaques abradables ;
- la figure 6 est une vue schématique d'un secteur d'anneau comprenant un revêtement abradable endommagé ;
- les figures 7A et 7B sont des vues schématiques latérales d'un anneau de turbine dont une partie du revêtement abradable a été remplacé par une plaque abradable, respectivement avant et après usinage d'une surface libre de la plaque d'abradable. Description détaillée de l'invention
[0040] La figure 1 représente, en coupe selon un plan vertical passant par son axe principal A, un turboréacteur à double flux 10. Le turboréacteur à double flux 10 comporte, d'amont en aval selon la circulation du flux d'air, une soufflante 12, un compresseur basse pression 14, un compresseur haute pression 16, une chambre de combustion 18, une turbine haute pression 20, et une turbine basse pression 22.
[0041] La turbine haute pression 20 comprend une pluralité d'aubes mobiles 20A tournant avec le rotor et de redresseurs 20B montés sur le stator. Le stator de la turbine 20 comprend une pluralité d'anneaux 24 de stator disposés en vis-à-vis des aubes mobiles 20A de la turbine 20.
[0042] Comme cela est visible sur la figure 2, chaque anneau 24 de stator est réalisé en plusieurs secteurs 26 d'anneau. Chaque secteur 26 d'anneau comporte une surface interne 28, une surface externe 30 et une plaque abradable 32 sur laquelle peuvent venir frotter les aubes mobiles 20A du rotor.
[0043] La plaque abradable 32 est brasée sur le secteur 26 d'anneau.
La plaque abradable 32 comprend une surface libre 34 et une surface 36 destinée à être brasée sur le secteur 26 d'anneau.
[0044] Par exemple, le secteur 26 d'anneau est fabriqué en superalliage à base de cobalt ou de nickel, tel que le superalliage AMI ou le superalliage N5 et la plaque abradable 32 est obtenue à partir d'une poudre métallique à base de cobalt ou de nickel.
[0045] Dans le mode de réalisation décrit, l'anneau 24 est composé d'une pluralité de secteurs 26 d'anneau assemblés les uns aux autres pour former un anneau 24. L'anneau 24 peut également être réalisé d'un seul tenant.
[0046] Pour fabriquer une plaque abradable 32, on prépare un mélange comprenant une poudre métallique à base de cobalt ou de nickel et une poudre à base d'un élément fondant. Par exemple la poudre à base de cobalt ou de nickel peut être une poudre de la famille des CoNiCrAIY et l'élément fondant peut être du bore ou du silicium. Le mélange de poudres peut par exemple comprendre 2% en masse de bore.
[0047] Comme représenté sur les figures 3 et 4, le mélange de poudres est déposé sous forme de couches dans un moule 42 de frittage SPS. Le moule 42 est par exemple en graphite. Le moule 42 comporte un moule extérieur 44 formant une chambre dans laquelle est déposé le mélange de poudres. Le moule 42 comporte également un piston supérieur 46 et un piston inférieur 48 qui permettent d'appliquer une pression axiale sur les couches de mélange de poudres pendant l'étape de frittage SPS. [0048] La figure 3 représente un empilement 38 comprenant deux plaques abradable 32 entre lesquelles est inséré un premier insert chimiquement inerte 40. Dans cet exemple, un deuxième insert chimiquement inerte 40 et un troisième insert chimiquement inerte 40 sont également disposés de part et d'autre de l'empilement 38 de sorte à ce que chaque couche de mélange de poudres soit prise en sandwich entre deux inserts chimiquement inertes 40. Les inserts chimiquement inertes 40 peuvent par exemple être formés à partir de plaques de nitrure de bore fritté.
[0049] Dans le mode de réalisation des figures 3 et 4, chaque plaque abradable 32 est obtenue par dépôt d'une couche de mélange de poudres entre deux inserts chimiquement inertes 40 et par réalisation d'une étape de frittage SPS.
[0050] On a représenté sur les figures 3 et 4 deux empilements 38 comprenant respectivement deux et quatre plaques abradables 32 après frittage SPS.
[0051] Avant le dépôt de la couche de mélange de poudres, on peut également déposer une couche de nitrure de bore à l'aide d'un spray sur le moule 42, notamment sur les surfaces du moule 42 qui vont venir en contact avec le mélange de poudres pendant le frittage SPS. Cette couche de nitrure de bore forme également insert chimiquement inerte entre le mélange de poudres et le moule 42.
[0052] Les inserts chimiquement inertes 40 peuvent également être fabriqués dans un autre matériau que le nitrure de bore. Les inserts chimiquement inertes 40 peuvent ou non être recouverts d'une couche de nitrure de bore.
[0053] Les inserts chimiquement inertes 40, sous forme de plaque ou sous de forme de couche, permettent de réduire les réactions chimiques entre la couche de mélange de poudres et le moule 42 pendant le frittage SPS. Les inserts chimiquement inertes 40 permettent notamment de réduire, voire d'éviter, le collage de la couche de mélange de poudres avec les parties du moule avant frittage SPS et le collage de la plaque abradable 32 avec les parties du moule 42 après frittage SPS.
[0054] Les inserts chimiquement inertes 40 permettent également de réduire, voire d'éviter, la formation d'une couche de carbure en surface de la plaque abradable 32. [0055] On comprend que l'épaisseur de la plaque abradable 32 obtenue après frittage SPS dépend notamment de l'épaisseur de chaque couche de mélange de poudres déposée dans le moule 42 ainsi que des paramètres de frittage SPS. L'épaisseur de la plaque abradable 32 obtenue après frittage SPS peut également dépendre de la granulométrie et de la morphologie de la poudre utilisée. Notamment, la morphologie de la poudre peut dépendre de la méthode de fabrication de la poudre. Ainsi une poudre fabriquée par atomisation gazeuse ou électrode tournante aura des grains de forme sensiblement sphérique alors qu'une poudre fabriquée par atomisation liquide aura des grains de forme moins régulière.
[0056] Les figures 5A-5D représentent différentes microstructures de plaques abradables 32 dont la porosité ouverte est respectivement d'environ 10%, d'environ 7%, d'environ 3% et quasi nulle.
[0057] On voit donc qu'en modifiant les paramètres de frittage SPS, tels que la température, la pression et le temps de palier, on peut obtenir des plaques abradable 32 présentant une structure différente. Par exemple, la figure 7A représente une plaque abradable 32 obtenue lors d'une étape de frittage SPS à 925°C pendant 10 minutes en appliquant une pression de 20 MPa. La figure 7D représente une plaque abradable 32 obtenue lors d'une étape de frittage SPS à 950°C pendant 30 minutes en appliquant une pression de 40 MPa.
[0058] La figure 6 représente une vue du dessus d'un secteur 26 d'anneau comportant un revêtement abradable 50 endommagé. Le revêtement abradable 50 peut être obtenu par le procédé décrit précédemment. Le revêtement abradable 50 peut également avoir été déposé directement sur le secteur 26 d'anneau par un procédé connu.
[0059] Dans l'exemple de la figure 6, le revêtement abradable 50 comporte une zone 52 d'endommagement due au frottement par exemple d'une aube avec le revêtement abradable 50 et une zone 54 d'endommagement due à une dégradation thermique du revêtement abradable 50 sous l'effet des gaz chauds. Dans les zones endommagées 52, 54, le revêtement abradable 50 est endommagé, c'est-à-dire que son épaisseur est réduite par rapport à l'épaisseur d'origine du revêtement abradable 50. Toutefois, dans certains cas, dans les zones endommagées, le revêtement abradable 50 peut avoir complètement été enlevé et l'anneau 24 est alors exposé.
[0060] Pour réparer le secteur 26 d'anneau dont le revêtement abradable 50 est endommagé, on retire le revêtement abradable 50, par exemple par usinage et on vient braser, par exemple à 1205°C et sous vide, une plaque abradable 32 sur la surface interne 28 du secteur 26 d'anneau.
[0061] Comme représenté sur la figure 7A, le secteur 26 d'anneau comprenant une plaque abradable 32 brasée est ensuite monté pour former l'anneau 24. On a représenté sur la figure 7A un secteur 26 d'anneau comprenant une plaque abradable 32 brasée disposé entre deux secteurs 26 d'anneau comprenant un revêtement abradable 50. Une fois ces secteurs 26 d'anneau de turbine assemblés, la plaque abradable 32 présente une surface libre 34 qui peut ne pas être dans le prolongement des surfaces libres 56 des revêtements abradables 50 des secteurs 26 d'anneau adjacents. Aussi, les surfaces libres 34, 56 des différents secteurs 26 d'anneau sont usinées de sorte à présenter une surface usinée 58 destinée à faire face à la roue de turbine. Comme représenté sur la figure 7B, cette surface usinée 58 présente le moins de discontinuité possible. En effet, si de telles discontinuités sont présentes, la roue d'aube pourrait venir butter contre ces discontinuités et ainsi provoquer des chocs dans la turbine, ce qui n'est pas désirable.
[0062] On a représenté sur les figures 7A et 7B un seul secteur 26 d'anneau sur lequel on a brasé une plaque abradable 32. Bien entendu, plusieurs secteurs 26 d'anneau peuvent être réparés, voire tous les secteurs 26 d'anneau. Les secteurs 26 d'anneau réparés peuvent être adjacents ou non.
[0063] Lorsque l'anneau 24 n'est pas divisé ou divisible en secteurs, on peut retirer une partie du revêtement abradable 50 de l'anneau correspondant à une plaque abradable 32 et braser la plaque abradable 32 sur la surface interne 28 de l'anneau 24. On peut également retirer la partie du revêtement abradable 50 endommagée et découper ou assembler plusieurs plaques abradables 32 pour recouvrir la surface interne 28 de l'anneau ainsi mise à nu. [0064] La surface interne 28 de l'anneau et les aubes sont à nouveau efficacement protégées par un revêtement abradable 50 et une plaque abradable 32 brasée sur l'anneau. L'anneau 24 est donc réparé.
[0065] Quoique le présent exposé ait été décrit en se référant à un exemple de réalisation spécifique, il est évident que des différentes modifications et changements peuvent être effectués sur ces exemples sans sortir de la portée générale de l'invention telle que définie par les revendications. En outre, des caractéristiques individuelles des différents modes de réalisation évoqués peuvent être combinées dans des modes de réalisation additionnels. Par conséquent, la description et les dessins doivent être considérés dans un sens illustratif plutôt que restrictif.

Claims

REVENDICATIONS
1. Procédé de fabrication d'une plaque abradable (32) pour un anneau (24, 26) de turbine de turbomachine, comprenant les étapes suivantes :
- préparation d'un mélange comprenant une poudre métallique à base de cobalt ou de nickel et une poudre à base d'un élément fondant ;
- dépôt d'une couche du mélange de poudres dans un moule (42) ; et
- réalisation de la plaque abradable (32) par un procédé de frittage SPS de la couche de mélange de poudre,
et dans lequel on dépose au moins deux couches du mélange de poudre dans le moule (42), les deux couches étant espacées l'une de l'autre par un insert chimiquement inerte (40).
2. Procédé selon la revendication 1, dans lequel l'insert chimiquement inerte (40) comprend du nitrure de bore ou du corindon.
3. Procédé selon la revendication 2, dans lequel le nitrure de bore forme une couche externe de l'insert chimiquement inerte (40).
4. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'élément fondant est du silicium ou du bore.
5. Procédé selon l'une quelconque des revendications précédentes, dans lequel le mélange de poudres comprend un pourcentage massique de l'élément fondant inférieur ou égal à 5% en masse, de préférence inférieur ou égal à 3% en masse.
6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel le moule (42) est en graphite et dans lequel le frittage SPS est réalisé à une température supérieure ou égale à 800°C, de préférence supérieure ou égale à 900°C.
7. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel le moule (42) est en carbure de tungstène et dans lequel le frittage SPS est réalisé à une température supérieure ou égale à 500°C, de préférence supérieure ou égale à 600°C.
8. Procédé de réparation d'un anneau (24) de turbine pour turbomachine, comprenant les étapes suivantes :
- retrait d'un revêtement abradable (50) endommagé ; - brasage sur l'anneau (24, 26) de turbine d'une plaque abradable (32) obtenue selon l'une quelconque des revendications précédentes.
9. Procédé de réparation selon la revendication 8, dans lequel, après brasage de la plaque abradable (32) sur l'anneau (24, 26) de turbine, une surface libre (34) de la plaque abradable (32) brasée est usinée.
PCT/FR2017/050548 2016-03-14 2017-03-10 Procede de fabrication d'une plaque abradable et de reparation d'un anneau de turbine WO2017158265A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17713747.8A EP3429787B1 (fr) 2016-03-14 2017-03-10 Procede de fabrication d'une plaque abradable et de reparation d'un anneau de turbine
US16/084,583 US20190076930A1 (en) 2016-03-14 2017-03-10 Method for manufacturing an abradable plate and repairing a turbine shroud
CN201780023919.4A CN109070228A (zh) 2016-03-14 2017-03-10 用于制造耐磨板和修复涡轮护罩的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1652104A FR3048630B1 (fr) 2016-03-14 2016-03-14 Procede de fabrication d'une plaque abradable et de reparation d'un anneau de turbine
FR1652104 2016-03-14

Publications (1)

Publication Number Publication Date
WO2017158265A1 true WO2017158265A1 (fr) 2017-09-21

Family

ID=56511659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2017/050548 WO2017158265A1 (fr) 2016-03-14 2017-03-10 Procede de fabrication d'une plaque abradable et de reparation d'un anneau de turbine

Country Status (5)

Country Link
US (1) US20190076930A1 (fr)
EP (1) EP3429787B1 (fr)
CN (1) CN109070228A (fr)
FR (1) FR3048630B1 (fr)
WO (1) WO2017158265A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3082765B1 (fr) * 2018-06-25 2021-04-30 Safran Aircraft Engines Procede de fabrication d'une couche abradable
CN110497117B (zh) * 2019-08-30 2021-05-07 长春工程学院 一种高温钴基钎料及其应用
FR3105048B1 (fr) 2019-12-20 2022-08-05 Safran Solution de fabrication d'un disque aubage monobloc
FR3105039B1 (fr) * 2019-12-20 2021-12-10 Safran Procédé de fabrication d’une roue aubagée de turbomachine composite à renfort céramique
EP4105444A1 (fr) * 2021-06-18 2022-12-21 Raytheon Technologies Corporation Assemblage d'aubes statoriques de turbine individuelles par la technologie de frittage assisté par champ électrique (fast)
EP4105450A1 (fr) 2021-06-18 2022-12-21 Raytheon Technologies Corporation Système de contrôle de jeu passif produite par une technologie par frittage assisté par champ électrique (fast)
US12055056B2 (en) 2021-06-18 2024-08-06 Rtx Corporation Hybrid superalloy article and method of manufacture thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1837103A1 (fr) * 2004-12-28 2007-09-26 Nippon Light Metal, Co., Ltd. Procede pour la fabrication d'un materiau composite aluminum
US20140263579A1 (en) * 2013-03-14 2014-09-18 Anand A. Kulkarni Method and apparatus for fabrication and repair of thermal barriers
US20150183691A1 (en) * 2014-01-02 2015-07-02 Steffen Walter Manufacturing method and repairing method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5883314A (en) * 1996-06-11 1999-03-16 Sievers; George K. Coating methods, coating products and coated articles
US7335427B2 (en) * 2004-12-17 2008-02-26 General Electric Company Preform and method of repairing nickel-base superalloys and components repaired thereby
JP4879843B2 (ja) * 2007-08-20 2012-02-22 インターメタリックス株式会社 NdFeB系焼結磁石の製造方法およびNdFeB焼結磁石製造用モールド
FR2972449B1 (fr) * 2011-03-07 2013-03-29 Snecma Procede de realisation d'une barriere thermique dans un systeme multicouche de protection de piece metallique et piece munie d'un tel systeme de protection
FR2972379B1 (fr) * 2011-03-07 2014-01-17 Snecma Procede de rechargement local de piece thermomecanique endommagee et piece ainsi realisee, en particulier piece de turbine
GB201206965D0 (en) * 2012-04-20 2012-06-06 Element Six Abrasives Sa Super-hard constructions and mathod for making same
US20150224607A1 (en) * 2014-02-07 2015-08-13 Siemens Energy, Inc. Superalloy solid freeform fabrication and repair with preforms of metal and flux
CN104674038B (zh) * 2015-02-13 2017-01-25 华南理工大学 一种高强韧合金材料及其半固态烧结制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1837103A1 (fr) * 2004-12-28 2007-09-26 Nippon Light Metal, Co., Ltd. Procede pour la fabrication d'un materiau composite aluminum
US20140263579A1 (en) * 2013-03-14 2014-09-18 Anand A. Kulkarni Method and apparatus for fabrication and repair of thermal barriers
US20150183691A1 (en) * 2014-01-02 2015-07-02 Steffen Walter Manufacturing method and repairing method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DANIEL MONCEAU ET AL: "Pt-modified Ni aluminides, MCrAlY-base multilayer coatings and TBC systems fabricated by Spark Plasma Sintering for the protection of Ni-base superalloys", SURFACE AND COATINGS TECHNOLOGY, vol. 204, no. 6-7, 1 December 2009 (2009-12-01), pages 771 - 778, XP055218319, ISSN: 0257-8972, DOI: 10.1016/j.surfcoat.2009.09.054 *
RATEL N ET AL: "Reactivity and microstructure evolution of a CoNiCrAlY/Talc cermet prepared by Spark Plasma Sintering", SURFACE AND COATINGS TECHNOLOGY, ELSEVIER BV, AMSTERDAM, NL, vol. 205, no. 5, 25 November 2010 (2010-11-25), pages 1183 - 1188, XP027507461, ISSN: 0257-8972, [retrieved on 20100825], DOI: 10.1016/J.SURFCOAT.2010.08.091 *

Also Published As

Publication number Publication date
EP3429787B1 (fr) 2020-11-11
FR3048630B1 (fr) 2020-02-21
US20190076930A1 (en) 2019-03-14
EP3429787A1 (fr) 2019-01-23
CN109070228A (zh) 2018-12-21
FR3048630A1 (fr) 2017-09-15

Similar Documents

Publication Publication Date Title
EP3429787B1 (fr) Procede de fabrication d'une plaque abradable et de reparation d'un anneau de turbine
EP3429784B1 (fr) Procede de fabrication d'un anneau de turbine pour turbomachine
EP1911549B1 (fr) Masque de protection pour le traitement en surface d'aubes de turbomachines
EP0795377B1 (fr) Procédé de réalisation d'un apport sur une zone localisée de pièce en superalliage
CA3008316C (fr) Revetement abradable a densite variable
EP1312761B1 (fr) Revêtement abradable pour parois de turbines à gaz
EP3389903B1 (fr) Procédé de fabrication d'un revêtement abradable à densité variable
FR3059323A1 (fr) Ensemble d'une piece cmc assemblee sur un element metallique, procede de fabrication d'un tel ensemble
WO2010026181A1 (fr) Procede de fabrication d'une piece thermomecanique de revolution circulaire comportant un substrat porteur a base de titane revetu d'acier ou superalliage, carter de compresseur de turbomachine resistant au feu de titane obtenu selon ce procede
EP1291494B1 (fr) Procédé de réalisation de léchettes de labyrinthe de pièces mobiles de turbomachines
US20070163113A1 (en) Chordwidth restoration of a trailing edge of a turbine airfoil by laser clad
EP3601634B1 (fr) Piece de turbine en superalliage et procede de fabrication associe
EP4076794B1 (fr) Procédé de fabrication d'une roue aubagée de turbomachine composite à renfort céramique
FR3055820A1 (fr) Procede d'assemblage de coques en metal dont une est realisee par depot laser
CA2886926C (fr) Procede de fabrication d'une piece couverte d'un revetement abradable
FR3040645A1 (fr) Procede de fabrication d'une piece par fusion selective ou frittage selectif sur lit de poudre
FR3053632A1 (fr) Procede de fabrication additive avec enlevement de matiere entre deux couches
EP3368244B1 (fr) Procede pour realiser une piece d'etancheite a corps en superalliage contenant du bore et revetu
FR2896176A1 (fr) Procede de fabrication d'un objet par projection laser de poudre metallique, tel qu'une pale de turbomachine

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017713747

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017713747

Country of ref document: EP

Effective date: 20181015

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17713747

Country of ref document: EP

Kind code of ref document: A1