WO2017157059A1 - 一种具有二重预热结构的微型液体燃烧器及其燃烧方法 - Google Patents

一种具有二重预热结构的微型液体燃烧器及其燃烧方法 Download PDF

Info

Publication number
WO2017157059A1
WO2017157059A1 PCT/CN2016/109188 CN2016109188W WO2017157059A1 WO 2017157059 A1 WO2017157059 A1 WO 2017157059A1 CN 2016109188 W CN2016109188 W CN 2016109188W WO 2017157059 A1 WO2017157059 A1 WO 2017157059A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
sleeve
air
preheating
chamber
Prior art date
Application number
PCT/CN2016/109188
Other languages
English (en)
French (fr)
Inventor
甘云华
江政纬
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to US16/085,816 priority Critical patent/US10865982B2/en
Publication of WO2017157059A1 publication Critical patent/WO2017157059A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/44Preheating devices; Vaporising devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/02Disposition of air supply not passing through burner
    • F23C7/06Disposition of air supply not passing through burner for heating the incoming air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/40Mixing tubes or chambers; Burner heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/40Mixing tubes or chambers; Burner heads
    • F23D11/406Flame stabilising means, e.g. flame holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/44Preheating devices; Vaporising devices
    • F23D11/441Vaporising devices incorporated with burners
    • F23D11/443Vaporising devices incorporated with burners heated by the main burner flame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/21Burners specially adapted for a particular use
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention relates to a combustion apparatus, and more particularly to a micro liquid burner having a double preheating structure and a combustion method therefor.
  • micro-energy systems based on liquid hydrocarbon fuels have broad application prospects in the future.
  • designing micro-burners with excellent performance has been a research hotspot.
  • the effective combustion space in which the micro-scale combustion process is located is very small, and the resulting face body is tens of times larger than that of the conventional burner, so that the heat loss is significantly increased;
  • the reduction in size causes the fuel and air to stay in the burner for a short period of time, the fuel cannot be fully burned, and the combustion process may be unsuccessful in organization. Therefore, achieving stable combustion and improving combustion efficiency in a small scale is the current research focus.
  • micro-combustors that have been implemented in the past often use gaseous fuels. Compared to liquid fuels, they have low energy density and are inconvenient to store and transport. Micro-fuels fueled by liquid hydrocarbons have certain advantages.
  • liquid fuels require additional turns and spaces to evaporate and mix, and the resulting structural design of the burners is also more challenging than gas fuel burners. Therefore, there is a need for a micro-combustor for liquid combustion that meets the two main requirements of good evaporation of liquid fuel and adequate mixing with air.
  • the object of the present invention is to overcome the above disadvantages and shortcomings of the prior art, and to provide a micro liquid burner having a double preheating structure and a combustion method thereof, so as to solve the long-term existence of liquid fuel in the existing burner. Solutions for technical problems such as low evaporation, insufficient combustion, instability, low combustion efficiency and easy extinction
  • a micro liquid burner having a double preheating structure comprising a burner outer cylinder body 2, an upper sealing plate 1 and a lower sealing plate 2 for sealing upper and lower ends of the outer cylinder body 2 of the burner;
  • the outer side wall of the outer tube body 2 is provided with a venting opening 11;
  • the first sleeve 6, the second sleeve 5 and the third sleeve 3 are sequentially included from the outside to the inside; the first sleeve 6, the second sleeve 5 And the lower end of the third sleeve 3 is sealed by the lower sealing plate 2, and the upper ends of the first sleeve 6 and the third sleeve 3 are sealed by the sealing top cover 15 , and the outer surface of the sealing top cover 15 and the upper sealing plate 1 are sealed. a gap between the inner surfaces; a gap between the top end of the second sleeve 5 and the inner surface of the sealing cap 15;
  • the air preheating chamber is divided into a first air preheating chamber 10-1 and a second air preheating chamber 10-2 by a wall of the second sleeve 5, the first air preheating chamber
  • the communication between 10-1 and the second air preheating chamber 10-2 is achieved by a gap between the top end of the second sleeve 5 and the inner surface of the sealing top cover 15;
  • the fuel preheating chamber is divided by a cylinder wall of the second sleeve 5 into a first fuel preheating chamber 8-1 and a second fuel preheating chamber 8-2, the first fuel preheating chamber
  • the communication between 8-1 and the second fuel preheating chamber 8-2 is achieved by a gap between the top end of the second sleeve 5 and the inner surface of the sealing cap 15;
  • the inner wall surface space of the third sleeve 3 is a combustion chamber 31, and the space between the outer wall surface of the first sleeve 6 and the inner wall surface of the burner outer cylinder body 2 is an exhaust passage 33; 31 is connected to the exhaust passage 33, is a pass
  • the top surface of the over-sealing cap 15 and the inner surface of the upper sealing plate 1 are in communication with each other; [0012] on the bottom wall of the third sleeve 3, the second air corresponding to the two air preheating chambers
  • the preheating chamber 10-2 is respectively provided with a combustion chamber air inlet port 12; on the bottom wall of the third sleeve 3, the second fuel preheating chamber 8-2 corresponding to the two fuel preheating chambers respectively ⁇ is provided with a combustion chamber fuel inlet 9;
  • a first air preheating chamber 10-1 corresponding to two air preheating chambers is respectively provided with an air inlet hole 10; on the lower sealing plate 2, corresponding to two fuel preheatings First fuel preheating chamber of the hot chamber
  • the air enters the combustion chamber 31 through the first air preheating chamber 10-1, the second air preheating chamber 10-2, and the combustion chamber air inlet 12 through the air inlet hole 10, and the same, the fuel
  • the fuel inlet hole 8 sequentially passes through the first fuel preheating chamber 8-1, the second fuel preheating chamber 8-2, the combustion chamber fuel inlet port 9, and then enters the combustion chamber 31 and is mixed and combusted with air, and the exhausted gas is burned.
  • combustion chamber air inlet 12 and the combustion chamber fuel inlet 9 are both disposed in a tangential direction on the same circumference of the bottom wall of the third sleeve 3, and the air and fuel are rounded. Entering the combustion chamber 31, in the combustion chamber
  • the position of the combustion chamber air inlet 12 and the air inlet opening 10 is on a diameter line; the combustion chamber fuel inlet 9 and the fuel inlet opening 8 are located at another diameter line. Upper; the two diameter lines intersect each other.
  • the diameters of the air inlet hole 10 and the fuel inlet hole 8 are smaller than the gap between the second sleeve 5 and the first sleeve 6.
  • the first fuel preheating chamber 8-1 and the second fuel preheating chamber 8-2 of the fuel preheating chamber are filled with a sintered porous material.
  • the middle portion of the combustion chamber 31 is provided with a metal catalytic grid 13, the igniter 14 is placed above the side of the metal catalytic grid 13, and the lead 16 of the igniter 14 is connected to the external high voltage power supply through the upper sealing plate 1; Metal catalytic grid The surface of 13 is coated with a Cu-Ni, Pt-Ni or Pt-Cu catalyst.
  • the combustion method of the micro liquid burner of the present invention is as follows:
  • the liquid hydrocarbon fuel and air pass into the combustion chamber 31, are ignited by the igniter 14 and stably burn above the metal catalytic grid 13, and the burning flame first heats the third sleeve 3, and the third after heating
  • the sleeve 3 gradually radiates thermal energy to the first fuel preheating chamber 8-1, the second fuel preheating chamber 8-2, the first air preheating chamber 10-1 and the second air preheating chamber 10-2 until the entire The micro-liquid burner is heated; and thus the air entering the air preheating chamber and the fuel in the fuel preheating chamber are separately preheated before entering the combustion chamber 31.
  • the secondary preheating process is specifically as follows:
  • the liquid hydrocarbon fuel enters the first fuel preheating chamber 8-1 from the bottom of the fuel inlet hole 8 for the first heating, and the porous material in the first fuel preheating chamber 8-1 is broken. , the liquid hydrocarbon fuel completes the first crushing to form the heated liquid droplet; then enters the second fuel preheating chamber 8-2 from top to bottom for the second heating, and the second fuel preheating chamber 8-2 The porous material undergoes a second heat-crushing of the first heat-crushed droplets, further reducing the particle size of the heated droplets, and forming fuel vapor, which is then tangentially passed through the combustion chamber fuel inlet port 9. Entering the combustion chamber 31 from the bottom up;
  • air also enters the first air preheating chamber 10-1 through the air inlet hole 10 from the bottom to the first heating, and enters the second air preheating chamber 10-2 from top to bottom.
  • the second heating then enters the combustion chamber 31 in a tangential manner through the combustion chamber air inlet 12, and is sufficiently mixed with the fuel vapor under the metal catalytic grid 13 to form a gas-liquid mixture, thereby completing the liquid hydrocarbon fuel.
  • the present invention has at least the following advantages and effects:
  • the micro-liquid burner according to the present invention adopts a first sleeve 6, a second sleeve 5 and a third sleeve 3 in a manner of layer-by-layer fitting in the outer cylinder body 2 of the burner. And subtly divide the space between the first sleeve 6, the second sleeve 5 and the third sleeve 3 into two opposite and independent air preheating chambers and two opposite and independent fuels through the partition plate 17.
  • the secondary countercurrent preheating greatly enhances the heat exchange intensity, so that the air and fuel are extremely preheated before combustion, which not only facilitates the full evaporation of the liquid fuel, but also makes the combustion process more complete and stable, and greatly improves the Combustion efficiency.
  • the partition 17 is also ingenious in that it increases the compactness and scientificity of the micro-liquid burner structure.
  • the micro liquid burner of the present invention arranges a porous material in the preheating of the fuel, and further breaks the liquid fuel into finer droplets (or droplets) under the action of high temperature and porous material. It can promote rapid evaporation after its temperature is gradually increased, so that the combustion further enhances the sufficient, stable and high-efficiency combustion of the liquid fuel.
  • the micro liquid burner of the present invention, the combustion chamber air inlet 12 and the combustion chamber fuel inlet 9 are both disposed in the tangential direction on the same circumference of the bottom wall of the third sleeve 3,
  • the air and fuel enter the combustion chamber 31 in a rounded manner, mix in the combustion chamber 31, and spiral upward from bottom to top; using tangential intake, so that fuel vapor and air are mutually sucked in the combustion chamber 31, and sufficiently mixed , a strong and uniform swirling gas mixture is formed, which further enhances the stability of combustion.
  • the micro-liquid burner of the present invention completes the exhausted exhaust gas through the top-side bypass passage 32, the exhaust passage 33, and finally is discharged from the total exhaust hole 11 to the outside of the burner outer cylinder body 2;
  • the high-temperature exhaust gas passing through the exhaust passage 33 is equivalent to the ingenious use of the originally discarded high-temperature exhaust gas, which is not only equivalent to adding an ideal thermal insulation layer to the whole burner, but also greatly utilizing the limited burner itself.
  • the structural space allows the performance of the burner to be optimal; on the other hand, this method also effectively saves energy.
  • the micro-liquid burner of the present invention uses a metal-catalyzed grid surface to spray a catalyst, which is beneficial to maintaining the stability of the combustion flame and increasing the chemical reaction speed, thereby improving combustion efficiency.
  • micro liquid burner according to the present invention realizes miniaturization of the structure, and has the technical means simple and convenient
  • the combustion is stable, efficient, and difficult to extinguish, especially for the harsher external environment.
  • FIG. 1 is a cross-sectional view taken along line D-D of FIG. 2 of a micro liquid burner having a double preheating structure according to the present invention.
  • FIG. 2 is a schematic cross-sectional view taken along line EE of FIG. 1.
  • 3 is a schematic cross-sectional view taken along line AA of FIG. 2.
  • FIG. 4 is a schematic cross-sectional view taken along line B-B of FIG. 2.
  • FIG. 5 is a schematic cross-sectional view taken along line C-C of FIG. 2.
  • the present invention discloses a micro liquid burner having a double preheating structure, comprising a burner outer cylinder body 2, an upper sealing plate 1 and a lower sealing plate 2 for sealing upper and lower ends of the outer cylinder body 2 of the burner;
  • the side wall of the lower end of the outer tube body 2 of the burner is provided with a venting hole 11;
  • the first sleeve 6, the second sleeve 5 and the third sleeve 3 are sequentially included from the outside to the inside; the first sleeve 6, the second sleeve 5 And the lower end of the third sleeve 3 is sealed by the lower sealing plate 2, and the upper ends of the first sleeve 6 and the third sleeve 3 are sealed by the sealing top cover 15 , and the outer surface of the sealing top cover 15 and the upper sealing plate 1 are sealed.
  • the thickness of the sealing cap 15 is 1 mm.
  • the second sleeve 5 On the wall of the second sleeve 5, there are four partitions 17 extending radially through the wall of the cylinder.
  • the inner side of the partition 17 is connected to the inner wall of the third sleeve 3, and the outer side is connected.
  • the inner wall of the first sleeve 6, the upper side is connected to the sealing top cover 15, and the lower side is connected to the lower sealing plate 2;
  • the four partitions 17 are to the first sleeve 6, the second sleeve 5 and the third sleeve 3
  • the space between the two is divided into two opposite and independent air preheating chambers and two opposite and independent fuel preheating chambers; with this configuration, air and fuel are subjected to secondary countercurrent preheating before entering the combustion chamber 31.
  • the heat exchange intensity is greatly enhanced, so that the air and fuel are fully preheated before combustion, which not only facilitates the full evaporation of the liquid fuel, but also makes the combustion process more fully and stable, and greatly improves the microstructure burner.
  • Common deficiencies such as unstable combustion, easy extinction, and low combustion efficiency.
  • Separator 17 is also ingenious in that it adds to the compactness and scientific nature of the micro-liquid burner structure.
  • the air preheating chamber is divided by the wall of the second sleeve 5 into a first air preheating chamber 10-1 and a second air preheating chamber 10-2.
  • the first air preheating chamber The communication between 10-1 and the second air preheating chamber 10-2 is achieved by a gap (2 ⁇ 3 mm) between the top end of the second sleeve 5 and the inner surface of the sealing top cover 15;
  • the fuel preheating chamber is divided into a first fuel preheating chamber 8-1 and a second fuel preheating chamber 8-2 by a wall of the second sleeve 5, the first fuel preheating chamber
  • the communication between 8-1 and the second fuel preheating chamber 8-2 is achieved by a gap (2 ⁇ 3 mm) between the top end of the second sleeve 5 and the inner surface of the sealing cap 15;
  • the inner wall surface space of the third sleeve 3 is a combustion chamber 31, and the space between the outer wall surface of the first sleeve 6 and the inner wall surface of the burner outer cylinder body 2 is an exhaust passage 33;
  • the communication with the exhaust passage 33 is achieved by the top surface bypass passage 32 between the outer surface of the seal top cover 15 and the inner surface of the upper seal plate 1;
  • a second air preheating chamber 10-2 corresponding to the two air preheating chambers is respectively provided with a combustion chamber air inlet port 12;
  • the first air preheating chamber 10-1 corresponding to the two air preheating chambers is respectively provided with an air inlet hole 10 (diameter l ⁇ 2mm); on the lower sealing plate 2
  • the first fuel preheating chamber 8-1 corresponding to the two fuel preheating chambers is respectively provided with a fuel inlet hole 8 (diameter l ⁇ 2mm);
  • the air enters the combustion chamber 31 through the first air preheating chamber 10-1, the second air preheating chamber 10-2, and the combustion chamber air inlet 12 through the air inlet hole 10, and the same, the fuel
  • the fuel inlet hole 8 sequentially passes through the first fuel preheating chamber 8-1, the second fuel preheating chamber 8-2, the combustion chamber fuel inlet port 9, and then enters the combustion chamber 31 and is mixed and combusted with air, and the exhausted gas is burned.
  • the chamber 31 enters the exhaust passage 33 from top to bottom.
  • the combustion chamber air inlet 12 and the combustion chamber fuel inlet 9 are both disposed in a tangential direction on the same circumference of the bottom wall of the third sleeve 3, and the air and fuel are rounded.
  • the combustion chamber 31 is entered, mixed in the combustion chamber 31, and spirally raised from bottom to top.
  • the tangential arrangement allows the fuel and air to form a swirl during mixing which promotes uniform mixing within the combustion chamber 31.
  • the combustion chamber air inlet 12 and the combustion chamber fuel inlet 9 have a diameter of 1 to 2 mm.
  • the combustion air inlet 12 and the air inlet opening 10 are disposed on a diameter line; the combustion chamber fuel inlet 9 and the fuel inlet opening 8 are located at another diameter line. Up; these two straight The lines intersect each other (preferably perpendicular to each other).
  • the diameter of the air inlet hole 10 and the fuel inlet hole 8 is smaller than the gap between the second sleeve 5 and the first sleeve 6.
  • the first fuel preheating chamber 8-1 and the second fuel preheating chamber 8-2 of the fuel preheating chamber are filled with a sintered porous material.
  • the liquid fuel is further broken into finer droplets (or droplets), which can promote rapid evaporation after the temperature is gradually increased, so that the combustion further strengthens the liquid fuel.
  • the porous material is a sintered material excellent in permeability with a certain gas permeability.
  • the present invention uses a SiC sintered material having a gas permeability of 37%, which acts to break up droplets and promote evaporation of the liquid fuel.
  • the middle portion (downward) of the combustion chamber 31 is provided with a metal catalytic grid 13, and the igniter 14 is placed above the side of the metal catalytic grid 13, and the lead 16 of the igniter 14 is connected to the outside through the upper sealing plate 1.
  • High voltage power supply; the surface of the metal catalytic grid 13 is coated with a Cu-Ni, Pt-Ni or Pt-Cu catalyst.
  • the metal catalytic grid 13 has a thickness of 0.5 mm, a diameter of 10 mm, and a mesh density of 120 pores/cm 2 .
  • the catalytic grid can stabilize the combustion flame and accelerate the chemical reaction speed.
  • the upper sealing plate 1 and the lower sealing plate 2 are both circular, and have a low thermal conductivity, high temperature resistant ceramic material, a diameter of 36 mm, and a thickness of 2 mm. There is a lmm hole in the upper cymbal for the lead 16 of the igniter 14 to pass through.
  • the burning method of the micro liquid burner can be realized by the following steps:
  • the liquid hydrocarbon fuel and air pass into the combustion chamber 31, are ignited by the igniter 14 and stably burn above the metal catalytic grid 13, and the burning flame first heats the third sleeve 3, and the third after heating
  • the sleeve 3 gradually radiates thermal energy to the first fuel preheating chamber 8-1, the second fuel preheating chamber 8-2, the first air preheating chamber 10-1 and the second air preheating chamber 10-2 until the entire The micro-liquid burner is heated; and thus the air entering the air preheating chamber and the fuel in the preheating chamber of the fuel are separately preheated before entering the combustion chamber 31
  • the secondary preheating process is specifically as follows:
  • the liquid hydrocarbon fuel enters the first fuel preheating chamber 8-1 from the bottom of the fuel inlet hole 8 for the first heating, and the porous material in the first fuel preheating chamber 8-1 is broken. , the liquid hydrocarbon fuel completes the first crushing to form the heated liquid droplet; then enters the second fuel preheating chamber 8-2 from top to bottom for the second heating, and the second fuel preheating chamber 8-2
  • the porous material performs a second heating and crushing on the first heat-crushed droplets, further reduces the particle size of the heated droplets, and forms fuel vapor, which then passes through the combustion chamber.
  • the fuel inlet port 9 enters the combustion chamber 31 from bottom to top in a tangential manner;
  • air also enters the first air preheating chamber 10-1 through the air inlet hole 10 from the bottom to the first heating, and enters the second air preheating chamber 10-2 from top to bottom.
  • the second heating then enters the combustion chamber 31 in a tangential manner through the combustion chamber air inlet 12, and is sufficiently mixed with the fuel vapor under the metal catalytic grid 13 to form a gas-liquid mixture, thereby completing the liquid hydrocarbon fuel.
  • the present invention can be preferably implemented.

Abstract

一种具有二重预热结构的微型液体燃烧器,包括燃烧器外筒本体(2)、用于密封燃烧器外筒本体(2)上下两端的上密封板(1)和下密封板(2);在燃烧器外筒本体(2)的内部,由外至内依次包括第一套筒(6)、第二套筒(5)和第三套筒(3);三个套筒的下端均由下密封板(2)密封,第一套筒(6)和第三套筒(3)的上端通过密封顶盖(15)密封,密封顶盖(15)的外表面与上密封板(1)的内表面之间具有间隙,第二套筒(5)的顶端与密封顶盖(15)的内表面之间具有间隙;在第二套筒(5)的筒壁上,设有四块径向贯穿其筒壁的隔板(17),该四块隔板(17)将三个套筒之间的空间分割成两个相对且独立的空气预热腔、两个相对且独立的燃料预热腔。该燃烧器的燃烧方法,液体碳氢燃料及空气通入燃烧室(31)内,在金属催化网格(13)上方稳定燃烧,燃烧的火焰首先对第三套筒(3)进行加热,加热后的第三套筒(3)逐渐将热能辐射至第一燃料预热腔(8-1)、第二燃料预热腔(8-2)、第一空气预热腔(10-1)和第二空气预热腔(10-2),直至整个微型液体燃烧器被加热;进而持续对进入空气预热腔内的空气和燃料预热腔内的燃料,在进入燃烧室(31)之前分别进行二次预热。该燃烧器和燃烧方法使空气和燃料在进入燃烧室(31)之前即得到了二次逆流预热,使得空气和燃料在燃烧前即得到了极其充分的预热。

Description

发明名称:一种具有二重预热结构的微型液体燃烧器及其燃烧方法 技术领域
[0001] 本发明涉及燃烧装置, 尤其涉及一种具有二重预热结构的微型液体燃烧器及其 燃烧方法。
背景技术
[0002] 近十几年来, 随着科学技术的发展, 社会各领域对微小型电子机械和设备的需 求急剧增长, 这极大推动了科学工作者对微能源系统的研究。 就目前而言, 绝 大部分的微型动力设备通常由传统的化学电池供能。 然而, 化学电池存在能量 密度低、 体积和重量大、 充电吋间长, 对环境不友好等明显缺点, 已渐渐不满 足社会发展的主流需求。 而液体碳氢燃料的能量密度能达到目前普遍使用的锂 电池的能量密度的几十倍之高, 这使得以碳氢燃料为能源的动力系统的微型化 成为可能, 有利于提高微机电系统的集成度; 同吋液体碳氢燃料不会造成污染 , 大大减缓了现代社会的环境压力。 因此, 基于液体碳氢燃料的微型能源系统 在未来具有广阔的应用前景。 而作为微能源系统的核心, 设计出性能优良的微 型燃烧器一直是研究热点。
[0003] 不同于传统燃烧过程, 微小尺度燃烧过程所处的有效燃烧空间非常小, 由此带 来的面体比相对于常规燃烧器有数十倍之大, 因此其热损失显著增加; 其次, 尺寸的减小, 造成燃料和空气在燃烧器中停留吋间缩短, 燃料不能充分燃烧, 燃烧过程也可能组织不成功。 因此, 在微小尺度内实现稳定燃烧和提高燃烧效 率是当前研究重点。 然而, 目前已实现应用的微型燃烧器多采用气体燃料。 与 液体燃料相比, 其能量密度低, 储存和运输不便。 以液体碳氢为燃料的微型燃 烧器具有一定的优势。 但液体燃料需要附加的吋间和空间来蒸发和混合, 由此 带来的燃烧器的结构设计也与气体燃料燃烧器有更大的挑战。 因此, 需要一种 针对液体燃烧的微型燃烧器, 使其可以满足液体燃料的良好蒸发和同空气的充 分混合这两个主要要求。
技术问题 [0004] 本发明的目的在于克服上述现有技术的缺点和不足, 提供一种具有二重预热结 构的微型液体燃烧器及其燃烧方法, 以解决现有燃烧器长期存在液体燃料在微 燃烧器中不易蒸发、 燃烧不充分、 不稳定、 燃烧效率低且容易熄灭等技术难题 问题的解决方案
技术解决方案
[0005] 本发明通过下述技术方案实现:
[0006] 一种具有二重预热结构的微型液体燃烧器, 包括燃烧器外筒本体 2、 用于密封 燃烧器外筒本体 2上下两端的上密封板 1和下密封板 2; 所述燃烧器外筒本体 2下 端侧壁幵设有排气孔 11 ;
[0007] 在燃烧器外筒本体 2的内部, 由外至内依次包括第一套筒 6、 第二套筒 5和第三 套筒 3; 所述第一套筒 6、 第二套筒 5和第三套筒 3的下端均由下密封板 2密封, 所 述第一套筒 6和第三套筒 3的上端通过密封顶盖 15密封, 密封顶盖 15的外表面与 上密封板 1的内表面之间具有间隙; 所述第二套筒 5的顶端与密封顶盖 15的内表 面之间具有间隙;
[0008] 在第二套筒 5的筒壁上, 还设有四块径向贯穿其筒壁的隔板 17, 该隔板 17的内 侧边连接第三套筒 3内壁, 外侧边连接第一套筒 6内壁, 上侧边连接密封顶盖 15 , 下侧边连接下密封板 2; 该四块隔板 17将第一套筒 6、 第二套筒 5和第三套筒 3 之间的空间分割成两个相对且独立的空气预热腔、 两个相对且独立的燃料预热 腔;
[0009] 所述空气预热腔以第二套筒 5的筒壁为界, 分为第一空气预热腔 10-1和第二空 气预热腔 10-2, 该第一空气预热腔 10-1和第二空气预热腔 10-2的连通, 是通过第 二套筒 5的顶端与密封顶盖 15的内表面之间的间隙实现连通;
[0010] 所述燃料预热腔以第二套筒 5的筒壁为界, 分为第一燃料预热腔 8-1和第二燃料 预热腔 8-2, 该第一燃料预热腔 8-1和第二燃料预热腔 8-2的连通, 是通过第二套 筒 5的顶端与密封顶盖 15的内表面之间的间隙实现连通;
[0011] 所述第三套筒 3的内壁面空间为燃烧室 31, 第一套筒 6的外壁面与燃烧器外筒本 体 2内壁面之间的空间为排气通道 33; 所述燃烧室 31与排气通道 33的连通, 是通 过密封顶盖 15的外表面与上密封板 1内表面之间的顶层迂回通道 32实现连通; [0012] 在第三套筒 3底部周壁上, 对应于两个空气预热腔的第二空气预热腔 10-2, 分 别幵设有一个燃烧室空气进气口 12; 在第三套筒 3底部周壁上, 对应于两个燃料 预热腔的第二燃料预热腔 8-2, 分别幵设有一个燃烧室燃料进气口 9;
[0013] 在下密封板 2上, 对应于两个空气预热腔的第一空气预热腔 10-1, 分别幵设有 一个空气入口孔 10; 在下密封板 2上, 对应于两个燃料预热腔的第一燃料预热腔
8-1, 分别幵设有一个燃料入口孔 8;
[0014] 空气由空气入口孔 10依次经过第一空气预热腔 10-1、 第二空气预热腔 10-2、 燃 烧室空气进气口 12后进入燃烧室 31, 与此同吋, 燃料由燃料入口孔 8依次经过第 一燃料预热腔 8-1、 第二燃料预热腔 8-2、 燃烧室燃料进气口 9后进入燃烧室 31并 与空气进行混合燃烧, 燃烧后的废气通过顶层迂回通道 32、 排气通道 33, 最后 由总排气孔 11排出至燃烧器外筒本体 2外部。
[0015] 空气通过空气入口孔 10自下而上进入第一空气预热腔 10-1, 自上而下进入第二 空气预热腔 10-2, 自下而上进入燃烧室 31, 自上而下进入排气通道 33; 燃料由燃 料入口孔 8自下而上进入第一燃料预热腔 8- 1, 自上而下进入第二燃料预热腔 8-2
, 自下而上进入燃烧室 31, 自上而下进入排气通道 33。
[0016] 所述燃烧室空气进气口 12和燃烧室燃料进气口 9, 均以切向方向幵设在第三套 筒 3底部周壁的同一周线上, 空气及燃料以切圆的方式进入燃烧室 31, 在燃烧室
31内混合, 并自下而上螺旋上升。
[0017] 所述燃烧室空气进气口 12和空气入口孔 10的幵设位置, 处于一条直径线上; 燃 烧室燃料进气口 9和燃料入口孔 8的幵设位置, 处于另一条直径线上; 这两条直 径线彼此相交。
[0018] 所述空气入口孔 10和燃料入口孔 8的直径, 小于第二套筒 5与第一套筒 6之间的 间隙。
[0019] 所述燃料预热腔的第一燃料预热腔 8-1和第二燃料预热腔 8-2内, 填充有烧结的 多孔材料。
[0020] 所述燃烧室 31的中部设有金属催化网格 13, 点火器 14置于金属催化网格 13的侧 上方, 点火器 14的引线 16穿过上密封板 1连接外部高压电源; 所述金属催化网格 13的表面涂覆 Cu-Ni、 Pt-Ni或 Pt-Cu催化剂。
[0021] 本发明微型液体燃烧器的燃烧方法如下:
[0022] 液体碳氢燃料及空气通入燃烧室 31内, 被点火器 14点燃后在金属催化网格 13上 方稳定燃烧, 燃烧的火焰首先对第三套筒 3进行加热, 加热后的第三套筒 3逐渐 将热能辐射至第一燃料预热腔 8-1、 第二燃料预热腔 8-2、 第一空气预热腔 10-1和 第二空气预热腔 10-2, 直至整个微型液体燃烧器被加热; 进而持续对进入空气预 热腔内的空气和燃料预热腔内的燃料, 在进入燃烧室 31之前分别进行二次预热 。 所述二次预热过程具体如下:
[0023] 液体碳氢燃料由燃料入口孔 8自下而上进入第一燃料预热腔 8-1进行第一次加热 , 在第一燃料预热腔 8-1内的多孔材料的破碎作用下, 液体碳氢燃料完成第一次 破碎, 形成被加热的液滴; 接着自上而下进入第二燃料预热腔 8-2进行第二次加 热, 第二燃料预热腔 8-2内的多孔材料对第一次加热破碎的液滴进行第二次加热 破碎, 使加热后的液滴的粒径进一步减小, 并形成燃料蒸汽, 随后通过燃烧室 燃料进气口 9以切向的方式自下而上进入燃烧室 31;
[0024] 与此同吋, 空气也通过空气入口孔 10自下而上进入第一空气预热腔 10-1进行第 一次加热, 自上而下进入第二空气预热腔 10-2进行第二次加热, 随后通过燃烧室 空气进气口 12以切向的方式进入燃烧室 31, 并在金属催化网格 13的下方与燃料 蒸汽充分混合, 形成气液混合物, 进而完成液体碳氢燃料和空气的二重预热与 混合; 接着以旋流的方式螺旋上升, 经过金属催化网格 13并在其上方稳定燃烧 , 燃烧后的废气通过顶层迂回通道 32、 排气通道 33, 最后由总排气孔 11排出至 燃烧器外筒本体 2外部; 完成整个燃烧过程。
发明的有益效果
有益效果
[0025] 本发明相对于现有技术, 至少具有如下的优点及效果:
[0026] 本发明所述的微型液体燃烧器, 采用了在燃烧器外筒本体 2内, 以逐层套设的 方式设置了第一套筒 6、 第二套筒 5和第三套筒 3, 并通过隔板 17巧妙的将第一套 筒 6、 第二套筒 5和第三套筒 3之间的空间分割成两个相对且独立的空气预热腔和 两个相对且独立的燃料预热腔; 使空气和燃料在进入燃烧室 31之前即得到了二 次逆流预热, 大大加强了换热强度, 使得空气和燃料在燃烧前即得到了极其充 分的预热, 这不仅有利于液体燃料的充分蒸发, 使燃烧过程更加充分、 稳定, 而且大大提高了燃烧效率。 隔板 17巧妙之处还在于增加了本微型液体燃烧器结 构的紧凑性和科学性。
[0027] 本发明所述的微型液体燃烧器, 在燃料预热内布置了多孔材料, 在高温以及多 孔材料的共同作用下, 进一步将液体燃料破碎成更加细小的液滴 (或者雾滴) , 可在其温度逐渐升高后促进快速蒸发, 使燃烧进一步加强了液体燃料的充分 、 稳定和高效率燃烧。
[0028] 本发明所述的微型液体燃烧器, 燃烧室空气进气口 12和燃烧室燃料进气口 9, 均以切向方向幵设在第三套筒 3底部周壁的同一周线上, 空气及燃料以切圆的方 式进入燃烧室 31, 在燃烧室 31内混合, 并自下而上螺旋上升; 采用切向进气, 使得燃料蒸汽和空气在燃烧室 31相互卷吸, 充分的混合, 形成强烈而均匀的旋 流混合气体, 更进一步的加强了燃烧的稳定性。
[0029] 本发明所述的微型液体燃烧器, 完成燃烧后的废气通过顶层迂回通道 32、 排气 通道 33, 最后由总排气孔 11排出至燃烧器外筒本体 2外部; 这一过程中, 经过排 气通道 33的高温废气, 相当于将原本废弃的高温废气再次巧妙的利用, 这不仅 相当于对整儿燃烧器增加了一个理想的保温层, 而且极大地利用了燃烧器本身 有限的结构空间, 使燃烧器的性能发挥至最佳状态; 从另一方面来说这种方式 也有效地节约了能源。
[0030] 本发明所述的微型液体燃烧器, 采用金属催化网格表面喷涂了催化剂, 有利于 保持燃烧火焰的稳定性以及提高化学反应速度, 利于提高燃烧效率。
[0031] 本发明所述的微型液体燃烧器, 实现了结构的微型化, 具有技术手段简便易行
, 燃烧稳定充分、 效率高, 且不易熄灭, 尤其适用较严酷的外部环境。
对附图的简要说明
附图说明
[0032] 图 1为本发明具有二重预热结构的微型液体燃烧器, 沿图 2中 D-D方向的剖面示 意图。
[0033] 图 2为图 1中沿 E-E方向的剖面示意图。 [0034] 图 3为图 2中沿 A-A方向的剖面示意图。
[0035] 图 4为图 2中沿 B-B方向的剖面示意图。
[0036] 图 5为图 2中沿 C-C方向的剖面示意图。
实施该发明的最佳实施例
本发明的最佳实施方式
[0037] 下面结合具体实施例对本发明作进一步具体详细描述。
[0038] 实施例
[0039] 如图 1至 5所示。 本发明公幵了一种具有二重预热结构的微型液体燃烧器, 包括 燃烧器外筒本体 2、 用于密封燃烧器外筒本体 2上下两端的上密封板 1和下密封板 2; 所述燃烧器外筒本体 2下端侧壁幵设有排气孔 11 ;
[0040] 在燃烧器外筒本体 2的内部, 由外至内依次包括第一套筒 6、 第二套筒 5和第三 套筒 3 ; 所述第一套筒 6、 第二套筒 5和第三套筒 3的下端均由下密封板 2密封, 所 述第一套筒 6和第三套筒 3的上端通过密封顶盖 15密封, 密封顶盖 15的外表面与 上密封板 1的内表面之间具有间隙; 所述第二套筒 5的顶端与密封顶盖 15的内表 面之间具有间隙; 所述第三套筒 3和第一套筒 6的高度为 31mm, 厚度为 lmm。 密 封顶盖 15的厚度为 lmm。
[0041] 在第二套筒 5的筒壁上, 还设有四块径向贯穿其筒壁的隔板 17, 该隔板 17的内 侧边连接第三套筒 3内壁, 外侧边连接第一套筒 6内壁, 上侧边连接密封顶盖 15 , 下侧边连接下密封板 2; 该四块隔板 17将第一套筒 6、 第二套筒 5和第三套筒 3 之间的空间分割成两个相对且独立的空气预热腔和两个相对且独立的燃料预热 腔; 采用这种结构, 使空气和燃料在进入燃烧室 31之前即得到了二次逆流预热 , 大大加强了换热强度, 使得空气和燃料在燃烧前即得到极了充分的预热, 这 不仅有利于液体燃料的充分蒸发, 使燃烧过程更加充分、 稳定, 而且大大提高 了微结构燃烧器普遍存在的燃烧不稳定、 容易熄灭和燃烧效率低等缺陷。 隔板 1 7巧妙之处还在于增加了本微型液体燃烧器结构的紧凑性和科学性。
[0042] 所述空气预热腔以第二套筒 5的筒壁为界, 分为第一空气预热腔 10-1和第二空 气预热腔 10-2, 该第一空气预热腔 10-1和第二空气预热腔 10-2的连通, 是通过第 二套筒 5的顶端与密封顶盖 15的内表面之间的间隙 (2~3mm) 实现连通; [0043] 所述燃料预热腔以第二套筒 5的筒壁为界, 分为第一燃料预热腔 8-1和第二燃料 预热腔 8-2, 该第一燃料预热腔 8-1和第二燃料预热腔 8-2的连通, 是通过第二套 筒 5的顶端与密封顶盖 15的内表面之间的间隙 (2~3mm) 实现连通;
[0044] 所述第三套筒 3的内壁面空间为燃烧室 31, 第一套筒 6的外壁面与燃烧器外筒本 体 2内壁面之间的空间为排气通道 33 ; 所述燃烧室 31与排气通道 33的连通, 是通 过密封顶盖 15的外表面与上密封板 1内表面之间的顶层迂回通道 32实现连通;
[0045] 在第三套筒 3底部周壁上, 对应于两个空气预热腔的第二空气预热腔 10-2, 分 别幵设有一个燃烧室空气进气口 12; 在第三套筒 3底部周壁上, 对应于两个燃料 预热腔的第二燃料预热腔 8-2, 分别幵设有一个燃烧室燃料进气口 9;
[0046] 在下密封板 2上, 对应于两个空气预热腔的第一空气预热腔 10-1, 分别幵设有 一个空气入口孔 10 (直径为 l~2mm) ; 在下密封板 2上, 对应于两个燃料预热腔 的第一燃料预热腔 8-1, 分别幵设有一个燃料入口孔 8 (直径为 l~2mm) ;
[0047] 空气由空气入口孔 10依次经过第一空气预热腔 10-1、 第二空气预热腔 10-2、 燃 烧室空气进气口 12后进入燃烧室 31, 与此同吋, 燃料由燃料入口孔 8依次经过第 一燃料预热腔 8-1、 第二燃料预热腔 8-2、 燃烧室燃料进气口 9后进入燃烧室 31并 与空气进行混合燃烧, 燃烧后的废气通过顶层迂回通道 32、 排气通道 33, 最后 由总排气孔 11排出至燃烧器外筒本体 2外部。
[0048] 空气通过空气入口孔 10自下而上进入第一空气预热腔 10-1, 自上而下进入第二 空气预热腔 10-2, 自下而上进入燃烧室 31, 自上而下进入排气通道 33 ; 燃料由燃 料入口孔 8自下而上进入第一燃料预热腔 8- 1, 自上而下进入第二燃料预热腔 8-2 , 自下而上进入燃烧室 31, 自上而下进入排气通道 33。
[0049] 所述燃烧室空气进气口 12和燃烧室燃料进气口 9, 均以切向方向幵设在第三套 筒 3底部周壁的同一周线上, 空气及燃料以切圆的方式进入燃烧室 31, 在燃烧室 31内混合, 并自下而上螺旋上升。 切向布置可以使燃料和空气在混合过程中形 成旋流, 促进其在燃烧室 31内混合均匀。 所述燃烧室空气进气口 12和燃烧室燃 料进气口 9的直径为 l~2mm。
[0050] 所述燃烧室空气进气口 12和空气入口孔 10的幵设位置, 处于一条直径线上; 燃 烧室燃料进气口 9和燃料入口孔 8的幵设位置, 处于另一条直径线上; 这两条直 径线彼此相交 (最好是彼此垂直) 。 所述空气入口孔 10和燃料入口孔 8的直径, 小于第二套筒 5与第一套筒 6之间的间隙。
[0051] 所述燃料预热腔的第一燃料预热腔 8-1和第二燃料预热腔 8-2内, 填充有烧结的 多孔材料。 在高温以及多孔材料的共同作用下, 进一步将液体燃料破碎成更加 细小的液滴 (或者雾滴) , 可在其温度逐渐升高后促进快速蒸发, 使燃烧进一 步加强了液体燃料的充分、 稳定和高效率燃烧。 多孔材料为具有一定透气率的 性能优良的烧结材料, 本发明使用 SiC烧结材料, 透气率为 37%, 其作用为破碎 液滴, 促进液体燃料的蒸发。
[0052] 所述燃烧室 31的中部 (偏下) 设有金属催化网格 13, 点火器 14置于金属催化网 格 13的侧上方, 点火器 14的引线 16穿过上密封板 1连接外部高压电源; 所述金属 催化网格 13的表面涂覆 Cu-Ni、 Pt-Ni或 Pt-Cu催化剂。
[0053] 该金属催化网格 13的厚度为 0.5mm, 直径 10mm, 网格密度为 120孔 /cm2, 催化 网格可以使燃烧火焰保持稳定, 并加快化学反应速度。
[0054] 上密封板 1和下密封板 2均为圆形, 采用低导热系数、 耐高温的陶瓷材料, 直径 为 36mm, 厚度为 2mm。 其上幵有 lmm小孔, 用于点火器 14的引线 16穿出。
[0055] 该微型液体燃烧器的燃烧方法, 可通过如下步骤实现:
[0056] 液体碳氢燃料及空气通入燃烧室 31内, 被点火器 14点燃后在金属催化网格 13上 方稳定燃烧, 燃烧的火焰首先对第三套筒 3进行加热, 加热后的第三套筒 3逐渐 将热能辐射至第一燃料预热腔 8-1、 第二燃料预热腔 8-2、 第一空气预热腔 10-1和 第二空气预热腔 10-2, 直至整个微型液体燃烧器被加热; 进而持续对进入空气预 热腔内的空气和燃料预热腔内的燃料, 在进入燃烧室 31之前分别进行二次预热
[0057] 二次预热过程具体如下:
[0058] 液体碳氢燃料由燃料入口孔 8自下而上进入第一燃料预热腔 8-1进行第一次加热 , 在第一燃料预热腔 8-1内的多孔材料的破碎作用下, 液体碳氢燃料完成第一次 破碎, 形成被加热的液滴; 接着自上而下进入第二燃料预热腔 8-2进行第二次加 热, 第二燃料预热腔 8-2内的多孔材料对第一次加热破碎的液滴进行第二次加热 破碎, 使加热后的液滴的粒径进一步减小, 并形成燃料蒸汽, 随后通过燃烧室 燃料进气口 9以切向的方式自下而上进入燃烧室 31;
[0059] 与此同吋, 空气也通过空气入口孔 10自下而上进入第一空气预热腔 10-1进行第 一次加热, 自上而下进入第二空气预热腔 10-2进行第二次加热, 随后通过燃烧室 空气进气口 12以切向的方式进入燃烧室 31, 并在金属催化网格 13的下方与燃料 蒸汽充分混合, 形成气液混合物, 进而完成液体碳氢燃料和空气的二重预热与 混合; 接着以旋流的方式螺旋上升, 经过金属催化网格 13并在其上方稳定燃烧 , 燃烧后的废气通过顶层迂回通道 32、 排气通道 33, 最后由总排气孔 11排出至 燃烧器外筒本体 2外部; 完成整个燃烧过程。
[0060] 如上所述, 便可较好地实现本发明。
[0061] 本发明的实施方式并不受上述实施例的限制, 其他任何未背离本发明精神实质 与原理下所作的改变、 修饰、 替代、 组合、 简化, 均应为等效的置换方式, 都 包含在本发明的保护范围之内。

Claims

权利要求书
[权利要求 1] 一种具有二重预热结构的微型液体燃烧器, 包括燃烧器外筒本体 (2
) 、 用于密封燃烧器外筒本体 (2) 上下两端的上密封板 (1) 和下密 封板 (2) ; 所述燃烧器外筒本体 (2) 下端侧壁幵设有排气孔 (11) ; 其特征在于:
在燃烧器外筒本体 (2) 的内部, 由外至内依次包括第一套筒 (6) 、 第二套筒 (5) 和第三套筒 (3) ; 所述第一套筒 (6) 、 第二套筒 (5 ) 和第三套筒 (3) 的下端均由下密封板 (2) 密封, 所述第一套筒 ( 6) 和第三套筒 (3) 的上端通过密封顶盖 (15) 密封, 密封顶盖 (15 ) 的外表面与上密封板 (1) 的内表面之间具有间隙; 所述第二套筒
(5) 的顶端与密封顶盖 (15) 的内表面之间具有间隙;
在第二套筒 (5) 的筒壁上, 还设有四块径向贯穿其筒壁的隔板 (17 ) , 该隔板 (17) 的内侧边连接第三套筒 (3) 内壁, 外侧边连接第 一套筒 (6) 内壁, 上侧边连接密封顶盖 (15) , 下侧边连接下密封 板 (2) ; 该四块隔板 (17) 将第一套筒 (6) 、 第二套筒 (5) 和第 三套筒 (3) 之间的空间分割成两个相对且独立的空气预热腔、 两个 相对且独立的燃料预热腔。
[权利要求 2] 根据权利要求 1所述具有二重预热结构的微型液体燃烧器, 其特征在 于: 所述空气预热腔以第二套筒 (5) 的筒壁为界, 分为第一空气预 热腔 (10-1) 和第二空气预热腔 (10-2) , 该第一空气预热腔 (10-1 ) 和第二空气预热腔 (10-2) 的连通, 是通过第二套筒 (5) 的顶端 与密封顶盖 (15) 的内表面之间的间隙实现连通; 所述燃料预热腔以第二套筒 (5) 的筒壁为界, 分为第一燃料预热腔
(8-1) 和第二燃料预热腔 (8-2) , 该第一燃料预热腔 (8-1) 和第二 燃料预热腔 (8-2) 的连通, 是通过第二套筒 (5) 的顶端与密封顶盖
( 15) 的内表面之间的间隙实现连通;
所述第三套筒 (3) 的内壁面空间为燃烧室 (31) , 第一套筒 (6) 的 外壁面与燃烧器外筒本体 (2) 内壁面之间的空间为排气通道 (33) ; 所述燃烧室 (31) 与排气通道 (33) 的连通, 是通过密封顶盖 (15 ) 的外表面与上密封板 (1) 内表面之间的顶层迂回通道 (32) 实现 连通;
在第三套筒 (3) 底部周壁上, 对应于两个空气预热腔的第二空气预 热腔 (10-2) , 分别幵设有一个燃烧室空气进气口 (12) ; 在第三套 筒 (3) 底部周壁上, 对应于两个燃料预热腔的第二燃料预热腔 (8-2 ) , 分别幵设有一个燃烧室燃料进气口 (9) ;
在下密封板 (2) 上, 对应于两个空气预热腔的第一空气预热腔 (10-
1) , 分别幵设有一个空气入口孔 (10) ; 在下密封板 (2) 上, 对应 于两个燃料预热腔的第一燃料预热腔 (8-1) , 分别幵设有一个燃料 入口孔 (8) ;
空气由空气入口孔 (10) 依次经过第一空气预热腔 (10-1) 、 第二空 气预热腔 (10-2) 、 燃烧室空气进气口 (12) 后进入燃烧室 (31) ; 与此同吋, 燃料由燃料入口孔 (8) 依次经过第一燃料预热腔 (8-1) 、 第二燃料预热腔 (8-2) 、 燃烧室燃料进气口 (9) 后进入燃烧室 ( 31) 并与空气进行混合燃烧, 燃烧后的废气通过顶层迂回通道 (32) 、 排气通道 (33) , 最后由总排气孔 (11) 排出至燃烧器外筒本体 (
2) 外部。
[权利要求 3] 根据权利要求 2所述具有二重预热结构的微型液体燃烧器, 其特征在 于: 空气通过空气入口孔 (10) 自下而上进入第一空气预热腔 (10-1
, 自上而下进入第二空气预热腔 (10-2) , 自下而上进入燃烧室 (31 ) , 自上而下进入排气通道 (33) ; 燃料由燃料入口孔 (8) 自下而 上进入第一燃料预热腔 (8-1) , 自上而下进入第二燃料预热腔 (8-2 ) , 自下而上进入燃烧室 (31) , 自上而下进入排气通道 (33) 。
[权利要求 4] 根据权利要求 3所述具有二重预热结构的微型液体燃烧器, 其特征在 于: 所述燃烧室空气进气口 (12) 和燃烧室燃料进气口 (9) , 均以 切向方向幵设在第三套筒 (3) 底部周壁的同一周线上, 空气及燃料 以切圆的方式进入燃烧室 (31) , 在燃烧室 (31) 内混合, 并自下而 上螺旋上升。
根据权利要求 3所述具有二重预热结构的微型液体燃烧器, 其特征在 于: 所述燃烧室空气进气口 (12) 和空气入口孔 (10) 的幵设位置 , 处于一条直径线上; 燃烧室燃料进气口 (9) 和燃料入口孔 (8) 的 幵设位置, 处于另一条直径线上; 这两条直径线彼此相交。
根据权利要求 2所述具有二重预热结构的微型液体燃烧器, 其特征在 于: 所述空气入口孔 (10) 和燃料入口孔 (8) 的直径, 小于第二套 筒 (5) 与第一套筒 (6) 之间的间隙。
根据权利要求 2所述具有二重预热结构的微型液体燃烧器, 其特征在 于: 所述燃料预热腔的第一燃料预热腔 (8-1) 和第二燃料预热腔 (8 -2) 内, 填充有烧结的多孔材料。
根据权利要求 1至 7中任一项所述具有二重预热结构的微型液体燃烧器 , 其特征在于: 所述燃烧室 (31) 的中部设有金属催化网格 (13) , 点火器 (14) 置于金属催化网格 (13) 的侧上方, 点火器 (14) 的引 线 (16) 穿过上密封板 (1) 连接外部高压电源; 所述金属催化网格
(13) 的表面涂覆 Cu-Ni、 Pt-Ni或 Pt-Cu催化剂。
权利要求 1至 8中任一项所述具有二重预热结构的微型液体燃烧器的燃 烧方法, 其特征在于包括如下步骤:
液体碳氢燃料及空气通入燃烧室 (31) 内, 被点火器 (14) 点燃后在 金属催化网格 (13) 上方稳定燃烧, 燃烧的火焰首先对第三套筒 (3 ) 进行加热, 加热后的第三套筒 (3) 逐渐将热能辐射至第一燃料预 热腔 (8-1) 、 第二燃料预热腔 (8-2) 、 第一空气预热腔 (10-1) 和 第二空气预热腔 (10-2) , 直至整个微型液体燃烧器被加热; 进而持 续对进入空气预热腔内的空气和燃料预热腔内的燃料, 在进入燃烧室
(31) 之前分别进行二次预热。
权利要求 9所述具有二重预热结构的微型液体燃烧器的燃烧方法, 其 特征在于: 所述二次预热过程具体如下: 液体碳氢燃料由燃料入口孔 (8) 自下而上进入第一燃料预热腔 (8-1 ) 进行第一次加热, 在第一燃料预热腔 (8-1) 内的多孔材料的破碎 作用下, 液体碳氢燃料完成第一次破碎, 形成被加热的液滴; 接着自 上而下进入第二燃料预热腔 (8-2) 进行第二次加热, 第二燃料预热 腔 (8-2) 内的多孔材料对第一次加热破碎的液滴进行第二次加热破 碎, 使加热后的液滴的粒径进一步减小, 并形成燃料蒸汽, 随后通过 燃烧室燃料进气口 (9) 以切向的方式自下而上进入燃烧室 (31) ; 与此同吋, 空气也通过空气入口孔 (10) 自下而上进入第一空气预热 腔 (10-1) 进行第一次加热, 自上而下进入第二空气预热腔 (10-2) 进行第二次加热, 随后通过燃烧室空气进气口 (12) 以切向的方式进 入燃烧室 (31) , 并在金属催化网格 (13) 的下方与燃料蒸汽充分混 合, 形成气液混合物, 进而完成液体碳氢燃料和空气的二重预热与混 合; 接着以旋流的方式螺旋上升, 经过金属催化网格 (13) 并在其上 方稳定燃烧, 燃烧后的废气通过顶层迂回通道 (32) 、 排气通道 (33 ) , 最后由总排气孔 (11) 排出至燃烧器外筒本体 (2) 外部; 完成 整个燃烧过程。
PCT/CN2016/109188 2016-03-17 2016-12-09 一种具有二重预热结构的微型液体燃烧器及其燃烧方法 WO2017157059A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/085,816 US10865982B2 (en) 2016-03-17 2016-12-09 Miniature liquid combustor having double pre-heating structure, and combustion method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610153998.8A CN105674260B (zh) 2016-03-17 2016-03-17 一种具有二重预热结构的微型液体燃烧器及其燃烧方法
CN201610153998.8 2016-03-17

Publications (1)

Publication Number Publication Date
WO2017157059A1 true WO2017157059A1 (zh) 2017-09-21

Family

ID=56310751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/109188 WO2017157059A1 (zh) 2016-03-17 2016-12-09 一种具有二重预热结构的微型液体燃烧器及其燃烧方法

Country Status (3)

Country Link
US (1) US10865982B2 (zh)
CN (1) CN105674260B (zh)
WO (1) WO2017157059A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105674260B (zh) * 2016-03-17 2018-11-02 华南理工大学 一种具有二重预热结构的微型液体燃烧器及其燃烧方法
CN108644765B (zh) * 2018-05-30 2023-11-24 华南理工大学 一种减小湿壁效应的微型液体燃烧器及其燃烧方法
CN109237470B (zh) * 2018-08-20 2024-02-06 华南理工大学 一种柱面多孔喷射式的微型液体燃烧器及其燃烧方法
DE102018120196B3 (de) * 2018-08-20 2019-08-14 Frank Ostermann Verfahren zum Betrieb einer Brenneinrichtung sowie Brenneinrichtung
CN109307264B (zh) * 2018-10-16 2019-12-13 北京动力机械研究所 基于液态燃料的微型燃烧器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4318689A (en) * 1979-03-29 1982-03-09 Kernforschungsanlage Julich Gmbh Burner for liquid fuels
JPH08327013A (ja) * 1995-05-30 1996-12-10 Sanyo Electric Co Ltd 触媒燃焼器及び燃焼方法
EP0601270B1 (en) * 1992-12-09 1997-03-05 Nkk Corporation Combustion apparatus having heat-recirculating function
WO1999008296A2 (en) * 1997-05-19 1999-02-18 Mcdermott Technology, Inc. Burner/emitter/recuperator design for a thermophotovoltaic electric generator
JP2007093179A (ja) * 2005-09-30 2007-04-12 Ishikawajima Harima Heavy Ind Co Ltd マイクロコンバスタ
CN101975397A (zh) * 2010-09-30 2011-02-16 北京理工大学 一种液体燃料微燃烧器及其设计方法
CN102447122A (zh) * 2010-10-13 2012-05-09 中国科学院大连化学物理研究所 一种集成式催化燃烧蒸发器
CN104235839A (zh) * 2014-09-11 2014-12-24 浙江大学 一种液体燃料催化重整微型燃烧器
CN105674260A (zh) * 2016-03-17 2016-06-15 华南理工大学 一种具有二重预热结构的微型液体燃烧器及其燃烧方法
CN205717189U (zh) * 2016-03-17 2016-11-23 华南理工大学 一种具有二重预热结构的微型液体燃烧器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2252631A (en) * 1940-04-23 1941-08-12 Hirter Ernest Heat retaining drum for furnaces and the like
NL7801395A (nl) * 1977-02-23 1978-08-25 Foerenade Fabriksverken Werkwijze en inrichting voor het verbranden van vloeibare, gasvormige of poedervormige brandstoffen.
JPH0642940B2 (ja) * 1987-03-31 1994-06-08 東洋エンジニアリング株式会社 気体吸熱反応用装置
US4867572A (en) * 1987-09-08 1989-09-19 Astec Industries, Inc. Asphalt plant with fixed sleeve mixer
US5233933A (en) * 1991-03-25 1993-08-10 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency Method of reducing transient emissions from rotary kiln incinerators and container for attaining the same
US5188042A (en) * 1991-04-18 1993-02-23 Praxair Technology, Inc. Fluid waste burner system
JP4041984B2 (ja) * 2003-08-29 2008-02-06 株式会社Ihi マイクロコンバスタ
CN104595899B (zh) * 2015-01-27 2017-03-01 北京工业大学 一种使用泡沫金属作催化剂结构基体的微小型催化燃烧器
CN104728838B (zh) * 2015-03-24 2017-01-18 华南理工大学 一种双腔液膜微型液体燃烧器及其燃烧方法
CN105066127B (zh) * 2015-08-25 2017-12-08 江苏大学 一种内置十字隔板式微型燃烧器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4318689A (en) * 1979-03-29 1982-03-09 Kernforschungsanlage Julich Gmbh Burner for liquid fuels
EP0601270B1 (en) * 1992-12-09 1997-03-05 Nkk Corporation Combustion apparatus having heat-recirculating function
JPH08327013A (ja) * 1995-05-30 1996-12-10 Sanyo Electric Co Ltd 触媒燃焼器及び燃焼方法
WO1999008296A2 (en) * 1997-05-19 1999-02-18 Mcdermott Technology, Inc. Burner/emitter/recuperator design for a thermophotovoltaic electric generator
JP2007093179A (ja) * 2005-09-30 2007-04-12 Ishikawajima Harima Heavy Ind Co Ltd マイクロコンバスタ
CN101975397A (zh) * 2010-09-30 2011-02-16 北京理工大学 一种液体燃料微燃烧器及其设计方法
CN102447122A (zh) * 2010-10-13 2012-05-09 中国科学院大连化学物理研究所 一种集成式催化燃烧蒸发器
CN104235839A (zh) * 2014-09-11 2014-12-24 浙江大学 一种液体燃料催化重整微型燃烧器
CN105674260A (zh) * 2016-03-17 2016-06-15 华南理工大学 一种具有二重预热结构的微型液体燃烧器及其燃烧方法
CN205717189U (zh) * 2016-03-17 2016-11-23 华南理工大学 一种具有二重预热结构的微型液体燃烧器

Also Published As

Publication number Publication date
CN105674260A (zh) 2016-06-15
CN105674260B (zh) 2018-11-02
US10865982B2 (en) 2020-12-15
US20190113227A1 (en) 2019-04-18

Similar Documents

Publication Publication Date Title
WO2017157059A1 (zh) 一种具有二重预热结构的微型液体燃烧器及其燃烧方法
CN101852432B (zh) 一种回热型液体燃料微燃烧器
CN104112867B (zh) 一种sofc系统用燃烧能量梯级利用的重整反应装置及发电系统
CN101737779B (zh) 用于微型燃烧器的碳氢燃料重整燃烧方法及微型燃烧器
TW201327884A (zh) 用於熱光電系統之燃燒器
CN106907711A (zh) 一种径向分层带相变蓄热的多孔介质燃烧器
CN202382288U (zh) 无风机醇基燃料炉灶
CN108980830A (zh) 一种应用于微热光电系统的回热型多孔介质燃烧器
CN110425536A (zh) 一种角型多孔介质燃烧器
CN202598518U (zh) 节能型炉芯结构
CN103277799A (zh) 一种外热式燃烧器系统
CN104132346A (zh) 一种具有回热功能的微燃烧热光伏发电装置
CN105465773A (zh) 一种供氧隔热装置及具有该装置的可燃气燃烧室
CN106594812B (zh) 户外便携式气动雾化炉
CN201688402U (zh) 一种回热型液体燃料微燃烧器
CN205717189U (zh) 一种具有二重预热结构的微型液体燃烧器
CN109237470B (zh) 一种柱面多孔喷射式的微型液体燃烧器及其燃烧方法
CN207880834U (zh) 一种适用于非预混燃烧的微小型瑞士卷燃烧器
CN201281339Y (zh) 双环内焰燃烧器
CN105402725B (zh) 一种用于微热光电系统的微型弥散式燃烧装置
CN201407654Y (zh) 一种微型燃气透平燃烧器
CN208998070U (zh) 一种柱面多孔喷射式的微型液体燃烧器
CN201666574U (zh) 一种无点火装置的逆流换热催化燃烧器
CN1644985A (zh) 一种逆流换热式燃烧器
CN202532478U (zh) 一种窑炉醇基燃料燃烧机

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894218

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16894218

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/05/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16894218

Country of ref document: EP

Kind code of ref document: A1