WO2017156652A1 - Procédé de détection d'échantillon biologique utilisant un porte-échantillon biologique réglable en continu - Google Patents

Procédé de détection d'échantillon biologique utilisant un porte-échantillon biologique réglable en continu Download PDF

Info

Publication number
WO2017156652A1
WO2017156652A1 PCT/CN2016/000610 CN2016000610W WO2017156652A1 WO 2017156652 A1 WO2017156652 A1 WO 2017156652A1 CN 2016000610 W CN2016000610 W CN 2016000610W WO 2017156652 A1 WO2017156652 A1 WO 2017156652A1
Authority
WO
WIPO (PCT)
Prior art keywords
biological sample
sample
terahertz
thickness
sample holder
Prior art date
Application number
PCT/CN2016/000610
Other languages
English (en)
Chinese (zh)
Inventor
彭滟
陈万青
朱亦鸣
茅晨曦
戚彬彬
徐博伟
张腾飞
邵文
庄松林
Original Assignee
上海理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海理工大学 filed Critical 上海理工大学
Publication of WO2017156652A1 publication Critical patent/WO2017156652A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation

Definitions

  • the present invention relates to a biological sample holder, and more particularly to a method for detecting a suspended, viscous biological sample by using a terahertz wave based on a continuously adjustable biological sample holder.
  • THz waves Terahertz radiation, T-rays, sub-millimeter waves, far-infrared rays
  • T-rays Terahertz radiation
  • T-rays sub-millimeter waves
  • far-infrared rays Terahertz radiation
  • terahertz waves to detect biological samples is the use of certain substances in biological samples for the non-cooperativeness of terahertz radiation propagation, also known as absorption attenuation. Some specific substances in the sample, the internal atoms of the sample itself will vibrate and rotate. These vibrations and rotations are in the terahertz band, and the terahertz radiation resonates with these vibrations and rotations to obtain many absorption peaks. To achieve the identification of one or more indicators that determine an uncertain biological sample.
  • terahertz waves are used to detect fresh biological samples.
  • the common method is to use two polyethylene plates with concentric circles of the same size as the support and fix them by a metal ring, while placing a stretchable between the two polyethylene plates.
  • a film or plastic gasket (polyethylene, polystyrene, etc.) with high transmittance in the terahertz band constitutes a biological sample detecting device.
  • an absorption peak characteristic of the biological sample can be obtained.
  • this method also has its limitations: 1. The thickness of the sample is determined by the plastic spacer between the two polyethylene sheets.
  • the thickness of the sample is fixed, and the thickness of the sample cannot be adjusted without removing the device. Cumbersome; 2, when the film is filled with the biological sample device, the film is easily deformed, resulting in uneven thickness of the sample; 3, when testing the same biological sample of different thickness, the gasket must be replaced and the biological sample needs to be refilled, the biological sample pole It is easy to be polluted and used in large quantities.
  • the invention is directed to the problem of using a terahertz wave to detect a fresh biological sample, and proposes a biological sample detection method based on a continuously adjustable biological sample holder.
  • the continuously adjustable biological sample holder is composed of two pieces high. Concentrated polyethylene plate, a high-density and high-elastic round O-ring and four M6 screws, can use a small amount of biological samples, only need to adjust the 4 without disassembling the device, no need to replace the gasket M6 screws to test specific information at different biological sample thicknesses. The whole operation process is simple, convenient and efficient.
  • the technical scheme of the invention is: a biological sample detecting method based on a continuously adjustable biological sample rack, wherein the biological sample rack is composed of two high-density polyethylene sheets of the same material size and two high-concentration polyethylene sheets aligned in the middle A high-density, high-elastic circular O-ring and two high-density polyethylene plates with four corners of fixed-adjustment M6 screws, using terahertz waves to detect biological samples filled with the biological sample holder:
  • the biological sample holder is disinfected with alcohol to avoid contaminating the biological sample; the empty sample holder is placed in the terahertz detection system, and the terahertz signal of the entire biological sample at no load is measured, and the signal is used as a reference signal;
  • the fresh biological sample to be tested is filled in the center circular O-ring, and the biological sample holder is placed in the terahertz detection system after being packaged, and the absorption spectrum signal of the sample is obtained, and four M6 screws are repeatedly adjusted to obtain
  • the absorption spectrum of the terahertz wave of the biological sample at different thicknesses is compared with the thickness of the sample when the absorption spectrum signal is most obvious, and the data is collected corresponding to the thickness of the sample for analyzing the characteristic parameters of the sample.
  • the invention has the beneficial effects that the invention is based on the biological sample detection method of the continuously adjustable biological sample holder, has a simple structure, and the biological sample thickness can be continuously adjusted, thereby greatly reducing the possibility of contamination of the biological sample.
  • FIG. 1 is a schematic view showing the structure of a continuously adjustable biological sample holder according to the present invention
  • FIG. 2 is a schematic view showing a biological sample rack in which the thickness of the sample is excessively adjusted during the test of the biological sample of the present invention
  • Fig. 3 is a schematic view showing the biological sample holder in which the thickness of the sample is controlled at the most suitable place during the test of the biological sample of the present invention.
  • a continuously adjustable biological sample holder structure is characterized in that the surface of the biological sample is uniform in thickness, the required sample is small, and the thickness of the sample can be continuously adjusted, which is very suitable for a small and precious biological sample.
  • the biological sample holder is aligned with two high-density polyethylene plates 3 and 4 of the same size and material, a high-density and high-elastic circular O-ring 3 in the middle of the two plates, and a fixed-adjustment M6 screw set with two plates and four corners. to make.
  • the high-concentration polyethylene plate transmits terahertz light waves and is opaque to visible light.
  • the high-density round O-ring has a certain elasticity. It rotates four M6 screws and squeezes two high-concentration polyethylene plates to change the thickness of the high-density round O-ring containing the biological sample.
  • the change in the thickness of the circular O-ring directly drives the change in the thickness of the biological sample.
  • the whole device is placed in the terahertz detection system, and the thickness of the sample is repeatedly adjusted to find the position where the sample absorbs the signal with the highest amplitude. At this time, the thickness of the sample is the optimal thickness of the test sample, and the thickness is first measured by the micrometer. The thickness can be obtained by subtracting the thickness of each of the two high-concentration polyethylene sheets.
  • a femtosecond wave is radiated by a femtosecond laser having a center wavelength of 800 nm, and a THz-terahertz detection system is used to irradiate a terahertz wave in a dry environment (humidity of 5% or less, temperature of about 20 ° C). The sample is tested.
  • the laser output light has a center wavelength of 800 nm, a spectral range of 760-840 nm, a pulse width of 100 fs, and a repetition rate of 78 MHz.
  • the biological sample filled with the biological sample holder is detected by the terahertz wave: the terahertz wave generated by the laser through the photoconductive antenna is incident on the first high-purity polyethylene plate, and transmitted through the biological sample, from the second high The purity polyethylene sheet exits to form a transmissive biological sample detection light path.
  • the biological sample holder needs to be disinfected with alcohol to avoid contamination of the biological sample; the empty sample holder is placed in the terahertz detection system to measure the terahertz signal of the entire device at no load. And use the signal as a reference signal; then fill the center of the round O-ring with the fresh biological sample to be tested, and then package the whole device in the terahertz detection system to test the absorption spectrum signal of the sample.
  • the absorption spectrum of the terahertz wave of the biological sample at different thicknesses is obtained, and the thickness of the sample when the absorption spectrum signal is most obvious is selected, and the data is collected corresponding to the thickness of the sample. Later, it was used to analyze the characteristic parameters of the sample.
  • the sample thickness is controlled at the most suitable location for the biological sample holder device.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

L'invention concerne un procédé de détection d'échantillon biologique utilisant un porte-échantillon biologique réglable en continu. Le porte-échantillon biologique est constitué de deux feuilles de polyéthylène à haute densité alignées verticalement (3, 4) ayant la même taille et constituées du même matériau, d'un joint torique circulaire à haute densité et à haute élasticité (3) situé à équidistance entre les deux feuilles de polyéthylène à haute densité, et de vis M6 (1) permettant sa fixation et son ajustement aux quatre angles des deux feuilles de polyéthylène à haute densité (3, 4). Un échantillon biologique dont est rempli le porte-échantillon biologique est détecté au moyen d'ondes térahertz. Des informations spécifiques concernant l'échantillon biologique pour différentes épaisseurs sont évaluées par ajustement de quatre vis M6 (1). Le processus d'utilisation global est simple, facile et efficace. L'épaisseur d'un échantillon biologique peut être ajustée en continu, cela permettant de réduire fortement la probabilité que l'échantillon biologique soit pollué.
PCT/CN2016/000610 2016-03-15 2016-11-07 Procédé de détection d'échantillon biologique utilisant un porte-échantillon biologique réglable en continu WO2017156652A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610145894.2A CN105699316A (zh) 2016-03-15 2016-03-15 基于连续可调生物样品架的生物样品检测方法
CN201610145894.2 2016-03-15

Publications (1)

Publication Number Publication Date
WO2017156652A1 true WO2017156652A1 (fr) 2017-09-21

Family

ID=56220589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/000610 WO2017156652A1 (fr) 2016-03-15 2016-11-07 Procédé de détection d'échantillon biologique utilisant un porte-échantillon biologique réglable en continu

Country Status (2)

Country Link
CN (1) CN105699316A (fr)
WO (1) WO2017156652A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105699316A (zh) * 2016-03-15 2016-06-22 上海理工大学 基于连续可调生物样品架的生物样品检测方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239860A (en) * 1991-05-13 1993-08-31 General Motors Corporation Sensor for measuring alcohol content of alcohol/gasoline fuel mixtures
US5510621A (en) * 1994-10-03 1996-04-23 Optical Solutions, Inc. Apparatus and method for measuring components in a bag
US6238625B1 (en) * 1997-12-20 2001-05-29 Korea Advanced Institute Of Science And Technology Sealed high-density on-line measuring device
CN201508312U (zh) * 2009-09-30 2010-06-16 浙江大学 一种基于折叠伸缩结构的光程可调液体样品池
CN102645404A (zh) * 2011-02-18 2012-08-22 中国科学院上海应用物理研究所 适用于太赫兹时域光谱测量的液体样品架及其方法
WO2014137123A1 (fr) * 2013-03-06 2014-09-12 주식회사 메카시스 Procédé de réglage de manière automatique de trajet optique pour analyse d'échantillon, procédé d'analyse d'échantillon le comprenant et dispositif pour celui-ci
CN204855348U (zh) * 2015-07-22 2015-12-09 北京市农林科学院 样品装载装置
CN105699316A (zh) * 2016-03-15 2016-06-22 上海理工大学 基于连续可调生物样品架的生物样品检测方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239860A (en) * 1991-05-13 1993-08-31 General Motors Corporation Sensor for measuring alcohol content of alcohol/gasoline fuel mixtures
US5510621A (en) * 1994-10-03 1996-04-23 Optical Solutions, Inc. Apparatus and method for measuring components in a bag
US6238625B1 (en) * 1997-12-20 2001-05-29 Korea Advanced Institute Of Science And Technology Sealed high-density on-line measuring device
CN201508312U (zh) * 2009-09-30 2010-06-16 浙江大学 一种基于折叠伸缩结构的光程可调液体样品池
CN102645404A (zh) * 2011-02-18 2012-08-22 中国科学院上海应用物理研究所 适用于太赫兹时域光谱测量的液体样品架及其方法
WO2014137123A1 (fr) * 2013-03-06 2014-09-12 주식회사 메카시스 Procédé de réglage de manière automatique de trajet optique pour analyse d'échantillon, procédé d'analyse d'échantillon le comprenant et dispositif pour celui-ci
CN204855348U (zh) * 2015-07-22 2015-12-09 北京市农林科学院 样品装载装置
CN105699316A (zh) * 2016-03-15 2016-06-22 上海理工大学 基于连续可调生物样品架的生物样品检测方法

Also Published As

Publication number Publication date
CN105699316A (zh) 2016-06-22

Similar Documents

Publication Publication Date Title
US9759689B2 (en) Real-time detection and imaging of terahertz pulse radiation by using photoacoustic conversion
CN105300937B (zh) 一种农产品中农药残留量的检测装置
US4492107A (en) Acoustic power meter
WO2006116835A8 (fr) Systeme d'analyse rapide de matieres microbiologiques dans des echantillons liquides
WO2017156652A1 (fr) Procédé de détection d'échantillon biologique utilisant un porte-échantillon biologique réglable en continu
CN107328736A (zh) 人参鉴别方法及系统
JP2012245100A5 (fr)
CN201508312U (zh) 一种基于折叠伸缩结构的光程可调液体样品池
CN110967301B (zh) 一种具备激光加热的原位和频振动光谱检测装置
GB201121269D0 (en) A method forblood measurement
CN101598609A (zh) 以ZnO薄膜为敏感元件的光纤温度测量方法及其光纤温度传感器
JP5277432B2 (ja) 浮遊物質解析方法
CN105758797A (zh) 一种适用于液膜法对腐蚀性液体进行红外光谱分析的样品池
Kang et al. Response of an electrodeless quartz crystal microbalance in gaseous phase and monitoring adsorption of iodine vapor on zeolitic-imidazolate framework-8 film
Uchida et al. Effect of dissolved oxygen level of water on ultrasonic power measured using calorimetry
Tretiakov et al. Characterization of temperature field distribution in large-size paratellurite crystals applied in acousto-optic devices
Andachi et al. Low-frequency spectra of a phospholipid bilayer studied by terahertz time-domain spectroscopy
JP2009075134A (ja) 細菌又は毒性物質の同定装置
CN103743762B (zh) 液体牛奶有害杂质检测装置
Cui et al. Measurement of mixtures of melamine using THz ray
CN206020265U (zh) 一种便携式红外线分析器
CN204694447U (zh) 基于真空室的真空紫外光源测试系统
RU163503U1 (ru) Устройство для регистрации кривых дифракционного отражения
Walker et al. A simple fluid cell for the study of aqueous solutions using THz time-domain spectroscopy
CN203732470U (zh) 一种用于x射线衍射仪的样品架

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893817

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16893817

Country of ref document: EP

Kind code of ref document: A1