WO2017156732A1 - 信号传输方法和装置 - Google Patents

信号传输方法和装置 Download PDF

Info

Publication number
WO2017156732A1
WO2017156732A1 PCT/CN2016/076522 CN2016076522W WO2017156732A1 WO 2017156732 A1 WO2017156732 A1 WO 2017156732A1 CN 2016076522 W CN2016076522 W CN 2016076522W WO 2017156732 A1 WO2017156732 A1 WO 2017156732A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
user equipment
base station
precoding
signal
Prior art date
Application number
PCT/CN2016/076522
Other languages
English (en)
French (fr)
Inventor
张健
任海豹
李元杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2018549237A priority Critical patent/JP6644904B2/ja
Priority to CN201680083679.2A priority patent/CN109075889B/zh
Priority to EP16893897.5A priority patent/EP3422617A4/en
Priority to PCT/CN2016/076522 priority patent/WO2017156732A1/zh
Publication of WO2017156732A1 publication Critical patent/WO2017156732A1/zh
Priority to US16/131,599 priority patent/US10880127B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03898Spatial equalizers codebook-based design
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03949Spatial equalizers equalizer selection or adaptation based on feedback
    • H04L25/03955Spatial equalizers equalizer selection or adaptation based on feedback in combination with downlink estimations, e.g. downlink path losses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex

Definitions

  • the present invention relates to the field of mobile communications technologies, and in particular, to a signal transmission method and apparatus.
  • a link from a base station to a user equipment (UE) is a downlink channel, and an orthogonal frequency division multi-access (OFDMA) technology is used.
  • OFDMA orthogonal frequency division multi-access
  • SC-FDMA single-carrier frequency division multiple access
  • PAPR peak average proportion rate
  • the base station can estimate the uplink channel quality of the uplink channel in different time-frequency resources according to the sounding reference signal (SRS) received from the user equipment, and the base station can allocate the time-frequency resource with good uplink channel quality to the user equipment.
  • the transmission of uplink service data is performed.
  • the base station may also estimate an uplink timing advance (TA) according to the sounding reference signal so that the user equipment and the base station maintain an uplink synchronization state.
  • TA uplink timing advance
  • TDD time division duplex
  • the base station can also determine the downlink channel quality by detecting the reference signal.
  • the communication frequency between the user equipment and the base station is also higher, and the fluctuation effect of the wireless electromagnetic wave is weakened, so the user equipment The coverage of the transmitted sounding reference signal is reduced, and the base station is not easy to receive the sounding reference signal sent by the user equipment.
  • the embodiment of the invention provides a signal transmission method and device for solving the problem that the base station is not easy to receive the sounding reference signal transmitted by the user equipment when the communication frequency is higher and higher.
  • a first aspect of an embodiment of the present invention provides a signal transmission method.
  • the user equipment determines precoding information of the sounding reference signal, pre-codes the sounding reference signal according to the precoding information, generates a precoding signal, and sends the precoding signal to a base station serving the user equipment. Precoded signal.
  • the determining, by the user equipment, the precoding information of the sounding reference signal comprises: receiving, by the user equipment, first information sent by the base station, The first information is used by the user equipment to determine the precoding information; and the user equipment determines the precoding information according to the first information.
  • the first information is the precoding information, uplink channel information, or used to trigger the user equipment Determining information of the precoding information of the sounding reference signal.
  • the method before the user equipment receives the first information sent by the base station, the method further includes: the user equipment sends downlink channel quality information to the base station, where the downlink channel quality information is used by the base station to determine that the user equipment pre-codes the sounding reference signal.
  • the method further includes: determining, by the user equipment, the precoding Before the information, the user equipment determines that the sounding reference signal needs to be precoded according to the downlink channel quality information.
  • the method further includes: determining, by the user equipment, the The time at which the encoded signal is sent.
  • the determining, by the user equipment, the sending time of the sounding reference signal comprises: receiving, by the user equipment, the sending by the base station Second information, the second information indicating a transmission time of the precoded signal.
  • the signal transmission method further includes: the user equipment notifying the sending time of the precoding signal to the Base station.
  • the signal transmission method further includes: a time when the user equipment is outside a sending time of the precoding signal And transmitting, by the base station, the sounding reference signal, where the sounding reference signal is used by the base station to determine the uplink channel information.
  • a second aspect of the embodiments of the present invention provides a user equipment.
  • the user equipment includes a processor, a transmitter, and a receiver.
  • the transmitting device is configured to perform a sending step of the user equipment in any one of the first aspect to the eighth possible implementation manner of the first aspect of the present invention.
  • the receiver is configured to perform the receiving step of the user equipment in any one of the first possible implementation manners of the first aspect to the first aspect of the present invention.
  • the processor is configured to perform processing steps such as determining and generating user equipment in any one of the first aspect to the eighth possible implementation manner of the first embodiment of the present invention.
  • a third aspect of the embodiments of the present invention provides a signal transmission method.
  • the base station sends first information to the user equipment served by the base station, where the first information is used by the user equipment to determine precoding information of the sounding reference signal; the base station is used by the user equipment Receiving a precoding signal, the precoding signal being referenced by the user equipment according to the precoding information to the sounding reference The signal is precoded to generate.
  • the first information is the precoding information, the uplink channel information, or the pre-determination for the user equipment to determine the sounding reference signal Information that encodes information.
  • the method further includes:
  • the base station sends second information to the user equipment, where the second information indicates a sending time of the precoding signal.
  • the method further includes: the base station receiving the notification of the user equipment, the notification indication The transmission time of the precoded signal.
  • the method further includes: the base station is at a time other than a sending time of the precoding signal, The user equipment receives the sounding reference signal; the base station determines the uplink channel information according to the sounding reference signal.
  • the fifth possible implementation manner of the third aspect to the third aspect before the base station sends the first information to the user equipment
  • the method further includes: the base station receiving downlink channel quality information sent by the user equipment, and determining, according to the downlink channel quality information, that the user equipment pre-codes the sounding reference information.
  • a fourth aspect of the embodiments of the present invention provides a base station, including: a transmitter and a receiver. Said The transmitting step is used by the transmitter to perform the sending process of the base station in any one of the fifth possible implementation manners of the third to third aspects of the embodiments of the present invention. The receiver is configured to perform the receiving step of the base station in the fifth possible implementation manner of the third to third aspects of the embodiments of the present invention.
  • the preamble of the sounding reference signal in the wireless space can be aligned with the base station as much as possible by transmitting the sounding reference signal to the user equipment, thereby making it easier for the base station to accurately receive the sounding reference signal.
  • FIG. 1 is a schematic structural diagram of a system according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a signal transmission method according to an aspect of an embodiment of the present invention.
  • 3A is a schematic diagram of a precoding signal sending process according to an aspect of an embodiment of the present invention.
  • 3B is a schematic diagram of a precoding signal receiving process according to an aspect of an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of system interaction of a signal transmission method according to an aspect of an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a signal transmission method according to still another aspect of an embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart diagram of a signal transmission method according to still another aspect of an embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart diagram of a signal transmission method according to still another aspect of an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a user equipment according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a base station according to an aspect of an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of an LTE system architecture as defined by the 3rd Generation Partnership Project (3GPP) specification.
  • 3GPP 3rd Generation Partnership Project
  • the LTE system network architecture includes a plurality of network elements, including an evolved universal terrestrial radio access network (E-UTRAN) and an evolved packet-switched core (EPC) network.
  • the E-UTRAN includes at least one base station, For example, an evolved node B (eNB). At least one base station provides services for the UE to access the network, and after establishing an X2 interface connection, can communicate with each other through the X2 interface.
  • the network element of the EPC network includes a mobility management entity (MME), a serving gateway (S-GW), a packet data network gateway (P-GW), and a home subscriber server (home subscriber server). HSS) and so on.
  • MME mobility management entity
  • S-GW serving gateway
  • P-GW packet data network gateway
  • HSS home subscriber server
  • the systems formed by the E-UTRAN, the EPC network, and the UEs they serve may be collectively referred to as an evolved packet system (EPS).
  • EPS evolved packet system
  • the MME is a control node that handles signaling interaction between the UE and the EPC network.
  • the main functions of the MME include non-access stratum (NAS) signaling establishment, NAS signaling security, signaling establishment across core networks, trace services, roaming services, authorization, and bearer management.
  • NAS non-access stratum
  • the HSS contains a home location register (HLR).
  • the HLR includes the account opening information of the UE, such as the quality of service (QoS) configuration information of the owned EPS and the access restriction of the user roaming.
  • QoS quality of service
  • the S-GW is a control node that handles user plane bearers between UEs and EPC networks.
  • the S-GW is the gateway point for eNB handover, forwarding 2G/3G and other system service gateway points, completing buffering of downlink packets, some initialization work, prescribed interception interception, packet routing and forwarding, and the like.
  • the P-GW is responsible for the allocation of the Internet Protocol (IP) address of the UE, the guarantee of QoS, and the charging based on the traffic.
  • IP Internet Protocol
  • the service data of the UE is transmitted to the P-GW through the S-GW, and then the access point name (APN) nodes transmitted by the P-GW, such as a public data network of various services (Public Data Network, PDN), etc., and connect to the Internet through these APN nodes.
  • APN access point name
  • the interfaces between the foregoing network elements can be as shown in FIG. 1 , and the definition of each interface can refer to the 3GPP standard.
  • a radio frame is defined in the time domain, and subcarriers are defined in the frequency domain.
  • One radio frame has a length of 10 ms and is composed of ten 1 ms subframes, and one subframe is composed of a plurality of OFDM symbols.
  • One subcarrier is 15 kHz, and different system bandwidths can be realized by setting different numbers of subcarriers.
  • the physical layer includes a physical uplink shared channel (PUSCH), a physical uplink control channel (PUCCH), and a physical random access channel (PRACH).
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • PRACH physical random access channel
  • the physical layer is divided into a physical downlink shared channel (PDSCH), a physical downlink control channel (PDCCH), a physical broadcast channel (PBCH), and a physical multicast.
  • PDSCH physical downlink shared channel
  • PDCH physical downlink control channel
  • PBCH physical broadcast channel
  • PMCH physical multicast channel
  • PCFICH physical control format indicator channel
  • PHICH physical HARQ indicator channel
  • the UE transmits the SRS and the uplink service data to the base station in a time division multiplexing (TDM) manner by using the SC-FDMA technology on the uplink channel of the UE to the base station.
  • the base station may allocate, according to the SRS received by the UE, the uplink channel quality of the uplink channel in different time-frequency resources, and then allocate the time-frequency resource with good uplink channel quality to the UE for uplink service data transmission.
  • the UE When the UE transmits the SRS using a higher frequency, according to the wave theory of electromagnetic waves, the diffraction capability of the electromagnetic wave will be reduced, so the coverage of the SRS transmitted by the UE will be reduced, so that the base station will not easily receive the SRS from the UE.
  • an embodiment of the present invention provides a signal transmission method, which includes the following contents.
  • the UE determines precoding information of the SRS.
  • the UE performs precoding on the SRS according to the precoding information to generate a precoding signal.
  • the UE sends the precoding signal to a base station serving the UE.
  • the base station receives the precoding signal from the UE.
  • the term SRS as used in the various embodiments of the present invention means that the SRS is not precoded, and the precoded SRS is referred to as a precoded signal.
  • the precoding information can be regarded as the amplitude adjustment and phase adjustment of the signal matching with the channel, so that the beam of the signal transmitted in the channel is stronger in some transmission directions and weaker in some transmission directions.
  • the precoding information of the SRS in each embodiment of the present invention is used to generate the precoding signal, and the precoding signal can obtain an uplink between the UE and the base station due to adjustment of signal amplitude and signal phase.
  • the best channel transmission quality possible on the channel The definition of the best channel transmission quality in different communication systems may vary.
  • the best channel transmission quality here may be that the energy loss, the signal-to-noise ratio, the signal power or the bit error rate of the pre-coded signal after the uplink transmission meets the requirements set by the communication system.
  • the amplitude and phase are adjusted using the precoding information, so that the beam when the SRS is transmitted in the wireless space can be aligned with the base station as much as possible, and the base station is also more likely to accurately receive the SRS.
  • the internal processing difficulty of the base station when the base station is to recover the SRS can be reduced, for example, the processing speed of the processor of the base station, the processing algorithm, and the like are reduced.
  • the determination of the precoding information of the SRS may be that it is determined by the base station and then sent to the UE, or may be determined by the UE itself.
  • the determining, by the UE, the precoding information of the SRS may include: receiving, by the UE, first information sent by the base station, where the first information is used by the UE to determine The precoding information; the UE determines the precoding information according to the first information.
  • the first information may be precoding information of the SRS.
  • the base station determines the precoding information of the SRS and sends the precoding information to the user equipment.
  • the user equipment determines the precoding information of the SRS after receiving the precoding information of the SRS.
  • the first information may also be uplink channel information.
  • the uplink channel information may be determined by the base station, and the uplink channel information may be sent to the user equipment.
  • the user equipment determines precoding information of the SRS according to the received uplink channel information.
  • the uplink channel information may be a measurement result after the base station measures the uplink channel, or may be an uplink channel quality determined by the base station according to the measurement result, and the channel quality indicator may be used for the uplink channel quality. Quality indicator, CQI).
  • the uplink channel and the downlink channel have reciprocity, and the base station can determine the quality of the uplink channel according to the quality of the downlink channel reported by the UE, or directly measure the uplink signal sent by the UE, and uplink.
  • the signal may be an SRS or a demodulation reference signal (DMRS) or uplink traffic data.
  • the uplink channel information can be used to determine the channel transmission matrix of the uplink channel.
  • the channel transmission matrix is a physical quantity used to characterize the intrinsic characteristics of the channel. These channel intrinsic features can distort the signals transmitted in the channel, such as amplifying or attenuating the transmitted signal, Doppler shift, phase rotation, and multipath time. Delay and other effects.
  • the base station may receive an SRS sent from the user equipment, and measure an uplink channel according to the SRS.
  • the SRS that the UE sends before the base station may pre-code the SRS cannot be accurately received.
  • the UE may be configured to transmit an SRS signal (ie, the aforementioned uncoded SRS) with a transmission power higher than a certain threshold, or a plurality of SRS signals received by the base station within a predetermined duration (
  • the SRS obtained by the parameter estimation algorithm is used as the accurately received SRS, and the measurement result of the uplink channel is determined by the SRS, thereby determining the uplink channel information.
  • the parameter estimation algorithms commonly used are maximum likelihood estimation (MLE), least square estimation (LSE), and moment estimation (ME).
  • MLE maximum likelihood estimation
  • LSE least square estimation
  • ME moment estimation
  • the base station and the UE can mutually coordinate the SRS transmission time and the transmission time of the precoding signal (pre-coded SRS).
  • the UE determines the transmission time of the SRS and notifies the base station; or the base station determines the transmission time of the SRS and notifies the UE. Therefore, the signal transmission method provided by the embodiment of the present invention may further include: determining, by the UE, a transmission time of the precoding signal, and notifying the base station of a transmission time of the precoding signal.
  • the transmission time of the precoding signal may also be determined by the base station, and then the second information is sent by the base station to the UE, and the second information indicates the transmission time of the precoding signal.
  • the transmission time of the precoding signal may be periodic or aperiodic, and may be configured by the base station or determined by the UE itself. Accordingly, the UE can transmit the SRS to the base station at any time other than the transmission time of the precoded signal.
  • the SRS sent by the UE may be on the last OFDM symbol of one subframe; if the physical uplink shared channel (PUSCH) for carrying the service data is also transmitted on the subframe, or is used for carrying Physical uplink control channel (PUCCH) for control signaling, then PUSCH And the position of the PUCCH on the subframe does not overlap with the position of the SRS.
  • PUSCH physical uplink shared channel
  • PUCCH Physical uplink control channel
  • the first information may also be information for triggering the UE to determine precoding information of the SRS.
  • the first information is the foregoing precoding information or the uplink channel information; the first information may also be an identifier, and after receiving the identifier, the UE triggers the UE to determine the precoding information of the SRS.
  • the base station may carry the first information in downlink control information (DCI) of the physical downlink control channel (or the enhanced physical downlink control channel).
  • DCI downlink control information
  • the UE obtains downlink control information by using a blind detection method.
  • the method of specific blind detection and the definition of the transmission format of the downlink control information can refer to the prior art.
  • the base station may carry the first information in the downlink control information, and may also send the first information to the UE by using an RRC message on the established radio resource control (RRC) connection.
  • the first information information may be carried in a control element (CE) of a medium access control (MAC).
  • CE control element
  • MAC medium access control
  • the determining, by the UE, the precoding information of the SRS may include: after the UE sends an SRS to the base station, the base station does not determine that the SRS is determined according to the SRS.
  • the time-frequency resource in which the UE performs uplink service data transmission or the time-frequency resource in which the base station performs uplink service data transmission for the UE cannot guarantee the QoS of the uplink service data.
  • the UE confirms that the base station cannot determine the uplink channel quality according to the received SRS, and therefore the UE determines the precoding information of the SRS and precodes the SRS, and then sends the precoding signal to the station. Said base station.
  • the method for determining precoding information mainly includes designing for the codebook space based and non-codebook space.
  • the precoding information can be expressed in the form of a matrix.
  • the precoding information is a precoding matrix or a pre-coding matrix indicator (PMI) for identifying a precoding matrix.
  • PMI pre-coding matrix indicator
  • one codebook space is a set of at least one precoding matrix.
  • a channel may correspond to at least one precoding matrix, and when the signal transmitted on the channel is precoded by using at least one precoding matrix corresponding to the channel, the signal transmitted on the channel can obtain the best channel transmission quality. .
  • different precoding matrices can be obtained by traversing different channels, thereby obtaining a codebook space corresponding to different channels.
  • the codebook space may be pre-stored on the UE and the base station before the UE and the base station communicate.
  • the base station may indicate the determined precoding matrix (Precode Matrix Indicator, PMI) is sent to the UE without feeding back the entire precoding matrix; if it is the precoding matrix determined by the UE, the UE transmits the PMI to the base station.
  • PMI Precode Matrix Indicator
  • the Rank Indicator (RI) and the antenna port may also be exchanged between the UE and the base station.
  • the RI represents the number of linear independent vector groups of the uplink channel transmission matrix.
  • the UE may establish a channel transmission matrix according to the measurement result of receiving the uplink channel from the base station, and perform matrix decomposition on the channel transmission matrix.
  • the common processing method has the singularity of the channel transmission matrix.
  • the ⁇ matrix obtained after the singular value decompositon (SVD) is used as a precoding matrix, and the precoding matrix is notified to the base station, so that the base station decodes the precoded signal transmitted by the UE according to the precoding matrix.
  • the base station may also establish a channel transmission matrix according to the measurement result of the uplink channel, perform matrix decomposition, and notify the UE of the decomposed precoding matrix.
  • the codebook is compared in advance.
  • the spatial storage in the UE and the base station enables a more accurate measurement of the uplink channel.
  • FDD frequency division duplex
  • TDD time division duplex
  • the UE may trigger when the reference signal received power (RSRP) of the downlink channel, the path loss of the downlink channel (pathloss), or the CQI does not satisfy the predetermined condition.
  • the UE determines precoding information of the SRS.
  • the UE may send a downlink reference signal sent by the base station on the downlink channel, such as a channel state information reference signal (CSI-RS), a cell.
  • CSI-RS channel state information reference signal
  • a pre-coding information of the SRS is determined by a cell-specific reference signal (CRS), a UE-specific reference signal, or the like.
  • the UE may use a downlink reference signal known to the UE to decode a reference signal sent from the base station and transmitted through the downlink channel, thereby obtaining downlink channel information, and determining a downlink channel transmission matrix. Since the uplink channel is similar to the downlink channel in the TDD mode, the UE may The downlink channel transmission matrix is regarded as an uplink channel transmission matrix, so that precoding information of the SRS can be determined according to the downlink channel transmission matrix.
  • the base station may also directly measure an uplink signal sent by the UE, such as an SRS, a demodulation reference signal (DMRS), or an uplink service data, according to the downlink channel quality reported by the UE.
  • an uplink signal sent by the UE such as an SRS, a demodulation reference signal (DMRS), or an uplink service data
  • the base station can determine the precoding information of the downlink reference signal by using the SRS or the precoded signal (precoded SRS), thereby completing the determination of the downlink channel quality.
  • the precoding information of the SRS may also be pre-configured and stored on the UE and the base station.
  • the base station may receive the precoding signal from the UE, and process the precoding signal according to the pre-configured precoding information, thereby recovering the SRS.
  • the UE may also use the pre-coding information used when the PUSCH bears the service data for the last time or multiple times as the SRS. Precoded information.
  • the UE determines the precoding information of the SRS, thereby obtaining a precoding matrix used when precoding is performed.
  • the UE multiplies the precoding matrix and the SRS to obtain an SRS precoded signal, that is, the foregoing precoded signal.
  • the pre-coded signal is transmitted through the uplink channel. Since the pre-coded signal has less interference than the un-pre-coded SRS, the base station can be aligned as much as possible, so that the base station can accurately receive the pre-coded signal. And decoding the SRS to determine the uplink channel quality according to the SRS.
  • the UE transmits a precoded signal to the base station in a wireless space.
  • the transmission process of the precoding signal is as shown in FIG. 3A, and includes a serial-to-parallel conversion process, a resource mapping process, a discrete Fourier inverse transform process, a cyclic prefix process, a parallel-serial conversion process, and antenna transmission.
  • Precoding signal [S(0)..., S(i), ..., S(L-1)] (S(i) is a sequence element constituting a precoded signal, and i takes a value of 0 to L-1.
  • An integer, L is the total number of sequence elements constituting the precoded signal.)
  • the serial sequence element is converted into a parallel sequence element by a serial-to-parallel conversion process, and each parallel sequence element of the pre-coded signal is mapped to a different sub-segment by a mapping process of the sub-carriers.
  • orthogonality between these parallel sequence elements is made by inverse Fourier transform.
  • add a cyclic prefix to these parallel sequence elements by adding a cyclic prefix procedure, and then pass the parallel and serial conversion process.
  • These parallel sequence elements are converted to serial sequence elements and transmitted through the antenna.
  • the base station receives the precoded signal sent by the UE in the wireless space.
  • the receiving process of the precoding signal by the base station includes receiving from the antenna, serial-to-parallel conversion, removing the cyclic prefix, the Fourier transform process and the solution resource mapping process, and the serial conversion process.
  • the process of transmitting the precoded signal with the UE is basically reciprocal, and details are not described herein again.
  • the base station may further instruct the UE to use different precoding matrices to transmit the precoding signal at different times, so that the base station may feed back the quality of the precoded signal received at different times to the UE, so that the UE sends the precoded signal again.
  • the precoding matrix used is adjusted to achieve a higher quality transmission of the precoded signal.
  • the embodiment of the present invention can be used in a scenario of carrier aggregation (CA).
  • CA carrier aggregation
  • the so-called carrier aggregation is simply that at least two frequency segments are used for communication between the UE and the base station. If the base station of the currently serving UE is one, the communication mode of the at least two frequency segments used by the base station and the UE may be referred to as carrier aggregation in the base station. If there are at least two base stations serving the UE, the communication manner between the base stations and the UE may be referred to as carrier aggregation between the base stations, such as a macro base station and a small-cell base station.
  • the frequency between the macro base station and the UE in the networking is mainly used for control signaling transmission, and the frequency between the small cell base station and the UE is mainly used for transmission of service data.
  • carrier aggregation multiple frequency bands are combined, which is equivalent to increasing the system bandwidth used by UE communication, thereby improving system throughput.
  • the signal transmission method provided by the embodiment of the present invention is exemplarily shown in FIG. 4, which mainly includes a process of determining precoding information by a base station and a UE, a precoding operation and a precoding signal transmission process, and an uplink service.
  • the process of data transmission is exemplarily shown in FIG. 4, which mainly includes a process of determining precoding information by a base station and a UE, a precoding operation and a precoding signal transmission process, and an uplink service.
  • the process of data transmission is exemplarily shown in FIG. 4, which mainly includes a process of determining precoding information by a base station and a UE, a precoding operation and a precoding signal transmission process, and an uplink service.
  • the UE pre-codes the SRS to generate a pre-coded signal, and sends the pre-coded signal to the base station, so that the pre-coded SRS beam in the wireless space is aligned with the base station as much as possible. Thereby, it is easier for the base station to accurately receive the SRS.
  • FIG. 5-7 Another embodiment of the present invention provides multiple embodiments of a signal transmission method, as shown in FIG. 5-7. Shown. These embodiments are further refinement or supplement to the foregoing method embodiments, and the interaction process between the UE and the base station is mainly described, and other similar or similar processes may not be described again.
  • the base station directly determines the precoding information of the SRS, and notifies the UE by using the PDCCH.
  • the embodiment shown in Figure 5 includes the following.
  • the base station determines that the UE performs precoding on the sent SRS, and determines precoding information of the SRS.
  • the base station sends a PDCCH to the UE, where the PDCCH carries downlink control information, where the downlink control information includes precoding information of the SRS.
  • the UE acquires precoding information of the SRS according to the received downlink control information, and performs precoding on the SRS according to the precoding information of the SRS, and then sends the precoding signal to the base station.
  • the base station instructs the UE to determine the precoding information of the SRS, and the base station does not directly determine the precoding information of the SRS, but the UE determines the precoding information of the SRS and notifies the base station.
  • the embodiment shown in Figure 6 includes the following.
  • the base station determines that the UE performs precoding on the SRS to be sent, and instructs the UE to determine precoding information of the SRS in the downlink control information of the PDCCH that is sent to the UE.
  • the base station does not directly determine the precoding signal of the SRS.
  • the UE determines precoding information of the SRS according to the indication in the downlink control information, and notifies the base station of the precoding information of the SRS.
  • the UE pre-codes the SRS, and sends the pre-coded signal to the base station.
  • the base station informs the UE that the SRS needs to be obtained, and the UE determines whether to perform precoding on the SRS, and if yes, informs the base station that the UE transmits the precoded signal.
  • the embodiment shown in Figure 7 includes the following.
  • the base station notifies the UE by using a PDCCH, where the base station needs to obtain an SRS.
  • the UE determines whether the SRS is precoded and then sent.
  • the UE If the SRS is not precoded, the UE notifies the base station to send the SRS.
  • the UE If it is determined that the SRS needs to be precoded, the UE notifies the base station to send a precoded signal.
  • the base station may further notify the UE of the transmission time after the transmission time of the precoding signal, and thus the UE may send the precoding signal according to the transmission time; or, the UE After determining the transmission time of the precoding signal, the transmission time may be notified to the base station, and the base station may receive the precoding signal according to the transmission time. Since the upstream channel may change over time, the corresponding precoding information may change. Therefore, the precoding signals transmitted by the UE may be different at each transmission time.
  • the base station may notify the UE of a plurality of precoding information within a predetermined time, and the UE transmits the generated plurality of precoding signals after precoding the SRS by using the plurality of precoding information in the predetermined time. For example, the base station informs the UE that the plurality of precoding information used in each cycle time is PMI 1, PMI 2, . . . , PMI n (n is any positive integer), and the UE according to the precoding matrix pair corresponding to the multiple precoding information. After the SRS is precoded, the generated plurality of precoded signals are transmitted at each cycle time.
  • the base station may further notify the UE of the transmission time of the SRS after determining the transmission time of the SRS.
  • the transmission time of the SRS can be periodic.
  • the transmission time of the precoding signal does not overlap with the transmission time of the SRS.
  • the transmission time of the precoding signal is between the periodic transmission times of the two SRSs.
  • the sending of the SRS may be used by the base station to determine precoding information of the SRS according to the parameter estimation of the SRS, thereby generating a precoding signal.
  • the precoding information of the SRS can be used as precoding information of the downlink reference signal (for example, CSI-RS), thereby completing precoding of the downlink reference signal, and thus Evaluate the quality of the downlink channel.
  • the downlink reference signal for example, CSI-RS
  • the base station may further instruct the UE to generate a mathematical sequence used by the SRS, such as a constant envelope zero autocorrelation (constant) Amplitude zero auto correlation, ZACAZ) sequence.
  • a mathematical sequence used by the SRS such as a constant envelope zero autocorrelation (constant) Amplitude zero auto correlation, ZACAZ) sequence.
  • the base station may further instruct the UE to use a data sequence of the same frequency as other UEs served by the neighboring base station, or the base station instructs the UE to use a coordinated multi-point (CoMP). The way the virtual cell is identified scrambles the SRS.
  • CoMP coordinated multi-point
  • both the base station and the neighboring base station can obtain the SRS from the precoding signal sent by the UE, thereby further determining the uplink channel quality, and performing downlink channel quality for the TDD mode.
  • the amount is determined.
  • the base station and the neighboring base station can exchange their respectively acquired SRSs through the X2 interface for downlink coordinated or coordinated beamforming (CS/CB) or joint transmisstion (JT).
  • CS/CB refers to a base station (here, the above-mentioned base station and the neighboring base station) participating in the CoMP cooperates to perform resource scheduling or beamforming for the UE.
  • the foregoing base station and the neighboring base station exchange resource scheduling information or precoding information of the SRS, but the PDCCH and the PDSCH are also sent to the UE by using the serving cell under the base station.
  • the JT is that when the UE is at the cell edge, the serving cell under the base station and the cell under the neighboring base station send the same service data to the UE on the same time-frequency resource to implement signal enhancement at the cell edge.
  • the UE pre-codes the SRS, generates a pre-coded signal, and sends the pre-coded signal to the base station, so that the pre-coded SRS beam in the wireless space is as close as possible.
  • the quasi-base station makes it easier for the base station to accurately receive the SRS.
  • a further embodiment of the present invention provides a user equipment 80, as shown in FIG. 8, including a processor 810 and a transmitter 820.
  • the processor 810 is configured to determine precoding information of a sounding reference signal, and according to the The precoding information precodes the sounding reference signal to generate a precoded signal;
  • the transmitter 820 is configured to send the precoded signal to a base station serving the user equipment.
  • the first information is the precoding information, the uplink channel information, or information for triggering the user equipment to determine precoding information of the sounding reference signal.
  • the user equipment 80 further includes a receiver 830, configured to receive first information sent by the base station, where the first information is used by the processor to determine the precoding information.
  • the transmitter 820 is further configured to: before the receiver 830 receives the first information sent by the base station, send downlink channel quality information to the base station, where the downlink control channel quality information The base station determines that the user equipment pre-codes the sounding reference signal.
  • the processor 810 is further configured to: before determining the precoding information, according to the downlink The channel quality information determines that the sounding reference signal needs to be precoded.
  • the processor 810 is further configured to determine a sending time of the precoding signal.
  • the processor 810 is configured to determine a sending time of the precoding signal, including:
  • the processor 810 is configured to determine, according to the second information that the user equipment receives from the base station, a sending time of the precoding signal, where the second information indicates a sending time of the precoding signal.
  • the transmitter 820 is further configured to notify the base station of a sending time of the precoding signal.
  • the transmitter 820 is further configured to send the sounding reference signal to the base station at a time other than a sending time of the precoded signal, where the sounding reference signal is used by the base station to determine the Upstream channel information.
  • the receiver, the processor, and the transmitter of the user equipment 80 can implement the steps of receiving, determining, and transmitting the user equipment in the embodiment shown in FIG. 2 to FIG. 7. For details, refer to the foregoing method embodiment, and the same. The concepts and processes are not repeated here.
  • the transmitter of the user equipment 80 can implement each corresponding component unit in the transmitter according to each logic flow shown in FIG. 3A, thereby implementing various signals, such as the foregoing SRS and precoding signals, to the base station in the wireless space. .
  • the receiver of the user equipment 80 can implement each corresponding component unit in the receiver according to each logic flow shown in FIG. 3B, so as to receive various signals from the base station in the wireless space, for example, the first information sent by the base station and the second Information and more.
  • a further embodiment of the present invention provides a base station 90, as shown in FIG. 9, comprising: a transmitter 910, a receiver 920 and a processor 930, wherein the transmitter 910 and the receiver 920 are coupled together by a processor 930.
  • the transmitter 910 is configured to send first information to a user equipment served by the base station, where the first information is used by the user equipment to determine precoding information of a sounding reference signal; the receiver 920 is configured to use the The user equipment receives a precoding signal generated by the user equipment by precoding the sounding reference signal according to the precoding information.
  • the first information is the precoding information, the uplink channel information, or information for triggering the user equipment to determine precoding information of the sounding reference signal.
  • the transmitter 910 is further configured to send, to the user equipment, second information, where the The second information indicates the transmission time of the precoded signal.
  • the receiver 920 is further configured to receive a notification of the user equipment, where the notification indicates a sending time of the precoding signal.
  • the receiver 920 is further configured to receive, by using the user equipment, the sounding reference signal at a time other than a sending time of the precoded signal, where the sounding reference signal is used by the base station to determine The uplink channel information.
  • the receiver 920 is further configured to: before the sending, by the sender, the first information, the downlink channel quality information sent by the user equipment, where the downlink channel quality information is used. Determining that the user equipment pre-codes the sounding reference information.
  • the receiver 920, the processor 930, and the transmitter 910 of the base station 90 can implement the steps of receiving, determining, and transmitting the base station in the embodiment shown in FIG. 2 to FIG. 7.
  • the transmitter of the base station 90 can implement each corresponding component in the transmitter according to each logic flow shown in FIG. 3A, thereby implementing various signals, such as the foregoing first information and second information, to the user equipment in the wireless space.
  • the receiver of the base station 90 can implement each corresponding component unit in the receiver according to each logic flow shown in FIG. 3B, thereby implementing various signals received from the user equipment in the wireless space, for example, SRS and precoding signals sent by the user equipment. and many more.
  • the user equipment 80 and the base station 90 may each include at least one physical antenna.
  • the number of physical antennas of the user equipment 80 and the number of physical antennas of the base station 90 may be the same or different.
  • the specific antenna configuration can be referred to the existing 3GPP protocol.
  • the embodiment of the present invention provides a user equipment 80 and a base station 90.
  • the UE performs precoding on the SRS to generate a precoding signal, and sends the precoding signal to the base station, so that the precoded SRS beam in the wireless space is as close as possible.
  • the quasi-base station makes it easier for the base station to accurately receive the SRS.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may employ an entirely hardware embodiment, an entirely software embodiment, Or in the form of an embodiment of the software and hardware aspects. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及移动通信技术领域,提供了一种信号传输方法和装置。在信号传输方法中,用户设备对探测参考信号进行预编码,使得预编码后的探测参考信号在无线空间中的波束尽可能对准基站,从而基站更容易准确接收到探测参考信号。

Description

信号传输方法和装置 技术领域
本发明涉及移动通信技术领域,尤其涉及一种信号传输方法和装置。
背景技术
长期演进(long term evolution,LTE)系统,从基站到用户设备(user equipment,UE)的链路为下行信道,使用正交频分多址接入(orthogonal frequency division multi access,OFDMA)技术,以提高频谱效率和系统容量;从用户设备到基站的链路为上行信道,LTE系统使用单载波频分多址(single-carrier frequency division multiple access,SC-FDMA)技术,具有较小的峰均比(peak average proportion rate,PAPR),以降低用户设备的实现难度。
目前,基站可以根据从用户设备接收到的探测参考信号(sounding reference signal,SRS)评估上行信道在不同时频资源的上行信道质量,进而基站可以将上行信道质量好的时频资源分配给用户设备进行上行业务数据的传输。基站还可以根据探测参考信号来估计上行定时提前(timing advance,TA)使得用户设备和基站保持上行同步状态。在LTE的时分双工(time division duplex,TDD)模式下,基站还可以通过探测参考信号来确定下行信道质量。
可是,随着LTE系统向高级LTE(LTE Adavanced)系统,乃至第五代移动通信系统的演进,用户设备与基站之间的通信频率也越来越高,无线电磁波的波动效应减弱,因而用户设备所发送探测参考信号的覆盖范围减小,基站不易接收到用户设备发送的探测参考信号。
发明内容
本发明实施例提供一种信号传输方法和装置,用以解决在通信频率越来越高的情况下,基站不易接收到用户设备发送的探测参考信号的问题。
本发明实施例的第一方面提供一种信号传输方法。在该信号传输方法中,用户设备确定探测参考信号的预编码信息,根据所述预编码信息对所述探测参考信号进行预编码,生成预编码信号,向服务所述用户设备的基站发送所述预编码信号。
基于第一方面,在第一方面的第一种可能实现方式中,所述用户设备确定所述探测参考信号的所述预编码信息包括:所述用户设备接收所述基站发送的第一信息,所述第一信息用于所述用户设备确定所述预编码信息;所述用户设备根据所述第一信息确定所述预编码信息。
基于第一方面的第一种可能实现方式中,在第一方面的第二种可能实现方式中,所述第一信息为所述预编码信息,上行信道信息,或用于触发所述用户设备确定所述探测参考信号的预编码信息的信息。
基于第一方面的第一种可能实现方式或第二种可能实现方式,在第一方面的第三种可能实现方式中,在所述用户设备接收所述基站发送的所述第一信息之前,还包括:所述用户设备向所述基站发送下行信道质量信息,所述下行信道质量信息用于所述基站确定所述用户设备对所述探测参考信号进行预编码。
基于第一方面至第一方面的第三种可能实现方式中的任意一种,在第一方面的第四种可能实现方式中,所述方法还包括:所述用户设备在确定所述预编码信息之前,所述用户设备根据下行信道质量信息确定需要对所述探测参考信号进行预编码。
基于第一方面至第一方面的第四种可能实现方式中的任意一种,在第一方面的第五种可能实现方式中,所述方法还包括:所述用户设备确定所述预 编码信号的发送时间。
基于第一方面的第五种可能实现方式,在第一方面的第六种可能实现方式中,所述用户设备确定所述探测参考信号的发送时间包括:所述用户设备接收所述基站发送的第二信息,所述第二信息指示所述预编码信号的发送时间。
基于第一方面的第五种可能实现方式,在第一方面的第七种可能实现方式中,所述信号传输方法还包括:所述用户设备将所述预编码信号的发送时间通知给所述基站。
基于第一方面的第二种可能实现方式,在第一方面的第八种可能实现方式中,所述信号传输方法还包括:所述用户设备在所述预编码信号的发送时间之外的时间,向所述基站发送所述探测参考信号,所述探测参考信号用于所述基站确定所述上行信道信息。
本发明实施例的第二方面,提供一种用户设备。所述用户设备包括处理器、发送器和接收器。所述发送器用于执行本发明实施例第一方面至第一方面的第八种可能实现方式任意一种中用户设备的发送步骤。所述接收器用于执行本发明实施例第一方面至第一方面的第八种可能实现方式任意一种中用户设备的接收步骤。所述处理器用于执行本发明实施例第一方面至第一方面的第八种可能实现方式任意一种中用户设备的确定和生成等处理步骤。
本发明实施例第三方面提供一种信号传输方法。在所述信号传输方法中,基站向所述基站服务的用户设备发送第一信息,所述第一信息用于所述用户设备确定探测参考信号的预编码信息;所述基站从所述用户设备接收预编码信号,所述预编码信号由所述用户设备根据所述预编码信息对所述探测参考 信号进行预编码而生成。
基于第三方面,在第三方面的第一种可能实现方式中,所述第一信息为所述预编码信息,上行信道信息,或用于触发所述用户设备确定所述探测参考信号的预编码信息的信息。
基于第三方面或第三方面的第一种可能实现方式,在第三方面的第二种可能实现方式中,所述方法还包括:
所述基站向所述用户设备发送第二信息,所述第二信息指示所述预编码信号的发送时间。
基于第三方面或第三方面的第一种可能实现方式,在第三方面的第三种可能实现方式中,所述方法还包括:所述基站接收所述用户设备的通知,所述通知指示所述预编码信号的发送时间。
基于第三方面的第一种可能实现方式,在第三方面的第四种可能实现方式中,所述方法还包括:所述基站在所述预编码信号的发送时间之外的时间,从所述用户设备接收所述探测参考信号;所述基站根据所述探测参考信号确定所述上行信道信息。
基于第三方面至第三方面的第四种可能实现方式中的任意一种,在第三方面的第五种可能实现方式中,在所述基站向所述用户设备发送所述第一信息之前,所述方法还包括:所述基站接收所述用户设备发送的下行信道质量信息,并根据所述下行信道质量信息确定所述用户设备对所述探测参考信息进行预编码。
本发明实施例的第四方面提供一种基站,包括:发送器和接收器。所述 发送器用于执行本发明实施例第三方面至第三方面的第五种可能实现方式的任意一种中基站的发送步骤。所述接收器用于执行本发明实施例第三方面至第三方面的第五种可能实现方式中基站的接收步骤。
应用本发明各个实施例提供的技术方案,通过对用户设备发送探测参考信号进行预编码可以将探测参考信号在无线空间的波束尽可能地对准基站,从而使得基站更容易准确接收到探测参考信号。
附图说明
图1为本发明实施例一方面提供的一种系统架构示意图;
图2为本发明实施例一方面提供的一种信号传输方法的流程示意图;
图3A为本发明实施例一方面提供的一种预编码信号发送过程示意图;
图3B为本发明实施例一方面提供的一种预编码信号接收过程示意图;
图4为本发明实施例一方面提供的一种信号传输方法的系统交互示意图;
图5为本发明实施例又一方面提供的一种信号传输方法的流程示意图;
图6为本发明实施例又一方面提供的一种信号传输方法的流程示意图;
图7为本发明实施例又一方面提供的一种信号传输方法的流程示意图;
图8为本发明实施例一方面提供的一种用户设备的结构示意图;
图9为本发明实施例一方面提供的一种基站的结构示意图。
具体实施方式
图1为第三代合作伙伴计划(the 3rd Generation Partnership Project,3GPP)规范所定义的LTE系统架构的示意图。
LTE系统网络架构包含多种网元,这些网元包括演进的通用陆地无线接入网(evolved universal terrestrial radio access network,E-UTRAN)和演进的分组交换核心(evolved packet core,EPC)网络。E-UTRAN包含至少一个基站, 例如演进节点B(evolved node B,eNB)。至少一个基站为UE提供接入网络的服务,并在建立X2接口连接后,可通过X2接口相互通信。EPC网络的网元包括移动管理实体(mobility mangement entity,MME)、服务网关(serving gateway,S-GW)、分组数据网关(packet data network gateway,P-GW)和归属用户服务器(home subscriber server,HSS)等。E-UTRAN、EPC网络以及它们所服务的UE所构成的系统可以统称为演进的分组系统(evolved packet system,EPS)。
MME是处理UE到EPC网络间信令交互的控制节点。MME的主要功能包括非接入层(Non Access Stratum,NAS)信令建立、NAS信令安全、跨核心网的信令建立、跟踪(trace)服务、漫游服务、授权和承载管理等。
HSS包含归属位置寄存器(home location register,HLR)。HLR中包含了UE的开户信息,如所归属的EPS的服务质量(quality of service,QoS)配置信息和用户漫游的接入限制等。
S-GW是处理UE到EPC网络间的用户面承载的控制节点。S-GW为eNB切换时的关口点、转发2G/3G以及其他系统业务的关口点,完成下行包的缓冲、一些初始化工作、规定的拦截侦听、包路由和转发等。
P-GW负责UE的网际协议(internet protocol,IP)地址的分配、QoS的保证和基于业务流量的计费。
UE的业务数据通过S-GW传输到P-GW,然后由P-GW传输到的各类接入点名称(Access Point Name,APN)节点,例如各种业务的公用数据网络(Public Data Network,PDN)等,并通过这些APN节点连接到互联网上。
上述各个网元之间的接口可如图1所示,各个接口的定义可参照3GPP标准。
UE与基站之间的各种信息按照3GPP标准的规定的协议层进行传输。这些协议层主要包括物理层、媒体介入控制(media access control,MAC)层以及无线资源控制(radio resource control,RRC)层等。无论是哪一层传输的信 息,最终映射到物理层在无线空间中传输。为了实现物理层上的传输,时域上定义了无线帧,频域上定义了子载波。1个无线帧的长度为10ms,由10个1ms子帧构成,1个子帧由若干个OFDM符号构成。一个子载波为15kHz,通过设置不同的子载波的数目可以实现不同的系统带宽。在上行信道中,物理层包括物理上行共享信道(physical uplink shared channel,PUSCH)、(physical uplink control channel,PUCCH)和物理随机接入信道(physical random access channel,PRACH)等。在下行信道中,物理层被划分为物理下行共享信道(physical downlink shared channel,PDSCH)、物理下行控制信道(physical downlink control channel,PDCCH)、物理广播信道(physical broadcast channel,PBCH)、物理多播信道(physical multicast channel,PMCH)、物理控制格式指示信道(physical control format indicator channel,PCFICH)和(physical HARQ indicator channel,PHICH)等。
在上述LTE系统的网络架构中,UE到基站的上行信道上,UE通过SC-FDMA技术将SRS和上行业务数据以时分复用(time division multiplexing,TDM)的方式向基站发送。基站可根据从UE接收到的SRS评估该上行信道在不同时频资源的上行信道质量进而将上行信道质量好的时频资源分配给UE进行上行业务数据的传输。当UE使用较高的频率发送SRS时,根据电磁波的波动理论,电磁波的衍射能力将减小,故而UE所发送的SRS的覆盖范围将减小,使得基站将不易从UE接收到SRS。
鉴于上述问题,如图2所示的信号传输方法的流程示意图,本发明实施例一方面提供一种信号传输方法,该方法包括以下内容。
210,UE确定SRS的预编码信息。
220,所述UE根据所述预编码信息对所述SRS进行预编码,生成预编码信号。
230,所述UE向服务所述UE的基站发送所述预编码信号。
240,所述基站从所述UE接收所述预编码信号。
本发明各个实施例中所使用的术语SRS均指该SRS没有进行预编码,而预编码后的SRS称为预编码信号。预编码信息实质可以看做是对信号进行与信道相匹配的幅度调整和相位调整,使得信道中所传输信号的波束在某些传输方向较强,在某些传输方向较弱。本发明各个实施例中的SRS的预编码信息用于生成所述预编码信号,该预编码信号由于经过了信号幅度和信号相位上的调整能够获得在所述UE和所述基站之间的上行信道上尽可能的最佳信道传输质量。不同的通信系统中最佳信道传输质量的定义可能不同。这里的最佳信道传输质量可以是预编码信号经过该上行传输后能量损耗、信号噪声比、信号功率或误码率满足通信系统所设定的要求。从UE来看,使用预编码信息调整了幅度和相位,能够使得SRS在无线空间中传输时的波束尽可能对准了所述基站,所述基站也更容易准确接收到SRS。从基站来看,由于基站更容易准确接收到SRS,可以降低由于所述基站要恢复出SRS时基站内部处理难度,例如降低了对基站的处理器的处理速度,处理算法等的要求。
在210中,SRS的预编码信息的确定可以是可以是由基站确定出来后发送给UE的,也可以由UE自己确定出来的。
作为一种实现方式,在210中,所述UE确定所述SRS的所述预编码信息可以包括:所述UE接收所述基站发送的第一信息,所述第一信息用于所述UE确定所述预编码信息;所述UE根据所述第一信息确定所述预编码信息。
所述第一信息可以为所述SRS的预编码信息。这种情况下由基站确定出所述SRS的预编码信息并将所述预编码信息发送给所述用户设备。用户设备在接收到所述SRS的预编码信息,便确定出了所述SRS的预编码信息。
所述第一信息也可以为上行信道信息。这种情况下,可由所述基站确定所述上行信道信息,并将所述上行信道信息发送给所述用户设备。所述用户设备根据接收到的上行信道信息确定出所述SRS的预编码信息。上行信道信息可以为基站对上行信道进行测量后的测量结果,也可以是基站根据测量结果所确定出来的上行信道质量,上行信道质量可以使用信道质量指示(channel  quality indicator,CQI)表示。在时分复用(Time division duplex,TDD)系统中,上行信道和下行信道具有互易性,基站可以根据UE报告的下行信道的质量确定上行信道的质量,或者直接测量UE发送的上行信号,上行信号可以为SRS或解调参考信号(demodulation reference signal,DMRS)或上行业务数据。上行信道信息可用于确定上行信道的信道传输矩阵。信道传输矩阵是用来表征信道固有特征的物理量,这些信道固有特征可以对在信道中传输的信号产生变形,例如使得所传输的信号放大或衰减、多普勒频移、相位旋转以及多径时延等效果。
例如,在所述用户设备对所述SRS进行预编码之前,所述基站可以接收从所述用户设备发送的SRS,根据SRS对上行信道进行测量。基站可能对SRS进行预编码之前UE所发送的SRS无法准确接收。为了克服该问题,可以使UE以高于某一门限的发射功率来发送SRS信号(即前述所说的没有经过编码的SRS),或者在预定时长内,基站将接收到的多个SRS信号(无论是否准确接收到)作为参数样本,使用参数估计算法获得的SRS作为准确接收到的SRS,并以此SRS确定上行信道的测量结果,从而确定出上行信道信息。这里参数估计算法常用的有极大似然估计(maximum likelihood estimation,MLE)、最小二乘估计(least square estimation,LSE)和矩估计(moment estimation,ME)等。需要说明的是,为了提高基站接收SRS的效率,基站和UE之间可以相互协调SRS发送时间和预编码信号(预编码后的SRS)的发送时间。例如,UE确定SRS的发送时间,并通知给基站;或者基站确定SRS的发送时间,并通知给UE。因此,本发明实施例提供的信号传输方法还可以包括:UE确定所述预编码信号的发送时间,并将所述预编码信号的发送时间通知给基站。所述预编码信号的发送时间也可以由基站来确定,然后由基站向UE发送第二信息,所述第二信息指示所述预编码信号的发送时间。需要说明的是,预编码信号的发送时间可以是周期性的,也可以是非周期,可以由基站进行配置,也可以由UE自己确定。相应地,UE可以在预编码信号的发送时间之外的任意时间,向基站发送SRS。在LTE系统中,UE发送的SRS可以在一个子帧的最后一个OFDM符号上;如果这个子帧上还传输用于承载业务数据的物理上行共享信道(physical uplink shared channel,PUSCH)或用于承载控制信令的物理上行控制信道(physical uplink contorl channel,PUCCH),则PUSCH 和PUCCH在该子帧上位置与SRS的位置均不重叠。
第一信息还可以为用于触发所述UE确定SRS的预编码信息的信息。例如,第一信息为前述的预编码信息或上行信道信息;第一信息还可以为一标识,UE接收到该标识后触发所述UE确定SRS的预编码信息。
需要说明的是,基站可以在物理下行控制信道(或增强的物理下行控制信道)的下行控制信息(downlink control information,DCI)中携带上述第一信息。所述UE在还没有接入到基站时,通过盲检测的方法来获得下行控制信息。具体盲检测的方法以及下行控制信息的传输格式定义可参考现有技术。如果UE已经接入到基站,则基站可以在下行控制信息中携带第一信息,还可以在建立的无线资源控制(radio resource control,RRC)连接上通过RRC消息来向UE发送第一信息,还可以通过媒体接入控制层(medium access control,MAC)的控制元素(control element,CE)中携带第一信息信息。
作为另一种实现方式,在210中,所述UE确定所述SRS的所述预编码信息可以包括:在所述UE向所述基站发出SRS后,所述基站没有根据所述SRS确定出为所述UE进行上行业务数据传输的时频资源或所述基站为所述UE进行上行业务数据传输的时频资源不能保证所述上行业务数据的QoS。这种情况下,所述UE确认基站无法根据接收到的SRS确定出上行信道质量,因而所述UE确定所述SRS的预编码信息并对所述SRS进行预编码后将预编码信号发送给所述基站。
预编码信息的确定方法主要包括为基于码本空间设计的和非码本空间设计的。预编码信息可以用矩阵的形式来表示。相应地,预编码信息为预编码矩阵或用来标识预编码矩阵的预编码矩阵索引(pre-coding matrix indicator,PMI)。
在码本空间设计的预编码信息的确定方法中,一个码本空间为至少一个预编码矩阵所构成的集合。一个信道可对应至少一个预编码矩阵,使用这个信道所对应的至少一个预编码矩阵对在该信道上传输的信号进行预编码时,可以使得该信道上传输的信号能够获得最佳的信道传输质量。在工程实践中,可以由遍历不同的信道来获取不同的预编码矩阵,从而得到不同信道所对应的码本空间。码本空间可在UE和基站进行通信之前预先存储在UE和基站上。如果是基站确定出的预编码矩阵,基站可以将确定出的预编码矩阵指示 (Precode Matrix Indicator,PMI)发送给UE,而不用反馈整个预编码矩阵;如果是UE确定出的预编码矩阵,则UE将PMI发送给基站。在码本空间设计的预编码信息的确定方法中,在使用多天线技术时为了更加降低不同天线端口之间的干扰,UE和基站之间还可交互秩指示(Rank Indicator,RI)和天线端口。所述RI表示的是上行信道传输矩阵的线性无关向量组的个数。
在非码本空间设计的预编码信息的确定方法中,UE可根据从基站接收上行信道的测量结果建立信道传输矩阵并对信道传输矩阵进行矩阵分解,例如常用处理方法有对信道传输矩阵进行奇异值分解(singular value decompositon,SVD)后得到的酉矩阵作为预编码矩阵,再将预编码矩阵通知给基站,以便基站根据预编码矩阵来解码UE发送的预编码信号。当然,基站也可以根据上行信道的测量结果建立信道传输矩阵并进行矩阵分解,将分解得到的预编码矩阵通知给UE。在非码本空间设计的预编码信息的确定方法中,由于预编码矩阵并非从码本空间中选择出来,而是根据UE和基站通信中对上行信道的实时测量结果,相比事先将码本空间存储在UE和基站中能够获得更加准确的上行信道的测量结果。
上述用来确定预编码信息的各个可能实现方式可适用于无论使用频分复用(frequency division duplex,FDD)模式还是时分复用(time division duplex,TDD)模式的无线通信系统。
另外,尤其对于TDD模式,由于上行信道和下行信道使用相同的通信频率,因而上行信道和下行信道可以近似看作是相同的。因而,在确定预编码信息的过程中,所述UE可以在下行信道的参考信号接收功率(reference signal received power,RSRP)、下行信道的路损(pathloss)或CQI不满足预定条件时,则触发所述UE确定所述SRS的预编码信息。在触发了所述UE确定所述SRS的预编码信息后,UE可以对基站在下行信道上发送的下行参考信号——例如信道状态信息参考信号(channel state information reference signal,CSI-RS)、小区特定参考信号(cell-specific reference signal,CRS)、用户设备专用参考信号(UE-specific reference signal)等——来确定出所述SRS的预编码信息。所述UE可使用对于所述UE已知的下行参考信号来解码从基站发出的并经过下行信道传输后的参考信号,从而获得下行信道信息,并确定出下行信道传输矩阵。由于TDD模式中上行信道近似与下行信道等同,UE可将 该下行信道传输矩阵视为上行信道传输矩阵,从而可以根据下行信道传输矩阵确定出SRS的预编码信息。可选地,在TDD模式中,基站也可根据UE报告的下行信道质量,或者直接测量UE发送的上行信号,例如SRS、解调参考信号(demodulation reference signal,DMRS)或者上行业务数据。同理,在TDD模式中,基站可通过SRS或预编码信号(预编码后的SRS)来确定下行参考信号的预编码信息,从而完成下行信道质量的确定。
在210中,SRS的预编码信息也可以是预先配置好而存储在UE和基站上的。这种情况下,基站可以从UE接收预编码信号,并根据预先配置好的预编码信息对预编码信号进行处理,从而恢复出SRS。
在210中,如果在UE发送预编码信号之前,对PUSCH承载的业务数据进行过预编码,则UE也可以将最近一次或多次PUSCH承载业务数据时所使用的预编码信息作为所述SRS的预编码信息。
作为一种实现方式,在220中,在UE确定出了SRS的预编码信息,从而获得了进行预编码时所使用的预编码矩阵。UE将预编码矩阵与SRS进行乘法运算,可得到SRS预编码后的信号,即前述的预编码信号。该预编码信号经过上行信道的传输,由于相比未进行预编码的SRS,该预编码信号的波束受到的干扰较小,可以尽可能的对准基站,使得基站可以准确地接收到预编码信号,并解码出SRS,从而根据SRS确定上行信道质量。
作为一种实现方式,在230中,UE在无线空间向基站发送预编码信号。预编码信号的发送过程如图3A所示,包括串并变换过程,资源映射过程,离散傅里叶逆变换过程、增加循环前缀(cycle prefix)过程、并串转换过程,天线发射。
预编码信号,[S(0)…,S(i),…,S(L-1)](S(i)为组成预编码信号的序列元素,i取值为0到L-1的正整数,L为组成预编码信号的序列元素的总数)通过串并变换过程由串行序列元素转换为了并行序列元素,由子载波的映射过程将预编码信号的每个并行序列元素分别映射到不同子载波上,通过傅里叶逆变换使得这些并行序列元素之间具有正交性。为了避免符号间干扰,通过增加循环前缀过程为这些并行序列元素添加上循环前缀,然后再经过并串转换过程 将这些并列序列元素转换为串行序列元素,并通过天线发射。
作为一种实现方式,在240中,基站在无线空间中接收UE发送的预编码信号。基站对预编码信号的接收过程,如图3B所示,包括从天线接收,串并转换,去除循环前缀,傅里叶变换过程和解资源映射过程,并串转换过程。与UE对预编码信号的发送过程基本是互逆的,此处不再赘述。
需要说明的是,上述230和240的实现方式仅仅为本领域技术人员能够整体上了解本发明实施例的可能实现方式,但230和240的实现方式并不是唯一的,其他可能实现方式可参考现有技术。
可选地,基站还可以指示UE遍历不同时间使用不同的预编码矩阵来发送预编码信号,使得基站可以将在不同时间接收到预编码信号的质量反馈给UE,以便UE对再次发送预编码信号所使用的预编码矩阵进行调整,来达到预编码信号的更高质量传输。
本发明实施例可用于载波聚合(carrier aggregation,CA)的场景。所谓载波聚合,简单说就是UE和基站之间使用至少两个频率段进行通信。如果当前服务UE的基站为一个,则这个基站与UE之间所使用的至少两个频率段进行通信方式,可以称为基站内的载波聚合。如果当前服务UE的基站为至少两个,则这些基站与UE之间的通信方式,可以称为基站间的载波聚合,例如宏基站(macro base station)和小小区基站(small-cell base station)组网中宏基站与UE之间频率主要用于控制信令的传输,而小小区基站与UE之间频率主要用于业务数据的传输。通过载波聚合,多个频段组合在一起,相当于增加了UE通信所使用的系统带宽,从而提高了系统吞吐量。
综上,本发明实施例提供的信号传输方法,示例性地如图4,主要包括了基站和UE进行预编码信息确定的过程,预编码操作和预编码信号的传输过程,以及还包括上行业务数据的传输过程。
应用本发明实施例提供的技术方案,UE通过对SRS进行预编码,产生预编码信号,并将预编码信号发送给基站,使得预编码后的SRS在无线空间中的波束尽可能对准基站,从而实现基站更容易准确接收到SRS。
本发明实施例另一方面提供了信号传输方法的多个实施方式,如图5-7 所示。这些实施方式是对前述方法实施例的进一步细化或者补充,着重描述了UE和基站之间的交互过程,对于其它相同或类似的过程可能不再赘述。
如图5所示的实施方式中,基站直接确定出SRS的预编码信息,并通过PDCCH通知给UE。图5所示实施方式包括以下内容。
501,基站确定所述UE要对发送的SRS进行预编码,并确定出所述SRS的预编码信息。
502,基站向UE发送PDCCH,该PDCCH中携带下行控制信息,下行控制信息中包含所述SRS的预编码信息。
503,UE根据从接收到的下行控制信息中获取所述SRS的预编码信息,并根据所述SRS的预编码信息对所述SRS进行预编码后将预编码信号发送给基站。
如图6所示的实施方式中,基站指示UE来确定SRS的预编码信息,基站不直接确定SRS的预编码信息,而是由UE确定好SRS的预编码信息后通知给基站。图6所示实施方式包括以下内容。
601,基站确定所述UE对要发送的SRS进行预编码,在向UE发送的PDCCH的下行控制信息中指示UE来确定SRS的预编码信息。这里,基站并不直接确定出SRS的预编码信号。
602,UE根据下行控制信息中的指示,确定SRS的预编码信息,并将SRS的预编码信息通知给基站。
603,UE对SRS进行预编码,并将预编码信号发送发送给基站。
如图7所示的实施方式中,基站告知UE需要获得SRS,UE确定是否对SRS进行预编码后发送,如果是则告知基站UE发送的为预编码信号。如图7所示实施方式包括以下内容。
701,基站通过PDCCH通知UE,所述基站要需要获得SRS。
702,UE确定是否对SRS进行预编码后发送。
703A,如果不需要对SRS进行预编码,UE通知基站发送的为SRS。
703B,如果确定需要对SRS进行预编码,UE通知基站发送的为预编码信号。
图5-图7所示的实施方式中,基站还可以在确定出预编码信号的发送时间后,并将该发送时间通知给UE,因而UE可按照该发送时间发送预编码信号;或者,UE可以在确定出预编码信号的发送时间后,将该发送时间通知给基站,基站可按照该发送时间接收预编码信号。由于上行信道可能会随着时间而改变,因而相应的预编码信息可能会变化。故每个发送时间上UE发送的预编码信号可能不同。
基站可通知UE某个预定时间内多个预编码信息,UE在这个预定时间内使用多个预编码信息分别对SRS进行预编码后,发送所生成的多个预编码信号。例如,基站告知UE每个周期时间使用的多个预编码信息为PMI 1,PMI 2,…,PMI n(n为任意正整数),UE根据这个多个预编码信息所对应的预编码矩阵对SRS进行预编码后,在每个周期时间发送所生成的多个预编码信号。
在图5-图7所示的实施方式中,基站还可以在确定出SRS的发送时间后,并将SRS的发送时间通知给UE。SRS的发送时间可以为周期性的。这种情况下,预编码信号的发送时间不与SRS的发送时间重叠,例如,预编码信号的发送时间位于两个SRS的周期性发送时间之间。如前述方法实施例所述,SRS的发送,可以用于基站根据对SRS的参数估计来确定SRS的预编码信息,从而生成预编码信号。
在图5-图7所示的实施方式应用于TDD模式中时,SRS的预编码信息可以作为下行参考信号(例如CSI-RS)的预编码信息,从而完成下行参考信号的预编码,进而可以评估下行信道质量的好坏。
在图5-图7所示的实施方式中,在UE使用SRS的预编码信息对SRS进行预编码之前,基站还可以指示UE生成SRS所使用的数学序列,例如恒包络零自相关(constant amplitude zero auto correlation,ZACAZ)序列。在UE使用SRS的预编码信息对SRS进行预编码之前,基站还可以指示UE使用与邻基站服务的其它UE相同频率的数据序列,或者基站指示UE使用多点协作(coordinated multi point,CoMP)中的虚拟小区标识的方式对SRS进行加扰。通过这样的方式,基站和邻基站均可以从UE发送的预编码信号来获取SRS,从而进一步来确定上行信道质量,并且对于TDD模式还可以进行下行信道质 量的确定。基站和邻基站可以通过X2接口交互它们分别获取的SRS,以便下行协调或协作波束赋形(coordinated scheduling/beamforming,CS/CB)或协同传输(joint transmisstion,JT)。CS/CB指参与CoMP的基站(这里指上述基站和邻基站)协作针对上述UE进行资源调度或波束赋形。具体地,上述基站和上述相邻基站交互资源调度信息或SRS的预编码信息,但PDCCH和PDSCH还是通过前述基站下服务小区发送给UE。JT是指UE处于小区边缘时,基站下的服务小区和邻基站下的小区在相同的时频资源上向该UE发送相同的业务数据,以实现UE在小区边缘时信号增强。
需要说明的是,在图5-图7所示的实施方式中,基站和UE之间如何确定SRS的预编码信息的过程,没有具体描述,详细可参考图1所示实施例中的201。
应用本发明实施例另一方面提供的技术方案,UE通过对SRS进行预编码,产生预编码信号,并将预编码信号发送给基站,使得预编码后的SRS在无线空间中的波束尽可能对准基站,从而实现基站更容易准确接收到SRS。
本发明实施例再一方面提供一种用户设备80,如图8所示,包括处理器810和发送器820;其中,所述处理器810用于确定探测参考信号的预编码信息,并根据所述预编码信息对所述探测参考信号进行预编码生成预编码信号;所述发送器820用于向服务所述用户设备的基站发送所述预编码信号。
其中,所述第一信息为所述预编码信息,上行信道信息,或用于触发所述用户设备确定所述探测参考信号的预编码信息的信息。
可选地,所述用户设备80还包括接收器830,用于接收所述基站发送的第一信息,所述第一信息用于所述处理器确定所述预编码信息。
可选地,所述发送器820还用于在所述接收器830接收所述基站发送的所述第一信息之前,向所述基站发送下行信道质量信息,其中,所述下行控制信道质量信息用于所述基站确定所述用户设备对所述探测参考信号进行预编码。
可选地,所述处理器810还用于在确定所述预编码信息之前,根据下行 信道质量信息确定需要对所述探测参考信号进行预编码。
可选地,所述处理器810还用于确定所述预编码信号的发送时间。
可选地,所述处理器810用于确定所述预编码信号的发送时间,包括:
所述处理器810用于根据所述用户设备从基站接收到的第二信息确定所述预编码信号的发送时间,所述第二信息指示所述预编码信号的发送时间。
可选地,所述发送器820还用于将所述预编码信号的发送时间通知给所述基站。
可选地,所述发送器820还用于在所述预编码信号的发送时间之外的时间,向所述基站发送所述探测参考信号,所述探测参考信号用于所述基站确定所述上行信道信息。需要说明的是,用户设备80的接收器、处理器和发射器可以实现图2-图7所示的实施方式中用户设备的接收,确定以及发送等步骤,具体可参见前述方法实施例,相同概念和过程不再赘述。用户设备80的发送器可以按照图3A所示的各逻辑流程来实现发送器中的各对应组成单元,从而实现向基站在无线空间上发送各种信号,例如前述的SRS和预编码信号等等。用户设备80的接收器可以按照图3B所示的各逻辑流程来实现接收器中各对应组成单元,从而实现在无线空间上从基站接收各种信号,例如,基站发送的第一信息以及第二信息等等。
本发明实施例再一方面提供一种基站90,如图9所示,包括:发送器910,接收器920和处理器930,其中,发送器910和接收器920通过处理器930耦合在一起。所述发送器910用于向所述基站服务的用户设备发送第一信息,所述第一信息用于所述用户设备确定探测参考信号的预编码信息;所述接收器920用于从所述用户设备接收预编码信号,所述预编码信号由所述用户设备根据所述预编码信息对所述探测参考信号进行预编码而生成。
其中,所述第一信息为所述预编码信息,上行信道信息,或用于触发所述用户设备确定所述探测参考信号的预编码信息的信息。
可选地,所述发送器910还用于向所述用户设备发送第二信息,所述第 二信息指示所述预编码信号的发送时间。
可选地,所述接收器920还用于接收所述用户设备的通知,所述通知指示所述预编码信号的发送时间。
可选地,所述接收器920还用于在所述预编码信号的发送时间之外的时间,从所述用户设备接收所述探测参考信号,所述探测参考信号用于所述基站确定所述上行信道信息。
可选的,所述接收器920还用于在所述发送器向所述用户设备发送所述第一信息之前,接收所述用户设备发送的下行信道质量信息,所述下行信道质量信息用于确定所述用户设备对所述探测参考信息进行预编码。
需要说明的是,基站90的接收器920、处理器930和发送器910可以实现图2-图7所示的实施方式中基站的接收,确定以及发送等步骤,具体可参见前述方法实施例,相同概念和过程不再赘述。基站90的发送器可以按照图3A所示的各逻辑流程来实现发送器中的各对应组成单元,从而实现向用户设备在无线空间上发送各种信号,例如前述第一信息和第二信息等。基站90的接收器可以按照图3B所示的各逻辑流程来实现接收器中各对应组成单元,从而实现在无线空间上从用户设备接收各种信号,例如,用户设备发送的SRS以及预编码信号等等。
为了实现用户设备80和基站90之间的通信,用户设备80和基站90可分别包含至少一个物理天线。用户设备80的物理天线数量和基站90的物理天线数量可以相同,也可以不同。具体天线配置使用可参考现有3GPP协议。应用本发明实施例提供用户设备80和基站90,UE通过对SRS进行预编码,产生预编码信号,并将预编码信号发送给基站,使得预编码后的SRS在无线空间中的波束尽可能对准基站,从而实现基站更容易准确接收到SRS。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、 或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、装置(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (30)

  1. 一种信号传输方法,其特征在于,包括:
    用户设备确定探测参考信号的预编码信息;
    所述用户设备根据所述预编码信息对所述探测参考信号进行预编码,生成预编码信号;
    所述用户设备向服务所述用户设备的基站发送所述预编码信号。
  2. 如权利要求1所述的方法,其特征在于,
    所述用户设备确定所述探测参考信号的所述预编码信息包括:
    所述用户设备接收所述基站发送的第一信息,所述第一信息用于所述用户设备确定所述预编码信息;
    所述用户设备根据所述第一信息确定所述预编码信息。
  3. 如权利要求2所述的方法,其特征在于,
    所述第一信息为所述预编码信息,上行信道信息,或用于触发所述用户设备确定所述探测参考信号的预编码信息的信息。
  4. 如权利要求2或3所述的方法,其特征在于,在所述用户设备接收所述基站发送的所述第一信息之前,还包括:
    所述用户设备向所述基站发送下行信道质量信息,所述下行控制信道质量信息用于所述基站确定所述用户设备对所述探测参考信号进行预编码。
  5. 如权利要求1-4任意一项所述的方法,其特征在于,所述方法还包括:
    所述用户设备在确定所述预编码信息之前,所述用户设备根据下行信道质量信息确定需要对所述探测参考信号进行预编码。
  6. 如权利要求1-5任意一项所述的方法,其特征在于,所述方法还包括:
    所述用户设备确定所述预编码信号的发送时间。
  7. 如权利要求6所述的方法,其特征在于,
    所述用户设备确定所述探测参考信号的发送时间包括:所述用户设备接收所述基站发送的第二信息,所述第二信息指示所述预编码信号的发送时间。
  8. 如权利要求6所述的方法,其特征在于,还包括:
    所述用户设备将所述预编码信号的发送时间通知给所述基站。
  9. 如权利要求3所述的方法,其特征在于,还包括:
    所述用户设备在所述预编码信号的发送时间之外的时间,向所述基站发送所述探测参考信号,所述探测参考信号用于所述基站确定所述上行信道信息。
  10. 一种信号传输方法,其特征在于,包括:
    基站向所述基站服务的用户设备发送第一信息,所述第一信息用于所述用户设备确定探测参考信号的预编码信息;
    所述基站从所述用户设备接收预编码信号,所述预编码信号由所述用户设备根据所述预编码信息对所述探测参考信号进行预编码而生成。
  11. 如权利要求10所述的方法,其特征在于,所述第一信息为所述预编码信息,上行信道信息,或用于触发所述用户设备确定所述探测参考信号的预编码信息的信息。
  12. 如权利要求10或11所述的方法,其特征在于,还包括:
    所述基站向所述用户设备发送第二信息,所述第二信息指示所述预编码信号的发送时间。
  13. 如权利要求10或11所述的方法,其特征在于,还包括:所述基站接收所述用户设备的通知,所述通知指示所述预编码信号的发送时间。
  14. 如权利要求11所述的方法,其特征在于,还包括:
    所述基站在所述预编码信号的发送时间之外的时间,从所述用户设备接收所述探测参考信号;
    所述基站根据所述探测参考信号确定所述上行信道信息。
  15. 如权利要求10-14任意一项所述的方法,其特征在于,在所述基站向所述用户设备发送所述第一信息之前,还包括:
    所述基站接收所述用户设备发送的下行信道质量信息,并根据所述下行信道质量信息确定所述用户设备对所述探测参考信息进行预编码。
  16. 一种用户设备,其特征在于,包括:处理器和发送器;其中,
    所述处理器用于确定探测参考信号的预编码信息,并根据所述预编码信息对所述探测参考信号进行预编码生成预编码信号;
    所述发送器用于向服务所述用户设备的基站发送所述预编码信号。
  17. 如权利要求16所述的用户设备,其特征在于,还包括:接收器,用于接收所述基站发送的第一信息,所述第一信息用于所述处理器确定所述预编码信息。
  18. 如权利要求17所述的用户设备,其特征在于,
    所述第一信息为所述预编码信息,上行信道信息,或用于触发所述用户 设备确定所述探测参考信号的预编码信息的信息。
  19. 如权利要求16或17所述的用户设备,其特征在于,所述发送器还用于在所述接收器接收所述基站发送的所述第一信息之前,向所述基站发送下行信道质量信息,其中,所述下行控制信道质量信息用于所述基站确定所述用户设备对所述探测参考信号进行预编码。
  20. 如权利要求16-19任意一项所述的用户设备,其特征在于,
    所述处理器还用于在确定所述预编码信息之前,根据下行信道质量信息确定需要对所述探测参考信号进行预编码。
  21. 如权利要求16-20任意一项所述的用户设备,其特征在于,
    所述处理器还用于确定所述预编码信号的发送时间。
  22. 如权利要求21所述的用户设备,其特征在于,所述处理器用于确定所述预编码信号的发送时间,包括:
    所述处理器用于根据所述用户设备从基站接收到的第二信息确定所述预编码信号的发送时间,所述第二信息指示所述预编码信号的发送时间。
  23. 如权利要求21所述的用户设备,其特征在于,
    所述发送器还用于将所述预编码信号的发送时间通知给所述基站。
  24. 如权利要求18所述的用户设备,其特征在于,
    所述发送器还用于在所述预编码信号的发送时间之外的时间,向所述基站发送所述探测参考信号,所述探测参考信号用于所述基站确定所述上行信道信息。
  25. 一种基站,其特征在于,包括:发送器和接收器;其中,
    所述发送器用于向所述基站服务的用户设备发送第一信息,所述第一信息用于所述用户设备确定探测参考信号的预编码信息;
    所述接收器用于从所述用户设备接收预编码信号,所述预编码信号由所述用户设备根据所述预编码信息对所述探测参考信号进行预编码而生成。
  26. 如权利要求25所述的基站,其特征在于,所述第一信息为所述预编码信息,上行信道信息,或用于触发所述用户设备确定所述探测参考信号的预编码信息的信息。
  27. 如权利要求25或26所述的基站,其特征在于,
    所述发送器还用于向所述用户设备发送第二信息,所述第二信息指示所述预编码信号的发送时间。
  28. 如权利要求25或26所述的基站,其特征在于,
    所述接收器还用于接收所述用户设备的通知,所述通知指示所述预编码信号的发送时间。
  29. 如权利要求26所述的基站,其特征在于,
    所述接收器还用于在所述预编码信号的发送时间之外的时间,从所述用户设备接收所述探测参考信号,所述探测参考信号用于所述基站确定所述上行信道信息。
  30. 如权利要求25-29任意一项所述的基站,其特征在于,
    所述接收器还用于在所述发送器向所述用户设备发送所述第一信息之前,接收所述用户设备发送的下行信道质量信息,所述下行信道质量信息用于确定所述用户设备对所述探测参考信息进行预编码。
PCT/CN2016/076522 2016-03-16 2016-03-16 信号传输方法和装置 WO2017156732A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018549237A JP6644904B2 (ja) 2016-03-16 2016-03-16 信号伝送方法及び装置
CN201680083679.2A CN109075889B (zh) 2016-03-16 2016-03-16 信号传输方法和装置
EP16893897.5A EP3422617A4 (en) 2016-03-16 2016-03-16 SIGNAL TRANSMISSION PROCESS AND DEVICE
PCT/CN2016/076522 WO2017156732A1 (zh) 2016-03-16 2016-03-16 信号传输方法和装置
US16/131,599 US10880127B2 (en) 2016-03-16 2018-09-14 Signal transmission method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/076522 WO2017156732A1 (zh) 2016-03-16 2016-03-16 信号传输方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/131,599 Continuation US10880127B2 (en) 2016-03-16 2018-09-14 Signal transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2017156732A1 true WO2017156732A1 (zh) 2017-09-21

Family

ID=59850526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076522 WO2017156732A1 (zh) 2016-03-16 2016-03-16 信号传输方法和装置

Country Status (5)

Country Link
US (1) US10880127B2 (zh)
EP (1) EP3422617A4 (zh)
JP (1) JP6644904B2 (zh)
CN (1) CN109075889B (zh)
WO (1) WO2017156732A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210014698A (ko) * 2018-05-30 2021-02-09 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. 무선 통신 시스템용 도플러-지연 코드북 기반 프리코딩 및 csi 보고
US11595089B2 (en) 2019-03-08 2023-02-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. CSI reporting and codebook structure for doppler-delay codebook-based precoding in a wireless communications system
US11996910B2 (en) 2018-09-11 2024-05-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Doppler codebook-based precoding and CSI reporting for wireless communications systems

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102174831B1 (ko) * 2017-01-08 2020-11-05 엘지전자 주식회사 무선 통신 시스템에서 상향링크 송수신 방법 및 이를 위한 장치
EP3639392A1 (en) * 2017-06-14 2020-04-22 SONY Corporation Operating a terminal device and a base station in a wireless mimo system
CN111371480B (zh) * 2018-12-25 2023-04-14 中兴通讯股份有限公司 数据的预编码处理方法及装置、存储介质
EP4145894A4 (en) * 2020-04-30 2024-01-17 Ntt Docomo, Inc. TERMINAL, WIRELESS COMMUNICATION METHOD AND BASE STATION
US20230188287A1 (en) * 2020-04-30 2023-06-15 Ntt Docomo, Inc. Terminal, radio communication method, and base station
US11483112B2 (en) 2020-05-18 2022-10-25 Qualcomm Incorporated Uplink doppler metric estimation based on an uplink reference signal
US11310021B2 (en) * 2020-05-18 2022-04-19 Qualcomm Incorporated Uplink doppler metric estimation based on a downlink reference signal
KR20220086260A (ko) * 2020-12-16 2022-06-23 삼성전자주식회사 전자 장치 및 전자 장치에서 기준 신호를 전송하는 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102170330A (zh) * 2011-04-29 2011-08-31 中兴通讯股份有限公司 测量参考信号的发送方法及系统
CN102244557A (zh) * 2010-05-12 2011-11-16 中国移动通信集团公司 发送与接收信道探测参考信号的方法及装置
CN102948186A (zh) * 2010-06-21 2013-02-27 富士通株式会社 参考信号发送方法、信道质量估计方法、移动台、基站和无线通信系统
CN103905104A (zh) * 2012-12-28 2014-07-02 中兴通讯股份有限公司 一种根据探测参考信号的多天线发送方法及终端及基站

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7626988B2 (en) * 2004-06-09 2009-12-01 Futurewei Technologies, Inc. Latency-based scheduling and dropping
KR101306735B1 (ko) 2008-10-15 2013-09-11 엘지전자 주식회사 복수개의 안테나를 이용한 사운딩 기준 신호 시퀀스 전송 방법
CN101540631B (zh) 2009-04-27 2014-03-12 中兴通讯股份有限公司 测量参考信号的多天线发送方法及装置
CN101674655A (zh) * 2009-10-14 2010-03-17 中兴通讯股份有限公司 一种上行及下行信道信息获取方法和系统
WO2011078571A2 (ko) * 2009-12-22 2011-06-30 엘지전자 주식회사 프리코딩된 사운딩 참조신호를 이용하여 comp 통신을 수행하는 장치 및 그 방법
CN101827444B (zh) * 2010-03-31 2015-03-25 中兴通讯股份有限公司 一种测量参考信号的信令配置系统及方法
US8917687B2 (en) * 2010-04-20 2014-12-23 China Mobile Communications Corporation Method, apparatus and system for sending and receiving sounding reference signal
CN102625354B (zh) * 2010-07-13 2014-03-26 华为技术有限公司 一种触发终端发送测量参考信号的方法、终端和基站
CN103298114B (zh) 2012-02-24 2018-12-14 株式会社Ntt都科摩 通信系统中上行导频信号的资源配置方法和装置
US9596065B2 (en) * 2012-10-24 2017-03-14 Qualcomm Incorporated Enhanced SRS transmission for MIMO operation in LTE-A
US8942302B2 (en) * 2012-12-20 2015-01-27 Google Technology Holdings LLC Method and apparatus for antenna array channel feedback
ES2927801T3 (es) * 2013-01-16 2022-11-11 Interdigital Patent Holdings Inc Eficiencia del espectro de enlace ascendente mejorada

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244557A (zh) * 2010-05-12 2011-11-16 中国移动通信集团公司 发送与接收信道探测参考信号的方法及装置
CN102948186A (zh) * 2010-06-21 2013-02-27 富士通株式会社 参考信号发送方法、信道质量估计方法、移动台、基站和无线通信系统
CN102170330A (zh) * 2011-04-29 2011-08-31 中兴通讯股份有限公司 测量参考信号的发送方法及系统
CN103905104A (zh) * 2012-12-28 2014-07-02 中兴通讯股份有限公司 一种根据探测参考信号的多天线发送方法及终端及基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3422617A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210014698A (ko) * 2018-05-30 2021-02-09 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. 무선 통신 시스템용 도플러-지연 코드북 기반 프리코딩 및 csi 보고
CN112514276A (zh) * 2018-05-30 2021-03-16 弗劳恩霍夫应用研究促进协会 用于无线通信系统的多普勒延迟基于码本的预编码和csi报告
JP2021525988A (ja) * 2018-05-30 2021-09-27 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン 無線通信システムのためのドップラー遅延コードブックベースのプリコーディングおよびcsiレポート
JP7246414B2 (ja) 2018-05-30 2023-03-27 フラウンホーファー-ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン 無線通信システムのためのドップラー遅延コードブックベースのプリコーディングおよびcsiレポート
US11616551B2 (en) 2018-05-30 2023-03-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Doppler-delay codebook-based precoding and CSI reporting wireless communications systems
KR102539873B1 (ko) * 2018-05-30 2023-06-05 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. 무선 통신 시스템용 도플러-지연 코드북 기반 프리코딩 및 csi 보고
CN112514276B (zh) * 2018-05-30 2023-09-22 弗劳恩霍夫应用研究促进协会 提供csi反馈的通信设备和方法、发送器和进行发送的方法及介质
US11996910B2 (en) 2018-09-11 2024-05-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Doppler codebook-based precoding and CSI reporting for wireless communications systems
US11595089B2 (en) 2019-03-08 2023-02-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. CSI reporting and codebook structure for doppler-delay codebook-based precoding in a wireless communications system

Also Published As

Publication number Publication date
US20190028305A1 (en) 2019-01-24
CN109075889B (zh) 2021-06-22
EP3422617A4 (en) 2019-03-06
JP6644904B2 (ja) 2020-02-12
JP2019513327A (ja) 2019-05-23
CN109075889A (zh) 2018-12-21
EP3422617A1 (en) 2019-01-02
US10880127B2 (en) 2020-12-29

Similar Documents

Publication Publication Date Title
US10880127B2 (en) Signal transmission method and apparatus
US20230262676A1 (en) Mmw physical layer downlink channel scheduling and control signaling
JP6721594B2 (ja) アンライセンスバンドでのlteのためのpdschプリコーディング適応
WO2018126926A1 (zh) 信号传输方法和装置
NL2011185C2 (en) User equipment and method for antenna port quasi co-location signaling in coordinated multi-point operations.
US20220399983A1 (en) Updating active tci state for single-pdcch based multi-trp pdsch or multi-pdcch based multi-trp pdsch
JP5437310B2 (ja) 無線基地局装置、移動端末装置、無線通信方法及び無線通信システム
WO2014165656A1 (en) Pattern indicator signal for new dmrs pattern
JP6725696B2 (ja) 無線通信方法、ユーザ装置、及び基地局
US20230179260A1 (en) Indication of doppler pre-compensation in multi-transmission reception point communications
WO2013146434A1 (ja) 無線通信システム、基地局装置、及び無線通信方法
US20230156724A1 (en) Signaling design for type ii csi-rs spatial domain and frequency domain basis configuration
JP2017537541A (ja) Pucch上でのエレベーションpmi報告
WO2021253664A1 (en) Doppler shift reporting for multiple transmission reception points
EP4278469A1 (en) Csi feedback for single dci based multi-trp transmission
WO2021247903A1 (en) Wideband and subband precoder selection
WO2021108383A1 (en) Demodulation reference signal bundling
US11792059B2 (en) Time-domain DMRS pattern for single-carrier communication waveform
US11825301B2 (en) Secret construction of physical channels and signals
US11528757B2 (en) Dynamic cyclic prefix selection
US20240171220A1 (en) Channel information exchange for user equipment cooperation
CN116724504A (zh) 针对基于单个dci的多trp传输的csi反馈

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018549237

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016893897

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016893897

Country of ref document: EP

Effective date: 20180928

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893897

Country of ref document: EP

Kind code of ref document: A1