WO2017157139A1 - 一种回程通道的建立方法及装置 - Google Patents

一种回程通道的建立方法及装置 Download PDF

Info

Publication number
WO2017157139A1
WO2017157139A1 PCT/CN2017/074276 CN2017074276W WO2017157139A1 WO 2017157139 A1 WO2017157139 A1 WO 2017157139A1 CN 2017074276 W CN2017074276 W CN 2017074276W WO 2017157139 A1 WO2017157139 A1 WO 2017157139A1
Authority
WO
WIPO (PCT)
Prior art keywords
backhaul
wireless node
channel
antenna port
path control
Prior art date
Application number
PCT/CN2017/074276
Other languages
English (en)
French (fr)
Inventor
刁心玺
王欣晖
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017157139A1 publication Critical patent/WO2017157139A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal

Definitions

  • This document relates to, but is not limited to, the field of radio communication technologies, and in particular, to a method and an apparatus for establishing a backhaul channel.
  • the wireless backhaul link has the advantages of simple construction, short deployment time, and flexible layout position, and can be widely used in indoor/outdoor environments, especially in the case where it is impossible or difficult to deploy a fiber channel due to geographical influence, wireless backhaul will become a priority. Means of transmission.
  • the microwave fixed access technology has been maturely applied to the backhaul transmission of the base station.
  • the high-density deployment of the base station has the following new requirements for the wireless backhaul: the wireless backhaul channel needs to be adapted.
  • Large bandwidth fluctuations of data services such as bandwidth fluctuations of up to several tens of times;
  • wireless backhaul channels need to have low transmission delays, such as end-to-end delays of less than 1 millisecond;
  • wireless backhaul channels need to have high reliability and robustness Sexuality, such as the transmission capacity of the backhaul channel is not affected or maintains basic transmission capability in the case of a small number of relay node failures;
  • AD-HOC no infrastructure network/temporary network construction
  • MESH wireless mesh network
  • the shortcoming of the wireless backhaul technology in the existing land mobile communication network is that the relay delay of the relay node is limited by the TTI (Transmission Time Interval), and with the relay
  • TTI Transmission Time Interval
  • the increase in the number of hops leads to the hop-by-hop accumulation of the backhaul path delay.
  • the end-to-end delay after multi-hop backhaul is difficult to be less than 1 millisecond. It is difficult to keep the backhaul beam in real-time alignment in the prior art, resulting in reduced transmission efficiency. Return path reconfiguration method.
  • This paper provides a method and device for establishing a backhaul channel, which can reduce the delay of the backhaul path and improve the topology reorganization ability of the backhaul path.
  • An embodiment of the present invention provides a method for establishing a backhaul channel, including:
  • a backhaul channel is established according to the backhaul path control information.
  • the establishing a backhaul channel according to the backhaul path control information includes:
  • a backhaul channel is established between at least one antenna port of the wireless node and an antenna port of at least one neighboring wireless node of the wireless node.
  • the establishing the backhaul channel according to the backhaul path control information further includes:
  • the first type of antenna port is an antenna port for backhaul transmission
  • the second type of antenna port is an antenna port for a wireless terminal.
  • the backhaul channel is established according to the backhaul path control information, and include:
  • establishing a radio frequency direct return channel between the two first type of antenna ports of the wireless node including:
  • establishing a radio frequency variable frequency amplified backhaul channel between the two first type antenna ports of the wireless node including:
  • the received carrier frequency of at least one of the two first type of antenna ports is converted to the transmit carrier frequency of the other antenna port.
  • establishing a radio frequency direct return channel between the first type of antenna port of the wireless node and the second type of antenna port of the wireless node including:
  • the receiving channel of the at least one antenna port of the first type of antenna port and the second type of antenna port is corresponding to the frequency and bandwidth Connected to the transmit channel of another antenna port.
  • establishing a radio frequency variable frequency amplified backhaul channel between the first type of antenna port of the wireless node and the second type of antenna port of the wireless node including:
  • configuring a backhaul path control channel on one or more antenna ports of the wireless node including:
  • the in-band backhaul path control channel uses a millimeter wave beam with a half power angle less than or equal to 30 degrees for transmitting or receiving;
  • the out-of-band backhaul path control channel uses a beam with a half power angle greater than 15 degrees and a frequency lower than 20 GHz for transmission or reception.
  • sending or receiving backhaul path control information on the backhaul path control channel includes:
  • the wireless node uses the backhaul path control channel to transmit or receive backhaul path control information between its one-hop neighboring wireless node.
  • establishing a backhaul channel between an antenna port of the wireless node and an antenna port of an adjacent wireless node of the wireless node including:
  • the wireless node After receiving, by the backhaul path control channel, the wireless node receives an indication signal of a neighboring wireless node supporting the backhaul channel, and sending, by using the backhaul path control channel, a request signal for establishing a backhaul channel; and controlling from the backhaul path After receiving the response signal that the neighboring wireless node allows to establish the backhaul channel, the channel establishes a backhaul channel with the neighboring wireless node on the time-frequency resource indicated by the backhaul path control channel.
  • establishing a backhaul channel between an antenna port of the wireless node and an antenna port of an adjacent wireless node of the wireless node further comprising:
  • the beam direction of the antenna port is adjusted, and the indication signal of the wireless node supporting the backhaul channel is re-received on the antenna port after adjusting the beam direction.
  • the method further includes:
  • the wireless node points the transmit beam of the first antenna port to adjust an angle adjustment amount ⁇ ;
  • the wireless node transmitting a specific amplitude direction finding signal to a second antenna port of the neighboring wireless node using an inband or outband backhaul path control channel;
  • the second antenna port of the adjacent wireless node receives the specific amplitude direction finding signal and measures the amplitude of the received signal, and feeds back the measured amplitude value of the received signal to the wireless node;
  • the wireless node determines whether the amplitude value of the received signal fed back by the neighboring wireless node reaches a maximum value, and ends the adjustment of the direction of the transmit beam; otherwise, the transmit beam is directed to adjust a new angle adjustment Go back to step b).
  • the method further includes:
  • the wireless node points the receiving beam of the first antenna port to adjust an angle adjustment amount ⁇ ;
  • the wireless node receives the specific amplitude direction signal sent by the second antenna port of the adjacent wireless node by using an inband or outband backhaul path control channel on the first antenna port, and measuring the amplitude of the received signal;
  • the wireless node determines whether the amplitude value of the received signal reaches a maximum value, and ends the adjustment of the direction of the receive beam; otherwise, the receive beam is directed to adjust a new angle adjustment , return to step b).
  • the wireless node includes: a backhaul transmission relay node, a macro base station node, a micro base station node, or a wireless-wireline conversion node.
  • the establishing a backhaul channel between the at least one antenna port of the wireless node and the antenna port of the at least one neighboring wireless node of the wireless node includes:
  • the type of the backhaul channel of the micro cell to the macro cell includes: a transmission channel of the air interface included in the micro cell to the macro cell, or a transmission channel of the wire-wire interface unit included in the micro cell to the macro cell;
  • the second wireless node and the third wireless node are all adjacent wireless nodes of the first wireless node.
  • the backhaul path control information includes at least one of the following information:
  • Backhaul channel connection relationship between wireless nodes backhaul channel connection relationship in the wireless node, backhaul channel bandwidth, backhaul channel frequency point, backhaul channel access guidance, backhaul channel reconfiguration information, backhaul channel beam alignment control information.
  • An embodiment of the present invention provides a device for establishing a backhaul channel, including:
  • a backhaul path control channel configuration module configured to configure a backhaul path control channel on one or more antenna ports of the wireless node
  • a backhaul path control information transmission module configured to send or receive backhaul path control information on the backhaul path control channel
  • a backhaul channel establishing module is configured to establish a backhaul channel according to the backhaul path control information.
  • the backhaul channel establishing module is configured to establish a backhaul channel according to the backhaul path control information in the following manner:
  • a backhaul channel is established between at least one antenna port of the wireless node and an antenna port of at least one neighboring wireless node of the wireless node.
  • the backhaul channel establishing module is further configured to establish a backhaul channel according to the backhaul path control information in the following manner: between the first type of antenna port of the wireless node and the second type of antenna port of the wireless node Establish a radio frequency direct return channel or an RF frequency conversion amplified return channel;
  • the first type of antenna port is an antenna port for backhaul transmission
  • the second type of antenna port is an antenna port for a wireless terminal.
  • the backhaul channel establishing module is further configured to: when a backhaul channel is established between two antenna ports of the wireless node and antenna ports of two adjacent wireless nodes of the wireless node, according to the manner The backhaul path control information establishes a backhaul channel:
  • the backhaul channel establishing module is configured to establish a radio frequency direct return channel between the two first type antenna ports of the wireless node in the following manner:
  • the backhaul channel establishing module is configured to establish a radio frequency variable frequency amplified backhaul channel between the two first type antenna ports of the wireless node in the following manner:
  • the received carrier frequency of at least one of the two first type of antenna ports is converted to the transmit carrier frequency of the other antenna port.
  • a backhaul channel establishing module is configured to establish a radio frequency direct return channel between the first type of antenna port of the wireless node and the second type of antenna port of the wireless node in the following manner:
  • the receiving channel of the at least one antenna port of the first type of antenna port and the second type of antenna port is corresponding to the frequency and bandwidth Connected to the transmit channel of another antenna port.
  • the backhaul channel establishing module is configured to establish a radio frequency variable frequency amplified backhaul channel between the first type of antenna port of the wireless node and the second type of antenna port of the wireless node in the following manner:
  • the backhaul path control channel configuration module is configured to configure the backhaul path control channel on one or more antenna ports of the wireless node in the following manner:
  • the in-band backhaul path control channel uses a millimeter wave beam with a half power angle less than or equal to 30 degrees for transmitting or receiving;
  • the out-of-band backhaul path control channel uses a beam with a half power angle greater than 15 degrees and a frequency lower than 20 GHz for transmission or reception.
  • the backhaul path control information transmission module is configured to send or receive backhaul path control information on the backhaul path control channel in the following manner:
  • the wireless node uses the backhaul path control channel to transmit or receive backhaul path control information between its one-hop neighboring wireless node.
  • the backhaul channel establishing module is set to adopt the following manner in the day of the wireless node A backhaul channel is established between the line port and an antenna port of an adjacent wireless node of the wireless node:
  • the wireless node After receiving, by the backhaul path control channel, the wireless node receives an indication signal of a neighboring wireless node supporting the backhaul channel, and sending, by using the backhaul path control channel, a request signal for establishing a backhaul channel; and controlling from the backhaul path After receiving the response signal that the neighboring wireless node allows to establish the backhaul channel, the channel establishes a backhaul channel with the neighboring wireless node on the time-frequency resource indicated by the backhaul path control channel.
  • the backhaul channel establishing module is further configured to establish a backhaul channel between the antenna port of the wireless node and an antenna port of an adjacent wireless node of the wireless node in the following manner:
  • the beam direction of the antenna port is adjusted, and the indication signal of the wireless node supporting the backhaul channel is re-received on the antenna port after adjusting the beam direction.
  • the device further includes:
  • a beam alignment module configured to perform the following processing after establishing a backhaul channel between the first antenna port of the wireless node and the second antenna port of the neighboring wireless node of the wireless node according to the backhaul path control information :
  • the wireless node points the transmit beam of the first antenna port to adjust an angle adjustment amount ⁇ ;
  • the wireless node transmitting a specific amplitude direction finding signal to a second antenna port of the neighboring wireless node using an inband or outband backhaul path control channel;
  • the second antenna port of the neighboring wireless node receives the specific amplitude direction finding signal and measures the connection Receiving the amplitude of the signal, and feeding back the measured amplitude value of the received signal to the wireless node;
  • the wireless node determines whether the amplitude value of the received signal fed back by the neighboring wireless node reaches a maximum value, and ends the adjustment of the direction of the transmit beam; otherwise, the transmit beam is directed to adjust a new angle adjustment , return to step b).
  • the apparatus further includes: a beam alignment module, configured to, at a first antenna port of the wireless node and a second antenna port of an adjacent wireless node of the wireless node according to the backhaul path control information After establishing a backhaul channel between them, perform the following processing:
  • the wireless node points the receiving beam of the first antenna port to adjust an angle adjustment amount ⁇ ;
  • the wireless node receives the specific amplitude direction signal sent by the second antenna port of the adjacent wireless node by using an inband or outband backhaul path control channel on the first antenna port, and measuring the amplitude of the received signal;
  • the wireless node determines whether the amplitude value of the received signal reaches a maximum value, and ends the adjustment of the direction of the receive beam; otherwise, the receive beam is directed to adjust a new angle adjustment , return to step b).
  • the wireless node includes: a backhaul transmission relay node, a macro base station node, a micro base station node, or a wireless-wireline conversion node.
  • a backhaul channel establishing module is configured to establish a backhaul channel between the at least one antenna port of the wireless node and the antenna port of at least one neighboring wireless node of the wireless node in the following manner:
  • the type of the backhaul channel of the micro cell to the macro cell includes: a transmission channel of the air interface included in the micro cell to the macro cell, or a transmission channel of the wire-wire interface unit included in the micro cell to the macro cell;
  • the second wireless node and the third wireless node are all adjacent wireless nodes of the first wireless node.
  • the backhaul path control information includes at least one of the following information:
  • Backhaul channel connection relationship between wireless nodes backhaul channel connection relationship in the wireless node, backhaul channel bandwidth, backhaul channel frequency point, backhaul channel access guidance, backhaul channel reconfiguration information, backhaul channel beam alignment control information.
  • the embodiment of the invention further provides a computer readable storage medium storing computer executable instructions, which are implemented when executed by a processor.
  • a method and an apparatus for establishing a backhaul channel configure a backhaul path control channel on one or more antenna ports of a wireless node, and send or receive on the backhaul path control channel.
  • the backhaul path control information establishes a backhaul channel according to the backhaul path control information.
  • the embodiments of the present invention can reduce the delay of the backhaul path, improve the reconfiguration capability of the backhaul path topology, and maintain the real-time alignment of the backhaul beam.
  • FIG. 1 is a flowchart of a method for establishing a backhaul channel according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a device for establishing a backhaul channel according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a device for establishing a backhaul channel on a wireless node according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of configuring a backhaul channel between adjacent wireless nodes according to an embodiment of the present invention.
  • Embodiment 1 an example of establishing a reconfigurable low-latency backhaul channel
  • an embodiment of the present invention provides a method for establishing a backhaul channel, including the following steps:
  • Step S101 configuring a backhaul path control channel on one or more antenna ports of the wireless node
  • Step S102 transmitting or receiving backhaul path control information on the backhaul path control channel
  • Step S103 establishing a backhaul channel according to the backhaul path control information
  • the backhaul path control information includes at least one of the following information: a backhaul channel connection relationship between wireless nodes, a backhaul channel connection relationship in a wireless node, a backhaul channel bandwidth, a backhaul channel frequency point, a backhaul channel access guide, and a backhaul channel.
  • Reconfiguration information backhaul channel beam alignment control information
  • the establishing a backhaul channel according to the backhaul path control information includes:
  • the establishing a backhaul channel according to the backhaul path control information further includes:
  • the first type of antenna port is an antenna port for backhaul transmission
  • the second type of antenna port is an antenna port facing a wireless terminal
  • the wireless node includes: a backhaul transmission relay node, a macro base station node, a micro base station node, or a wireless-wireline conversion node.
  • the establishing the backhaul channel according to the backhaul path control information further includes:
  • configuring a backhaul path control channel on one or more antenna ports of the wireless node includes:
  • the in-band backhaul path control channel transmits or receives using a millimeter wave beam with a half power angle less than or equal to 30 degrees; preferably, the inband backhaul path control channel uses a millimeter wave beam with a half power angle less than 15 degrees Send or receive;
  • the out-of-band backhaul path control channel uses a beam with a half power angle greater than 15 degrees and a frequency lower than 20 GHz for transmission or reception;
  • the sending or receiving backhaul path control information on the backhaul path control channel includes:
  • the wireless node uses the backhaul path control channel to transmit or receive backhaul path control information between its one-hop neighboring wireless node;
  • establishing a backhaul channel between an antenna port of the wireless node and an antenna port of an adjacent wireless node of the wireless node includes:
  • the wireless node After receiving, by the backhaul path control channel, the wireless node receives an indication signal of a neighboring wireless node supporting the backhaul channel, and sending, by using the backhaul path control channel, a request signal for establishing a backhaul channel; and controlling from the backhaul path After receiving the response signal that the neighboring wireless node allows to establish the backhaul channel, the channel establishes a backhaul channel with the neighboring wireless node on the time-frequency resource indicated by the backhaul path control channel;
  • the establishing a backhaul channel between an antenna port of the wireless node and an antenna port of an adjacent wireless node of the wireless node further includes:
  • the radio frequency direct return channel is established between the two first type antenna ports of the wireless node, including:
  • the RF variable frequency amplified backhaul channel is established between the two first type antenna ports of the wireless node, including:
  • the radio frequency direct return channel is established between the first type of antenna port of the wireless node and the second type of antenna port of the wireless node, including:
  • the receiving channel of the at least one antenna port of the first type of antenna port and the second type of antenna port is corresponding to the frequency and bandwidth Connected to the transmit channel of another antenna port;
  • the RF variable frequency amplified backhaul channel is established between the first type of antenna port of the wireless node and the second type of antenna port of the wireless node, including:
  • the transmitting carrier frequency of the second type of antenna port after radio frequency conversion is in a downlink frequency band used by a macro cell or a micro cell; and the receiving carrier frequency of the second type antenna port before radio frequency conversion is in a macro cell or a micro cell. Used in the upstream frequency band;
  • the receiving carrier of the first type of antenna port before the radio frequency conversion is a millimeter wave
  • the millimeter wave used by the receiving carrier of the first type of antenna port before the RF frequency conversion is any one of the following:
  • the backhaul channel is connected to the carrier used by the wired transmission port;
  • a carrier modulated by a downlink carrier of a macro cell is a carrier modulated by a downlink carrier of a macro cell.
  • the method further includes: after establishing a backhaul channel between the first antenna port of the wireless node and the second antenna port of the neighboring wireless node of the wireless node, according to the backhaul path control information, the method further includes:
  • the wireless node points the transmit beam of the first antenna port to adjust an angle adjustment amount ⁇ ;
  • the wireless node transmitting a specific amplitude direction finding signal to a second antenna port of the neighboring wireless node using an inband or outband backhaul path control channel;
  • the second antenna port of the adjacent wireless node receives the specific amplitude direction finding signal and measures the amplitude of the received signal, and feeds back the measured amplitude value of the received signal to the wireless node;
  • the wireless node determines whether the amplitude value of the received signal fed back by the neighboring wireless node reaches a maximum value, and ends the adjustment of the direction of the transmit beam; otherwise, the transmit beam is directed to adjust a new angle adjustment , return to step b).
  • the method further includes: after establishing a backhaul channel between the first antenna port of the wireless node and the second antenna port of the neighboring wireless node of the wireless node, according to the backhaul path control information, the method further includes:
  • the wireless node points the receiving beam of the first antenna port to adjust an angle adjustment amount ⁇ ;
  • the wireless node receives the specific amplitude direction signal sent by the second antenna port of the adjacent wireless node by using an inband or outband backhaul path control channel on the first antenna port, and measuring the amplitude of the received signal;
  • the wireless node determines whether the amplitude value of the received signal reaches a maximum value, and ends the adjustment of the direction of the receive beam; otherwise, the receive beam is directed to adjust a new angle adjustment , return to step b).
  • the establishing a backhaul channel between the two antenna ports of the first wireless node and the antenna ports of the second wireless node and the third wireless node respectively includes: establishing a first micro cell supported by the first wireless node to a first macro cell and a third wireless node supported by the second wireless node
  • the backhaul channel of the second macro cell is specifically configured to perform any one of the following processes:
  • the second wireless node and the third wireless node are all adjacent nodes of the first wireless node.
  • Embodiment 2 an example of a reconfigurable low-latency backhaul channel establishing device
  • an embodiment of the present invention provides a device for establishing a backhaul channel, including:
  • the backhaul path control channel configuration module 201 is configured to configure a backhaul path control channel on one or more antenna ports of the wireless node;
  • the backhaul path control information transmission module 202 is configured to send or receive backhaul path control information on the backhaul path control channel;
  • the backhaul channel establishing module 203 is configured to establish a backhaul channel according to the backhaul path control information.
  • the backhaul channel establishing module 203 is configured to establish a backhaul channel according to the backhaul path control information in the following manner:
  • a backhaul channel is established between at least one antenna port of the wireless node and an antenna port of at least one neighboring wireless node of the wireless node.
  • the backhaul channel establishing module 203 is further configured to adopt the following manner according to the return path.
  • the path control information establishes a backhaul channel: establishing a radio frequency direct return channel or a radio frequency variable frequency amplified backhaul channel between the first type of antenna port of the wireless node and the second type of antenna port of the wireless node;
  • the first type of antenna port is an antenna port for backhaul transmission
  • the second type of antenna port is an antenna port for a wireless terminal.
  • the backhaul channel establishing module 203 is further configured to: when the backhaul channel is established between the two antenna ports of the wireless node and the antenna ports of two adjacent wireless nodes of the wireless node, according to the backhaul
  • the path control information establishes a backhaul channel:
  • the backhaul channel establishing module 203 is configured to establish a radio frequency direct return channel between the two first type antenna ports of the wireless node in the following manner:
  • the backhaul channel establishing module 203 is configured to establish a radio frequency variable frequency amplified backhaul channel between the two first type antenna ports of the wireless node in the following manner:
  • the received carrier frequency of at least one of the two first type of antenna ports is converted to the transmit carrier frequency of the other antenna port.
  • the backhaul channel establishing module 203 is configured to establish a radio frequency direct return channel between the first type of antenna port of the wireless node and the second type of antenna port of the wireless node in the following manner:
  • the receiving channel of the at least one antenna port of the first type of antenna port and the second type of antenna port is corresponding to the frequency and bandwidth Connected to the transmit channel of another antenna port.
  • the backhaul channel establishing module 203 is configured to establish a radio frequency variable frequency amplified backhaul channel between the first type of antenna port of the wireless node and the second type of antenna port of the wireless node in the following manner:
  • the received carrier frequency is transformed into the transmit carrier frequency of the other antenna port.
  • the backhaul path control channel configuration module 201 is configured to configure a backhaul path control channel on one or more antenna ports of the wireless node in the following manner:
  • the in-band backhaul path control channel uses a millimeter wave beam with a half power angle less than or equal to 30 degrees for transmitting or receiving;
  • the out-of-band backhaul path control channel uses a beam with a half power angle greater than 15 degrees and a frequency lower than 20 GHz for transmission or reception.
  • the backhaul path control information transmission module 202 is configured to send or receive backhaul path control information on the backhaul path control channel in the following manner:
  • the wireless node uses the backhaul path control channel to transmit or receive backhaul path control information between its one-hop neighboring wireless node.
  • the backhaul channel establishing module 203 is configured to establish a backhaul channel between an antenna port of the wireless node and an antenna port of an adjacent wireless node of the wireless node in the following manner:
  • the wireless node After receiving, by the backhaul path control channel, the wireless node receives an indication signal of a neighboring wireless node supporting the backhaul channel, and sending, by using the backhaul path control channel, a request signal for establishing a backhaul channel; and controlling from the backhaul path After receiving the response signal that the neighboring wireless node allows to establish the backhaul channel, the channel establishes a backhaul channel with the neighboring wireless node on the time-frequency resource indicated by the backhaul path control channel.
  • the backhaul channel establishing module 203 is further configured to adopt the following manner in the wireless node. Establishing a backhaul channel between the antenna port and an antenna port of an adjacent wireless node of the wireless node:
  • the beam direction of the antenna port is adjusted, and the indication signal of the wireless node supporting the backhaul channel is re-received on the antenna port after adjusting the beam direction.
  • the device further comprises:
  • the beam alignment module 204 is configured to perform the following after establishing a backhaul channel between the first antenna port of the wireless node and the second antenna port of the neighboring wireless node of the wireless node according to the backhaul path control information. deal with:
  • the wireless node points the transmit beam of the first antenna port to adjust an angle adjustment amount ⁇ ;
  • the wireless node transmitting a specific amplitude direction finding signal to a second antenna port of the neighboring wireless node using an inband or outband backhaul path control channel;
  • the second antenna port of the adjacent wireless node receives the specific amplitude direction finding signal and measures the amplitude of the received signal, and feeds back the measured amplitude value of the received signal to the wireless node;
  • the wireless node determines whether the amplitude value of the received signal fed back by the neighboring wireless node reaches a maximum value, and ends the adjustment of the direction of the transmit beam; otherwise, the transmit beam is directed to adjust a new angle adjustment , return to step b).
  • the beam alignment module 204 is configured to: after establishing a backhaul channel between the first antenna port of the wireless node and the second antenna port of the neighboring wireless node of the wireless node according to the backhaul path control information, Perform the following processing:
  • the wireless node points the receiving beam of the first antenna port to adjust an angle adjustment amount ⁇ ;
  • the wireless node receives the specific amplitude direction signal sent by the second antenna port of the adjacent wireless node by using an inband or outband backhaul path control channel on the first antenna port, and measuring the received signal Amplitude;
  • the wireless node determines whether the amplitude value of the received signal reaches a maximum value, and ends the adjustment of the direction of the receive beam; otherwise, the receive beam is directed to adjust a new angle adjustment , return to step b).
  • the wireless node includes: a backhaul transmission relay node, a macro base station node, a micro base station node, or a wireless-wireline conversion node.
  • the backhaul channel establishing module 203 is configured to establish a backhaul channel between the at least one antenna port of the wireless node and the antenna port of at least one adjacent wireless node of the wireless node in the following manner:
  • the type of the backhaul channel of the micro cell to the macro cell includes: a transmission channel of the air interface included in the micro cell to the macro cell, or a transmission channel of the wire-wire interface unit included in the micro cell to the macro cell;
  • the second wireless node and the third wireless node are all adjacent wireless nodes of the first wireless node.
  • the backhaul path control information includes at least one of the following information:
  • Backhaul channel connection relationship between wireless nodes backhaul channel connection relationship in the wireless node, backhaul channel bandwidth, backhaul channel frequency point, backhaul channel access guidance, backhaul channel reconfiguration information, backhaul channel beam alignment control information.
  • Embodiment 3 an example of a reconfigurable low-latency wireless backhaul transmission system
  • the system includes:
  • the backhaul path control device 300 is configured as a wireless node 200a/b/c supporting a wireless backhaul control channel (in FIG. 4, in order to realize indoor and outdoor radio signal transmission, the first node of the wireless node
  • the antenna port module 211 is disposed outside, and the third antenna port module 213 for terminal communication is disposed indoors, and the backhaul signal is transmitted between the first antenna port module 211 and the third antenna port module 213 through the radio frequency cable 301); among them,
  • the backhaul path control apparatus 300 is configured to set at least a backhaul path, a backhaul channel time-frequency parameter, a wireless node backhaul service data selection, and a wireless node backhaul channel detection item by a wireless backhaul control channel supported by the wireless node 200a/b/c.
  • One performing control includes: a backhaul path control information sending module and/or a backhaul path control information receiving module;
  • the wireless node 200a/b/c supporting the wireless backhaul control channel is configured to establish a backhaul channel of the first micro cell to the first macro cell and the second macro cell under the control of the backhaul path control device 300, where
  • the wireless node includes: a backhaul path control channel configuration module, a backhaul path control information transceiver module, and a backhaul channel configuration module;
  • the backhaul path control channel configuration module 230 is configured to configure a backhaul path control channel of the antenna node facing the antenna port of the first and/or second direction, including a time-frequency position determining sub-module of the backhaul path control channel;
  • the backhaul path control information transceiver module 240 is configured to send and/or receive backhaul path control information on the backhaul path control channel, where the backhaul path control information includes a wireless inter-node/internal backhaul channel connection relationship, a backhaul channel bandwidth, At least one of a backhaul channel frequency point, a backhaul channel access guide, a backhaul channel reconfiguration, and a backhaul channel beam alignment control, the module including a backhaul path control information transmission and/or reception submodule;
  • the backhaul channel configuration module 260 is configured to perform at least one of the following operations using the backhaul path control information:
  • the first micro cell is an area that the wireless node 200a covers the antenna port module 213 of the wireless terminal; the first macro cell is an area covered by the first macro base station 340; The area covered by the two macro base stations 330.
  • the wireless node 200a/b/c supporting the wireless backhaul control channel is configured to establish a backhaul channel of the first micro cell to the first macro cell and/or the second macro cell under the control of the backhaul path control device 300.
  • the operation includes performing at least one of the following processes:
  • the first wireless node 200a passes the beam 350 to the second wireless node 200b,
  • the third antenna port module 213 for the base station included in the second wireless node 200b accesses the air interface 341 supported by the first macro cell antenna 340; and the first wireless node 200a passes the beam 360 to the third wireless node 200c,
  • the third antenna port module 213 of the base station included in the third wireless node 200c is connected to the air interface 331 supported by the second macro cell antenna 330;
  • the first wireless node 200a passes the beam 350 to the second wireless node. 200b, accessing the wired transmission channel included in the first macro cell via the second wireless node 200b and the antenna module 310 of the wireless-wired interface unit; and, the first wireless node 200a passes the beam 360 to the third wireless node 200c, and passes through the third The wireless node 200c and the antenna module 320 of the wireless-wired interface unit access the wired transmission channel included in the second macro cell;
  • the first wireless node 200a accesses the first macrocell antenna 340 via the beam 350 to the second wireless node 200b via the third antenna port module 213 of the base station included in the second wireless node 200b. a supported air interface 341; and the first wireless node 200a accesses the wired transport channel included in the second macro cell via the third wireless node 200c and the antenna module 320 of the wireless-wired interface unit through the beam 360 to the third wireless node 200c ;
  • the first wireless node 200a accesses the air interface 341 supported by the first macrocell antenna 340 via the beam 350 to the second wireless node 200b via the third antenna port module 213 of the base station included in the second wireless node 200b; and, A wireless node 200a accesses the wired transmission channel included in the first macro cell via the second wireless node 200b and the antenna module 310 of the wireless-wired interface unit through the beam 350 to the second wireless node 200b.
  • the indoor antenna port module 213 passes through the first/second return path (the first backhaul path is the first wireless node 200a to the second wireless node 200b to the first macro base station antenna 340, or the second backhaul path is A wireless node 200a to a second wireless node 200b to an antenna module 310 of the wireless-wired interface unit) provide an air interface signal from the first macro base station/a fiber transmission channel from the first macro base station to the wireless terminal 306 to provide a service data transmission channel,
  • the frequency of the air interface 342 that provides the service data transmission channel to the wireless terminal 306 is f2, the frequency of the air interface 341 of the first macro base station is f1, and f1 and f2 have equal or unequal frequency values; meanwhile, the indoor antenna port module 213 passes The third backhaul path (the third backhaul path is the first wireless node 200a to the third wireless base station 200c to the second macro base station antenna 330), and the air interface signal from the second macro base station is upconverted by the third wireless
  • the third antenna port module 213 of the wireless node introduces the air interface signal 331 from the second macro base station antenna port 330 and, as appropriate, the air interface 332 transmitted to the wireless terminal 305, improving the signal strength of the air interface signal 331 indoors. Thereby improving The ability of wireless terminal 305 to resist out-of-band leakage interference of air interface 342 (frequency f2) when receiving air interface 332 at f3.
  • the method and device for establishing a backhaul channel provided by the foregoing embodiment, configured to configure a backhaul path control channel on one or more antenna ports of the wireless node, and send or receive backhaul path control information on the backhaul path control channel, according to the The return path control information establishes a backhaul channel.
  • the embodiments of the present invention can reduce the delay of the backhaul path, improve the reconfiguration capability of the backhaul path topology, and maintain the real-time alignment of the backhaul beam.
  • a backhaul path control channel is configured on one or more antenna ports of the wireless node, and backhaul path control information is sent or received on the backhaul path control channel, and the backhaul path control information is established according to the backhaul path control information. Return channel.
  • the technical solution can reduce the delay of the backhaul path, improve the reconfiguration capability of the backhaul path topology, and maintain the real-time alignment of the backhaul beam.

Abstract

本文公开了一种回程通道的建立方法及装置。所述回程通道的建立方法包括:在无线节点的一个或多个天线端口上配置回程路径控制信道;在所述回程路径控制信道上发送或接收回程路径控制信息;根据所述回程路径控制信息建立回程通道。

Description

一种回程通道的建立方法及装置 技术领域
本文涉及但不限于无线电通信技术领域,尤其涉及的是一种回程通道的建立方法及装置。
背景技术
无线回程链路具有施工简单,布设时间短,布设位置灵活的优点,可广泛应用于室内/室外环境中,特别是在受地理环境影响无法/难以布设光纤信道的场合,无线回程会成为优先考虑的传输手段。
目前微波固定接入技术已经成熟地应用于基站的回程传输中,在蜂窝移动通信网和无线接入网的后续发展中,高密度部署基站对无线回程有如下新的需求:无线回程通道需要适应数据业务的大的带宽波动,比如高达几十倍的带宽波动;无线回程通道需要具有低的传输时延,比如端到端时延小于1毫秒;无线回程通道需要具有高的可靠性和鲁棒性,比如在少量中继节点故障情况下回程通道的传输能力不受影响或保持基本的传输能力;
现有无线回程技术包括AD-HOC(无基础设施网络/临时构建网络)技术、MESH(无线网格网络)技术,这些技术尚在发展之中,其现有的传输方案还不能满足未来对无线回程传输能力的要求。
面对无线回程技术的需求目标,现有陆地移动通信网中无线回程技术的缺点是:中继节点的中继时延受TTI(Transmission Time Interval,传输时间间隔)的限制,而且随着中继跳数的增加,导致回程路径时延逐跳累加,经过多跳回程后的端到端时延难以小于1毫秒;现有技术难以保持回程波束实时对准,导致传输效率降低;现有技术缺少回程路径重配方法。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求 的保护范围。
本文提供一种回程通道的建立方法及装置,能够减少回程路径的时延、提高回程路径拓扑结构重组能力。
本发明实施例提供了一种回程通道的建立方法,包括:
在无线节点的一个或多个天线端口上配置回程路径控制信道;
在所述回程路径控制信道上发送或接收回程路径控制信息;
根据所述回程路径控制信息建立回程通道。
可选地,所述根据所述回程路径控制信息建立回程通道,包括:
在所述无线节点的至少一个天线端口与所述无线节点的至少一个相邻无线节点的天线端口之间建立回程通道。
可选地,所述根据所述回程路径控制信息建立回程通道,还包括:
在所述无线节点的第一类天线端口与所述无线节点的第二类天线端口之间建立射频直放回程通道或射频变频放大回程通道;
其中,所述第一类天线端口为用于回程传输的天线端口,所述第二类天线端口为面向无线终端的天线端口。
可选地,在所述无线节点的两个天线端口与所述无线节点的两个相邻无线节点的天线端口之间建立回程通道时,所述根据所述回程路径控制信息建立回程通道,还包括:
在所述无线节点的两个第一类天线端口之间建立射频直放回程通道或射频变频放大回程通道。
可选地,在所述无线节点的两个第一类天线端口之间建立射频直放回程通道,包括:
使用回程路径控制信道指示的回程通道的频点和/或带宽信息,在相应的频率、带宽上将两个第一类天线端口中的至少一个天线端口的接收通道与另外一个天线端口的发射通道相连接。
可选地,在所述无线节点的两个第一类天线端口之间建立射频变频放大回程通道,包括:
将两个第一类天线端口中的至少一个天线端口的接收载波频率变换为另一个天线端口的发射载波频率。
可选地,在所述无线节点的第一类天线端口与所述无线节点的第二类天线端口之间建立射频直放回程通道,包括:
使用回程路径控制信道指示的回程通道的频点和/或带宽信息,在相应的频率、带宽上将所述第一类天线端口与所述第二类天线端口中的至少一个天线端口的接收通道与另外一个天线端口的发射通道相连接。
可选地,在所述无线节点的第一类天线端口与所述无线节点的第二类天线端口之间建立射频变频放大回程通道,包括:
将所述第一类天线端口与所述第二类天线端口中的至少一个天线端口的接收载波频率变换为另一个天线端口的发射载波频率。
可选地,在无线节点的一个或多个天线端口上配置回程路径控制信道,包括:
在无线节点的一个或多个天线端口所使用的毫米波回程频带的指定时频资源上配置带内回程路径控制信道;和/或,
在无线节点的一个或多个天线端口所使用的20GHz以下频带的指定时频资源上配置带外回程路径控制信道;
其中,所述带内回程路径控制信道使用半功率角小于或等于30度的毫米波波束进行发送或接收;
其中,所述带外回程路径控制信道使用半功率角大于15度、频率低于20GHz的波束进行发送或接收。
可选地,在所述回程路径控制信道上发送或接收回程路径控制信息,包括:
无线节点使用所述回程路径控制信道与其单跳相邻无线节点之间进行回程路径控制信息的发送或接收。
可选地,在所述无线节点的天线端口与所述无线节点的一个相邻无线节点的天线端口之间建立回程通道,包括:
无线节点在天线端口上通过所述回程路径控制信道发送建立回程通道的请求信号;在接收到相邻无线节点的允许建立回程通道的应答信号后,在所述回程路径控制信道所指示的时频资源上与所述相邻无线节点建立回程通道;或者
无线节点在天线端口上通过所述回程路径控制信道接收到支持回程通道的相邻无线节点的指示信号后,通过所述回程路径控制信道发送建立回程通道的请求信号;在从所述回程路径控制信道接收到所述相邻无线节点允许建立回程通道的应答信号之后,在所述回程路径控制信道所指示的时频资源上与所述相邻无线节点建立回程通道。
可选地,在所述无线节点的天线端口与所述无线节点的一个相邻无线节点的天线端口之间建立回程通道,还包括:
若在预定的时间内没有收到相邻无线节点发出的允许建立回程通道的应答信号,则调整所述天线端口的波束方向,在调整波束方向后的天线端口上重新发送建立回程通道的请求信号;或者
若在预定的时间内没有收到支持回程通道的无线节点的指示信号,则调整所述天线端口的波束方向,在调整波束方向后的天线端口上重新接收支持回程通道的无线节点的指示信号。
可选地,根据所述回程路径控制信息在所述无线节点的第一天线端口与所述无线节点的相邻无线节点的第二天线端口之间建立回程通道后,所述方法还包括:
a)所述无线节点将第一天线端口的发射波束指向调整一个角度调整量θ;
b)所述无线节点使用带内或带外回程路径控制信道向所述相邻无线节点的第二天线端口发送比幅测向信号;
c)所述相邻无线节点的第二天线端口接收所述比幅测向信号并测量接收信号的幅度,将测量的接收信号的幅度值反馈给所述无线节点;
d)所述无线节点判断所述相邻无线节点反馈的接收信号幅度值是否达到极大值,是则结束对发射波束指向的调整,否则,将发射波束指向调整一 个新的角度调整量
Figure PCTCN2017074276-appb-000001
返回步骤b)。
可选地,根据所述回程路径控制信息在所述无线节点的第一天线端口与所述无线节点的相邻无线节点的第二天线端口之间建立回程通道后,所述方法还包括:
a)所述无线节点将第一天线端口的接收波束指向调整一个角度调整量θ;
b)所述无线节点使用第一天线端口上的带内或带外回程路径控制信道接收所述相邻无线节点的第二天线端口发送的比幅测向信号,测量接收信号的幅度;
c)所述无线节点判断所述接收信号幅度值是否达到极大值,是则结束对接收波束指向的调整,否则,将接收波束指向调整一个新的角度调整量
Figure PCTCN2017074276-appb-000002
,返回步骤b)。
可选地,所述无线节点包括:回程传输中继节点、宏基站节点、微基站节点或无线-有线转换节点。
可选地,所述在所述无线节点的至少一个天线端口与所述无线节点的至少一个相邻无线节点的天线端口之间建立回程通道,包括:
建立第一无线节点支持的第一微小区至第二无线节点支持的第一宏小区的至少一条回程通道,和/或建立第一无线节点支持的第一微小区至第三无线节点支持的第二宏小区的至少一条回程通道;
其中,微小区至宏小区的回程通道的种类包括:微小区至宏小区包含的空中接口的传输通道,或微小区至宏小区包含的有线-无线接口单元的传输通道;
其中,所述第二无线节点、第三无线节点均为所述第一无线节点的相邻无线节点。
可选地,所述回程路径控制信息包括以下信息中的至少一种:
无线节点间回程通道连接关系、无线节点内回程通道连接关系、回程通道带宽、回程通道频点、回程通道接入引导、回程通道重配置信息、回程通道波束对准控制信息。
本发明实施例提供了一种回程通道的建立装置,包括:
回程路径控制信道配置模块,设置为在无线节点的一个或多个天线端口上配置回程路径控制信道;
回程路径控制信息传输模块,设置为在所述回程路径控制信道上发送或接收回程路径控制信息;
回程通道建立模块,设置为根据所述回程路径控制信息建立回程通道。
可选地,回程通道建立模块,设置为采用以下方式根据所述回程路径控制信息建立回程通道:
在所述无线节点的至少一个天线端口与所述无线节点的至少一个相邻无线节点的天线端口之间建立回程通道。
可选地,回程通道建立模块,还设置为采用以下方式根据所述回程路径控制信息建立回程通道:在所述无线节点的第一类天线端口与所述无线节点的第二类天线端口之间建立射频直放回程通道或射频变频放大回程通道;
其中,所述第一类天线端口为用于回程传输的天线端口,所述第二类天线端口为面向无线终端的天线端口。
可选地,回程通道建立模块,还设置为采用以下方式在所述无线节点的两个天线端口与所述无线节点的两个相邻无线节点的天线端口之间建立回程通道时,根据所述回程路径控制信息建立回程通道:
在所述无线节点的两个第一类天线端口之间建立射频直放回程通道或射频变频放大回程通道。
可选地,回程通道建立模块,设置为采用以下方式在所述无线节点的两个第一类天线端口之间建立射频直放回程通道:
使用回程路径控制信道指示的回程通道的频点和/或带宽信息,在相应的频率、带宽上将两个第一类天线端口中的至少一个天线端口的接收通道与另外一个天线端口的发射通道相连接。
可选地,回程通道建立模块,设置为采用以下方式在所述无线节点的两个第一类天线端口之间建立射频变频放大回程通道:
将两个第一类天线端口中的至少一个天线端口的接收载波频率变换为另一个天线端口的发射载波频率。
可选地,回程通道建立模块,设置为采用以下方式在所述无线节点的第一类天线端口与所述无线节点的第二类天线端口之间建立射频直放回程通道:
使用回程路径控制信道指示的回程通道的频点和/或带宽信息,在相应的频率、带宽上将所述第一类天线端口与所述第二类天线端口中的至少一个天线端口的接收通道与另外一个天线端口的发射通道相连接。
可选地,回程通道建立模块,设置为采用以下方式在所述无线节点的第一类天线端口与所述无线节点的第二类天线端口之间建立射频变频放大回程通道:
将所述第一类天线端口与所述第二类天线端口中的至少一个天线端口的接收载波频率变换为另一个天线端口的发射载波频率。
可选地,回程路径控制信道配置模块,设置为采用以下方式在无线节点的一个或多个天线端口上配置回程路径控制信道:
在无线节点的一个或多个天线端口所使用的毫米波回程频带的指定时频资源上配置带内回程路径控制信道;和/或,
在无线节点的一个或多个天线端口所使用的20GHz以下频带的指定时频资源上配置带外回程路径控制信道;
其中,所述带内回程路径控制信道使用半功率角小于或等于30度的毫米波波束进行发送或接收;
其中,所述带外回程路径控制信道使用半功率角大于15度、频率低于20GHz的波束进行发送或接收。
可选地,回程路径控制信息传输模块,设置为采用以下方式在所述回程路径控制信道上发送或接收回程路径控制信息:
无线节点使用所述回程路径控制信道与其单跳相邻无线节点之间进行回程路径控制信息的发送或接收。
可选地,回程通道建立模块,设置为采用以下方式在所述无线节点的天 线端口与所述无线节点的一个相邻无线节点的天线端口之间建立回程通道:
无线节点在天线端口上通过所述回程路径控制信道发送建立回程通道的请求信号;在接收到相邻无线节点的允许建立回程通道的应答信号后,在所述回程路径控制信道所指示的时频资源上与所述相邻无线节点建立回程通道;或者
无线节点在天线端口上通过所述回程路径控制信道接收到支持回程通道的相邻无线节点的指示信号后,通过所述回程路径控制信道发送建立回程通道的请求信号;在从所述回程路径控制信道接收到所述相邻无线节点允许建立回程通道的应答信号之后,在所述回程路径控制信道所指示的时频资源上与所述相邻无线节点建立回程通道。
可选地,回程通道建立模块,还设置为采用以下方式在所述无线节点的天线端口与所述无线节点的一个相邻无线节点的天线端口之间建立回程通道:
若在预定的时间内没有收到相邻无线节点发出的允许建立回程通道的应答信号,则调整所述天线端口的波束方向,在调整波束方向后的天线端口上重新发送建立回程通道的请求信号;或者
若在预定的时间内没有收到支持回程通道的无线节点的指示信号,则调整所述天线端口的波束方向,在调整波束方向后的天线端口上重新接收支持回程通道的无线节点的指示信号。
可选地,所述装置还包括:
波束对准模块,设置为在根据所述回程路径控制信息在所述无线节点的第一天线端口与所述无线节点的相邻无线节点的第二天线端口之间建立回程通道后,执行以下处理:
a)所述无线节点将第一天线端口的发射波束指向调整一个角度调整量θ;
b)所述无线节点使用带内或带外回程路径控制信道向所述相邻无线节点的第二天线端口发送比幅测向信号;
c)所述相邻无线节点的第二天线端口接收所述比幅测向信号并测量接 收信号的幅度,将测量的接收信号的幅度值反馈给所述无线节点;
d)所述无线节点判断所述相邻无线节点反馈的接收信号幅度值是否达到极大值,是则结束对发射波束指向的调整,否则,将发射波束指向调整一个新的角度调整量
Figure PCTCN2017074276-appb-000003
,返回步骤b)。
可选地,所述装置还包括:波束对准模块,设置为在根据所述回程路径控制信息在所述无线节点的第一天线端口与所述无线节点的相邻无线节点的第二天线端口之间建立回程通道后,执行以下处理:
a)所述无线节点将第一天线端口的接收波束指向调整一个角度调整量θ;
b)所述无线节点使用第一天线端口上的带内或带外回程路径控制信道接收所述相邻无线节点的第二天线端口发送的比幅测向信号,测量接收信号的幅度;
c)所述无线节点判断所述接收信号幅度值是否达到极大值,是则结束对接收波束指向的调整,否则,将接收波束指向调整一个新的角度调整量
Figure PCTCN2017074276-appb-000004
,返回步骤b)。
可选地,所述无线节点包括:回程传输中继节点、宏基站节点、微基站节点或无线-有线转换节点。
可选地,回程通道建立模块,设置为采用以下方式在所述无线节点的至少一个天线端口与所述无线节点的至少一个相邻无线节点的天线端口之间建立回程通道:
建立第一无线节点支持的第一微小区至第二无线节点支持的第一宏小区的至少一条回程通道,和/或建立第一无线节点支持的第一微小区至第三无线节点支持的第二宏小区的至少一条回程通道;
其中,微小区至宏小区的回程通道的种类包括:微小区至宏小区包含的空中接口的传输通道,或微小区至宏小区包含的有线-无线接口单元的传输通道;
其中,所述第二无线节点、第三无线节点均为所述第一无线节点的相邻无线节点。
可选地,所述回程路径控制信息包括以下信息中的至少一种:
无线节点间回程通道连接关系、无线节点内回程通道连接关系、回程通道带宽、回程通道频点、回程通道接入引导、回程通道重配置信息、回程通道波束对准控制信息。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现上述方法。
与相关技术相比,本发明实施例提供的一种回程通道的建立方法及装置,在无线节点的一个或多个天线端口上配置回程路径控制信道,在所述回程路径控制信道上发送或接收回程路径控制信息,根据所述回程路径控制信息建立回程通道。本发明实施例能够减少回程路径的时延、提高回程路径拓扑结构重组能力、保持回程波束的实时对准。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明实施例的一种回程通道的建立方法的流程图。
图2为本发明实施例的一种回程通道的建立装置示意图。
图3为本发明实施例的一种无线节点上回程通道建立装置的示意图。
图4为本发明实施例的一种在相邻无线节点之间配置回程通道的示意图。
详述
为使本发明的目的、技术方案和优点更加清楚明白,下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
实施例1,一种可重配低时延回程通道的建立方法举例
如图1所示,本发明实施例提供了一种回程通道的建立方法,包括如下步骤:
步骤S101,在无线节点的一个或多个天线端口上配置回程路径控制信道;
步骤S102,在所述回程路径控制信道上发送或接收回程路径控制信息;
步骤S103,根据所述回程路径控制信息建立回程通道;
其中,所述回程路径控制信息包括以下信息中的至少一种:无线节点间回程通道连接关系、无线节点内回程通道连接关系、回程通道带宽、回程通道频点、回程通道接入引导、回程通道重配置信息、回程通道波束对准控制信息;
其中,所述根据所述回程路径控制信息建立回程通道,包括:
在所述无线节点的至少一个天线端口与所述无线节点的至少一个相邻无线节点的天线端口之间建立回程通道;
其中,所述根据所述回程路径控制信息建立回程通道,还包括:
在所述无线节点的第一类天线端口与所述无线节点的第二类天线端口之间建立射频直放回程通道或射频变频放大回程通道;
其中,所述第一类天线端口为用于回程传输的天线端口;
其中,所述第二类天线端口为面向无线终端的天线端口;
其中,所述无线节点包括:回程传输中继节点、宏基站节点、微基站节点或无线-有线转换节点。
其中,在所述无线节点的两个天线端口与所述无线节点的两个相邻无线节点的天线端口之间建立回程通道时,所述根据所述回程路径控制信息建立回程通道,还包括:
在所述无线节点的两个第一类天线端口之间建立射频直放回程通道或射频变频放大回程通道。
其中,在无线节点的一个或多个天线端口上配置回程路径控制信道,包括:
在无线节点的一个或多个天线端口所使用的毫米波回程频带的指定时频 资源上配置带内回程路径控制信道;和/或,
在无线节点的一个或多个天线端口所使用的20GHz以下频带的指定时频资源上配置带外回程路径控制信道;
其中,所述带内回程路径控制信道使用半功率角小于或等于30度的毫米波波束进行发送或接收;优选地,所述带内回程路径控制信道使用半功率角小于15度的毫米波波束进行发送或接收;
其中,所述带外回程路径控制信道使用半功率角大于15度、频率低于20GHz的波束进行发送或接收;
其中,在所述回程路径控制信道上发送或接收回程路径控制信息,包括:
无线节点使用所述回程路径控制信道与其单跳相邻无线节点之间进行回程路径控制信息的发送或接收;
其中,在所述无线节点的天线端口与所述无线节点的一个相邻无线节点的天线端口之间建立回程通道,包括:
无线节点在天线端口上通过所述回程路径控制信道发送建立回程通道的请求信号;在接收到相邻无线节点的允许建立回程通道的应答信号后,在所述回程路径控制信道所指示的时频资源上与所述相邻无线节点建立回程通道;或者
无线节点在天线端口上通过所述回程路径控制信道接收到支持回程通道的相邻无线节点的指示信号后,通过所述回程路径控制信道发送建立回程通道的请求信号;在从所述回程路径控制信道接收到所述相邻无线节点允许建立回程通道的应答信号之后,在所述回程路径控制信道所指示的时频资源上与所述相邻无线节点建立回程通道;
其中,在所述无线节点的天线端口与所述无线节点的一个相邻无线节点的天线端口之间建立回程通道,还包括:
若在预定的时间内没有收到相邻无线节点发出的允许建立回程通道的应答信号,则调整所述天线端口的波束方向,在调整波束方向后的天线端口上重新发送建立回程通道的请求信号;或者
若在预定的时间内没有收到支持回程通道的无线节点的指示信号,则调 整所述天线端口的波束方向,在调整波束方向后的天线端口上重新接收支持回程通道的无线节点的指示信号;
其中,在所述无线节点的两个第一类天线端口之间建立射频直放回程通道,包括:
使用回程路径控制信道指示的回程通道的频点和/或带宽信息,在相应的频率、带宽上将两个第一类天线端口中的至少一个天线端口的接收通道与另外一个天线端口的发射通道相连接;
其中,在所述无线节点的两个第一类天线端口之间建立射频变频放大回程通道,包括:
将两个第一类天线端口中的至少一个天线端口的接收载波频率变换为另一个天线端口的发射载波频率;
其中,在所述无线节点的第一类天线端口与所述无线节点的第二类天线端口之间建立射频直放回程通道,包括:
使用回程路径控制信道指示的回程通道的频点和/或带宽信息,在相应的频率、带宽上将所述第一类天线端口与所述第二类天线端口中的至少一个天线端口的接收通道与另外一个天线端口的发射通道相连接;
其中,在所述无线节点的第一类天线端口与所述无线节点的第二类天线端口之间建立射频变频放大回程通道,包括:
将所述第一类天线端口与所述第二类天线端口中的至少一个天线端口的接收载波频率变换为另一个天线端口的发射载波频率;
其中,所述第二类天线端口在射频变频后的发射载波频率在宏小区或微小区使用的下行频带内;所述第二类天线端口在射频变频前的接收载波频率在宏小区或微小区使用的上行频带内;
其中,所述第一类天线端口在射频变频前的接收载波为毫米波;
其中,所述第一类天线端口在射频变频前的接收载波使用的毫米波为以下任意一种:
回程通道接入有线传输端口使用的载波;
宏小区下行载波经上变频后输出的载波;
被宏小区下行载波调制的载波。
其中,根据所述回程路径控制信息在所述无线节点的第一天线端口与所述无线节点的相邻无线节点的第二天线端口之间建立回程通道后,所述方法还包括:
a)所述无线节点将第一天线端口的发射波束指向调整一个角度调整量θ;
b)所述无线节点使用带内或带外回程路径控制信道向所述相邻无线节点的第二天线端口发送比幅测向信号;
c)所述相邻无线节点的第二天线端口接收所述比幅测向信号并测量接收信号的幅度,将测量的接收信号的幅度值反馈给所述无线节点;
d)所述无线节点判断所述相邻无线节点反馈的接收信号幅度值是否达到极大值,是则结束对发射波束指向的调整,否则,将发射波束指向调整一个新的角度调整量
Figure PCTCN2017074276-appb-000005
,返回步骤b)。
其中,根据所述回程路径控制信息在所述无线节点的第一天线端口与所述无线节点的相邻无线节点的第二天线端口之间建立回程通道后,所述方法还包括:
a)所述无线节点将第一天线端口的接收波束指向调整一个角度调整量θ;
b)所述无线节点使用第一天线端口上的带内或带外回程路径控制信道接收所述相邻无线节点的第二天线端口发送的比幅测向信号,测量接收信号的幅度;
c)所述无线节点判断所述接收信号幅度值是否达到极大值,是则结束对接收波束指向的调整,否则,将接收波束指向调整一个新的角度调整量
Figure PCTCN2017074276-appb-000006
,返回步骤b)。
其中,在所述第一无线节点的两个天线端口分别与第二无线节点和第三无线节点的天线端口之间建立回程通道,包括:建立所述第一无线节点支持的第一微小区至所述第二无线节点支持的第一宏小区和所述第三无线节点支 持的第二宏小区的回程通道,具体包括执行以下任意一种处理:
建立第一无线节点支持的第一微小区至第一宏小区和第二宏小区包含的空中接口的传输通道;
建立第一无线节点支持的第一微小区至第一宏小区和第二宏小区包含的有线-无线接口单元的传输通道;
建立第一无线节点支持的第一微小区至第一宏小区包含的空中接口的传输通道,建立第一无线节点支持的第一微小区至第二宏小区包含的有线-无线接口单元的传输通道;
建立第一无线节点支持的第一微小区至第二宏小区包含的空中接口的传输通道,建立第一无线节点支持的第一微小区至第一宏小区包含的有线-无线接口单元的传输通道;
其中,所述第二无线节点、第三无线节点均为所述第一无线节点的相邻节点。
实施例2,一种可重配低时延的回程通道建立装置举例
如图2所示,本发明实施例提供了一种回程通道的建立装置,包括:
回程路径控制信道配置模块201,设置为在无线节点的一个或多个天线端口上配置回程路径控制信道;
回程路径控制信息传输模块202,设置为在所述回程路径控制信道上发送或接收回程路径控制信息;
回程通道建立模块203,设置为根据所述回程路径控制信息建立回程通道。
其中,回程通道建立模块203,设置为采用以下方式根据所述回程路径控制信息建立回程通道:
在所述无线节点的至少一个天线端口与所述无线节点的至少一个相邻无线节点的天线端口之间建立回程通道。
其中,回程通道建立模块203,还设置为采用以下方式根据所述回程路 径控制信息建立回程通道:在所述无线节点的第一类天线端口与所述无线节点的第二类天线端口之间建立射频直放回程通道或射频变频放大回程通道;
其中,所述第一类天线端口为用于回程传输的天线端口,所述第二类天线端口为面向无线终端的天线端口。
其中,回程通道建立模块203,还设置为采用以下方式在所述无线节点的两个天线端口与所述无线节点的两个相邻无线节点的天线端口之间建立回程通道时,根据所述回程路径控制信息建立回程通道:
在所述无线节点的两个第一类天线端口之间建立射频直放回程通道或射频变频放大回程通道。
其中,回程通道建立模块203,设置为采用以下方式在所述无线节点的两个第一类天线端口之间建立射频直放回程通道:
使用回程路径控制信道指示的回程通道的频点和/或带宽信息,在相应的频率、带宽上将两个第一类天线端口中的至少一个天线端口的接收通道与另外一个天线端口的发射通道相连接。
其中,回程通道建立模块203,设置为采用以下方式在所述无线节点的两个第一类天线端口之间建立射频变频放大回程通道:
将两个第一类天线端口中的至少一个天线端口的接收载波频率变换为另一个天线端口的发射载波频率。
其中,回程通道建立模块203,设置为采用以下方式在所述无线节点的第一类天线端口与所述无线节点的第二类天线端口之间建立射频直放回程通道:
使用回程路径控制信道指示的回程通道的频点和/或带宽信息,在相应的频率、带宽上将所述第一类天线端口与所述第二类天线端口中的至少一个天线端口的接收通道与另外一个天线端口的发射通道相连接。
其中,回程通道建立模块203,设置为采用以下方式在所述无线节点的第一类天线端口与所述无线节点的第二类天线端口之间建立射频变频放大回程通道:
将所述第一类天线端口与所述第二类天线端口中的至少一个天线端口的 接收载波频率变换为另一个天线端口的发射载波频率。
其中,回程路径控制信道配置模块201,设置为采用以下方式在无线节点的一个或多个天线端口上配置回程路径控制信道:
在无线节点的一个或多个天线端口所使用的毫米波回程频带的指定时频资源上配置带内回程路径控制信道;和/或,
在无线节点的一个或多个天线端口所使用的20GHz以下频带的指定时频资源上配置带外回程路径控制信道;
其中,所述带内回程路径控制信道使用半功率角小于或等于30度的毫米波波束进行发送或接收;
其中,所述带外回程路径控制信道使用半功率角大于15度、频率低于20GHz的波束进行发送或接收。
其中,回程路径控制信息传输模块202,设置为采用以下方式在所述回程路径控制信道上发送或接收回程路径控制信息:
无线节点使用所述回程路径控制信道与其单跳相邻无线节点之间进行回程路径控制信息的发送或接收。
其中,回程通道建立模块203,设置为采用以下方式在所述无线节点的天线端口与所述无线节点的一个相邻无线节点的天线端口之间建立回程通道:
无线节点在天线端口上通过所述回程路径控制信道发送建立回程通道的请求信号;在接收到相邻无线节点的允许建立回程通道的应答信号后,在所述回程路径控制信道所指示的时频资源上与所述相邻无线节点建立回程通道;或者
无线节点在天线端口上通过所述回程路径控制信道接收到支持回程通道的相邻无线节点的指示信号后,通过所述回程路径控制信道发送建立回程通道的请求信号;在从所述回程路径控制信道接收到所述相邻无线节点允许建立回程通道的应答信号之后,在所述回程路径控制信道所指示的时频资源上与所述相邻无线节点建立回程通道。
其中,回程通道建立模块203,还设置为采用以下方式在所述无线节点 的天线端口与所述无线节点的一个相邻无线节点的天线端口之间建立回程通道:
若在预定的时间内没有收到相邻无线节点发出的允许建立回程通道的应答信号,则调整所述天线端口的波束方向,在调整波束方向后的天线端口上重新发送建立回程通道的请求信号;或者
若在预定的时间内没有收到支持回程通道的无线节点的指示信号,则调整所述天线端口的波束方向,在调整波束方向后的天线端口上重新接收支持回程通道的无线节点的指示信号。
其中,所述装置还包括:
波束对准模块204,设置为在根据所述回程路径控制信息在所述无线节点的第一天线端口与所述无线节点的相邻无线节点的第二天线端口之间建立回程通道后,执行以下处理:
a)所述无线节点将第一天线端口的发射波束指向调整一个角度调整量θ;
b)所述无线节点使用带内或带外回程路径控制信道向所述相邻无线节点的第二天线端口发送比幅测向信号;
c)所述相邻无线节点的第二天线端口接收所述比幅测向信号并测量接收信号的幅度,将测量的接收信号的幅度值反馈给所述无线节点;
d)所述无线节点判断所述相邻无线节点反馈的接收信号幅度值是否达到极大值,是则结束对发射波束指向的调整,否则,将发射波束指向调整一个新的角度调整量
Figure PCTCN2017074276-appb-000007
,返回步骤b)。
其中,波束对准模块204,设置为在根据所述回程路径控制信息在所述无线节点的第一天线端口与所述无线节点的相邻无线节点的第二天线端口之间建立回程通道后,执行以下处理:
a)所述无线节点将第一天线端口的接收波束指向调整一个角度调整量θ;
b)所述无线节点使用第一天线端口上的带内或带外回程路径控制信道接收所述相邻无线节点的第二天线端口发送的比幅测向信号,测量接收信号 的幅度;
c)所述无线节点判断所述接收信号幅度值是否达到极大值,是则结束对接收波束指向的调整,否则,将接收波束指向调整一个新的角度调整量
Figure PCTCN2017074276-appb-000008
,返回步骤b)。
其中,所述无线节点包括:回程传输中继节点、宏基站节点、微基站节点或无线-有线转换节点。
其中,回程通道建立模块203,设置为采用以下方式在所述无线节点的至少一个天线端口与所述无线节点的至少一个相邻无线节点的天线端口之间建立回程通道:
建立第一无线节点支持的第一微小区至第二无线节点支持的第一宏小区的至少一条回程通道,和/或建立第一无线节点支持的第一微小区至第三无线节点支持的第二宏小区的至少一条回程通道;
其中,微小区至宏小区的回程通道的种类包括:微小区至宏小区包含的空中接口的传输通道,或微小区至宏小区包含的有线-无线接口单元的传输通道;
其中,所述第二无线节点、第三无线节点均为所述第一无线节点的相邻无线节点。
其中,所述回程路径控制信息包括以下信息中的至少一种:
无线节点间回程通道连接关系、无线节点内回程通道连接关系、回程通道带宽、回程通道频点、回程通道接入引导、回程通道重配置信息、回程通道波束对准控制信息。
实施例3,一种可重配低时延无线回程传输系统举例
本发明实施例给出的一种可重配低时延无线回程传输系统举例,参见图3和图4所示,该系统包括:
回程路径控制装置300,设置为支持无线回程控制信道的无线节点200a/b/c(在图4中,为了实现室内外无线电信号传输,将无线节点的第一 天线端口模块211布设在室外,将用于终端通信的第三天线端口模块213布置在室内,在第一天线端口模块211与第三天线端口模块213之间通过射频电缆301实现回程信号传输);其中,
所述回程路径控制装置300,设置为通过无线节点200a/b/c支持的无线回程控制信道对回程路径、回程通道时频参数、无线节点回程业务数据选择和无线节点回程通道检测项目中的至少一项进行控制,包括:回程路径控制信息发送模块和/或回程路径控制信息接收模块;
所述支持无线回程控制信道的无线节点200a/b/c,设置为在所述回程路径控制装置300的控制下,建立第一微小区至第一宏小区和第二宏小区的回程通道,该无线节点包括:回程路径控制信道配置模块,回程路径控制信息收发模块,回程通道配置模块;其中,
所述回程路径控制信道配置模块230,设置为配置无线节点200面向第一和/或第二方向的天线端口的回程路径控制信道,包括回程路径控制信道的时频位置确定子模块;
所述回程路径控制信息收发模块240,设置为在所述回程路径控制信道上发送和/或接收回程路径控制信息,该回程路径控制信息包括无线节点间/内回程通道连接关系、回程通道带宽、回程通道频点、回程通道接入引导、回程通道重配置及回程通道波束对准控制中的至少一种信息,该模块包括回程路径控制信息发送和/或接收子模块;
所述回程通道配置模块260,设置为使用所述回程路径控制信息执行如下至少一种操作:
在所述无线节点200面向第一方向的天线端口211与所述无线节点的第一相邻无线节点281的天线端口之间建立回程通道;
在所述无线节点200面向第二方向的天线端口212与所述无线节点的第二相邻无线节点282的天线端口之间建立回程通道;
在所述无线节点200面向第一方向的天线端口211与所述无线节点面向第二方向的天线端口212之间建立射频直放通道或射频变频放大通道;
在所述无线节点200面向第一方向的天线端口211与所述无线节点面向 无线终端291/292的第三天线端口213之间建立射频直放通道或射频变频放大通道;
在所述无线节点200面向第二方向的天线端口212与所述无线节点面向无线终端291/292的第三天线端口213之间建立射频直放通道或射频变频放大通道;以及,
具体地,所述第一微小区为无线节点200a面向无线终端的天线端口模块213覆盖的区域;所述第一宏小区为第一宏基站340所覆盖的区域;所述第二宏小区为第二宏基站330所覆盖的区域。
本实施例所述的系统,其中,
所述支持无线回程控制信道的无线节点200a/b/c,设置为在所述回程路径控制装置300的控制下,建立第一微小区至第一宏小区和/或第二宏小区的回程通道的操作,包括执行如下至少一种处理:
建立第一无线节点200a支持的第一微小区至第一宏小区和/或第二宏小区包含的空中接口的传输通道;具体地,第一无线节点200a通过波束350至第二无线节点200b,经第二无线节点200b包含的面向基站的第三天线端口模块213接入第一宏小区天线340支持的空中接口341;以及,第一无线节点200a通过波束360至第三无线节点200c,经第三无线节点200c包含的面向基站的第三天线端口模块213接入第二宏小区天线330支持的空中接口331;
建立第一无线节点支持的第一微小区至第一宏小区和/或第二宏小区包含的有线-无线接口单元的传输通道;具体地,第一无线节点200a通过波束350至第二无线节点200b,经第二无线节点200b和无线-有线接口单元的天线模块310接入第一宏小区包含的有线传输信道;以及,第一无线节点200a通过波束360至第三无线节点200c,经第三无线节点200c和无线-有线接口单元的天线模块320接入第二宏小区包含的有线传输信道;
建立第一无线节点支持的第一微小区至第一宏小区包含的空中接口的传输通道并且建立第一无线节点支持的第一微小区至第二宏小区包含的有线- 无线接口单元的传输通道;具体地,第一无线节点200a通过波束350至第二无线节点200b,经第二无线节点200b包含的面向基站的第三天线端口模块213接入第一宏小区天线340支持的空中接口341;以及,第一无线节点200a通过波束360至第三无线节点200c,经第三无线节点200c和无线-有线接口单元的天线模块320接入第二宏小区包含的有线传输信道;
建立第一无线节点支持的第一微小区至第一宏小区包含的空中接口的传输通道并且建立第一无线节点支持的第一微小区至第一宏小区包含的有线-无线接口单元的传输通道;第一无线节点200a通过波束350至第二无线节点200b,经第二无线节点200b包含的面向基站的第三天线端口模块213接入第一宏小区天线340支持的空中接口341;以及,第一无线节点200a通过波束350至第二无线节点200b,经第二无线节点200b和无线-有线接口单元的天线模块310接入第一宏小区包含的有线传输信道。
在图4中,室内天线端口模块213通过第一/二回程路径(第一回程路径为第一无线节点200a至第二无线节点200b至第一宏基站天线340,或者,第二回程路径为第一无线节点200a至第二无线节点200b至无线-有线接口单元的天线模块310)将来自第一宏基站的空口信号/来自第一宏基站的光纤传输通道向无线终端306提供业务数据传输通道,向无线终端306提供业务数据传输通道的空中接口342的频率为f2,第一宏基站的空口341的频率为f1,f1与f2具有相等或者不相等的频率值;同时,室内天线端口模块213通过第三回程路径(第三回程路径为第一无线节点200a至第三无线节点200c至第二宏基站天线330)将来自第二宏基站的空口信号经过第三无线节点200c上变频后传输给第一无线节点200a,第一无线节点200a使用其第三天线端口模块213发送给无线终端305,向无线终端305发送信号的空中接口332的频率为f3,第二宏基站的空口331的频率为f3;
进一步地,当向无线终端306提供业务数据传输通道的空中接口342的频率为f2,向无线终端305发送信号的空中接口332的频率为f3,并且f2与f3为相邻频率时,使用第三无线节点的第三天线端口模块213从第二宏基站天线端口330引入空中接口信号331并在适当放大后作为向无线终端305发送的空中接口332,提高了空中接口信号331在室内的信号强度,从而提高 了无线终端305在f3上接收空中接口332时抗空中接口342(频率为f2)的带外泄漏干扰的能力。
上述实施例提供的一种回程通道的建立方法及装置,在无线节点的一个或多个天线端口上配置回程路径控制信道,在所述回程路径控制信道上发送或接收回程路径控制信息,根据所述回程路径控制信息建立回程通道。本发明实施例能够减少回程路径的时延、提高回程路径拓扑结构重组能力、保持回程波束的实时对准。
工业实用性
本发明实施例提供的技术方案,在无线节点的一个或多个天线端口上配置回程路径控制信道,在所述回程路径控制信道上发送或接收回程路径控制信息,根据所述回程路径控制信息建立回程通道。所述技术方案能够减少回程路径的时延、提高回程路径拓扑结构重组能力、保持回程波束的实时对准。

Claims (34)

  1. 一种回程通道的建立方法,包括:
    在无线节点的一个或多个天线端口上配置回程路径控制信道;
    在所述回程路径控制信道上发送或接收回程路径控制信息;
    根据所述回程路径控制信息建立回程通道。
  2. 如权利要求1所述的方法,其中:
    所述根据所述回程路径控制信息建立回程通道,包括:
    在所述无线节点的至少一个天线端口与所述无线节点的至少一个相邻无线节点的天线端口之间建立回程通道。
  3. 如权利要求2所述的方法,其中:
    所述根据所述回程路径控制信息建立回程通道,还包括:
    在所述无线节点的第一类天线端口与所述无线节点的第二类天线端口之间建立射频直放回程通道或射频变频放大回程通道;
    其中,所述第一类天线端口为用于回程传输的天线端口,所述第二类天线端口为面向无线终端的天线端口。
  4. 如权利要求3所述的方法,其中:
    在所述无线节点的两个天线端口与所述无线节点的两个相邻无线节点的天线端口之间建立回程通道时,所述根据所述回程路径控制信息建立回程通道,还包括:
    在所述无线节点的两个第一类天线端口之间建立射频直放回程通道或射频变频放大回程通道。
  5. 如权利要求4所述的方法,其中:
    在所述无线节点的两个第一类天线端口之间建立射频直放回程通道,包括:
    使用回程路径控制信道指示的回程通道的频点和/或带宽信息,在相应的 频率、带宽上将两个第一类天线端口中的至少一个天线端口的接收通道与另外一个天线端口的发射通道相连接。
  6. 如权利要求4所述的方法,其中:
    在所述无线节点的两个第一类天线端口之间建立射频变频放大回程通道,包括:
    将两个第一类天线端口中的至少一个天线端口的接收载波频率变换为另一个天线端口的发射载波频率。
  7. 如权利要求3或4所述的方法,其中:
    在所述无线节点的第一类天线端口与所述无线节点的第二类天线端口之间建立射频直放回程通道,包括:
    使用回程路径控制信道指示的回程通道的频点和/或带宽信息,在相应的频率、带宽上将所述第一类天线端口与所述第二类天线端口中的至少一个天线端口的接收通道与另外一个天线端口的发射通道相连接。
  8. 如权利要求3或4所述的方法,其中:
    在所述无线节点的第一类天线端口与所述无线节点的第二类天线端口之间建立射频变频放大回程通道,包括:
    将所述第一类天线端口与所述第二类天线端口中的至少一个天线端口的接收载波频率变换为另一个天线端口的发射载波频率。
  9. 如权利要求1所述的方法,其中:
    在无线节点的一个或多个天线端口上配置回程路径控制信道,包括:
    在无线节点的一个或多个天线端口所使用的毫米波回程频带的指定时频资源上配置带内回程路径控制信道;和/或,
    在无线节点的一个或多个天线端口所使用的20GHz以下频带的指定时频资源上配置带外回程路径控制信道;
    其中,所述带内回程路径控制信道使用半功率角小于或等于30度的毫米波波束进行发送或接收;
    其中,所述带外回程路径控制信道使用半功率角大于15度、频率低于20GHz的波束进行发送或接收。
  10. 如权利要求1所述的方法,其中:
    在所述回程路径控制信道上发送或接收回程路径控制信息,包括:
    无线节点使用所述回程路径控制信道与其单跳相邻无线节点之间进行回程路径控制信息的发送或接收。
  11. 如权利要求2所述的方法,其中:
    在所述无线节点的天线端口与所述无线节点的一个相邻无线节点的天线端口之间建立回程通道,包括:
    无线节点在天线端口上通过所述回程路径控制信道发送建立回程通道的请求信号;在接收到相邻无线节点的允许建立回程通道的应答信号后,在所述回程路径控制信道所指示的时频资源上与所述相邻无线节点建立回程通道;或者
    无线节点在天线端口上通过所述回程路径控制信道接收到支持回程通道的相邻无线节点的指示信号后,通过所述回程路径控制信道发送建立回程通道的请求信号;在从所述回程路径控制信道接收到所述相邻无线节点允许建立回程通道的应答信号之后,在所述回程路径控制信道所指示的时频资源上与所述相邻无线节点建立回程通道。
  12. 如权利要求11所述的方法,其中:
    在所述无线节点的天线端口与所述无线节点的一个相邻无线节点的天线端口之间建立回程通道,还包括:
    若在预定的时间内没有收到相邻无线节点发出的允许建立回程通道的应答信号,则调整所述天线端口的波束方向,在调整波束方向后的天线端口上重新发送建立回程通道的请求信号;或者
    若在预定的时间内没有收到支持回程通道的无线节点的指示信号,则调整所述天线端口的波束方向,在调整波束方向后的天线端口上重新接收支持回程通道的无线节点的指示信号。
  13. 如权利要求2所述的方法,其中:
    根据所述回程路径控制信息在所述无线节点的第一天线端口与所述无线节点的相邻无线节点的第二天线端口之间建立回程通道后,所述方法还包括:
    a)所述无线节点将第一天线端口的发射波束指向调整一个角度调整量θ;
    b)所述无线节点使用带内或带外回程路径控制信道向所述相邻无线节点的第二天线端口发送比幅测向信号;
    c)所述相邻无线节点的第二天线端口接收所述比幅测向信号并测量接收信号的幅度,将测量的接收信号的幅度值反馈给所述无线节点;
    d)所述无线节点判断所述相邻无线节点反馈的接收信号幅度值是否达到极大值,是则结束对发射波束指向的调整,否则,将发射波束指向调整一个新的角度调整量
    Figure PCTCN2017074276-appb-100001
    返回步骤b)。
  14. 如权利要求2所述的方法,其中:
    根据所述回程路径控制信息在所述无线节点的第一天线端口与所述无线节点的相邻无线节点的第二天线端口之间建立回程通道后,所述方法还包括:
    a)所述无线节点将第一天线端口的接收波束指向调整一个角度调整量θ;
    b)所述无线节点使用第一天线端口上的带内或带外回程路径控制信道接收所述相邻无线节点的第二天线端口发送的比幅测向信号,测量接收信号的幅度;
    c)所述无线节点判断所述接收信号幅度值是否达到极大值,是则结束对接收波束指向的调整,否则,将接收波束指向调整一个新的角度调整量
    Figure PCTCN2017074276-appb-100002
    返回步骤b)。
  15. 如权利要求2所述的方法,其中:
    所述无线节点包括:回程传输中继节点、宏基站节点、微基站节点或无线-有线转换节点。
  16. 如权利要求15所述的方法,其中:
    所述在所述无线节点的至少一个天线端口与所述无线节点的至少一个相邻无线节点的天线端口之间建立回程通道,包括:
    建立第一无线节点支持的第一微小区至第二无线节点支持的第一宏小区的至少一条回程通道,和/或建立第一无线节点支持的第一微小区至第三无线节点支持的第二宏小区的至少一条回程通道;
    其中,微小区至宏小区的回程通道的种类包括:微小区至宏小区包含的空中接口的传输通道,或微小区至宏小区包含的有线-无线接口单元的传输通道;
    其中,所述第二无线节点、第三无线节点均为所述第一无线节点的相邻无线节点。
  17. 如权利要求1-6中任一项所述的方法,其中:
    所述回程路径控制信息包括以下信息中的至少一种:
    无线节点间回程通道连接关系、无线节点内回程通道连接关系、回程通道带宽、回程通道频点、回程通道接入引导、回程通道重配置信息、回程通道波束对准控制信息。
  18. 一种回程通道的建立装置,包括:
    回程路径控制信道配置模块,设置为在无线节点的一个或多个天线端口上配置回程路径控制信道;
    回程路径控制信息传输模块,设置为在所述回程路径控制信道上发送或接收回程路径控制信息;
    回程通道建立模块,设置为根据所述回程路径控制信息建立回程通道。
  19. 如权利要求18所述的装置,其中:
    回程通道建立模块,设置为采用以下方式根据所述回程路径控制信息建立回程通道:
    在所述无线节点的至少一个天线端口与所述无线节点的至少一个相邻无 线节点的天线端口之间建立回程通道。
  20. 如权利要求19所述的装置,其中:
    回程通道建立模块,还设置为采用以下方式根据所述回程路径控制信息建立回程通道:在所述无线节点的第一类天线端口与所述无线节点的第二类天线端口之间建立射频直放回程通道或射频变频放大回程通道;
    其中,所述第一类天线端口为用于回程传输的天线端口,所述第二类天线端口为面向无线终端的天线端口。
  21. 如权利要求20所述的装置,其中:
    回程通道建立模块,还设置为采用以下方式在所述无线节点的两个天线端口与所述无线节点的两个相邻无线节点的天线端口之间建立回程通道时,根据所述回程路径控制信息建立回程通道:
    在所述无线节点的两个第一类天线端口之间建立射频直放回程通道或射频变频放大回程通道。
  22. 如权利要求21所述的装置,其中:
    回程通道建立模块,设置为采用以下方式在所述无线节点的两个第一类天线端口之间建立射频直放回程通道:
    使用回程路径控制信道指示的回程通道的频点和/或带宽信息,在相应的频率、带宽上将两个第一类天线端口中的至少一个天线端口的接收通道与另外一个天线端口的发射通道相连接。
  23. 如权利要求21所述的装置,其中:
    回程通道建立模块,设置为采用以下方式在所述无线节点的两个第一类天线端口之间建立射频变频放大回程通道:
    将两个第一类天线端口中的至少一个天线端口的接收载波频率变换为另一个天线端口的发射载波频率。
  24. 如权利要求20或21所述的装置,其中:
    回程通道建立模块,设置为采用以下方式在所述无线节点的第一类天线端口与所述无线节点的第二类天线端口之间建立射频直放回程通道:
    使用回程路径控制信道指示的回程通道的频点和/或带宽信息,在相应的频率、带宽上将所述第一类天线端口与所述第二类天线端口中的至少一个天线端口的接收通道与另外一个天线端口的发射通道相连接。
  25. 如权利要求20或21所述的装置,其中:
    回程通道建立模块,设置为采用以下方式在所述无线节点的第一类天线端口与所述无线节点的第二类天线端口之间建立射频变频放大回程通道:
    将所述第一类天线端口与所述第二类天线端口中的至少一个天线端口的接收载波频率变换为另一个天线端口的发射载波频率。
  26. 如权利要求18所述的装置,其中:
    回程路径控制信道配置模块,设置为采用以下方式在无线节点的一个或多个天线端口上配置回程路径控制信道:
    在无线节点的一个或多个天线端口所使用的毫米波回程频带的指定时频资源上配置带内回程路径控制信道;和/或,
    在无线节点的一个或多个天线端口所使用的20GHz以下频带的指定时频资源上配置带外回程路径控制信道;
    其中,所述带内回程路径控制信道使用半功率角小于或等于30度的毫米波波束进行发送或接收;
    其中,所述带外回程路径控制信道使用半功率角大于15度、频率低于20GHz的波束进行发送或接收。
  27. 如权利要求18所述的装置,其中:
    回程路径控制信息传输模块,设置为采用以下方式在所述回程路径控制信道上发送或接收回程路径控制信息:
    无线节点使用所述回程路径控制信道与其单跳相邻无线节点之间进行回程路径控制信息的发送或接收。
  28. 如权利要求19所述的装置,其中:
    回程通道建立模块,设置为采用以下方式在所述无线节点的天线端口与所述无线节点的一个相邻无线节点的天线端口之间建立回程通道:
    无线节点在天线端口上通过所述回程路径控制信道发送建立回程通道的请求信号;在接收到相邻无线节点的允许建立回程通道的应答信号后,在所述回程路径控制信道所指示的时频资源上与所述相邻无线节点建立回程通道;或者
    无线节点在天线端口上通过所述回程路径控制信道接收到支持回程通道的相邻无线节点的指示信号后,通过所述回程路径控制信道发送建立回程通道的请求信号;在从所述回程路径控制信道接收到所述相邻无线节点允许建立回程通道的应答信号之后,在所述回程路径控制信道所指示的时频资源上与所述相邻无线节点建立回程通道。
  29. 如权利要求28所述的装置,其中:
    回程通道建立模块,还设置为采用以下方式在所述无线节点的天线端口与所述无线节点的一个相邻无线节点的天线端口之间建立回程通道:
    若在预定的时间内没有收到相邻无线节点发出的允许建立回程通道的应答信号,则调整所述天线端口的波束方向,在调整波束方向后的天线端口上重新发送建立回程通道的请求信号;或者
    若在预定的时间内没有收到支持回程通道的无线节点的指示信号,则调整所述天线端口的波束方向,在调整波束方向后的天线端口上重新接收支持回程通道的无线节点的指示信号。
  30. 如权利要求19所述的装置,其中:
    所述装置还包括:
    波束对准模块,设置为在根据所述回程路径控制信息在所述无线节点的第一天线端口与所述无线节点的相邻无线节点的第二天线端口之间建立回程通道后,执行以下处理:
    a)所述无线节点将第一天线端口的发射波束指向调整一个角度调整量 θ;
    b)所述无线节点使用带内或带外回程路径控制信道向所述相邻无线节点的第二天线端口发送比幅测向信号;
    c)所述相邻无线节点的第二天线端口接收所述比幅测向信号并测量接收信号的幅度,将测量的接收信号的幅度值反馈给所述无线节点;
    d)所述无线节点判断所述相邻无线节点反馈的接收信号幅度值是否达到极大值,是则结束对发射波束指向的调整,否则,将发射波束指向调整一个新的角度调整量
    Figure PCTCN2017074276-appb-100003
    返回步骤b)。
  31. 如权利要求19所述的装置,其中:
    所述装置还包括:
    波束对准模块,设置为在根据所述回程路径控制信息在所述无线节点的第一天线端口与所述无线节点的相邻无线节点的第二天线端口之间建立回程通道后,执行以下处理:
    a)所述无线节点将第一天线端口的接收波束指向调整一个角度调整量θ;
    b)所述无线节点使用第一天线端口上的带内或带外回程路径控制信道接收所述相邻无线节点的第二天线端口发送的比幅测向信号,测量接收信号的幅度;
    c)所述无线节点判断所述接收信号幅度值是否达到极大值,是则结束对接收波束指向的调整,否则,将接收波束指向调整一个新的角度调整量
    Figure PCTCN2017074276-appb-100004
    返回步骤b)。
  32. 如权利要求19所述的装置,其中:
    所述无线节点包括:回程传输中继节点、宏基站节点、微基站节点或无线-有线转换节点。
  33. 如权利要求32所述的装置,其中:
    回程通道建立模块,设置为采用以下方式在所述无线节点的至少一个天 线端口与所述无线节点的至少一个相邻无线节点的天线端口之间建立回程通道:
    建立第一无线节点支持的第一微小区至第二无线节点支持的第一宏小区的至少一条回程通道,和/或建立第一无线节点支持的第一微小区至第三无线节点支持的第二宏小区的至少一条回程通道;
    其中,微小区至宏小区的回程通道的种类包括:微小区至宏小区包含的空中接口的传输通道,或微小区至宏小区包含的有线-无线接口单元的传输通道;
    其中,所述第二无线节点、第三无线节点均为所述第一无线节点的相邻无线节点。
  34. 如权利要求18-23中任一项所述的装置,其中:
    所述回程路径控制信息包括以下信息中的至少一种:
    无线节点间回程通道连接关系、无线节点内回程通道连接关系、回程通道带宽、回程通道频点、回程通道接入引导、回程通道重配置信息、回程通道波束对准控制信息。
PCT/CN2017/074276 2016-03-18 2017-02-21 一种回程通道的建立方法及装置 WO2017157139A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610156844.4 2016-03-18
CN201610156844.4A CN107205283B (zh) 2016-03-18 2016-03-18 一种回程通道的建立方法及装置

Publications (1)

Publication Number Publication Date
WO2017157139A1 true WO2017157139A1 (zh) 2017-09-21

Family

ID=59851796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/074276 WO2017157139A1 (zh) 2016-03-18 2017-02-21 一种回程通道的建立方法及装置

Country Status (2)

Country Link
CN (1) CN107205283B (zh)
WO (1) WO2017157139A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021154131A1 (en) * 2020-01-31 2021-08-05 Telefonaktiebolaget Lm Ericsson (Publ) Improved relaying in a wireless communication network

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102209392A (zh) * 2010-03-31 2011-10-05 电信科学技术研究院 一种下行控制资源分配方法和设备
CN102265530A (zh) * 2008-12-24 2011-11-30 Lg电子株式会社 向中继器分配资源的方法
US20120051270A1 (en) * 2010-08-24 2012-03-01 Qualcomm Incorporated Handling ambiguous relay physical downlink control channel (r-pdcch) decoding for a relay node
CN104363597A (zh) * 2010-08-24 2015-02-18 华为技术有限公司 频谱资源的配置调整方法和装置及系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GEP20094656B (en) * 2004-06-10 2009-03-25 Interdigital Tech Corp Method and system for utilizing smart antennas in establishing a backhaul network
CN102388545B (zh) * 2009-04-09 2014-12-10 Lg电子株式会社 在中继通信系统中的信号发送方法和装置
US8594010B2 (en) * 2010-01-11 2013-11-26 Qualcomm Incorporated Apparatus and method for physical control format indicator channel (PCFICH) information sharing over relay backhaul link
KR101584550B1 (ko) * 2010-04-07 2016-01-12 엘지전자 주식회사 분산 안테나 시스템에서의 신호 송수신 방법 및 장치
CN102378191B (zh) * 2010-08-13 2016-08-03 中兴通讯股份有限公司 对相邻信道进行辅助发射的方法、系统和无线通信装置
US9326273B2 (en) * 2013-01-24 2016-04-26 Intel Corporation Apparatus, system and method of wireless backhaul communication between wireless communication nodes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102265530A (zh) * 2008-12-24 2011-11-30 Lg电子株式会社 向中继器分配资源的方法
CN102209392A (zh) * 2010-03-31 2011-10-05 电信科学技术研究院 一种下行控制资源分配方法和设备
US20120051270A1 (en) * 2010-08-24 2012-03-01 Qualcomm Incorporated Handling ambiguous relay physical downlink control channel (r-pdcch) decoding for a relay node
CN104363597A (zh) * 2010-08-24 2015-02-18 华为技术有限公司 频谱资源的配置调整方法和装置及系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021154131A1 (en) * 2020-01-31 2021-08-05 Telefonaktiebolaget Lm Ericsson (Publ) Improved relaying in a wireless communication network

Also Published As

Publication number Publication date
CN107205283B (zh) 2022-06-17
CN107205283A (zh) 2017-09-26

Similar Documents

Publication Publication Date Title
US10805974B2 (en) Wireless communication system and method
US8565673B2 (en) Hierarchical networks utilizing frame transmissions pipelining
US11419033B2 (en) Methods, wireless communications networks and infrastructure equipment
WO2021164676A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
US20170086080A1 (en) System and Method for Fast Beamforming Setup
US11889401B2 (en) Methods, wireless communications networks and infrastructure equipment
US11765639B2 (en) Controlling tree topology over mesh topology based on autonomous decentralized control
WO2005081459A1 (ja) 無線アクセス方法及びシステム
WO2017140185A1 (zh) 一种无线回程网接入控制方法和装置、存储介质
WO2017157139A1 (zh) 一种回程通道的建立方法及装置
WO2017157140A1 (zh) 一种回程传输方法及装置
JP7302796B2 (ja) 通信システムリンク確立
Miao et al. Self-organized multi-hop millimeter-wave backhaul network: Beam alignment and dynamic routing
US20220046527A1 (en) Method and apparatus for relay utilizing sidelink in wireless communication system
Andrews et al. The capacity effects of relays in residential 5G networks
Ma et al. Remaining bandwidth based multipath routing in 5G millimeter wave self-backhauling network
US20110110277A1 (en) Multiple device to one-antenna combining circuit and methods of using same
Noh et al. System evaluation for millimeter-wave radio access network
WO2023236021A1 (zh) 一种通信方法、装置和系统
WO2024032514A1 (zh) 用于信号转发的方法及相关装置
CN116648868A (zh) Iab动态能力更新
KR20220017375A (ko) 무선 통신 시스템에서 사이드링크를 이용한 중계 방법 및 장치
KR20230079434A (ko) Iab 계층적인 du 리소스 구성

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17765681

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17765681

Country of ref document: EP

Kind code of ref document: A1