WO2017156966A1 - 一种快速重路由处理方法、装置和系统 - Google Patents

一种快速重路由处理方法、装置和系统 Download PDF

Info

Publication number
WO2017156966A1
WO2017156966A1 PCT/CN2016/093967 CN2016093967W WO2017156966A1 WO 2017156966 A1 WO2017156966 A1 WO 2017156966A1 CN 2016093967 W CN2016093967 W CN 2016093967W WO 2017156966 A1 WO2017156966 A1 WO 2017156966A1
Authority
WO
WIPO (PCT)
Prior art keywords
bit
bit string
string information
information
bfir
Prior art date
Application number
PCT/CN2016/093967
Other languages
English (en)
French (fr)
Inventor
廖婷
江丽莉
张征
陈书玉
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017156966A1 publication Critical patent/WO2017156966A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control

Definitions

  • the embodiments of the present invention relate to, but are not limited to, the technical field of a communication technology and a Software Defined Network (SDN), and in particular, to a fast rerouting processing method, apparatus, and system.
  • SDN Software Defined Network
  • the above multicast applications are, for example, a multicast virtual private network (MVPN) and an Internet Protocol Television (IPTV).
  • MVPN multicast virtual private network
  • IPTV Internet Protocol Television
  • BIER Bit Indexed Explicit Replication
  • the transmission of the intermediate network node does not require the intermediate network node to maintain the information state generated by the multicast protocol, which provides great convenience for network operation and maintenance.
  • the traffic engineer (Traffic Engineer, referred to as TE) is applied to the BIER technology, that is, the Bit Indexed Explicit Replication Traffic Engineering (BIER-TE) technology.
  • BIER-TE Bit Indexed Explicit Replication Traffic Engineering
  • the TE technology is encapsulated in the same way as the BIER technology.
  • the bit string information carried in the multicast packet header indicates the link (Link) or node (Node) through which the transmission path is specified.
  • the above-mentioned BIER-TE can be provided in the application, for example, when a node or a link on the node is abnormal and fast re-routing (FRR) is enabled on the node.
  • the path is used to protect the node or the link on the node.
  • the FRR-enabled node calculates the alternate path.
  • the multicast packet needs to be encapsulated and updated according to the standby Bitstring information generated by the node.
  • the method of performing FRR in the relevant BIER network because the link or node indicated in the Bitstring information that needs to be transmitted needs to be self-calculated after FRR is enabled and packaged and updated on the node, the path protection is restricted.
  • the embodiment of the present invention provides a fast rerouting processing method, apparatus, and system.
  • the embodiment of the present invention solves the method for performing FRR in a related BIER network, and the link or node indicated in the Bitstring information that needs to be transmitted needs to be enabled. After FRR, the self-calculation and encapsulation update on the node leads to a more restrictive problem of path protection.
  • a fast rerouting processing method includes:
  • the controller calculates the two transmission paths and the bit string information corresponding to each of the transmission paths according to the transmission requirement and the bit index display duplicate BIER network information.
  • the controller sends a transmission path indication message including the calculated two bit bit string information to the bit forwarding ingress router BFIR, where the transmission path indication message is used to indicate that the BFIR is formed by the two bit bit string information Active and standby package table.
  • the transmission path indication message sent by the controller further includes: active/standby relationship information of the two bit bit string information.
  • the transmission path indication message is used to indicate that the BFIR forms a primary and secondary encapsulation table by using the two bit bit string information.
  • the indicating that the BFIR forms the active/standby encapsulation table by using the two bit bit string information includes: indicating that the BFIR forms the information by using the two bit bit string information and the active/standby relationship information.
  • the active/standby encapsulation table the primary bit string information or the spare bit string information in the active/standby encapsulation table is specified by the active/standby relationship information.
  • the transmission path indication message sent by the controller further includes: reference information corresponding to each of the bit bit string information.
  • the method further includes: the controller calculating reference information corresponding to each of the transmission paths according to link information of each of the transmission paths.
  • the indicating that the BFIR forms the active/standby encapsulation table by using the two bit bit string information further includes: indicating that the BFIR corresponds to the two bit bit string information and each of the bit bit string information
  • the reference information forms the active and standby encapsulation table, and the primary bit string information in the active and standby encapsulation table is determined by the BFIR according to the two reference information.
  • the reference information is a metric value
  • the primary bit string information in the active and standby encapsulation table is bit bit string information corresponding to the lower metric value selected by the BFIR;
  • the reference information is a priority
  • the primary bit string information in the active and standby encapsulation table is the bit bit information corresponding to the higher priority selected by the BFIR.
  • each of the bit bit string information includes a bit position of a node and/or a link of all the bit forwarding routers BFR in the transmission path corresponding to the bit bit string information.
  • the active and standby encapsulation table indicates that the spare bit string information is a backup transmission path for the primary bit string information to the same stream.
  • the sending, by the controller, the transmission path indication message to the BFIR includes:
  • the controller sends the transmission path indication message to the BFIR by using an extended southbound interface protocol, where the southbound interface protocol includes: a path calculation unit protocol PCEP, a border gateway protocol connection state BGP-LS, an open flow OpenFlow, or Network Configuration.
  • the southbound interface protocol includes: a path calculation unit protocol PCEP, a border gateway protocol connection state BGP-LS, an open flow OpenFlow, or Network Configuration.
  • the active and standby encapsulation table is configured to indicate that the BFIR is configured to the group according to the spare bit bit string information when detecting a link abnormality in a transmission path indicated by the primary bit string information. Broadcast messages are encapsulated and forwarded.
  • a fast rerouting processing method includes:
  • the bit forwarding ingress router BFIR receives a transmission path indication message including two bit string information transmitted by the controller.
  • the BFIR forms a master-slave package table by using the two bit bit string information in a fast reroute FRR enable state.
  • the transmission path indication message received by the BFIR further includes: active/standby relationship information of the two bit bit string information.
  • the forming, by the BFIR, the active/standby encapsulation table by using the two bit bit string information includes:
  • the BFIR forms a master/slave encapsulation table by using the two bit bit string information and the active/standby relationship information, where the primary bit string information or the spare bit bit string information in the active and standby encapsulation table is the primary and secondary The relationship information is specified.
  • the BFIR received transmission path indication message further includes: reference information corresponding to each of the bit bit string information, where the reference information is link information of the controller according to each of the transmission paths. Calculated.
  • the forming, by the BFIR, the active/standby encapsulation table by using the two bit bit string information includes:
  • the forming, by the BFIR, the master/slave package table by using the two bit bit string information and the reference information corresponding to each of the bit bit string information includes:
  • the BFIR selects bit bit string information corresponding to the smaller metric value as the main bit bit string information by using the two bit bit string information and the metric value corresponding to each of the bit bit string information, and forms the main Prepare the package table.
  • the reference information is a priority
  • the forming, by the BFIR, the active/standby encapsulation table by using the two bit bit information and the reference information corresponding to each of the bit bit information includes:
  • the BFIR selects the bit string information corresponding to the higher priority as the primary bit string information by using the two bit bit string information and the priority corresponding to each of the bit bit string information, and forms the main Prepare the package table.
  • the method further includes:
  • the BFIR encapsulates and forwards the received multicast packet by using the primary bit string information in the active and standby encapsulation tables.
  • the BFIR encapsulates and forwards the multicast packet according to the spare bit string information in the active and standby encapsulation table when detecting a link abnormality in the transmission path indicated by the primary bit string information. .
  • each of the bit bit string information includes a transmission path corresponding to the bit bit string information All bits in the path forward the bit positions of the nodes and/or links of the router BFR.
  • the active and standby encapsulation table indicates that the spare bit string information is a backup transmission path for the primary bit string information to the same stream.
  • the receiving, by the BFIR, the transmission path indication message sent by the controller includes:
  • the BFIR receives the transmission path indication message sent by the controller by using an extended southbound interface protocol, where the southbound interface protocol includes: a path calculation unit protocol PCEP, a border gateway protocol connection state BGP-LS, and an open flow OpenFlow Or network configuration.
  • the southbound interface protocol includes: a path calculation unit protocol PCEP, a border gateway protocol connection state BGP-LS, and an open flow OpenFlow Or network configuration.
  • a fast rerouting processing apparatus is disposed in a controller, where the fast rerouting processing apparatus comprises: a connected computing module and a transmitting module.
  • the calculating module is configured to calculate two transmission paths and bit bit string information corresponding to each of the transmission paths according to the transmission requirement and the bit index display duplicate BIER network information.
  • the sending module is configured to send, to the bit forwarding ingress router BFIR, a transmission path indication message including two bit bit string information calculated by the calculating module, where the transmission path indication message is used to indicate that the BFIR passes the
  • the two bit string information forms a master-slave package table.
  • the transmission path indication message sent by the sending module further includes: active/standby relationship information of the two bit bit string information.
  • the transmitting path indication message is used to indicate that the BFIR forms the primary and secondary encapsulation table by using the two bit bit string information, including: indicating, by the BFIR, the two bit bit string information and the active/standby relationship information And forming an active/standby encapsulation table, where the primary bit string information or the spare bit string information in the active/standby encapsulation table is specified by the active/standby relationship information.
  • the transmission path indication message sent by the sending module further includes: reference information corresponding to each of the bit bit string information.
  • the calculation module is further configured to calculate reference information corresponding to each of the transmission paths according to link information of each of the transmission paths.
  • the indicating that the BFIR forms the active and standby encapsulation table by using the two bit bit string information further includes: indicating that the BFIR passes the two bit bit string information and each of the bit bit strings
  • the reference information corresponding to the information forms the primary and secondary package table, where the active and standby package tables are
  • the primary bit string information is determined by the BFIR according to the two reference information.
  • the reference information is a metric value
  • the primary bit string information in the active and standby encapsulation table is bit bit string information corresponding to the lower metric value selected by the BFIR;
  • the reference information is a priority
  • the primary bit string information in the active and standby encapsulation table is the bit bit information corresponding to the higher priority selected by the BFIR.
  • each of the bit bit string information includes a bit position of a node and/or a link of all the bit forwarding routers BFR in the transmission path corresponding to the bit bit string information.
  • the active and standby encapsulation table indicates that the spare bit string information is a backup transmission path for the primary bit string information to the same stream.
  • the sending, by the sending module, the transmission path indication message to the BFIR includes: sending, by using an extended southbound interface protocol, the transmission path indication message to the BFIR, where the southbound interface protocol includes: path calculation Unit Protocol PCEP, Border Gateway Protocol Connection Status BGP-LS, OpenFlow OpenFlow, or Network Configuration.
  • the southbound interface protocol includes: path calculation Unit Protocol PCEP, Border Gateway Protocol Connection Status BGP-LS, OpenFlow OpenFlow, or Network Configuration.
  • the active and standby encapsulation table is configured to indicate that the BFIR is configured to the group according to the spare bit bit string information when detecting a link abnormality in a transmission path indicated by the primary bit string information. Broadcast messages are encapsulated and forwarded.
  • a fast rerouting processing apparatus is disposed on a bit forwarding ingress router BFIR, and the fast rerouting processing apparatus comprises: a connected receiving module and a generating module.
  • the receiving module is configured to receive a transmission path indication message that is sent by the controller and includes two bit bit string information.
  • the generating module is configured to form a master/slave package table by using the two bit bit string information in a fast reroute FRR enabled state.
  • the transmission path indication message received by the receiving module further includes: active/standby relationship information of the two bit bit string information.
  • Forming, by the generating module, the active/standby encapsulation table includes: forming a primary and secondary encapsulation table by using the two bit bit string information and the active/standby relationship information, and using the primary bit string information in the active and standby encapsulation table or The spare bit string information is specified by the active/standby relationship information.
  • the transmission path indication message received by the receiving module further includes: each of the ratios Reference information corresponding to the special bit string information, wherein the reference information is calculated by the controller according to link information of each of the transmission paths.
  • Forming, by the generating module, the master/slave package table, the master/slave package table is formed by using the two bit bit string information and reference information corresponding to each bit bit string information, where the master/slave package table is in the master and backup package table
  • the primary bit string information is determined by the BFIR according to the two reference information.
  • the reference information is a metric value.
  • the reference information is a priority.
  • the fast rerouting processing apparatus further includes: a processing module respectively connected to the receiving module and the generating module.
  • the processing module is configured to encapsulate and forward the multicast packet received by the receiving module by using the primary bit string information in the active and standby encapsulation tables.
  • the processing module is further configured to: when the BFIR detects a link abnormality in the transmission path indicated by the primary bit string information, according to the spare bit string in the active and standby package table generated by the generating module The information encapsulates and forwards the multicast packet received by the receiving module.
  • each of the bit bit string information includes a bit position of a node and/or a link of all the bit forwarding routers BFR in the transmission path corresponding to the bit bit string information.
  • the active and standby encapsulation table indicates that the spare bit string information is a backup transmission path for the primary bit string information to the same stream.
  • the receiving module configured to receive the transmission path indication message sent by the controller includes:
  • the transmission path indication message sent by the controller comprises: a path calculation unit protocol PCEP, a border gateway protocol connection Status BGP-LS, OpenFlow OpenFlow, or network configuration.
  • a fast rerouting processing system includes: a controller and a bit forwarding router BFR, wherein the BFR includes one or more bit forwarding ingress routers BFIR.
  • the controller is provided with the fast rerouting processing device as described above, and each of the BFIRs is provided with the fast rerouting processing device as described above.
  • a computer readable storage medium storing computer executable instructions that, when executed by a processor, implement the fast rerouting processing method.
  • the controller calculates the two transmission paths and the bit string information corresponding to each transmission path by using the transmission requirement and the BIER network information, and sends the information to the BFIR including the above two a transmission path indication message of the bit string information, the transmission path indication message is used to indicate that the BFIR forms the active and standby encapsulation table by using the above two bit bit string information in the FRR enable state, and each bit bit string in the embodiment of the present invention
  • the information includes the bit positions of all BFRs in the transmission path corresponding to the bit string information, and the primary and secondary encapsulation table indicates that the spare bit bit string information is a backup transmission path for the primary bit string information to the same multicast message;
  • the controller sends two bit string information with the active/standby relationship to the BFIR, so that the active and standby encapsulation tables can be formed on the BFIR, and the FRR mode in the related BIER network is solved,
  • FIG. 1 is a schematic structural diagram of a network architecture in a related BIER technology
  • FIG. 2 is a flowchart of a fast rerouting processing method according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a main and standby encapsulation table in the fast reroute processing method provided by the embodiment shown in FIG. 2;
  • FIG. 4 is a flowchart of another fast rerouting processing method according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of still another fast rerouting processing method according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of still another fast rerouting processing method according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of still another method for fast rerouting according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a fast rerouting processing apparatus according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of another fast rerouting processing apparatus according to an embodiment of the present invention.
  • the application of the embodiment of the present invention is based on the BIER technology, which is a bit-based multicast replication technology.
  • BIER Bit Forwarding Egress Router
  • BFER Bit Forwarding Egress Router
  • BIER's Sub-domain information is the globally unique bit position.
  • Each BFER floods the BIER field using its Interior Gateway Protocol (IGG) protocol.
  • IGF Interior Gateway Protocol
  • the BFER bit position constitutes a bit string (Bitstring), and the transfer and routing of multicast messages in the BIER domain depends on Bitstring.
  • BFR Bit Forwarding Router
  • Bit Forwarding Table Bit Forwarding Table, referred to as: BFT
  • FIG. 1 is a schematic structural diagram of a network architecture in the related BIER technology.
  • the transmission path indicated by the above Bitstring information is, for example, R0-R1-R2-R3-R7. If the link between the node R1 or R1 and R2 is abnormal and the FRR is enabled, the multicast message cannot be between R1 and R2. Link transmission, at this time, R1 needs to calculate the backup link to form protection for the link R1-R2, and the link calculated by R1 is, for example, R1-R5-R2.
  • the way to perform FRR in the relevant BIER network is to provide backup protection for links or nodes.
  • the FRR-enabled node cannot bypass the other nodes or links specified in the Bitstring information. That is, R1 cannot bypass R2 and enable multicast packets to be transmitted to R7 through other links.
  • R1 is enabled in FRR.
  • the alternate path created afterwards is R1-R5-R2-R3-R7, that is, R2 cannot be avoided to transmit multicast packets to R7 through the link of R1-R5-R6-R7; therefore, such link-based and node-based
  • the way of FRR is more restrictive to achieve path protection.
  • the controller in the following embodiments of the present invention is usually a controller in a BIER network, and the controller passes through a Bit Forwarding Ingress Router (referred to as a Bit Forwarding Ingress Router, referred to as :BFIR) information interaction to implement FRR on the BFIR.
  • a Bit Forwarding Ingress Router referred to as :BFIR
  • the following embodiments of the present invention may be combined with each other, and the same or similar concepts or processes may not be described in some embodiments.
  • FIG. 2 is a flowchart of a fast rerouting processing method according to an embodiment of the present invention.
  • the fast rerouting processing method provided in this embodiment is applicable to the case where the TE FRR is performed in the BIER network, and the method may be implemented by the fast rerouting processing device, where the fast rerouting processing device is implemented by combining hardware and software.
  • the device can be integrated into the controller's processor for use by the processor.
  • the method of this embodiment may include steps S110-S112:
  • the controller calculates two transmission paths and bit bit information corresponding to each transmission path according to the transmission requirement and the BIER network information.
  • the method for processing the fast re-routing is a method for processing the TEFRR in the BIER network.
  • the controller in the BIER network can calculate a transmission path for the multicast packet, and the multicast can be performed by the BFIR.
  • the bit positions of the specified links on all BFRs or BFRs in the transmission path of the message are encapsulated in the Bitstring information; therefore, the controller in this embodiment can calculate two transmissions according to the transmission requirements and the BIER network information, and each of the pieces All the BFRs in the transmission path are respectively mapped to different Bitstring information, that is, each Bitstring information in this embodiment includes the bit positions of all BFR nodes and/or links in the transmission path corresponding to the Bitstring information. .
  • the application scenario of the BIER network shown in FIG. 1 is taken as an example.
  • the two transmission paths of the control calculation are: transmission path 1, R0-R1-R2-R3-R7, and transmission path 2, R0. -R4-R5-R6-R7.
  • the above-mentioned transmission path 1 and transmission path 2 specify the link and node through which the multicast packet passes, and the bit string information corresponding to the transmission path 1 is Bitstring1, and the packet in the Bitstring1
  • the transmission requirement in this embodiment is, for example, a transmission requirement of a multicast packet, and includes, for example, a BFIR corresponding to the multicast source device and a BFER corresponding to the multicast receiving device, that is, an entry and an exit of the multicast packet.
  • the BIER network information in this embodiment may be acquired by the controller in advance.
  • the controller further includes: the controller acquires BIER network information, where the BIER network information includes link identifiers of all BFRs in the BIER network. (Identification, abbreviated as: ID), or it can be related information of BFR.
  • the controller sends a transmission path indication message including two bit bit string information to the bit forwarding forwarding ingress BFIR, where the transmission path indication message is used to indicate that the BFIR forms the active and standby encapsulation table by using the two bit bit string information.
  • the application basis of the embodiment of the present invention is the BIER technology.
  • the BFIR in the BIER network needs to encapsulate the bit positions of all BFERs and encapsulate them in the Bitstring information of the BIER header of the multicast message.
  • the controller in the embodiment has sent two Bitstring information to the BFIR, where the two Bitstring information indicates the transmission path of the multicast packet to each BFER, and In the FRR-enabled FRR state, the active and standby encapsulation tables can be formed by receiving the two Bitstring information.
  • the active and standby encapsulation table is the encapsulation information of the two transmission paths to the same flow, that is, the spare bit string information is for the primary use.
  • the backup bit transmission path of the bit string information to the same stream indicates that the multicast packet can achieve the same transmission effect through the two transmission paths.
  • FIG. 3 it is a schematic diagram of a master/slave package table in the fast reroute processing method provided by the embodiment shown in FIG.
  • the application scenario shown in FIG. 1 is taken as an example for description.
  • Bitstring1 is the main bit bit string information
  • Bitstring2 is the spare bit bit string information
  • the standby encapsulation table indicates that Bitstring2 is a backup transmission path for Bitstring1 to Stream1 (ie, Flow1).
  • the two bit string information sent by the controller which is used as the primary bit string information, and which is used as the spare bit bit string information, may be specified by the controller in the transmitted transmission path indication message, Can be obtained for the controller by calculating two transmission paths with each bit The reference information corresponding to the string information.
  • the embodiment of the present invention does not limit the manner in which the controller indicates the primary and secondary bit string information, as long as the BFIR can learn the master-slave relationship of the two-bit bit string information, and form the master-slave package table.
  • the two bit string information sent by the controller is used to form a primary and secondary encapsulation table in the FRR-enabled state on the BFIR side.
  • the BFIR passes the primary bit string information in the active and standby encapsulation tables. Encapsulating and forwarding the received multicast packet.
  • the BFIR detects the link abnormality on the primary transmission path indicated by the primary bit string information, the BFIR can pass the spare bit string information in the active and standby encapsulation tables.
  • the multicast packet is encapsulated and forwarded.
  • the protection of the alternate path is implemented based on the link and the node, but the controller generates a pre-generated alternate transmission path, thereby avoiding a node in the primary transmission path.
  • the calculated backup path needs to be limited by all nodes in the primary transmission path.
  • the controller calculates two transmission paths and bit bit information corresponding to each transmission path by using the transmission requirement and the BIER network information, and sends the information including the above two bit strings to the BFIR.
  • a transmission path indication message the transmission path indication message is used to indicate that the BFIR forms the primary and secondary encapsulation table by using the two bit bit string information, and each bit bit string information in the embodiment includes the transmission corresponding to the bit bit string information.
  • the bit position of all the BFRs in the path, and the active and standby encapsulation table indicates that the spare bit string information is a backup transmission path for the primary bit string information to the same multicast message; this embodiment sends two to the BFIR through the controller.
  • the bit string information with the active/standby relationship can form the master and backup encapsulation table on the BFIR, which solves the FRR method in the related BIER network.
  • the link or node indicated in the Bitstring information to be transmitted needs to enable the FRR. After self-calculation and package update on the node, it leads to a more restrictive problem of path protection.
  • the FRR is enabled on the node where the abnormality is detected, and the operation of calculating and acquiring the alternate path is also performed by the node.
  • the implementation of the calculation and the acquisition of the alternate path by the node is complicated.
  • the embodiment of the present invention calculates two by the controller. A transmission path, and one of them can be used as an alternate transmission path.
  • the controller can obtain the node and connection information in the entire BIER network, which is beneficial to simplify the calculation method.
  • the controller in this embodiment indicates the manner of the active/standby relationship of the two bit string information, and may be the active/standby device that directly carries the two bit string information in the transmission path indication message.
  • the relationship information is used to indicate that the BFIR forms the active/standby encapsulation table in the embodiment: the BFIR is configured to form the active and standby encapsulation table by using the two bit string information and the active/standby relationship information, where the active and standby encapsulation tables are
  • the primary bit string information or the spare bit string information is specified by the primary and secondary relationship information.
  • the controller in this embodiment indicates the manner of the active/standby relationship of the two bit string information, and the controller may also carry each bit in the transmission path indication message. Reference information for bit string information.
  • FIG. 4 is a flowchart of another fast rerouting processing method according to an embodiment of the present invention. On the basis of the foregoing embodiment shown in FIG. 2, the method provided in this embodiment further includes step S111:
  • the controller calculates reference information corresponding to each transmission path according to link information of each transmission path.
  • the controller calculates the reference information corresponding to each transmission path and calculates the bit string information corresponding to each transmission path, that is, S111 and S110 may be performed simultaneously, or may be sequentially performed, as shown in FIG. The embodiment is shown by taking S111 after S110 as an example.
  • the transmission path indication message is used to indicate that the BFIR forms the active/standby encapsulation table by: instructing the BFIR to form the active and standby encapsulation table by using the two bit bit string information and the reference information corresponding to each bit bit string information, the active and standby encapsulation tables.
  • the primary bit string information in the encapsulation table is determined by the BFIR based on the two reference information.
  • the reference information corresponding to each bit bit string information in this embodiment may be, for example, a metric value.
  • the primary bit bit string information in the standby encapsulation table may be a BFIR corresponding to a lower metric value.
  • the bit string information is used as the main bit string information.
  • the metric value may be that the controller calculates the metric value corresponding to each transmission path, that is, the metric value corresponding to each bit bit string information, according to the consumption accumulation of the link on each transmission path.
  • the metric value corresponding to Bitstring1 is Metric1
  • the metric value corresponding to Bitstring2 is Metric2.
  • the BFIR determines that Metric1 is smaller than Metric2, indicating that the transmission path corresponding to Metric1 is superior, and then selecting Bitstring1 as the primary bit. String information.
  • the reference information corresponding to each bit bit string information in the embodiment may be, for example, a priority.
  • the primary bit string information in the active and standby encapsulation table may be selected as a higher priority for the BFIR.
  • the bit string information corresponding to the level is used as the main bit string information.
  • the priority may be the priority of the entire transmission path calculated by the controller according to the merits of other parameters of each link on each transmission path, and the other parameters may include delay, bandwidth, etc., and are calculated corresponding to each The priority of the transmission path, that is, the priority corresponding to each bit string information.
  • the priority of Bitstring1 is Priority1
  • the priority of Bitstring2 is Priority2.
  • the controller sends a transmission path indication message to the BFIR, that is, the S110 may be: the controller sends a transmission path indication message to the BFIR by using the extended southbound interface protocol; for example, the southbound interface protocol is Protocols such as Path Computation Element Protocol (PCEP), Border Gateway Protocol Link State (BGP-LS), OpenFlow, or Netconf .
  • PCEP Path Computation Element Protocol
  • BGP-LS Border Gateway Protocol Link State
  • OpenFlow or Netconf .
  • the embodiment is extended on the basis of the southbound interface protocol, and is used to send the active/standby relationship information or the reference information in the foregoing embodiment.
  • FIG. 5 is a flowchart of still another method for fast rerouting according to an embodiment of the present invention.
  • the fast rerouting processing method provided in this embodiment is applicable to the case where the TE FRR is performed in the BIER network, and the method may be implemented by the fast rerouting processing device, where the fast rerouting processing device is implemented by combining hardware and software.
  • the device can be integrated into the BFIR processor for use by the processor.
  • the method in this embodiment may include steps S210-S220:
  • the BFIR receives a transmission path indication message that is sent by the controller and includes two bit bit string information.
  • the method for processing the fast re-routing is a method for processing the TEFRR in the BIER network.
  • the controller in the BIER network can calculate a transmission path for the multicast packet, and the multicast can be performed by the BFIR.
  • the bit positions of the specified links on all BFRs or BFRs in the transmission path of the packet are encapsulated in the Bitstring information; therefore, each bit string information received by the BFIR in this embodiment respectively indicates all BFRs in the corresponding transmission path.
  • the bit position that is, the bit position of each BFR node and/or link in the transmission path corresponding to the Bitstring information in each Bitstring information, that is, the BFIR can know that the controller specifies it by using the received bit string information.
  • Path to send multicast packets. Pair of transmission path and bit string information in this embodiment The manner of the application can also be illustrated by the application scenario shown in FIG. 1 , which is the same as that in the foregoing embodiment, and therefore will not be further described herein.
  • the two bit bit string information may be generated by the controller according to the transmission requirement and the acquired BIER network information;
  • the transmission requirement is, for example, a multicast message transmission requirement, and the BIER network information may include
  • the link ID of all BFRs in the BIER network can also be related to BFR information.
  • S220 The BFIR forms a master and backup encapsulation table by using two bit bit string information in an FRR enabled state.
  • the application basis of the embodiment of the present invention is the BIER technology.
  • the BFIR in the BIER network needs to encapsulate the bit positions of all BFERs and encapsulate them in the Bitstring information of the BIER header of the multicast message.
  • the BFIR in the embodiment has received two Bitstring information sent by the controller, and the two Bitstring information indicates the transmission path of the multicast packet to each BFER.
  • the active and standby encapsulation tables can be formed by receiving the two Bitstring information, where the primary and secondary encapsulation tables are encapsulation information of the two transmission paths to the same flow, that is, the spare bit string information is given to the main
  • the use of the bit string information to the backup transmission path of the same stream indicates that the multicast message can achieve the same transmission effect through the two transmission paths.
  • the main and standby encapsulation tables in this embodiment can also refer to the form and content of the main and standby encapsulation tables shown in FIG. 3, and details are not described herein again.
  • the two bit bit string information received by the BFIR which is used as the primary bit bit string information, and which is used as the spare bit bit string information, may be specified by the controller in the transmitted transmission path indication message, or may be The controller obtains reference information corresponding to each bit string information by calculating two transmission paths, and the BFIR forms a master-slave bit string according to the reference message.
  • the embodiment of the present invention does not limit the manner in which the controller indicates the primary and secondary bit string information, as long as the BFIR can learn the master-slave relationship of the two-bit bit string information, and form the master-slave package table.
  • the two bit string information sent by the controller is used to form the active and standby encapsulation table in the FRR-enabled state on the BFIR side.
  • the method provided in this embodiment further includes: using the BFIR in the active and standby encapsulation tables.
  • the primary bit string information encapsulates and forwards the received multicast message, and further includes: when the BFIR detects the link abnormality on the transmission path indicated by the primary bit string information, according to the active/standby
  • the spare bit string information in the encapsulation table encapsulates the multicast packet and Forward.
  • the BFIR when the BFIR detects that the primary transmission path corresponding to the primary bit string information fails, the BFIR may encapsulate the multicast packet according to the spare bit string information (for example, Bitstring2 in the foregoing embodiment).
  • the multicast packet can be forwarded along the alternate transmission path.
  • the protection of the alternate path is implemented based on the link and the node, but the controller generates a pre-generated alternate transmission path, thereby avoiding a node in the primary transmission path. After FRR is enabled, the calculated backup path needs to be limited by all nodes in the primary transmission path.
  • the BIER receives the transmission path indication message including the two bit string information sent by the controller, so that the BFIR forms the main and standby package through the two bit bit information in the FRR enabled state.
  • each bit bit string information in the embodiment includes bit positions of all BFRs in the transmission path corresponding to the bit bit string information, and the active and standby encapsulation table indicates the spare bit bit string information is the information for the main bit bit string.
  • the backup transmission path to the same multicast packet; in this embodiment, the BFIR receiving controller sends two bit string information with the active/standby relationship, so that the active and standby encapsulation tables can be formed on the BFIR, and the related BIER network is solved.
  • the link or node indicated in the Bitstring information that needs to be transmitted needs to be self-calculated after the FRR is enabled and the package is updated on the node, which causes a problem of restrictive path protection.
  • the FRR is enabled on the node where the abnormality is detected, and the operation of calculating and acquiring the alternate path is also performed by the node.
  • the implementation of the calculation and the acquisition of the alternate path by the node is complicated.
  • the embodiment of the present invention calculates two by the controller. A transmission path, and one of them can be used as an alternate transmission path.
  • the controller can obtain the node and connection information in the entire BIER network, which is beneficial to simplify the calculation method.
  • the manner of indicating the active/standby relationship of the two bit bit information in the transmission path indication message received by the BIER in this embodiment may be that the main path of the transmission path indication message directly carrying the two bit bit string information Prepare relationship information.
  • FIG. 6 is a flowchart of still another method for processing a fast re-routing according to an embodiment of the present invention. On the basis of the foregoing embodiment shown in FIG. 5, the manner in which the BFIR in the embodiment forms a master-slave package table is shown in FIG.
  • the S220 includes: the BFIR forms an active/standby encapsulation table by using two bit bit string information and the active/standby relationship information, where the primary bit string information or the spare bit bit string information in the active/standby encapsulation table is specified by the primary and secondary relationship information. of.
  • the manner of indicating the active/standby relationship of the two bit string information in the transmission path indication message received by the BIER may be that the transmission path indication message carries each bit. Reference information for bit string information.
  • FIG. 7 a flowchart of a method for processing a fast re-routing according to an embodiment of the present invention, on the basis of the foregoing embodiment shown in FIG. 5 , the manner in which the BFIR in this embodiment forms a master-slave package table The S220 includes: the BFIR forms the primary and secondary package table by using two bit bit string information and reference information corresponding to each bit bit string information, and the primary bit string information in the active and standby package table is BFIR according to two Determined by reference information.
  • the reference information corresponding to each bit bit string information in this embodiment may be, for example, a metric value
  • S220 in the embodiment shown in FIG. 7 may be replaced by: BFIR through two bit bit string information and For each metric value corresponding to the 4-bit bit string information, the bit bit string information corresponding to the smaller metric value is selected as the main bit bit string information, and forms a master-slave package table.
  • the metric value in this embodiment may be a metric value corresponding to each transmission path calculated by the controller according to the consumption accumulation of each link on each transmission path, that is, a metric value corresponding to each bit bit string information.
  • each bit bit string information in this embodiment may be, for example, a priority
  • S220 in the embodiment shown in FIG. 7 may be replaced by: BFIR passing two bit bit string information and each bit bit.
  • the priority corresponding to the string information is used to select the bit string information corresponding to the higher priority as the primary bit string information, and form a master-slave package table.
  • the priority in this embodiment may be a priority corresponding to each transmission path calculated by the controller according to the merits of other parameters of each link on each transmission path, that is, corresponding to each bit string information. priority.
  • the manner in which the BFIR receives the transmission path indication message sent by the controller may include: the BFIR receives the transmission path indication message sent by the controller through the extended southbound interface protocol; the southbound interface protocol For example, include: PCEP, BGP-LS, OpenFlow, or network configuration Netconf.
  • the embodiment is extended on the basis of the southbound interface protocol, and is used to send the active/standby relationship information or the reference information in the foregoing embodiment.
  • FIG. 8 is a schematic structural diagram of a fast rerouting processing apparatus according to an embodiment of the present invention.
  • the fast rerouting processing apparatus is implemented by combining hardware and software, and the apparatus may be integrated in the processor of the controller. Used by the processor to call.
  • the fast rerouting processing apparatus of this embodiment includes: a connected computing module 11 and a transmitting module 12.
  • the calculation module 11 is configured to calculate the two transmission paths and the bit string information corresponding to each transmission path according to the transmission requirement and the bit index display duplicate BIER network information.
  • the fast rerouting processing apparatus can perform each processing of the TEFRR in the BIER network.
  • the computing module 11 of the controller in the BIER network can calculate a transmission path for the multicast packet, due to BFIR.
  • the bit position of the specified link on the BFR or the BFR in the transmission path of the multicast packet may be encapsulated in the Bitstring information. Therefore, the calculation module 11 in this embodiment may calculate two transmissions according to the transmission requirement and the BIER network information. And mapping all the BFRs in each transmission path to different Bitstring information, that is, each Bitstring information in this embodiment includes all BFR nodes in the transmission path corresponding to the Bitstring information and/or The bit position of the link.
  • the corresponding manners of the transmission path and the bit string information in this embodiment can also be described in the application scenario shown in FIG. 1 , which is the same as in the foregoing embodiment, and therefore will not be further described herein.
  • the transmission requirement in this embodiment is, for example, a transmission requirement of a multicast packet
  • the BIER network information may be acquired in advance by the controller, and is generally obtained before the calculation module 11 calculates the transmission path, that is, in this embodiment.
  • the fast rerouting processing device further includes: an obtaining module 13 connected to the computing module 11, configured to enable the controller to acquire BIER network information, where the BIER network information includes a link ID of all BFRs in the BIER network, or may be BFR Related label information.
  • the sending module 12 is configured to send, to the bit forwarding ingress router BFIR, a transmission path indication message including two bit bit string information calculated by the calculating module 11, the transmission path indication message being used to indicate that the BFIR is formed by two bit bit string information Active and standby package table.
  • the application basis of the embodiment of the present invention is the BIER technology.
  • the BFIR in the BIER network needs to encapsulate the bit positions of all BFERs and encapsulate them in the Bitstring information of the BIER header of the multicast message.
  • the controller in the embodiment has sent two Bitstring information to the BFIR, where the two Bitstring information indicates the transmission path of the multicast packet to each BFER, and
  • the active and standby encapsulation tables can be formed by receiving the two Bitstring information.
  • the active and standby encapsulation table is the encapsulation information of the two transmission paths to the same flow, that is, the spare bit bit string information is used for the primary bit.
  • the backup transmission path of the bit string information to the same stream indicates that the multicast packet can achieve the same transmission effect through the two transmission paths.
  • the active and standby package tables in this embodiment can also refer to the active and standby packages shown in Figure 3. The form and content of the table will not be described here.
  • the two bit string information sent by the sending module 12, which is used as the primary bit string information, and which is used as the spare bit string information may be specified by the controller in the transmitted transmission path indication message. It is also possible for the controller to obtain reference information corresponding to each bit string information by calculating two transmission paths.
  • the embodiment of the present invention does not limit the manner in which the controller indicates the primary and secondary bit string information, as long as the BFIR can learn the master-slave relationship of the two-bit bit string information, and form the master-slave package table.
  • the two bit string information sent by the sending module 12 is used to form a primary and secondary package table in the FRR-enabled state on the BFIR side.
  • the BFIR passes the primary bit string in the active and standby package tables.
  • the information encapsulates and forwards the received multicast packet.
  • the BFIR detects the link abnormality on the primary transmission path indicated by the primary bit string information, the BFIR can pass the spare bit string information in the active and standby encapsulation tables.
  • the multicast packet is encapsulated and forwarded.
  • the fast rerouting processing apparatus provided by the embodiment of the present invention is configured to perform the fast rerouting processing method provided by the embodiment shown in FIG. 2 of the embodiment of the present invention, and has a corresponding functional module, and the implementation principle and the technical effect are similar. Let me repeat.
  • the manner in which the controller in the embodiment indicates the active/standby relationship of the two bit bit string information may be that the sending module 12 directly carries the active/standby relationship information of the two bit bit string information in the transmission path indication message;
  • the manner in which the transmission path indication message is used to indicate that the BFIR forms the active and standby encapsulation table includes: instructing the BFIR to form an active/standby encapsulation table by using two bit bit string information and the active/standby relationship information, where the active and standby encapsulation tables are The primary bit string information or the spare bit string information is specified by the primary and secondary relationship information.
  • the controller in this embodiment indicates the manner of the active/standby relationship of the two bit bit string information
  • the sending module 12 may carry each of the transmission path indication messages.
  • the method for informing the BFIR to form the active and standby encapsulation table is: indicating that the BFIR forms the active and standby encapsulation table by using two bit bit string information and reference information corresponding to each bit bit string information, and the main bit in the active and standby encapsulation table
  • the bit string information is determined by the BFIR based on two reference information.
  • the reference information corresponding to each bit bit string information in this embodiment may be, for example, a metric value.
  • the primary bit string information in the standby encapsulation table may select a lower metric for the BFIR.
  • the bit string information corresponding to the value is used as the main bit string information.
  • the metric value may be that the controller calculates a metric value corresponding to each transmission path, that is, a metric value corresponding to each bit bit string information, according to the consumption accumulation of each link on each transmission path.
  • the reference information corresponding to each bit bit string information in this embodiment may be, for example, a priority.
  • the primary bit string information in the active and standby encapsulation table may be a higher priority corresponding to the BFIR.
  • the bit string information is used as the main bit string information.
  • the priority may be the priority of the entire transmission path calculated by the controller according to the merits of other parameters of each link on each transmission path, and the other parameters may include delay and bandwidth.
  • the priority corresponding to each transmission path is calculated, that is, the priority corresponding to each bit string information.
  • the fast rerouting processing device provided by the embodiment of the present invention is used to perform the fast rerouting processing method provided by the embodiment shown in FIG. 4 of the present invention, and has a corresponding functional module, and the implementation principle and technical effects thereof are similar, and details are not described herein again.
  • the sending module 12 may send the transmission path indication message in a manner that is configured to send a transmission path indication message to the BFIR through the extended southbound interface protocol, for example, the PCEP, Protocols such as BGP-LS, OpenFlow, or network configuration.
  • the embodiment is extended on the basis of the southbound interface protocol, and is used to send the active/standby relationship information or the reference information in the foregoing embodiment.
  • the sending module and the obtaining module in the embodiment shown in FIG. 8 of the present invention may be implemented by a transceiver in a controller, and the computing module may be implemented by a processor in the controller, and the processor may be, for example, a A Central Processing Unit (CPU), or an Application Specific Integrated Circuit (ASIC), or one or more integrated circuits that implement the embodiments of the present invention.
  • the processor may be, for example, a A Central Processing Unit (CPU), or an Application Specific Integrated Circuit (ASIC), or one or more integrated circuits that implement the embodiments of the present invention.
  • FIG. 9 is a schematic structural diagram of another fast rerouting processing apparatus according to an embodiment of the present invention.
  • the fast rerouting processing apparatus provided in this embodiment is applicable to a TE FRR in a BIER network.
  • the fast rerouting processing apparatus is implemented by a combination of hardware and software, and the apparatus can be integrated in a BFIR processor.
  • the processor calls are used.
  • the fast rerouting processing apparatus of this embodiment includes: a receiving module 21 and a generating module 22 that are connected.
  • the receiving module 21 is configured to receive a transmission path indication message that is sent by the controller and includes two bit bit string information.
  • the fast rerouting processing apparatus can perform various processing of the TE FRR in the BIER network.
  • the computing module of the controller in the BIER network can calculate a transmission path for the multicast packet, due to BFIR.
  • the bit position of the specified link on the BFR or the BFR in the transmission path of the multicast packet may be encapsulated in the Bitstring information; therefore, each bit string information received by the receiving module in this embodiment respectively indicates the corresponding The bit position of all BFRs in the transmission path, that is, the bit position of each BFR node and/or link in the transmission path corresponding to the Bitstring information in each Bitstring information.
  • the corresponding manners of the transmission path and the bit string information in this embodiment can also be described in the application scenario shown in FIG. 1 , which is the same as in the foregoing embodiment, and therefore will not be further described herein.
  • the transmission requirement in this embodiment is, for example, a transmission requirement of a multicast packet
  • the BIER network information may be acquired in advance by the controller, and is usually obtained before the calculation module calculates the transmission path, that is, in this embodiment.
  • the fast rerouting processing device further includes: an obtaining module connected to the computing module, configured to enable the controller to acquire BIER network information, where the BIER network information includes a link ID of all BFRs in the BIER network, or related label information of the BFR .
  • the generating module 22 is configured to form a master-slave package table by using two bit string information in a fast re-routing FRR enabled state.
  • the application basis of the embodiment of the present invention is the BIER technology.
  • the BFIR in the BIER network needs to encapsulate the bit positions of all BFERs and encapsulate them in the Bitstring information of the BIER header of the multicast message.
  • the encapsulation mode is applied to the embodiment of the present invention.
  • the receiving module 21 of the BFIR has received two Bitstring information sent by the controller, and the two Bitstring information indicates that the multicast packet is sent to each BFER.
  • the transmission path so in the state in which the BFIR is enabled with the FRR, the generating module 22 can form the active and standby encapsulation table by using the two received Bitstring information, that is, the encapsulation information of the two transmission paths to the same flow, that is,
  • the spare bit string information is a backup transmission path for the primary bit string information to the same stream, indicating that the multicast message can achieve the same transmission effect through the two transmission paths.
  • the two bit string information received by the receiving module 21, which one The primary bit string information, which is used as the spare bit string information may be specified by the controller in the transmitted transmission path indication message, or may be obtained by the controller by calculating two transmission paths separately from each bit bit string information.
  • Corresponding reference information is formed by the BFIR according to the reference message to form a master-slave bit string.
  • the embodiment of the present invention does not limit the manner in which the controller indicates the primary and secondary bit string information, as long as the BFIR can learn the master-slave relationship of the two-bit bit string information, and form the master-slave package table.
  • the two bit string information received by the receiving module 21 is used to form a master/slave package table in the FRR-enabled state of the BFIR.
  • the apparatus provided in this embodiment may further include: The processing module 23 is connected to the processing module 23, and the processing module 23 is configured to encapsulate and forward the multicast packet received by the receiving module 21 by using the primary bit string information.
  • the processing module 23 is further configured to be capable of When the BFIR detects the link abnormality in the transmission path indicated by the primary bit string information, the multicast packet received by the receiving module 21 is encapsulated according to the spare bit string information in the active and standby encapsulation table generated by the generating module 22. And forwarding.
  • the BFIR when the BFIR detects that the primary transmission path corresponding to the primary bit string information fails, the BFIR may encapsulate the multicast packet according to the spare bit string information (for example, Bitstring2 in the foregoing embodiment).
  • the multicast packet can be forwarded along the alternate transmission path.
  • the fast rerouting processing apparatus provided by the embodiment of the present invention is configured to perform the fast rerouting processing method provided by the embodiment shown in FIG. 5 of the embodiment of the present invention, and has a corresponding functional module, and the implementation principle and the technical effect are similar. Let me repeat.
  • the manner of indicating the active/standby relationship of the two bit string information in the transmission path indication message received by the receiving module 21 in this embodiment may include: directly carrying two bit bit string information in the transmission path indication message
  • the master/slave relationship information is generated by the generating module 22 in the embodiment.
  • the method includes: configuring the master/slave package table to form the active and standby package table by using the two bit string information and the active/standby relationship information, the active and standby package
  • the primary bit string information or the spare bit string information in the table is specified by the primary and secondary relationship information.
  • the fast rerouting processing apparatus provided by the embodiment of the present invention is used to perform the fast rerouting processing method provided by the embodiment shown in FIG. 6 of the present invention, and has a corresponding functional module, and the implementation principle and technical effects thereof are similar, and details are not described herein again.
  • the transmission path received by the receiving module 21 The manner of indicating the active/standby relationship of the two bit string information in the path indication message may also be that the transmission path indication message carries the reference information of each bit bit string information; accordingly, in this embodiment, the generating module 22 forms the main
  • the specific manner of preparing the encapsulation table is: configured to form a primary and secondary encapsulation table by using two bit bit string information and reference information corresponding to each bit bit string information, and the main bit bit string information in the main and standby encapsulation table is BFIR Determined based on two reference information.
  • the reference information corresponding to each bit bit string information in this embodiment may be, for example, a metric value.
  • the manner in which the generating module 22 forms the active and standby encapsulation table includes: configured to pass two The bit string information and the metric value corresponding to each bit bit string information, the bit bit string information corresponding to the smaller metric value is selected as the main bit bit string information, and forms a master-slave package table.
  • the metric value in this embodiment may be a metric value corresponding to each transmission path calculated by the controller according to the consumption accumulation of each link on each transmission path, that is, a metric value corresponding to each bit bit string information.
  • the reference information corresponding to each bit bit string information in this embodiment may be, for example, a priority.
  • the manner in which the generating module 22 forms the active and standby encapsulation table includes: configured to pass two bit bit string information. And the priority level corresponding to each bit bit string information, the bit bit string information corresponding to the higher priority is selected as the main bit bit string information, and forms a master-slave package table.
  • the priority in this embodiment may be a priority corresponding to each transmission path calculated by the controller according to the merits of other parameters of each link on each transmission path, that is, information corresponding to each bit string. Priority.
  • the fast rerouting processing apparatus provided by the embodiment of the present invention is used to perform the fast rerouting processing method provided by the embodiment shown in FIG. 7 of the present invention, and has a corresponding functional module, and the implementation principle and technical effects thereof are similar, and details are not described herein again.
  • the receiving module 21 receives the transmission path indication message sent by the controller, and is configured to: receive the transmission path indication message sent by the controller through the extended southbound interface protocol; the southbound interface protocol Examples include: PCEP, BGP-LS, OpenFlow, or network configuration protocols.
  • the embodiment is extended on the basis of the southbound interface protocol, and is used to send the active/standby relationship information or the reference information in the foregoing embodiment.
  • the receiving module 21 in the embodiment shown in FIG. 9 of the present invention can be implemented by a transceiver in the BFIR, and the generating module 22 and the processing module 23 can be implemented by a processor in the BFIR.
  • the processor can be, for example, a CPU, or an ASIC, or one or more integrated circuits that implement embodiments of the present invention.
  • the schematic diagram of the network architecture shown in FIG. 1 is also a schematic structural diagram of a fast rerouting processing system provided by an embodiment of the present invention.
  • the fast rerouting processing system provided in this embodiment is applicable to the case where the TE FRR is implemented in the BIER network.
  • the fast rerouting processing system specifically includes: a controller and a BFR, where the BFR includes one or more BFIRs; wherein, the controller
  • the fast rerouting processing apparatus in the embodiment shown in FIG. 8 is provided, and each BFIR is provided with a fast rerouting processing apparatus in the embodiment shown in FIG.
  • each of the network elements in the fast rerouting processing system of this embodiment performs a fast rerouting process, and FIG. 8 and FIG.
  • the corresponding network element performs the fast re-routing process in the same manner, and is also used to perform the fast re-routing processing method provided by any embodiment shown in FIG. 2 to FIG. 7 of the present invention, and has a corresponding physical device.
  • the implementation principle and technical effect are similar, and will not be described here.
  • a computer readable storage medium storing computer executable instructions that, when executed by a processor, implement the fast rerouting processing method.
  • a program to instruct related hardware e.g., a processor
  • a computer readable storage medium such as a read only memory, disk or optical disk. Wait.
  • all or part of the steps of the above embodiments may also be implemented using one or more integrated circuits.
  • each module/unit in the foregoing embodiment may be implemented in the form of hardware, for example, by implementing an integrated circuit to implement its corresponding function, or may be implemented in the form of a software function module, for example, being executed by a processor and stored in a memory. Programs/instructions to implement their respective functions.
  • Embodiments of the invention are not limited to any specific form of combination of hardware and software.
  • the controller calculates the two transmission paths and the bit string information corresponding to each transmission path by using the transmission requirement and the BIER network information, and sends the information to the BFIR including the above two a transmission path indication message of the bit string information, the transmission path indication message is used to indicate that the BFIR forms the active and standby encapsulation table by using the above two bit bit string information in the FRR enable state, and each bit bit string in the embodiment of the present invention
  • the information includes the bit positions of all BFRs in the transmission path corresponding to the bit string information, and the primary and secondary encapsulation table indicates that the spare bit bit string information is a backup transmission path for the primary bit string information to the same multicast message;
  • the controller sends two bit string information with the active/standby relationship to the BFIR, so that the active and standby encapsulation tables can be formed on the BFIR, and the FRR mode in the related BIER network is solved,

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本文公开了一种快速重路由处理方法、装置和系统。所述快速重路由处理方法包括:控制器根据传输需求和比特位索引显示复制BIER网络信息计算出两条传输路径和每条传输路径对应的比特位串信息;该控制器向比特位转发入口路由器BFIR发送包括计算出的两个比特位串信息的传输路径指示消息,该传输路径指示消息用于指示BFIR在快速重路由FRR启用状态下通过两个比特位串信息形成主备封装表。

Description

一种快速重路由处理方法、装置和系统 技术领域
本发明实施例涉及但不限于通信技术和软件定义网络(Software Defined Network,简称为:SDN)技术领域,尤其涉及一种快速重路由处理方法、装置和系统。
背景技术
随着SDN技术的迅速发展,网络部署的可控制性越来越强,控制复杂度也随之越来越高。为了适配不同类型的业务,满足不同的部署需求,SDN技术中使用的控制手段越来越繁杂,尤其是组播应用需要的中间网络节点状态数量呈指数级增长。上述组播应用例如组播虚拟专用网络(Multicast Virtual Private Network,简称为:MVPN)和交互式网络电视(Internet Protocol Television,简称为:IPTV)等。
为了适应组播应用对网络部署的较高要求,业界提出了一种新的用于构建组播转发路径的技术,称为比特位索引的显式复制(Bit Indexed Explicit Replication,简称为,BIER)技术。BIER技术通过对转发层面的改造,能极大的减轻中间网络节点的协议复杂度和中间状态,该BIER技术将组播报文的复制转发简化成只根据组播报文中携带的Bit位来表示,即组播报文在网络中传输,不是以传统的组播IP包的形式呈现,而是封装在一个特定的BIER头中,BIER技术提出的组播转发方式能够非常容易的实现组播流量在中间网络节点的传输,不需要中间网络节点维护组播协议所产生的信息状态,对网络的运维提供了极大的便利。将流量工程(Traffic Engineer,简称为:TE)应用于BIER技术中,也就是基于流量工程扩展的比特位索引显式复制(Bit Indexed Explicit Replication Traffic Engineering,简称为:BIER-TE)技术,该BIER-TE技术与BIER技术的封装方式相同,组播报文头中携带的比特位串(Bitstring)信息指示了传输路径指定经过的链路(Link)或节点(Node)。
上述BIER-TE在应用中,例如当某个节点或该节点上的链路发生异常并在该节点上启用快速重路由(Fast ReRoute,简称为:FRR)时,可以提供备 用路径保护该节点或该节点上的链路,由启用FRR的节点计算备用路径,并且触发FRR切换后组播报文需要根据该节点生成的备用Bitstring信息进行封装更新后进行传输。相关BIER网络中进行FRR的方式,由于需要传输经过的Bitstring信息中指示的链路或节点均需启用FRR后自行计算并于节点上进行封装更新,而导致路径保护的限制性较大。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供了一种快速重路由处理方法、装置和系统,本发明实施例解决了相关BIER网络中进行FRR的方式,由于需要传输经过的Bitstring信息中指示的链路或节点均需启用FRR后自行计算并于节点上进行封装更新,而导致路径保护的限制性较大的问题。
一种快速重路由处理方法,包括:
控制器根据传输需求和比特位索引显示复制BIER网络信息计算出两条传输路径和每条所述传输路径对应的比特位串信息。
所述控制器向比特位转发入口路由器BFIR发送包括计算出的两个比特位串信息的传输路径指示消息,所述传输路径指示消息用于指示所述BFIR通过所述两个比特位串信息形成主备封装表。
可选地,所述控制器发送的传输路径指示消息中还包括:所述两个比特位串信息的主备关系信息。
所述传输路径指示消息用于指示所述BFIR通过所述两个比特位串信息形成主备封装表。
其中,所述传输路径指示消息指示所述BFIR通过所述两个比特位串信息形成主备封装表包括:指示所述BFIR通过所述两个比特位串信息和所述主备关系信息形成所述主备封装表,所述主备封装表中的主用比特位串信息或备用比特位串信息为所述主备关系信息所指定的。
可选地,所述控制器发送的传输路径指示消息中还包括:每个所述比特位串信息对应的参考信息。
所述方法还包括:所述控制器根据每条所述传输路径的链路信息计算出每条所述传输路径对应的参考信息。
所述传输路径指示消息指示所述BFIR通过所述两个比特位串信息形成主备封装表还包括:指示所述BFIR通过所述两个比特位串信息和每个所述比特位串信息对应的参考信息形成所述主备封装表,所述主备封装表中的主用比特位串信息为所述BFIR根据所述两个参考信息所确定的。
可选地,所述参考信息为度量值,所述主备封装表中的主用比特位串信息为所述BFIR选择的较低度量值对应的比特位串信息;或者,
所述参考信息为优先级,所述主备封装表中的主用比特位串信息为所述BFIR选择的较高优先级对应的比特位串信息。
可选地,每个所述比特位串信息中包括所述比特位串信息对应的传输路径中所有比特位转发路由器BFR的节点和/或链路的比特位置。
所述主备封装表指示备用比特位串信息为给主用比特位串信息到同一条流的备份传输路径。
可选地,所述控制器向所述BFIR发送所述传输路径指示消息包括:
所述控制器通过扩展的南向接口协议向所述BFIR发送所述传输路径指示消息,所述南向接口协议包括:路径计算单元协议PCEP、边界网关协议连接状态BGP-LS、开放流OpenFlow或网络配置。
可选地,所述主备封装表用于指示所述BFIR在检测到所述主用比特位串信息指示的传输路径中的链路异常时,根据所述备用比特位串信息对所述组播报文进行封装和转发。
一种快速重路由处理方法,包括:
比特位转发入口路由器BFIR接收控制器发送的包括两个比特位串信息的传输路径指示消息。
所述BFIR在快速重路由FRR启用状态下通过所述两个比特位串信息形成主备封装表。
可选地,所述BFIR接收的传输路径指示消息中还包括:所述两个比特位串信息的主备关系信息。
所述BFIR通过所述两个比特位串信息形成主备封装表包括:
所述BFIR通过所述两个比特位串信息和所述主备关系信息形成主备封装表,所述主备封装表中的主用比特位串信息或备用比特位串信息为所述主备关系信息所指定的。
可选地,所述BFIR接收的传输路径指示消息中还包括:每个所述比特位串信息对应的参考信息,所述参考信息为所述控制器根据每条所述传输路径的链路信息所计算出的。
所述BFIR通过所述两个比特位串信息形成主备封装表包括:
所述BFIR通过所述两个比特位串信息和每个所述比特位串信息对应的参考信息形成所述主备封装表,所述主备封装表中的主用比特位串信息为所述BFIR根据所述两个参考信息所确定的。
可选地;所述BFIR通过所述两个比特位串信息和每个所述比特位串信息对应的参考信息形成主备封装表包括:
所述BFIR通过所述两个比特位串信息和每个所述比特位串信息对应的度量值,选择较小度量值对应的比特位串信息作为主用比特位串信息,并形成所述主备封装表。
可选地,所述参考信息为优先级;所述BFIR通过所述两个比特位串信息和每个所述比特位串信息对应的参考信息形成主备封装表包括:
所述BFIR通过所述两个比特位串信息和每个所述比特位串信息对应的优先级,选择较高优先级对应的比特位串信息作为主用比特位串信息,并形成所述主备封装表。
可选地,所述方法还包括:
所述BFIR使用所述主备封装表中的主用比特位串信息对接收到的组播报文进行封装和转发。
所述BFIR在检测到所述主用比特位串信息指示的传输路径中的链路异常时,根据所述主备封装表中的备用比特位串信息对所述组播报文进行封装和转发。
可选地,每个所述比特位串信息中包括所述比特位串信息对应的传输路 径中所有比特位转发路由器BFR的节点和/或链路的比特位置。
所述主备封装表指示备用比特位串信息为给主用比特位串信息到同一条流的备份传输路径。
可选地,所述BFIR接收所述控制器发送的所述传输路径指示消息包括:
所述BFIR通过扩展的南向接口协议接收所述控制器发送的所述传输路径指示消息,所述南向接口协议包括:路径计算单元协议PCEP、边界网关协议连接状态BGP-LS、开放流OpenFlow或网络配置。
一种快速重路由处理装置,设置于控制器中,所述快速重路由处理装置包括:相连接的计算模块和发送模块。
所述计算模块,配置为根据传输需求和比特位索引显示复制BIER网络信息计算出两条传输路径和每条所述传输路径对应的比特位串信息。
所述发送模块,配置为向比特位转发入口路由器BFIR发送包括所述计算模块计算出的两个比特位串信息的传输路径指示消息,所述传输路径指示消息用于指示所述BFIR通过所述两个比特位串信息形成主备封装表。
可选地,所述发送模块发送的传输路径指示消息中还包括:所述两个比特位串信息的主备关系信息。
所述传输路径指示消息用于指示所述BFIR通过所述两个比特位串信息形成所述主备封装表包括:指示所述BFIR通过所述两个比特位串信息和所述主备关系信息形成所述主备封装表,所述主备封装表中的主用比特位串信息或备用比特位串信息为所述主备关系信息所指定的。
可选地,所述发送模块发送的传输路径指示消息中还包括:每个所述比特位串信息对应的参考信息。
所述计算模块,还配置为根据每条所述传输路径的链路信息计算出每条所述传输路径对应的参考信息。
所述传输路径指示消息指示所述BFIR通过所述两个比特位串信息形成所述主备封装表还包括:指示所述BFIR通过所述两个比特位串信息和每个所述比特位串信息对应的参考信息形成所述主备封装表,所述主备封装表中 的主用比特位串信息为所述BFIR根据所述两个参考信息所确定的。
可选地,所述参考信息为度量值,所述主备封装表中的主用比特位串信息为所述BFIR选择的较低度量值对应的比特位串信息;或者,
所述参考信息为优先级,所述主备封装表中的主用比特位串信息为所述BFIR选择的较高优先级对应的比特位串信息。
可选地,每个所述比特位串信息中包括所述比特位串信息对应的传输路径中所有比特位转发路由器BFR的节点和/或链路的比特位置。
所述主备封装表指示备用比特位串信息为给主用比特位串信息到同一条流的备份传输路径。
可选地,所述发送模块向所述BFIR发送所述传输路径指示消息包括:通过扩展的南向接口协议向所述BFIR发送所述传输路径指示消息,所述南向接口协议包括:路径计算单元协议PCEP、边界网关协议连接状态BGP-LS、开放流OpenFlow或网络配置。
可选地,所述主备封装表用于指示所述BFIR在检测到所述主用比特位串信息指示的传输路径中的链路异常时,根据所述备用比特位串信息对所述组播报文进行封装和转发。
一种快速重路由处理装置,设置于比特位转发入口路由器BFIR上,所述快速重路由处理装置包括:相连接的接收模块和生成模块。
所述接收模块,配置为接收控制器发送的包括两个比特位串信息的传输路径指示消息。
所述生成模块,配置为在快速重路由FRR启用状态下通过所述两个比特位串信息形成主备封装表。
可选地,所述接收模块接收的传输路径指示消息中还包括:所述两个比特位串信息的主备关系信息。
所述生成模块形成所述主备封装表包括:通过所述两个比特位串信息和所述主备关系信息形成主备封装表,所述主备封装表中的主用比特位串信息或备用比特位串信息为所述主备关系信息所指定的。
可选地,所述接收模块接收的传输路径指示消息中还包括:每个所述比 特位串信息对应的参考信息,所述参考信息为所述控制器根据每条所述传输路径的链路信息所计算出的。
所述生成模块形成所述主备封装表包括:通过所述两个比特位串信息和每个所述比特位串信息对应的参考信息形成所述主备封装表,所述主备封装表中的主用比特位串信息为所述BFIR根据所述两个参考信息所确定的。
可选地,所述参考信息为度量值。
所述生成模块形成所述主备封装表包括:通过所述两个比特位串信息和每个所述比特位串信息对应的度量值,选择较小度量值对应的比特位串信息作为主用比特位串信息,并形成所述主备封装表。
可选地,所述参考信息为优先级。
所述生成模块形成所述主备封装表包括:通过所述两个比特位串信息和每个所述比特位串信息对应的优先级,选择较高优先级对应的比特位串信息作为主用比特位串信息,并形成所述主备封装表。
可选地,所述快速重路由处理装置还包括:分别与所述接收模块和所述生成模块相连接的处理模块。
所述处理模块,配置为使用所述主备封装表中的主用比特位串信息对所述接收模块接收到的组播报文进行封装和转发。
所述处理模块,还配置为在所述BFIR检测到所述主用比特位串信息指示的传输路径中的链路异常时,根据所述生成模块生成的主备封装表中的备用比特位串信息对所述接收模块接收的组播报文进行封装和转发。
可选地,每个所述比特位串信息中包括所述比特位串信息对应的传输路径中所有比特位转发路由器BFR的节点和/或链路的比特位置。
所述主备封装表指示备用比特位串信息为给主用比特位串信息到同一条流的备份传输路径。
可选地,所述接收模块配置为能够接收所述控制器发送的所述传输路径指示消息包括:
通过扩展的南向接口协议接收所述控制器发送的所述传输路径指示消息,所述南向接口协议包括:路径计算单元协议PCEP、边界网关协议连接 状态BGP-LS、开放流OpenFlow或网络配置。
一种快速重路由处理系统,包括:控制器和比特位转发路由器BFR,所述BFR中包括一个或多个比特位转发入口路由器BFIR。
其中,所述控制器中设置有如上述的快速重路由处理装置,每个所述BFIR中设置有如上述的快速重路由处理装置。
一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现所述的快速重路由处理方法。
本发明实施例提供的快速重路由处理方法、装置和系统,控制器通过传输需求和BIER网络信息计算出两条传输路径和每条传输路径对应的比特位串信息,并且向BFIR发送包括上述两个比特位串信息的传输路径指示消息,该传输路径指示消息用于指示BFIR在FRR启用状态下通过上述两个比特位串信息形成主备封装表,本发明实施例中的每个比特位串信息中包括该比特位串信息对应的传输路径中所有BFR的比特位置,并且主备封装表指示备用比特位串信息为给主用比特位串信息到同一个组播报文的备份传输路径;本发明实施例通过控制器向BFIR发送两个具有主备关系的比特位串信息,从而可以在BFIR上形成主备封装表,解决了相关BIER网络中进行FRR的方式,由于需要传输经过的Bitstring信息中指示的链路或节点均需启用FRR后自行计算并于节点上进行封装更新,而导致路径保护的限制性较大的问题。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1所示,为相关BIER技术中一种网络构架的结构示意图;
图2为本发明实施例提供的一种快速重路由处理方法的流程图;
图3为2所示实施例提供的快速重路由处理方法中一种主备封装表的示意图;
图4为本发明实施例提供的另一种快速重路由处理方法的流程图;
图5为本发明实施例提供的又一种快速重路由处理方法的流程图;
图6为本发明实施例提供的再一种快速重路由处理方法的流程图;
图7为本发明实施例提供的还一种快速重路由处理方法的流程图;
图8为本发明实施例提供的一种快速重路由处理装置的结构示意图;
图9为本发明实施例提供的另一种快速重路由处理装置的结构示意图。
本发明的实施方式
下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
本发明实施例的应用基于BIER技术,该BIER是基于Bit位的组播复制技术,在BIER域中,给每台比特位转发出口路由器(Bit Forwarding Egress Router,简称为:BFER)分配一个在整个BIER的子域(Sub-domain)信息中全局唯一的比特位置(Bit position),每台BFER将自己的Bit position使用内部网关协议(InteriorGatewayProtocol,简称为:IGP)协议在BIER域中泛洪,所有BFER的Bit position组成一个比特位串(Bitstring),组播报文在BIER域中的传递和路由依赖于Bitstring。当BIER网络中的比特位转发路由器(Bit Forwarding Router,简称为:BFR)收到了包含有BIER头的组播报文时,根据组播报文的BIER头中携带的Bitstring依据比特位转发表(Bit Forwarding Table,简称为:BFT)进行转发。这种基于Bit位进行转发的方式可以在很大程度上减少网络的转发成本。
上述背景技术中已经说明,相关BIER网络中进行FRR的方式,由于Bitstring信息指示了传输路径指定经过的链路或节点,如图1所示,为相关BIER技术中一种网络构架的结构示意图,上述Bitstring信息指示的传输路径例如为R0-R1-R2-R3-R7,如果当节点R1或R1和R2间的链路出现异常并启用FRR时,组播报文不能在R1-R2之间的链路传输,此时,R1需要自行计算备用链路对链路R1-R2形成保护,R1计算出的链路例如为R1-R5-R2。显然地,相关BIER网络中进行FRR的方式,是针对链路或节点提供的备用保 护,即启用FRR的节点不能避开Bitstring信息中指定的其它节点或链路,即R1在启用FRR后不能避开R2直接通过其他链路将组播报文传输到R7,例如R1在启用FRR后创建的备用路径为R1-R5-R2-R3-R7,即不能避开R2通过R1-R5-R6-R7的链路将组播报文传输到R7;因此,这种基于链路和节点的FRR的方式,实现路径保护的限制性较大。
下面通过实例对本发明实施例的技术方案进行详细说明,本发明以下实施例中的控制器通常为BIER网络中的控制器,该控制器通过与比特位转发入口路由器(Bit Forwarding Ingress Router,简称为:BFIR)的信息交互,实现在该BFIR上执行FRR。本发明实施例提供的以下几个实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图2为本发明实施例提供的一种快速重路由处理方法的流程图。本实施例提供的快速重路由处理方法适用于BIER网络中进行TE FRR的情况中,该方法可以由快速重路由处理装置执行,该快速重路由处理装置通过硬件和软件结合的方式来实现,该装置可以集成在控制器的处理器中,供处理器调用使用。如图2所示,本实施例的方法可以包括步骤S110-S112:
S110,控制器根据传输需求和BIER网络信息计算出两条传输路径和每条传输路径对应的比特位串信息。
本发明实施例提供的快速重路由处理方法,为在BIER网络中进行TEFRR的处理方法,通常地,BIER网络中的控制器可以为组播报文计算出一条传输路径,由于BFIR可以将组播报文的传输路径中所有BFR或BFR上指定链路的比特位置封装在Bitstring信息中;因此,本实施例中的控制器可以根据传输需求和BIER网络信息计算出两条传输,并将每条传输路中的所有BFR分别映射到不同的Bitstring信息中,也就是说,本实施例中的每个Bitstring信息中包括该Bitstring信息对应的传输路径中所有BFR的节点和/或链路的比特位置。
举例来说,同样以图1所示BIER网络的应用场景为例予以示出,控制计算的两条传输路径分别为:传输路径1,R0-R1-R2-R3-R7;传输路径2,R0-R4-R5-R6-R7。上述传输路径1和传输路径2指定了组播报文经过的链路和节点,并且传输路径1对应的比特位串信息为Bitstring1,该Bitstring1中包 括传输路径1中R0、R1、R2、R3和R7的节点或其间的链路比特位置;传输路径2对应的比特位串信息为Bitstring2,该Bitstring2中包括传输路径1中R0、R4、R5、R6和R7的节点或其间的链路比特位置。
需要说明的是,本实施例中的传输需求例如为组播报文的发送需求,例如包括组播源设备对应的BFIR和组播接收设备对应的BFER,即组播报文的入口和出口。另外,本实施例中的BIER网络信息可以是控制器预先获取的,例如在本实施例的S110之前还包括:控制器获取BIER网络信息,该BIER网络信息包括BIER网络中所有BFR的链路标识(Identification,简称为:ID),也可以是BFR的相关标签信息。
S120,控制器向比特位转发入口路由器BFIR发送包括两个比特位串信息的传输路径指示消息,该传输路径指示消息用于指示BFIR通过两个比特位串信息形成主备封装表。
本发明实施例的应用基础为BIER技术,BIER网络中的BFIR在接收到组播报文时,需要将所有BFER的比特位置进行封装,封装在组播报文的BIER头的Bitstring信息中。将该封装方式应用到本发明实施例中,本实施例中的控制器已经向BFIR下发两个Bitstring信息,该两个Bitstring信息指示了组播报文发送到每个BFER的传输路径,并且在BFIR启用FRR的状态下,可以通过接收的两个Bitstring信息形成主备封装表,该主备封装表就是两条传输路径对同一条流的封装信息,即备用比特位串信息为给主用比特位串信息到同一条流的备份传输路径,表示该组播报文通过该两条传输路径可以实现相同的传输效果。
如图3所示,为2所示实施例提供的快速重路由处理方法中一种主备封装表的示意图。同样以图1所示应用场景为例予以说明,控制器计算出的两个比特位串信息中,例如,Bitstring1为主用比特位串信息,Bitstring2为备用比特位串信息,图3所示主备封装表指示:Bitstring2为给Bitstring1到流1(即Flow1)的备份传输路径。
本实施例在实现中,控制器发送的两个比特位串信息,哪个作为主用比特位串信息,哪个作为备用比特位串信息,可以为控制器在发送的传输路径指示消息中指定,也可以为控制器通过计算两条传输路径获得与每个比特位 串信息分别对应的参考信息。本发明实施例不限制控制器指示主备比特位串信息的方式,只要是可以使BFIR获知两个比特位串信息的主备关系,并形成主备封装表即可。
在本实施例中,控制器发送的两个比特位串信息,用于BFIR侧在启用FRR的状态下形成主备封装表,通常地,BFIR通过主备封装表中的主用比特位串信息对接收到的组播报文进行封装和转发,在BFIR检测到主用比特位串信息指示的主传输路径上的链路异常时,BFIR可以通过主备封装表中的备用比特位串信息对该组播报文进行封装和转发。显然地,本实施例提出的TE FRR的处理方式,备用路径的保护基于链路和节点实现的,而是由控制器计算预先生成备用传输路径,从而避免了在主用传输路径的某个节点上启用FRR后,计算出的备份路径需要经过主用传输路径中所有节点的限制。
本实施例提供的快速重路由处理方法,控制器通过传输需求和BIER网络信息计算出两条传输路径和每条传输路径对应的比特位串信息,并且向BFIR发送包括上述两个比特位串信息的传输路径指示消息,该传输路径指示消息用于指示BFIR通过上述两个比特位串信息形成主备封装表,本实施例中的每个比特位串信息中包括该比特位串信息对应的传输路径中所有BFR的比特位置,并且主备封装表指示备用比特位串信息为给主用比特位串信息到同一个组播报文的备份传输路径;本实施例通过控制器向BFIR发送两个具有主备关系的比特位串信息,从而可以在BFIR上形成主备封装表,解决了相关BIER网络中进行FRR的方式,由于需要传输经过的Bitstring信息中指示的链路或节点均需启用FRR后自行计算并于节点上进行封装更新,而导致路径保护的限制性较大的问题。
相关BIER技术中在检测到异常的节点上启用FRR,计算并获取备用路径的操作也由该节点执行,节点执行计算和获取备用路径的实现方式较为复杂;本发明实施例通过控制器计算出两条传输路径,并可以将其中一条作为备用传输路径,控制器可以获取到整个BIER网络中的节点和连接信息,有利于简化计算方式。
可选地,本实施例中的控制器指示两个比特位串信息的主备关系的方式,可以为控制器在传输路径指示消息中直接携带两个比特位串信息的主备 关系信息;本实施例中传输路径指示消息用于指示BFIR形成主备封装表的方式为:指示BFIR通过两个比特位串信息和主备关系信息形成主备封装表,该主备封装表中的主用比特位串信息或备用比特位串信息为主备关系信息所指定的。
在本实施例的另一种可能的实现方式中,本实施例中的控制器指示两个比特位串信息的主备关系的方式,还可以为控制器在传输路径指示消息中携带每个比特位串信息的参考信息。如图4所示,为本发明实施例提供的另一种快速重路由处理方法的流程图。在上述图2所示实施例的基础上,本实施例提供的方法还包括步骤S111:
S111,控制器根据每条传输路径的链路信息计算出每条传输路径对应的参考信息。
需要说明的是,控制器计算每条传输路径对应的参考信息与计算每条传输路径对应的比特位串信息,即S111和S110可以是同时执行的,也可以是依次执行的,图4所示实施例以S111在S110之后执行为例予以示出。
本实施例中传输路径指示消息用于指示BFIR形成主备封装表的方式为:指示BFIR通过两个比特位串信息和每个比特位串信息对应的参考信息形成主备封装表,该主备封装表中的主用比特位串信息为BFIR根据两个参考信息所确定的。
举例来说,本实施例中每条比特位串信息对应的参考信息例如可以为度量值,在该情况中,备封装表中的主用比特位串信息可以为BFIR选择较低度量值对应的比特位串信息作为主用比特位串信息。在本实施例中,度量值可以是控制器根据每条传输路径上链路的消耗积累,计算出对应于每条传输路径的度量值,即对应于每个比特位串信息的度量值。例如,Bitstring1对应的度量值为Metric1,Bitstring2对应的度量值为Metric2,BFIR接收到传输路径指示消息后,确定出Metric1小于Metric2,说明Metric1对应的传输路径较优,则选择Bitstring1作为主用比特位串信息。
再举例来说,本实施例中每条比特位串信息对应的参考信息例如还可以为优先级,在该情况中,主备封装表中的主用比特位串信息可以为BFIR选择较高优先级对应的比特位串信息作为主用比特位串信息。在本实施例中, 优先级可以是控制器根据每条传输路径上每个链路的其它参数的优劣计算出的整条传输路径的优先级,上述其它参数可以包括时延和带宽等,计算出对应于每条传输路径的优先级,即对应于每个比特位串信息的优先级。例如,Bitstring1对应的优先级为Priority1,Bitstring2对应的优先级为Priority2,BFIR接收到传输路径指示消息后,确定出Priority1比Priority2的优先级更高,说明Priority2对应的传输路径较优,则选择Bitstring1作为主用比特位串信息。
本发明上述实施例在实现中,控制器向BFIR发送传输路径指示消息的方式,即S110可以为:控制器通过扩展的南向接口协议向BFIR发送传输路径指示消息;该南向接口协议例如为:路径计算单元协议(Path Computation Element Protocol,简称为:PCEP)、边界网关协议连接状态(Border Gateway Protocol Link State,简称为:BGP-LS)、开放流(OpenFlow)或网络配置(Netconf)等协议。本实施例在上述南向接口协议的基础上进行扩展,用于发送上述实施例中的主备关系信息或参考信息。
图5为本发明实施例提供的又一种快速重路由处理方法的流程图。本实施例提供的快速重路由处理方法适用于BIER网络中进行TE FRR的情况中,该方法可以由快速重路由处理装置执行,该快速重路由处理装置通过硬件和软件结合的方式来实现,该装置可以集成在BFIR的处理器中,供处理器调用使用。如图5所示,本实施例的方法可以包括步骤S210-S220:
S210,BFIR接收控制器发送的包括两个比特位串信息的传输路径指示消息。
本发明实施例提供的快速重路由处理方法,为在BIER网络中进行TEFRR的处理方法,通常地,BIER网络中的控制器可以为组播报文计算出一条传输路径,由于BFIR可以将组播报文的传输路径中所有BFR或BFR上指定链路的比特位置封装在Bitstring信息中;因此,本实施例中BFIR接收到的每个比特位串信息分别指示其对应的传输路径中所有BFR的比特位置,即每个Bitstring信息中包括该Bitstring信息对应的传输路径中所有BFR的节点和/或链路的比特位置,即BFIR通过接收到的比特位串信息就可以知道控制器为其指定的发送组播报文的路径。本实施例中传输路径和比特位串信息的对 应方式同样可以通过图1所示应用场景说明,与上述实施例中相同,故在此不再赘述。
需要说明的是,本实施例中两个比特位串信息可以为控制器根据传输需求和获取的BIER网络信息生成的;该传输需求例如为组播报文的发送需求,该BIER网络信息可以包括BIER网络中所有BFR的链路ID,也可以是BFR的相关标签信息。
S220,BFIR在FRR启用状态下通过两个比特位串信息形成主备封装表。
本发明实施例的应用基础为BIER技术,BIER网络中的BFIR在接收到组播报文时,需要将所有BFER的比特位置进行封装,封装在组播报文的BIER头的Bitstring信息中。将该封装方式应用到本发明实施例中,本实施例中的BFIR已经接收到控制器下发的两个Bitstring信息,该两个Bitstring信息指示了组播报文发送到各BFER的传输路径,并且在BFIR启用FRR的状态下,可以通过接收的两个Bitstring信息形成主备封装表,该主备封装表就是两条传输路径对同一条流的封装信息,即备用比特位串信息为给主用比特位串信息到同一条流的备份传输路径,表示该组播报文通过该两条传输路径可以实现相同的传输效果。本实施例中的主备封装表同样可以参考图3所示主备封装表的形式和内容,在此不再赘述。
本实施例在实现中,BFIR接收的两个比特位串信息,哪个作为主用比特位串信息,哪个作为备用比特位串信息,可以为控制器在发送的传输路径指示消息中指定,也可以为控制器通过计算两条传输路径获得与每个比特位串信息分别对应的参考信息,由BFIR根据参考消息自行形成主备比特位串。本发明实施例不限制控制器指示主备比特位串信息的方式,只要是可以使BFIR获知两个比特位串信息的主备关系,并形成主备封装表即可。
在本实施例中,控制器发送的两个比特位串信息,用于BFIR侧在启用FRR的状态下形成主备封装表,本实施例提供的方法还包括:BFIR使用主备封装表中的主用比特位串信息对接收到的组播报文进行封装和转发,进一步地,还包括:BFIR在检测到主用比特位串信息指示的传输路径上的链路异常时,根据该主备封装表中的备用比特位串信息对该组播报文进行封装和 转发。在本实施例中,BFIR在检测到主用比特位串信息对应的主用传输路径上发生失效时,可以根据备用比特位串信息(例如上述实施例中的Bitstring2)来封装组播报文,使得该组播报文可以沿备用传输路径转发。显然地,本实施例提出的TE FRR的处理方式,备用路径的保护基于链路和节点实现的,而是由控制器计算预先生成备用传输路径,从而避免了在主用传输路径的某个节点上启用FRR后,计算出的备份路径需要经过主用传输路径中所有节点的限制。
本实施例提供的快速重路由处理方法,BIER通过接收控制器发送的包括两个比特位串信息的传输路径指示消息,从而BFIR在FRR启用状态下通过上述两个比特位串信息形成主备封装表,本实施例中的每个比特位串信息中包括该比特位串信息对应的传输路径中所有BFR的比特位置,并且主备封装表指示备用比特位串信息为给主用比特位串信息到同一个组播报文的备份传输路径;本实施例通过BFIR接收控制器发送两个具有主备关系的比特位串信息,从而可以在BFIR上形成主备封装表,解决了相关BIER网络中进行FRR的方式,由于需要传输经过的Bitstring信息中指示的链路或节点均需启用FRR后自行计算并于节点上进行封装更新,而导致路径保护的限制性较大的问题。
相关BIER技术中在检测到异常的节点上启用FRR,计算并获取备用路径的操作也由该节点执行,节点执行计算和获取备用路径的实现方式较为复杂;本发明实施例通过控制器计算出两条传输路径,并可以将其中一条作为备用传输路径,控制器可以获取到整个BIER网络中的节点和连接信息,有利于简化计算方式。
可选地,本实施例中的BIER接收到的传输路径指示消息中指示两个比特位串信息的主备关系的方式可以为,该传输路径指示消息中直接携带两个比特位串信息的主备关系信息。如图6所示,为本发明实施例提供的再一种快速重路由处理方法的流程图,在上述图5所示实施例的基础上,本实施例中的BFIR形成主备封装表的方式,即S220包括:BFIR通过两个比特位串信息和主备关系信息形成主备封装表,该主备封装表中的主用比特位串信息或备用比特位串信息为主备关系信息所指定的。
在本实施例的另一种可能的实现方式中,BIER接收到的传输路径指示消息中指示两个比特位串信息的主备关系的方式还可以为,该传输路径指示消息中携带每个比特位串信息的参考信息。如图7所示,为本发明实施例提供的还一种快速重路由处理方法的流程图,在上述图5所示实施例的基础上,本实施例中的BFIR形成主备封装表的方式,即S220包括:BFIR通过两个比特位串信息和每个比特位串信息对应的参考信息形成所述主备封装表,该主备封装表中的主用比特位串信息为BFIR根据两个参考信息所确定的。
与上述实施例类似地,本实施例中每条比特位串信息对应的参考信息例如可以为度量值,则图7所示实施例中的S220可以替换为:BFIR通过两个比特位串信息和每个4比特位串信息对应的度量值,选择较小度量值对应的比特位串信息作为主用比特位串信息,并形成主备封装表。本实施例中的度量值可以是控制器根据每条传输路径上各链路的消耗积累所计算出的对应于每条传输路径的度量值,即对应于每个比特位串信息的度量值。
另外,本实施例中每条比特位串信息对应的参考信息例如还可以为优先级,则图7所示实施例中的S220可以替换为:BFIR通过两个比特位串信息和每个比特位串信息对应的优先级,选择较高优先级对应的比特位串信息作为主用比特位串信息,并形成主备封装表。本实施例中的优先级可以是控制器根据每条传输路径上各链路的其它参数的优劣所计算出的对应于每条传输路径的优先级,即对应于每个比特位串信息的优先级。
本发明上述实施例在实现中,BFIR接收控制器发送的传输路径指示消息的方式,即S110可以包括:BFIR通过扩展的南向接口协议接收控制器发送的传输路径指示消息;该南向接口协议例如包括:PCEP、BGP-LS、OpenFlow或网络配置Netconf等协议。本实施例在上述南向接口协议的基础上进行扩展,用于发送上述实施例中的主备关系信息或参考信息。
图8为本发明实施例提供的一种快速重路由处理装置的结构示意图。本实施例提供的快速重路由处理装置适用于BIER网络中进行TE FRR的情况中,该快速重路由处理装置通过硬件和软件结合的方式来实现,该装置可以集成在控制器的处理器中,供处理器调用使用。如图8所示,本实施例的快速重路由处理装置包括:相连接的计算模块11和发送模块12。
其中,计算模块11,配置为能够根据传输需求和比特位索引显示复制BIER网络信息计算出两条传输路径和每条传输路径对应的比特位串信息。
本发明实施例提供的快速重路由处理装置,可以在BIER网络中执行TEFRR的每项处理,通常地,BIER网络中控制器的计算模块11可以为组播报文计算出一条传输路径,由于BFIR可以将组播报文的传输路径中所有BFR或BFR上指定链路的比特位置封装在Bitstring信息中;因此,本实施例中的计算模块11可以根据传输需求和BIER网络信息计算出两条传输,并将每条传输路中的所有BFR分别映射到不同的Bitstring信息中,也就是说,本实施例中的每个Bitstring信息中包括该Bitstring信息对应的传输路径中所有BFR的节点和/或链路的比特位置。本实施例中传输路径和比特位串信息的对应方式同样可以通过图1所示应用场景说明,与上述实施例中相同,故在此不再赘述。
需要说明的是,本实施例中的传输需求例如为组播报文的发送需求,BIER网络信息可以是控制器预先获取的,通常为计算模块11计算传输路径前获取的,即本实施例中的快速重路由处理装置还包括:与计算模块11相连接的获取模块13,配置为能够控制器获取BIER网络信息,该BIER网络信息包括BIER网络中所有BFR的链路ID,也可以是BFR的相关标签信息。
发送模块12,配置为能够向比特位转发入口路由器BFIR发送包括计算模块11计算的两个比特位串信息的传输路径指示消息,该传输路径指示消息用于指示BFIR通过两个比特位串信息形成主备封装表。
本发明实施例的应用基础为BIER技术,BIER网络中的BFIR在接收到组播报文时,需要将所有BFER的比特位置进行封装,封装在组播报文的BIER头的Bitstring信息中。将该封装方式应用到本发明实施例中,本实施例中的控制器已经向BFIR下发两个Bitstring信息,该两个Bitstring信息指示了组播报文发送到各BFER的传输路径,并且在BFIR启用FRR的状态下,可以通过接收的两个Bitstring信息形成主备封装表,该主备封装表就是两条传输路径对同一条流的封装信息,即备用比特位串信息为给主用比特位串信息到同一条流的备份传输路径,表示该组播报文通过该两条传输路径可以实现相同的传输效果。本实施例中的主备封装表同样可以参考图3所示主备封装 表的形式和内容,在此不再赘述。
本实施例在实现中,发送模块12发送的两个比特位串信息,哪个作为主用比特位串信息,哪个作为备用比特位串信息,可以为控制器在发送的传输路径指示消息中指定,也可以为控制器通过计算两条传输路径获得与每个比特位串信息分别对应的参考信息。本发明实施例不限制控制器指示主备比特位串信息的方式,只要是可以使BFIR获知两个比特位串信息的主备关系,并形成主备封装表即可。
在本实施例中,发送模块12发送的两个比特位串信息,用于BFIR侧在启用FRR的状态下形成主备封装表,通常地,BFIR通过主备封装表中的主用比特位串信息对接收到的组播报文进行封装和转发,在BFIR检测到主用比特位串信息指示的主传输路径上的链路异常时,BFIR可以通过主备封装表中的备用比特位串信息对该组播报文进行封装和转发。
本发明实施例提供的快速重路由处理装置用于执行本发明实施例的图2所示实施例提供的快速重路由处理方法,具备相应的功能模块,其实现原理和技术效果类似,此处不再赘述。
可选地,本实施例中的控制器指示两个比特位串信息的主备关系的方式,可以为发送模块12在传输路径指示消息中直接携带两个比特位串信息的主备关系信息;相应地,本实施例中传输路径指示消息用于指示BFIR形成主备封装表的方式包括:指示BFIR通过两个比特位串信息和主备关系信息形成主备封装表,该主备封装表中的主用比特位串信息或备用比特位串信息为主备关系信息所指定的。
在本实施例的另一种可能的实现方式中,本实施例中的控制器指示两个比特位串信息的主备关系的方式,还可以为发送模块12在传输路径指示消息中携带每个比特位串信息的参考信息;相应地,计算模块11,还配置为能够根据每条传输路径的链路信息计算出每条所述传输路径对应的参考信息;本实施例中传输路径指示消息用于指示BFIR形成主备封装表的方式为:指示BFIR通过两个比特位串信息和每个比特位串信息对应的参考信息形成所述主备封装表,该主备封装表中的主用比特位串信息为BFIR根据两个参考信息所确定的。
与上述实施例类似地,本实施例中每条比特位串信息对应的参考信息例如可以为度量值,在该情况中,备封装表中的主用比特位串信息可以为BFIR选择较低度量值对应的比特位串信息作为主用比特位串信息。在本实施例中,度量值可以是控制器根据每条传输路径上各链路的消耗积累,计算出对应于每条传输路径的度量值,即对应于每个比特位串信息的度量值。
另外,本实施例中每条比特位串信息对应的参考信息例如还可以为优先级,在该情况中,主备封装表中的主用比特位串信息可以为BFIR选择较高优先级对应的比特位串信息作为主用比特位串信息。在本实施例中,优先级可以是控制器根据每条传输路径上每个链路的其它参数的优劣计算出的整条传输路径的优先级,上述其它参数可以包括时延和带宽等,计算出对应于每条传输路径的优先级,即对应于每个比特位串信息的优先级。
本发明实施例提供的快速重路由处理装置用于执行本发明图4所示实施例提供的快速重路由处理方法,具备相应的功能模块,其实现原理和技术效果类似,此处不再赘述。
本发明上述实施例在实现中,发送模块12发送传输路径指示消息的方式可以为:配置为能够通过扩展的南向接口协议向BFIR发送传输路径指示消息;该南向接口协议例如为:PCEP、BGP-LS、OpenFlow或网络配置等协议。本实施例在上述南向接口协议的基础上进行扩展,用于发送上述实施例中的主备关系信息或参考信息。
在实现中,本发明图8所示实施例中的发送模块和获取模块可以通过控制器中的收发器来实现,计算模块可以通过控制器中的处理器来实现,该处理器例如可以是一个中央处理器(Central Processing Unit,简称为:CPU),或者是特定集成电路(Application Specific Integrated Circuit,简称为:ASIC),或者是完成实施本发明实施例的一个或多个集成电路。
图9为本发明实施例提供的另一种快速重路由处理装置的结构示意图。本实施例提供的快速重路由处理装置适用于BIER网络中进行TE FRR的情况中,该快速重路由处理装置通过硬件和软件结合的方式来实现,该装置可以集成在BFIR的处理器中,供处理器调用使用。如图9所示,本实施例的快速重路由处理装置包括:相连接的接收模块21和生成模块22。
其中,接收模块21,配置为能够接收控制器发送的包括两个比特位串信息的传输路径指示消息。
本发明实施例提供的快速重路由处理装置,可以在BIER网络中执行TE FRR的各项处理,通常地,BIER网络中控制器的计算模块可以为组播报文计算出一条传输路径,由于BFIR可以将组播报文的传输路径中所有BFR或BFR上指定链路的比特位置封装在Bitstring信息中;因此,本实施例中的接收模块接收到的每个比特位串信息分别指示其对应的传输路径中所有BFR的比特位置,即每个Bitstring信息中包括该Bitstring信息对应的传输路径中所有BFR的节点和/或链路的比特位置。本实施例中传输路径和比特位串信息的对应方式同样可以通过图1所示应用场景说明,与上述实施例中相同,故在此不再赘述。
需要说明的是,本实施例中的传输需求例如为组播报文的发送需求,BIER网络信息可以是控制器预先获取的,通常为计算模块计算传输路径前获取的,即本实施例中的快速重路由处理装置还包括:与计算模块相连接的获取模块,配置为能够控制器获取BIER网络信息,该BIER网络信息包括BIER网络中所有BFR的链路ID,也可以是BFR的相关标签信息。
生成模块22,配置为能够在快速重路由FRR启用状态下通过两个比特位串信息形成主备封装表。
本发明实施例的应用基础为BIER技术,BIER网络中的BFIR在接收到组播报文时,需要将所有BFER的比特位置进行封装,封装在组播报文的BIER头的Bitstring信息中。将该封装方式应用到本发明实施例中,本实施例中BFIR的接收模块21已经接收到控制器下发的两个Bitstring信息,该两个Bitstring信息指示了组播报文发送到各BFER的传输路径,因此在BFIR启用FRR的状态下,其生成模块22可以通过接收到的两个Bitstring信息形成主备封装表,该主备封装表就是两条传输路径对同一条流的封装信息,即备用比特位串信息为给主用比特位串信息到同一条流的备份传输路径,表示该组播报文通过该两条传输路径可以实现相同的传输效果。本实施例中的主备封装表同样可以参考图3所示主备封装表的具体形式和内容,在此不再赘述。
本实施例在实现中,接收模块21接收到的两个比特位串信息,哪个作 为主用比特位串信息,哪个作为备用比特位串信息,可以为控制器在发送的传输路径指示消息中指定,也可以为控制器通过计算两条传输路径获得与每个比特位串信息分别对应的参考信息,由BFIR根据参考消息自行形成主备比特位串。本发明实施例不限制控制器指示主备比特位串信息的方式,只要是可以使BFIR获知两个比特位串信息的主备关系,并形成主备封装表即可。
在本实施例中,接收模块21接收到的两个比特位串信息,用于BFIR在启用FRR的状态下形成主备封装表,本实施例提供的装置还可以包括:分别与接收模块21和生成模块22相连接的处理模块23;该处理模块23,配置为能够使用主用比特位串信息对接收模块21接收到的组播报文进行封装和转发;该处理模块23,还配置为能够在BFIR检测到主用比特位串信息指示的传输路径中的链路异常时,根据生成模块22生成的主备封装表中的备用比特位串信息对接收模块21接收的组播报文进行封装和转发。在本实施例中,BFIR在检测到主用比特位串信息对应的主用传输路径上发生失效时,可以根据备用比特位串信息(例如上述实施例中的Bitstring2)来封装组播报文,使得该组播报文可以沿备用传输路径转发。
本发明实施例提供的快速重路由处理装置用于执行本发明实施例的图5所示实施例提供的快速重路由处理方法,具备相应的功能模块,其实现原理和技术效果类似,此处不再赘述。
可选地,本实施例中的接收模块21接收到的传输路径指示消息中指示两个比特位串信息的主备关系的方式可以包括,该传输路径指示消息中直接携带两个比特位串信息的主备关系信息;相应地,本实施例中生成模块22形成主备封装表的方式包括:配置为能够通过两个比特位串信息和主备关系信息形成主备封装表,该主备封装表中的主用比特位串信息或备用比特位串信息为主备关系信息所指定的。
本发明实施例提供的快速重路由处理装置用于执行本发明图6所示实施例提供的快速重路由处理方法,具备相应的功能模块,其实现原理和技术效果类似,此处不再赘述。
在本实施例的另一种可能的实现方式中,接收模块21接收到的传输路 径指示消息中指示两个比特位串信息的主备关系的方式还可以为,该传输路径指示消息中携带每个比特位串信息的参考信息;相应地,本实施例中生成模块22形成主备封装表的具体方式为:配置为能够通过两个比特位串信息和每个比特位串信息对应的参考信息形成主备封装表,该主备封装表中的主用比特位串信息为BFIR根据两个参考信息所确定的。
与上述实施例类似地,本实施例中每条比特位串信息对应的参考信息例如可以为度量值,在该情况中,生成模块22形成主备封装表的方式包括:配置为能够通过两个比特位串信息和每个比特位串信息对应的度量值,选择较小度量值对应的比特位串信息作为主用比特位串信息,并形成主备封装表。本实施例中的度量值可以是控制器根据每条传输路径上各链路的消耗积累所计算出的对应于每条传输路径的度量值,即对应于每个比特位串信息的度量值。
另外,本实施例中每条比特位串信息对应的参考信息例如还可以为优先级,在该情况中,生成模块22形成主备封装表的方式包括:配置为能够通过两个比特位串信息和每个比特位串信息对应的优先级,选择较高优先级对应的比特位串信息作为主用比特位串信息,并形成主备封装表。本实施例中的优先级可以是控制器根据每条传输路径上每个链路的其它参数的优劣所计算出的对应于每条传输路径的优先级,即对应于每个比特位串信息的优先级。
本发明实施例提供的快速重路由处理装置用于执行本发明图7所示实施例提供的快速重路由处理方法,具备相应的功能模块,其实现原理和技术效果类似,此处不再赘述。
本发明上述实施例在实现中,接收模块21接收控制器发送的传输路径指示消息的方式包括:配置为能够通过扩展的南向接口协议接收控制器发送的传输路径指示消息;该南向接口协议例如包括:PCEP、BGP-LS、OpenFlow或网络配置等协议。本实施例在上述南向接口协议的基础上进行扩展,用于发送上述实施例中的主备关系信息或参考信息。
在实现中,本发明图9所示实施例中的接收模块21可以通过BFIR中的收发器来实现,生成模块22和处理模块23可以通过BFIR中的处理器来实 现,该处理器例如可以是一个CPU,或者是ASIC,或者是完成实施本发明实施例的一个或多个集成电路。
图1所示的网络构架示意图,同样可以为本发明实施例提供的一种快速重路由处理系统的结构示意图。本实施例提供的快速重路由处理系统适用于BIER网络中进行TE FRR的情况中,该快速重路由处理系统具体包括:控制器和BFR,BFR中包括一个或多个BFIR;其中,控制器中设置有如上述图8所示实施例中的快速重路由处理装置,每个BFIR中设置有如上述图9所示实施例中的快速重路由处理装置。图9所示系统中的BFIR例如可以为R0,可以为网络中的其它节点,本实施例的快速重路由处理系统中的每个网元执行快速重路由处理的方式,与上述图8和图9所示实施例中对应网元执行快速重路由处理的方式相同,同样用于执行本发明图2到图7所示任一实施例提供的快速重路由处理方法,具备相应的实体装置,其实现原理和技术效果类似,此处不再赘述。
一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现所述的快速重路由处理方法。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件(例如处理器)完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的每个模块/单元可以采用硬件的形式实现,例如通过集成电路来实现其相应功能,也可以采用软件功能模块的形式实现,例如通过处理器执行存储于存储器中的程序/指令来实现其相应功能。本发明实施例不限制于任何特定形式的硬件和软件的结合。
虽然本发明实施例所揭露的实施方式如上,但所述的内容仅为便于理解本发明而采用的实施方式,并非用以限定本发明实施例。任何本发明实施例所属领域内的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本发明实施例的专利保护范围,仍须以所附的权利要求书所界定的范围为准。
工业实用性
本发明实施例提供的快速重路由处理方法、装置和系统,控制器通过传输需求和BIER网络信息计算出两条传输路径和每条传输路径对应的比特位串信息,并且向BFIR发送包括上述两个比特位串信息的传输路径指示消息,该传输路径指示消息用于指示BFIR在FRR启用状态下通过上述两个比特位串信息形成主备封装表,本发明实施例中的每个比特位串信息中包括该比特位串信息对应的传输路径中所有BFR的比特位置,并且主备封装表指示备用比特位串信息为给主用比特位串信息到同一个组播报文的备份传输路径;本发明实施例通过控制器向BFIR发送两个具有主备关系的比特位串信息,从而可以在BFIR上形成主备封装表,解决了相关BIER网络中进行FRR的方式,由于需要传输经过的Bitstring信息中指示的链路或节点均需启用FRR后自行计算并于节点上进行封装更新,而导致路径保护的限制性较大的问题。

Claims (31)

  1. 一种快速重路由处理方法,包括:
    控制器根据传输需求和比特位索引显示复制BIER网络信息计算出两条传输路径和每条所述传输路径对应的比特位串信息;
    所述控制器向比特位转发入口路由器BFIR发送包括计算出的两个比特位串信息的传输路径指示消息,所述传输路径指示消息用于指示所述BFIR通过所述两个比特位串信息形成主备封装表。
  2. 根据权利要求1所述的快速重路由处理方法,其中,所述控制器发送的传输路径指示消息中还包括:所述两个比特位串信息的主备关系信息;
    所述传输路径指示消息用于指示所述BFIR通过所述两个比特位串信息形成主备封装表;
    其中,所述传输路径指示消息指示所述BFIR通过所述两个比特位串信息形成主备封装表包括:指示所述BFIR通过所述两个比特位串信息和所述主备关系信息形成所述主备封装表,所述主备封装表中的主用比特位串信息或备用比特位串信息为所述主备关系信息所指定的。
  3. 根据权利要求2所述的快速重路由处理方法,其中,所述控制器发送的传输路径指示消息中还包括:每个所述比特位串信息对应的参考信息;
    所述方法还包括:所述控制器根据每条所述传输路径的链路信息计算出每条所述传输路径对应的参考信息;
    所述传输路径指示消息指示所述BFIR通过所述两个比特位串信息形成主备封装表还包括:指示所述BFIR通过所述两个比特位串信息和每个所述比特位串信息对应的参考信息形成所述主备封装表,所述主备封装表中的主用比特位串信息为所述BFIR根据所述两个参考信息所确定的。
  4. 根据权利要求3所述的快速重路由处理方法,其中,
    所述参考信息为度量值,所述主备封装表中的主用比特位串信息为所述BFIR选择的较低度量值对应的比特位串信息;或者,
    所述参考信息为优先级,所述主备封装表中的主用比特位串信息为所述 BFIR选择的较高优先级对应的比特位串信息。
  5. 根据权利要求1~4中任一项所述的快速重路由处理方法,其中,每个所述比特位串信息中包括所述比特位串信息对应的传输路径中所有比特位转发路由器BFR的节点和/或链路的比特位置;
    所述主备封装表指示备用比特位串信息为给主用比特位串信息到同一条流的备份传输路径。
  6. 根据权利要求1~4中任一项所述的快速重路由处理方法,其中,所述控制器向所述BFIR发送所述传输路径指示消息包括:
    所述控制器通过扩展的南向接口协议向所述BFIR发送所述传输路径指示消息,所述南向接口协议包括:路径计算单元协议PCEP、边界网关协议连接状态BGP-LS、开放流OpenFlow或网络配置。
  7. 根据权利要求1~4中任一项所述的快速重路由处理方法,其中,所述主备封装表用于指示所述BFIR在检测到所述主用比特位串信息指示的传输路径中的链路异常时,根据所述备用比特位串信息对所述组播报文进行封装和转发。
  8. 一种快速重路由处理方法,包括:
    比特位转发入口路由器BFIR接收控制器发送的包括两个比特位串信息的传输路径指示消息;
    所述BFIR在快速重路由FRR启用状态下通过所述两个比特位串信息形成主备封装表。
  9. 根据权利要求8所述的快速重路由处理方法,其中,所述BFIR接收的传输路径指示消息中还包括:所述两个比特位串信息的主备关系信息;
    所述BFIR通过所述两个比特位串信息形成主备封装表包括:
    所述BFIR通过所述两个比特位串信息和所述主备关系信息形成主备封装表,所述主备封装表中的主用比特位串信息或备用比特位串信息为所述主备关系信息所指定的。
  10. 根据权利要求8所述的快速重路由处理方法,其中,所述BFIR接收的传输路径指示消息中还包括:每个所述比特位串信息对应的参考信息,所 述参考信息为所述控制器根据每条所述传输路径的链路信息所计算出的;
    所述BFIR通过所述两个比特位串信息形成主备封装表包括:
    所述BFIR通过所述两个比特位串信息和每个所述比特位串信息对应的参考信息形成所述主备封装表,所述主备封装表中的主用比特位串信息为所述BFIR根据所述两个参考信息所确定的。
  11. 根据权利要求10所述的快速重路由处理方法,其中,所述参考信息为度量值;
    所述BFIR通过所述两个比特位串信息和每个所述比特位串信息对应的参考信息形成主备封装表,包括:
    所述BFIR通过所述两个比特位串信息和每个所述比特位串信息对应的度量值,选择较小度量值对应的比特位串信息作为主用比特位串信息,并形成所述主备封装表。
  12. 根据权利要求10所述的快速重路由处理方法,其中,所述参考信息为优先级;
    所述BFIR通过所述两个比特位串信息和每个所述比特位串信息对应的参考信息形成主备封装表包括:
    所述BFIR通过所述两个比特位串信息和每个所述比特位串信息对应的优先级,选择较高优先级对应的比特位串信息作为主用比特位串信息,并形成所述主备封装表。
  13. 根据权利要求8~12中任一项所述的快速重路由处理方法,所述方法还包括:
    所述BFIR使用所述主备封装表中的主用比特位串信息对接收到的组播报文进行封装和转发;
    所述BFIR在检测到所述主用比特位串信息指示的传输路径中的链路异常时,根据所述主备封装表中的备用比特位串信息对所述组播报文进行封装和转发。
  14. 根据权利要求8~12中任一项所述的快速重路由处理方法,其中,每个所述比特位串信息中包括所述比特位串信息对应的传输路径中所有比特 位转发路由器BFR的节点和/或链路的比特位置;
    所述主备封装表指示备用比特位串信息为给主用比特位串信息到同一条流的备份传输路径。
  15. 根据权利要求8~12中任一项所述的快速重路由处理方法,其中,所述BFIR接收所述控制器发送的所述传输路径指示消息包括:
    所述BFIR通过扩展的南向接口协议接收所述控制器发送的所述传输路径指示消息,所述南向接口协议包括:路径计算单元协议PCEP、边界网关协议连接状态BGP-LS、开放流OpenFlow或网络配置。
  16. 一种快速重路由处理装置,设置于控制器中,所述快速重路由处理装置包括:相连接的计算模块和发送模块;
    所述计算模块,配置为根据传输需求和比特位索引显示复制BIER网络信息计算出两条传输路径和每条所述传输路径对应的比特位串信息;
    所述发送模块,配置为向比特位转发入口路由器BFIR发送包括所述计算模块计算出的两个比特位串信息的传输路径指示消息,所述传输路径指示消息用于指示所述BFIR通过所述两个比特位串信息形成主备封装表。
  17. 根据权利要求16所述的快速重路由处理装置,其中,所述发送模块发送的传输路径指示消息中还包括:所述两个比特位串信息的主备关系信息;
    所述传输路径指示消息用于指示所述BFIR通过所述两个比特位串信息形成所述主备封装表;
    其中,所述传输路径指示消息指示所述BFIR通过所述两个比特位串信息形成主备封装表包括:指示所述BFIR通过所述两个比特位串信息和所述主备关系信息形成所述主备封装表,所述主备封装表中的主用比特位串信息或备用比特位串信息为所述主备关系信息所指定的。
  18. 根据权利要求17所述的快速重路由处理装置,其中,所述发送模块发送的传输路径指示消息中还包括:每个所述比特位串信息对应的参考信息;
    所述计算模块,还配置为根据每条所述传输路径的链路信息计算出每条 所述传输路径对应的参考信息;
    所述传输路径指示消息指示所述BFIR通过所述两个比特位串信息形成所述主备封装表还包括:指示所述BFIR通过所述两个比特位串信息和每个所述比特位串信息对应的参考信息形成所述主备封装表,所述主备封装表中的主用比特位串信息为所述BFIR根据所述两个参考信息所确定的。
  19. 根据权利要求18所述的快速重路由处理装置,其中,
    所述参考信息为度量值,所述主备封装表中的主用比特位串信息为所述BFIR选择的较低度量值对应的比特位串信息;或者,
    所述参考信息为优先级,所述主备封装表中的主用比特位串信息为所述BFIR选择的较高优先级对应的比特位串信息。
  20. 根据权利要求16~19中任一项所述的快速重路由处理装置,其中,每个所述比特位串信息中包括所述比特位串信息对应的传输路径中所有比特位转发路由器BFR的节点和/或链路的比特位置;
    所述主备封装表指示备用比特位串信息为给主用比特位串信息到同一条流的备份传输路径。
  21. 根据权利要求16~19中任一项所述的快速重路由处理装置,其中,所述发送模块配置为能够向所述BFIR发送所述传输路径指示消息包括:通过扩展的南向接口协议向所述BFIR发送所述传输路径指示消息,所述南向接口协议包括:路径计算单元协议PCEP、边界网关协议连接状态BGP-LS、开放流OpenFlow或网络配置。
  22. 根据权利要求16~19中任一项所述的快速重路由处理装置,其中,所述主备封装表用于指示所述BFIR在检测到所述主用比特位串信息指示的传输路径中的链路异常时,根据所述备用比特位串信息对所述组播报文进行封装和转发。
  23. 一种快速重路由处理装置,设置于比特位转发入口路由器BFIR上,所述快速重路由处理装置包括:相连接的接收模块和生成模块;
    所述接收模块,配置为接收控制器发送的包括两个比特位串信息的传输路径指示消息;
    所述生成模块,配置为在快速重路由FRR启用状态下通过所述两个比特位串信息形成主备封装表。
  24. 根据权利要求23所述的快速重路由处理装置,其中,所述接收模块接收的传输路径指示消息中还包括:所述两个比特位串信息的主备关系信息;
    所述生成模块形成所述主备封装表包括:通过所述两个比特位串信息和所述主备关系信息形成主备封装表,所述主备封装表中的主用比特位串信息或备用比特位串信息为所述主备关系信息所指定的。
  25. 根据权利要求23所述的快速重路由处理装置,其中,所述接收模块接收的传输路径指示消息中还包括:每个所述比特位串信息对应的参考信息,所述参考信息为所述控制器根据每条所述传输路径的链路信息所计算出的;
    所述生成模块形成所述主备封装表包括:通过所述两个比特位串信息和每个所述比特位串信息对应的参考信息形成所述主备封装表,所述主备封装表中的主用比特位串信息为所述BFIR根据所述两个参考信息所确定的。
  26. 根据权利要求25所述的快速重路由处理装置,其中,所述参考信息为度量值;
    所述生成模块形成所述主备封装表包括:通过所述两个比特位串信息和每个所述比特位串信息对应的度量值,选择较小度量值对应的比特位串信息作为主用比特位串信息,并形成所述主备封装表。
  27. 根据权利要求25所述的快速重路由处理装置,其中,所述参考信息为优先级;
    所述生成模块形成所述主备封装表包括:通过所述两个比特位串信息和每个所述比特位串信息对应的优先级,选择较高优先级对应的比特位串信息作为主用比特位串信息,并形成所述主备封装表。
  28. 根据权利要求23~27中任一项所述的快速重路由处理装置,所述快速重路由处理装置还包括:分别与所述接收模块和所述生成模块相连接的处理模块;
    所述处理模块,配置为使用所述主备封装表中的主用比特位串信息对所述接收模块接收到的组播报文进行封装和转发;
    所述处理模块,还配置为在所述BFIR检测到所述主用比特位串信息指示的传输路径中的链路异常时,根据所述生成模块生成的主备封装表中的备用比特位串信息对所述接收模块接收的组播报文进行封装和转发。
  29. 根据权利要求23~27中任一项所述的快速重路由处理装置,其中,每个所述比特位串信息中包括所述比特位串信息对应的传输路径中所有比特位转发路由器BFR的节点和/或链路的比特位置;
    所述主备封装表指示备用比特位串信息为给主用比特位串信息到同一条流的备份传输路径。
  30. 根据权利要求23~27中任一项所述的快速重路由处理装置,其中,所述接收模块配置为能够接收所述控制器发送的所述传输路径指示消息包括:
    通过扩展的南向接口协议接收所述控制器发送的所述传输路径指示消息,所述南向接口协议包括:路径计算单元协议PCEP、边界网关协议连接状态BGP-LS、开放流OpenFlow或网络配置。
  31. 一种快速重路由处理系统,包括:控制器和比特位转发路由器BFR,所述BFR中包括一个或多个比特位转发入口路由器BFIR;
    其中,所述控制器中设置有如权利要求16~22中任一项所述的快速重路由处理装置,每个所述BFIR中设置有如权利要求23~30中任一项所述的快速重路由处理装置。
PCT/CN2016/093967 2016-03-18 2016-08-08 一种快速重路由处理方法、装置和系统 WO2017156966A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610158120.3A CN107204920A (zh) 2016-03-18 2016-03-18 一种快速重路由处理方法、装置和系统
CN201610158120.3 2016-03-18

Publications (1)

Publication Number Publication Date
WO2017156966A1 true WO2017156966A1 (zh) 2017-09-21

Family

ID=59850139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/093967 WO2017156966A1 (zh) 2016-03-18 2016-08-08 一种快速重路由处理方法、装置和系统

Country Status (2)

Country Link
CN (1) CN107204920A (zh)
WO (1) WO2017156966A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7050177B2 (ja) 2018-03-30 2022-04-07 華為技術有限公司 マルチキャストパケットを伝送する方法、デバイス、及びシステム
WO2022105325A1 (zh) * 2020-11-23 2022-05-27 华为技术有限公司 重路由方法、通信装置及存储介质

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109660460B (zh) * 2017-10-10 2021-10-19 中兴通讯股份有限公司 Bier-te信息的处理方法、服务器及存储介质
CN109802914B (zh) * 2017-11-16 2022-02-18 中兴通讯股份有限公司 一种bsl的确定方法、bier-te控制器和计算机存储介质
CN110391977B (zh) * 2018-04-18 2021-11-09 中兴通讯股份有限公司 一种网络故障保护的方法、系统和存储介质
CN110535675B (zh) * 2018-05-25 2022-03-01 中兴通讯股份有限公司 一种组播快速切换的方法及装置
CN114531392A (zh) * 2020-11-03 2022-05-24 南京中兴软件有限责任公司 组播业务设计方法、服务器及存储介质
CN115134290B (zh) * 2021-03-29 2023-06-20 中国电信股份有限公司 组播信令传递方法和系统
CN114205263B (zh) * 2021-12-08 2023-10-13 中国信息通信研究院 用于Ether CAT网络的通信方法、系统和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103986651A (zh) * 2014-05-30 2014-08-13 杭州华三通信技术有限公司 一种软件定义网络控制器及其控制方法
CN104158733A (zh) * 2013-05-13 2014-11-19 华为技术有限公司 一种快速重路由方法及装置、传输网络
US20150138961A1 (en) * 2013-09-17 2015-05-21 Cisco Technology, Inc. Per-Prefix LFA FRR With Bit Indexed Explicit Replication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104158733A (zh) * 2013-05-13 2014-11-19 华为技术有限公司 一种快速重路由方法及装置、传输网络
US20150138961A1 (en) * 2013-09-17 2015-05-21 Cisco Technology, Inc. Per-Prefix LFA FRR With Bit Indexed Explicit Replication
CN103986651A (zh) * 2014-05-30 2014-08-13 杭州华三通信技术有限公司 一种软件定义网络控制器及其控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ECKERT, T. ET AL.: "Traffic Enginering for Bit Index Explicit Replication BIER-TE", DRAFT-ECKERT-BIER-TE-ARCH-01, 5 July 2015 (2015-07-05) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7050177B2 (ja) 2018-03-30 2022-04-07 華為技術有限公司 マルチキャストパケットを伝送する方法、デバイス、及びシステム
US11736411B2 (en) 2018-03-30 2023-08-22 Huawei Technologies Co., Ltd. Method, device, and system for transmitting multicast packet
WO2022105325A1 (zh) * 2020-11-23 2022-05-27 华为技术有限公司 重路由方法、通信装置及存储介质

Also Published As

Publication number Publication date
CN107204920A (zh) 2017-09-26

Similar Documents

Publication Publication Date Title
WO2017156966A1 (zh) 一种快速重路由处理方法、装置和系统
US9553736B2 (en) Aggregating data traffic from access domains
US9838246B1 (en) Micro-loop prevention using source packet routing
US11283672B2 (en) Forwarding detection of an aggregated interface
US7746796B2 (en) Directed echo requests and reverse traceroute
US20210176168A1 (en) Advanced Preferred Path Route Graph Features in a Network
US9769054B2 (en) Network topology discovery method and system
US20150326473A1 (en) Service Chain Path Route Reservations
US10791053B2 (en) Service function chain SFC-based communication method, and apparatus
US11627070B2 (en) Data packet processing method and apparatus, storage medium, and electronic device
WO2016058245A1 (zh) 操作、管理和维护oam报文处理方法及装置
US20160006614A1 (en) Source Routing Using Path Computation Elements
US9680698B2 (en) Operations, administration, and management (OAM) functions in a software defined network
US8774010B2 (en) System and method for providing proactive fault monitoring in a network environment
WO2022062506A1 (zh) 一种数据处理方法、装置、存储介质及电子装置
US20100165884A1 (en) Ethernet Spanning Tree Provision
WO2018010658A1 (zh) 一种位索引显式复制信息传递方法及装置
WO2015184771A1 (zh) 一种业务功能链操作、管理和维护方法及节点设备
EP3593497B1 (en) Optimizing tunnel monitoring in sdn
US8971195B2 (en) Querying health of full-meshed forwarding planes
US20140317251A1 (en) Method and a device for optimizing a configuration system of a network element of a software-defined network
CN110024329B (zh) 业务功能链和覆盖传输环路预防
CN105262686B (zh) 一种网络连通性验证方法和装置
US11979310B2 (en) Signal translation and protection in a hybrid network environment
WO2018033773A1 (en) Assisted multi-level fast rerouting

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894127

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16894127

Country of ref document: EP

Kind code of ref document: A1