WO2017157051A1 - 一种可变电容式压力传感器和真笔迹触控笔 - Google Patents

一种可变电容式压力传感器和真笔迹触控笔 Download PDF

Info

Publication number
WO2017157051A1
WO2017157051A1 PCT/CN2016/107424 CN2016107424W WO2017157051A1 WO 2017157051 A1 WO2017157051 A1 WO 2017157051A1 CN 2016107424 W CN2016107424 W CN 2016107424W WO 2017157051 A1 WO2017157051 A1 WO 2017157051A1
Authority
WO
WIPO (PCT)
Prior art keywords
variable capacitance
pressure sensor
circuit
pen
touch switch
Prior art date
Application number
PCT/CN2016/107424
Other languages
English (en)
French (fr)
Inventor
奚邦籽
朱德忠
Original Assignee
广东宗华触控科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东宗华触控科技有限公司 filed Critical 广东宗华触控科技有限公司
Priority to JP2017555579A priority Critical patent/JP6974174B2/ja
Priority to US15/566,991 priority patent/US11048359B2/en
Priority to EP16894210.0A priority patent/EP3432123A4/en
Priority to KR1020177030887A priority patent/KR20180120562A/ko
Publication of WO2017157051A1 publication Critical patent/WO2017157051A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03545Pens or stylus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/038Control and interface arrangements therefor, e.g. drivers or device-embedded control circuitry
    • G06F3/0383Signal control means within the pointing device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04162Control or interface arrangements specially adapted for digitisers for exchanging data with external devices, e.g. smart pens, via the digitiser sensing hardware
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/046Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by electromagnetic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04105Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position

Definitions

  • the invention relates to a variable capacitance pressure sensor; in particular to a true handwriting stylus.
  • stylus pens with optical touch screens, and stylus pens for electronic whiteboards recognized by cameras.
  • Such stylus pens generally use a finger or a stick or any object or an infrared illuminating stick as a stylus.
  • the stylus is quick to use and easy to operate, it is not suitable for the pressure-sensitive function and cannot accurately reflect the handwriting characteristics of the writer himself.
  • the existing stylus has a pen pressure detecting function
  • the stroke for detecting pressure is large, the writing experience is not good, the implementation method is complicated, and the cost is high.
  • the present invention provides a variable capacitance type pressure sensor, which can be applied to a stylus of an optical touch sensor, or a stylus of a camera type electronic whiteboard, or an electromagnetic stylus and a capacitive touch.
  • the pen is set, and the stylus with this pressure sensor has the true handwriting effect of writing pressure sensing.
  • the present invention discloses a variable capacitance pressure sensor including a variable capacitor, a touch switch, and a force measuring handle; at least: a sensor housing and a return spring; wherein the variable capacitor includes an insulating medium And a flexible conductive sheet; wherein the touch switch comprises two static contacts and a movable contact.
  • the electrical conductor disposed on the first surface of the insulating film of the variable capacitance pressure sensor is a first electrode of the variable capacitor
  • the second surface of the insulating dielectric is an insulating dielectric surface of the variable capacitor, away from the insulating medium
  • the soft conductive sheet with a small interval is formed to constitute a second electrode of the variable capacitor
  • the flexible conductive sheet is a compressible conductive foam, or the conductive rubber can be extruded
  • the insulating medium of the insulating medium is a variable capacitor A capacitive medium between the first electrode and the second electrode.
  • the flexible conductive sheet of the variable capacitance pressure sensor has a surface opposite to the variable capacitance medium, and the surface is a triangular convex line, which is a convex curved surface and is an even convex shape uniformly distributed.
  • variable capacitance measuring handle of the variable capacitance pressure sensor directly contacts the flexible conductive sheet, and the contact force of the measuring handle is first transmitted to the flexible conductive sheet, and the flexible conductive sheet is deformed and then contacts the variable capacitance medium. The surface is transferred to the insulating dielectric.
  • variable contact force of the variable capacitance pressure sensor is increased by the touch force of the soft conductive sheet, and the deformation between the flexible conductive sheet and the insulating medium is larger, and the flexible conductive sheet is soft.
  • the larger the pressing contact area with the variable capacitance dielectric surface the larger the relative area between the variable electrode first electrode and the second electrode, and the larger the capacitance between the variable electrode first electrode and the second electrode.
  • variable capacitance value of the variable capacitance type pressure sensor first capacitor and the second electrode reflects different pressure values transmitted by the force measuring handle, and the capacitance change value signal is output to an external circuit, and the capacitance change value signal is supplied to an external circuit. Do signal acquisition or control.
  • the variable capacitance type pressure sensor touch switch has a variable capacitance first electrode which is a dynamic contact piece of the touch switch, a static contact is disposed on the sensor housing, and a return spring is disposed between the insulating medium and the sensor housing,
  • the return spring may be a wire spring, which may be a recoverable foam, may be a soft rubber, the insulating piece is displaced by the pressure of the force measuring handle and compresses the return spring, and the touch switch is touched and shorted to be disposed in the sensor housing.
  • Two static contacts the two static contacts of the touch switch are short-circuited, the pressure of the force measuring handle disappears, the reset spring is reset, the touch switch dynamic contact piece leaves the two static contacts of the sensor housing, and the touch switch is quiet. The contact is broken.
  • variable capacitance pressure sensor variable capacitor further includes an insulating medium fixed to the sensor housing.
  • the variable capacitance type pressure sensor touch switch further comprises a static contact, a movable contact piece, the flexible conductive piece is a touch switch static contact and a variable capacitance second electrode, and the movable contact is fixed to the force measuring handle
  • the upper end of the variable capacitance measuring handle is connected to the movable contact piece at the upper end of the force measuring handle.
  • the touch switch is turned on, the force measuring handle is weakened, and the movable contact at the upper end of the measuring handle is soft.
  • the conductive sheet and the touch switch are disconnected, and the movable contact of the variable capacitance measuring handle is contacted with the movable contact piece of the upper end of the force measuring handle, and the flexible conductive sheet is deformed and then contacts the variable capacitance medium surface and transmitted to the insulating medium. .
  • variable capacitance type pressure sensor touch switch signal is output to an external circuit for an external circuit to make a control signal.
  • the invention also relates to a true handwriting stylus, comprising a true handwriting optical stylus, a true handwriting electromagnetic stylus; the true handwriting optical stylus comprising the variable capacitance pressure sensor, a pen system circuit and a pen
  • the outer casing includes at least: a battery, an infrared emitting head and a nib; wherein the battery is a standard disposable rechargeable battery or a rechargeable battery for repeated charging; wherein the variable capacitance pressure sensor has a measuring handle and a touch a pen tip, wherein the infrared emitting head comprises an infrared lens and an infrared emitting tube, the infrared emitting tube is disposed in the infrared lens, the infrared lens is disposed around the pen tip, and the infrared lens is an infrared emitting tube The emitted infrared light is uniformly emitted to the periphery of the stylus; wherein the pen housing includes a front end of the pen case and a rear end of
  • the pen system circuit includes a radio frequency modulation and radio frequency transmitting circuit, a driver circuit, a power control and a delay turn-off circuit, a power voltage conversion and a function button, and the charging battery further includes a charging circuit, and the charging circuit may be a contact type wired charging circuit, or It is a contactless wireless charging circuit.
  • the pen system circuit power control and the delay shutdown circuit are connected to the touch switch short-circuit conduction signal, and the pen system circuit RF modulation and the RF transmission circuit are connected to the capacitance change value signal of the variable capacitance pressure sensor.
  • the power supply control and delay shutdown circuit of the pen system circuit are provided with a power input port, a power output port, a power charging control port, and a pen touch switch signal control port; the pen touch switch signal control port is connected with a touch switch in the capacitive pressure sensor, and the power control is performed.
  • the delay shutdown circuit is in a shutdown state, such as receiving a variable capacitance pressure sensor connected to the touch switch short-circuit conduction signal, the power input port of the circuit and the power output port will be turned on, and the pen system circuit will enter a working state;
  • the working state if the short-circuit conduction signal of the connected touch switch is not received for a long time, the power input port of the circuit and the power output port will be disconnected, the system circuit will enter the shutdown state; and the charging mode is connected in any working state, The power input port of this circuit will be disconnected from the power output port, and the pen system circuit will be locked in the off state and remain in the charging mode.
  • the RF modulation of the system circuit and the RF transmission circuit receive the capacitance change value signal of the variable capacitance pressure sensor after being encoded and modulated, and then modulated into a radio frequency to be transmitted to the peripheral device.
  • the peripheral device may be an optical touch sensor, which may be a computer or a mobile phone.
  • the peripheral receives the pendulum RF signal and demodulates the capacitance change value signal and converts it into a stylus writing pressure value signal.
  • the driving circuit of the system circuit is in the working state of the system circuit, the driving circuit will continuously send the driving signal to the infrared emitting head, the infrared emitting head will continuously emit infrared light, and the optical touch sensor will place the infrared emitting head continuously emitting the infrared signal at the nib.
  • the position is identified as the position of the current stylus at the writing track of the writing area.
  • the touch switch of the variable capacitance pressure sensor triggers the circuit of the wake-up pen system.
  • the variable capacitance change of the variable capacitance pressure sensor is the writing pressure of the stylus, and the position of the infrared emitting head in the writing area of the optical touch sensor is The location where the stylus is written.
  • the invention also relates to a true handwriting electromagnetic stylus comprising the variable capacitance pressure sensor, a pen system circuit and a pen housing; at least comprising: a battery, an electromagnetic signal output coil and a nib; wherein the battery is a standard removable replacement a disposable battery, or a rechargeable battery for repeated charging; wherein the variable capacitance type pressure sensor has a force measuring handle and a stylus tip, wherein the electromagnetic signal output coil is a surface insulated metal wire with at least one layer of a circle
  • the outer circumference of the pen case includes a front end of the pen case and the rear end of the pen case, and the front end of the pen case is an insulating material; a battery and a pen system circuit are disposed in the rear end of the pen case; Capacitive pressure sensor and electromagnetic signal output coil.
  • the pen system circuit includes an LC active oscillator circuit, a power control and delay turn-off circuit, a power supply voltage conversion, and a function button. If the rechargeable battery further includes a charging circuit, the charging circuit may be a contact charging circuit or a non-contact type. Wireless charging circuit.
  • the pen system circuit power control and the delay turn-off circuit are connected to the touch switch of the variable capacitance type pressure sensor, and the variable capacitance of the variable capacitance type pressure sensor is connected in parallel to the pen system circuit LC active oscillator The LC resonant circuit of the road.
  • the power supply control and delay shutdown circuit of the pen system circuit are provided with a power input port, a power output port, a power charging control port, and a pen touch switch signal control port; the pen touch switch signal control port is connected with a touch switch in the capacitive pressure sensor, and the power control is performed.
  • the delay shutdown circuit is in a shutdown state, such as receiving a variable capacitance pressure sensor connected to the touch switch short-circuit conduction signal, the power input port of the circuit and the power output port will be turned on, and the pen system circuit will enter a working state;
  • the working state if the short-circuit conduction signal of the connected touch switch is not received for a long time, the power input port of the circuit and the power output port will be disconnected, the system circuit will enter the shutdown state; and the charging mode is connected in any working state, The power input port of this circuit will be disconnected from the power output port, and the pen system circuit will be locked in the off state and remain in the charging mode.
  • the LC active oscillator circuit of the pen system circuit includes other circuits, the LC resonant circuit, the electromagnetic signal output coil is the resonant inductance of the LC resonant circuit, and the variable capacitance in the variable capacitance pressure sensor is connected in parallel to the LC resonant circuit, the button and the capacitor
  • the series is connected in parallel in the LC resonant circuit, and the other adjusting capacitors are connected in parallel in the LC resonant circuit.
  • the LC resonant circuit includes an electromagnetic signal output coil, a variable capacitor in the pressure sensor, a capacitor in series with the button, and other adjusting capacitors, such as a variable in the pressure sensor. The capacitance changes, or the button is pressed to access the capacitor in series, or the oscillation frequency of the other active capacitor LC active oscillator is changed accordingly.
  • the resonant inductor and magnetic signal output coil of the LC active oscillator circuit outputs an alternating electromagnetic signal, and the alternating electromagnetic signal includes a pressure sensitive signal and a key signal written by the pen, and the output signal can be finely calibrated by other adjusting capacitors.
  • the invention also relates to a special nib which is composed of two materials, and the end of the contact writing is soft. Material, the other fixed end is a hard material.
  • Figure 1 is a schematic view showing the basic configuration of a variable capacitance type pressure sensor of the present invention.
  • Figure 2.1 - Figure 2.3 are schematic views of an embodiment of a variable capacitance pressure sensor of the present invention.
  • FIG. 3 is a schematic view of an insulating dielectric of a variable capacitance pressure sensor of the present invention.
  • Figure 4.1 is a schematic view of a flexible conductive sheet of a triangular convex line surface of a variable capacitance pressure sensor of the present invention.
  • Figure 4.2 is a schematic view of a flexible conductive sheet of a convex arcuate surface of a variable capacitance pressure sensor of the present invention.
  • FIG. 5.1 is a schematic view showing that the larger the contact force between the flexible conductive sheet of the variable convex pressure sensor and the variable capacitance medium surface of the variable capacitance pressure sensor of the present invention is, the larger the contact area is.
  • Figure 5.2 is a schematic view showing that the larger the contact force between the soft conductive sheet of the convex arc surface of the variable capacitance type pressure sensor and the variable capacitance medium surface, the larger the contact area.
  • 6.1-6.4 are schematic views of the true handwriting optical stylus of the present invention.
  • 7.1 to 7.4 are schematic views of the true handwriting optical stylus of the present invention.
  • variable capacitance pressure sensor of the present invention.
  • the variable capacitance pressure sensor is composed of a variable capacitor (301), a touch switch (302), and a force measuring handle (303).
  • FIG. 2.1 - Figure 2.2 and Figure 3 and Figure 4.1 - Figure 4.2 and Figure 5.1 - Figure 5.2 show the first embodiment of the variable capacitance pressure sensor of the present invention, the first embodiment of the sensor housing (602), the return spring (304)
  • the variable capacitor comprises an insulating dielectric (305), a flexible conductive sheet (306), and a touch switch (302); the variable capacitor insulating dielectric (305) is provided with a conductor on the first side, which is a variable capacitor An electrode, the second surface of the variable capacitance insulating dielectric (305) is an insulating dielectric surface of the variable capacitor, and the flexible conductive sheet (306) is disposed at a minimum interval from the surface of the insulating medium to form a second electrode of the variable capacitor.
  • the conductive sheet (306) is a compressible conductive foam, or an extrudable conductive rubber.
  • the insulating medium on the second side of the insulating sheet (305) is a capacitive medium between the first electrode and the second electrode of the variable capacitor.
  • the surface of the flexible conductive sheet (306) opposite to the variable capacitance medium has a triangular convex line.
  • the opposite side of the flexible conductive sheet (307) and the variable capacitance medium is an intermediate convex curved surface, and the flexible conductive sheet may also be any convex shape uniformly distributed, and the variable capacitance measuring handle (303) directly contacts the softness.
  • the conductive sheet (306), the contact force (603) of the force measuring handle is first transmitted to the flexible conductive sheet (306), and the flexible conductive sheet (306) is deformed and then contacts the variable capacitance medium surface, that is, transmitted to the insulating medium. sheet.
  • FIG. 5.1 shows the relationship between the pressing force and the contact area between the triangular convex line soft conductive sheet (306) and the variable capacitance dielectric surface, and the pressing force of 0 in the figure.
  • the minimum total shadow area is the smallest, and the maximum total shadow area of the 4 squeezing force is the largest.
  • Figure 5.2 shows the relationship between the pressing force and the contact area between the soft conductive sheet (307) of the intermediate convex arc surface and the variable dielectric surface.
  • the pressing force of 0 is the smallest, and the total area of the shadow is the smallest.
  • the different capacitance change values between the first electrode and the second electrode of the variable capacitor represent different pressure values transmitted by the force measuring handle, and the capacitance change value signal is output to an external circuit, and the capacitance change value signal is used for signal acquisition or control by an external circuit.
  • the first surface of the variable capacitor that is, the first surface of the insulating film is the movable contact piece (302b) of the touch switch (302), the static contact (302a) is disposed on the sensor housing (602), and the insulating medium (305) is A return spring (304) is disposed between the sensor housings (602), and the return spring (304) may be a wire spring, which may be a recoverable foam, may be a soft rubber, and the insulating medium (306) is subjected to a force measuring handle (303).
  • the pressure (603) generates displacement and compresses the spring, and the touch switch (302) movable contact piece (302b) touches and shorts two static contacts (302a) disposed on the sensor housing (602), and the touch switch (302)
  • the static contact (302a) is short-circuited, the pressure (603) of the force measuring handle (303) disappears, the spring return spring (304) is reset, and the touch switch (302) moves the contact piece (302b) away from the sensor housing (602).
  • Two static contacts (302a), two static contacts (302a) of the touch switch (302) are disconnected, and
  • Figure 2.3 is a second embodiment of the variable capacitance pressure sensor of the present invention.
  • the insulating dielectric (305) is fixed to the sensor housing.
  • the touch switch (302) includes a static contact, a movable contact piece, and the flexible conductive piece (306 or 307) is a touch switch static contact (302a) and a variable capacitance second electrode, Control switch (3 02)
  • the movable contact piece (302b) is fixed to the upper end of the force measuring handle (303), and the variable capacitance (301) is measured by the force measuring handle (303) (603).
  • the movable contact piece (302b) of the upper end of the force measuring handle (303) ) will contact the flexible conductive sheet (306 or 307), the touch switch (302) is turned on, the force measuring handle (303) is forced (603) to disappear, and the movable contact (302b) at the upper end of the force measuring handle (303) is left.
  • Soft conductive sheet (306 or 307) touch switch (302) is disconnected, variable capacitor (301) force measuring handle (303) is stressed (603) dynamic contact (302b) at the upper end of force measuring handle (303) Will contact soft conductive sheet (306 or 307), soft The conductive sheet (306 or 307) is deformed to contact the variable capacitance dielectric surface and then transferred to the insulating dielectric (305).
  • the touch switch signal (204) is output to an external circuit for the external circuit to make a control signal.
  • the true handwriting stylus of the present invention proposes a true handwriting optical stylus and a true handwriting electromagnetic stylus.
  • Figures 6.1-6.4 show a true handwriting optical stylus of the present invention.
  • the true handwriting optical stylus consists of a variable capacitance pressure sensor (300), a pen system circuit (100) and a pen housing.
  • the pen housing is provided by the pen housing front end (602) and the pen housing rear end (601).
  • a battery (501), a pen system circuit (100), a variable capacitor pressure sensor (300), and an infrared emitting head (401) are disposed in the pen housing rear end (601).
  • the battery (501) is a standard removable and replaceable disposable battery, or it can be a rechargeable battery for repeated charging;
  • the variable capacitance pressure sensor (300) has a force measuring handle (303) and a stylus tip (303), infrared
  • the transmitting head (401) comprises an infrared lens and an infrared emitting tube.
  • the infrared emitting tube is disposed in the infrared lens, and the infrared lens is disposed around the nib (303).
  • the infrared lens uniformly emits the infrared light emitted by the infrared emitting tube to the periphery of the stylus .
  • the pen system circuit (100) includes a radio frequency modulation and radio frequency transmitting circuit (105), a driver circuit (106), a power control and delay turn-off circuit (102), a power supply voltage conversion (103), and a function button (104), such as a rechargeable battery. Also included is a charging circuit (101), which may be a contact wired charging circuit, which may be a contactless wireless charging circuit.
  • the pass signal (204), the RF modulation and the RF transmit circuit (105) are coupled to the capacitance change value signal of the variable capacitance pressure sensor (205).
  • the power supply control and delay shutdown circuit (102) of the pen system circuit (100) is provided with a power input port (VIN), a power output port (VOUT), a power charging control port (CC), and a touch switch signal control port (PC).
  • the touch switch signal control port (PC) is connected to the touch switch (302) in the variable capacitance pressure sensor (300), and the power control and delay turn-off circuit (102) are in a shutdown state such as receiving a variable capacitance type pressure sensor ( 300)
  • the touch switch (302) is short-circuited, and the power input port (VIN) of the circuit and the power output port (VOUT) will be turned on, and the pen system circuit (100) will enter the working state; If the short-circuit conduction signal of the connected touch switch (302) is not received for a long time, the power input port (VIN) of the circuit and the power output port (VOUT) will be disconnected, and the system circuit (100) will enter the shutdown state; When any working state is connected to the charging mode, the power input port (
  • the device can be an optical touch sensor (403), which can be a computer or a mobile phone.
  • the peripheral device receives the RF signal of the pen to demodulate the capacitance change value signal and converts it into a stylus writing pressure value signal.
  • the driving circuit (106) of the pen system circuit (100) is in the working state of the pen system circuit, the driving circuit (106) will continuously send the driving signal to the infrared emitting head, and the infrared emitting head (401) will continuously emit infrared light, and the optical touch
  • the sensor (403) positions the infrared emitter (401) where the infrared signal (402) is continuously emitted at the nib (303).
  • the touch switch (302) of the variable capacitance pressure sensor (300) triggers the operation of the wake-up pen system circuit (100), and the variable capacitance (301) variation of the variable capacitance pressure sensor (300) is the stylus writing pressure.
  • the position of the infrared emitting head (401) in the writing area of the optical touch sensor (403) is the position where the stylus writing track is located.
  • Figures 7.1- 7.4 illustrate a true handwriting electromagnetic stylus of the present invention.
  • the true handwriting electromagnetic stylus is comprised of a variable capacitance pressure sensor (300), a pen system circuit (100), and a pen housing.
  • the pen housing is provided by the pen housing front end (602) and the pen housing rear end (601).
  • a battery (501), a pen system circuit (100), a front end of the pen case (601), a variable capacitance pressure sensor (300), and an electromagnetic signal output coil (L) are disposed in the rear end (601) of the pen case.
  • the battery (501) is a standard removable and replaceable disposable battery, or it can be a rechargeable battery for repeated charging;
  • the variable capacity pressure sensor (300) has a force measuring handle (303) and a stylus tip (303), electromagnetic
  • the signal output coil (L) is formed by winding a surface-insulated metal wire with a minimum of one or more turns, which may be an enamelled copper wire or a silver wire, which may be a wire wrapped copper wire or a silver wire, and a magnetic core may be disposed inside the coil.
  • the volume of the electromagnetic signal output coil (L) is reduced, the signal output intensity and output efficiency of the electromagnetic signal output coil (L) are increased, and the ring-shaped electromagnetic signal output coil (L) is disposed near the periphery of the pen tip (303), and the front end of the pen case (602) Inside, the front (602) end of the pen housing is an insulating material.
  • the pen system circuit (100) includes an LC active oscillator circuit (105), a power control and delay shutdown circuit (102), a power supply voltage conversion (103), and function buttons (104), such as a rechargeable battery, including a charging circuit (101).
  • the charging circuit (101) may be a contact charging circuit or a non-contact wireless charging circuit, and the power supply control and the delay shutdown circuit (102) are connected to the variable capacitance pressure.
  • the touch switch (302) of the sensor (300) and the variable capacitor (301) of the variable capacitance pressure sensor (300) are connected in parallel to the LC resonant circuit of the pen system circuit (100) LC active oscillator circuit (105) ( Including: C, C1, C2, C ⁇ , ie 301 and L).
  • the power supply control and delay shutdown circuit (102) of the pen system circuit (100) is provided with a power input port (VIN), a power output port (VOUT), a power charging control port (CC), and a touch switch signal control port (PC);
  • the touch switch signal control port (PC) is connected to the touch switch (302) in the variable capacitance pressure sensor (300), and the power control and delay turn-off circuit (102) are in a shutdown state such as receiving a variable capacitance type pressure sensor ( 300)
  • the touch switch (302) is short-circuited, and the power input port (VIN) of the circuit and the power output port (VOUT) will be turned on, and the pen system circuit (100) will enter the working state; If the short-circuit conduction signal of the connected touch switch (302) is not received for a long time, the power input port (VIN) of the circuit and the power output port (VOUT) will be disconnected, and the system circuit (100) will enter the shutdown state; When any working state is connected to the charging mode, the power input port (
  • the LC active oscillator circuit of the pen system circuit (100) includes other circuits (701), an LC resonant circuit, an electromagnetic signal output coil (L) is a resonant inductor of the LC resonant circuit, and a variable capacitor in the variable capacitance pressure sensor (C ⁇ is 301) Parallel in the LC resonant circuit, the function button (104) and the capacitor (C1 and C2) are connected in series in the LC resonant circuit, the other adjusting capacitors (C) are connected in parallel in the LC resonant circuit, and the LC resonant circuit includes the electromagnetic signal output.
  • the resonant inductor and magnetic signal output coil (L) of the LC active oscillator (105) circuit outputs an alternating electromagnetic signal (402), and the alternating electromagnetic signal (402) contains a pressure sensitive signal and a function key signal written by the pen, and the output signal It can be fine-tuned by other adjustment capacitors (C).
  • the nib may be an insulating material or a conductive material.
  • the conductive material nib 107 may be connected to the electric field output signal (402) to directly replace the electric field signal radiating antenna (114); or connected to the electric field signal radiating antenna (114) to form an electric field.
  • the signal radiates the antenna to enhance the radiation intensity of the electric field signal and enhance the writing sensitivity of the capacitive mode stylus.
  • Figure 2.1 - Figure 2.3 shows a special nib. It is made of two materials.
  • the fixed end is made of hard material, such as plastic steel, PC or ABS material.
  • the end of the touchpad is soft material, such as hard rubber, PVC, TPU or paper fiber.
  • the tip of the pen is not easy to slip when writing on the glass panel of the tablet, and there is a real feeling that the water-based pen writes on the paper.
  • Lead zirconate titanate PZT piezoelectric ceramic doped with Mo, Ti, Na and Cr can be used at the nib to sense stress and output an electric field signal as a radiating antenna.
  • the PZT comprises components and weight ratios of the components: Mo: 3.0 to 6.6 wt%, preferably 4.0% to 5.6%; Ti: 0.01 to 0.1 wt%, preferably 0.05 to 0.1%; Na: 0.01 to 0.1 wt% Preferably, it is 0.03% to 0.05%; and Cr: 2 to 5% by weight, preferably 3 to 3.4%.
  • the d 33 and Kp values of the material increase, the hardness increases, and the piezoelectric induction is sensitive.
  • a strong electric field signal can be output.
  • the doped PZT material is first sintered in an atmosphere of N 2 and Ar, and then sintered in a H 2 atmosphere, and sintered under the same conditions in an O 2 atmosphere.
  • the effect of the tertiary sintering is not only the superposition of the three-time sintering effect, but also doping.
  • a PZT piezoelectric ceramic has more voids, in an atmosphere of Ar and N 2 N 2 will be such that the pores into the ceramic, such voids into the more active N 2 H 2 atmosphere, and finally in an O 2 atmosphere enables O 2 replaces N 2 , and oxygen molecules are easily removed by replacement of oxygen ions in the crystal lattice.
  • the sintered doped material structure is more dense.
  • the sintering is carried out under the pressure of 300-325 MPa, and the general high-pressure sintering is below 200 MPa.
  • the piezoelectric ceramics sintered by the four materials are used in the present application, and the effect of the dopant is better reflected in the ceramic properties.
  • Sintering is preferably carried out using a pressure of 300 to 325 MPa. According to the pen tip made of the above-mentioned component material obtained by the above method, an appropriate stylus tip hardness can be obtained, and the hardness and sensitivity thereof are very suitable for dual-function touch, thereby achieving better true handwriting writing effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Position Input By Displaying (AREA)
  • User Interface Of Digital Computer (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

本发明公开了一种可变电容式压力传感器和真笔迹触控笔,可变电容式压力传感器包括压力可变电容,压力触控开关,有压力检测功能;真笔迹触控笔包括有真笔迹光学触控笔,真笔迹电磁触控笔,有压感功能,具有真实笔迹的书写效果。

Description

一种可变电容式压力传感器和真笔迹触控笔 技术领域
本发明涉及可变电容式压力传感器;尤其涉及一种真笔迹触控笔。
背景技术
随着电子产品的进步与发展,触控笔的应用越来越广泛。目前有光学式触控屏的触控笔,还有摄像头识别的电子白板的触控笔,这类触控笔一般是用手指或木棒或任意物体或红外线发光棒做触控笔,这类触控笔虽然使用快捷,操作方便,但不足的是无压感功能,不能准确的反应书写者本人的笔迹特征。
现有的触控笔虽然有笔压力检测功能,但检测压力的行程大,书写体验感不好,实现方式复杂,成本高昂。
发明内容
为了克服上述缺陷,本发明提供一种可变电容式压力传感器,可以适用光学式触控感应器的触控笔,或摄像头式电子白板的触控笔,或电磁式感触控笔和电容式触控笔,设置此压力传感器的触控笔具有书写压力感应的真笔迹效果。
在具体实施例中,本发明公开了一种可变电容式压力传感器,包括可变电容、触控开关,测力柄;至少包括:传感器外壳、复位弹簧;其中,可变电容包括绝缘介片和软性导电片;其中,触控开关包括两个静触点和动触片。
所述可变电容式压力传感器可变电容的绝缘介片第一面敷设的导电体,是可变电容的第一电极,绝缘介片第二面是可变电容的绝缘介质面,离绝缘介质面极小的间隔设置的软性导电片构成可变电容的第二电极,软性导电片为可压缩的导电泡沫,或可挤压形变的导电橡胶,绝缘介片的绝缘介质是可变电容第一电极与第二电极间的电容介质。
所述可变电容式压力传感器可变电容的软性导电片与可变电容介质相对的一面,表面是三角形的凸线条,是中间凸的弧面,是均匀分布的任意凸起形状。
所述可变电容式压力传感器的可变电容测力柄直接接触软性导电片,测力柄受的触碰力首先传递给软性导电片,软性导电片产生形变再接触可变电容介质面,传递给绝缘介片。
所述可变电容式压力传感器的可变电容测力柄受的触碰力越大软性导电片变形越大,软性导电片与绝缘介片间的挤压形变越大,软性导电片与可变电容介质面之间的挤压接触面积越大,可变电容第一电极与第二电极间的相对面积越大,可变电容第一电极与第二电极间的电容值越大。
所述可变电容式压力传感器可变电容第一电极与第二电极间的不同电容变化值体现测力柄传递的不同压力值,电容变化值信号输出给外部电路,电容变化值信号供外部电路做信号采集或控制。
所述可变电容式压力传感器触控开关,可变电容第一电极是触控开关的动触片,静触点设置在传感器外壳上,绝缘介片与传感器外壳之间设置复位弹簧, 复位弹簧可以是金属丝弹簧,可以是可恢复泡沫,可以是软胶,绝缘介片受到测力柄的压力产生位移并压缩复位弹簧,触控开关动触片触碰短接设置在传感器外壳的两个静触点,触控开关两静触点短接导通,测力柄的压力消失复位复位弹簧复位,触控开关动触片离开传感器外壳的两个静触点,触控开关两静触点断开。
所述可变电容式压力传感器可变电容还包括,绝缘介片固定在传感器外壳。
所述可变电容式压力传感器触控开关还包括一个静触点,一个动触片,软性导电片是触控开关静触点和可变电容第二电极,动触点固定于测力柄的上端,可变电容测力柄受力测力柄上端的动触片会接触软性导电片,触控开关导通,测力柄受力消失,测力柄上端的动触片离开软性导电片,触控开关断开,可变电容测力柄受力测力柄上端的动触片接触软性导电片,软性导电片产生形变再接触可变电容介质面,传递给绝缘介片。
所述可变电容式压力传感器触控开关信号输出给外部电路,供外部电路做控制信号。
本发明还涉及一种真笔迹触控笔,包括真笔迹光学触控笔,真笔迹电磁触控笔;所述真笔迹光学触控笔包括所述可变电容式压力传感器、笔系统电路和笔外壳;至少包括:电池、红外发射头和笔尖;其中,电池是标准可拆卸更换的一次性电池,或是重复充电使用的充电电池;其中,可变电容式压力传感器的测力柄兼触控笔笔尖,其中,红外发射头包括红外透镜和红外发射管,红外发射管设置在红外透镜内,红外透镜设置在笔尖周围,红外透镜将红外发射管 发射的红外线向触控笔的周围均匀的发射;其中,笔外壳包括笔外壳前端和笔外壳后端;笔外壳后端内设置电池、笔系统电路;笔外壳前端内设置可变电容式压力传感器和红外发射头。
其中,笔系统电路包括射频调制与射频发射电路,驱动器电路,电源控制与延迟关断电路、电源电压转换和功能按键,如是充电电池还包括充电电路,充电电路可以是接触式有线充电电路,或是非接触式无线充电电路。
笔系统电路电源控制与延迟关断电路连接触控开关短接导通信号,笔系统电路射频调制与射频发射电路连接可变电容式压力传感器的电容变化值信号。
笔系统电路的电源控制与延迟关断电路设置有电源输入口、电源输出口、电源充电控制口、笔触开关信号控制口;笔触开关信号控制口连接电容式压力传感器内的触控开关,电源控制与延迟关断电路在关机状态如收到可变电容式压力传感器连接触控开关短接导通信号,本电路电源输入口与电源输出口之间将导通,笔系统电路将进入工作状态;在工作状态如长时间未收到连接触控开关短接导通信号,本电路电源输入口与电源输出口之间会断开,系统电路将进入关机状态;在任何工作状态接入充电模式,本电路电源输入口与电源输出口之间会断开,笔系统电路将锁定在关机状态,并维持处于充电模式。
系统电路的射频调制与射频发射电路接收到可变电容式压力传感器的电容变化值信号经采集编码后调制成射频发射到外设,外设可以是光学式触控感应器,可以是电脑或手机,外设接收到笔射频信号将解调出的电容变化值信号并对应转换成触控笔书写压力值信号。
系统电路的驱动电路在系统电路工作状态下,驱动电路将向红外发射头不断送出驱动信号,红外发射头将持续发出红外线光,光学触控感应器把笔尖处不断发射红外信号的红外发射头所在的位置识别成当前笔尖在书写区的书写轨迹位置。
可变电容式压力传感器的触控开关触发唤醒笔系统电路工作,可变电容式压力传感器的可变电容变化量是触控笔书写压力,红外发射头在光学触控感应器书写区的位置是触控笔书写轨迹所在的位置。
本发明还涉及一种真笔迹电磁式触控笔包括所述可变电容式压力传感器、笔系统电路和笔外壳;至少包括:电池、电磁信号输出线圈和笔尖;其中,电池是标准可拆卸更换的一次性电池,或是重复充电使用的充电电池;其中,可变电容式压力传感器的测力柄兼触控笔笔尖,其中,电磁信号输出线圈是用表面绝缘的金属导线最少一层多圈密绕而成,设置在笔尖周围;其中,笔外壳包括笔外壳前端和笔外壳后端,笔外壳前端是绝缘材料;笔外壳后端内设置电池、笔系统电路;笔外壳前端内设置可变电容式压力传感器和电磁信号输出线圈。
其中,笔系统电路包括LC有源振荡器电路,电源控制与延迟关断电路、电源电压转换和功能按键,如是充电电池还包括充电电路,充电电路可以是接触式充电电路,也可以是非接触式无线充电电路。
笔系统电路电源控制与延迟关断电路连接可变电容式压力传感器的触控开关,可变电容式压力传感器的可变电容并联在笔系统电路LC有源振荡器电 路的LC谐振回路。
笔系统电路的电源控制与延迟关断电路设置有电源输入口、电源输出口、电源充电控制口、笔触开关信号控制口;笔触开关信号控制口连接电容式压力传感器内的触控开关,电源控制与延迟关断电路在关机状态如收到可变电容式压力传感器连接触控开关短接导通信号,本电路电源输入口与电源输出口之间将导通,笔系统电路将进入工作状态;在工作状态如长时间未收到连接触控开关短接导通信号,本电路电源输入口与电源输出口之间会断开,系统电路将进入关机状态;在任何工作状态接入充电模式,本电路电源输入口与电源输出口之间会断开,笔系统电路将锁定在关机状态,并维持处于充电模式。
笔系统电路的LC有源振荡器电路包括其它电路,LC谐振回路,电磁信号输出线圈是LC谐振回路的谐振电感,可变电容式压力传感器内的可变电容并联在LC谐振回路,按键与电容串联并联在LC谐振回路,其它调整电容并联在LC谐振回路,LC谐振回路包括电磁信号输出线圈,压力传感器内的可变电容,与按键串联的电容和其它调整电容,如压力传感器内的可变电容改变,或按键按下接入串联的电容,或改变其它调整电容LC有源振荡器的震荡频率会对应改变。
LC有源振荡器电路的谐振电感兼磁信号输出线圈输出交变电磁信号,交变电磁信号包含笔书写的压感信号和按键信号,输出信号可由其它调整电容微调校准。
本发明还涉及一种专用笔尖,其为两种材质构成,接触书写的一端是软性 材质,另一固定端是硬性材质。
附图说明
附图1是本发明可变电容式压力传感器基本构成示意图。
附图2.1-图2.3是本发明可变电容式压力传感器实施方案示意图。
附图3是本发明可变电容式压力传感器绝缘介片示意图。
附图4.1是本发明可变电容式压力传感器三角形凸线条面软性导电片示意图。
附图4.2是本发明可变电容式压力传感器中间凸弧面软性导电片示意图。
附图5.1是本发明可变电容式压力传感器三角形凸线条面软性导电片与可变电容介质面之间挤压力越大接触面积越大示意图。
附图5.2是本发明可变电容式压力传感器中间凸弧面软性导电片与可变电容介质面之间挤压力越大接触面积越大示意图。
附图6.1-图6.4是本发明真笔迹光学触控笔示意图。
附图7.1-图7.4是本发明真笔迹光学触控笔示意图。
具体实施方式
为了使本发明要解决的技术问题,技术方案以及有益的技术效果更加清楚明白,以下结合附图以及实施例,对本发明进行进一步的详细说明。应该理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
图1示出了本发明可变电容式压力传感器,可变电容式压力传感器由可变电容(301)、触控开关(302),测力柄(303)构成。
图2.1-图2.2和图3和图4.1-图4.2和图5.1-图5.2示出了本发明可变电容式压力传感器实施方案一,实施方案一由传感器外壳(602)、复位弹簧(304)、可变电容包括绝缘介片(305)、软性导电片(306)、触控开关(302)构成;可变电容绝缘介片(305)第一面敷设导电体,是可变电容的第一电极,可变电容绝缘介片(305)第二面是可变电容的绝缘介质面,离绝缘介质面极小的间隔设置软性导电片(306)构成可变电容的第二电极,软性导电片(306)为可压缩的导电泡沫,或可挤压形变的导电橡胶,绝缘介片(305)第二面的绝缘介质是可变电容第一电极与第二电极间的电容介质。软性导电片(306)与可变电容介质相对的一面,表面是三角形的凸线条。软性导电片(307)与可变电容介质相对的一面,是中间凸弧面,软性导电片也可以是均匀分布的任意凸起形状,可变电容测力柄(303)直接接触软性导电片(306),测力柄受的触碰力(603)首先传递给软性导电片(306),软性导电片(306)产生形变再接触可变电容介质面,即传递给绝缘介片。可变电容测力柄(303)受的触碰力(603)越大软性导电片(306)变形越大,软性导电片(306)与绝缘介片第二面间的挤压形变越大,软性导电片(306)与可变电容介质面之间的挤压接触面积越大,可变电容第一电极与第二电极间的相对面积越大,可变电容第一电极与第二电极间的电容值越大;附图5.1示出了三角形凸线条面软性导电片(306)与可变电容介质面之间挤压力与接触面积的关系,图中0的挤压力最小阴影总面积最小,4挤压力最大阴影总面积最大,附图5.2示出了中间凸弧面软性导电片(307)与可变电容介质面之间挤压力与接触面积的关系, 图中0的挤压力最小阴影总面积最小,4挤压力最大阴影总面积最大。可变电容第一电极与第二电极间的不同电容变化值体现测力柄传递的不同压力值,电容变化值信号输出给外部电路,电容变化值信号供外部电路做信号采集或控制。可变电容第一电极即绝缘介片第一面是触控开关(302)的动触片(302b),静触点(302a)设置在传感器外壳(602)上,绝缘介片(305)与传感器外壳(602)之间设置复位弹簧(304),复位弹簧(304)可以是金属丝弹簧,可以是可恢复泡沫,可以是软胶,绝缘介片(306)受到测力柄(303)的压力(603)产生位移并压缩弹簧,触控开关(302)动触片(302b)触碰短接设置在传感器外壳(602)的两个静触点(302a),触控开关(302)两静触点(302a)短接导通,测力柄(303)的压力(603)消失弹复位弹簧(304)复位,触控开关(302)动触片(302b)离开传感器外壳(602)的两个静触点(302a),触控开关(302)两静触点(302a)断开,图2.3是本发明可变电容式压力传感器实施方案二,绝缘介片(305)固定在传感器外壳(602)上,触控开关(302)包括一个静触点,一个动触片,软性导电片(306或307)是触控开关静触点(302a)和可变电容第二电极,触控开关(302)的动触片(302b)固定于测力柄(303)的上端,可变电容(301)测力柄(303)受力(603)测力柄(303)上端的动触片(302b)会接触软性导电片(306或307),触控开关(302)导通,测力柄(303)受力(603)消失,测力柄(303)上端的动触片(302b)离开软性导电片(306或307),触控开关(302)断开,可变电容(301)测力柄(303)受力(603)测力柄(303)上端的动触片(302b)会接触软性导电片(306或307),软性 导电片(306或307)产生形变再接触可变电容介质面,再传递给绝缘介片(305)。
触控开关信号(204)输出给外部电路,供外部电路做控制信号。
本发明的真笔迹触控笔,提出了一种真笔迹光学触控笔和一种真笔迹电磁触控笔。
图6.1-图6.4示出了本发明真笔迹光学触控笔,真笔迹光学触控笔由可变电容式压力传感器(300)、笔系统电路(100)和笔外壳构成。笔外壳由笔外壳前端(602)和笔外壳后端(601)。笔外壳后端(601)内设置电池(501)、笔系统电路(100)、笔外壳前端(602)内设置可变电容式压力传感器(300)、红外发射头(401)。
电池(501)是标准可拆卸更换的一次性电池,也可以是重复充电使用的充电电池;可变电容式压力传感器(300)的测力柄(303)兼触控笔笔尖(303),红外发射头(401)包括红外透镜和红外发射管,红外发射管设置在红外透镜内,红外透镜设置在笔尖(303)周围,红外透镜将红外发射管发射的红外线向触控笔的周围均匀的发射。
笔系统电路(100)包括射频调制与射频发射电路(105),驱动器电路(106),电源控制与延迟关断电路(102)、电源电压转换(103)和功能按键(104),如是充电电池还包括充电电路(101),充电电路(101)可以是接触式有线充电电路,可以是非接触式无线充电电路。
笔系统电路(100)电源控制与延迟关断电路(102)连接触控开关短接导 通信号(204),射频调制与射频发射电路(105)连接可变电容式压力传感器的电容变化值信号(205)。
笔系统电路(100)的电源控制与延迟关断电路(102)设置有电源输入口(VIN)、电源输出口(VOUT)、电源充电控制口(CC)、触开关信号控制口(PC)。触开关信号控制口(PC)连接可变电容式压力传感器(300)内的触控开关(302),电源控制与延迟关断电路(102)在关机状态如收到可变电容式压力传感器(300)触控开关(302)短接导通信号,本电路电源输入口(VIN)与电源输出口(VOUT)之间将导通,笔系统电路(100)将进入工作状态;在工作状态如长时间未收到连接触控开关(302)短接导通信号,本电路电源输入口(VIN)与电源输出口(VOUT)之间会断开,系统电路(100)将进入关机状态;在任何工作状态接入充电模式,本电路电源输入口(VIN)与电源输出口(VOUT)之间会断开,笔系统电路(100)将锁定在关机状态,并维持处于充电模式,射频调制与射频发射电路(105)接收到可变电容式压力传感器(300)的电容变化值信号(205)经采集编码后调制成射频发射到外设,射频调制与射频发射电路(105)可以是蓝牙,WiFi,一般2.4GHz或其它频段的射频电路,外设可以是光学式触控感应器(403),可以是电脑或手机,外设接收到笔射频信号将解调出的电容变化值信号并对应转换成触控笔书写压力值信号。笔系统电路(100)的驱动电路(106)在笔系统电路工作状态下,驱动电路(106)将向红外发射头不断送出驱动信号,红外发射头(401)将持续发出红外线光,光学触控感应器(403)把笔尖(303)处不断发射红外信号(402)的红外发射头(401)所在的位置 识别成当前笔尖在书写区的书写轨迹位置。可变电容式压力传感器(300)的触控开关(302)触发唤醒笔系统电路(100)工作,可变电容式压力传感器(300)的可变电容(301)变化量是触控笔书写压力,红外发射头(401)在光学触控感应器(403)书写区的位置是触控笔书写轨迹所在的位置。
图7.1-图7.4示出了本发明真笔迹电磁触控笔,真笔迹电磁触控笔由可变电容式压力传感器(300)、笔系统电路(100)和笔外壳构成。笔外壳由笔外壳前端(602)和笔外壳后端(601)。笔外壳后端(601)内设置电池(501)、笔系统电路(100)、笔外壳前端(601)内设可变电容式压力传感器(300)、电磁信号输出线圈(L)。
电池(501)是标准可拆卸更换的一次性电池,也可以是重复充电使用的充电电池;可变电容式压力传感器(300)的测力柄(303)兼触控笔笔尖(303),电磁信号输出线圈(L)是用表面绝缘的金属导线最少一层多圈密绕而成,可以是漆包线铜线或银线,可以是纱包线铜线或银线,线圈里面可以设置磁芯以减小电磁信号输出线圈(L)的体积,提升电磁信号输出线圈(L)的信号输出强度和输出效率,环形电磁信号输出线圈(L)设置在笔尖(303)周围附近,笔外壳前端(602)内,笔外壳前(602)端是绝缘材料。
笔系统电路(100)包括LC有源振荡器电路(105),电源控制与延迟关断电路(102)、电源电压转换(103)和功能按键(104),如是充电电池还包括充电电路(101),充电电路(101)可以是接触式充电电路,也可以是非接触式无线充电电路,电源控制与延迟关断电路(102)连接可变电容式压力 传感器(300)的触控开关(302),可变电容式压力传感器(300)的可变电容(301)并联在笔系统电路(100)LC有源振荡器电路(105)的LC谐振回路(包括:C、C1、C2、C△即301和L)。
笔系统电路(100)的电源控制与延迟关断电路(102)设置有电源输入口(VIN)、电源输出口(VOUT)、电源充电控制口(CC)、触开关信号控制口(PC);触开关信号控制口(PC)连接可变电容式压力传感器(300)内的触控开关(302),电源控制与延迟关断电路(102)在关机状态如收到可变电容式压力传感器(300)触控开关(302)短接导通信号,本电路电源输入口(VIN)与电源输出口(VOUT)之间将导通,笔系统电路(100)将进入工作状态;在工作状态如长时间未收到连接触控开关(302)短接导通信号,本电路电源输入口(VIN)与电源输出口(VOUT)之间会断开,系统电路(100)将进入关机状态;在任何工作状态接入充电模式,本电路电源输入口(VIN)与电源输出口(VOUT)之间会断开,笔系统电路(100)将锁定在关机状态,并维持处于充电模式。
笔系统电路(100)的LC有源振荡器电路包括其它电路(701),LC谐振回路,电磁信号输出线圈(L)是LC谐振回路的谐振电感,可变电容式压力传感器内的可变电容(C△即301)并联在LC谐振回路,功能按键(104)与电容(C1和C2)串联并联在LC谐振回路,其它调整电容(C)并联在LC谐振回路,LC谐振回路包括电磁信号输出线圈(L),压力传感器内的可变电容(C△即301),与功能按键(104)串联的电容(C1和C2)和其它调整电容(C),LC有源振荡器电路(105)的工作频率f由此公式决定:
Figure PCTCN2016107424-appb-000001
由上公式可知如压力传感器(300)内的可变电容(C△即301)改变,或按键按下接入串联的电容(C1和C2),或改变其它调整电容(C),LC有源振荡器(105)的震荡频率f会对应改变。
LC有源振荡器(105)电路的谐振电感兼磁信号输出线圈(L)输出交变电磁信号(402),交变电磁信号(402)包含笔书写的压感信号和功能按键信号,输出信号可由其它调整电容(C)微调校准。
笔尖可以是绝缘材料,也可以是导电材料,如是导电材料笔尖107可以连接电场输出信号(402)以直接取代电场信号辐射天线(114);或与电场信号辐射天线(114)连接在一起做电场信号辐射天线,来增强电场信号的辐射强度,增强电容模式触控笔的书写灵敏度。
图2.1-图2.3示出了一种专用笔尖。其为两种材质构成,固定的一端是硬性材质,如塑钢,PC或ABS料,接触触控板书写的一端是软性材质,如硬橡胶、PVC、TPU或纸纤维类物质,这样在手机或平板电脑的玻璃面板上书写时笔尖不易打滑,有一种水性笔在纸上写字的真实感觉。笔尖处使用掺杂了Mo、Ti、Na和Cr的锆钛酸铅PZT压电陶瓷,可以是用来感受应力,并且可以作为辐射天线输出电场信号。PZT包括的组分及各组分重量比为:Mo:3.0~6.6wt%、优选为4.0%~5.6%;Ti:0.01~0.1wt%,优选0.05~0.1%;Na:0.01~0.1wt%,优选0.03%~0.05%;Cr:2~5wt%,优选3~3.4%。
掺杂后材料的d33和Kp值升高,硬度增加,压电感应灵敏,当作为天线时可以输出较强的电场信号。
掺杂的PZT材料先通过N2和Ar气氛中烧结,然后在H2气氛中烧结,在O2气氛中进行相同条件的烧结,三次烧结的作用不仅仅是单纯三次烧结效果的叠加,掺杂的PZT压电陶瓷有更多的空隙,在N2和Ar气氛中会使得N2进入陶瓷气孔中,在H2气氛中使得进入空隙的N2更为活跃,最后在O2气氛中能使得O2替换掉N2,而氧分子容易通过晶格中的氧离子置换而排除。这样烧结的掺杂材料结构更为致密。烧结在300-325MPa的压力下进行,一般的高压烧结都在200MPa以下,但是本申请所采用的是四种材料烧结的压电陶瓷,为了掺杂剂的作用更好的体现在陶瓷性能中,采用300-325MPa的压力下进行烧结最好。根据上述方法制得的上述成分的材料制成的笔尖,可以获得适当的触控笔尖硬度,其硬度和灵敏度非常适合双功能触控,达到更好的真笔迹书写效果。
上述公开了本发明的真笔迹触控笔,本领域技术人员可以据此作出各种显而易见的改进和变型,均应纳入本发明的保护范围。

Claims (36)

  1. 一种可变电容式压力传感器,包括可变电容、触控开关,测力柄;
    至少包括:传感器外壳、复位弹簧;
    其中,可变电容包括绝缘介片和软性导电片;
    其中,触控开关包括两个静触点和动触片。
  2. 如权利要求1所述的可变电容式压力传感器,其特征在于,绝缘介片第一面敷设导电体,是可变电容的第一电极,绝缘介片第二面是可变电容的绝缘介质面,离绝缘介质面极小的间隔设置软性导电片构成可变电容的第二电极,软性导电片为可压缩的导电泡沫,或可挤压形变的导电橡胶,绝缘介片第二面的绝缘介质是可变电容第一电极与第二电极间的电容介质。
  3. 如权利要求1所述的可变电容式压力传感器,其特征在于,可变电容的软性导电片与可变电容介质相对的一面,表面是三角形的凸线条,或是中间凸的弧面,或是均匀分布的任意凸起形状。
  4. 如权利要求1-3中任一项所述的可变电容式压力传感器,其特征在于,电容测力柄直接接触软性导电片,测力柄受的触碰力首先传递给软性导电片,软性导电片产生形变再接触可变电容介质面,传递给绝缘介片。
  5. 如权利要求1-3中任一项所述的可变电容式压力传感器,其特征在于,测力柄受的触碰力越大软性导电片变形越大,软性导电片与绝缘介片间的挤压形变越大,软性导电片与可变电容介质面之间的挤压接触面积越大,可变电容第一电极与第二电极间的相对面积越大,可变电容第一电极与第二电极间的电容值越大。
  6. 如权利要求5所述的可变电容式压力传感器,其特征在于,可变电容第一电极与第二电极间的不同电容变化值对应测力柄传递的不同压力值,电容变化值信号输出给外部电路做信号采集或控制。
  7. 如权利要求1或2所述的可变电容式压力传感器,其特征在于,可变电容第一电极是触控开关的动触片,静触点设置在传感器外壳上。
  8. 如权利要求1或2所述的可变电容式压力传感器,其特征在于,绝缘介片第一面与传感器外壳之间设置弹性部件。
  9. 如权利要求1或2所述的可变电容式压力传感器,其特征在于,弹性部件是金属丝弹簧、可恢复泡沫或软胶。
  10. 如权利要求1-3中任一项所述的可变电容式压力传感器,其特征在于,绝缘介片受到测力柄的压力产生位移并压缩复位弹簧,触控开关动触片触碰短接设置在传感器外壳的两个静触点,触控开关两静触点短接导通,测力柄的压力消失复位复位弹簧复位,触控开关动触片离开传感器外壳的两个静触点,触控开关两静触点断开。
  11. 如权利要求1或2所述的可变电容式压力传感器,其特征在于,绝缘介片固定在传感器外壳。
  12. 如权利要求1所述的可变电容式压力传感器,其特征在于,触控开关包括一个静触点,一个动触片。
  13. 如权利要求1-2和12所述的可变电容式压力传感器,其特征在于,软性导电片是触控开关静触点和可变电容第二电极。
  14. 如权利要求1或12所述的可变电容式压力传感器,其特征在于,触控开关的动触点固定于测力柄的上端。
  15. 如权利要求1-3和11-14中任一项所述的可变电容式压力传感器,其特征在于,可变电容测力柄受力测力柄上端的动触片会接触软性导电片,触控开关导通,测力柄受力消失,测力柄上端的动触片离开软性导电片,触控开关断开。
  16. 如权利要求1-3和11-15中任一项所述的可变电容式压力传感器,其特征在于,可变电容测力柄受力测力柄上端的动触片接触软性导电片,软性导电片产生形变再接触可变电容介质面,传递给绝缘介片。
  17. 如权利要求10或15所述的可变电容式压力传感器,其特征在于,触控开关信号输出控制外部电路。
  18. 一种真笔迹触控笔,包括真笔迹光学触控笔和真笔迹电磁触控笔,其特征在于,包括如权利要求1所述的可变电容式压力传感器。
  19. 如权利要求18所述的真笔迹触控笔,其特征在于,所述真笔迹光学触控笔包括所述可变电容式压力传感器、笔系统电路和笔外壳,还包括:电池、红外发射头和笔尖;
    其中,可变电容式压力传感器的测力柄兼触控笔笔尖,
    其中,红外发射头包括红外透镜和红外发射管,红外发射管设置在红外透镜内,红外透镜设置在笔尖周围,红外透镜将红外发射管发射的红外线向触控笔的周围均匀的发射;
    其中,笔外壳包括笔外壳前端和笔外壳后端;
    笔外壳后端内设置电池、笔系统电路;
    笔外壳前端内设置可变电容式压力传感器和红外发射头;
    其中,笔系统电路包括射频调制与射频发射电路,驱动器电路,电源控制与延迟关断电路、电源电压转换和功能按键。
  20. 如权利要求19所述的真笔迹触控笔,其特征在于,笔系统电路电源控制与延迟关断电路连接触控开关短接导通信号,笔系统电路射频调制与射频发射电路连接可变电容式压力传感器的电容变化值信号。
  21. 如权利要求19所述的真笔迹触控笔,其特征在于,笔系统电路的电源控制与延迟关断电路设置有电源输入口、电源输出口、电源充电控制口、笔触开关信号控制口;笔触开关信号控制口连接电容式压力传感器内的触控开关,电源控制与延迟关断电路在关机状态如收到可变电容式压力传感器连接触控开关短接导通信号,电源输入口与电源输出口之间将导通,笔系统电路将进入工作状态;在工作状态如长时间未收到连接触控开关短接导通信号,电源输入口与电源输出口之间会断开,系统电路将进入关机状态;在任何工作状态接入充电模式,电源输入口与电源输出口之间会断开,笔系统电路将锁定在关机状态,并维持处于充电模式。
  22. 如权利要求19所述的真笔迹触控笔,其特征在于,系统电路的射频调制与射频发射电路接收到可变电容式压力传感器的电容变化值信号经采集编码后调制成射频发射到外设,外设接收到笔射频信号将解调出的电容变化值信 号并对应转换成触控笔书写压力值信号。
  23. 如权利要求19所述的真笔迹触控笔,其特征在于,系统电路的驱动电路在系统电路工作状态下,驱动电路向红外发射头不断送出驱动信号,红外发射头将持续发出红外信号,光学触控感应器把笔尖处不断发射红外信号的红外发射头所在的位置识别成当前笔尖在书写区的书写轨迹位置。
  24. 如权利要求19-21中任一项所述的真笔迹触控笔,其特征在于,可变电容式压力传感器的触控开关触发唤醒笔系统电路工作,变化量是触控笔书写压力,红外发射头在光学触控感应器书写区的位置是触控笔书写轨迹所在的位置。
  25. 如权利要求18所述的真笔迹触控笔,其特征在于,
    所述真笔迹电磁触控笔包括可变电容式压力传感器、笔系统电路和笔外壳;还包括:电池、电磁信号输出线圈和笔尖;
    其中,可变电容式压力传感器的测力柄兼触控笔笔尖,
    其中,电磁信号输出线圈是用表面绝缘的金属导线最少一层多圈密绕而成,设置在笔尖周围;
    其中,笔外壳包括笔外壳前端和笔外壳后端,笔外壳前端是绝缘材料;
    笔外壳后端内设置电池、笔系统电路;
    笔外壳前端内设置可变电容式压力传感器和电磁信号输出线圈;
    其中,笔系统电路包括LC有源振荡器电路,电源控制与延迟关断电路、电源电压转换和功能按键。
  26. 如权利要求25所述的真笔迹触控笔,其特征在于,系统电路电源控制与延迟关断电路连接可变电容式压力传感器触控开关。
  27. 如权利要求25所述的真笔迹触控笔,其特征在于,笔系统电路的电源控制与延迟关断电路设置有电源输入口、电源输出口、电源充电控制口、笔触开关信号控制口;笔触开关信号控制口连接电容式压力传感器内的触控开关,电源控制与延迟关断电路在关机状态如收到可变电容式压力传感器连接触控开关短接导通信号,电源输入口与电源输出口之间将导通,笔系统电路将进入工作状态;在工作状态如长时间未收到连接触控开关短接导通信号,电源输入口与电源输出口之间会断开,系统电路将进入关机状态;在任何工作状态接入充电模式,电源输入口与电源输出口之间会断开,笔系统电路将锁定在关机状态,并维持处于充电模式。
  28. 如权利要求25所述的真笔迹触控笔,其特征在于,电磁信号输出线圈是LC谐振回路的谐振电感。
  29. 如权利要求25所述的真笔迹触控笔,其特征在于,可变电容式压力传感器内的可变电容并联在LC谐振回路,按键与电容串联并联在LC谐振回路,其它调整电容并联在LC谐振回路。
  30. 如权利要求25-29中任一项所述的真笔迹触控笔,其特征在于,LC谐振回路包括电磁信号输出线圈,压力传感器内的可变电容,与按键串联的电容和其它调整电容。
  31. 如权利要求25-29中任一项所述的真笔迹触控笔,其特征在于,压力 传感器内的可变电容改变,或按键按下接入串联的电容,或改变其它调整电容LC有源振荡器频率改变。
  32. 如权利要求25-29中任一项所述的真笔迹触控笔,其特征在于,LC有源振荡器电路的谐振电感兼磁信号输出线圈输出交变电磁信号。
  33. 如权利要求32所述的真笔迹触控笔,其特征在于,电磁信号输出线圈输出交变电磁信号包含笔书写的压感信号和按键信号。
  34. 如权利要求19或25所述的真笔迹触控笔,其特征在于,笔尖的材料为两种材质。
  35. 如权利要求19或25或34所述的真笔迹触控笔,其特征在于,笔尖接触书写的一端是软性材质,另一固定端是硬性材质。Mo、Ti、Na和Cr掺杂的锆钛酸铅PZT压电陶瓷,其中各掺杂成分的重量百分比为Mo:3.0~6.6wt%;Ti:0.01~0.1wt%;Na:0.01~0.1wt%;Cr:2~5wt%。
  36. 如权利要求34所述的真笔迹触控笔,其特征在于,笔尖材料是先通过N2和Ar气氛中烧结,然后在H2气氛中烧结,在O2气氛中进行相同条件的烧结,经过三次烧结而形成的。
PCT/CN2016/107424 2016-03-15 2016-11-28 一种可变电容式压力传感器和真笔迹触控笔 WO2017157051A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017555579A JP6974174B2 (ja) 2016-03-15 2016-11-28 可変静電容量式圧力センサーと筆跡表現スタイラスペン
US15/566,991 US11048359B2 (en) 2016-03-15 2016-11-28 Variable-capacitance pressure sensor and real-handwriting stylus
EP16894210.0A EP3432123A4 (en) 2016-03-15 2016-11-28 VARIABLE CAPACITY PRESSURE SENSOR AND TRUE WRITING PEN
KR1020177030887A KR20180120562A (ko) 2016-03-15 2016-11-28 가변 캐패시턴스 압력 센서와 실제 필기 스타일러스

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610147520.4 2016-03-15
CN201610147520.4A CN105607766B (zh) 2016-03-15 2016-03-15 一种可变电容式压力传感器和真笔迹触控笔

Publications (1)

Publication Number Publication Date
WO2017157051A1 true WO2017157051A1 (zh) 2017-09-21

Family

ID=55987748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/107424 WO2017157051A1 (zh) 2016-03-15 2016-11-28 一种可变电容式压力传感器和真笔迹触控笔

Country Status (6)

Country Link
US (1) US11048359B2 (zh)
EP (1) EP3432123A4 (zh)
JP (1) JP6974174B2 (zh)
KR (1) KR20180120562A (zh)
CN (1) CN105607766B (zh)
WO (1) WO2017157051A1 (zh)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105607766B (zh) * 2016-03-15 2017-12-22 深圳市华鼎星科技有限公司 一种可变电容式压力传感器和真笔迹触控笔
CN105867711B (zh) * 2016-04-28 2019-04-09 深圳市华鼎星科技有限公司 一种真笔迹触控笔和触控装置
DE202016103403U1 (de) * 2016-06-28 2017-09-29 Stabilo International Gmbh Federnder Batteriekontakt mit Sensorschutz
CN106325605B (zh) * 2016-08-30 2020-11-17 上海升途智能系统有限公司 一种实现智能终端电磁压感真笔迹方法
CN106095146A (zh) * 2016-08-30 2016-11-09 上海升途智能系统有限公司 一种真笔迹智能终端电磁压感笔压感部件
CN106227372B (zh) * 2016-08-30 2023-06-30 上海升途智能系统有限公司 一种真笔迹智能终端电磁压感笔压感装置
CN106843466A (zh) * 2016-12-19 2017-06-13 奇酷互联网络科技(深圳)有限公司 手写输入装置
CN106603671A (zh) * 2016-12-19 2017-04-26 广州中国科学院先进技术研究所 一种书写共享平台系统及其实现方法
CN106952729B (zh) * 2017-04-12 2018-10-30 鲁伯特(北京)教育科技有限公司 一种含环形可变电容的电磁笔
US20190163292A1 (en) * 2017-11-28 2019-05-30 Egalax_Empia Technology Inc. Electronic Board Eraser and Controlling Method Thereof
US20210096709A1 (en) * 2017-11-28 2021-04-01 Egalax_Empia Technology Inc. Electronic Board Eraser and Controlling Method Thereof for Setting Erasing Area
US20190187856A1 (en) * 2017-12-15 2019-06-20 Azoteq (Pty) Ltd Touch and stylus sensing
TWI709020B (zh) * 2018-03-30 2020-11-01 日商京瓷股份有限公司 電感用芯、電子筆用芯體部、電子筆及輸入裝置
KR20190127172A (ko) * 2018-05-03 2019-11-13 삼성전자주식회사 커패시터 회로를 포함하는 펜 입력 장치
CN112236656B (zh) * 2018-06-28 2022-11-18 株式会社和冠 压力检测元件
CN109341906B (zh) * 2018-12-05 2024-01-05 伍颖超 变电容压力传感器
CN109597504B (zh) * 2019-01-16 2024-02-23 北京汉王鹏泰科技股份有限公司 变电容式电磁触控笔及其触控系统
CN109613996B (zh) * 2019-01-16 2024-06-18 北京汉王鹏泰科技股份有限公司 多模式触控笔及触控系统
TWI711945B (zh) * 2019-03-14 2020-12-01 翰碩電子股份有限公司 觸發式觸控筆結構
US11513630B2 (en) * 2019-08-27 2022-11-29 Samsung Electro-Mechanics Co., Ltd. Touch operation sensing device using impedance change caused by touch operation
CN110686808B (zh) * 2019-10-22 2022-06-24 北京汉王鹏泰科技股份有限公司 电容式压力传感器及电子笔
CN113178900B (zh) * 2021-03-15 2023-02-17 荣耀终端有限公司 无线充电系统、芯片和无线充电电路
CN113552957B (zh) * 2021-07-31 2024-01-30 深圳市华鼎星科技有限公司 一种碳纤维触控毛笔及其控制方法
CN113721776B (zh) * 2021-09-02 2024-05-24 北京碧云数创科技有限公司 压感检测装置
CN113885720B (zh) * 2021-10-13 2024-01-30 Tcl华星光电技术有限公司 触控发生器、光触控系统以及触控方法
AU2022377663A1 (en) * 2021-11-01 2024-05-16 Nano Composite Products, Inc. Systems and methods for dual-function foam pressure sensors
KR20230158864A (ko) * 2022-05-12 2023-11-21 주식회사 하이딥 스타일러스 펜
CN116301411B (zh) * 2023-05-25 2023-08-04 南京湃睿半导体有限公司 压感分级感应装置、压感感应方法及静电容式触控笔

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5438275A (en) * 1994-01-03 1995-08-01 International Business Machines Corporation Digitizing stylus having capacitive pressure and contact sensing capabilities
CN102339179A (zh) * 2010-07-16 2012-02-01 义隆电子股份有限公司 三维触控感应器及其应用方法
CN102368181A (zh) * 2011-10-25 2012-03-07 广东威创视讯科技股份有限公司 电子笔的书写触发装置
CN104615278A (zh) * 2013-11-04 2015-05-13 捷普电子(北京)有限公司 触控笔
CN105607766A (zh) * 2016-03-15 2016-05-25 深圳市华鼎星科技有限公司 一种可变电容式压力传感器和真笔迹触控笔

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7009594B2 (en) * 2002-10-31 2006-03-07 Microsoft Corporation Universal computing device
US7142197B2 (en) * 2002-10-31 2006-11-28 Microsoft Corporation Universal computing device
JP4950679B2 (ja) * 2007-01-26 2012-06-13 株式会社ワコム 位置指示装置
US8878823B1 (en) * 2011-07-27 2014-11-04 Cypress Semiconductor Corporation Dynamic shield electrode of a stylus
JP2014021674A (ja) * 2012-07-17 2014-02-03 Wacom Co Ltd 位置指示器
TWM448730U (zh) * 2012-10-25 2013-03-11 Waltop Int Corp 兼具電磁與墨水書寫功能之電磁筆
CN104423740B (zh) * 2013-08-30 2018-07-13 唐山东唐电气股份有限公司 基于电容式触控装置的感测方法
US20150317001A1 (en) * 2014-05-04 2015-11-05 Microsoft Technology Licensing, Llc Pressure sensor for a stylus
KR102649925B1 (ko) * 2015-01-19 2024-03-22 가부시키가이샤 와코무 위치 지시기
CN105117042B (zh) * 2015-09-15 2017-02-08 深圳市华鼎星科技有限公司 电磁笔和电容触摸双模式触控显示装置
JP6138400B1 (ja) * 2016-02-01 2017-05-31 株式会社ワコム 電子ペン

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5438275A (en) * 1994-01-03 1995-08-01 International Business Machines Corporation Digitizing stylus having capacitive pressure and contact sensing capabilities
CN102339179A (zh) * 2010-07-16 2012-02-01 义隆电子股份有限公司 三维触控感应器及其应用方法
CN102368181A (zh) * 2011-10-25 2012-03-07 广东威创视讯科技股份有限公司 电子笔的书写触发装置
CN104615278A (zh) * 2013-11-04 2015-05-13 捷普电子(北京)有限公司 触控笔
CN105607766A (zh) * 2016-03-15 2016-05-25 深圳市华鼎星科技有限公司 一种可变电容式压力传感器和真笔迹触控笔

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3432123A4 *

Also Published As

Publication number Publication date
US20180101272A1 (en) 2018-04-12
KR20180120562A (ko) 2018-11-06
EP3432123A4 (en) 2019-11-06
JP2019512755A (ja) 2019-05-16
EP3432123A1 (en) 2019-01-23
CN105607766B (zh) 2017-12-22
CN105607766A (zh) 2016-05-25
US11048359B2 (en) 2021-06-29
JP6974174B2 (ja) 2021-12-01

Similar Documents

Publication Publication Date Title
WO2017157051A1 (zh) 一种可变电容式压力传感器和真笔迹触控笔
WO2017185735A1 (zh) 带射频收发传输功能的真笔迹触控笔和触控装置
TWI638285B (zh) 發信器及其發信方法
JP6942296B2 (ja) 真実筆跡タッチペン及びタッチ装置
US9477357B2 (en) Touch input system and method for detecting touch using the same
US6999067B2 (en) Electromagnetic induction pen-like device with writing function
CN109613996B (zh) 多模式触控笔及触控系统
CN205788112U (zh) 一种可变电容式压力传感器和真笔迹触控笔
CN110235090B (zh) 压敏触控笔
US20150286310A1 (en) Passive touch pen
TWM448730U (zh) 兼具電磁與墨水書寫功能之電磁筆
CN109597504B (zh) 变电容式电磁触控笔及其触控系统
KR101459535B1 (ko) 필압 감지 기능을 갖는 전자펜
TWM526118U (zh) 主動式壓感電容觸控筆
CN210155638U (zh) 变电容式电磁触控笔
KR102348410B1 (ko) 전자기 펜
TW202119191A (zh) 發出攜帶壓力資訊之電信號的觸控筆與操作方法
CN105320301A (zh) 主动式电容笔及其感应方法
CN105334982A (zh) 电容笔和触控装置
CN111459315A (zh) 一种电子笔
KR20160072689A (ko) 디지타이저, 터치스크린 장치 및 터치스크린 모듈
TWM444557U (zh) 無線筆

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15566991

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017555579

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177030887

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894210

Country of ref document: EP

Kind code of ref document: A1