WO2017157089A1 - 一种配置和确定半持续调度的方法及设备 - Google Patents

一种配置和确定半持续调度的方法及设备 Download PDF

Info

Publication number
WO2017157089A1
WO2017157089A1 PCT/CN2017/070176 CN2017070176W WO2017157089A1 WO 2017157089 A1 WO2017157089 A1 WO 2017157089A1 CN 2017070176 W CN2017070176 W CN 2017070176W WO 2017157089 A1 WO2017157089 A1 WO 2017157089A1
Authority
WO
WIPO (PCT)
Prior art keywords
sps
frequency domain
domain resource
terminal
network side
Prior art date
Application number
PCT/CN2017/070176
Other languages
English (en)
French (fr)
Inventor
赵亚利
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to US16/085,482 priority Critical patent/US10880919B2/en
Priority to EP21195967.1A priority patent/EP3941139A1/en
Priority to JP2018549275A priority patent/JP6858198B2/ja
Priority to KR1020187029767A priority patent/KR20180123541A/ko
Priority to EP17765631.1A priority patent/EP3432662B1/en
Publication of WO2017157089A1 publication Critical patent/WO2017157089A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies

Definitions

  • the present application relates to the field of wireless communications technologies, and in particular, to a method and apparatus for configuring and determining semi-persistent scheduling.
  • the LTE (Long Term Evolution) system introduces SPS (Semi-Persistent Scheduling) for services with basically the same packet size and regular arrival time interval.
  • SPS Semi-Persistent Scheduling
  • the LTE system supports two scheduling modes: dynamic scheduling and SPS.
  • Dynamic scheduling is applicable to services where the arrival time of service data is relatively random or the packet size is irregular.
  • the SPS is mainly applicable to services with a service data SPS period and a fixed packet size.
  • the SPS is mainly designed for the voice service.
  • the typical characteristics of the voice service are that the data packet arrival interval is fixed and the data packet size is basically fixed. Therefore, only one SPS periodically repeated SPS needs to be configured when configuring the SPS frequency domain resources.
  • the frequency domain resources can be.
  • V2X communication mainly includes three aspects:
  • V2V Vehicle-to-Vechile, car to car
  • OBU On Broad Unit
  • V2I Vehicle-to-Infrastructure
  • RSU Raster Side Unit
  • V2P Vehicle-to-Pedestrian, car to pedestrian
  • the V2V service is characterized in that the SPS period of the service data packet arrives (the SPS period is 100 ms), but the data packet size is not basically fixed, and the service data packet carrying the complete certificate is large, and other data packets are relatively small. Therefore, from the perspective of the business model, the V2V business model is a large package followed by several small packets, and then a large package, followed by several small packets, which are repeated in a loop.
  • the current LTE SPS mode is applied to the V2X communication mode, which causes waste of resources or increases overhead.
  • the present application provides a method and a device for configuring and determining semi-persistent scheduling, which are used to solve the problem that the LTE SPS mode existing in the prior art is applied to the V2X communication mode, which may cause waste of resources or increase overhead.
  • a method for configuring semi-persistent scheduling is provided in an embodiment of the present application, where the method includes:
  • the network side device determines the SPS C-RNTI (Cell Radio Network Temporary Identifier) corresponding to the multiple sets of SPS configurations;
  • the network side device sends the SPS period and/or the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal by using the PDCCH signaling that is scrambled by the SPS C-RNTI.
  • the network side device sends the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal by using the PDCCH signaling that is scrambled by the SPS C-RNTI;
  • the network side device Before the network side device uses the PDCCH signaling that is scrambled by the SPS C-RNTI to send the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal, the network side device further includes:
  • the network side device sends the SPS period corresponding to each set of SPS configurations to the terminal through RRC signaling.
  • the network side device sends, by using RRC signaling, the SPS period corresponding to each SPS configuration to the terminal, including:
  • the network side device For the same SPS period, the network side device carries one of the same SPS periods in one RRC signaling.
  • all or part of the SPS configurations have the same SPS period
  • the network side device uses the PDCCH signaling that is scrambled by the SPS C-RNTI to send the SPS period corresponding to each SPS configuration to the terminal, and further includes:
  • the network side device For the same SPS period, the network side device carries one of the same SPS periods in one PDCCH signaling.
  • the SPS periods corresponding to multiple sets of SPS configurations are not completely the same;
  • the network side device Before the network side device sends the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal, the network side device further includes:
  • the network side device carries the correspondence between the SPS period and the SPS frequency domain resource configuration information in the PDCCH signaling.
  • the SPS frequency domain resource configuration information corresponding to all or part of the SPS configuration is the same;
  • the network side device Before the network side device uses the PDCCH signaling that is scrambled by the SPS C-RNTI to send the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal, the network side device further includes:
  • the network side device For the same SPS frequency domain resource configuration information, the network side device carries one of the same SPS frequency domain resource configuration information in one PDCCH signaling.
  • the method before the network side device sends the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal, the method further includes:
  • the network side device carries the SPS configuration number information in the PDCCH signaling, and is used to indicate an SPS configuration number corresponding to the SPS configuration.
  • the network side device sends the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal, and further includes:
  • the network side device adds the offset value of the SPS frequency domain resource corresponding to the SPS configuration in the time domain in the PDCCH signaling that carries the SPS frequency domain resource configuration information corresponding to the SPS configuration.
  • the offset value of the SPS frequency domain resource corresponding to the SPS configuration in the time domain is used to indicate the PDCCH signaling of the SPS configuration effective time relative to the SPS frequency domain resource offset value corresponding to the SPS configuration.
  • the time domain offset value of the receiving time is used to indicate the PDCCH signaling of the SPS configuration effective time relative to the SPS frequency domain resource offset value corresponding to the SPS configuration.
  • the network side device after the network side device sends the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal, the network side device further includes:
  • the network side device releases the multiple sets of SPS configurations configured for the terminal by using at least one PDCCH signaling scrambled by the SPS C-RNTI.
  • the network side device after the network side device sends the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal, the network side device further includes:
  • the SPS is configured as an uplink SPS configuration.
  • the network side device releases the SPS configuration after receiving a continuous padding BSR with no data portion through the corresponding resources of the SPS configuration.
  • the network side device after the network side device sends the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal, the network side device further includes:
  • the network side device configures the multiple sets of SPS as the SPS configuration that the terminal needs to use;
  • the network side device determines, according to the set selection condition, the SPS configuration that the terminal needs to use from the multiple sets of SPS configurations.
  • the selection condition is one of the following conditions:
  • a method for determining semi-persistent scheduling is provided by an embodiment of the present application, where the method includes:
  • the terminal determines the SPS C-RNTI corresponding to the multiple sets of SPS configurations
  • the network side device Determining, by the network side device, the SPS period and/or the SPS frequency domain resource configuration information corresponding to the multiple SPS configurations configured by the network side device according to the SPS C-RNTI scrambled PDCCH signaling, and determining, according to the determined The information identifies multiple sets of SPS configurations.
  • the terminal determines, according to the PDCCH signaling that is scrambled by the SPS C-RNTI, the SPS frequency domain resource configuration information corresponding to the multiple SPS configurations configured by the network side device for the terminal;
  • the terminal Before determining, by the terminal, the multiple sets of SPS configurations according to the determined information, the terminal further includes:
  • the terminal determines, by using RRC signaling, an SPS period corresponding to multiple sets of SPS configurations configured by the network side device for the terminal.
  • the terminal further includes:
  • the terminal configures the multiple sets of SPS as the SPS configuration that the terminal needs to use;
  • the terminal determines the SPS configuration that the terminal needs to use from the multiple sets of SPS configurations according to the set selection conditions.
  • the selection condition is one of the following conditions:
  • the terminal further includes:
  • the SPS is configured as an uplink SPS configuration.
  • the terminal For each set of SPS, the terminal sends a continuous N padding BSRs with no data part to the network side device by using the resources of the SPS to notify the network side.
  • the device releases the SPS configuration.
  • a network side device configured with a semi-persistent scheduling is provided in the embodiment of the present disclosure, where the network side device includes:
  • a first identifier determining module configured to determine an SPS C-RNTI corresponding to multiple sets of SPS configurations
  • a processing module configured to send multiple sets of SPS configurations to the terminal by using the PDCCH signaling scrambled by the SPS C-RNTI Set the corresponding SPS period and/or SPS frequency domain resource configuration information.
  • processing module is further configured to:
  • the SPS C-RNTI scrambled PDCCH signaling is used to send the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal
  • the PDCCH signaling scrambled by the SPS C-RNTI is used to send the PDCCH signaling to the terminal.
  • the SPS period corresponding to each SPS configuration is sent to the terminal through RRC signaling.
  • processing module is specifically configured to:
  • one of the same SPS periods is carried in one RRC signaling.
  • all or part of the SPS configurations have the same SPS period
  • the processing module is further configured to:
  • the PDCCH signaling scrambled by the SPS C-RNTI is used to transmit one of the same SPS periods in one PDCCH signaling for the same SPS period before transmitting the SPS period corresponding to each SPS configuration to the terminal.
  • the SPS periods corresponding to multiple sets of SPS configurations are not completely the same;
  • the processing module is further configured to:
  • the PDCCH signaling Before transmitting the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal, the PDCCH signaling carries the correspondence between the SPS period and the SPS frequency domain resource configuration information.
  • the SPS frequency domain resource configuration information corresponding to all or part of the SPS configuration is the same;
  • the processing module is further configured to:
  • the PDCCH signaling that is scrambled by the SPS C-RNTI is used to transmit the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal, and the same SPS frequency domain resource configuration information is carried in one PDCCH signaling.
  • the same SPS frequency domain resource configuration information is described.
  • processing module is further configured to:
  • the PDCCH signaling Before transmitting the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal, the PDCCH signaling carries the SPS configuration number information, and is used to indicate the SPS configuration number corresponding to the SPS configuration.
  • processing module is further configured to:
  • the PDCCH signaling carrying the SPS frequency domain resource configuration information corresponding to the SPS configuration is added to the offset value of the SPS frequency domain resource corresponding to the SPS configuration in the time domain;
  • the offset value of the SPS frequency domain resource corresponding to the SPS configuration in the time domain is used to indicate the PDCCH signaling of the SPS configuration effective time relative to the SPS frequency domain resource offset value corresponding to the SPS configuration.
  • the time domain offset value of the receiving time is used to indicate the PDCCH signaling of the SPS configuration effective time relative to the SPS frequency domain resource offset value corresponding to the SPS configuration.
  • processing module is further configured to:
  • the multiple SPS configurations configured for the terminal are released by using at least one PDCCH signaling that is scrambled by the SPS C-RNTI.
  • processing module is further configured to:
  • the SPS frequency domain resource configuration information corresponding to the SPS configuration After sending the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal, if the SPS is configured as the uplink SPS configuration, for each SPS configuration, the consecutive N data are received through the resources corresponding to the SPS configuration. After the part of the padding BSR, the SPS configuration is released.
  • processing module is further configured to:
  • the SPS frequency domain resource configuration information corresponding to the SPS configuration is sent to the terminal, if the multiple SPS configurations are not overlapped in the time domain, the multiple SPS configurations are used as the SPS configuration required by the terminal;
  • the multiple sets of SPS configurations overlap in the time domain, and the SPS configurations that the terminal needs to use are determined from the multiple sets of SPS configurations according to the set selection conditions.
  • the selection condition is one of the following conditions:
  • the embodiment of the present application provides a terminal for determining a semi-persistent scheduling, where the terminal includes:
  • a second identifier determining module configured to determine an SPS C-RNTI corresponding to multiple sets of SPS configurations
  • a receiving module configured to receive the PDCCH signaling that is scrambled by the SPS C-RNTI from a network side device;
  • a configuration determining module configured to determine, according to the PDCCH signaling that is scrambled by the SPS C-RNTI, the SPS period and/or the SPS frequency domain resource configuration information corresponding to the multiple SPS configurations configured by the network side device, And determine multiple sets of SPS configurations based on the determined information.
  • the configuration determining module is further configured to:
  • the configuration determining module is further configured to:
  • the multiple sets of SPS configurations do not overlap in the time domain, the multiple sets of SPS configurations are used as the SPS configuration that the terminal needs to use; if the multiple sets of SPS configurations overlap in the time domain, according to the setting The selection condition determines the SPS configuration that the terminal needs to use from the multiple sets of SPS configurations.
  • the selection condition is one of the following conditions:
  • the configuration determining module is further configured to:
  • a padding BSR having no data part is sent to the network side device by using the resource configured by the SPS, to notify the network side device to release The SPS configuration.
  • a network side device configured to configure semi-persistent scheduling, including: a processor, a memory, and a transceiver;
  • a processor for reading a program in the memory performing the following process:
  • Determining SPS C-RNTI corresponding to multiple sets of SPS configurations using the PDCCH signaling scrambled by the SPS C-RNTI, transmitting, by the transceiver, multiple SPS periods and/or SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal;
  • a transceiver for receiving and transmitting data under the control of a processor.
  • the processor is also used to:
  • the SPS C-RNTI scrambled PDCCH signaling is used to send the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal
  • the PDCCH signaling scrambled by the SPS C-RNTI is used to send the PDCCH signaling to the terminal.
  • the SPS period corresponding to each SPS configuration is sent to the terminal through RRC signaling.
  • the processor is specifically configured to:
  • one of the same SPS periods is carried in one RRC signaling.
  • all or part of the SPS configurations have the same SPS period
  • the processor is further configured to:
  • the PDCCH signaling scrambled by the SPS C-RNTI is used to transmit one of the same SPS periods in one PDCCH signaling for the same SPS period before transmitting the SPS period corresponding to each SPS configuration to the terminal.
  • the SPS periods corresponding to multiple sets of SPS configurations are not completely the same;
  • the processor is further configured to:
  • the PDCCH signaling Before transmitting the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal, the PDCCH signaling carries the correspondence between the SPS period and the SPS frequency domain resource configuration information.
  • the SPS frequency domain resource configuration information corresponding to all or part of the SPS configuration is the same;
  • the processor is further configured to:
  • the PDCCH signaling that is scrambled by the SPS C-RNTI is used to transmit the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal, and the same SPS frequency domain resource configuration information is carried in one PDCCH signaling.
  • the same SPS frequency domain resource configuration information is carried in one PDCCH signaling.
  • the processor is further configured to:
  • the PDCCH signaling Before transmitting the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal, the PDCCH signaling carries the SPS configuration number information, and is used to indicate the SPS configuration number corresponding to the SPS configuration.
  • the processor is further configured to:
  • the PDCCH signaling carrying the SPS frequency domain resource configuration information corresponding to the SPS configuration is added to the offset value of the SPS frequency domain resource corresponding to the SPS configuration in the time domain;
  • the offset value of the SPS frequency domain resource corresponding to the SPS configuration in the time domain is used to indicate the PDCCH signaling of the SPS configuration effective time relative to the SPS frequency domain resource offset value corresponding to the SPS configuration.
  • the time domain offset value of the receiving time is used to indicate the PDCCH signaling of the SPS configuration effective time relative to the SPS frequency domain resource offset value corresponding to the SPS configuration.
  • the processor is further configured to:
  • the multiple SPS configurations configured for the terminal are released by using at least one PDCCH signaling that is scrambled by the SPS C-RNTI.
  • the processor is further configured to:
  • the SPS frequency domain resource configuration information corresponding to the SPS configuration After sending the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal, if the SPS is configured as the uplink SPS configuration, for each SPS configuration, the consecutive N data are received through the resources corresponding to the SPS configuration. After the part of the padding BSR, the SPS configuration is released.
  • the processor is further configured to:
  • the SPS frequency domain resource configuration information corresponding to the SPS configuration is sent to the terminal, if the multiple SPS configurations are not overlapped in the time domain, the multiple SPS configurations are used as the SPS configuration required by the terminal;
  • the multiple sets of SPS configurations overlap in the time domain, and the SPS configurations that the terminal needs to use are determined from the multiple sets of SPS configurations according to the set selection conditions.
  • the selection condition is one of the following conditions:
  • the embodiment of the present application provides a terminal for determining semi-persistent scheduling, including: a processor, a memory, and a transceiver;
  • a processor for reading a program in the memory 604 performs the following process:
  • Determining SPS C-RNTI corresponding to multiple sets of SPS configurations receiving, by the transceiver, the SPS C-RNTI scrambled PDCCH signaling from the network side device; determining, according to the PDCCH signaling scrambled by the SPS C-RNTI Network
  • the side device configures corresponding SPS periods and/or SPS frequency domain resource configuration information for the multiple sets of SPS configured by the terminal, and determines multiple sets of SPS configurations according to the determined information;
  • a transceiver for receiving and transmitting data under the control of a processor.
  • the processor is further configured to:
  • the processor is further configured to:
  • the multiple sets of SPS configurations do not overlap in the time domain, the multiple sets of SPS configurations are used as the SPS configuration that the terminal needs to use; if the multiple sets of SPS configurations overlap in the time domain, according to the setting The selection condition determines the SPS configuration that the terminal needs to use from the multiple sets of SPS configurations.
  • the selection condition is one of the following conditions:
  • the processor is further configured to:
  • a padding BSR having no data part is sent to the network side device by using the resource configured by the SPS, to notify the network side device to release The SPS configuration.
  • the network side device sends the SPS period and/or the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal by using the PDCCH signaling that is scrambled by the SPS C-RNTI. Since multiple sets of SPS configurations can be configured to the terminal through PDCCH signaling, the number of SPS configurations is increased compared with the configuration of only one SPS configuration in the background art, thereby reducing resource waste and overhead; and further improving system performance.
  • FIG. 1 is a schematic structural diagram of a system for configuring semi-persistent scheduling according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of overlapping SPS frequency domain resources according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a first network side device according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a first terminal according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a second network side device according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a second terminal according to an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a method for configuring semi-persistent scheduling according to an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a method for determining semi-persistent scheduling according to an embodiment of the present application.
  • the network side device transmits the PDCCH (Physical Downlink Control Channel) signal that is scrambled by the SPS C-RNTI (Cell Radio Network Temporary Identifier) to the terminal.
  • PDCCH Physical Downlink Control Channel
  • SPS C-RNTI Cell Radio Network Temporary Identifier
  • the network side device sends multiple sets of SPS configurations to the terminal, and the terminal determines multiple sets of SPS configurations configured by the network side device.
  • the terminal selects an SPS configuration to be used by the terminal from multiple sets of SPS configurations, and sends data to the network side device through the SPS configuration that the terminal needs to use; correspondingly, if the network side device can determine the terminal use
  • the SPS can detect the SPS used by the terminal. If the SPS used by the terminal cannot be determined, the corresponding resource detection needs to be configured for multiple sets of SPS.
  • the network side device selects an SPS configuration to be used by the terminal from multiple SPS configurations, and sends data to the terminal through the SPS configuration that the terminal needs to use; correspondingly, if the terminal can determine the network side device usage
  • the SPS can detect the SPS used by the network side device. If the SPS used by the network side device cannot be determined, the corresponding resource detection needs to be configured for multiple sets of SPS.
  • the system for configuring semi-persistent scheduling in the embodiment of the present application includes: a network side device 10 and a terminal 20.
  • the network side device 10 is configured to determine the SPS C-RNTI corresponding to the multiple sets of SPS configurations; and use the PDCCH signaling scrambled by the SPS C-RNTI to send the SPS period and/or the SPS frequency domain corresponding to multiple sets of SPS configurations to the terminal.
  • Resource allocation information ;
  • the terminal 20 is configured to determine the SPS C-RNTI corresponding to the multiple sets of SPS configurations, and receive the PDCCH signaling that is scrambled by the SPS C-RNTI from the network side device; according to the PDCCH signaling that is scrambled by the SPS C-RNTI, Determining SPS period and/or SPS frequency domain resource configuration information corresponding to multiple sets of SPS configurations configured by the network side device, and determining multiple sets of SPS configurations according to the determined information.
  • the SPS period and/or the SPS frequency domain resource configuration information in the embodiment of the present application includes three cases: 1. configuring an SPS period by using PDCCH signaling; 2. configuring SPS frequency domain resource configuration information by using PDCCH signaling; Signaling configures SPS period and SPS frequency domain resource configuration information.
  • the SPS frequency domain resource configuration information and the SPS period corresponding to the multiple SPS configurations configured for the terminal are configured.
  • the SPS period and/or the SPS frequency domain resources are different according to the multiple SPS configurations.
  • the specific configuration process is different for each case.
  • Case 1 The SPS cycle parts are the same or all the same, and the SPS frequency domain resources are all different.
  • the SPS period is transmitted through RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the network side device may send the SPS period to the terminal in the RRC signaling including the SPS C-RNTI corresponding to the service;
  • the SPS period corresponding to each SPS configuration of the service is the same, and is the SPS period in the RRC signaling.
  • all SPS frequency domain resource configuration information may be carried in one PDCCH signaling; or one SPS frequency domain resource configuration information may be carried in one PDCCH signaling.
  • the terminal after receiving the PDCCH signaling, the terminal binds the SPS frequency domain resource configuration information in the PDCCH signaling to the SPS period in the RRC signaling, and can determine each SPS configuration.
  • all SPS frequency domain resource configuration information may be carried in one PDCCH signaling; or one SPS frequency domain resource configuration information may be carried in one PDCCH signaling.
  • the network side device sends the SPS frequency domain resource configuration information and the SPS period to the terminal in the PDCCH signaling that is scrambled by using the SPS C-RNTI;
  • each SPS frequency domain resource configuration information is bound to the SPS period respectively; if the PDCCH is In the order of one SPS period and one SPS frequency domain resource configuration information, the SPS frequency domain in the PDCCH signaling is used.
  • the resource configuration information is bound to the SPS period in the PDCCH signaling.
  • the network side device carries the SPS configuration number information in the PDCCH signaling, and is used to indicate an SPS configuration number corresponding to the SPS configuration.
  • the SPS configuration number can be N bits.
  • the value of N depends on the number of sets of SPS configurations for a service. For example, if a service requires 2 sets of SPS configurations, then the value of N can be 2 bits. Identify the first set of SPS configurations with 00, identify the reconfiguration for the first set of SPS configurations with 01, identify the second set of SPS configurations with 10, and identify the reconfiguration for the second set of SPS configurations with 11.
  • the network side device adds the SPS frequency domain resource corresponding to the SPS configuration to the time domain in the PDCCH signaling that carries the SPS frequency domain resource configuration information corresponding to the SPS configuration. Offset value;
  • the offset value of the SPS frequency domain resource corresponding to the SPS configuration in the time domain is used to indicate the PDCCH signaling of the SPS configuration effective time relative to the SPS frequency domain resource offset value corresponding to the SPS configuration.
  • the time domain offset value of the receiving time For example, the terminal receives the SPS C-RNTI scrambled PDCCH signaling in the subframe n, and the carried time domain offset value is m, and the SPS frequency domain resource carried by the PDCCH is effective from the subframe n+m.
  • the network side device may send the SPS period to the terminal in the RRC signaling including the SPS C-RNTI corresponding to the service (only one of the same SPS period needs to be sent);
  • the network side device when the SPS frequency domain resource is sent, may carry all SPS frequency domain resource configuration information in one PDCCH signaling, or may carry one SPS frequency domain resource configuration information in one PDCCH signaling.
  • the network side device may set the SPS frequency domain resource configuration information to the PDCCH signaling scrambled by using the SPS C-RNTI, and in the PDCCH signaling. Corresponding relationship between the SPS period and the SPS frequency domain resource configuration information;
  • the terminal after receiving the PDCCH signaling, the terminal knows which SPS frequency domain resource in the PDCCH signaling according to the correspondence between the SPS period and the SPS frequency domain resource configuration information in the PDCCH signaling scrambled by the SPS C-RNTI.
  • the configuration information corresponds to which SPS cycle in the RRC signaling.
  • the network side device may set the SPS frequency domain resource configuration information to the PDCCH signaling scrambled by using the SPS C-RNTI, and in the PDCCH signal.
  • the command carries the correspondence between the SPS frequency domain resource configuration information and the SPS period.
  • the terminal after receiving the PDCCH signaling, the terminal knows the SPS frequency domain resource in the PDCCH signaling according to the correspondence between the SPS period and the SPS frequency domain resource configuration information in the PDCCH signaling that is scrambled by the SPS C-RNTI.
  • the configuration information corresponds to which SPS cycle in the RRC signaling.
  • the network side device when the SPS frequency domain resource is sent, may carry all SPS frequency domain resource configuration information in one PDCCH signaling, or may carry one SPS frequency domain resource configuration information in one PDCCH signaling.
  • the network side device may set the SPS frequency domain resource configuration information and all SPS periods to the PDCCH signaling that is scrambled by using the SPS C-RNTI. And carrying the correspondence between the SPS period and the SPS frequency domain resource configuration information in the PDCCH signaling;
  • the terminal after receiving the PDCCH signaling, the terminal knows which SPS frequency domain resource in the PDCCH signaling according to the correspondence between the SPS period and the SPS frequency domain resource configuration information in the PDCCH signaling scrambled by the SPS C-RNTI. Which SPS period the configuration information corresponds to.
  • the network side device may set the SPS period corresponding to the SPS frequency domain resource configuration information and the SPS frequency domain resource configuration information to be used by using the SPS C-RNTI. Disturbed PDCCH signaling;
  • the terminal after receiving the PDCCH signaling, the terminal knows that the SPS frequency domain resource configuration information in the PDCCH signaling corresponds to the SPS period in the PDCCH signaling.
  • the network side device may further carry SPS configuration number information in the PDCCH signaling, and is used to indicate an SPS configuration number corresponding to the SPS configuration.
  • the SPS configuration number can be N bits.
  • the value of N depends on the number of sets of SPS configurations for a service. For example, if a service requires 2 sets of SPS configurations, then the value of N can be 2 bits. Identify the first set of SPS configurations with 00, identify the reconfiguration for the first set of SPS configurations with 01, identify the second set of SPS configurations with 10, and identify the reconfiguration for the second set of SPS configurations with 11.
  • the network side device adds the SPS frequency domain resource corresponding to the SPS configuration to the time domain in the PDCCH signaling that carries the SPS frequency domain resource configuration information corresponding to the SPS configuration. Offset value;
  • the offset value of the SPS frequency domain resource corresponding to the SPS configuration in the time domain is used to indicate the PDCCH signaling of the SPS configuration effective time relative to the SPS frequency domain resource offset value corresponding to the SPS configuration.
  • the time domain offset value of the receiving time is used to indicate the PDCCH signaling of the SPS configuration effective time relative to the SPS frequency domain resource offset value corresponding to the SPS configuration.
  • Case 2 The SPS period is different, and the SPS frequency domain resources are partially the same or all the same.
  • the SPS frequency domain resources are all the same.
  • the network side device may send the SPS period to the terminal in the RRC signaling including the SPS C-RNTI corresponding to the service;
  • the terminal knows that all SPS periods in the RRC signaling correspond to the same service.
  • the network side device may put one SPS frequency domain resource configuration information into the PDCCH signaling, and use the SPS C-RNTI to scramble;
  • the terminal after receiving the PDCCH signaling that is scrambled by the SPS C-RNTI, if the PDCCH signaling includes an SPS frequency domain resource configuration information, the terminal knows that all SPS frequency domain resource configuration information corresponding to the service is the same.
  • Each SPS configuration can be determined by binding the SPS frequency domain resource configuration information to each SPS cycle in the RRC signaling.
  • the network side device may put one SPS frequency domain resource configuration information and all RRC signaling into the PDCCH signaling, and use the SPS C-RNTI to scramble;
  • the terminal after receiving the PDCCH signaling that is scrambled by the SPS C-RNTI, if the PDCCH signaling includes an SPS frequency domain resource configuration information, the terminal knows that all SPS frequency domain resource configuration information corresponding to the service is the same.
  • Each SPS configuration can be determined by binding the SPS frequency domain resource configuration information to each SPS cycle in the PDCCH signaling.
  • the network side device carries the SPS configuration number information in the PDCCH signaling, and is used to indicate an SPS configuration number corresponding to the SPS configuration.
  • the SPS configuration number can be N bits.
  • the value of N depends on the number of sets of SPS configurations for a service. For example, if a service requires 2 sets of SPS configurations, then the value of N can be 2 bits. Identify the first set of SPS configurations with 00, identify the reconfiguration for the first set of SPS configurations with 01, identify the second set of SPS configurations with 10, and identify the reconfiguration for the second set of SPS configurations with 11.
  • the network side device adds the SPS frequency domain resource corresponding to the SPS configuration to the time domain in the PDCCH signaling that carries the SPS frequency domain resource configuration information corresponding to the SPS configuration. Offset value;
  • the offset value of the SPS frequency domain resource corresponding to the SPS configuration in the time domain is used to indicate the SPS configuration.
  • SPS frequency domain resources are the same, the same SPS frequency domain resource configuration information needs to be sent to the terminal, and different SPS periods are sent to the terminal.
  • the SPS frequency domain resources are partially the same, and some SPS frequency domain resource configuration information is the same, and some SPS frequency domain resource configuration information is different.
  • the network side device may send the SPS period to the terminal in the RRC signaling including the SPS C-RNTI corresponding to the service;
  • the network side device when the SPS frequency domain resource is sent, may carry all SPS frequency domain resource configuration information in one PDCCH signaling, or may carry one SPS frequency domain resource configuration information in one PDCCH signaling.
  • the network side device may set the SPS frequency domain resource configuration information to the PDCCH signaling scrambled by using the SPS C-RNTI, and in the PDCCH signaling. Corresponding relationship between the SPS period and the SPS frequency domain resource configuration information;
  • the terminal after receiving the PDCCH signaling, the terminal knows which SPS frequency domain resource in the PDCCH signaling according to the correspondence between the SPS period and the SPS frequency domain resource configuration information in the PDCCH signaling scrambled by the SPS C-RNTI.
  • the configuration information corresponds to which SPS cycle in the RRC signaling.
  • the network side device may set the SPS frequency domain resource configuration information to the PDCCH signaling scrambled by using the SPS C-RNTI, and in the PDCCH signaling. Carrying the correspondence between the SPS frequency domain resource configuration information and the SPS period.
  • the terminal after receiving the PDCCH signaling, the terminal knows the SPS frequency domain resource in the PDCCH signaling according to the correspondence between the SPS period and the SPS frequency domain resource configuration information in the PDCCH signaling that is scrambled by the SPS C-RNTI.
  • the configuration information corresponds to which SPS cycle in the RRC signaling.
  • the network side device when the SPS frequency domain resource is sent, may carry all SPS frequency domain resource configuration information in one PDCCH signaling, or may carry one SPS frequency domain resource configuration information in one PDCCH signaling.
  • the network side device may set all SPS frequency domain resource configuration information and all SPS periods to the PDCCH scrambled by using the SPS C-RNTI. Signaling, and carrying the correspondence between the SPS period and the SPS frequency domain resource configuration information in the PDCCH signaling;
  • the terminal after receiving the PDCCH signaling, the terminal knows which SPS frequency domain resource in the PDCCH signaling according to the correspondence between the SPS period and the SPS frequency domain resource configuration information in the PDCCH signaling scrambled by the SPS C-RNTI. Which SPS period the configuration information corresponds to.
  • the network side device may set the SPS period corresponding to the SPS frequency domain resource configuration information and the SPS frequency domain resource configuration information to be used by using the SPS C-RNTI. Disturbed PDCCH signaling;
  • the terminal after receiving the PDCCH signaling, the terminal knows that the SPS frequency domain resource configuration information in the PDCCH signaling corresponds to the SPS period in the PDCCH signaling.
  • the network side device may further carry SPS configuration number information in the PDCCH signaling, and is used to indicate an SPS configuration number corresponding to the SPS configuration.
  • the SPS configuration number can be N bits.
  • the value of N depends on the number of sets of SPS configurations for a service. For example, if a service requires 2 sets of SPS configurations, then the value of N can be 2 bits. Identify the first set of SPS configurations with 00, identify the reconfiguration for the first set of SPS configurations with 01, identify the second set of SPS configurations with 10, and identify the reconfiguration for the second set of SPS configurations with 11.
  • the network side device adds the SPS frequency domain resource corresponding to the SPS configuration to the time domain in the PDCCH signaling that carries the SPS frequency domain resource configuration information corresponding to the SPS configuration. Offset value;
  • the offset value of the SPS frequency domain resource corresponding to the SPS configuration in the time domain is used to indicate the PDCCH signaling of the SPS configuration effective time relative to the SPS frequency domain resource offset value corresponding to the SPS configuration.
  • the time domain offset value of the receiving time is used to indicate the PDCCH signaling of the SPS configuration effective time relative to the SPS frequency domain resource offset value corresponding to the SPS configuration.
  • Case 3 The SPS cycle is different, and the SPS frequency domain resources are all different.
  • the network side device may send the SPS period to the terminal in the RRC signaling including the SPS C-RNTI corresponding to the service;
  • the terminal knows that all SPS periods in the RRC signaling correspond to the same service.
  • the network side device when the SPS frequency domain resource is sent, may carry all SPS frequency domain resource configuration information in one PDCCH signaling, or may carry one SPS frequency domain resource configuration information in one PDCCH signaling.
  • the network side device may set the SPS frequency domain resource configuration information to the PDCCH signaling scrambled by using the SPS C-RNTI, and in the PDCCH signal.
  • the command carries the correspondence between the SPS period and the SPS frequency domain resource configuration information;
  • the terminal after receiving the PDCCH signaling, the terminal knows which SPS frequency domain resource in the PDCCH signaling according to the correspondence between the SPS period and the SPS frequency domain resource configuration information in the PDCCH signaling scrambled by the SPS C-RNTI.
  • the configuration information corresponds to which SPS cycle in the RRC signaling.
  • the network side device may set the SPS frequency domain resource configuration information to the PDCCH signaling scrambled by using the SPS C-RNTI, and in the PDCCH signaling. Carrying the correspondence between the SPS frequency domain resource configuration information and the SPS period.
  • the terminal after receiving the PDCCH signaling, the terminal knows the SPS frequency domain resource in the PDCCH signaling according to the correspondence between the SPS period and the SPS frequency domain resource configuration information in the PDCCH signaling that is scrambled by the SPS C-RNTI.
  • the configuration information corresponds to which SPS cycle in the RRC signaling.
  • the network side device when the SPS frequency domain resource is sent, may carry all SPS frequency domain resource configuration information in one PDCCH signaling, or may carry one SPS frequency domain resource configuration information in one PDCCH signaling.
  • the network side device may set all SPS frequency domain resource configuration information and all SPS periods to the PDCCH signal scrambled by using the SPS C-RNTI. And carrying the correspondence between the SPS period and the SPS frequency domain resource configuration information in the PDCCH signaling;
  • the terminal after receiving the PDCCH signaling, the terminal knows which SPS frequency domain resource in the PDCCH signaling according to the correspondence between the SPS period and the SPS frequency domain resource configuration information in the PDCCH signaling scrambled by the SPS C-RNTI. Which SPS period the configuration information corresponds to.
  • the network side device may set the SPS period corresponding to the SPS frequency domain resource configuration information and the SPS frequency domain resource configuration information to be used by using the SPS C-RNTI. Disturbed PDCCH signaling;
  • the terminal after receiving the PDCCH signaling, the terminal knows that the SPS frequency domain resource configuration information in the PDCCH signaling corresponds to the SPS period in the PDCCH signaling.
  • the network side device may further carry SPS configuration number information in the PDCCH signaling, and is used to indicate an SPS configuration number corresponding to the SPS configuration.
  • the SPS configuration number can be N bits.
  • the value of N depends on the number of sets of SPS configurations for a service. For example, if a service requires 2 sets of SPS configurations, then the value of N can be 2 bits. Identify the first set of SPS configurations with 00, identify the reconfiguration for the first set of SPS configurations with 01, identify the second set of SPS configurations with 10, and identify the reconfiguration for the second set of SPS configurations with 11.
  • the network side device adds the SPS frequency domain resource corresponding to the SPS configuration to the time domain in the PDCCH signaling that carries the SPS frequency domain resource configuration information corresponding to the SPS configuration. Offset value;
  • the offset value of the SPS frequency domain resource corresponding to the SPS configuration in the time domain is used to indicate the PDCCH signaling of the SPS configuration effective time relative to the SPS frequency domain resource offset value corresponding to the SPS configuration.
  • the time domain offset value of the receiving time is used to indicate the PDCCH signaling of the SPS configuration effective time relative to the SPS frequency domain resource offset value corresponding to the SPS configuration.
  • the above describes the network side device to configure multiple sets of SPS configurations for the terminal.
  • the service transmission can be performed according to the SPS configuration.
  • the network side device is a transmitting end; the terminal is a receiving end;
  • the network side device is the receiving end; the terminal is the transmitting end.
  • the receiving end can predict the SPS configuration (such as information according to the service model) that the terminal selects from the multiple SPS configurations, the SPS data can be received according to the SPS configuration that the predicted terminal needs to use. Otherwise, multiple sets of SPS resources need to be blindly detected.
  • the receiving end can agree on the specific selected condition.
  • the SPS configuration that the transmitting end needs to use from the multiple SPS configurations, and the terminal needs to be used directly.
  • the SPS configuration is detected.
  • the network side device configures the multiple sets of SPS as the SPS configuration that the terminal needs to use;
  • the network side device determines, according to the set selection condition, the SPS configuration that the terminal needs to use from the multiple sets of SPS configurations.
  • the selection condition is one of the following conditions:
  • V2V Take V2V as an example.
  • the sender has two sets of SPS configurations for the same service.
  • the senders determine the SPS frequency domain resources in the time domain according to the maximum SPS frequency domain resource block.
  • the SPS frequency domain resources finally determined by the sender are as shown in the figure. 2 is shown.
  • the T1 position overlaps with the SP1 frequency domain resource at the T1+500ms position, and the SPS configuration 2 is selected according to the maximum SPS frequency domain resource block. Since the other locations do not overlap with the SPS frequency domain resources, the SPS frequency domain resources that can be used are selected.
  • the T1 position and the T1+500 ms position SPS frequency domain resources overlap, and it is necessary to select SPS configuration 1.
  • an SPS frequency domain resource block not less than the data to be transmitted is selected according to the size of the data to be transmitted, for example, in FIG. 2, the T1 position and the T1+500 ms position SPS frequency. The domain resources overlap. If SPS configuration 1 is selected, the data to be transmitted can be transmitted, then SPS configuration 1 is selected. If SPS configuration 1 cannot transmit the data to be transmitted, and SPS configuration 2 can transmit the data to be transmitted, select SPS configuration 2.
  • the network side device can release multiple SPS configurations when the SPS configuration needs to be released.
  • the terminal sends, by using the resources configured by the SPS, a continuous N padding BSR (Buffer Status Report) with no data part.
  • BSR Buffer Status Report
  • Status reporting configured to notify the network side device to release the SPS configuration
  • the network side device releases the SPS configuration for the terminal after receiving the consecutive N padding BSRs without data portions through the frequency domain resources corresponding to the SPS configuration.
  • the network side device uses the at least one PDCCH signaling that is scrambled by the SPS C-RNTI to release multiple sets of SPS configurations configured for the terminal (for example, taking a special value of a certain field in the PDCCH signaling to indicate the PDCCH) Signaling is PDCCH signaling for release);
  • the terminal after receiving the at least one PDCCH signaling for the release that is scrambled by the SPS C-RNTI, the terminal releases multiple sets of SPS configurations.
  • the network side device in the embodiment of the present application may be a base station (such as a macro base station (including an evolved base station, etc.), a home base station, etc.), or an RN (relay) device, or other network side devices.
  • a base station such as a macro base station (including an evolved base station, etc.), a home base station, etc.), or an RN (relay) device, or other network side devices.
  • the first network side device in this embodiment of the present application includes:
  • the first identifier determining module 300 is configured to determine an SPS C-RNTI corresponding to multiple sets of SPS configurations
  • the processing module 301 is configured to send, by using the PDCCH signaling that is scrambled by the SPS C-RNTI, the SPS period and/or the SPS frequency domain resource configuration information corresponding to multiple sets of SPS configurations to the terminal.
  • processing module 301 is further configured to:
  • the frequency domain resource configuration information is used to send each SPS configuration to the terminal through RRC signaling before sending the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal by using the PDCCH signaling that is scrambled by the SPS C-RNTI. Corresponding SPS cycle.
  • processing module 301 is specifically configured to:
  • one of the same SPS periods is carried in one RRC signaling.
  • all or part of the SPS configurations have the same SPS period
  • the processing module 301 is further configured to:
  • the PDCCH signaling scrambled by the SPS C-RNTI is used to transmit one of the same SPS periods in one PDCCH signaling for the same SPS period before transmitting the SPS period corresponding to each SPS configuration to the terminal.
  • the SPS periods corresponding to multiple sets of SPS configurations are not completely the same;
  • the processing module 301 is further configured to:
  • the PDCCH signaling Before transmitting the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal, the PDCCH signaling carries the correspondence between the SPS period and the SPS frequency domain resource configuration information.
  • the SPS frequency domain resource configuration information corresponding to all or part of the SPS configuration is the same;
  • the processing module 301 is further configured to:
  • the PDCCH signaling that is scrambled by the SPS C-RNTI is used to transmit the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal, and the same SPS frequency domain resource configuration information is carried in one PDCCH signaling.
  • the same SPS frequency domain resource configuration information is described.
  • processing module 301 is further configured to:
  • the PDCCH signaling Before transmitting the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal, the PDCCH signaling carries the SPS configuration number information, and is used to indicate the SPS configuration number corresponding to the SPS configuration.
  • processing module 301 is further configured to:
  • the PDCCH signaling carrying the SPS frequency domain resource configuration information corresponding to the SPS configuration is added to the offset value of the SPS frequency domain resource corresponding to the SPS configuration in the time domain;
  • the offset value of the SPS frequency domain resource corresponding to the SPS configuration in the time domain is used to indicate the PDCCH signaling of the SPS configuration effective time relative to the SPS frequency domain resource offset value corresponding to the SPS configuration.
  • the time domain offset value of the receiving time is used to indicate the PDCCH signaling of the SPS configuration effective time relative to the SPS frequency domain resource offset value corresponding to the SPS configuration.
  • processing module 301 is further configured to:
  • the multiple SPS configurations configured for the terminal are released by using at least one PDCCH signaling that is scrambled by the SPS C-RNTI.
  • processing module 301 is further configured to:
  • the SPS frequency domain resource configuration information corresponding to the SPS configuration After sending the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal, if the SPS is configured as the uplink SPS configuration, for each SPS configuration, the consecutive N data are received through the resources corresponding to the SPS configuration. After the part of the padding BSR, the SPS configuration is released.
  • processing module 301 is further configured to:
  • the SPS frequency domain resource configuration information corresponding to the SPS configuration is sent to the terminal, if the multiple SPS configurations are not overlapped in the time domain, the multiple SPS configurations are used as the SPS configuration required by the terminal;
  • the multiple sets of SPS configurations overlap in the time domain, and the SPS configurations that the terminal needs to use are determined from the multiple sets of SPS configurations according to the set selection conditions.
  • the selection condition is one of the following conditions:
  • the first terminal in this embodiment of the present application includes:
  • the second identifier determining module 400 is configured to determine an SPS C-RNTI corresponding to multiple sets of SPS configurations
  • the receiving module 401 is configured to receive the PDCCH signaling that is scrambled by the SPS C-RNTI from the network side device;
  • the configuration determining module 402 is configured to determine, according to the SPS C-RNTI scrambled PDCCH signaling, the SPS period and/or the SPS frequency domain resource configuration information corresponding to the multiple SPS configurations configured by the network side device for the terminal, and Multiple sets of SPS configurations are determined based on the determined information.
  • the configuration determining module 402 is further configured to:
  • the SPS period corresponding to the multiple sets of SPS configurations configured by the network side device for the terminal is determined by RRC signaling.
  • the configuration determining module 402 is further configured to:
  • the multiple sets of SPS configurations do not overlap in the time domain, the multiple sets of SPS configurations are used as the SPS configuration that the terminal needs to use; if the multiple sets of SPS configurations overlap in the time domain, according to the setting The selection condition determines the SPS configuration that the terminal needs to use from the multiple sets of SPS configurations.
  • the selection condition is one of the following conditions:
  • the configuration determining module 402 is further configured to:
  • a padding BSR having no data part is sent to the network side device by using the resource configured by the SPS, to notify the network side device to release The SPS configuration.
  • the second network side device in this embodiment of the present application includes:
  • the processor 501 is configured to read a program in the memory 504 and perform the following process:
  • the transceiver 502 is configured to receive and transmit data under the control of the processor 501.
  • processor 501 is further configured to:
  • the SPS C-RNTI scrambled PDCCH signaling is used to send the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal
  • the PDCCH signaling scrambled by the SPS C-RNTI is used to send the PDCCH signaling to the terminal.
  • the SPS period corresponding to each SPS configuration is sent to the terminal through RRC signaling.
  • the processor 501 is specifically configured to:
  • one of the same SPS periods is carried in one RRC signaling.
  • all or part of the SPS configurations have the same SPS period
  • the processor 501 is further configured to:
  • the PDCCH signaling scrambled by the SPS C-RNTI is used to transmit one of the same SPS periods in one PDCCH signaling for the same SPS period before transmitting the SPS period corresponding to each SPS configuration to the terminal.
  • the SPS periods corresponding to multiple sets of SPS configurations are not completely the same;
  • the processor 501 is further configured to:
  • the PDCCH signaling Before transmitting the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal, the PDCCH signaling carries the correspondence between the SPS period and the SPS frequency domain resource configuration information.
  • the SPS frequency domain resource configuration information corresponding to all or part of the SPS configuration is the same;
  • the processor 501 is further configured to:
  • the PDCCH signaling that is scrambled by the SPS C-RNTI is used to transmit the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal, and the same SPS frequency domain resource configuration information is carried in one PDCCH signaling.
  • the same SPS frequency domain resource configuration information is described.
  • processor 501 is further configured to:
  • the PDCCH signaling Before transmitting the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal, the PDCCH signaling carries the SPS configuration number information, and is used to indicate the SPS configuration number corresponding to the SPS configuration.
  • processor 501 is further configured to:
  • the PDCCH signaling carrying the SPS frequency domain resource configuration information corresponding to the SPS configuration is added to the offset value of the SPS frequency domain resource corresponding to the SPS configuration in the time domain;
  • the offset value of the SPS frequency domain resource corresponding to the SPS configuration in the time domain is used to indicate the PDCCH signaling of the SPS configuration effective time relative to the SPS frequency domain resource offset value corresponding to the SPS configuration.
  • the time domain offset value of the receiving time is used to indicate the PDCCH signaling of the SPS configuration effective time relative to the SPS frequency domain resource offset value corresponding to the SPS configuration.
  • processor 501 is further configured to:
  • the multiple SPS configurations configured for the terminal are released by using at least one PDCCH signaling that is scrambled by the SPS C-RNTI.
  • processor 501 is further configured to:
  • the SPS frequency domain resource configuration information corresponding to the SPS configuration After sending the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal, if the SPS is configured as the uplink SPS configuration, for each SPS configuration, the consecutive N data are received through the resources corresponding to the SPS configuration. After the part of the padding BSR, the SPS configuration is released.
  • processor 501 is further configured to:
  • the SPS frequency domain resource configuration information corresponding to the SPS configuration is sent to the terminal, if the multiple SPS configurations are not overlapped in the time domain, the multiple SPS configurations are used as the SPS configuration required by the terminal;
  • the multiple sets of SPS configurations overlap in the time domain, and the SPS configurations that the terminal needs to use are determined from the multiple sets of SPS configurations according to the set selection conditions.
  • the selection condition is one of the following conditions:
  • bus 500 can include any number of interconnected buses and bridges, and bus 500 will include one or more processors represented by processor 501 and memory represented by memory 504. The various circuits are linked together. The bus 500 can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art, and therefore, will not be further described herein.
  • Bus interface 503 provides an interface between bus 500 and transceiver 502. Transceiver 502 can be an element or a plurality of elements, such as multiple receivers and transmitters, providing means for communicating with various other devices on a transmission medium. Data processed by processor 501 is transmitted over wireless medium via antenna 505. Further, antenna 505 also receives the data and transmits the data to processor 501.
  • the processor 501 is responsible for managing the bus 500 and the usual processing, and can also provide various functions including timing, peripherals. Interface, voltage regulation, power management and other control functions.
  • the memory 504 can be used to store data used by the processor 501 when performing operations.
  • the processor 501 may be a CPU (Central Embedded Device), an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a CPLD (Complex Programmable Logic Device). , complex programmable logic devices).
  • CPU Central Embedded Device
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • the second terminal in this embodiment of the present application includes:
  • the processor 601 is configured to read a program in the memory 604 and perform the following process:
  • Determining SPS C-RNTI corresponding to multiple sets of SPS configurations receiving, by the transceiver 602, the SPS C-RNTI scrambled PDCCH signaling from the network side device; determining, according to the SPS C-RNTI scrambled PDCCH signaling, The network side device configures corresponding SPS periods and/or SPS frequency domain resource configuration information for multiple sets of SPSs configured by the terminal, and determines multiple sets of SPS configurations according to the determined information;
  • the transceiver 602 is configured to receive and transmit data under the control of the processor 601.
  • the processor 601 is further configured to:
  • the SPS period corresponding to the multiple sets of SPS configurations configured by the network side device for the terminal is determined by RRC signaling.
  • the processor 601 is further configured to:
  • the multiple sets of SPS configurations do not overlap in the time domain, the multiple sets of SPS configurations are used as the SPS configuration that the terminal needs to use; if the multiple sets of SPS configurations overlap in the time domain, according to the setting The selection condition determines the SPS configuration that the terminal needs to use from the multiple sets of SPS configurations.
  • the selection condition is one of the following conditions:
  • the processor 601 is further configured to:
  • a padding BSR having no data part is sent to the network side device by using the resource configured by the SPS, to notify the network side device to release The SPS configuration.
  • bus 600 may include any number of interconnected buses and bridges, and bus 600 will include one or more processors and memory 604 represented by general purpose processor 601. The various circuits of the memory are linked together.
  • the bus 600 can also be used such as peripherals, voltage regulators, and power management circuits Various other circuits, such as the like, are linked together and are well known in the art and, therefore, will not be further described herein.
  • Bus interface 603 provides an interface between bus 600 and transceiver 602.
  • Transceiver 602 can be an element or a plurality of elements, such as a plurality of receivers and transmitters, providing means for communicating with various other devices on a transmission medium.
  • transceiver 602 receives external data from other devices.
  • the transceiver 602 is configured to send the processed data of the processor 601 to other devices.
  • a user interface 605 can also be provided, such as a keypad, display, speaker, microphone, joystick.
  • the processor 601 is responsible for managing the bus 600 and the usual processing, running a general purpose operating system as described above.
  • the memory 604 can be used to store data used by the processor 601 in performing operations.
  • the processor 601 can be a CPU, an ASIC, an FPGA, or a CPLD.
  • a method for configuring semi-persistent scheduling is also provided in the embodiment of the present application.
  • the device corresponding to the method is a network side device in the system for channel estimation in the embodiment of the present application, and the method solves the problem. Similar to the system, so the implementation of the method can refer to the implementation of the system, and the repeated description will not be repeated.
  • the first method for configuring semi-persistent scheduling in the embodiment of the present application includes:
  • Step 700 The network side device determines multiple SPS C-RNTIs corresponding to the SPS configuration.
  • Step 701 The network side device sends the SPS period and/or the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal by using the PDCCH signaling that is scrambled by the SPS C-RNTI.
  • the network side device sends the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal by using the PDCCH signaling that is scrambled by the SPS C-RNTI;
  • the network side device Before the network side device uses the PDCCH signaling that is scrambled by the SPS C-RNTI to send the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal, the network side device further includes:
  • the network side device sends the SPS period corresponding to each set of SPS configurations to the terminal through RRC signaling.
  • the network side device sends, by using RRC signaling, the SPS period corresponding to each SPS configuration to the terminal, including:
  • the network side device For the same SPS period, the network side device carries one of the same SPS periods in one RRC signaling.
  • all or part of the SPS configurations have the same SPS period
  • the network side device uses the PDCCH signaling that is scrambled by the SPS C-RNTI to send the SPS period corresponding to each SPS configuration to the terminal, and further includes:
  • the network side device For the same SPS period, the network side device carries one of the same SPS periods in one PDCCH signaling.
  • the SPS periods corresponding to multiple sets of SPS configurations are not completely the same;
  • the network side device Before the network side device sends the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal, the network side device further includes:
  • the network side device carries the correspondence between the SPS period and the SPS frequency domain resource configuration information in the PDCCH signaling.
  • the SPS frequency domain resource configuration information corresponding to all or part of the SPS configuration is the same;
  • the network side device Before the network side device uses the PDCCH signaling that is scrambled by the SPS C-RNTI to send the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal, the network side device further includes:
  • the network side device For the same SPS frequency domain resource configuration information, the network side device carries one of the same SPS frequency domain resource configuration information in one PDCCH signaling.
  • the method before the network side device sends the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal, the method further includes:
  • the network side device carries the SPS configuration number information in the PDCCH signaling, and is used to indicate an SPS configuration number corresponding to the SPS configuration.
  • the network side device sends the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal, and further includes:
  • the network side device adds the offset value of the SPS frequency domain resource corresponding to the SPS configuration in the time domain in the PDCCH signaling that carries the SPS frequency domain resource configuration information corresponding to the SPS configuration.
  • the offset value of the SPS frequency domain resource corresponding to the SPS configuration in the time domain is used to indicate the PDCCH signaling of the SPS configuration effective time relative to the SPS frequency domain resource offset value corresponding to the SPS configuration.
  • the time domain offset value of the receiving time is used to indicate the PDCCH signaling of the SPS configuration effective time relative to the SPS frequency domain resource offset value corresponding to the SPS configuration.
  • the network side device after the network side device sends the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal, the network side device further includes:
  • the network side device releases the multiple sets of SPS configurations configured for the terminal by using at least one PDCCH signaling scrambled by the SPS C-RNTI.
  • the network side device after the network side device sends the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal, the network side device further includes:
  • the SPS is configured as an uplink SPS configuration.
  • the network side device releases the SPS configuration after receiving a continuous padding BSR with no data portion through the corresponding resources of the SPS configuration.
  • the network side device after the network side device sends the SPS frequency domain resource configuration information corresponding to the SPS configuration to the terminal, the network side device further includes:
  • the network side device configures the multiple sets of SPS as The SPS configuration required by the terminal;
  • the network side device determines, according to the set selection condition, the SPS configuration that the terminal needs to use from the multiple sets of SPS configurations.
  • the selection condition is one of the following conditions:
  • a method for determining semi-persistent scheduling is also provided in the embodiment of the present application.
  • the device corresponding to the method is a terminal in a system for channel estimation in the embodiment of the present application, and the method solves the problem and the method
  • the system is similar, so the implementation of the method can be seen in the implementation of the system, and the repeated description will not be repeated.
  • the second method for determining semi-persistent scheduling in the embodiment of the present application includes:
  • Step 800 The terminal determines multiple SPS C-RNTIs corresponding to the SPS configuration.
  • Step 801 The terminal receives the PDCCH signaling that is scrambled by the SPS C-RNTI from a network side device.
  • Step 802 The terminal determines, according to the PDCCH signaling that is scrambled by the SPS C-RNTI, the SPS period and/or the SPS frequency domain resource configuration information corresponding to the multiple SPS configurations configured by the network side device, and according to the The determined information identifies multiple sets of SPS configurations.
  • the terminal determines, according to the PDCCH signaling that is scrambled by the SPS C-RNTI, the SPS frequency domain resource configuration information corresponding to the multiple SPS configurations configured by the network side device.
  • the terminal Before determining, by the terminal, the multiple sets of SPS configurations according to the determined information, the terminal further includes:
  • the terminal determines, by using RRC signaling, an SPS period corresponding to multiple sets of SPS configurations configured by the network side device for the terminal.
  • the terminal further includes:
  • the terminal configures the multiple sets of SPS as the SPS configuration that the terminal needs to use;
  • the terminal determines the SPS configuration that the terminal needs to use from the multiple sets of SPS configurations according to the set selection conditions.
  • the selection condition is one of the following conditions:
  • the terminal further includes:
  • the SPS is configured as an uplink SPS configuration.
  • the terminal For each set of SPS, the terminal sends a continuous N padding BSRs with no data part to the network side device by using the resources of the SPS to notify the network side.
  • the device releases the SPS configuration.
  • Embodiment 1 The SPS period corresponding to multiple sets of SPS configurations is the same, and the SPS frequency domain resources are different.
  • Step 1 The base station determines the SPS C-RNTI and SPS periods for the same service and notifies the terminal.
  • the base station may carry the SPS period by configuring the RRC signaling of the SPS C-RNTI.
  • Step 2 The base station transmits PDCCH signaling for SPS activation.
  • the PDCCH signaling has the following two methods:
  • Mode 1 The base station carries SPS frequency domain resource configuration information corresponding to multiple sets of SPS configurations in one PDCCH signaling.
  • the SPS frequency domain resource configuration information A and the SPS frequency domain resource configuration information B are all placed in the same PDCCH signaling.
  • the SPS configuration may also carry the offset value of the SPS frequency domain resource corresponding to the SPS configuration in the time domain, so that multiple sets of SPS configurations can be staggered in the time domain.
  • the offset value of the SPS frequency domain resource corresponding to the SPS configuration in the time domain is used to indicate the PDCCH signaling of the SPS configuration effective time relative to the SPS frequency domain resource offset value corresponding to the SPS configuration.
  • the time domain offset value of the receiving time is used to indicate the PDCCH signaling of the SPS configuration effective time relative to the SPS frequency domain resource offset value corresponding to the SPS configuration.
  • the base station carries a set of SPS frequency domain resource configuration information corresponding to the SPS configuration in one PDCCH signaling.
  • the SPS frequency domain resource configuration information A is placed in one PDCCH signaling, and the SPS frequency domain resource configuration information B is placed in another PDCCH signaling.
  • the base station may further carry the SPS configuration number information in the PDCCH signaling, and is used to indicate the SPS configuration number corresponding to the SPS configuration.
  • the SPS configuration number can be N bits.
  • the value of N depends on the number of sets of SPS configurations for a service. For example, if a service requires 2 sets of SPS configurations, then the value of N can be 2 bits. Identify the first set of SPS configurations with 00, identify the reconfiguration for the first set of SPS configurations with 01, identify the second set of SPS configurations with 10, and identify the reconfiguration for the second set of SPS configurations with 11.
  • Step 3 The terminal determines multiple sets of SPS configurations allocated by the base station.
  • the terminal determines that the same SPS C-RNTI is scrambled according to RRC signaling and PDCCH signaling for SPS activation.
  • the PDCCH signaling is for the same service.
  • the terminal determines multiple sets of SPS configurations for the same service according to the SPS frequency domain resource configuration information in the PDCCH signaling and the SPS period corresponding to the SPS configuration configured by the RRC signaling.
  • SPS frequency domain resource configuration information A and SPS frequency domain resource configuration information B there are SPS frequency domain resource configuration information A and SPS frequency domain resource configuration information B, and it is assumed that the SPS C-RNTI in the RRC signaling including the SPS cycle 1 is XX. If the PDCCH signaling scrambled by the XX includes the SPS frequency domain resource configuration information A and the SPS frequency domain resource configuration information B, the terminal determines that the SPS frequency domain resource configuration information A and the SPS frequency domain resource configuration information B are for the same service. Multiple sets of SPS configurations, and the SPS period of SPS frequency domain resource configuration information A and SPS frequency domain resource configuration information B is SPS period 1.
  • the terminal determines a set of SPS configurations according to the SPS cycle 1 and the SPS frequency domain resource configuration information A, and determines another set of SPS configurations according to the SPS cycle 1 and the SPS frequency domain resource configuration information B.
  • Step 4 The sender determines the SPS configuration that the terminal needs to use from multiple sets of SPS configurations.
  • the transmitting end is a terminal, and the receiving end is a base station; if it is a downlink service, the transmitting end is a base station, and the receiving end is a terminal.
  • the sender uses all configured SPS frequency domain resources as SPS frequency domain resources that it can use.
  • the transmitting end determines to select the SPS frequency domain resource to be specifically used in the time domain overlapping position according to one of the following rules, and the rule may be pre-configured or notified by the base station.
  • the transmitting end has two sets of SPS configurations for the same service, and the transmitting end determines the SPS frequency domain resources in the time domain overlap according to the maximum SPS frequency domain resource block, and then the SPS frequency domain finally determined by the transmitting end.
  • the resources are shown in Figure 2.
  • the T1 position overlaps with the SP1 frequency domain resource at the T1+500ms position, and the SPS configuration 2 is selected according to the maximum SPS frequency domain resource block. Since the other locations do not overlap with the SPS frequency domain resources, the SPS frequency domain resources that can be used are selected.
  • Step 5 The receiver detects the SPS.
  • the SPS frequency domain resource selected in the time domain overlap position is selected: the corresponding SPS is selected according to the actual data transmission requirement. Frequency domain resource block.
  • the receiving end can predict the SPS frequency domain resource block size used by the transmitting end (for example, according to the service model and the like)
  • the SPS data receiving may be performed according to the SPS frequency domain resource block size used by the predicted terminal. Otherwise, blind detection is required Multiple sets of SPS configurations.
  • the receiving end determines the SPS frequency domain resource used by the transmitting end, and directly detects the SPS frequency domain resource.
  • Step 6 Release the SPS frequency domain resources for the same service.
  • Different SPS frequency domain resource release for the same service can be performed separately if implicit release is used. If explicit release is used, it can be done simultaneously. which is:
  • Implicit release For an SPS configuration, the terminal uses the padding BSR with no data part to continuously notify the network side device to release the SPS configuration configured for the terminal by using the corresponding frequency domain resource of the SPS.
  • the base station can release all uplink SPS frequency domain resources configured for the service through the PDCCH scrambled by the SPS C-RNTI.
  • the downlink only supports the explicit release mode, that is, the base station can release all downlink SPS frequency domain resources configured for the service through the PDCCH scrambled by the SPS C-RNTI.
  • Embodiment 2 The SPS periods corresponding to multiple sets of SPS configurations are different, and the SPS frequency domain resources are the same.
  • Step 1 The base station determines an SPS period corresponding to the same service SPS C-RNTI and multiple sets of SPS configurations for the service.
  • the SPS period cannot be carried by the RRC signaling and can only be carried by the PDCCH signaling for activating the SPS, because the SPS period corresponding to the multiple SPS configurations of the same service is different.
  • Step 2 The base station sends PDCCH signaling for activating the SPS.
  • each SPS configuration may also carry an offset value of the SPS frequency domain resource corresponding to the SPS configuration in the time domain, so that multiple sets of SPS are provided. Configurations can be staggered in the time domain.
  • the offset value of the SPS frequency domain resource corresponding to the SPS configuration in the time domain is used to indicate the PDCCH signaling of the SPS configuration effective time relative to the SPS frequency domain resource offset value corresponding to the SPS configuration.
  • the time domain offset value of the receiving time is used to indicate the PDCCH signaling of the SPS configuration effective time relative to the SPS frequency domain resource offset value corresponding to the SPS configuration.
  • Step 3 The terminal determines multiple sets of SPS configurations allocated by the base station.
  • the terminal determines that the PDCCH signaling scrambled by the same SPS C-RNTI is for the same service according to the RRC signaling and the PDCCH signaling for SPS activation.
  • the terminal determines multiple sets of SPS configurations for the same service according to the SPS frequency domain resource configuration information in the PDCCH signaling and the SPS period corresponding to the SPS configuration configured by the RRC signaling.
  • SPS frequency domain resource configuration information A For example, configure SPS frequency domain resource configuration information A, SPS cycle 1 and SPS cycle 2, assuming SPS C-RNTI is XX.
  • the PDCCH signaling scrambled by XX includes SPS frequency domain resource configuration information A, SPS period 1 and SPS period 2, and the terminal determines SPS frequency domain resource configuration information A SPS period 1 and SPS period 2 are for the same service.
  • the terminal determines a set of SPS configurations according to the SPS cycle 1 and the SPS frequency domain resource configuration information A, and determines another set of SPS configurations according to the SPS cycle 2 and the SPS frequency domain resource configuration information A.
  • the network side device may also determine multiple SPS configurations configured for the terminal. For the manner in which the network side device determines the multiple sets of SPS configurations configured for the terminal, refer to step 3. Since multiple sets of SPS configurations are configured for the terminal by the network side device, the network side device can also directly determine which SPS configurations correspond to the terminal from multiple sets of SPS configurations.
  • the network side device determines multiple sets of SPS configurations.
  • the foregoing is only an example. Any manner that enables the network side device to determine multiple sets of SPS configurations is applicable to the embodiments of the present application.
  • Step 4 The sender determines the SPS configuration that the terminal needs to use from multiple sets of SPS configurations.
  • the transmitting end is a terminal, and the receiving end is a base station; if it is a downlink service, the transmitting end is a base station, and the receiving end is a terminal.
  • the sender uses all configured SPS frequency domain resources as SPS frequency domain resources that it can use.
  • the transmitting end determines to select the SPS frequency domain resource to be specifically used in the time domain overlapping position according to one of the following rules, and the rule may be pre-configured or notified by the base station.
  • the transmitting end has two sets of SPS configurations for the same service, and the transmitting end determines the SPS frequency domain resources in the time domain overlap according to the maximum SPS frequency domain resource block, and then the SPS frequency domain finally determined by the transmitting end.
  • the resources are shown in Figure 2.
  • the T1 position overlaps with the SP1 frequency domain resource at the T1+500ms position, and the SPS configuration 2 is selected according to the maximum SPS frequency domain resource block. Since the other locations do not overlap with the SPS frequency domain resources, the SPS frequency domain resources that can be used are selected.
  • Step 5 The receiver detects the SPS.
  • the SPS frequency domain resource selected in the time domain overlap position is selected: the corresponding SPS is selected according to the actual data transmission requirement. Frequency domain resource block.
  • the receiving end can predict the size of the SPS frequency domain resource block used by the transmitting end (for example, according to information such as a service model), Then, SPS data reception can be performed according to the SPS frequency domain resource block size used by the prediction terminal. Otherwise, multiple sets of SPS configurations need to be blindly detected.
  • the receiving end determines the SPS frequency domain resource used by the transmitting end, and directly detects the SPS frequency domain resource.
  • Step 6 Release the SPS frequency domain resources for the same service.
  • Different SPS frequency domain resource release for the same service can be performed separately if implicit release is used. If explicit release is used, it can be done simultaneously. which is:
  • the implicit release the terminal uses the padding BSR with no data part to continuously use the padding BSR with no data part, and implicitly informs the network side device to release the SPS configuration configured for the terminal.
  • the base station can release all uplink SPS frequency domain resources configured for the service through the PDCCH scrambled by the SPS C-RNTI.
  • the downlink only supports the explicit release mode, that is, the base station can release all downlink SPS frequency domain resources configured for the service through the PDCCH scrambled by the SPS C-RNTI.
  • Embodiment 3 The SPS periods corresponding to multiple sets of SPS configurations are different, and the SPS frequency domain resources are different.
  • Step 1 The base station determines an SPS period corresponding to the same service SPS C-RNTI and multiple sets of SPS configurations for the service.
  • the SPS period can be carried by the RRC signaling, and the correspondence between the periodicity and the SPS frequency domain resource is carried in the PDCCH signaling, because the SPS period corresponding to the multiple SPS configurations of the same service is different.
  • this method is inefficient and relatively efficient, and the period is carried by PDCCH signaling that activates the SPS.
  • Step 2 The base station sends PDCCH signaling for activating the SPS.
  • the PDCCH signaling has the following two methods:
  • Mode 1 The base station carries SPS frequency domain resource configuration information corresponding to multiple sets of SPS configurations in one PDCCH signaling.
  • the SPS frequency domain resource configuration information A and the SPS frequency domain resource configuration information B are all placed in the same PDCCH signaling.
  • the SPS configuration may also carry the offset value of the SPS frequency domain resource corresponding to the SPS configuration in the time domain, so that multiple sets of SPS configurations can be staggered in the time domain.
  • the offset value of the SPS frequency domain resource corresponding to the SPS configuration in the time domain is used to indicate the PDCCH signaling of the SPS configuration effective time relative to the SPS frequency domain resource offset value corresponding to the SPS configuration.
  • the time domain offset value of the receiving time is used to indicate the PDCCH signaling of the SPS configuration effective time relative to the SPS frequency domain resource offset value corresponding to the SPS configuration.
  • the base station carries a set of SPS frequency domain resource configuration information corresponding to the SPS configuration in one PDCCH signaling.
  • the SPS frequency domain resource configuration information A is placed in one PDCCH signaling, and the SPS frequency domain resource configuration information B is placed in another PDCCH signaling.
  • the PDCCH signaling uses the SPS frequency domain resource configuration to carry the SPS period corresponding to the resource configuration, it can be identified whether the PDCCH is a reconfiguration of a set of SPS frequency domain resources before the service, or Another set of SPS configuration resources for the service is configured, so no special instructions are required.
  • Step 3 The terminal determines multiple sets of SPS configurations allocated by the base station.
  • the terminal determines that the PDCCH signaling scrambled by the same SPS C-RNTI is for the same service according to the RRC signaling and the PDCCH signaling for SPS activation.
  • the terminal determines multiple sets of SPS configurations for the same service according to the SPS frequency domain resource configuration information in the PDCCH signaling and the SPS period corresponding to the SPS configuration configured by the RRC signaling.
  • a total of SPS frequency domain resource configuration information A and SPS cycle 1, and SPS frequency domain resource configuration information B and SPS cycle 2 two sets of SPS frequency domain resources are configured, assuming that the SPS C-RNTI in the RRC signaling is XX.
  • the PDCCH signaling scrambled by XX includes SPS frequency domain resource configuration information A and SPS cycle 1, and SPS frequency domain resource configuration information B and SPS cycle 1, the terminal SPS frequency domain resource configuration information A, SPS cycle 1,
  • the SPS frequency domain resource configuration information B and the SPS cycle 1 are multiple SPS configurations for the same service, and the SPS period of the SPS frequency domain resource configuration information A is SPS cycle 1, and the SPS cycle of the SPS frequency domain resource configuration information B is SPS. Cycle 2.
  • the terminal determines a set of SPS configurations according to the SPS cycle 1 and the SPS frequency domain resource configuration information A, and determines another set of SPS configurations according to the SPS cycle 2 and the SPS frequency domain resource configuration information B.
  • the network side device may also determine multiple SPS configurations configured for the terminal. For the manner in which the network side device determines the multiple sets of SPS configurations configured for the terminal, refer to step 3. Since multiple sets of SPS configurations are configured for the terminal by the network side device, the network side device can also directly determine which SPS configurations correspond to the terminal from multiple sets of SPS configurations.
  • the network side device determines multiple sets of SPS configurations.
  • the foregoing is only an example. Any manner that enables the network side device to determine multiple sets of SPS configurations is applicable to the embodiments of the present application.
  • Step 4 The sender determines the SPS configuration that the terminal needs to use from multiple sets of SPS configurations.
  • the transmitting end is a terminal, and the receiving end is a base station; if it is a downlink service, the transmitting end is a base station, and the receiving end is a terminal.
  • the sender uses all configured SPS frequency domain resources as SPS frequency domain resources that it can use.
  • the transmitting end determines to select the SPS frequency domain resource to be specifically used in the time domain overlapping position according to one of the following rules, and the rule may be pre-configured or notified by the base station.
  • the transmitting end has two sets of SPS configurations for the same service, and the transmitting end determines the SPS frequency domain resources in the time domain overlap according to the maximum SPS frequency domain resource block, and then the SPS frequency domain finally determined by the transmitting end.
  • the resources are shown in Figure 2.
  • the T1 position overlaps with the SP1 frequency domain resource at the T1+500ms position, and the SPS configuration 2 is selected according to the maximum SPS frequency domain resource block. Since the other locations do not overlap with the SPS frequency domain resources, the SPS frequency domain resources that can be used are selected.
  • Step 5 The receiver detects the SPS.
  • the SPS frequency domain resource selected in the time domain overlap position is selected: the corresponding SPS is selected according to the actual data transmission requirement. Frequency domain resource block.
  • the receiving end can predict the SPS frequency domain resource block size used by the transmitting end (for example, according to the service model and the like)
  • the SPS data receiving may be performed according to the SPS frequency domain resource block size used by the predicted terminal. Otherwise, multiple sets of SPS configurations need to be blindly detected.
  • the receiving end determines the SPS frequency domain resource used by the transmitting end, and directly detects the SPS frequency domain resource.
  • Step 6 Release the SPS frequency domain resources for the same service.
  • Different SPS frequency domain resource release for the same service can be performed separately if implicit release is used. If explicit release is used, it can be done simultaneously. which is:
  • Implicit release For an SPS configuration, the terminal uses the padding BSR with no data part to continuously notify the network side device to release the SPS configuration configured for the terminal by using the corresponding frequency domain resource of the SPS.
  • the base station can release all uplink SPS frequency domain resources configured for the service through the PDCCH scrambled by the SPS C-RNTI.
  • the downlink only supports the explicit release mode, that is, the base station can release all downlink SPS frequency domain resources configured for the service through the PDCCH scrambled by the SPS C-RNTI.
  • the application can also be implemented in hardware and/or software (including firmware, resident software, microcode, etc.). Still further, the application can take the form of a computer program product on a computer usable or computer readable storage medium having computer usable or computer readable program code embodied in a medium for use by an instruction execution system or Used in conjunction with the instruction execution system.
  • a computer usable or computer readable medium can be any medium that can contain, store, communicate, communicate, or transport a program for use by an instruction execution system, apparatus or device, or in conjunction with an instruction execution system, Used by the device or device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例涉及无线通信技术领域,特别涉及一种配置和确定半持续调度的方法及设备,用以解决现有技术中存在的LTE SPS方式应用于V2X通信方式中,会造成资源浪费或者增加开销的问题。本申请实施例网络侧设备利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送多套SPS配置对应的SPS周期和/或SPS频域资源配置信息。由于能够通过PDCCH信令向终端配置多套SPS配置,与背景技术中只能配置一套SPS配置相比,增加了SPS配置的数量,从而降低了资源浪费和开销;进一步提高了系统性能。

Description

一种配置和确定半持续调度的方法及设备
本申请要求在2016年03月15日提交中国专利局、申请号为201610146530.6、申请名称为“一种配置和确定半持续调度的方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,特别涉及一种配置和确定半持续调度的方法及设备。
背景技术
为了减少控制信令的开销,LTE(Long Term Evolution,长期演进)系统针对数据包大小基本相同且到达时间间隔比较有规律的业务引入了SPS(Semi-Persistent Scheduling,半持续调度)。
目前LTE系统支持两种调度方式:动态调度和SPS。动态调度适用于业务数据到达时间比较随机或者数据包大小不规则的业务;而SPS主要适用于业务数据SPS周期达到且数据包大小比较固定的业务。对于传统的LTE系统,SPS主要针对语音业务设计,语音业务典型的特点是数据包到达间隔固定,数据包大小基本固定,因此在配置SPS频域资源时只需要配置一套SPS周期性重复的SPS频域资源即可。
LTE Rel-14引入了V2X(Vechile-to-Everything,车与万物)通信。V2X通信主要包含三方面内容:
V2V(Vechile-to-Vechile,车到车):车上的OBU(On Broad Unit,车载单元)之间的通信。
V2I(Vechile-to-Infrastructure,车到网络):车和RSU(Road Side Unit,路侧设备)之间的通信。
V2P(Vechile-to-Pedestrian,车到行人):车和行人之间的通信。
其中,V2V业务特点是业务数据包SPS周期到达(SPS周期100ms),但是数据包大小并非基本固定,携带有完整证书的业务数据包较大,其他数据包则比较小。因此从业务模型上看,V2V业务模型是一个大包后面跟随若干个小包,然后再一个大包,后面再跟随若干个小包,一直循环重复。如果直接将传统的LTE SPS方式应用于V2V,如果按照大包分配SPS频域资源,对于小包使用该SPS频域资源传输必然存在资源浪费;如果按照小包分配SPS频域资源,那么大包的数据就不能通过SPS频域资源传输完,后续还需要SR (Scheduling Request,调度请求)/BSR(Buffer Status Reporting,缓冲区状态上报)请求基站执行动态调度。这样就会增加上/下行开销。其他V2X也有与V2V类似的问题。
综上所述,目前LTE SPS方式应用于V2X通信方式中,会造成资源浪费或者增加开销。
发明内容
本申请提供一种配置和确定半持续调度的方法及设备,用以解决现有技术中存在的LTE SPS方式应用于V2X通信方式中,会造成资源浪费或者增加开销的问题。
第一方面,本申请实施例提供的一种配置半持续调度的方法,该方法包括:
网络侧设备确定多套SPS配置对应的SPS C-RNTI(小区无线网络临时标识符);
所述网络侧设备利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送多套SPS配置对应的SPS周期和/或SPS频域资源配置信息。
可选的,所述网络侧设备利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送多套SPS配置对应的SPS频域资源配置信息;
所述网络侧设备利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送多套SPS配置对应的SPS频域资源配置信息之前,还包括:
所述网络侧设备通过RRC信令,向终端发送每套SPS配置对应的SPS周期。
可选的,所述网络侧设备通过RRC信令,向终端发送每套SPS配置对应的SPS周期,包括:
针对相同的SPS周期,所述网络侧设备在一条RRC信令中携带一个所述相同的SPS周期。
可选的,全部或者部分SPS配置对应的SPS周期相同;
所述网络侧设备利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送每套SPS配置对应的SPS周期之前,还包括:
针对相同的SPS周期,所述网络侧设备在一条PDCCH信令中携带一个所述相同的SPS周期。
可选的,多套SPS配置对应的SPS周期不完全相同;
所述网络侧设备向终端发送多套SPS配置对应的SPS频域资源配置信息之前,还包括:
所述网络侧设备在PDCCH信令中携带SPS周期和SPS频域资源配置信息的对应关系。
可选的,全部或者部分SPS配置对应的SPS频域资源配置信息相同;
所述网络侧设备利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送多套SPS配置对应的SPS频域资源配置信息之前,还包括:
针对相同的SPS频域资源配置信息,所述网络侧设备在一条PDCCH信令中携带一个所述相同的SPS频域资源配置信息。
可选的,所述网络侧设备向终端发送多套SPS配置对应的SPS频域资源配置信息之前,还包括:
所述网络侧设备在所述PDCCH信令中携带SPS配置编号信息,用于指示该SPS配置对应的SPS配置编号。
可选的,所述网络侧设备向终端发送多套SPS配置对应的SPS频域资源配置信息,还包括:
针对一套SPS配置,所述网络侧设备在携带该套SPS配置对应的SPS频域资源配置信息的PDCCH信令中,加入所述SPS配置对应的SPS频域资源在时域上的偏移值;
其中,所述SPS配置对应的SPS频域资源在时域上的偏移值用于指示所述SPS配置的生效时刻相对于携带所述SPS配置对应的SPS频域资源偏移值的PDCCH信令接收时刻的时域偏移值。
可选的,所述网络侧设备向终端发送多套SPS配置对应的SPS频域资源配置信息之后,还包括:
所述网络侧设备利用所述SPS C-RNTI加扰的至少一条PDCCH信令,释放为终端配置的多套SPS配置。
可选的,所述网络侧设备向终端发送多套SPS配置对应的SPS频域资源配置信息之后,还包括:
所述SPS配置为上行SPS配置,针对每套SPS配置,所述网络侧设备通过所述SPS配置对应的资源,接收到连续N个没有数据部分的padding BSR后,释放所述SPS配置。
可选的,所述网络侧设备向终端发送多套SPS配置对应的SPS频域资源配置信息之后,还包括:
若所述多套SPS配置在时域上没有重叠,则所述网络侧设备将所述多套SPS配置作为所述终端需要使用的SPS配置;
若所述多套SPS配置在时域上有重叠,则所述网络侧设备根据设定的选取条件从所述多套SPS配置中确定所述终端需要使用的SPS配置。
可选的,所述选取条件为下列条件中的一种:
选择最大的SPS频域资源块;
选择最小的SPS频域资源块;
根据需要传输的数据,选择SPS频域资源块。
第二方面,本申请实施例提供的一种确定半持续调度的方法,该方法包括:
终端确定多套SPS配置对应的SPS C-RNTI;
所述终端接收来自网络侧设备的所述SPS C-RNTI加扰的PDCCH信令;
所述终端根据所述SPS C-RNTI加扰的PDCCH信令,确定所述网络侧设备为所述终端配置的多套SPS配置对应的SPS周期和/或SPS频域资源配置信息,并根据确定的信息确定多套SPS配置。
可选的,所述终端根据所述SPS C-RNTI加扰的PDCCH信令,确定所述网络侧设备为所述终端配置的多套SPS配置对应的SPS频域资源配置信息;
所述终端根据确定的信息确定多套SPS配置之前,还包括:
所述终端通过RRC信令确定网络侧设备为所述终端配置的多套SPS配置对应的SPS周期。
可选的,所述终端确定多套SPS配置之后,还包括:
若所述多套SPS配置在时域上没有重叠,则所述终端将所述多套SPS配置作为所述终端需要使用的SPS配置;
若所述多套SPS配置在时域上有重叠,则所述终端根据设定的选取条件从所述多套SPS配置中确定所述终端需要使用的SPS配置。
可选的,所述选取条件为下列条件中的一种:
选择最大的SPS频域资源块;
选择最小的SPS频域资源块;
根据需要传输的数据,选择SPS频域资源块。
可选的,所述终端确定多套SPS配置之后,还包括:
所述SPS配置为上行SPS配置,针对每套SPS配置,所述终端通过所述SPS配置的资源,向所述网络侧设备发送连续N个没有数据部分的padding BSR,用于通知所述网络侧设备释放所述SPS配置。
第三方面,本申请实施例提供的一种配置半持续调度的网络侧设备,其特征在于,该网络侧设备包括:
第一标识确定模块,用于确定多套SPS配置对应的SPS C-RNTI;
处理模块,用于利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送多套SPS配 置对应的SPS周期和/或SPS频域资源配置信息。
可选的,所述处理模块还用于:
若利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送多套SPS配置对应的SPS频域资源配置信息,则利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送多套SPS配置对应的SPS频域资源配置信息之前,通过RRC信令,向终端发送每套SPS配置对应的SPS周期。
可选的,所述处理模块具体用于:
针对相同的SPS周期,在一条RRC信令中携带一个所述相同的SPS周期。
可选的,全部或者部分SPS配置对应的SPS周期相同;
所述处理模块还用于:
利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送每套SPS配置对应的SPS周期之前,针对相同的SPS周期,在一条PDCCH信令中携带一个所述相同的SPS周期。
可选的,多套SPS配置对应的SPS周期不完全相同;
所述处理模块还用于:
向终端发送多套SPS配置对应的SPS频域资源配置信息之前,在PDCCH信令中携带SPS周期和SPS频域资源配置信息的对应关系。
可选的,全部或者部分SPS配置对应的SPS频域资源配置信息相同;
所述处理模块还用于:
利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送多套SPS配置对应的SPS频域资源配置信息之前,针对相同的SPS频域资源配置信息,在一条PDCCH信令中携带一个所述相同的SPS频域资源配置信息。
可选的,所述处理模块还用于:
向终端发送多套SPS配置对应的SPS频域资源配置信息之前,在所述PDCCH信令中携带SPS配置编号信息,用于指示该SPS配置对应的SPS配置编号。
可选的,所述处理模块还用于:
针对一套SPS配置,在携带该套SPS配置对应的SPS频域资源配置信息的PDCCH信令中,加入所述SPS配置对应的SPS频域资源在时域上的偏移值;
其中,所述SPS配置对应的SPS频域资源在时域上的偏移值用于指示所述SPS配置的生效时刻相对于携带所述SPS配置对应的SPS频域资源偏移值的PDCCH信令接收时刻的时域偏移值。
可选的,所述处理模块还用于:
向终端发送多套SPS配置对应的SPS频域资源配置信息之后,利用所述SPS C-RNTI加扰的至少一条PDCCH信令,释放为终端配置的多套SPS配置。
可选的,所述处理模块还用于:
向终端发送多套SPS配置对应的SPS频域资源配置信息之后,若所述SPS配置为上行SPS配置,针对每套SPS配置,在通过所述SPS配置对应的资源,接收到连续N个没有数据部分的padding BSR后,释放所述SPS配置。
可选的,所述处理模块还用于:
向终端发送多套SPS配置对应的SPS频域资源配置信息之后,若所述多套SPS配置在时域上没有重叠,则将所述多套SPS配置作为所述终端需要使用的SPS配置;若所述多套SPS配置在时域上有重叠,则根据设定的选取条件从所述多套SPS配置中确定所述终端需要使用的SPS配置。
可选的,所述选取条件为下列条件中的一种:
选择最大的SPS频域资源块;
选择最小的SPS频域资源块;
根据需要传输的数据,选择SPS频域资源块。
第四方面,本申请实施例提供一种确定半持续调度的终端,其特征在于,该终端包括:
第二标识确定模块,用于确定多套SPS配置对应的SPS C-RNTI;
接收模块,用于接收来自网络侧设备的所述SPS C-RNTI加扰的PDCCH信令;
配置确定模块,用于根据所述SPS C-RNTI加扰的PDCCH信令,确定所述网络侧设备为所述终端配置的多套SPS配置对应的SPS周期和/或SPS频域资源配置信息,并根据确定的信息确定多套SPS配置。
可选的,所述配置确定模块还用于:
若根据所述SPS C-RNTI加扰的PDCCH信令,确定所述网络侧设备为所述终端配置的多套SPS配置对应的SPS频域资源配置信息,则根据确定的信息确定多套SPS配置之前,通过RRC信令确定网络侧设备为所述终端配置的多套SPS配置对应的SPS周期。
可选的,所述配置确定模块还用于:
若所述多套SPS配置在时域上没有重叠,则将所述多套SPS配置作为所述终端需要使用的SPS配置;若所述多套SPS配置在时域上有重叠,则根据设定的选取条件从所述多套SPS配置中确定所述终端需要使用的SPS配置。
可选的,所述选取条件为下列条件中的一种:
选择最大的SPS频域资源块;
选择最小的SPS频域资源块;
根据需要传输的数据,选择SPS频域资源块。
可选的,所述配置确定模块还用于:
若所述SPS配置为上行SPS配置,针对每套SPS配置,通过所述SPS配置的资源,向所述网络侧设备发送连续N个没有数据部分的padding BSR,用于通知所述网络侧设备释放所述SPS配置。
第五方面,本申请实施例提供的一种配置半持续调度的网络侧设备,包括:处理器、存储器和收发机;
处理器,用于读取存储器中的程序,执行下列过程:
确定多套SPS配置对应的SPS C-RNTI;利用所述SPS C-RNTI加扰的PDCCH信令,通过收发机向终端发送多套SPS配置对应的SPS周期和/或SPS频域资源配置信息;
收发机,用于在处理器的控制下接收和发送数据。
可选的,处理器还用于:
若利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送多套SPS配置对应的SPS频域资源配置信息,则利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送多套SPS配置对应的SPS频域资源配置信息之前,通过RRC信令,向终端发送每套SPS配置对应的SPS周期。
可选的,所述处理器具体用于:
针对相同的SPS周期,在一条RRC信令中携带一个所述相同的SPS周期。
可选的,全部或者部分SPS配置对应的SPS周期相同;
所述处理器还用于:
利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送每套SPS配置对应的SPS周期之前,针对相同的SPS周期,在一条PDCCH信令中携带一个所述相同的SPS周期。
可选的,多套SPS配置对应的SPS周期不完全相同;
所述处理器还用于:
向终端发送多套SPS配置对应的SPS频域资源配置信息之前,在PDCCH信令中携带SPS周期和SPS频域资源配置信息的对应关系。
可选的,全部或者部分SPS配置对应的SPS频域资源配置信息相同;
所述处理器还用于:
利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送多套SPS配置对应的SPS频域资源配置信息之前,针对相同的SPS频域资源配置信息,在一条PDCCH信令中携带一 个所述相同的SPS频域资源配置信息。
可选的,所述处理器还用于:
向终端发送多套SPS配置对应的SPS频域资源配置信息之前,在所述PDCCH信令中携带SPS配置编号信息,用于指示该SPS配置对应的SPS配置编号。
可选的,所述处理器还用于:
针对一套SPS配置,在携带该套SPS配置对应的SPS频域资源配置信息的PDCCH信令中,加入所述SPS配置对应的SPS频域资源在时域上的偏移值;
其中,所述SPS配置对应的SPS频域资源在时域上的偏移值用于指示所述SPS配置的生效时刻相对于携带所述SPS配置对应的SPS频域资源偏移值的PDCCH信令接收时刻的时域偏移值。
可选的,所述处理器还用于:
向终端发送多套SPS配置对应的SPS频域资源配置信息之后,利用所述SPS C-RNTI加扰的至少一条PDCCH信令,释放为终端配置的多套SPS配置。
可选的,所述处理器还用于:
向终端发送多套SPS配置对应的SPS频域资源配置信息之后,若所述SPS配置为上行SPS配置,针对每套SPS配置,在通过所述SPS配置对应的资源,接收到连续N个没有数据部分的padding BSR后,释放所述SPS配置。
可选的,所述处理器还用于:
向终端发送多套SPS配置对应的SPS频域资源配置信息之后,若所述多套SPS配置在时域上没有重叠,则将所述多套SPS配置作为所述终端需要使用的SPS配置;若所述多套SPS配置在时域上有重叠,则根据设定的选取条件从所述多套SPS配置中确定所述终端需要使用的SPS配置。
可选的,所述选取条件为下列条件中的一种:
选择最大的SPS频域资源块;
选择最小的SPS频域资源块;
根据需要传输的数据,选择SPS频域资源块。
第六方面,本申请实施例提供一种确定半持续调度的终端,包括:包括:处理器、存储器和收发机;
处理器,用于读取存储器604中的程序,执行下列过程:
确定多套SPS配置对应的SPS C-RNTI;通过收发机接收来自网络侧设备的所述SPS C-RNTI加扰的PDCCH信令;根据所述SPS C-RNTI加扰的PDCCH信令,确定所述网络 侧设备为所述终端配置的多套SPS配置对应的SPS周期和/或SPS频域资源配置信息,并根据确定的信息确定多套SPS配置;
收发机,用于在处理器的控制下接收和发送数据。
可选的,所述处理器还用于:
若根据所述SPS C-RNTI加扰的PDCCH信令,确定所述网络侧设备为所述终端配置的多套SPS配置对应的SPS频域资源配置信息,则根据确定的信息确定多套SPS配置之前,通过RRC信令确定网络侧设备为所述终端配置的多套SPS配置对应的SPS周期。
可选的,所述处理器还用于:
若所述多套SPS配置在时域上没有重叠,则将所述多套SPS配置作为所述终端需要使用的SPS配置;若所述多套SPS配置在时域上有重叠,则根据设定的选取条件从所述多套SPS配置中确定所述终端需要使用的SPS配置。
可选的,所述选取条件为下列条件中的一种:
选择最大的SPS频域资源块;
选择最小的SPS频域资源块;
根据需要传输的数据,选择SPS频域资源块。
可选的,所述处理器还用于:
若所述SPS配置为上行SPS配置,针对每套SPS配置,通过所述SPS配置的资源,向所述网络侧设备发送连续N个没有数据部分的padding BSR,用于通知所述网络侧设备释放所述SPS配置。
本申请实施例网络侧设备利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送多套SPS配置对应的SPS周期和/或SPS频域资源配置信息。由于能够通过PDCCH信令向终端配置多套SPS配置,与背景技术中只能配置一套SPS配置相比,增加了SPS配置的数量,从而降低了资源浪费和开销;进一步提高了系统性能。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例配置半持续调度的系统结构示意图;
图2为本申请实施例SPS频域资源重叠示意图;
图3为本申请实施例第一种网络侧设备的结构示意图;
图4为本申请实施例第一种终端的结构示意图;
图5为本申请实施例第二种网络侧设备的结构示意图;
图6为本申请实施例第二种终端的结构示意图;
图7为本申请实施例第一种配置半持续调度的方法流程示意图;
图8为本申请实施例第二种确定半持续调度的方法流程示意图。
具体实施方式
本申请实施例网络侧设备利用所述SPS C-RNTI(Cell Radio Network Temporary Identifier,小区无线网络临时标识符)加扰的PDCCH(Physical Downlink Control Channel,物理下行控制信道)信令,向终端发送多套SPS配置对应的SPS周期和/或SPS频域资源配置信息。由于能够通过PDCCH信令向终端配置多套SPS配置,与背景技术中只能配置一套SPS配置相比,增加了SPS配置的数量,从而降低了资源浪费和开销;进一步提高了系统性能。
本申请实施例网络侧设备向终端发送多套SPS配置,终端确定网络侧设备配置的多套SPS配置。
如果SPS配置是上行SPS配置,则终端从多套SPS配置中选择终端需要使用的SPS配置,并通过终端需要使用的SPS配置向网络侧设备发送数据;相应的,网络侧设备如果可以确定终端使用的SPS,可以对终端使用的SPS检测,如果无法确定终端使用的SPS,需要对多套SPS配置对应的资源检测。
如果SPS配置是下行SPS配置,则网络侧设备从多套SPS配置中选择终端需要使用的SPS配置,并通过终端需要使用的SPS配置向终端发送数据;相应的,终端如果可以确定网络侧设备使用的SPS,可以对网络侧设备使用的SPS检测,如果无法确定网络侧设备使用的SPS,需要对多套SPS配置对应的资源检测。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述,显然,所描述的实施例仅仅是本申请一部份实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
如图1所示,本申请实施例配置半持续调度的系统包括:网络侧设备10和终端20。
网络侧设备10,用于确定多套SPS配置对应的SPS C-RNTI;利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送多套SPS配置对应的SPS周期和/或SPS频域资源配置 信息;
终端20,用于确定多套SPS配置对应的SPS C-RNTI;接收来自网络侧设备的所述SPS C-RNTI加扰的PDCCH信令;根据所述SPS C-RNTI加扰的PDCCH信令,确定网络侧设备为所述终端配置的多套SPS配置对应的SPS周期和/或SPS频域资源配置信息,并根据确定的信息确定多套SPS配置。
本申请实施例中的SPS周期和/或SPS频域资源配置信息包括三种情况:1、通过PDCCH信令配置SPS周期;2、通过PDCCH信令配置SPS频域资源配置信息;3、通过PDCCH信令配置SPS周期和SPS频域资源配置信息。
本申请实施例网络侧设备为终端配置的多套SPS配置时,包括为终端配置的多套SPS配置对应的SPS频域资源配置信息和SPS周期。
其中,由于多套SPS配置对应的SPS周期和/或SPS频域资源不同,针对每种情况,具体配置过程也不相同,下面分别进行介绍。
情况一、SPS周期部分相同或全部相同,SPS频域资源全不同。
1、如果SPS周期全部相同,则只需要向终端发送一个SPS周期。
1)SPS周期通过RRC(Radio Resource Control,无线资源控制)信令发送。
网络侧设备可以将SPS周期置于包括业务对应的SPS C-RNTI的RRC信令中发送给终端;
相应的,终端收到后,如果RRC信令中有一个SPS周期,就知道该业务的每套SPS配置对应的SPS周期都相同,且是RRC信令中的SPS周期。
在发送SPS频域资源时,可以在一条PDCCH信令中携带所有的SPS频域资源配置信息;也可以在一条PDCCH信令中携带一条SPS频域资源配置信息。
相应的,终端收到PDCCH信令后,将PDCCH信令中的SPS频域资源配置信息与RRC信令中的SPS周期绑定,就可以确定每套SPS配置。
2)SPS周期通过PDCCH信令发送。
在发送SPS频域资源时,可以在一条PDCCH信令中携带所有的SPS频域资源配置信息;也可以在一条PDCCH信令中携带一条SPS频域资源配置信息。
网络侧设备将SPS频域资源配置信息和SPS周期置于利用所述SPS C-RNTI加扰的PDCCH信令中发送给终端;
相应的,终端收到PDCCH信令后,如果PDCCH信令中有一个SPS周期以及多个SPS频域资源配置信息,则分别将每个SPS频域资源配置信息与SPS周期绑定;如果PDCCH信令中有一个SPS周期以及一个SPS频域资源配置信息,则将PDCCH信令中的SPS频域 资源配置信息与PDCCH信令中的SPS周期绑定。
可选的,所述网络侧设备在所述PDCCH信令中携带SPS配置编号信息,用于指示该SPS配置对应的SPS配置编号。
比如SPS配置编号可以是N比特。N的取值取决于一个业务的SPS配置的套数,比如一个业务需要2套SPS配置,那么N取值可以用2bit。用00标识第一套SPS配置,用01标识针对第一套SPS配置的重配;用10标识第二套SPS配置,用11标识针对第二套SPS配置的重配。
可选的,针对一套SPS配置,所述网络侧设备在携带该套SPS配置对应的SPS频域资源配置信息的PDCCH信令中,加入所述SPS配置对应的SPS频域资源在时域上的偏移值;
其中,所述SPS配置对应的SPS频域资源在时域上的偏移值用于指示所述SPS配置的生效时刻相对于携带所述SPS配置对应的SPS频域资源偏移值的PDCCH信令接收时刻的时域偏移值。比如,终端在子帧n接收到SPS C-RNTI加扰的PDCCH信令,其中携带的时域偏移值为m,则该PDCCH携带的SPS频域资源从子帧n+m开始生效。
2、如果SPS周期部分相同,则对于相同的SPS周期,只需要向终端发送一个,对于不同的SPS周期,需要分别向终端发送。
1)SPS周期通过RRC信令发送。
在实施中,网络侧设备可以将SPS周期置于包括业务对应的SPS C-RNTI的RRC信令中发送给终端(相同的SPS周期只需要发送一个);
相应的,终端收到后,确定RRC信令中所有的SPS周期对应同一个业务。
在实施中,在发送SPS频域资源时,网络侧设备可以在一条PDCCH信令中携带所有的SPS频域资源配置信息;也可以在一条PDCCH信令中携带一条SPS频域资源配置信息。
如果在一条PDCCH信令中携带所有的SPS频域资源配置信息,则网络侧设备可以将SPS频域资源配置信息置于利用所述SPS C-RNTI加扰的PDCCH信令,并且在PDCCH信令中携带SPS周期和SPS频域资源配置信息的对应关系;
相应的,终端收到PDCCH信令后,根据所述SPS C-RNTI加扰的PDCCH信令中的SPS周期和SPS频域资源配置信息的对应关系,就知道PDCCH信令中哪个SPS频域资源配置信息对应RRC信令中的哪个SPS周期。
如果在一条PDCCH信令中携带一条SPS频域资源配置信息,则网络侧设备可以将SPS频域资源配置信息置于利用所述SPS C-RNTI加扰的PDCCH信令,并且在PDCCH信 令中携带该SPS频域资源配置信息和SPS周期的对应关系。
相应的,终端收到PDCCH信令后,根据所述SPS C-RNTI加扰的PDCCH信令中的SPS周期和SPS频域资源配置信息的对应关系,就知道PDCCH信令中的SPS频域资源配置信息对应RRC信令中的哪个SPS周期。
2)SPS周期通过PDCCH信令发送。
在实施中,在发送SPS频域资源时,网络侧设备可以在一条PDCCH信令中携带所有的SPS频域资源配置信息;也可以在一条PDCCH信令中携带一条SPS频域资源配置信息。
如果在一条PDCCH信令中携带所有的SPS频域资源配置信息,则网络侧设备可以将SPS频域资源配置信息和所有的SPS周期置于利用所述SPS C-RNTI加扰的PDCCH信令,并且在PDCCH信令中携带SPS周期和SPS频域资源配置信息的对应关系;
相应的,终端收到PDCCH信令后,根据所述SPS C-RNTI加扰的PDCCH信令中的SPS周期和SPS频域资源配置信息的对应关系,就知道PDCCH信令中哪个SPS频域资源配置信息对应哪个SPS周期。
如果在一条PDCCH信令中携带一个SPS频域资源配置信息,则网络侧设备可以将SPS频域资源配置信息和该SPS频域资源配置信息对应的SPS周期置于利用所述SPS C-RNTI加扰的PDCCH信令;
相应的,终端收到PDCCH信令后,就知道PDCCH信令中的SPS频域资源配置信息对应PDCCH信令中的SPS周期。
可选的,所述网络侧设备在所述PDCCH信令中还可以携带SPS配置编号信息,用于指示该SPS配置对应的SPS配置编号。
比如SPS配置编号可以是N比特。N的取值取决于一个业务的SPS配置的套数,比如一个业务需要2套SPS配置,那么N取值可以用2bit。用00标识第一套SPS配置,用01标识针对第一套SPS配置的重配;用10标识第二套SPS配置,用11标识针对第二套SPS配置的重配。
可选的,针对一套SPS配置,所述网络侧设备在携带该套SPS配置对应的SPS频域资源配置信息的PDCCH信令中,加入所述SPS配置对应的SPS频域资源在时域上的偏移值;
其中,所述SPS配置对应的SPS频域资源在时域上的偏移值用于指示所述SPS配置的生效时刻相对于携带所述SPS配置对应的SPS频域资源偏移值的PDCCH信令接收时刻的时域偏移值。
情况二、SPS周期全不相同,SPS频域资源部分相同或全部相同。
1、SPS频域资源全部相同。
1)SPS周期通过RRC信令发送。
在实施中,网络侧设备可以将SPS周期置于包括业务对应的SPS C-RNTI的RRC信令中发送给终端;
相应的,终端知道RRC信令中所有的SPS周期都对应同一个业务。
由于SPS频域资源全部相同,所以只需要为终端配置一个SPS频域资源配置信息。
网络侧设备可以将一个SPS频域资源配置信息置于PDCCH信令中,并利用所述SPS C-RNTI加扰;
相应的,终端在收到利用所述SPS C-RNTI加扰的PDCCH信令后,如果PDCCH信令包括一个SPS频域资源配置信息,就知道该业务对应的所有SPS频域资源配置信息相同,并将SPS频域资源配置信息分别与RRC信令中的每个SPS周期绑定,就可以确定每套SPS配置。
2)SPS周期通过PDCCH信令发送。
由于SPS频域资源全部相同,所以只需要为终端配置一个SPS频域资源配置信息。
网络侧设备可以将一个SPS频域资源配置信息和所有的RRC信令置于PDCCH信令中,并利用所述SPS C-RNTI加扰;
相应的,终端在收到利用所述SPS C-RNTI加扰的PDCCH信令后,如果PDCCH信令包括一个SPS频域资源配置信息,就知道该业务对应的所有SPS频域资源配置信息相同,并将SPS频域资源配置信息分别与PDCCH信令中的每个SPS周期绑定,就可以确定每套SPS配置。
可选的,所述网络侧设备在所述PDCCH信令中携带SPS配置编号信息,用于指示该SPS配置对应的SPS配置编号。
比如SPS配置编号可以是N比特。N的取值取决于一个业务的SPS配置的套数,比如一个业务需要2套SPS配置,那么N取值可以用2bit。用00标识第一套SPS配置,用01标识针对第一套SPS配置的重配;用10标识第二套SPS配置,用11标识针对第二套SPS配置的重配。
可选的,针对一套SPS配置,所述网络侧设备在携带该套SPS配置对应的SPS频域资源配置信息的PDCCH信令中,加入所述SPS配置对应的SPS频域资源在时域上的偏移值;
其中,所述SPS配置对应的SPS频域资源在时域上的偏移值用于指示所述SPS配置 的生效时刻相对于携带所述SPS配置对应的SPS频域资源偏移值的PDCCH信令接收时刻的时域偏移值。
2、SPS频域资源部分相同,则需要向终端发送一个相同的SPS频域资源配置信息,并向终端发送不同的SPS周期。
SPS频域资源部分相同,则一部分SPS频域资源配置信息相同,一部分SPS频域资源配置信息不同。
1)SPS周期通过RRC信令发送。
在实施中,网络侧设备可以将SPS周期置于包括业务对应的SPS C-RNTI的RRC信令中发送给终端;
相应的,终端收到后,确定RRC信令中所有的SPS周期对应同一个业务。
在实施中,在发送SPS频域资源时,网络侧设备可以在一条PDCCH信令中携带所有的SPS频域资源配置信息;也可以在一条PDCCH信令中携带一条SPS频域资源配置信息。
如果在一条PDCCH信令中携带所有的SPS频域资源配置信息,则网络侧设备可以将SPS频域资源配置信息置于利用所述SPS C-RNTI加扰的PDCCH信令,并且在PDCCH信令中携带SPS周期和SPS频域资源配置信息的对应关系;
相应的,终端收到PDCCH信令后,根据所述SPS C-RNTI加扰的PDCCH信令中的SPS周期和SPS频域资源配置信息的对应关系,就知道PDCCH信令中哪个SPS频域资源配置信息对应RRC信令中的哪个SPS周期。
如果在一条PDCCH信令中携带一条SPS频域资源配置信息,则网络侧设备可以将SPS频域资源配置信息置于利用所述SPS C-RNTI加扰的PDCCH信令,并且在PDCCH信令中携带该SPS频域资源配置信息和SPS周期的对应关系。
相应的,终端收到PDCCH信令后,根据所述SPS C-RNTI加扰的PDCCH信令中的SPS周期和SPS频域资源配置信息的对应关系,就知道PDCCH信令中的SPS频域资源配置信息对应RRC信令中的哪个SPS周期。
2)SPS周期通过PDCCH信令发送。
在实施中,在发送SPS频域资源时,网络侧设备可以在一条PDCCH信令中携带所有的SPS频域资源配置信息;也可以在一条PDCCH信令中携带一条SPS频域资源配置信息。
如果在一条PDCCH信令中携带所有的SPS频域资源配置信息,则网络侧设备可以将所有的SPS频域资源配置信息和所有的SPS周期置于利用所述SPS C-RNTI加扰的PDCCH 信令,并且在PDCCH信令中携带SPS周期和SPS频域资源配置信息的对应关系;
相应的,终端收到PDCCH信令后,根据所述SPS C-RNTI加扰的PDCCH信令中的SPS周期和SPS频域资源配置信息的对应关系,就知道PDCCH信令中哪个SPS频域资源配置信息对应哪个SPS周期。
如果在一条PDCCH信令中携带一个SPS频域资源配置信息,则网络侧设备可以将SPS频域资源配置信息和该SPS频域资源配置信息对应的SPS周期置于利用所述SPS C-RNTI加扰的PDCCH信令;
相应的,终端收到PDCCH信令后,就知道PDCCH信令中的SPS频域资源配置信息对应PDCCH信令中的SPS周期。
可选的,所述网络侧设备在所述PDCCH信令中还可以携带SPS配置编号信息,用于指示该SPS配置对应的SPS配置编号。
比如SPS配置编号可以是N比特。N的取值取决于一个业务的SPS配置的套数,比如一个业务需要2套SPS配置,那么N取值可以用2bit。用00标识第一套SPS配置,用01标识针对第一套SPS配置的重配;用10标识第二套SPS配置,用11标识针对第二套SPS配置的重配。
可选的,针对一套SPS配置,所述网络侧设备在携带该套SPS配置对应的SPS频域资源配置信息的PDCCH信令中,加入所述SPS配置对应的SPS频域资源在时域上的偏移值;
其中,所述SPS配置对应的SPS频域资源在时域上的偏移值用于指示所述SPS配置的生效时刻相对于携带所述SPS配置对应的SPS频域资源偏移值的PDCCH信令接收时刻的时域偏移值。
情况三、SPS周期全不相同,SPS频域资源全不相同。
1)SPS周期通过RRC信令发送。
在实施中,网络侧设备可以将SPS周期置于包括业务对应的SPS C-RNTI的RRC信令中发送给终端;
相应的,终端知道RRC信令中所有的SPS周期都对应同一个业务。
在实施中,在发送SPS频域资源时,网络侧设备可以在一条PDCCH信令中携带所有的SPS频域资源配置信息;也可以在一条PDCCH信令中携带一条SPS频域资源配置信息。
如果在一条PDCCH信令中携带所有的SPS频域资源配置信息,则网络侧设备可以将SPS频域资源配置信息置于利用所述SPS C-RNTI加扰的PDCCH信令,并且在PDCCH信 令中携带SPS周期和SPS频域资源配置信息的对应关系;
相应的,终端收到PDCCH信令后,根据所述SPS C-RNTI加扰的PDCCH信令中的SPS周期和SPS频域资源配置信息的对应关系,就知道PDCCH信令中哪个SPS频域资源配置信息对应RRC信令中的哪个SPS周期。
如果在一条PDCCH信令中携带一条SPS频域资源配置信息,则网络侧设备可以将SPS频域资源配置信息置于利用所述SPS C-RNTI加扰的PDCCH信令,并且在PDCCH信令中携带该SPS频域资源配置信息和SPS周期的对应关系。
相应的,终端收到PDCCH信令后,根据所述SPS C-RNTI加扰的PDCCH信令中的SPS周期和SPS频域资源配置信息的对应关系,就知道PDCCH信令中的SPS频域资源配置信息对应RRC信令中的哪个SPS周期。
2)SPS周期通过PDCCH信令发送。
在实施中,在发送SPS频域资源时,网络侧设备可以在一条PDCCH信令中携带所有的SPS频域资源配置信息;也可以在一条PDCCH信令中携带一条SPS频域资源配置信息。
如果在一条PDCCH信令中携带所有的SPS频域资源配置信息,则网络侧设备可以将所有的SPS频域资源配置信息和所有的SPS周期置于利用所述SPS C-RNTI加扰的PDCCH信令,并且在PDCCH信令中携带SPS周期和SPS频域资源配置信息的对应关系;
相应的,终端收到PDCCH信令后,根据所述SPS C-RNTI加扰的PDCCH信令中的SPS周期和SPS频域资源配置信息的对应关系,就知道PDCCH信令中哪个SPS频域资源配置信息对应哪个SPS周期。
如果在一条PDCCH信令中携带一个SPS频域资源配置信息,则网络侧设备可以将SPS频域资源配置信息和该SPS频域资源配置信息对应的SPS周期置于利用所述SPS C-RNTI加扰的PDCCH信令;
相应的,终端收到PDCCH信令后,就知道PDCCH信令中的SPS频域资源配置信息对应PDCCH信令中的SPS周期。
可选的,所述网络侧设备在所述PDCCH信令中还可以携带SPS配置编号信息,用于指示该SPS配置对应的SPS配置编号。
比如SPS配置编号可以是N比特。N的取值取决于一个业务的SPS配置的套数,比如一个业务需要2套SPS配置,那么N取值可以用2bit。用00标识第一套SPS配置,用01标识针对第一套SPS配置的重配;用10标识第二套SPS配置,用11标识针对第二套SPS配置的重配。
可选的,针对一套SPS配置,所述网络侧设备在携带该套SPS配置对应的SPS频域资源配置信息的PDCCH信令中,加入所述SPS配置对应的SPS频域资源在时域上的偏移值;
其中,所述SPS配置对应的SPS频域资源在时域上的偏移值用于指示所述SPS配置的生效时刻相对于携带所述SPS配置对应的SPS频域资源偏移值的PDCCH信令接收时刻的时域偏移值。
上面介绍了网络侧设备为终端配置多套SPS配置。
在配置完后,就可以根据所述SPS配置进行业务传输。
如果SPS配置是上行SPS配置,则网络侧设备是发送端;终端是接收端;
如果SPS配置是下行SPS配置,则网络侧设备是接收端;终端是发送端。
其中,对于发送端,需要从多套SPS配置中选择终端需要使用的SPS配置;
相应的,如果接收端可以预测发送端从多套SPS配置中选择的终端需要使用的SPS配置(比如根据业务模型等信息),那么可以按照预测的终端需要使用的SPS配置进行SPS数据接收。否则,需要盲检测多套SPS资源。
除了接收端预测的方式,如果发送端和接收端约定具体选择的条件,则接收端可以约定具体选择的条件发送端从多套SPS配置中选择的终端需要使用的SPS配置,直接对终端需要使用的SPS配置进行检测。
可选的,发送端从多套SPS配置中选择终端需要使用的SPS配置时:
若所述多套SPS配置在时域上没有重叠,则所述网络侧设备将所述多套SPS配置作为所述终端需要使用的SPS配置;
若所述多套SPS配置在时域上有重叠,则所述网络侧设备根据设定的选取条件从所述多套SPS配置中确定所述终端需要使用的SPS配置。
可选的,所述选取条件为下列条件中的一种:
选择最大的SPS频域资源块;
选择最小的SPS频域资源块;
根据需要传输的数据,选择SPS频域资源块。
以V2V为例,假设发送端针对同一个业务有两套SPS配置,发送端对于时域重叠的SPS频域资源按照最大SPS频域资源块确定,那么发送端最终确定的SPS频域资源如图2所示。
T1位置和T1+500ms位置SPS频域资源重叠,按照最大SPS频域资源块,选择SPS配置2,其他位置由于没有SPS频域资源重叠,所以选择可以使用的SPS频域资源。
如果按照最小SPS频域资源块确定,则图2中,T1位置和T1+500ms位置SPS频域资源重叠,就需要选择SPS配置1。
如果根据需要传输的数据,选择SPS频域资源块,则根据需要传输的数据大小,选择不小于需要传输的数据的SPS频域资源块,比如图2中,T1位置和T1+500ms位置SPS频域资源重叠,如果选择SPS配置1就可以传输需要传输的数据,则选择SPS配置1;如果SPS配置1不能传输需要传输的数据,SPS配置2能传输需要传输的数据,则选择SPS配置2。
可选的,网络侧设备在为终端配置多套SPS配置后,在需要释放SPS配置时,还可以释放多套SPS配置(需要释放SPS配置的触发条件有很多,比如对应的业务完成、需要停止业务等)。
本申请实施例给出了隐式和显式两种释放方式,下面分别进行介绍。
一、隐式释放方式。
如果SPS配置为上行SPS配置,针对每套SPS配置,所述终端通过所述SPS配置的资源,向所述网络侧设备发送连续N个没有数据部分的padding(填充)BSR(Buffer Status Report,缓存状态上报),用于通知所述网络侧设备释放所述SPS配置;
相应的,针对每套SPS配置,网络侧设备如果通过所述SPS配置对应的频域资源接收到连续N个没有数据部分的padding BSR后,释放针对所述终端的所述SPS配置。
二、显式释放方式。
网络侧设备利用所述SPS C-RNTI加扰的至少一条PDCCH信令,释放为终端配置的多套SPS配置(比如将PDCCH信令中的某个(或些)域取特殊值就表示该PDCCH信令是用于释放的PDCCH信令);
相应的,终端在收到利用所述SPS C-RNTI加扰的用于释放的至少一条PDCCH信令后,释放多套SPS配置。
其中,本申请实施例的网络侧设备可以是基站(比如宏基站(包括演进基站等)、家庭基站等),也可以是RN(中继)设备,还可以是其它网络侧设备。
如图3所示,本申请实施例第一种网络侧设备包括:
第一标识确定模块300,用于确定多套SPS配置对应的SPS C-RNTI;
处理模块301,用于利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送多套SPS配置对应的SPS周期和/或SPS频域资源配置信息。
可选的,所述处理模块301还用于:
若利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送多套SPS配置对应的SPS 频域资源配置信息,则利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送多套SPS配置对应的SPS频域资源配置信息之前,通过RRC信令,向终端发送每套SPS配置对应的SPS周期。
可选的,所述处理模块301具体用于:
针对相同的SPS周期,在一条RRC信令中携带一个所述相同的SPS周期。
可选的,全部或者部分SPS配置对应的SPS周期相同;
所述处理模块301还用于:
利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送每套SPS配置对应的SPS周期之前,针对相同的SPS周期,在一条PDCCH信令中携带一个所述相同的SPS周期。
可选的,多套SPS配置对应的SPS周期不完全相同;
所述处理模块301还用于:
向终端发送多套SPS配置对应的SPS频域资源配置信息之前,在PDCCH信令中携带SPS周期和SPS频域资源配置信息的对应关系。
可选的,全部或者部分SPS配置对应的SPS频域资源配置信息相同;
所述处理模块301还用于:
利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送多套SPS配置对应的SPS频域资源配置信息之前,针对相同的SPS频域资源配置信息,在一条PDCCH信令中携带一个所述相同的SPS频域资源配置信息。
可选的,所述处理模块301还用于:
向终端发送多套SPS配置对应的SPS频域资源配置信息之前,在所述PDCCH信令中携带SPS配置编号信息,用于指示该SPS配置对应的SPS配置编号。
可选的,所述处理模块301还用于:
针对一套SPS配置,在携带该套SPS配置对应的SPS频域资源配置信息的PDCCH信令中,加入所述SPS配置对应的SPS频域资源在时域上的偏移值;
其中,所述SPS配置对应的SPS频域资源在时域上的偏移值用于指示所述SPS配置的生效时刻相对于携带所述SPS配置对应的SPS频域资源偏移值的PDCCH信令接收时刻的时域偏移值。
可选的,所述处理模块301还用于:
向终端发送多套SPS配置对应的SPS频域资源配置信息之后,利用所述SPS C-RNTI加扰的至少一条PDCCH信令,释放为终端配置的多套SPS配置。
可选的,所述处理模块301还用于:
向终端发送多套SPS配置对应的SPS频域资源配置信息之后,若所述SPS配置为上行SPS配置,针对每套SPS配置,在通过所述SPS配置对应的资源,接收到连续N个没有数据部分的padding BSR后,释放所述SPS配置。
可选的,所述处理模块301还用于:
向终端发送多套SPS配置对应的SPS频域资源配置信息之后,若所述多套SPS配置在时域上没有重叠,则将所述多套SPS配置作为所述终端需要使用的SPS配置;若所述多套SPS配置在时域上有重叠,则根据设定的选取条件从所述多套SPS配置中确定所述终端需要使用的SPS配置。
可选的,所述选取条件为下列条件中的一种:
选择最大的SPS频域资源块;
选择最小的SPS频域资源块;
根据需要传输的数据,选择SPS频域资源块。
如图4所示,本申请实施例第一种终端包括:
第二标识确定模块400,用于确定多套SPS配置对应的SPS C-RNTI;
接收模块401,用于接收来自网络侧设备的所述SPS C-RNTI加扰的PDCCH信令;
配置确定模块402,用于根据所述SPS C-RNTI加扰的PDCCH信令,确定网络侧设备为所述终端配置的多套SPS配置对应的SPS周期和/或SPS频域资源配置信息,并根据确定的信息确定多套SPS配置。
可选的,所述配置确定模块402还用于:
若根据所述SPS C-RNTI加扰的PDCCH信令,确定网络侧设备为所述终端配置的多套SPS配置对应的SPS频域资源配置信息,则根据确定的信息确定多套SPS配置之前,通过RRC信令确定网络侧设备为所述终端配置的多套SPS配置对应的SPS周期。
可选的,所述配置确定模块402还用于:
若所述多套SPS配置在时域上没有重叠,则将所述多套SPS配置作为所述终端需要使用的SPS配置;若所述多套SPS配置在时域上有重叠,则根据设定的选取条件从所述多套SPS配置中确定所述终端需要使用的SPS配置。
可选的,所述选取条件为下列条件中的一种:
选择最大的SPS频域资源块;
选择最小的SPS频域资源块;
根据需要传输的数据,选择SPS频域资源块。
可选的,所述配置确定模块402还用于:
若所述SPS配置为上行SPS配置,针对每套SPS配置,通过所述SPS配置的资源,向所述网络侧设备发送连续N个没有数据部分的padding BSR,用于通知所述网络侧设备释放所述SPS配置。
如图5所示,本申请实施例第二种网络侧设备包括:
处理器501,用于读取存储器504中的程序,执行下列过程:
确定多套SPS配置对应的SPS C-RNTI;利用所述SPS C-RNTI加扰的PDCCH信令,通过收发机502向终端发送多套SPS配置对应的SPS周期和/或SPS频域资源配置信息;
收发机502,用于在处理器501的控制下接收和发送数据。
可选的,处理器501还用于:
若利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送多套SPS配置对应的SPS频域资源配置信息,则利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送多套SPS配置对应的SPS频域资源配置信息之前,通过RRC信令,向终端发送每套SPS配置对应的SPS周期。
可选的,处理器501具体用于:
针对相同的SPS周期,在一条RRC信令中携带一个所述相同的SPS周期。
可选的,全部或者部分SPS配置对应的SPS周期相同;
处理器501还用于:
利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送每套SPS配置对应的SPS周期之前,针对相同的SPS周期,在一条PDCCH信令中携带一个所述相同的SPS周期。
可选的,多套SPS配置对应的SPS周期不完全相同;
处理器501还用于:
向终端发送多套SPS配置对应的SPS频域资源配置信息之前,在PDCCH信令中携带SPS周期和SPS频域资源配置信息的对应关系。
可选的,全部或者部分SPS配置对应的SPS频域资源配置信息相同;
处理器501还用于:
利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送多套SPS配置对应的SPS频域资源配置信息之前,针对相同的SPS频域资源配置信息,在一条PDCCH信令中携带一个所述相同的SPS频域资源配置信息。
可选的,处理器501还用于:
向终端发送多套SPS配置对应的SPS频域资源配置信息之前,在所述PDCCH信令中携带SPS配置编号信息,用于指示该SPS配置对应的SPS配置编号。
可选的,处理器501还用于:
针对一套SPS配置,在携带该套SPS配置对应的SPS频域资源配置信息的PDCCH信令中,加入所述SPS配置对应的SPS频域资源在时域上的偏移值;
其中,所述SPS配置对应的SPS频域资源在时域上的偏移值用于指示所述SPS配置的生效时刻相对于携带所述SPS配置对应的SPS频域资源偏移值的PDCCH信令接收时刻的时域偏移值。
可选的,处理器501还用于:
向终端发送多套SPS配置对应的SPS频域资源配置信息之后,利用所述SPS C-RNTI加扰的至少一条PDCCH信令,释放为终端配置的多套SPS配置。
可选的,处理器501还用于:
向终端发送多套SPS配置对应的SPS频域资源配置信息之后,若所述SPS配置为上行SPS配置,针对每套SPS配置,在通过所述SPS配置对应的资源,接收到连续N个没有数据部分的padding BSR后,释放所述SPS配置。
可选的,处理器501还用于:
向终端发送多套SPS配置对应的SPS频域资源配置信息之后,若所述多套SPS配置在时域上没有重叠,则将所述多套SPS配置作为所述终端需要使用的SPS配置;若所述多套SPS配置在时域上有重叠,则根据设定的选取条件从所述多套SPS配置中确定所述终端需要使用的SPS配置。
可选的,所述选取条件为下列条件中的一种:
选择最大的SPS频域资源块;
选择最小的SPS频域资源块;
根据需要传输的数据,选择SPS频域资源块。
在图5中,总线架构(用总线500来代表),总线500可以包括任意数量的互联的总线和桥,总线500将包括由处理器501代表的一个或多个处理器和存储器504代表的存储器的各种电路链接在一起。总线500还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口503在总线500和收发机502之间提供接口。收发机502可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器501处理的数据通过天线505在无线介质上进行传输,进一步,天线505还接收数据并将数据传送给处理器501。
处理器501负责管理总线500和通常的处理,还可以提供各种功能,包括定时,外围 接口,电压调节、电源管理以及其他控制功能。而存储器504可以被用于存储处理器501在执行操作时所使用的数据。
可选的,处理器501可以是CPU(中央处埋器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件)。
如图6所示,本申请实施例第二种终端包括:
处理器601,用于读取存储器604中的程序,执行下列过程:
确定多套SPS配置对应的SPS C-RNTI;通过收发机602接收来自网络侧设备的所述SPS C-RNTI加扰的PDCCH信令;根据所述SPS C-RNTI加扰的PDCCH信令,确定网络侧设备为所述终端配置的多套SPS配置对应的SPS周期和/或SPS频域资源配置信息,并根据确定的信息确定多套SPS配置;
收发机602,用于在处理器601的控制下接收和发送数据。
可选的,处理器601还用于:
若根据所述SPS C-RNTI加扰的PDCCH信令,确定网络侧设备为所述终端配置的多套SPS配置对应的SPS频域资源配置信息,则根据确定的信息确定多套SPS配置之前,通过RRC信令确定网络侧设备为所述终端配置的多套SPS配置对应的SPS周期。
可选的,处理器601还用于:
若所述多套SPS配置在时域上没有重叠,则将所述多套SPS配置作为所述终端需要使用的SPS配置;若所述多套SPS配置在时域上有重叠,则根据设定的选取条件从所述多套SPS配置中确定所述终端需要使用的SPS配置。
可选的,所述选取条件为下列条件中的一种:
选择最大的SPS频域资源块;
选择最小的SPS频域资源块;
根据需要传输的数据,选择SPS频域资源块。
可选的,处理器601还用于:
若所述SPS配置为上行SPS配置,针对每套SPS配置,通过所述SPS配置的资源,向所述网络侧设备发送连续N个没有数据部分的padding BSR,用于通知所述网络侧设备释放所述SPS配置。
在图6中,总线架构(用总线600来代表),总线600可以包括任意数量的互联的总线和桥,总线600将包括由通用处理器601代表的一个或多个处理器和存储器604代表的存储器的各种电路链接在一起。总线600还可以将诸如外围设备、稳压器和功率管理电路 等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口603在总线600和收发机602之间提供接口。收发机602可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。例如:收发机602从其他设备接收外部数据。收发机602用于将处理器601处理后的数据发送给其他设备。取决于计算系统的性质,还可以提供用户接口605,例如小键盘、显示器、扬声器、麦克风、操纵杆。
处理器601负责管理总线600和通常的处理,如前述所述运行通用操作系统。而存储器604可以被用于存储处理器601在执行操作时所使用的数据。
可选的,处理器601可以是CPU、ASIC、FPGA或CPLD。
基于同一发明构思,本申请实施例中还提供了一种配置半持续调度的方法,由于该方法对应的设备是本申请实施例信道估计的系统中的网络侧设备,并且该方法解决问题的原理与该系统相似,因此该方法的实施可以参见系统的实施,重复之处不再赘述。
如图7所示,本申请实施例第一种配置半持续调度的方法包括:
步骤700、网络侧设备确定多套SPS配置对应的SPS C-RNTI;
步骤701、所述网络侧设备利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送多套SPS配置对应的SPS周期和/或SPS频域资源配置信息。
可选的,所述网络侧设备利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送多套SPS配置对应的SPS频域资源配置信息;
所述网络侧设备利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送多套SPS配置对应的SPS频域资源配置信息之前,还包括:
所述网络侧设备通过RRC信令,向终端发送每套SPS配置对应的SPS周期。
可选的,所述网络侧设备通过RRC信令,向终端发送每套SPS配置对应的SPS周期,包括:
针对相同的SPS周期,所述网络侧设备在一条RRC信令中携带一个所述相同的SPS周期。
可选的,全部或者部分SPS配置对应的SPS周期相同;
所述网络侧设备利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送每套SPS配置对应的SPS周期之前,还包括:
针对相同的SPS周期,所述网络侧设备在一条PDCCH信令中携带一个所述相同的SPS周期。
可选的,多套SPS配置对应的SPS周期不完全相同;
所述网络侧设备向终端发送多套SPS配置对应的SPS频域资源配置信息之前,还包括:
所述网络侧设备在PDCCH信令中携带SPS周期和SPS频域资源配置信息的对应关系。
可选的,全部或者部分SPS配置对应的SPS频域资源配置信息相同;
所述网络侧设备利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送多套SPS配置对应的SPS频域资源配置信息之前,还包括:
针对相同的SPS频域资源配置信息,所述网络侧设备在一条PDCCH信令中携带一个所述相同的SPS频域资源配置信息。
可选的,所述网络侧设备向终端发送多套SPS配置对应的SPS频域资源配置信息之前,还包括:
所述网络侧设备在所述PDCCH信令中携带SPS配置编号信息,用于指示该SPS配置对应的SPS配置编号。
可选的,所述网络侧设备向终端发送多套SPS配置对应的SPS频域资源配置信息,还包括:
针对一套SPS配置,所述网络侧设备在携带该套SPS配置对应的SPS频域资源配置信息的PDCCH信令中,加入所述SPS配置对应的SPS频域资源在时域上的偏移值;
其中,所述SPS配置对应的SPS频域资源在时域上的偏移值用于指示所述SPS配置的生效时刻相对于携带所述SPS配置对应的SPS频域资源偏移值的PDCCH信令接收时刻的时域偏移值。
可选的,所述网络侧设备向终端发送多套SPS配置对应的SPS频域资源配置信息之后,还包括:
所述网络侧设备利用所述SPS C-RNTI加扰的至少一条PDCCH信令,释放为终端配置的多套SPS配置。
可选的,所述网络侧设备向终端发送多套SPS配置对应的SPS频域资源配置信息之后,还包括:
所述SPS配置为上行SPS配置,针对每套SPS配置,所述网络侧设备通过所述SPS配置对应的资源,接收到连续N个没有数据部分的padding BSR后,释放所述SPS配置。
可选的,所述网络侧设备向终端发送多套SPS配置对应的SPS频域资源配置信息之后,还包括:
若所述多套SPS配置在时域上没有重叠,则所述网络侧设备将所述多套SPS配置作为 所述终端需要使用的SPS配置;
若所述多套SPS配置在时域上有重叠,则所述网络侧设备根据设定的选取条件从所述多套SPS配置中确定所述终端需要使用的SPS配置。
可选的,所述选取条件为下列条件中的一种:
选择最大的SPS频域资源块;
选择最小的SPS频域资源块;
根据需要传输的数据,选择SPS频域资源块。
基于同一发明构思,本申请实施例中还提供了一种确定半持续调度的方法,由于该方法对应的设备是本申请实施例信道估计的系统中的终端,并且该方法解决问题的原理与该系统相似,因此该方法的实施可以参见系统的实施,重复之处不再赘述。
如图8所示,本申请实施例第二种确定半持续调度的方法包括:
步骤800、终端确定多套SPS配置对应的SPS C-RNTI;
步骤801、所述终端接收来自网络侧设备的所述SPS C-RNTI加扰的PDCCH信令;
步骤802、所述终端根据所述SPS C-RNTI加扰的PDCCH信令,确定网络侧设备为所述终端配置的多套SPS配置对应的SPS周期和/或SPS频域资源配置信息,并根据确定的信息确定多套SPS配置。
可选的,所述终端根据所述SPS C-RNTI加扰的PDCCH信令,确定网络侧设备为所述终端配置的多套SPS配置对应的SPS频域资源配置信息;
所述终端根据确定的信息确定多套SPS配置之前,还包括:
所述终端通过RRC信令确定网络侧设备为所述终端配置的多套SPS配置对应的SPS周期。
可选的,所述终端确定多套SPS配置之后,还包括:
若所述多套SPS配置在时域上没有重叠,则所述终端将所述多套SPS配置作为所述终端需要使用的SPS配置;
若所述多套SPS配置在时域上有重叠,则所述终端根据设定的选取条件从所述多套SPS配置中确定所述终端需要使用的SPS配置。
可选的,所述选取条件为下列条件中的一种:
选择最大的SPS频域资源块;
选择最小的SPS频域资源块;
根据需要传输的数据,选择SPS频域资源块。
可选的,所述终端确定多套SPS配置之后,还包括:
所述SPS配置为上行SPS配置,针对每套SPS配置,所述终端通过所述SPS配置的资源,向所述网络侧设备发送连续N个没有数据部分的padding BSR,用于通知所述网络侧设备释放所述SPS配置。
下面列举几个例子,对本申请的方案进行详细说明。
实施例1:多套SPS配置对应的SPS周期相同,SPS频域资源不同。
步骤1:基站确定针对同一个业务的SPS C-RNTI和SPS周期并通知终端。
如果多套SPS配置对应的SPS周期相同,基站可以通过配置SPS C-RNTI的RRC信令携带SPS周期。
步骤2:基站发送用于SPS激活的PDCCH信令。
PDCCH信令具体有如下两种方式:
方式1:基站在一条PDCCH信令中携带针对多套SPS配置对应的SPS频域资源配置信息。
比如有SPS频域资源配置信息A和SPS频域资源配置信息B,则SPS频域资源配置信息A和SPS频域资源配置信息B都放在同一条PDCCH信令中。
对于该方式,可选的,针对每套SPS配置还可以携带SPS配置对应的SPS频域资源在时域上的偏移值,以使多套SPS配置能够在时域上错开。其中,所述SPS配置对应的SPS频域资源在时域上的偏移值用于指示所述SPS配置的生效时刻相对于携带所述SPS配置对应的SPS频域资源偏移值的PDCCH信令接收时刻的时域偏移值。
方式2:基站在一条PDCCH信令中携带一套SPS配置对应的SPS频域资源配置信息。
比如有SPS频域资源配置信息A和SPS频域资源配置信息B,则SPS频域资源配置信息A放在一条PDCCH信令中,SPS频域资源配置信息B放在另一条PDCCH信令中。
对于该方式,需要能够通过PDCCH中的内容识别该PDCCH是对该业务之前某套SPS频域资源的重配置,还是针对该业务的另一套SPS配置的配置信息。
具体的,基站在所述PDCCH信令中还可以携带SPS配置编号信息,用于指示该SPS配置对应的SPS配置编号。
比如SPS配置编号可以是N比特。N的取值取决于一个业务的SPS配置的套数,比如一个业务需要2套SPS配置,那么N取值可以用2bit。用00标识第一套SPS配置,用01标识针对第一套SPS配置的重配;用10标识第二套SPS配置,用11标识针对第二套SPS配置的重配。
步骤3:终端确定基站分配的多套SPS配置。
终端根据RRC信令和用于SPS激活的PDCCH信令,确定同一个SPS C-RNTI加扰的 PDCCH信令是针对同一个业务的。
终端根据PDCCH信令中的SPS频域资源配置信息和RRC信令配置的SPS配置对应的SPS周期确定针对同一个业务的多套SPS配置。
比如有SPS频域资源配置信息A和SPS频域资源配置信息B,假设包括SPS周期1的RRC信令中的SPS C-RNTI为XX。如果由XX加扰的PDCCH信令中包括SPS频域资源配置信息A和SPS频域资源配置信息B,则终端确定SPS频域资源配置信息A和SPS频域资源配置信息B是针对同一个业务的多套SPS配置,且SPS频域资源配置信息A和SPS频域资源配置信息B的SPS周期为SPS周期1。
终端根据SPS周期1和SPS频域资源配置信息A确定一套SPS配置,根据SPS周期1和SPS频域资源配置信息B确定另一套SPS配置。
步骤4:发送端从多套SPS配置中确定终端需要使用的SPS配置。
其中,如果是上行业务,则发送端是终端,接收端是基站;如果是下行业务,则发送端是基站,接收端是终端。
如果多套SPS配置在时域没有重叠,则发送端将所有配置的SPS频域资源作为其可以使用的SPS频域资源。
如果多套SPS配置在时域上有重叠,则发送端按照如下规则之一确定在时域重叠位置选择具体使用的SPS频域资源,该规则可以是预配置或者基站通知的。
总是选择最大的SPS频域资源块。
根据实际数据传输需求选择相应SPS频域资源块。
总是选择最小的SPS频域资源块。
具体的,以V2V为例,假设发送端针对同一个业务有两套SPS配置,发送端对于时域重叠的SPS频域资源按照最大SPS频域资源块确定,那么发送端最终确定的SPS频域资源如图2所示。
T1位置和T1+500ms位置SPS频域资源重叠,按照最大SPS频域资源块,选择SPS配置2,其他位置由于没有SPS频域资源重叠,所以选择可以使用的SPS频域资源。
步骤5:接收端对SPS的检测。
如果多套SPS配置在时域上有重叠,且接收端(下行指基站;上行指终端)按照如下规则确定在时域重叠位置选择具体使用的SPS频域资源:根据实际数据传输需求选择相应SPS频域资源块。
接收端如果可以预测发送端使用的SPS频域资源块大小(比如根据业务模型等信息),那么可以按照预测终端使用的SPS频域资源块大小进行SPS数据接收。否则,需要盲检测 多套SPS配置。
如果能够确定发送端在时域重叠位置选择具体使用的SPS频域资源,则接收端确定发送端使用的SPS频域资源,直接对该SPS频域资源检测即可。
步骤6:针对同一个业务的SPS频域资源释放。
针对同一个业务不同SPS频域资源释放如果采用隐式释放,可以单独进行。如果采用显式释放,则可以同时进行。即:
对于上行:
隐示释放:针对一个SPS配置,终端通过所述SPS配置对应的频域资源,连续用N个没有数据部分的padding BSR,隐示通知网络侧设备释放为终端配置的所述SPS配置。
显示释放:基站可以通过SPS C-RNTI加扰的PDCCH释放针对该业务配置的所有上行SPS频域资源。
下行仅支持显式释放方式,即基站可以通过SPS C-RNTI加扰的PDCCH释放针对该业务配置的所有下行SPS频域资源。
实施例2:多套SPS配置对应的SPS周期不同,SPS频域资源相同。
步骤1:基站确定针对同一个业务SPS C-RNTI以及针对该业务的多套SPS配置对应的SPS周期。
由于同一个业务多套SPS配置对应的SPS周期不同,因此SPS周期不能通过RRC信令携带,只能通过用于激活SPS的PDCCH信令携带。
步骤2:基站发送用于激活SPS的PDCCH信令。
由于多套SPS配置对应的SPS频域资源相同,因此只需要在一条PDCCH信令中携带一套SPS配置信息,同时携带多套SPS配置周期。为了使得针对同一业务的不同SPS周期的多套SPS配置能够在时域错开,针对每套SPS配置还可以携带SPS配置对应的SPS频域资源在时域上的偏移值,以使多套SPS配置能够在时域上错开。其中,所述SPS配置对应的SPS频域资源在时域上的偏移值用于指示所述SPS配置的生效时刻相对于携带所述SPS配置对应的SPS频域资源偏移值的PDCCH信令接收时刻的时域偏移值。
步骤3:终端确定基站分配的多套SPS配置。
终端根据RRC信令和用于SPS激活的PDCCH信令,确定同一个SPS C-RNTI加扰的PDCCH信令是针对同一个业务的。
终端根据PDCCH信令中的SPS频域资源配置信息和RRC信令配置的SPS配置对应的SPS周期确定针对同一个业务的多套SPS配置。
比如配置SPS频域资源配置信息A,SPS周期1和SPS周期2,假设SPS C-RNTI为 XX。由XX加扰的PDCCH信令中包括SPS频域资源配置信息A,SPS周期1和SPS周期2,则终端确定SPS频域资源配置信息A SPS周期1和SPS周期2是针对同一个业务的多套SPS配置。
终端根据SPS周期1和SPS频域资源配置信息A确定一套SPS配置,根据SPS周期2和SPS频域资源配置信息A确定另一套SPS配置。
其中,网络侧设备在需要与终端可进行业务传输时,也可以确定为终端配置的多套SPS配置。网络侧设备确定为终端配置的多套SPS配置的方式也可以参照步骤3。由于多套SPS配置是网络侧设备为终端配置的,所以网络侧设备也可以直接从多套SPS配置中确定哪些SPS配置对应该终端。
需要说明的是,网络侧设备确定多套SPS配置的方式有很多,上述只是举例说明,任何能够使网络侧设备确定多套SPS配置的方式都适用本申请实施例。
步骤4:发送端从多套SPS配置中确定终端需要使用的SPS配置。
其中,如果是上行业务,则发送端是终端,接收端是基站;如果是下行业务,则发送端是基站,接收端是终端。
如果多套SPS配置在时域没有重叠,则发送端将所有配置的SPS频域资源作为其可以使用的SPS频域资源。
如果多套SPS配置在时域上有重叠,则发送端按照如下规则之一确定在时域重叠位置选择具体使用的SPS频域资源,该规则可以是预配置或者基站通知的。
总是选择最大的SPS频域资源块。
根据实际数据传输需求选择相应SPS频域资源块。
总是选择最小的SPS频域资源块。
具体的,以V2V为例,假设发送端针对同一个业务有两套SPS配置,发送端对于时域重叠的SPS频域资源按照最大SPS频域资源块确定,那么发送端最终确定的SPS频域资源如图2所示。
T1位置和T1+500ms位置SPS频域资源重叠,按照最大SPS频域资源块,选择SPS配置2,其他位置由于没有SPS频域资源重叠,所以选择可以使用的SPS频域资源。
步骤5:接收端对SPS的检测。
如果多套SPS配置在时域上有重叠,且接收端(下行指基站;上行指终端)按照如下规则确定在时域重叠位置选择具体使用的SPS频域资源:根据实际数据传输需求选择相应SPS频域资源块。
接收端如果可以预测发送端使用的SPS频域资源块大小(比如根据业务模型等信息), 那么可以按照预测终端使用的SPS频域资源块大小进行SPS数据接收。否则,需要盲检测多套SPS配置。
如果能够确定发送端在时域重叠位置选择具体使用的SPS频域资源,则接收端确定发送端使用的SPS频域资源,直接对该SPS频域资源检测即可。
步骤6:针对同一个业务的SPS频域资源释放。
针对同一个业务不同SPS频域资源释放如果采用隐式释放,可以单独进行。如果采用显式释放,则可以同时进行。即:
对于上行:
隐示释放:终端通过所述SPS配置对应的频域资源,连续用N个没有数据部分的padding BSR,隐示通知网络侧设备释放为终端配置的所述SPS配置。
显示释放:基站可以通过SPS C-RNTI加扰的PDCCH释放针对该业务配置的所有上行SPS频域资源。
下行仅支持显式释放方式,即基站可以通过SPS C-RNTI加扰的PDCCH释放针对该业务配置的所有下行SPS频域资源。
实施例3:多套SPS配置对应的SPS周期不同,SPS频域资源不同。
步骤1:基站确定针对同一个业务SPS C-RNTI以及针对该业务的多套SPS配置对应的SPS周期。
由于同一个业务多套SPS配置对应的SPS周期不同,SPS周期可以通过RRC信令携带,同时在PDCCH信令中携带周期和SPS频域资源的对应关系。但是这种方式效率不高,效率比较高的是通过激活SPS的PDCCH信令携带所述周期。
步骤2:基站发送用于激活SPS的PDCCH信令。
PDCCH信令具体有如下两种方式:
方式1:基站在一条PDCCH信令中携带针对多套SPS配置对应的SPS频域资源配置信息。
比如有SPS频域资源配置信息A和SPS频域资源配置信息B,则SPS频域资源配置信息A和SPS频域资源配置信息B都放在同一条PDCCH信令中。
对于该方式,可选的,针对每套SPS配置还可以携带SPS配置对应的SPS频域资源在时域上的偏移值,以使多套SPS配置能够在时域上错开。其中,所述SPS配置对应的SPS频域资源在时域上的偏移值用于指示所述SPS配置的生效时刻相对于携带所述SPS配置对应的SPS频域资源偏移值的PDCCH信令接收时刻的时域偏移值。
方式2:基站在一条PDCCH信令中携带一套SPS配置对应的SPS频域资源配置信息。
比如有SPS频域资源配置信息A和SPS频域资源配置信息B,则SPS频域资源配置信息A放在一条PDCCH信令中,SPS频域资源配置信息B放在另一条PDCCH信令中。
对于该方式,由于使用一条PDCCH信令除了携带SPS频域资源配置还携带该资源配置对应的SPS周期,因此能够识别该PDCCH是对该业务之前某套SPS频域资源的重配置,还是针对该业务的另一套SPS配置资源配置,所以不需要进行特别的指示。
步骤3:终端确定基站分配的多套SPS配置。
终端根据RRC信令和用于SPS激活的PDCCH信令,确定同一个SPS C-RNTI加扰的PDCCH信令是针对同一个业务的。
终端根据PDCCH信令中的SPS频域资源配置信息和RRC信令配置的SPS配置对应的SPS周期确定针对同一个业务的多套SPS配置。
比如一共配置SPS频域资源配置信息A和SPS周期1,以及SPS频域资源配置信息B和SPS周期2两套SPS频域资源,假设RRC信令中的SPS C-RNTI为XX。如果由XX加扰的PDCCH信令中包括SPS频域资源配置信息A和SPS周期1,以及SPS频域资源配置信息B和SPS周期1,则终端SPS频域资源配置信息A、SPS周期1、SPS频域资源配置信息B和SPS周期1是针对同一个业务的多套SPS配置,且SPS频域资源配置信息A的SPS周期为SPS周期1,SPS频域资源配置信息B的SPS周期为SPS周期2。
终端根据SPS周期1和SPS频域资源配置信息A确定一套SPS配置,根据SPS周期2和SPS频域资源配置信息B确定另一套SPS配置。
其中,网络侧设备在需要与终端可进行业务传输时,也可以确定为终端配置的多套SPS配置。网络侧设备确定为终端配置的多套SPS配置的方式也可以参照步骤3。由于多套SPS配置是网络侧设备为终端配置的,所以网络侧设备也可以直接从多套SPS配置中确定哪些SPS配置对应该终端。
需要说明的是,网络侧设备确定多套SPS配置的方式有很多,上述只是举例说明,任何能够使网络侧设备确定多套SPS配置的方式都适用本申请实施例。
步骤4:发送端从多套SPS配置中确定终端需要使用的SPS配置。
其中,如果是上行业务,则发送端是终端,接收端是基站;如果是下行业务,则发送端是基站,接收端是终端。
如果多套SPS配置在时域没有重叠,则发送端将所有配置的SPS频域资源作为其可以使用的SPS频域资源。
如果多套SPS配置在时域上有重叠,则发送端按照如下规则之一确定在时域重叠位置选择具体使用的SPS频域资源,该规则可以是预配置或者基站通知的。
总是选择最大的SPS频域资源块。
根据实际数据传输需求选择相应SPS频域资源块。
总是选择最小的SPS频域资源块。
具体的,以V2V为例,假设发送端针对同一个业务有两套SPS配置,发送端对于时域重叠的SPS频域资源按照最大SPS频域资源块确定,那么发送端最终确定的SPS频域资源如图2所示。
T1位置和T1+500ms位置SPS频域资源重叠,按照最大SPS频域资源块,选择SPS配置2,其他位置由于没有SPS频域资源重叠,所以选择可以使用的SPS频域资源。
步骤5:接收端对SPS的检测。
如果多套SPS配置在时域上有重叠,且接收端(下行指基站;上行指终端)按照如下规则确定在时域重叠位置选择具体使用的SPS频域资源:根据实际数据传输需求选择相应SPS频域资源块。
接收端如果可以预测发送端使用的SPS频域资源块大小(比如根据业务模型等信息),那么可以按照预测终端使用的SPS频域资源块大小进行SPS数据接收。否则,需要盲检测多套SPS配置。
如果能够确定发送端在时域重叠位置选择具体使用的SPS频域资源,则接收端确定发送端使用的SPS频域资源,直接对该SPS频域资源检测即可。
步骤6:针对同一个业务的SPS频域资源释放。
针对同一个业务不同SPS频域资源释放如果采用隐式释放,可以单独进行。如果采用显式释放,则可以同时进行。即:
对于上行:
隐示释放:针对一个SPS配置,终端通过所述SPS配置对应的频域资源,连续用N个没有数据部分的padding BSR,隐示通知网络侧设备释放为终端配置的所述SPS配置。
显示释放:基站可以通过SPS C-RNTI加扰的PDCCH释放针对该业务配置的所有上行SPS频域资源。
下行仅支持显式释放方式,即基站可以通过SPS C-RNTI加扰的PDCCH释放针对该业务配置的所有下行SPS频域资源。
以上参照示出根据本申请实施例的方法、装置(系统)和/或计算机程序产品的框图和/或流程图描述本申请。应理解,可以通过计算机程序指令来实现框图和/或流程图示图的一个块以及框图和/或流程图示图的块的组合。可以将这些计算机程序指令提供给通用计算机、专用计算机的处理器和/或其它可编程数据处理装置,以产生机器,使得经由计算机处 理器和/或其它可编程数据处理装置执行的指令创建用于实现框图和/或流程图块中所指定的功能/动作的方法。
相应地,还可以用硬件和/或软件(包括固件、驻留软件、微码等)来实施本申请。更进一步地,本申请可以采取计算机可使用或计算机可读存储介质上的计算机程序产品的形式,其具有在介质中实现的计算机可使用或计算机可读程序代码,以由指令执行系统来使用或结合指令执行系统而使用。在本申请上下文中,计算机可使用或计算机可读介质可以是任意介质,其可以包含、存储、通信、传输、或传送程序,以由指令执行系统、装置或设备使用,或结合指令执行系统、装置或设备使用。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (51)

  1. 一种配置半持续调度的方法,其特征在于,该方法包括:
    网络侧设备确定多套半持续调度SPS配置对应的SPS小区无线网络临时标识符C-RNTI;
    所述网络侧设备利用所述SPS C-RNTI加扰的物理下行控制信道PDCCH信令,向终端发送多套SPS配置对应的SPS周期和/或SPS频域资源配置信息。
  2. 如权利要求1所述的方法,其特征在于,所述网络侧设备利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送多套SPS配置对应的SPS频域资源配置信息;
    所述网络侧设备利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送多套SPS配置对应的SPS频域资源配置信息之前,还包括:
    所述网络侧设备通过无线资源控制RRC信令,向终端发送每套SPS配置对应的SPS周期。
  3. 如权利要求2所述的方法,其特征在于,所述网络侧设备通过RRC信令,向终端发送每套SPS配置对应的SPS周期,包括:
    针对相同的SPS周期,所述网络侧设备在一条RRC信令中携带一个所述相同的SPS周期。
  4. 如权利要求1所述的方法,其特征在于,全部或者部分SPS配置对应的SPS周期相同;
    所述网络侧设备利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送每套SPS配置对应的SPS周期之前,还包括:
    针对相同的SPS周期,所述网络侧设备在一条PDCCH信令中携带一个所述相同的SPS周期。
  5. 如权利要求1或4所述的方法,其特征在于,多套SPS配置对应的SPS周期不完全相同;
    所述网络侧设备向终端发送多套SPS配置对应的SPS频域资源配置信息之前,还包括:
    所述网络侧设备在PDCCH信令中携带SPS周期和SPS频域资源配置信息的对应关系。
  6. 如权利要求1所述的方法,其特征在于,全部或者部分SPS配置对应的SPS频域资源配置信息相同;
    所述网络侧设备利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送多套SPS配置对应的SPS频域资源配置信息之前,还包括:
    针对相同的SPS频域资源配置信息,所述网络侧设备在一条PDCCH信令中携带一个 所述相同的SPS频域资源配置信息。
  7. 如权利要求1~4、6任一所述的方法,其特征在于,所述网络侧设备向终端发送多套SPS配置对应的SPS频域资源配置信息之前,还包括:
    所述网络侧设备在所述PDCCH信令中携带SPS配置编号信息,用于指示该SPS配置对应的SPS配置编号。
  8. 如权利要求1~4、6任一所述的方法,其特征在于,所述网络侧设备向终端发送多套SPS配置对应的SPS频域资源配置信息,还包括:
    针对一套SPS配置,所述网络侧设备在携带该套SPS配置对应的SPS频域资源配置信息的PDCCH信令中,加入所述SPS配置对应的SPS频域资源在时域上的偏移值;
    其中,所述SPS配置对应的SPS频域资源在时域上的偏移值用于指示所述SPS配置的生效时刻相对于携带所述SPS配置对应的SPS频域资源偏移值的PDCCH信令接收时刻的时域偏移值。
  9. 如权利要求1~4、6任一所述的方法,其特征在于,所述网络侧设备向终端发送多套SPS配置对应的SPS频域资源配置信息之后,还包括:
    所述网络侧设备利用所述SPS C-RNTI加扰的至少一条PDCCH信令,释放为终端配置的多套SPS配置。
  10. 如权利要求1~4、6所述的方法,其特征在于,所述网络侧设备向终端发送多套SPS配置对应的SPS频域资源配置信息之后,还包括:
    所述SPS配置为上行SPS配置,针对每套SPS配置,所述网络侧设备通过所述SPS配置对应的资源,接收到连续N个没有数据部分的填充padding缓存状态上报BSR后,释放所述SPS配置。
  11. 如权利要求1~4、6任一所述的方法,其特征在于,所述网络侧设备向终端发送多套SPS配置对应的SPS频域资源配置信息之后,还包括:
    若所述多套SPS配置在时域上没有重叠,则所述网络侧设备将所述多套SPS配置作为所述终端需要使用的SPS配置;
    若所述多套SPS配置在时域上有重叠,则所述网络侧设备根据设定的选取条件从所述多套SPS配置中确定所述终端需要使用的SPS配置。
  12. 如权利要求1~4、6所述的方法,其特征在于,所述选取条件为下列条件中的一种:
    选择最大的SPS频域资源块;
    选择最小的SPS频域资源块;
    根据需要传输的数据,选择SPS频域资源块。
  13. 一种确定半持续调度的方法,其特征在于,该方法包括:
    终端确定多套SPS配置对应的SPS C-RNTI;
    所述终端接收来自网络侧设备的所述SPS C-RNTI加扰的PDCCH信令;
    所述终端根据所述SPS C-RNTI加扰的PDCCH信令,确定所述网络侧设备为所述终端配置的多套SPS配置对应的SPS周期和/或SPS频域资源配置信息,并根据确定的多套SPS配置对应的信息确定多套SPS配置。
  14. 如权利要求13所述的方法,其特征在于,所述终端根据所述SPS C-RNTI加扰的PDCCH信令,确定所述网络侧设备为所述终端配置的多套SPS配置对应的SPS频域资源配置信息;
    所述终端根据确定的信息确定多套SPS配置之前,还包括:
    所述终端通过RRC信令确定网络侧设备为所述终端配置的多套SPS配置对应的SPS周期。
  15. 如权利要求13所述的方法,其特征在于,所述终端确定多套SPS配置之后,还包括:
    若所述多套SPS配置在时域上没有重叠,则所述终端将所述多套SPS配置作为所述终端需要使用的SPS配置;
    若所述多套SPS配置在时域上有重叠,则所述终端根据设定的选取条件从所述多套SPS配置中确定所述终端需要使用的SPS配置。
  16. 如权利要求15所述的方法,其特征在于,所述选取条件为下列条件中的一种:
    选择最大的SPS频域资源块;
    选择最小的SPS频域资源块;
    根据需要传输的数据,选择SPS频域资源块。
  17. 如权利要求13~16任一所述的方法,其特征在于,所述终端确定多套SPS配置之后,还包括:
    所述SPS配置为上行SPS配置,针对每套SPS配置,所述终端通过所述SPS配置的资源,向所述网络侧设备发送连续N个没有数据部分的padding BSR,用于通知所述网络侧设备释放所述SPS配置。
  18. 一种配置半持续调度的网络侧设备,其特征在于,该网络侧设备包括:
    第一标识确定模块,用于确定多套SPS配置对应的SPS C-RNTI;
    处理模块,用于利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送多套SPS配 置对应的SPS周期和/或SPS频域资源配置信息。
  19. 如权利要求18所述的网络侧设备,其特征在于,所述处理模块还用于:
    若利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送多套SPS配置对应的SPS频域资源配置信息,则利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送多套SPS配置对应的SPS频域资源配置信息之前,通过RRC信令,向终端发送每套SPS配置对应的SPS周期。
  20. 如权利要求19所述的网络侧设备,其特征在于,所述处理模块具体用于:
    针对相同的SPS周期,在一条RRC信令中携带一个所述相同的SPS周期。
  21. 如权利要求18所述的网络侧设备,其特征在于,全部或者部分SPS配置对应的SPS周期相同;
    所述处理模块还用于:
    利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送每套SPS配置对应的SPS周期之前,针对相同的SPS周期,在一条PDCCH信令中携带一个所述相同的SPS周期。
  22. 如权利要求18或21所述的网络侧设备,其特征在于,多套SPS配置对应的SPS周期不完全相同;
    所述处理模块还用于:
    向终端发送多套SPS配置对应的SPS频域资源配置信息之前,在PDCCH信令中携带SPS周期和SPS频域资源配置信息的对应关系。
  23. 如权利要求18所述的网络侧设备,其特征在于,全部或者部分SPS配置对应的SPS频域资源配置信息相同;
    所述处理模块还用于:
    利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送多套SPS配置对应的SPS频域资源配置信息之前,针对相同的SPS频域资源配置信息,在一条PDCCH信令中携带一个所述相同的SPS频域资源配置信息。
  24. 如权利要求18~21、23任一所述的网络侧设备,其特征在于,所述处理模块还用于:
    向终端发送多套SPS配置对应的SPS频域资源配置信息之前,在所述PDCCH信令中携带SPS配置编号信息,用于指示该SPS配置对应的SPS配置编号。
  25. 如权利要求18~21、23任一所述的网络侧设备,其特征在于,所述处理模块还用于:
    针对一套SPS配置,在携带该套SPS配置对应的SPS频域资源配置信息的PDCCH信 令中,加入所述SPS配置对应的SPS频域资源在时域上的偏移值;
    其中,所述SPS配置对应的SPS频域资源在时域上的偏移值用于指示所述SPS配置的生效时刻相对于携带所述SPS配置对应的SPS频域资源偏移值的PDCCH信令接收时刻的时域偏移值。
  26. 如权利要求18~21、23任一所述的网络侧设备,其特征在于,所述处理模块还用于:
    向终端发送多套SPS配置对应的SPS频域资源配置信息之后,利用所述SPS C-RNTI加扰的至少一条PDCCH信令,释放为终端配置的多套SPS配置。
  27. 如权利要求18~21、23任一所述的网络侧设备,其特征在于,所述处理模块还用于:
    向终端发送多套SPS配置对应的SPS频域资源配置信息之后,若所述SPS配置为上行SPS配置,针对每套SPS配置,在通过所述SPS配置对应的资源,接收到连续N个没有数据部分的padding BSR后,释放所述SPS配置。
  28. 如权利要求18~21、23任一所述的网络侧设备,其特征在于,所述处理模块还用于:
    向终端发送多套SPS配置对应的SPS频域资源配置信息之后,若所述多套SPS配置在时域上没有重叠,则将所述多套SPS配置作为所述终端需要使用的SPS配置;若所述多套SPS配置在时域上有重叠,则根据设定的选取条件从所述多套SPS配置中确定所述终端需要使用的SPS配置。
  29. 如权利要求18~21、23任一所述的网络侧设备,其特征在于,所述选取条件为下列条件中的一种:
    选择最大的SPS频域资源块;
    选择最小的SPS频域资源块;
    根据需要传输的数据,选择SPS频域资源块。
  30. 一种确定半持续调度的终端,其特征在于,该终端包括:
    第二标识确定模块,用于确定多套SPS配置对应的SPS C-RNTI;
    接收模块,用于接收来自网络侧设备的所述SPS C-RNTI加扰的PDCCH信令;
    配置确定模块,用于根据所述SPS C-RNTI加扰的PDCCH信令,确定所述网络侧设备为所述终端配置的多套SPS配置对应的SPS周期和/或SPS频域资源配置信息,并根据确定的信息确定多套SPS配置。
  31. 如权利要求30所述的终端,其特征在于,所述配置确定模块还用于:
    若根据所述SPS C-RNTI加扰的PDCCH信令,确定所述网络侧设备为所述终端配置的多套SPS配置对应的SPS频域资源配置信息,则根据确定的信息确定多套SPS配置之前,通过RRC信令确定网络侧设备为所述终端配置的多套SPS配置对应的SPS周期。
  32. 如权利要求30所述的终端,其特征在于,所述配置确定模块还用于:
    若所述多套SPS配置在时域上没有重叠,则将所述多套SPS配置作为所述终端需要使用的SPS配置;若所述多套SPS配置在时域上有重叠,则根据设定的选取条件从所述多套SPS配置中确定所述终端需要使用的SPS配置。
  33. 如权利要求32所述的终端,其特征在于,所述选取条件为下列条件中的一种:
    选择最大的SPS频域资源块;
    选择最小的SPS频域资源块;
    根据需要传输的数据,选择SPS频域资源块。
  34. 如权利要求30~33任一所述的终端,其特征在于,所述配置确定模块还用于:
    若所述SPS配置为上行SPS配置,针对每套SPS配置,通过所述SPS配置的资源,向所述网络侧设备发送连续N个没有数据部分的padding BSR,用于通知所述网络侧设备释放所述SPS配置。
  35. 一种配置半持续调度的网络侧设备,其特征在于,包括:处理器、存储器和收发机;
    处理器,用于读取存储器中的程序,执行下列过程:
    确定多套SPS配置对应的SPS C-RNTI;利用所述SPS C-RNTI加扰的PDCCH信令,通过收发机向终端发送多套SPS配置对应的SPS周期和/或SPS频域资源配置信息;
    收发机,用于在处理器的控制下接收和发送数据。
  36. 如权利要求35所述的网络侧设备,其特征在于,所述处理器还用于:
    若利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送多套SPS配置对应的SPS频域资源配置信息,则利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送多套SPS配置对应的SPS频域资源配置信息之前,通过RRC信令,向终端发送每套SPS配置对应的SPS周期。
  37. 如权利要求36所述的网络侧设备,其特征在于,所述处理器具体用于:
    针对相同的SPS周期,在一条RRC信令中携带一个所述相同的SPS周期。
  38. 如权利要求35所述的网络侧设备,其特征在于,全部或者部分SPS配置对应的SPS周期相同;
    所述处理器还用于:
    利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送每套SPS配置对应的SPS周期之前,针对相同的SPS周期,在一条PDCCH信令中携带一个所述相同的SPS周期。
  39. 如权利要求35或38所述的网络侧设备,其特征在于,多套SPS配置对应的SPS周期不完全相同;
    所述处理器还用于:
    向终端发送多套SPS配置对应的SPS频域资源配置信息之前,在PDCCH信令中携带SPS周期和SPS频域资源配置信息的对应关系。
  40. 如权利要求35所述的网络侧设备,其特征在于,全部或者部分SPS配置对应的SPS频域资源配置信息相同;
    所述处理器还用于:
    利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送多套SPS配置对应的SPS频域资源配置信息之前,针对相同的SPS频域资源配置信息,在一条PDCCH信令中携带一个所述相同的SPS频域资源配置信息。
  41. 如权利要求35~38、40任一所述的网络侧设备,其特征在于,所述处理器还用于:
    向终端发送多套SPS配置对应的SPS频域资源配置信息之前,在所述PDCCH信令中携带SPS配置编号信息,用于指示该SPS配置对应的SPS配置编号。
  42. 如权利要求35~38、40任一所述的网络侧设备,其特征在于,所述处理器还用于:
    针对一套SPS配置,在携带该套SPS配置对应的SPS频域资源配置信息的PDCCH信令中,加入所述SPS配置对应的SPS频域资源在时域上的偏移值;
    其中,所述SPS配置对应的SPS频域资源在时域上的偏移值用于指示所述SPS配置的生效时刻相对于携带所述SPS配置对应的SPS频域资源偏移值的PDCCH信令接收时刻的时域偏移值。
  43. 如权利要求35~38、40任一所述的网络侧设备,其特征在于,所述处理器还用于:
    向终端发送多套SPS配置对应的SPS频域资源配置信息之后,利用所述SPS C-RNTI加扰的至少一条PDCCH信令,释放为终端配置的多套SPS配置。
  44. 如权利要求35~38、40任一所述的网络侧设备,其特征在于,所述处理器还用于:
    向终端发送多套SPS配置对应的SPS频域资源配置信息之后,若所述SPS配置为上行SPS配置,针对每套SPS配置,在通过所述SPS配置对应的资源,接收到连续N个没有数据部分的padding BSR后,释放所述SPS配置。
  45. 如权利要求35~38和40所述的网络侧设备,其特征在于,所述处理器还用于:
    向终端发送多套SPS配置对应的SPS频域资源配置信息之后,若所述多套SPS配置 在时域上没有重叠,则将所述多套SPS配置作为所述终端需要使用的SPS配置;若所述多套SPS配置在时域上有重叠,则根据设定的选取条件从所述多套SPS配置中确定所述终端需要使用的SPS配置。
  46. 如权利要求35~38、40任一所述的网络侧设备,其特征在于,所述选取条件为下列条件中的一种:
    选择最大的SPS频域资源块;
    选择最小的SPS频域资源块;
    根据需要传输的数据,选择SPS频域资源块。
  47. 一种确定半持续调度的终端,其特征在于,包括:处理器、存储器和收发机;
    处理器,用于读取存储器604中的程序,执行下列过程:
    确定多套SPS配置对应的SPS C-RNTI;通过收发机接收来自网络侧设备的所述SPSC-RNTI加扰的PDCCH信令;根据所述SPS C-RNTI加扰的PDCCH信令,确定所述网络侧设备为所述终端配置的多套SPS配置对应的SPS周期和/或SPS频域资源配置信息,并根据确定的信息确定多套SPS配置;
    收发机,用于在处理器的控制下接收和发送数据。
  48. 如权利要求47所述的终端,其特征在于,所述处理器还用于:
    若根据所述SPS C-RNTI加扰的PDCCH信令,确定所述网络侧设备为所述终端配置的多套SPS配置对应的SPS频域资源配置信息,则根据确定的信息确定多套SPS配置之前,通过RRC信令确定网络侧设备为所述终端配置的多套SPS配置对应的SPS周期。
  49. 如权利要求47所述的终端,其特征在于,所述处理器还用于:
    若所述多套SPS配置在时域上没有重叠,则将所述多套SPS配置作为所述终端需要使用的SPS配置;若所述多套SPS配置在时域上有重叠,则根据设定的选取条件从所述多套SPS配置中确定所述终端需要使用的SPS配置。
  50. 如权利要求49所述的终端,其特征在于,所述选取条件为下列条件中的一种:
    选择最大的SPS频域资源块;
    选择最小的SPS频域资源块;
    根据需要传输的数据,选择SPS频域资源块。
  51. 如权利要求47~50任一所述的终端,其特征在于,所述处理器还用于:
    若所述SPS配置为上行SPS配置,针对每套SPS配置,通过所述SPS配置的资源,向所述网络侧设备发送连续N个没有数据部分的padding BSR,用于通知所述网络侧设备释放所述SPS配置。
PCT/CN2017/070176 2016-03-15 2017-01-04 一种配置和确定半持续调度的方法及设备 WO2017157089A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/085,482 US10880919B2 (en) 2016-03-15 2017-01-04 Method and device for configuring and determining semi-persistent scheduling
EP21195967.1A EP3941139A1 (en) 2016-03-15 2017-01-04 Method and device for configuring and determining semi-persistent scheduling
JP2018549275A JP6858198B2 (ja) 2016-03-15 2017-01-04 セミパーシステントスケジューリングを設定・確定する方法及び装置
KR1020187029767A KR20180123541A (ko) 2016-03-15 2017-01-04 준 지속 스케쥴링을 설정 및 확정하는 방법 및 장치
EP17765631.1A EP3432662B1 (en) 2016-03-15 2017-01-04 Method and device for configuring and determining semi-persistent scheduling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610146530.6A CN107197522B (zh) 2016-03-15 2016-03-15 一种配置和确定半持续调度的方法及设备
CN201610146530.6 2016-03-15

Publications (1)

Publication Number Publication Date
WO2017157089A1 true WO2017157089A1 (zh) 2017-09-21

Family

ID=59850492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/070176 WO2017157089A1 (zh) 2016-03-15 2017-01-04 一种配置和确定半持续调度的方法及设备

Country Status (6)

Country Link
US (1) US10880919B2 (zh)
EP (2) EP3941139A1 (zh)
JP (1) JP6858198B2 (zh)
KR (1) KR20180123541A (zh)
CN (1) CN107197522B (zh)
WO (1) WO2017157089A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2565538A (en) * 2017-08-11 2019-02-20 Samsung Electronics Co Ltd Improvements in and relating to semi persistent scheduling in a telecommunication network
US11647483B2 (en) 2018-03-16 2023-05-09 Huawei Technologies Co., Ltd. Devices and methods for device to device (D2D) communication

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017166213A1 (zh) * 2016-03-31 2017-10-05 华为技术有限公司 一种数据传输方法及装置
EP3510818B1 (en) * 2016-08-12 2021-04-21 Telefonaktiebolaget LM Ericsson (publ) Systems and methods of handling collisions between multiple semi-persistent grants
CN108156629A (zh) * 2016-12-02 2018-06-12 索尼公司 无线通信系统中的设备和无线通信方法
WO2019054830A1 (en) * 2017-09-18 2019-03-21 Samsung Electronics Co., Ltd. METHOD AND APPARATUS FOR PROCESSING A PACKET IN A WIRELESS COMMUNICATION SYSTEM
CN111108796B (zh) 2017-09-28 2024-04-05 三星电子株式会社 用于在多个带宽部分上执行数据发射和测量的方法和网络节点
WO2019097459A1 (en) * 2017-11-16 2019-05-23 Telefonaktiebolaget Lm Ericsson (Publ) Method for allocating resource grant
CN110169163A (zh) * 2017-12-12 2019-08-23 华为技术有限公司 一种数据传输的方法和装置
EP3716717B1 (en) * 2017-12-27 2023-01-25 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data sending method and apparatus, computer device and storage medium
WO2019196034A1 (zh) 2018-04-11 2019-10-17 北京小米移动软件有限公司 非授权小区中的数据传输方法及装置、基站和用户设备
EP3780838A4 (en) * 2018-04-25 2021-12-15 Beijing Xiaomi Mobile Software Co., Ltd. METHOD AND DEVICE FOR DISPLAYING THE OCCUPATION OF A SEMI-PERSISTENT PLANNING UNIT AND BASE STATION
CN111148262B (zh) * 2018-11-07 2021-09-24 维沃移动通信有限公司 一种数据传输方法、信息配置方法、终端及网络设备
CN112583527B (zh) * 2019-09-27 2022-04-12 大唐移动通信设备有限公司 混合自动重传请求进程编号确定方法、终端及网络侧设备
CN112702700B (zh) * 2019-10-23 2022-07-22 华为技术有限公司 一种资源配置的方法及装置
CN113015256B (zh) * 2019-12-20 2024-01-23 大唐移动通信设备有限公司 一种信息处理方法、装置、设备及计算机可读存储介质
US11706773B2 (en) 2020-07-27 2023-07-18 Samsung Electronics Co., Ltd. Systems and methods for collision handling and semi-persistently scheduled physical downlink shared channel release

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101800991A (zh) * 2009-02-06 2010-08-11 大唐移动通信设备有限公司 一种数据传输方法、系统及装置
US20110038335A1 (en) * 2009-08-14 2011-02-17 Electronics And Telecommunications Research Institute Method and apparatus for multiplexing data
CN102158932A (zh) * 2010-02-12 2011-08-17 中兴通讯股份有限公司 一种基于竞争的上行发送方法和系统
CN102158973A (zh) * 2010-02-11 2011-08-17 电信科学技术研究院 半持续调度、传输及处理方法、系统和设备
CN104170491A (zh) * 2012-03-19 2014-11-26 阿尔卡特朗讯 用于配置多个调度请求触发的方法和装置
CN106304360A (zh) * 2016-08-05 2017-01-04 宇龙计算机通信科技(深圳)有限公司 用于车辆通信的资源调度方法及装置、终端和基站

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8379585B2 (en) * 2009-10-29 2013-02-19 Lg Electronics Inc. Method of transmitting semi-persistent scheduling data in multiple component carrier system
CN102595600B (zh) * 2011-01-17 2014-12-31 华为技术有限公司 半静态调度方法、用户设备及网络设备
JP5747990B2 (ja) 2011-09-14 2015-07-15 富士通株式会社 無線端末および基地局
WO2013046468A1 (ja) * 2011-09-30 2013-04-04 富士通株式会社 無線通信システム、移動局、基地局及び無線通信システム制御方法
US9084142B2 (en) * 2011-10-03 2015-07-14 Qualcomm Incorporated Activating and deactivating semi-persistent scheduling for an LTE VoIP radio bearer
EP2848082B1 (en) * 2012-05-11 2019-05-08 Telefonaktiebolaget LM Ericsson (publ) Extended semi-persistent scheduling (sps) configuration flexibility for infrequent dense resource allocations
KR101600260B1 (ko) 2012-10-02 2016-03-21 퀄컴 인코포레이티드 Lte voip 무선 베어러를 위한 반―지속적 스케줄링의 활성화 및 비활성화
US20160295624A1 (en) * 2015-04-02 2016-10-06 Samsung Electronics Co., Ltd Methods and apparatus for resource pool design for vehicular communications

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101800991A (zh) * 2009-02-06 2010-08-11 大唐移动通信设备有限公司 一种数据传输方法、系统及装置
US20110038335A1 (en) * 2009-08-14 2011-02-17 Electronics And Telecommunications Research Institute Method and apparatus for multiplexing data
CN102158973A (zh) * 2010-02-11 2011-08-17 电信科学技术研究院 半持续调度、传输及处理方法、系统和设备
CN102158932A (zh) * 2010-02-12 2011-08-17 中兴通讯股份有限公司 一种基于竞争的上行发送方法和系统
CN104170491A (zh) * 2012-03-19 2014-11-26 阿尔卡特朗讯 用于配置多个调度请求触发的方法和装置
CN106304360A (zh) * 2016-08-05 2017-01-04 宇龙计算机通信科技(深圳)有限公司 用于车辆通信的资源调度方法及装置、终端和基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3432662A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2565538A (en) * 2017-08-11 2019-02-20 Samsung Electronics Co Ltd Improvements in and relating to semi persistent scheduling in a telecommunication network
US11647483B2 (en) 2018-03-16 2023-05-09 Huawei Technologies Co., Ltd. Devices and methods for device to device (D2D) communication

Also Published As

Publication number Publication date
JP6858198B2 (ja) 2021-04-14
EP3432662B1 (en) 2021-10-27
KR20180123541A (ko) 2018-11-16
US20190090266A1 (en) 2019-03-21
JP2019509692A (ja) 2019-04-04
US10880919B2 (en) 2020-12-29
EP3941139A1 (en) 2022-01-19
EP3432662A1 (en) 2019-01-23
CN107197522B (zh) 2020-02-04
CN107197522A (zh) 2017-09-22
EP3432662A4 (en) 2019-02-27

Similar Documents

Publication Publication Date Title
WO2017157089A1 (zh) 一种配置和确定半持续调度的方法及设备
WO2017157128A1 (zh) 一种配置和确定半持续调度的方法及设备
US11882563B2 (en) Radio access technology with non-continuous and periodic PUSCH transmission
US11849426B2 (en) Systems and methods for sharing a resource pool in sidelink communications
WO2017133445A1 (zh) 一种传输上行控制信息的方法和设备
JP6355281B2 (ja) バッファステータスレポートおよびスケジューリングリクエストを二重接続を用いて処理する方法および装置
WO2017133596A1 (zh) 上行控制信息的传输方法及装置
WO2017148231A1 (zh) 一种配置上行半持续调度的方法、终端及网络侧设备
WO2018086517A1 (zh) 下行数据包传输方法及设备
WO2017193766A1 (zh) 一种下行数据传输的方法及设备
CN109392015A (zh) 一种资源选择方法及装置
CN113382379B (zh) 无线通信方法和通信装置
WO2017133452A1 (zh) 一种传输上行控制信息的方法和设备
WO2013166670A1 (zh) 上行信道资源配置方法和设备
CN114270979A (zh) 侧链路上的csi获取的装置和方法
US20120051304A1 (en) Method and Device for Scheduling Terminals
WO2018082467A1 (zh) 一种调度方法、终端及基站
WO2017167074A1 (zh) 一种调度方法、装置和设备
KR20210111850A (ko) 리소스 구성 및 데이터 전송을 위한 방법 및 장치
WO2019095980A1 (zh) 一种资源调度方法及相关设备
WO2021063212A1 (zh) 反馈方法及装置
CN109392137B (zh) 一种数据发送、接收方法及装置
WO2020063472A1 (zh) 资源分配方法和设备
WO2022057886A1 (zh) 小数据的配置方法、装置、设备及存储介质
JP7353507B2 (ja) 物理サイドリンクフィードバック情報の決定方法、通信機器及びコンピュータ可読記憶媒体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018549275

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187029767

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017765631

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017765631

Country of ref document: EP

Effective date: 20181015

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17765631

Country of ref document: EP

Kind code of ref document: A1