WO2017156644A1 - Tubular electrochemical apparatus for the electrowinning of metal, formed by separate concentric inner layers consisting of electrodes and an ion exchange membrane between said electrodes - Google Patents

Tubular electrochemical apparatus for the electrowinning of metal, formed by separate concentric inner layers consisting of electrodes and an ion exchange membrane between said electrodes Download PDF

Info

Publication number
WO2017156644A1
WO2017156644A1 PCT/CL2017/000006 CL2017000006W WO2017156644A1 WO 2017156644 A1 WO2017156644 A1 WO 2017156644A1 CL 2017000006 W CL2017000006 W CL 2017000006W WO 2017156644 A1 WO2017156644 A1 WO 2017156644A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
cathode
ion exchange
anode
electrodes
Prior art date
Application number
PCT/CL2017/000006
Other languages
Spanish (es)
French (fr)
Inventor
Gabriel Angel Riveros Urzua
Magdalena CIFUENTES CABEZAS
Original Assignee
Transducto S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Transducto S.A. filed Critical Transducto S.A.
Publication of WO2017156644A1 publication Critical patent/WO2017156644A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells

Definitions

  • This invention relates to electrochemical devices and processes, and more particularly though not exclusively to electrochemical devices that employ special cathodes and metal electrodeposition processes that are performed using such electrochemical devices.
  • electrochemical processes can be considered either as cathodic processes or anodic processes depending on the electrode in which the most economical reaction occurs.
  • Many of the cathodic processes involve electrodeposition of a metal or electrolytic reduction of an electrolyte constituent in the presence of hydrogen formed in the cathode;
  • the formal classification in the cathodic processes only galvanizing, electro refining and electro obtaining are included, and the actuality in cathodic processes also includes the reduction of organic compounds and the production of caustic soda.
  • Anodic processes involve the discharge of anions from the solution to an essentially stable anode or the dissolution of the anode itself.
  • electro-obtaining of metals at the industrial level is carried out in cells called electrolytic vats where the anode and cathode are immersed in the electrolyte and are separated about 100 mm from each other.
  • the metal is deposited in the cathode, but the oxidation power is lost through the generation of oxygen which is sent to the atmosphere, said oxygen, together with the sulfuric acid present in the solutions, generates acid mist (0 2 + H 2 SO 4 ).
  • these cells operate with purified electrolyte from solvent extraction plants, in copper concentrations that are maintained in the range of 35 - 45 g / 1, through which commercial grade A cathodes of size are produced with weights of 42 kg and size of 1 m 2 .
  • EMEW electrolytic cell covered by US Patent No. 5,529,672 (Jun 25, 1996) "Mineral Recovery Apparatus” which in its proposal considers a tubular cell in which the cathode is a cylinder of about 100 mm in diameter by 1 m long and an anode tube through the center.
  • This cell uses the known turbulence principle in a hydrocyclone with the electrolyte fed tangentially into the cylindrical cathode.
  • This cell offers better agitation of the electrolyte compared to the conventional cell, but still suffers from the fundamental defect of the conventional cell which is the opposite anode and cathode reactions. They are located in close proximity to each other in the same container.
  • This cell can work with electrolyte concentrations in the case of copper between 5-45 g / 1, while tolerating high levels of pollutants such as chloride (> 10 g / 1), ferric iron (15 g / 1), among others ; being within its characteristics that can operate without the SX stage as long as the PLS is of an acceptable quality in impurity contents. Its use is also possible to electrolytically extract other metals, such as Zn, Ni and Ag.
  • the outer cathode is made of stainless steel, the anode being titanium-based alloy.
  • the cell chamber is closed so there is no acid mist emission and can operate with high current densities over 1 kA / m 2 , to obtain grade A cathodes, although in energy terms, its effect is not significant.
  • This cell produces cylindrical cathodes of low acceptance for mass production in the market, being currently oriented to the recovery of metal from effluents with lower metal contents.
  • the non-porous cathode support has openings for a uniform distribution of the fluid and to deliver a uniform pressure drop to the cathode.
  • the diameter of the holes is less than 10 mm, the width and depth of the channels being equivalent.
  • the cathode is made of stainless steel, copper or nickel, while the anode is made of cermet, ferrous metal or graphite.
  • the cells are arranged in series or in parallel and the initial cell voltages are at least 0.5 volts. Metal recovery is carried out using current densities between 0.01 to 0.2 A / cm 2 : Although the cell can be used in the mining industry, sewage treatment, chemical plants, it is preferably suitable in the industry photographic to recover silver, copper, lead, palladium and nickel.
  • electrochemical devices are described in the state of the art to avoid the problems presented by the conventional method, which essentially comprise electrochemical cells that have deposition cathodes of different configurations or which have an ion permeable membrane disposed between the electrodes of the cell, in which the cathode is a particular electrode comprising a plurality of electro conductive materials on which a metal can be electro deposited.
  • electrochemical cells try to obviate the solvent extraction stage, and therefore, they are intended to be applied to solutions with high and low metal contents dissolved in them.
  • the use of the oxidation of Fe2 + to Fe3 + as an anodic reaction in copper EO has been studied.
  • this cell has a bed of copper particles in the catholyte compartment, which is suspended by an upward flow of solution that enters the cell through a diaphragm or a distributor .
  • the copper particles are cathodically polarized by a current feeder inserted into the bed, and the cell circuit is completed with an anode of material for the oxidation reaction present in the anolyte compartment.
  • the body of this type of cells can be rectangular or cylindrical, but in both cases, the electrolyte is fed through the lower part of the body, while the discharge of the same is carried out by overflowing in the upper part.
  • This type of cell is characterized by having a large cathodic surface, which allows them to have a larger area for copper deposition and to operate at lower current densities, which leads to a reduction in the polarization of the cathode.
  • the fluidization of the bed generates a high relative speed between the solution and the electrode, thereby increasing the mass transfer.
  • the cell body can be cylindrical or flat geometry.
  • the present patent proposes an electro-obtaining apparatus of tubular type metal, based on the use of ion exchange membranes, which allows it to be applied in obtaining a large variety of metals dissolved in solutions of different origin or oriented to the production of compounds or materials required by the metallurgical industry for the recovery of metal.
  • the heart of the present invention is the use of the ion exchange membrane and the manipulation of electrical and fluid flows in the vicinity of the cathode, such that the metal to be harvested is electro deposited in the form of a cylinder, hollow or solid.
  • a strong interaction between the direction of the fluid flow and the direction of the electron flow is used to maximize the surface area of the cathode and hence the deposition of metal.
  • the present patent proposes a new electro-obtaining apparatus for metals or tubular type compounds that is constituted by two unit chambers that operate independently at uniform and high fluid flow rates.
  • each of the chambers there is an anode or a cathode of variable surface extended along the tube, which can be designed according to industrial requirements, either 0.20, 0.50, 1 m 2 or higher.
  • each chamber is composed of an ion exchange membrane separating the electrodes, also of tubular design, to alternatively form compartments through which the anolyte or the catholyte circulate.
  • one of the objectives of the present invention is to provide a construction of a simplified tubular metal electrolytic production apparatus, of that class comprising a series of apparatus connected in series or in parallel, according to the requirements of the industry, of Specially designed construction for electrolyte circulation, high temperature corrosion resistance, accessibility for repair and easy metal harvesting.
  • the apparatus consists of a housing or cell of a non-conductive material, which, inside, contains the electrodes, anode and cathode, separated by the ion exchange membrane, at distances ranging from 0.1 to 20 cm ( preferably 3 to 8 cm).
  • the cathode of circular and tubular geometry can be configured in two ways in relation to the anode: cathode in the center of the apparatus with the anode coaxially arranged around it, or, the anode centered with the cathode coaxially arranged around it.
  • the tubular outer shell is formed of a non-conductive waterproof material, the lower and upper heads being formed with fluid inlet and outlet tubes, anolyte and catholyte.
  • This tubular outer wall can be constructed of different structurally strong non-porous materials, which includes but is not limited to polypropylene, high density polyethylene or others. This must be of an appropriate thickness that ensures sufficient strength and durability in its use.
  • the inlets and outlets are designed in such a way that they allow a uniform distribution of the fluids and a uniform pressure drop is achieved along the cylinders that constitute the cathode and anode surface.
  • the electrical connections for the anode and cathode are provided by terminals or other power supply device. With this arrangement, a high current density can be applied to each apparatus that becomes a metal deposition cell and at the same time pass a high vertical flow of electrolyte (catholyte) and anodic solution (anolyte).
  • the inputs and outputs of the solutions can be arranged in any direction relative to the elongated dimension of the housing.
  • the fluid inlets are disposed adjacent to a first end of the housing aligned substantially perpendicular to the axis of the elongated housing, and tangential to. the annular cavities formed between the electrodes and the 'ion membrane.
  • This arrangement induces the flow to be spiral through the annular cavities being considered to promote metal deposition during electro deposition.
  • the fluid outlets are arranged in a configuration similar to the inlet and distance thereof in such a way that the spiral flow fluid of the liquor maintains its dynamic fluid characteristics.
  • the fluid inlets can be connected to the outputs of a second metal electrodeposition apparatus so that the fluids can pass in series through both devices, allowing the progressive extraction of the metal from the fluid of interest.
  • a battery of devices may be formed with a plurality of devices in series, such that the extraction from a given volume of solution, in a sustained period of time, allows the extraction of a significant proportion of metal.
  • Another object of the present invention is to provide a sealed electro obtaining apparatus, which maintains the uniform distribution of the liquid within the chambers that are secured under pressure conditions with the corresponding assemblies and seals for the complete prevention of liquid leaks outside the cameras, and also be easily assembled or disassembled.
  • a gas separation system is installed specifically in the outlet pipes of the electrodeposition apparatus in such a way that these are vented before they enter the following devices or preferably in a defined group of them. The effect of gas separation is increased when a separation chamber is provided in which the outlet has the same diameter as the conduit pipe of the solution and has a minimum height equivalent to half the diameter of the pipe.
  • a uniform flow of anolyte or catholyte electrolyte circulates through each chamber from the lower to the upper holes, where the electrodes are positively (+) or negatively (-) polarized by the effect of the applied electric field, with the electro deposition in the cathode.
  • Said flow is essentially stable during circulation, free of interference, simultaneously providing sufficient residence time for the occurrence of chemical reactions and electrodeposition of metal.
  • the dimensions and positions of the holes provide a low resistance to flow, the volume being stable, leading to an operation easily controlled with minimal variation of the operational parameters.
  • the thickness of metal deposited in the cathodic plate although the volume of circulation of catholyte decreases, does not affect the quality of the latter or the operation of the cell due to the Iridrodynamic condition of its design.
  • the apparatus can be adapted for the electrolytic extraction of metal, metal compounds or other products in the form of particles by changes in the arrangement of the processes and operating conditions thereof, which include the speed of the fluid and the current density of the cathode, within the desired limits in which some of the electrodeposition materials, are deposited on the cathode in the form of particles which are dragged through the apparatus with the flow of liquid in such a way that they can be collected at a capture point conveniently away from the cylindrical part of the housing.
  • the particular particle collection system may include gravitational, centrifugal or other means of classifying them.
  • the electro obtaining apparatus has a device for extracting the metal deposited in the cathode, so that when the operation is stopped, they detach from the cathode electrode in the event that said option is used or It is extracted in the form of a solid cylinder. Said pennite mechanism that these are lifted above the device.
  • the covers of the device are made of acid-resistant plastic material, while the metal electrode plates are made of stainless steel, lead or other required depending on whether they are cathode or anode, respectively.
  • These types of metal are also conditioned to the type of metal dissolved in the solution to be deposited and extracted from the solution. Said solution may be acidic, basic or neutral.
  • the fluids that can be treated using the present invention may vary in the type and concentration of the metal ions to be removed. Such fluids are usually of the aqueous type in nature although some of them may contain several organic solvents.
  • the sources of the fluids can be from industrial reactions, chemical and mining processes, and other wastewater effluents, water or municipal treatment plants, ponds or lakes.
  • the present invention is then useful, to recover metals from mining, electroplating, foundries, photo processing, or other industrial processes, to recover metals such as silver, gold, copper, lead, platinum, tellurium, nickel and iron, in concentrations from 100 ppm.
  • the present invention has advantages compared to other devices, cells and metal electrodeposition devices existing in the market, among them are:
  • the metal obtained has quality characteristics equivalent to or superior to the conventional process, without requiring the addition of chemical reagents, improving the overall extraction and the kinetics of the process.
  • the energy consumption is lower than that reported in the technical literature indicating a lower specific energy consumption to reach the same current density.
  • the obtaining of metal in the electro-obtaining device is at room temperature, or between the range of 10-60 ° C, without requiring energy consumption to preheat the electrolyte.
  • PeiTnite recover as a reagent, either sulfuric acid (H 2 SO 4 ) or other acids, or bases that have dissolved metals during the leaching of minerals, powders or other present in mining processes, implying an economy of the process with less reagent requirement during the operation.
  • Occupational safety conditions improve as a result of operations that do not expose operators to contact, handling or inhalation of dangerous and corrosive acids or bases.
  • Figure 1 is an exploded perspective view of most of the components of a preferred tubular electrochemical apparatus of this invention.
  • Figure 2 is a cross-sectional view of a further embodiment of the electrochemical apparatus assembled according to the invention.
  • Figures 3, 4 and 5 are cross-sectional views of the moving part of the upper head, the upper multiple support head and the lower head, respectively, according to the invention.
  • Figure 6 is an exploded perspective view of most of the components of an alternative tubular electrochemical apparatus of the invention.
  • the invention consists of a tubular electrochemical apparatus provided with a series of tubular cylindrical elements, union nuts and seals that together form this apparatus.
  • the main supports both lower and upper are the heads (1) and (15), respectively.
  • the lower head (1) which is the base of the apparatus, is composed of two inlets, (2) and (3), which send the solutions of electrochemical fluids pumped from ponds or reservoirs (not shown), anolyte and catholyte, to the annular spaces (5) and (6) inside the apparatus.
  • Said head (1) has a threaded annular shoulder in its inner upper part that joins with the housing (8) that externally has the adjustment screw for joining both the base head of the device (1) and the manifold of fluid outlet or upper head (15), since its diameter is smaller than that of the base and multiple outlet head.
  • the conductive power terminals (9) are arranged on this upper part (8).
  • the electrodes of the apparatus that are its operating base are constituted by the cathode metal electrode (10), (+), stainless steel, metallic copper or other suitable for the metal to be deposited, and by the anodic metal electrode (7), ( -), of lead, lead alloy, stainless steel or other characteristics suitable for the purpose of electro deposition.
  • the cathode electrode (10) is located immediately after the housing (9), of a smaller diameter adjusted to said housing, with no physical separation between them.
  • the metal of the catholytic solution is deposited between the annular space (6) of the cathode and the support (14) of the ion exchange membrane (13), forming a tube along the deposition zone between the head (1) and the multiple support head (15).
  • This electrode (10) is pressurized in such a way that its ends fit fully with the annular portion of the lower head (1) and the upper multiple support head (15).
  • Anodic electrode (7) is located in the 'center of the apparatus, separated along this by the annular support (14) of the ion exchange membrane (13), in which their ends are set and locked in the head (1) and in the upper multiple support head (15). Said anode electrode (7) in its lower part fits the socket (4) central integral part of the lower head (1).
  • a constituent differentiating element of the present invention is the ion exchange membrane (13), which is supported by a membrane carrier gasket (14). Both (13) and (14) are located between the electrodes (10) and (7), establishing the annular spaces through which the catholyte (6) and the anolyte (5) circulate, respectively.
  • the ends of the ionic membrane (13) are adjusted inside the lower head (1) and the upper multiple support head (15), by means of the lower and upper membrane locks (12).
  • the membrane holder (14) slides and fits until the ends of both fit and meet the inner annular portion of said constituent elements of the apparatus.
  • the flange (11) is the element that moves and adjusts through the inside of the housing (9) inside the multiple support (15) allowing an easy external connection to the power supply terminals of the device of the invention.
  • the support head upper manifold (15) has the inner trim flanges, threaded inner bottom threads and the ducts (16) and (17) of the output of electrochemical fluids that move through the annular spaces (6) and (5).
  • the mobile part (19) that has the fluid outlets (16) and (17) is incorporated, with the purpose of easy removal, promoting and allowing extraction of the cathode electrode (10) with the deposited metal.
  • Said piece (19) fits tightly in its diameter and height inside the multiple support (15), having a smooth surface not allowing fluid leaks.
  • the handle (20) easily manipulated, either manually or mechanically operated.
  • the final closure of the apparatus is carried out using the screw-type end cap (22) that fits and closes to the multiple support (15) by screwing (21) which gives it full adherence to the apparatus object of the invention.
  • a DC power source is connected to the apparatus with its positive terminal to the tubular electrode (7), which corresponds to the anode, and its negative terminal attached to the metal tube (10), which corresponds to the cathode, being preferred for this purpose connection type clip that facilitates the assembly and disassembly, and the particular replacement of parts of the lower head (1) and the upper multiple support head (15).
  • the fluids incorporated into the apparatus after a period of time with an expected thickness and weight of metal in the cathode inside the tube (10), the operation is stopped and the deposited metal is removed.
  • FIG 2 this corresponds to a cross-sectional view of the preferred electrochemical apparatus of the invention shown in exploded view in Figure 1. From the viewpoint of construction and easy assembly of the present patent, it is possible to observe the main components of said apparatus, lower support base (1), anodic electrode (7), clamping rings (12), cathode electrode support housing (8), ion exchange membrane (13) and membrane support (14 ). The arrangement of the electrical terminal (9), multiple upper head (15), with the moving part (19), and the closing cover (22) are also shown.
  • 4 and 5 are sectional views of the removable upper part (19), in which the fluid outlet ducts (16) and (17) are observed.
  • the electrochemical apparatus shown in exploded view in Figure 6 is similar to that shown in exploded view in Figure 1, except that the position of the electrodes is reversed, that is, the cathode occupies the anode position and vice versa.
  • Figure 6 shows that the main supports both lower and upper are the heads (41) and (55), respectively.
  • the lower head (41), which is the base of the apparatus, is composed of two inlets, (42) and (43), which send the solutions of electrochemical fluids pumped from ponds or reservoirs (not shown), anolyte and catholyte, to the annular spaces (46) and (45) inside the apparatus.
  • Said head (41) has a threaded annular shoulder in its inner upper part that assembles with the electrode (49), anode, which in its exterior has the adjustment screw for the connection to both the base head of the apparatus (41) and to the fluid outlet manifold or upper head (55), since its diameter is smaller than that of the base head (41) and multiple outlet head (55).
  • the conductive energy terminals (48) are adjusted on the upper part of the base head (41).
  • the electrodes of the apparatus which are its operating base, are constituted by the cathode metal electrode (47), (+), stainless steel, metallic copper or other suitable for the metal to be deposited, and by the anodic metal electrode (49) , (-), of lead, lead alloy, stainless steel or other characteristics suitable for the purpose of electro deposition.
  • the cathode electrode (47) is located in the center of the apparatus, diameter 5 to 20 mm, preferably 10 mm, where the metal of the catholic solution is deposited between the annular space (45) of the cathode and the support (52) of the ion exchange membrane (51), forming a tube along the deposition zone between the head (41) and the multiple support head (55).
  • This electrode (47) is adjusted to pressure in such a way that its ends fit fully with the annular portion of the lower head (41) and the upper multiple support head (55).
  • the anodic electrode (49) is located outside the apparatus, separating the anolyte along it by the annular space (46) of the ion exchange membrane (51) and the membrane support (52), in the which ends are adjusted and fixed in the head (41) and in the upper multiple support head (55).
  • a constitutive differentiating element of the present invention is the ion exchange membrane (51) which is supported by a membrane carrier gasket (52), both (51) and (52), are located between the electrodes (49) and (47). ), establishing the annular spaces (46) and (45), where the anolyte and catholyte circulate, respectively.
  • the ring (48) is the element that moves and adjusts from the top to the lower head (41) allowing an easy external connection to the power supply terminals of the apparatus of the invention .
  • the lower head (41) has the inner trim flanges, threaded with lower inner threads just like the ring (48) so that when moving and screwing the electrode (49), the ducts (42) and (43) of the fluids electrochemicals that move through the annular spaces (46) and (45), are completely encapsulated and forced to move through the aforementioned annular spaces towards the exits (53) and (54).
  • the upper multiple support head (55) the apparatus is completely assembled, since this piece adjusts the apparatus of the invention with the effect of being the upper head thereof, not being subsequently removed except for maintenance cases after ün Prolonged use in electro metal deposition operation.
  • the moving part (57) is incorporated, which has the fluid outlets (53) and (54), whose purpose is its easy removal, promoting and allowing the extraction of the cathode electrode (47) with the deposited metal.
  • Said piece (57) fits tightly in its diameter and height inside the multiple support head (55), having a smooth surface and not allowing fluid leaks.
  • the handle (58) easily manipulated manually or mechanically operated.
  • the final hundred-e of the apparatus is carried out using the terminal cover (60) type thyme that adjusts and closes to the multiple support (55) by screwing (59) which confers total adherence of this to the apparatus object of the invention.
  • a DC power source is connected to the apparatus with its positive terminal to the tubular electrode (49), which corresponds to the anode, and its negative terminal attached to the metal tube (47), which corresponds to the cathode, being preferred for this connection purpose, clip type that facilitates the assembly and disassembly, and the particular replacement of parts of the lower head (41) and the upper multiple support head (55).
  • the fluids incorporated into the apparatus after a period of time with an expected thickness and weight of metal in the cathode inside the tube (47), the operation is stopped and the deposited metal is removed.
  • the apparatus of the invention in any of its versions as indicated in Figure 1 and Figure 6, can operate individually or arranged in an anelo considering the construction of several apparatus arranged in series or in parallel, such that the metal contained in The catholyte can be progressively reduced and the operation optimized as provided by the industry operation.
  • the power supply can be arranged in any serial / parallel arrangement according to the requirements imposed by the liquor processing.
  • the pilot installation of the tubular cell of the invention comprised a set of 4 cells.
  • the cells are tubular with a diameter of 150 mm with the PVC housing (8) with lower supports for entering the solutions (1) and upper outlet (15) of the same material.
  • the electrolyte (catholyte) and solution (anolyte) fluids were concentrically introduced to the annular spaces (6) and (5) by the inlet tubes (2) and (3), respectively, which induced spiral flows from the base to the top of the cell.
  • the cathode (10) and the anode (7) were made of type 316 stainless steel with 0.6 mm thicknesses being the active surface of the cathode of 0.5 m 2 while that of the anode of 0.18 m 2 .
  • the current (9) was applied to the cathode body and the anode. Both electrodes are coaxially separated by the ion exchange membrane (13), the three elements being fixed through the lower (1) and upper (15) heads.
  • the electrolyte and the anolyte solution flowed to the cells in series and came from ponds of 10 m 3 capacity.
  • Tests were carried out continuously between 5-30 g 1 of Cu +2 , periodically checking the contents of Cu +2 and H 2 SC> 4 of the electrolyte. Continuous tests were maintained with fresh electrolyte feed from reserve ponds. At the end of each test, the electrical energy was disconnected, suspending the circulation of electrolyte. The cells were opened and the copper tank manually detached, weighed and labeled for physical and chemical analysis. With the invention, electrolytic copper of constant purity of 99.99% Cu was obtained, soft and dense, without any nodular surface characteristic of the cathodes. The results and operating conditions are shown in the following Table I:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

The invention relates to a tubular electrochemical apparatus for the electrowinning production of metal from solutions containing same. The apparatus is formed by a plastic tube that extends between a pair of end covers made from the same non-conductive material, said end covers including inlet and outlet pipes for anolyte and catholyte that flow between the annular spaces formed between the concentric layers of electrodes separated by an ion exchange membrane. The electrolysed product is discharged from the anolyte or catholyte compartment in the form of a metal or a metallic compound. The ion exchange membrane is housed in the annular space between the anode and the cathode. Once the production cycle is finished, the device is stopped and the apparatus is opened, allowing the metal deposit electrode, cathode, to be lifted, removed and replaced in order for a new production cycle to begin. The apparatus of the invention can operate as an independent unit or as one of a series of apparatuses connected in series or in parallel.

Description

APARATO ELECTROQUÍMICO TUBULAR PARA LA ELECTRO OBTENCIÓN DE METAL CONFORMADO POR CAPAS CONCÉNTRICAS INTERNAS SEPARADAS COMPUESTAS POR ELECTRODOS Y UNA MEMBRANA DE INTERCAMBIO IÓNICO ENTRE ELLOS  TUBULAR ELECTROCHEMICAL DEVICE FOR ELECTRO METAL OBTAINING CONFORMED BY SEPARATE INTERNAL CONCENTRIC COATS COMPOSED BY ELECTRODES AND AN IONIC EXCHANGE MEMBRANE BETWEEN THEM
ARTE PREVIO PRIOR ART
Esta invención está relacionada con aparatos y procesos electroquímicos, y más particularmente aunque no exclusivamente con aparatos electroquímicos que emplean cátodos especiales y con procesos de electrodeposición de metal que se realizan utilizando tales aparatos electroquímicos. This invention relates to electrochemical devices and processes, and more particularly though not exclusively to electrochemical devices that employ special cathodes and metal electrodeposition processes that are performed using such electrochemical devices.
En general, los procesos electroquímicos pueden ser considerados ya sea siendo procesos catódicos o procesos anódicos dependiendo, sobre el electrodo en el cual la reacción más económica ocurre. Muchos de los procesos catódicos involucran electro deposición de un metal o reducción electrolítica de un constituyente del electrolito en la presencia de hidrógeno formado en el cátodo; en la clasificación formal en los procesos catódicos se incluyen solo el galvanizado, la electro refinación y la electro obtención, y eii la actualidad en los procesos catódicos están además la reducción de compuestos orgánicos y la producción de soda caustica. En los procesos anódicos se involucran la descarga de aniones de la solución a un esencialmente estable ánodo o la disolución del ánodo en sí mismo. En la clasificación formal los procesos anódicos son procesos para la producción de cloro y oxígeno y en la última clase son procesos para la recuperación de metales valiosos desde scrap y la refinación o purificación de metales. Detalles de los procesos convencionales de electroquímica en la industria se encuentran en extenso en el libro titulado "Industrial Electrochemical Processes" editado por A. uhn y publicado en 1971 por la editora Elsevier PubUsbing Company, Estados Unidos. In general, electrochemical processes can be considered either as cathodic processes or anodic processes depending on the electrode in which the most economical reaction occurs. Many of the cathodic processes involve electrodeposition of a metal or electrolytic reduction of an electrolyte constituent in the presence of hydrogen formed in the cathode; In the formal classification in the cathodic processes, only galvanizing, electro refining and electro obtaining are included, and the actuality in cathodic processes also includes the reduction of organic compounds and the production of caustic soda. Anodic processes involve the discharge of anions from the solution to an essentially stable anode or the dissolution of the anode itself. In the formal classification the anodic processes are processes for the production of chlorine and oxygen and in the last class they are processes for the recovery of valuable metals from scrap and the refining or purification of metals. Details of conventional electrochemical processes in the industry are found in length in the book entitled "Industrial Electrochemical Processes" edited by A. uhn and published in 1971 by the publisher Elsevier PubUsbing Company, United States.
La electro obtención de metales a nivel industrial se lleva a cabo en celdas denominadas cubas electrolíticas en donde el ánodo y el cátodo son inmersos en el electrolito y están separados cerca de 100 mm uno del otro. El metal es depositado en el cátodo, pero la potencia de la oxidación se pierde a través de la generación de oxígeno el cual es enviado a la atmósfera, dicho oxígeno, junto con el ácido sulfúrico presente en las soluciones, genera neblina ácida (02 + H2SO4). En el caso del cobre estas celdas operan con electrolito purificado proveniente de las plantas de extracción por solvente, en concentraciones de cobre que se mantienen en el rango de 35 - 45 g/1, mediante el cual se producen cátodos comerciales grado A de tamaño con pesos de 42 kg y tamaño de 1 m2. Una alternativa a dicha cuba electrolítica es la celda EMEW cubierta por la US Patent No. 5,529,672 (Jun 25, 1996) "Mineral Recovery Apparatus" que en su propuesta considera una celda tubular en la cual el cátodo es un cilindro de cerca de 100 mm de diámetro por 1 m de largo y un tubo de ánodo a través del centro. Esta celda usa el conocido principio de la turbulencia en un hidrociclón con el electrolito alimentado tangencialmente dentro del cátodo cilindrico. Esta celda ofrece mejor agitación del electrolito comparada con la celda convencional, pero aún suf e del defecto fundamental de la celda convencional que es que las reacciones del ánodo y del cátodo opuestas . están localizadas en la proximidad una de las otras en el mismo contenedor. Esta celda puede trabajar con concentraciones de electrolito para el caso del cobre entre 5-45 g/1, tolerando a la vez altos niveles de contaminantes como cloruro (>10 g/1), fierro férrico (15 g/1), entre otros; estando dentro de sus características que puede operar sin la etapa de SX siempre y cuando el PLS sea de una calidad aceptable en contenidos de impurezas. También es posible su uso para extraer electrolíticamente otros metales, como Zn, Ni y Ag. En general, el cátodo exterior es de acero inoxidable, siendo el ánodo de aleación de base titanio. La cámara de la celda es cerrada por lo que no hay emisiones de neblina ácida pudiendo operar con altas densidades de corriente sobre 1 kA/m2, para la obtención de cátodos grado A, aunque en términos energéticos, su efecto no es significativo. Esta celda produce cátodos cilindricos de escasa aceptación para producción masiva en el mercado, estando orientada en la actualidad a la recuperación de metal de efluentes con contenidos menores de metal. The electro-obtaining of metals at the industrial level is carried out in cells called electrolytic vats where the anode and cathode are immersed in the electrolyte and are separated about 100 mm from each other. The metal is deposited in the cathode, but the oxidation power is lost through the generation of oxygen which is sent to the atmosphere, said oxygen, together with the sulfuric acid present in the solutions, generates acid mist (0 2 + H 2 SO 4 ). In the case of copper, these cells operate with purified electrolyte from solvent extraction plants, in copper concentrations that are maintained in the range of 35 - 45 g / 1, through which commercial grade A cathodes of size are produced with weights of 42 kg and size of 1 m 2 . An alternative to said electrolytic cell is the EMEW cell covered by US Patent No. 5,529,672 (Jun 25, 1996) "Mineral Recovery Apparatus" which in its proposal considers a tubular cell in which the cathode is a cylinder of about 100 mm in diameter by 1 m long and an anode tube through the center. This cell uses the known turbulence principle in a hydrocyclone with the electrolyte fed tangentially into the cylindrical cathode. This cell offers better agitation of the electrolyte compared to the conventional cell, but still suffers from the fundamental defect of the conventional cell which is the opposite anode and cathode reactions. They are located in close proximity to each other in the same container. This cell can work with electrolyte concentrations in the case of copper between 5-45 g / 1, while tolerating high levels of pollutants such as chloride (> 10 g / 1), ferric iron (15 g / 1), among others ; being within its characteristics that can operate without the SX stage as long as the PLS is of an acceptable quality in impurity contents. Its use is also possible to electrolytically extract other metals, such as Zn, Ni and Ag. In general, the outer cathode is made of stainless steel, the anode being titanium-based alloy. The cell chamber is closed so there is no acid mist emission and can operate with high current densities over 1 kA / m 2 , to obtain grade A cathodes, although in energy terms, its effect is not significant. This cell produces cylindrical cathodes of low acceptance for mass production in the market, being currently oriented to the recovery of metal from effluents with lower metal contents.
Otra celda electroquímica circular para recuperar metales de soluciones acuosas de baja concentración de la industria fotográfica es la que se encuentra descrita en la US Patent No; 6,086,733 (Jul 11, 2000) "Electrochemical cell for metal recovery". En dicha patente, para incrementar el área de deposición de metal en el cátodo, éste se envuelve con un material poroso que permite simultáneamente una manipulación de la dirección del fluido y del flujo eléctrico en la vecindad del cátodo. Esto se logra teniendo una geometría circular de la celda con el cátodo en el centro y un ánodo coaxialmente dispuesto alrededor de éste. La distancia entre uno y otro va de 0,1 a 20 cm y el contenedor de ambos o carcasa es de un material no conductor. El soporte no poroso del cátodo tiene aperturas para una distribución uniforme del fluido y para que entregue una caída de presión uniforme al cátodo. El diámetro de los orificios es inferior a 10 mm, pudiendo el ancho y profundidad de los canales ser equivalentes. El cátodo es de acero inoxidable, cobre o níquel, mientras que el ánodo es de cermet, metal ferroso o grafito. Las celdas se disponen de arreglos en serie o en paralelo y los voltajes iniciales de celda son al menos de 0,5 volts. La recuperación de metal se lleva a cabo utilizando densidades de corriente entre 0,01 a 0,2 A/cm2: Aunque la celda se puede usar en la industria minera, tratamiento de aguas servidas, plantas químicas, es preferentemente adecuada en la industria fotográfica para recuperar plata, cobre, plomo, paladio y níquel. Another circular electrochemical cell for recovering metals from low concentration aqueous solutions of the photographic industry is that described in US Patent No; 6,086,733 (Jul 11, 2000) "Electrochemical cell for metal recovery". In said patent, to increase the area of deposition of metal in the cathode, it is wrapped with a porous material that simultaneously allows manipulation of the direction of the fluid and the electrical flow in the vicinity of the cathode. This is achieved by having a circular geometry of the cell with the cathode in the center and an anode coaxially arranged around it. The distance between one and the other ranges from 0.1 to 20 cm and the container of both or housing is a non-conductive material. The non-porous cathode support has openings for a uniform distribution of the fluid and to deliver a uniform pressure drop to the cathode. The diameter of the holes is less than 10 mm, the width and depth of the channels being equivalent. The cathode is made of stainless steel, copper or nickel, while the anode is made of cermet, ferrous metal or graphite. The cells are arranged in series or in parallel and the initial cell voltages are at least 0.5 volts. Metal recovery is carried out using current densities between 0.01 to 0.2 A / cm 2 : Although the cell can be used in the mining industry, sewage treatment, chemical plants, it is preferably suitable in the industry photographic to recover silver, copper, lead, palladium and nickel.
En el estado del arte aparecen descritas otras formas de aparatos elecüOquímicos para soslayar los problemas que presenta el método convencional, los cuales esencialmente comprenden celdas electroquímicas que disponen de cátodos de deposición de distintas configuraciones o que disponen de una membrana permeable a los iones dispuestos entre los electrodos de la celda, en el cual, el cátodo es un electrodo particular que comprende una pluralidad de materiales electro conductores sobre el cual un metal puede ser electro depositado. Estas celdas tratan de obviar la etapa de extracción por solvente, y por ende, pretenden ser aplicadas a soluciones con contenidos altos y bajos de metal disueltos en estos. Asimismo, se ha estudiado el uso de la oxidación de Fe2+ a Fe3+ como reacción anódica en la EO de cobre. Sin embargo, el uso de esta reacción anódica en la EO convencional conlleva a una disminución de la eficiencia de corriente catódica, debido a que una parte de la comente se consume en la reducción de los iones de Fe3+ que se encuentran en las cercanías del cátodo. Por ello, las membranas de intercambio iónico son interesantes en esta técnica, ya que se pueden separar dos soluciones, una con los iones de cobre (catolito) y otra conteniendo iones de Fe (anolito), conservando la conductividad eléctrica entre ellas por medio del transporte selectivo de especies en solución y permitiendo que se lleve a cabo la electro deposición del cobre. Other forms of electrochemical devices are described in the state of the art to avoid the problems presented by the conventional method, which essentially comprise electrochemical cells that have deposition cathodes of different configurations or which have an ion permeable membrane disposed between the electrodes of the cell, in which the cathode is a particular electrode comprising a plurality of electro conductive materials on which a metal can be electro deposited. These cells try to obviate the solvent extraction stage, and therefore, they are intended to be applied to solutions with high and low metal contents dissolved in them. Likewise, the use of the oxidation of Fe2 + to Fe3 + as an anodic reaction in copper EO has been studied. However, the use of this anodic reaction in conventional EO leads to a decrease in the efficiency of cathodic current, because a part of the current is consumed in the reduction of Fe3 + ions found in the vicinity of the cathode . Therefore, ion exchange membranes are interesting in this technique, since two solutions can be separated, one with copper ions (catholyte) and one containing Fe ions (anolyte), preserving the electrical conductivity between them by means of the selective transport of species in solution and allowing the electrodeposition of copper to be carried out.
Bajo lo anterior, se han desarrollado celdas alternativas a las convencionales, empleando membranas como las celdas de lecho fluidizado. La patente U.S. Pat. No. 7,494,592 B2 (Feb. 24, 2009), describe una celda denominada "Spouted Bed", celda que mejora ostensiblemente la condición lu^rodinárnica. Estas celdas de lecho fluidizado están formadas en la mayoría de los diseños por compartimentos independientes para anolito y catolito, separados entre sí por membranas de diafragma. Dichas membranas de intercambio iónico sirven de soporte para el lecho. El metal que forma el cátodo debe ser el mismo que el que se desea recuperar, debido a que las partículas iniciales pasan a ser parte del producto final; por esto, en el caso del cobre, esta celda posee un lecho de partículas de cobre en el compartimento del catolito, el cual es puesto en suspensión por un flujo ascendente de solución que ingresa a la celda a través de un diafragma o de un distribuidor. Las partículas de cobre se polarizan catódicamente mediante un alimentador de corriente inserto en el lecho, y el circuito de la celda se completa con un ánodo de material para la reacción de oxidación presente en el compartimento del anolito. El cuerpo de este tipo de celdas puede ser rectangular o cilindrico, pero, en ambos casos, la alimentación del electrolito se realiza por la parte inferior del cuerpo, mientras que la descarga del mismo, se lleva a cabo por rebalse en la parte superior. Este tipo de celdas, se caracteriza por tener una gran superficie catódica, lo que les permite disponer de un área mayor para la deposición de cobre y operar a densidades de corriente más bajas, lo que conlleva a una reducción en la polarización del cátodo. Por otra parte, la fluidización del lecho, genera una alta velocidad relativa entre la solución y el electrodo, con lo cual se incrementa la transferencia de masa. En este último caso, el cuerpo de la celda puede ser cilindrico o de geometría plana. Under the above, alternative to conventional cells have been developed, using membranes such as fluidized bed cells. U.S. Patent Pat. No. 7,494,592 B2 (Feb. 24, 2009), describes a cell called "Spouted Bed", a cell that significantly improves the lumbar spinal condition. These fluidized bed cells are formed in most designs by separate compartments for anolyte and catholyte, separated from each other by diaphragm membranes. Said ion exchange membranes serve as support for the bed. The metal that forms the cathode must be the same as the one to be recovered, because the initial particles become part of the final product; Therefore, in the case of copper, this cell has a bed of copper particles in the catholyte compartment, which is suspended by an upward flow of solution that enters the cell through a diaphragm or a distributor . The copper particles are cathodically polarized by a current feeder inserted into the bed, and the cell circuit is completed with an anode of material for the oxidation reaction present in the anolyte compartment. The body of this type of cells can be rectangular or cylindrical, but in both cases, the electrolyte is fed through the lower part of the body, while the discharge of the same is carried out by overflowing in the upper part. This type of cell is characterized by having a large cathodic surface, which allows them to have a larger area for copper deposition and to operate at lower current densities, which leads to a reduction in the polarization of the cathode. On the other hand, the fluidization of the bed generates a high relative speed between the solution and the electrode, thereby increasing the mass transfer. In the latter case, the cell body can be cylindrical or flat geometry.
Cabe destacar que este tipo de celdas de lecho fluidizado presentan inconvenientes, tales como, problemas de resistencia mecánica del material que soporta al lecho, extensas zonas de disolución en el lecho (debido a la distribución del potencial), elevados costos de bombeo para fluidizar altas cantidades de partículas y tendencia a ensuciar la membrana generándose una capa pasiva. Estos alcances son los que han impedido que este tipo de celdas se masifique a nivel industrial. It should be noted that this type of fluidized bed cells have drawbacks, such as problems of mechanical resistance of the material that supports the bed, large areas of dissolution in the bed (due to the distribution of the potential), high pumping costs to fluidize high amounts of particles and tendency to dirty the membrane generating a passive layer These scopes are the ones that have prevented this type of cell from becoming massively industrialized.
Del análisis de la tecnología se observa que al utilizar celdas cerradas se resuelve el tema de la generación de neblina acida y emisión de gases, se mejoran las condiciones hidrodinámicas y se puede incrementar la densidad de comente; solo con el uso de membranas de intercambio iónico se pueden separar las reacciones anódica y catódica que ocurren en una celda, pudiendo a la vez trabajar con soluciones en alta y baja concentración. Siguiendo esta línea, la presente patente propone un aparato de electro obtención de metal de tipo tubular, basado en la utilización de membranas de intercambio iónico, que permite ser aplicada en la obtención de una gran variedad de metales disueltos en soluciones de diverso origen o bien orientada a la producción de compuestos o materiales requeridos por la industria metalúrgica para la recuperación de metal. From the analysis of the technology it is observed that when using closed cells, the issue of acid mist generation and gas emission is resolved, hydrodynamic conditions are improved and the density of the comment can be increased; only with the use of ion exchange membranes can the anodic and cathodic reactions that occur in a cell be separated, while being able to work with solutions in high and low concentration. Following this line, the present patent proposes an electro-obtaining apparatus of tubular type metal, based on the use of ion exchange membranes, which allows it to be applied in obtaining a large variety of metals dissolved in solutions of different origin or oriented to the production of compounds or materials required by the metallurgical industry for the recovery of metal.
Ninguna de las tecnologías propuestas, salvo la que se explícita en la presente patente, satisface la necesidad simultánea de disponer de una celda económica que permita la recuperación de metal ya sea en altas o bajas concentraciones, con altas tasas de recuperación de metal, gran capacidad de carga de metal, simplicidad en el diseño y uso, fácil remoción del metal y diseño compacto del equipo; y que además otorga garantías de ser amigable con el medio ambiente. None of the proposed technologies, except for what is explicitly stated in this patent, satisfies the simultaneous need to have an economic cell that allows the recovery of metal either in high or low concentrations, with high metal recovery rates, large capacity metal loading, simplicity in design and use, easy removal of metal and compact design of the equipment; and that also grants guarantees of being friendly to the environment.
DESCRIPCION DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
El corazón de la presente invención es el uso de la membrana de intercambio iónico y la manipulación de los flujos eléctricos y de fluidos en la vecindad del cátodo, de tal manera que el metal a ser cosechado sea electro depositado en la forma de un cilindro, hueco o sólido. Una fuerte interacción entre la dirección del flujo del fluido y la dirección del flujo de electrones es utilizada para maximizar el área superficial del cátodo y por ende, la deposición de metal. The heart of the present invention is the use of the ion exchange membrane and the manipulation of electrical and fluid flows in the vicinity of the cathode, such that the metal to be harvested is electro deposited in the form of a cylinder, hollow or solid. A strong interaction between the direction of the fluid flow and the direction of the electron flow is used to maximize the surface area of the cathode and hence the deposition of metal.
La presente patente propone un nuevo aparato de electro obtención de metales o compuestos tipo tubular que está constituido por dos cámaras unitarias que operan independientemente a uniformes y elevados caudales de fluido. Así, en cada una de las cámaras se dispone de un ánodo o de un cátodo de superficie variable extendida a lo largo del tubo pudiendo diseñarse éstos de acuerdo a los requerimientos industriales, ya sea de 0,20, 0,50, 1 m2 o superior. Asimismo, cada cámara está compuesta con una membrana de intercambio iónico de separación entre los electrodos, también de diseño tubular, para formar alternativamente compartimentos por donde circulan el anolito o el catolito. The present patent proposes a new electro-obtaining apparatus for metals or tubular type compounds that is constituted by two unit chambers that operate independently at uniform and high fluid flow rates. Thus, in each of the chambers there is an anode or a cathode of variable surface extended along the tube, which can be designed according to industrial requirements, either 0.20, 0.50, 1 m 2 or higher. Also, each chamber is composed of an ion exchange membrane separating the electrodes, also of tubular design, to alternatively form compartments through which the anolyte or the catholyte circulate.
El proceso de deposición del metal se realiza por medio de energía eléctrica, aplicada en los electrodos del aparato, utilizando un rectificador de corriente, permitiendo que se deposite el metal. Así, uno de los objetivos de la presente invención, es proporcionar una construcción de un aparato tubular simplificado de producción electrolítica de metal, de aquella clase que comprende una serie de aparatos conectados en serie o en paralelo, según los requerimientos de la industria, de construcción especialmente diseñada para circulación de electrolito, resistencia a la corrosión a altas temperaturas, accesibilidad para la reparación y fácil cosecha del metal. The metal deposition process is carried out by means of electrical energy, applied to the electrodes of the device, using a current rectifier, allowing the deposition of the metal. Thus, one of the objectives of the present invention is to provide a construction of a simplified tubular metal electrolytic production apparatus, of that class comprising a series of apparatus connected in series or in parallel, according to the requirements of the industry, of Specially designed construction for electrolyte circulation, high temperature corrosion resistance, accessibility for repair and easy metal harvesting.
El aparato está conformado por una carcasa o celda de un material no conductor, el cual, en su interior, contiene los electrodos, ánodo y cátodo, separados por la membrana de intercambio iónico, a distancias que varían entre 0,1 a 20 cm (preferentemente de 3 a 8 cm). El cátodo de geometría circular y tubular puede ser configurado de dos formas en relación al ánodo: cátodo en el centro del aparato con el ánodo dispuesto coaxialmente-.alrededor de él, o bien, el ánodo centrado con el cátodo dispuesto coaxialmente alrededor de éste.  The apparatus consists of a housing or cell of a non-conductive material, which, inside, contains the electrodes, anode and cathode, separated by the ion exchange membrane, at distances ranging from 0.1 to 20 cm ( preferably 3 to 8 cm). The cathode of circular and tubular geometry can be configured in two ways in relation to the anode: cathode in the center of the apparatus with the anode coaxially arranged around it, or, the anode centered with the cathode coaxially arranged around it.
La carcasa exterior tubular está conformada de un material impermeable no conductor, estando los cabezales inferior y superior conformados con tubos de entrada y salida de los fluidos, anolito y catolito. Esta pared externa tubular puede ser construida de diferentes materiales no porosos estructuralmente fuerte, que incluye pero no limita a polipropileno, polietileno de alta densidad u otros. Este debe ser de un espesor apropiado que asegure resistencia suficiente y durabilidad en su uso. Las entradas y salidas están diseñadas de manera tal que permitan una distribución uniforme de los fluidos y se alcance una caída de presión uniforme a lo largo de los cilindros que constituyen la superficie del cátodo y del ánodo. A través del cabezal superior se disponen las conexiones eléctricas para el ánodo y el cátodo por bornes u otro dispositivo alimentador de corriente. Con este arreglo se puede aplicar una alta densidad de corriente a cada aparato que pasa a constituir una celda de deposición de metal y al mismo tiempo pasar un alto flujo vertical de electrolito (catolito) y de solución anódica (anolito). The tubular outer shell is formed of a non-conductive waterproof material, the lower and upper heads being formed with fluid inlet and outlet tubes, anolyte and catholyte. This tubular outer wall can be constructed of different structurally strong non-porous materials, which includes but is not limited to polypropylene, high density polyethylene or others. This must be of an appropriate thickness that ensures sufficient strength and durability in its use. The inlets and outlets are designed in such a way that they allow a uniform distribution of the fluids and a uniform pressure drop is achieved along the cylinders that constitute the cathode and anode surface. Through the upper head, the electrical connections for the anode and cathode are provided by terminals or other power supply device. With this arrangement, a high current density can be applied to each apparatus that becomes a metal deposition cell and at the same time pass a high vertical flow of electrolyte (catholyte) and anodic solution (anolyte).
Dé acuerdo a la invención, las entradas y salidas de las soluciones pueden ser dispuestas en cualquier dirección relativa a la dimensión alargada de la carcasa. Sin embargo, se prefiere que las entradas de fluido estén dispuestas adyacentes a un primer extremo de la carcasa alineado sustancialmente perpendicular al eje de la carcasa alargada, y tangencial a. la cavidades anulares formada entre los electrodos y la' membrana iónica. Esta disposición induce a que el flujo sea en espiral a través de las cavidades anulares considerándose que promueve la deposición de metal durante la electro deposición. Adecuadamente, las salidas de fluidos están dispuestas en una configuración similar a la entrada y a distancia del mismo de tal manera que el fluido de flujo en espiral del licor mantiene sus características fluido dmámicas. According to the invention, the inputs and outputs of the solutions can be arranged in any direction relative to the elongated dimension of the housing. However, it is preferred that the fluid inlets are disposed adjacent to a first end of the housing aligned substantially perpendicular to the axis of the elongated housing, and tangential to. the annular cavities formed between the electrodes and the 'ion membrane. This arrangement induces the flow to be spiral through the annular cavities being considered to promote metal deposition during electro deposition. Suitably, the fluid outlets are arranged in a configuration similar to the inlet and distance thereof in such a way that the spiral flow fluid of the liquor maintains its dynamic fluid characteristics.
Las entradas de los fluidos pueden ser conectadas a las salidas de un segundo aparato de electro deposición de metal de forma tal que los fluidos pueden pasar en serie a través de ambos aparatos, permitiendo la extracción progresiva del metal desde el fluido de interés. Una batería de aparatos puede ser formada con una pluralidad de aparatos en serie, tal que la extracción desde un volumen determinado de solución, en un período sostenido de tiempo, permita la extracción de una proporción significativa de metal. The fluid inlets can be connected to the outputs of a second metal electrodeposition apparatus so that the fluids can pass in series through both devices, allowing the progressive extraction of the metal from the fluid of interest. A battery of devices may be formed with a plurality of devices in series, such that the extraction from a given volume of solution, in a sustained period of time, allows the extraction of a significant proportion of metal.
Otro objeto de la presente invención es proporcionar un aparato de electro obtención sellado, que mantiene la distribución uniforme del líquido dentro de las cámaras que se aseguran bajo condiciones de presión con los ensambles y sellos correspondientes para la prevención completa de fugas de líquido fuera de las cámaras, y que además sea fácilmente ensamblado o desarmado. En el caso que la extracción de metal o producto compuesto de las reacciones químicas de electro obtención genere gases, como sub producto, un sistema de separación de gases se instala ex profeso en las cañerías de salida de los aparatos de electro deposición de tal manera que estos sean venteados antes que entren a los aparatos siguientes o de forma preferente en un grupo definido de ellos. El efecto de separación de los gases se incrementa cuando se proporciona una cámara de separación en la cual la salida tiene el mismo diámetro que la cañería de conducción de la solución y tiene un mínimo de altura equivalente a la mitad del diámetro de la cañería. Another object of the present invention is to provide a sealed electro obtaining apparatus, which maintains the uniform distribution of the liquid within the chambers that are secured under pressure conditions with the corresponding assemblies and seals for the complete prevention of liquid leaks outside the cameras, and also be easily assembled or disassembled. In the event that the extraction of metal or product composed of the electro-chemical chemical reactions generates gases, as a by-product, a gas separation system is installed specifically in the outlet pipes of the electrodeposition apparatus in such a way that these are vented before they enter the following devices or preferably in a defined group of them. The effect of gas separation is increased when a separation chamber is provided in which the outlet has the same diameter as the conduit pipe of the solution and has a minimum height equivalent to half the diameter of the pipe.
Bajo el arreglo antes descrito, un flujo uniforme de electrolito anolito o catolito circula por cada cámara desde los orificios inferiores hacia los superiores, donde los electrodos se encuentran polarizados positiva (+) o negativamente (-) por efecto del campo eléctrico aplicado, ocurriendo la electro deposición en el cátodo. Dicho flujo es esencialmente estable durante la circulación, libre de interferencias, proporcionando simultáneamente, suficiente tiempo de residencia para la ocurrencia de las reacciones químicas y la electro deposición de metal. Las dimensiones y posiciones de los orificios entregan una baja resistencia al flujo, siendo el volumen estable, conducente a una operación fácilmente controlada con rnínima variación de los parámetros operacionales. El espesor de metal depositado en la placa catódica, aunque disminuye el volumen de circulación de catolito, no afecta la calidad de éste ni la operación de la celda por la condición Iridrodinámica de diseño de la misma. Under the arrangement described above, a uniform flow of anolyte or catholyte electrolyte circulates through each chamber from the lower to the upper holes, where the electrodes are positively (+) or negatively (-) polarized by the effect of the applied electric field, with the electro deposition in the cathode. Said flow is essentially stable during circulation, free of interference, simultaneously providing sufficient residence time for the occurrence of chemical reactions and electrodeposition of metal. The dimensions and positions of the holes provide a low resistance to flow, the volume being stable, leading to an operation easily controlled with minimal variation of the operational parameters. The thickness of metal deposited in the cathodic plate, although the volume of circulation of catholyte decreases, does not affect the quality of the latter or the operation of the cell due to the Iridrodynamic condition of its design.
De acuerdo a la invención, el aparato puede ser adaptado para la extracción electrolítica de metal, compuestos metálicos u otro productos en forma de partículas mediante cambios en la disposición de los procedimientos y condiciones de funcionamiento de éste, que incluyen la velocidad del fluido y la densidad de corriente del cátodo, dentro de los límites deseados en los que algunos de los materiales de electrodeposición, se depositan sobre el cátodo en forma de partículas las que son arrastradas a través del aparato con el flujo de líquido de tal manera que pueden ser recogidas en un punto de captura convenientemente alejado de la parte cilindrica de la carcasa. El sistema particular de recolección de partículas puede incluir medios de separación gravitacional, centrífugos u otros de clasificación de las mismas. According to the invention, the apparatus can be adapted for the electrolytic extraction of metal, metal compounds or other products in the form of particles by changes in the arrangement of the processes and operating conditions thereof, which include the speed of the fluid and the current density of the cathode, within the desired limits in which some of the electrodeposition materials, are deposited on the cathode in the form of particles which are dragged through the apparatus with the flow of liquid in such a way that they can be collected at a capture point conveniently away from the cylindrical part of the housing. The particular particle collection system may include gravitational, centrifugal or other means of classifying them.
En la realización de la presente invención, el aparato de electro obtención dispone de un dispositivo de extracción del metal depositado en el cátodo, de tal manera que al detener la operación, estos se despegan del electrodo catódico en el evento que se utilice dicha opción o se extrae a la forma de cilindro sólido. Dicho mecanismo pennite que estos sean levantados por sobre el aparato. Las tapas del aparato están fabricadas de material plástico resistente a la corrosión de los ácidos, mientras que las placas de los electrodos de metal, son de acero inoxidable, plomo u otro requerido según se traten de cátodo u ánodo, respectivamente. También estos tipos de metal están condicionados al tipo de metal disuelto en la solución que se quiere depositar y extraer de la solución. Dicha solución puede ser de carácter ácída, básica o neutra. In the embodiment of the present invention, the electro obtaining apparatus has a device for extracting the metal deposited in the cathode, so that when the operation is stopped, they detach from the cathode electrode in the event that said option is used or It is extracted in the form of a solid cylinder. Said pennite mechanism that these are lifted above the device. The covers of the device are made of acid-resistant plastic material, while the metal electrode plates are made of stainless steel, lead or other required depending on whether they are cathode or anode, respectively. These types of metal are also conditioned to the type of metal dissolved in the solution to be deposited and extracted from the solution. Said solution may be acidic, basic or neutral.
Los fluidos que pueden ser tratados usando la presente invención pueden variar en el tipo y concentración de los iones metálicos a ser removidos. Tales fluidos por lo general son de tipo acuoso en naturaleza aunque algunos de ellos pueden contener varios solventes orgánicos. Las fuentes de los fluidos pueden ser de reacciones industriales, procesos químicos y mineros, y otros efluentes de descarte, plantas de tratamiento de aguas o municipales, estanques o lagos. La presente invención es útil entonces, para recuperar metales de la minería, galvanoplastia, fundiciones, foto procesamiento, u otros procesos industriales, para recuperar metales como plata, oro, cobre, plomo, platino, teluro, níquel y hierro, en concentraciones desde 100 ppm.  The fluids that can be treated using the present invention may vary in the type and concentration of the metal ions to be removed. Such fluids are usually of the aqueous type in nature although some of them may contain several organic solvents. The sources of the fluids can be from industrial reactions, chemical and mining processes, and other wastewater effluents, water or municipal treatment plants, ponds or lakes. The present invention is then useful, to recover metals from mining, electroplating, foundries, photo processing, or other industrial processes, to recover metals such as silver, gold, copper, lead, platinum, tellurium, nickel and iron, in concentrations from 100 ppm.
La presente invención tiene ventajas comparado con otros aparatos, celdas y dispositivos de electrodeposición de metal existentes en el mercado, entre ellas se destacan: The present invention has advantages compared to other devices, cells and metal electrodeposition devices existing in the market, among them are:
1. La prescindencia de etapas de concentración previas a la operación de electro deposición de metal, recuperando metales desde soluciones directamente de la fuente de origen en un amplio rango de concentración, pH, temperatura y flujo otorgándole una gran flexibilidad operacional. 1. The lack of concentration stages prior to the operation of electrodeposition of metal, recovering metals from solutions directly from the source of origin in a wide range of concentration, pH, temperature and flow, giving it great operational flexibility.
2. El metal obtenido presenta características de calidad equivalentes o superiores al proceso convencional, sin requerir la adición de reactivos químicos, mejorando la extracción global y la cinética del proceso.  2. The metal obtained has quality characteristics equivalent to or superior to the conventional process, without requiring the addition of chemical reagents, improving the overall extraction and the kinetics of the process.
3. Es posible operar con mayores densidades de corriente que el proceso convencional (>400 A/m2) lo que redunda en un mayor depósito de metal por área efectiva en un menor tiempo de proceso. Esto, producto de las condiciones mdrodinámicas de la celda que permite trabajar con altos caudales de solución. 3. It is possible to operate with higher current densities than the conventional process (> 400 A / m 2 ) which results in a larger metal deposit per effective area in a shorter process time. This, product of the mdrodynamic conditions of the cell that allows working with high flow rates of solution.
4. Al ser un aparato electrolítico completamente cerrado y sellado, no emite gases contaminantes ni neblina acida a la atmósfera, sumado ai hecho que por su construcción no tiene derrame de líquidos, condiciones ambas que mejoran considerablemente el área de trabajo y el circundante a la faena.  4. Being an electrolytic apparatus completely closed and sealed, it does not emit pollutant gases or acid mist into the atmosphere, added to the fact that due to its construction it does not have liquid spillage, both conditions that considerably improve the work area and the surrounding area. slaughter
5. El consumo de energía es inferior al reportado en la literatura técnica indicando un menor consumo de energía específica para alcanzar igual densidad de corriente.  5. The energy consumption is lower than that reported in the technical literature indicating a lower specific energy consumption to reach the same current density.
6. Permite generar Fe+3 f reactivo esencial para la lixiviación de minerales y estabilización de impurezas como As+S a la forma de FeAs04. 6. It allows to generate Fe +3 f essential reagent for mineral leaching and stabilization of impurities such as As + S in the form of FeAs0 4 .
7. La obtención de metal en el dispositivo de electro obtención es a temperatura ambiente, o entre el rango de 10-60 °C, sin requerir consumo de energía para precalentar el electrolito.  7. The obtaining of metal in the electro-obtaining device is at room temperature, or between the range of 10-60 ° C, without requiring energy consumption to preheat the electrolyte.
8. PeiTnite recuperar como reactivo, ya sea el ácido sulfúrico (H2SO4) u otros ácidos, o bases que han disuelto los metales durante la lixiviación de minerales, polvos u otros presentes en los procesos mineros, implicando una economía del proceso con menor requerimiento del reactivo durante la operación. 8. PeiTnite recover as a reagent, either sulfuric acid (H 2 SO 4 ) or other acids, or bases that have dissolved metals during the leaching of minerals, powders or other present in mining processes, implying an economy of the process with less reagent requirement during the operation.
9. Las condiciones de seguridad laboral mejoran como resultado de operaciones que no exponen a los operadores al contacto, manejo ni inhalación de ácidos o bases peligrosos y corrosivos.  9. Occupational safety conditions improve as a result of operations that do not expose operators to contact, handling or inhalation of dangerous and corrosive acids or bases.
10. Es una alternativa económicamente viable de electro deposición de metales, principalmente de cobre, oro, plata y otros metales, obviando procesos de concentración, aditivos orgánicos y otros reactivos químicos, algunos de ellos incluso cancerígenos.  10. It is an economically viable alternative of electro deposition of metals, mainly copper, gold, silver and other metals, avoiding concentration processes, organic additives and other chemical reagents, some of them even carcinogenic.
11. Puede operar eléctricamente en modo intensiostático (modo de operación convencional actual en EO de cobre) o potenciostático según se requiera.  11. It can operate electrically in intensiostatic mode (current conventional operating mode in copper EO) or potentiostatic as required.
Mayores detalles de la práctica de esta invención pueden observarse teniendo en consideración las realizaciones preferentes que se muestran sobre el aparato electroquímico en la Figuras 1 a 6 y la siguiente explicación de las mismas. Estas formas de realización ilustradas están destinadas a ser representativas y no limitantes de la presente invención en modo alguno. Further details of the practice of this invention can be observed taking into consideration the preferred embodiments shown on the electrochemical apparatus in Figures 1 to 6 and the following explanation thereof. These illustrated embodiments are intended to be representative and not limiting of the present invention in any way.
La Figura 1 es una vista en perspectiva en despiece ordenado de la mayoría de los componentes de un aparato electroquímico tubular preferido de esta invención. Figure 1 is an exploded perspective view of most of the components of a preferred tubular electrochemical apparatus of this invention.
La Figura 2 es una vista en sección transversal de una realización adicional del aparato electro químico ensamblado según la invención. Figure 2 is a cross-sectional view of a further embodiment of the electrochemical apparatus assembled according to the invention.
Las Figuras 3, 4 y 5 son vistas en sección transversal de la pieza móvil del cabezal superior, el cabezal superior soporte múltiple y del cabezal inferior, respectivamente, según la invención. Figures 3, 4 and 5 are cross-sectional views of the moving part of the upper head, the upper multiple support head and the lower head, respectively, according to the invention.
La Figura 6 es una vista en perspectiva en despiece ordenado de la mayoría de los componentes de un aparato electoquímico tubular alternativo de la invención. Figure 6 is an exploded perspective view of most of the components of an alternative tubular electrochemical apparatus of the invention.
Descripción de la Invención según las Figuras. Description of the Invention according to the Figures.
Tal como se puede apreciar en la Figura 1 la invención consiste en un aparato electroquímico tubular dotado de una serie de elementos cilindricos tubulares, tuercas de unión y sellos que en su conjunto ensamblado conforman dicho aparato. Considerando el despiece del mismo, se observa que los soportes principales tanto inferior como superior lo constituyen los cabezales (1) y (15), respectivamente. El cabezal inferior (1), que es la base del aparato, está compuesto de dos entradas, (2) y (3), que envían las soluciones de fluidos electroquímicas bombeadas desde estanques o reservónos (no mostrados), anolito y catolito, a los espacios anulares (5) y (6) dentro del aparato. Estas entradas (2) y (3) están diseñadas para una distribución radial uniforme y de alta turbulencia de los fluidos, los que se incorporan al cabezal de forma directa o bien tangencial desde los estanques dispuestos para tal efecto, siendo sus componentes diseñados por separado o como una parte integral del mismo cabezal. Dicho cabezal (1) dispone en su parte superior interior de un resalte anular roscado que ensambla con la carcasa (8) que en su exterior cuenta con el enroscado de ajuste para la unión tanto al cabezal base del aparato (1) como al múltiple de salida de los fluidos o cabezal superior (15), dado que su diámetro es inferior a aquel del cabezal base y múltiple de salida. As can be seen in Figure 1, the invention consists of a tubular electrochemical apparatus provided with a series of tubular cylindrical elements, union nuts and seals that together form this apparatus. Considering the exploded view, it can be seen that the main supports both lower and upper are the heads (1) and (15), respectively. The lower head (1), which is the base of the apparatus, is composed of two inlets, (2) and (3), which send the solutions of electrochemical fluids pumped from ponds or reservoirs (not shown), anolyte and catholyte, to the annular spaces (5) and (6) inside the apparatus. These inputs (2) and (3) are designed for radial distribution uniform and high turbulence of the fluids, which are incorporated directly into the head or tangentially from the ponds arranged for this purpose, their components being designed separately or as an integral part of the same head. Said head (1) has a threaded annular shoulder in its inner upper part that joins with the housing (8) that externally has the adjustment screw for joining both the base head of the device (1) and the manifold of fluid outlet or upper head (15), since its diameter is smaller than that of the base and multiple outlet head.
La carcasa (8), cubierta exterior tubular en su armado por su diámetro menor se desliza y ensambla al cabezal (1) y al cabezal múltiple de salida (15), es una cubierta de material no conductor, PVC u otro y constituye la cubierta protectora del aparato. Sobre esta carcasa (8) en su parte superior se disponen los bornes conductores de energía (9). The casing (8), tubular outer cover in its assembly by its smaller diameter, slides and assembles to the head (1) and the multiple output head (15), is a cover of non-conductive material, PVC or other and constitutes the cover protective device. The conductive power terminals (9) are arranged on this upper part (8).
Los electrodos del aparato que son su base de funcionamiento están constituidos por el electrodo metálico catódico (10), (+), de acero inoxidable, cobre metálico u otro adecuado al metal a depositar, y por el electrodo metálico anódico (7), (-), de plomo, aleación de plomo, acero inoxidable u otro de características adecuadas al propósito de la electro deposición. El electrodo catódico (10) se localiza inmediatamente a continuación de la carcasa (9), de un diámetro inferior ajustado a dicha carcasa, no existiendo separación física entre ellos. En la cara interior del electrodo catódico (10) se deposita el metal de la solución catolítica entre el espacio anular (6) del cátodo y el soporte (14) de la membrana de intercambio iónico (13), formando un tubo a lo largo de la zona de deposición entre el cabezal (1) y el cabezal soporte múltiple (15). Este electrodo (10) se ajusta a presión de tal manera que sus extremos calzan a tope con la porción anular del cabezal inferior (1) y el cabezal soporte múltiple superior (15). El electrodo anódico (7) se ubica en el 'centro del aparato, separado a lo largo de este por el espacio anular del soporte (14) de la membrana de intercambio iónico (13), en el cual sus extremos se ajustan y fijan en el cabezal (1) y en el cabezal soporte múltiple superior (15). Dicho electrodo anódico (7) en su parte inferior se ajusta al zoquete (4) parte integrante central del cabezal inferior (1). The electrodes of the apparatus that are its operating base are constituted by the cathode metal electrode (10), (+), stainless steel, metallic copper or other suitable for the metal to be deposited, and by the anodic metal electrode (7), ( -), of lead, lead alloy, stainless steel or other characteristics suitable for the purpose of electro deposition. The cathode electrode (10) is located immediately after the housing (9), of a smaller diameter adjusted to said housing, with no physical separation between them. In the inner face of the cathode electrode (10) the metal of the catholytic solution is deposited between the annular space (6) of the cathode and the support (14) of the ion exchange membrane (13), forming a tube along the deposition zone between the head (1) and the multiple support head (15). This electrode (10) is pressurized in such a way that its ends fit fully with the annular portion of the lower head (1) and the upper multiple support head (15). Anodic electrode (7) is located in the 'center of the apparatus, separated along this by the annular support (14) of the ion exchange membrane (13), in which their ends are set and locked in the head (1) and in the upper multiple support head (15). Said anode electrode (7) in its lower part fits the socket (4) central integral part of the lower head (1).
Un elemento diferenciador constitutivo de la presente invención, es la membrana de intercambio iónico (13), que esta soportada por un empaque porta membrana (14). Ambos (13) y (14) se localizan entre los electrodos (10) y (7), estableciendo los espacios anulares por donde circulan el catolito (6) y el anolito (5), respectivamente. Al efectuar la unión, los extremos de la membrana iónica (13) se ajustan dentro del cabezal inferior (1) y el cabezal soporte múltiple superior (15), mediante los seguros de membrana inferior y superior (12). La porta membrana (14) se desliza y encaja hasta que los extremos de ambos calcen y se encuentren a tope con la porción anular interior de dichos elementos constitutivos del aparato. A constituent differentiating element of the present invention is the ion exchange membrane (13), which is supported by a membrane carrier gasket (14). Both (13) and (14) are located between the electrodes (10) and (7), establishing the annular spaces through which the catholyte (6) and the anolyte (5) circulate, respectively. When joining, the ends of the ionic membrane (13) are adjusted inside the lower head (1) and the upper multiple support head (15), by means of the lower and upper membrane locks (12). The membrane holder (14) slides and fits until the ends of both fit and meet the inner annular portion of said constituent elements of the apparatus.
Por otra parte, el reborde (11) es el elemento que se desplaza y ajusta por la parte interior de la carcasa (9) al interior del soporte múltiple (15) permitiendo una fácil conexión exterior a los bornes de alimentación eléctrica del aparato de la invención. Así, el cabezal soporte múltiple superior (15) cuenta con los rebordes interiores de ajuste, enroscados de hilos interiores inferiores y los ductos (16) y (17) de salida de los fluidos electroquímicos que se desplazan por los espacios anulares (6) y (5). Al instalar el cabezal soporte múltiple superior (15), el aparato queda completamente ensamblado, ya que esta pieza ajusta el aparato de la invención con el efecto de ser el cabezal superior del mismo, no siendo posteriormente removido, excepto para casos de mantención luego de un uso prolongado en operación de electro deposición de metal. On the other hand, the flange (11) is the element that moves and adjusts through the inside of the housing (9) inside the multiple support (15) allowing an easy external connection to the power supply terminals of the device of the invention. Thus, the support head upper manifold (15) has the inner trim flanges, threaded inner bottom threads and the ducts (16) and (17) of the output of electrochemical fluids that move through the annular spaces (6) and (5). When installing the upper multiple support head (15), the apparatus is completely assembled, since this piece adjusts the apparatus of the invention with the effect of being the upper head thereof, not being subsequently removed, except for maintenance cases after Prolonged use in electro electrodeposition operation.
Por sobre el múltiple de salida (15), como componente del cabezal, se incorpora la pieza móvil (19) que dispone de las salidas de fluidos (16) y (17), teniendo por finalidad su fácil remoción, promoviendo y permitiendo la extracción del electrodo catódico (10) con el metal depositado. Dicha pieza (19) calza ajustadamente en su diámetro y altura en el interior del soporte múltiple (15), teniendo una superficie suave no permitiendo fugas de fluidos. Para su remoción dispone del mango (20), fácilmente manipulable, ya sea de forma manual o con accionamiento mecánico. El cierre final del aparato se lleva a cabo utilizando la tapa terminal (22) tipo tornillo que se ajusta y cierra al soporte múltiple (15) mediante atornillado (21) lo que le confiere total adherencia de éste al aparato objeto de la invención. Above the output manifold (15), as a component of the head, the mobile part (19) that has the fluid outlets (16) and (17) is incorporated, with the purpose of easy removal, promoting and allowing extraction of the cathode electrode (10) with the deposited metal. Said piece (19) fits tightly in its diameter and height inside the multiple support (15), having a smooth surface not allowing fluid leaks. For its removal it has the handle (20), easily manipulated, either manually or mechanically operated. The final closure of the apparatus is carried out using the screw-type end cap (22) that fits and closes to the multiple support (15) by screwing (21) which gives it full adherence to the apparatus object of the invention.
En operación, una fuente de potencia eléctrica DC se conecta al aparato con su terminal positivo al electrodo tubular (7), que corresponde al ánodo, y su terminal negativo unido al tubo metálico (10), que corresponde al cátodo, siendo preferido para este propósito conexión tipo clip que facilita el armado y desarmado, y el particular reemplazo de piezas del cabezal inferior (1) y del cabezal soporte múltiple superior (15). Incorporados los fluidos al aparato luego de un período de tiempo con un espesor y un peso esperado de metal en el cátodo dentro del tubo (10), se detiene la operación y se remueve el metal depositado. In operation, a DC power source is connected to the apparatus with its positive terminal to the tubular electrode (7), which corresponds to the anode, and its negative terminal attached to the metal tube (10), which corresponds to the cathode, being preferred for this purpose connection type clip that facilitates the assembly and disassembly, and the particular replacement of parts of the lower head (1) and the upper multiple support head (15). The fluids incorporated into the apparatus after a period of time with an expected thickness and weight of metal in the cathode inside the tube (10), the operation is stopped and the deposited metal is removed.
En referencia a la Figura 2 esta corresponde a una vista en sección transversal del aparato electroquímico preferente de la invención mostrada en despiece en la Figura 1. Del punto de vista de construcción y fácil montaje de la presente patente, es posible observar los principales componentes de dicho aparato, base de soporte inferior (1), electrodo anódico (7), anillos de sujeción (12), carcasa (8) de soporte del electrodo catódico (10), membrana de intercambio iónico (13) y soporte de membrana (14). También se muestra la disposición del borne eléctrico (9), cabezal superior múltiple (15), con la pieza móvil (19), y la tapa de cierre (22). Referring to Figure 2, this corresponds to a cross-sectional view of the preferred electrochemical apparatus of the invention shown in exploded view in Figure 1. From the viewpoint of construction and easy assembly of the present patent, it is possible to observe the main components of said apparatus, lower support base (1), anodic electrode (7), clamping rings (12), cathode electrode support housing (8), ion exchange membrane (13) and membrane support (14 ). The arrangement of the electrical terminal (9), multiple upper head (15), with the moving part (19), and the closing cover (22) are also shown.
En relación a las Figuras 3, 4 y 5 son vistas seccionales de la pieza superior desmontable (19), en la que se observan los ductos (16) y (17) de salida de los fluidos. El cabezal superior múltiple (15) con los ductos dé salida (16) y (17) y el cabezal inferior (1) con los ductos de entrada de los fluidos electroquímicos (2) y (3). In relation to Figures 3, 4 and 5 are sectional views of the removable upper part (19), in which the fluid outlet ducts (16) and (17) are observed. The upper multiple head (15) with the outlet ducts (16) and (17) and the lower head (1) with the inlet ducts of the electrochemical fluids (2) and (3).
El aparato electroquímico mostrado en despiece en la Figura 6 es similar a aquel mostrado en despiece en la Figura 1, excepto en que la posición de los electrodos es invertida, esto es en que el cátodo ocupa la posición del ánodo y viceversa. Considerando el despiece del mismo, en la Figura 6 se observa que los soportes principales tanto inferior como superior lo constituyen los cabezales (41) y (55), respectivamente. El cabezal inferior (41), que es la base del aparato, está compuesto de dos entradas, (42) y (43), que envían las soluciones de fluidos electroquímicas bombeadas desde estanques o reservónos (no mostrados), anolito y catolito, a los espacios anulares (46) y (45) dentro del aparato. Estas entradas, (42) y (43), están diseñadas para una distribución radial uniforme y de alta turbulencia de los fluidos, los que se incorporan al cabezal de forma directa o bien tangencial desde los estanques dispuestos para tal efecto, siendo sus componentes diseñados por separado o como una parte integral del mismo cabezal. Dicho cabezal (41) dispone en su parte superior interior de un resalte anular roscado que ensambla con el electrodo (49), ánodo, que en su exterior cuenta con el enroscado de ajuste para la unión tanto al cabezal base del aparato (41) como al múltiple de salida de los fluidos o cabezal superior (55), dado que su diámetro es inferior a aquel del cabezal base (41) y cabezal múltiple de salida (55). The electrochemical apparatus shown in exploded view in Figure 6 is similar to that shown in exploded view in Figure 1, except that the position of the electrodes is reversed, that is, the cathode occupies the anode position and vice versa. Considering the exploded view of it, Figure 6 shows that the main supports both lower and upper are the heads (41) and (55), respectively. The lower head (41), which is the base of the apparatus, is composed of two inlets, (42) and (43), which send the solutions of electrochemical fluids pumped from ponds or reservoirs (not shown), anolyte and catholyte, to the annular spaces (46) and (45) inside the apparatus. These inputs, (42) and (43), are designed for a uniform and high turbulence radial distribution of the fluids, which are incorporated directly into the head or tangentially from the ponds arranged for this purpose, their components being designed separately or as an integral part of the same head. Said head (41) has a threaded annular shoulder in its inner upper part that assembles with the electrode (49), anode, which in its exterior has the adjustment screw for the connection to both the base head of the apparatus (41) and to the fluid outlet manifold or upper head (55), since its diameter is smaller than that of the base head (41) and multiple outlet head (55).
El electrodo anódico (49), cubierta exterior tubular del aparato en su armado por su diámetro menor, se desliza y ensambla al cabezal base (41), al conectar de energía (48) y al cabezal múltiple de salida (55). Es una cubierta de material conductor, acero inoxidable, plomo, aleación de plomo u otro adecuado a los fines del invento, constituye la cubierta protectora del aparato. Sobre el cabezal base (41) se ajustan en su parte superior los bornes conductores de energía (48). The anodic electrode (49), tubular outer cover of the apparatus in its assembly by its smaller diameter, slides and assembles to the base head (41), when connecting power (48) and to the multiple output head (55). It is a cover of conductive material, stainless steel, lead, lead alloy or other suitable for the purposes of the invention, it constitutes the protective cover of the apparatus. The conductive energy terminals (48) are adjusted on the upper part of the base head (41).
Los electrodos del aparato, que son su base de funcionamiento, están constituidos por el electrodo metálico catódico (47), (+), de acero inoxidable, cobre metálico u otro ádecuado al metal a depositar, y por el electrodo metálico anódico (49), (-), de plomo, aleación de plomo, acero inoxidable u otro de características adecuadas al propósito de la electro deposición. El electrodo catódico (47) se localiza en el centro del aparato, diámetro 5 a 20 mm, preferentemente de 10 mm, en donde se deposita el metal de la solución catolítica entre el espacio anular (45) del cátodo y el soporte (52) de la membrana de intercambio iónico (51), formando un tubo a lo largo de la zona de deposición entre el cabezal (41) y el cabezal soporte múltiple (55). Este electrodo (47) se ajusta a presión de tai manera que sus extremos calzan a tope con la porción anular del cabezal inferior (41) y el cabezal soporte múltiple superior (55). El electrodo anódico (49) se ubica en el exterior del aparato, separando el anolito a lo largo de este por el espacio anular (46) de la membrana de intercambio iónico (51) y el soporte de la membrana (52), en el cual sus extremos se ajustan y fijan en el cabezal (41) y en el cabezal soporte múltiple superior (55). The electrodes of the apparatus, which are its operating base, are constituted by the cathode metal electrode (47), (+), stainless steel, metallic copper or other suitable for the metal to be deposited, and by the anodic metal electrode (49) , (-), of lead, lead alloy, stainless steel or other characteristics suitable for the purpose of electro deposition. The cathode electrode (47) is located in the center of the apparatus, diameter 5 to 20 mm, preferably 10 mm, where the metal of the catholic solution is deposited between the annular space (45) of the cathode and the support (52) of the ion exchange membrane (51), forming a tube along the deposition zone between the head (41) and the multiple support head (55). This electrode (47) is adjusted to pressure in such a way that its ends fit fully with the annular portion of the lower head (41) and the upper multiple support head (55). The anodic electrode (49) is located outside the apparatus, separating the anolyte along it by the annular space (46) of the ion exchange membrane (51) and the membrane support (52), in the which ends are adjusted and fixed in the head (41) and in the upper multiple support head (55).
Un elemento diferenciador constitutivo de la presente invención, es la membrana de intercambio iónico (51) que esta soportada por un empaque porta membrana (52), ambos (51) y (52), se localizan entre los electrodos (49) y (47), estableciendo los espacios anulares (46) y (45), por donde circulan el anolito y catolito, respectivamente. Al efectuar la unión de éstos, (51) y (52) los extremos de la membrana iónica (51) y el empaque porta membrana (52) se ajustan dentro del cabezal inferior (41) y el cabezal soporte múltiple superior (55) mediante los seguros de membrana (50), en su nivel superior e inferior. La porta membrana (52) se desliza y encaja hasta que los extremos de ambos calcen y se encuentren a tope con la porción anular interior de dichos elementos constitutivos del aparato en los cabezales inferior (41) y superior (55). A constitutive differentiating element of the present invention is the ion exchange membrane (51) which is supported by a membrane carrier gasket (52), both (51) and (52), are located between the electrodes (49) and (47). ), establishing the annular spaces (46) and (45), where the anolyte and catholyte circulate, respectively. When these are joined, (51) and (52) the ends of the ionic membrane (51) and the membrane carrier gasket (52) fit inside the lower head (41) and the upper multiple support head (55) by the membrane locks (50), in its upper and lower level. The membrane holder (52) slides and fits until the ends of both fit and meet the inner annular portion of said constituent elements of the apparatus in the lower (41) and upper (55) heads.
Por otra parte, el anillo (48) es el elemento que se desplaza y ajusta por la parte superior al cabezal inferior (41) permitiendo una fácil conexión exterior a los bornes de alimentación eléctrica del aparato de la invención.. Así, el cabezal inferior (41), cuenta con los rebordes interiores de ajuste, enroscados de hilos interiores inferiores al igual que el anillo (48) por lo que al desplazar y atornillar el electrodo (49), los ductos (42) y (43) de los fluidos electroquímicos que se desplazan por los espacios anulares (46) y (45), quedan completamente encapsulados y obligados a desplazarse por los mencionados espacios anulares hacia las salidas (53) y (54). Al instalar el cabezal soporte múltiple superior (55), el aparato queda completamente ensamblado, ya que esta pieza ajusta el aparato de la invención con el efecto de ser el cabezal superior del mismo, no siendo posteriormente removido excepto para casos de mantención luego de ün uso prolongado en operación de electro deposición de metal. On the other hand, the ring (48) is the element that moves and adjusts from the top to the lower head (41) allowing an easy external connection to the power supply terminals of the apparatus of the invention .. Thus, the lower head (41), it has the inner trim flanges, threaded with lower inner threads just like the ring (48) so that when moving and screwing the electrode (49), the ducts (42) and (43) of the fluids electrochemicals that move through the annular spaces (46) and (45), are completely encapsulated and forced to move through the aforementioned annular spaces towards the exits (53) and (54). When installing the upper multiple support head (55), the apparatus is completely assembled, since this piece adjusts the apparatus of the invention with the effect of being the upper head thereof, not being subsequently removed except for maintenance cases after ün Prolonged use in electro metal deposition operation.
Por sobre el cabezal múltiple de salida (55) como componente de dicho cabezal se incorpora la pieza móvil (57) que dispone de las salidas de fluidos (53) y (54), teniendo por finalidad su fácil remoción promoviendo y permitiendo la extracción del electrodo catódico (47) con el metal depositado. Dicha pieza (57) calza ajustadamente en su diámetro y altura en el interior del cabezal soporte múltiple (55), teniendo una superficie suave y no permitiendo fugas de fluidos. Para su remoción dispone del mango (58), fácilmente manipulable de forma manual o con accionamiento mecánico. El cien-e final del aparato, se lleva a cabo utilizando la tapa terminal (60) tipo tomillo que se ajusta y cierra al soporte múltiple (55) mediante atornillado (59) lo que le confiere total adherencia de éste al aparato objeto de la invención. Above the multiple output head (55) as a component of said head, the moving part (57) is incorporated, which has the fluid outlets (53) and (54), whose purpose is its easy removal, promoting and allowing the extraction of the cathode electrode (47) with the deposited metal. Said piece (57) fits tightly in its diameter and height inside the multiple support head (55), having a smooth surface and not allowing fluid leaks. For its removal it has the handle (58), easily manipulated manually or mechanically operated. The final hundred-e of the apparatus is carried out using the terminal cover (60) type thyme that adjusts and closes to the multiple support (55) by screwing (59) which confers total adherence of this to the apparatus object of the invention.
En operación, una fuente de potencia eléctrica DC se conecta al aparato con su terminal positivo al electrodo tubular (49), que corresponde al ánodo, y su terminal negativo unido al tubo metálico (47), que conesponde al cátodo, siendo preferido para este propósito conexión, tipo clip que facilita el armado y desarmado, y el particular reemplazo de piezas del cabezal inferior (41) y del cabezal soporte múltiple superior (55). Incorporados los fluidos al aparato luego de un período de tiempo con un espesor y un peso esperado de metal en el cátodo dentro del tubo (47), se detiene la operación y se remueve el metal depositado. In operation, a DC power source is connected to the apparatus with its positive terminal to the tubular electrode (49), which corresponds to the anode, and its negative terminal attached to the metal tube (47), which corresponds to the cathode, being preferred for this connection purpose, clip type that facilitates the assembly and disassembly, and the particular replacement of parts of the lower head (41) and the upper multiple support head (55). The fluids incorporated into the apparatus after a period of time with an expected thickness and weight of metal in the cathode inside the tube (47), the operation is stopped and the deposited metal is removed.
El aparato de la invención en cualquiera de sus versiones según lo indican la Figura 1 y la Figura 6, puede operar individualmente o dispuesto en un aneglo considerando la construcción de varios aparatos dispuestos en serie o en paralelo, de tal manera que el metal contenido en el catolito, puede ser progresivamente reducido y la operación optimizada según lo disponga la operación de la industria. Similarmente, el suministro eléctrico puede ser arreglado en cualquier disposición serie/paralelo de acuerdo a los requisitos impuestos por el procesamiento del licor. The apparatus of the invention in any of its versions as indicated in Figure 1 and Figure 6, can operate individually or arranged in an anelo considering the construction of several apparatus arranged in series or in parallel, such that the metal contained in The catholyte can be progressively reduced and the operation optimized as provided by the industry operation. Similarly, the power supply can be arranged in any serial / parallel arrangement according to the requirements imposed by the liquor processing.
En lo sucesivo, la presente invención será descrita en más detalle referido a algunos ejemplos de trabajo, lo cual no obstante, no limitan el alcance de la invención. Hereinafter, the present invention will be described in more detail referring to some working examples, which, however, do not limit the scope of the invention.
EJEMPLOS DE REALIZACIÓN EXAMPLES OF REALIZATION
La instalación piloto de la celda tubular de la invención, según se describió más arriba, comprendió un conjunto de 4 celdas. Las celdas son tubulares con un diámetro de 150 mm siendo la carcasa de PVC (8) con soportes inferior de ingreso de las soluciones (1) y superior de salida (15) del mismo material. Los fluidos de electrolito (catolito) y solución (anolito), fueron introducidas concéntricamente a los espacios anulares (6) y (5) por los tubos de entrada (2) y (3), respectivamente, lo que indujo flujos en espiral desde la base a la parte superior de la celda. El cátodo (10) y el ánodo (7) fueron hechos de acero inoxidable tipo 316 con espesores de 0,6 mm siendo la superficie activa del cátodo de 0,5 m2 mientras que la del ánodo de 0,18 m2. La corriente (9) se aplicó al cuerpo del cátodo y al ánodo. Ambos electrodos se ubican coaxialmente separados por la membrana de intercambio iónico (13), estando los tres elementos fijos a través de los cabezales inferior (1) y superior (15). El electrolito y la solución de anolito fluyeron a las celdas en serie y provino de estanques de capacidad 10 m3. The pilot installation of the tubular cell of the invention, as described above, comprised a set of 4 cells. The cells are tubular with a diameter of 150 mm with the PVC housing (8) with lower supports for entering the solutions (1) and upper outlet (15) of the same material. The electrolyte (catholyte) and solution (anolyte) fluids were concentrically introduced to the annular spaces (6) and (5) by the inlet tubes (2) and (3), respectively, which induced spiral flows from the base to the top of the cell. The cathode (10) and the anode (7) were made of type 316 stainless steel with 0.6 mm thicknesses being the active surface of the cathode of 0.5 m 2 while that of the anode of 0.18 m 2 . The current (9) was applied to the cathode body and the anode. Both electrodes are coaxially separated by the ion exchange membrane (13), the three elements being fixed through the lower (1) and upper (15) heads. The electrolyte and the anolyte solution flowed to the cells in series and came from ponds of 10 m 3 capacity.
Se efectuaron pruebas en continuo entre 5-30 g 1 de Cu+2, controlándose periódicamente los contenidos de Cu+2 y de H2SC>4 del electrolito. Las pruebas en continuo se mantuvieron con alimentación fresca de electrolito desde estanques de reserva. Al término de cada prueba se desconectó la energía eléctrica suspendiéndose la circulación de electrolito. Las celdas fueron abiertas y el depósito de cobre manualmente despegado, pesado y etiquetado para su análisis físico y químico. Con la invención se obtuvo cobre electrolítico de pureza constante de 99,99% Cu, suaves y densos, sin ninguna superficie nodular característica de los cátodos. Los resultados y las condiciones de operación se muestran en la Tabla I siguiente: Tests were carried out continuously between 5-30 g 1 of Cu +2 , periodically checking the contents of Cu +2 and H 2 SC> 4 of the electrolyte. Continuous tests were maintained with fresh electrolyte feed from reserve ponds. At the end of each test, the electrical energy was disconnected, suspending the circulation of electrolyte. The cells were opened and the copper tank manually detached, weighed and labeled for physical and chemical analysis. With the invention, electrolytic copper of constant purity of 99.99% Cu was obtained, soft and dense, without any nodular surface characteristic of the cathodes. The results and operating conditions are shown in the following Table I:
Tabla I. Indicadores tecnológicos Aparato Tubular electro deposición Cu Table I. Technological indicators Tubular apparatus electro deposition Cu
Figure imgf000015_0001
I Densidad de corriente 188 299 492 854 1
Figure imgf000015_0001
I Current density 188 299 492 854 1
(A/m2) (A / m 2 )
j Tiempo operación (h) 168 48 72 37 j Operation time (h) 168 48 72 37
1 Peso cátodo (kg) 20,8 9,2 19,2 19,4  1 Cathode weight (kg) 20.8 9.2 19.2 19.4
j Eficiencia (%) 91 89 97 96 1 j Efficiency (%) 91 89 97 96 1

Claims

REIVINDICACIONES
1. Aparato de electro deposición de metal desde soluciones que lo contienen de geometría circular CARACTERIZADO porque: 1. Electro metal deposition apparatus from solutions containing circular geometry CHARACTERIZED because:
a) comprende sustancialmente capas concéntricas tubulares coaxiales de electrodos metálicos, cátodo y ánodo, y una membrana de intercambio iónico también tubular entre dichos electrodos, formando dos cámaras independientes por las que circulan soluciones electrolíticas de metales, catolito y anolito,  a) substantially comprises coaxial tubular concentric layers of metal electrodes, cathode and anode, and an ion exchange membrane also tubular between said electrodes, forming two independent chambers through which electrolyte solutions of metals, catholyte and anolyte circulate,
b) dispone de una carcasa tubular de cabezales desmontables de un material no conductor en las que el cabezal inferior dispone de aperturas que sirven de entrada de los fluidos, una para el catolito y otra para el anolito, mientras que la superior contiene dos o más aperturas de salida de los fluidos catolito y anolito,  b) it has a tubular housing of removable heads of a non-conductive material in which the lower head has openings that serve as fluid inlets, one for the catholyte and one for the anolyte, while the upper one contains two or more outlet openings of the catholyte and anolyte fluids,
c) las predichas soluciones electrolíticas de catolito y anolito, se introducen al cabezal inferior formando torbellinos ascendentes alrededor de los espacios anulares elongados de separación entre cátodo/membrana de intercambio iónico y membrana de intercambio iónica/ánodo, respectivamente,  c) the predicted electrolytic solutions of catholyte and anolyte are introduced into the lower head forming ascending whirlpools around the elongated annular spaces of separation between cathode / ion exchange membrane and ion exchange membrane / anode, respectively,
d) los predichos flujos helicoidales de catolito y anolito fluyen en un sentido horario o anti horario, respectivamente o indistintamente, según sea el caso a tratar,  d) the said helical flows of catholyte and anolyte flow in a clockwise or anti-clockwise direction, respectively or interchangeably, as the case to be treated,
e) dispone de un sistema de separación de gases dispuesto en las cañerías de salida de los fluidos, de tal manera que estos sean venteados individual o colectivamente, de forma preferente en un grupo definido de aparatos electroquímicos. . El efecto de separación de los gases se incrementa cuando se proporciona una cámara de separación en la cual la salida tiene el mismo diámetro que la cañería de conducción de la solución y tiene un rmniino de altura equivalente a la mitad del diámetro de la cañería, y  e) it has a gas separation system arranged in the outlet pipes of the fluids, so that these are vented individually or collectively, preferably in a defined group of electrochemical devices. . The effect of gas separation is increased when a separation chamber is provided in which the outlet has the same diameter as the conduit pipe of the solution and has a rmniino of height equivalent to half the diameter of the pipe, and
f) el predicho conjunto de electrodos metálicos, cátodo y ánodo, se extienden a lo largo de la elongación tubular, en donde se dispone en que al menos a uno de los cabezales disponga de un par de terminaciones eléctricas que permita conectar los electrodos a un rectificador de corriente.  f) the predicted set of metal electrodes, cathode and anode, extend along the tubular elongation, where it is provided that at least one of the heads has a pair of electrical terminations that allow the electrodes to be connected to a current rectifier
2. Aparato de electro deposición de metal desde soluciones que lo contienen. de geometría circular de acuerdo con la reivindicación 1 CARACTERIZADO porque el cátodo puede estar dispuesto en el centro del aparato con el ánodo coaxialmente alrededor de él o bien el ánodo centrado con el cátodo dispuesto coaxialmente alrededor de éste, separados por la membrana de intercambio iónico a distancias que varían entre 0,1 a 20 cm, preferentemente de 3 a 8 cm. 2. Electro metal deposition apparatus from solutions containing it. of circular geometry according to claim 1 CHARACTERIZED in that the cathode can be arranged in the center of the apparatus with the anode coaxially around it or the anode centered with the cathode arranged coaxially around it, separated by the ion exchange membrane a distances that vary between 0.1 to 20 cm, preferably 3 to 8 cm.
3. Aparato de electro deposición de metal desde soluciones que lo contienen de geometría circular de acuerdo con la reivindicación 1 y 2 CARACTERIZADO porque el espacio anular dispuesto coaxialmente entre cátodo y membrana de intercambio iónico, y entre membrana de intercambio iónico y ánodo, tuerza a los fluidos, catolito y anolito a circular a flujos entre 10 - 2000 1/rnin. 3. Electro metal deposition apparatus from solutions containing circular geometry according to claim 1 and 2 CHARACTERIZED because the annular space coaxially arranged between cathode and ion exchange membrane, and between ion exchange membrane and anode, twist the fluids, catholyte and anolyte to circulate at flows between 10 - 2000 1 / rnin.
4. Aparato de electro deposición de metal desde soluciones que lo contienen dé geometría circular de acuerdo con la reivindicación 1 a 3 CARACTERIZADO porque se proporciona la construcción de un aparato tubular simplificado desmontable de producción electrolítica de metal, posible de conectar varios de ellos serie o en paralelo, en el que solo los electrodos terminales tienen conexiones eléctricas para la fila de aparatos. 4. Electro metal deposition apparatus from solutions containing it of circular geometry according to claim 1 to 3 CHARACTERIZED because the construction of a simplified detachable tubular apparatus for electrolytic metal production is provided, possible to connect several of them series or in parallel, in which only the terminal electrodes have electrical connections for the device row.
5. Aparato de electro deposición de metal desde soluciones que lo contienen de geometría circular de acuerdo con la reivindicación 1 a 4 CARACTERIZADO porque el cátodo metálico producto de la electrólisis es removido en períodos cíclicos de producción dependientes de la concentración de metal disuelto en el catolito. 5. Electro metal deposition apparatus from solutions containing circular geometry according to claim 1 to 4 CHARACTERIZED because the metal cathode produced by electrolysis is removed during cyclic production periods depending on the concentration of metal dissolved in the catholyte .
6. Aparato de electro deposición de metal desde soluciones que lo contienen de geometría circular de acuerdo con Ta reivindicación 1 a 5 CARACTERIZADO porque el cátodo tubular puede ser del mismo metal a depositar, acero inoxidable, titanio u otra aleación de acero, y el ánodo tubular de aleación de plomo, plomo, titanio, hierro u otro metal, y sus espesores varían de 1 a 5 rnm. 6. Electro metal deposition apparatus from solutions containing circular geometry according to claim 1 to 5 CHARACTERIZED because the tubular cathode can be of the same metal to deposit, stainless steel, titanium or other steel alloy, and the anode Tubular alloy lead, lead, titanium, iron or other metal, and their thicknesses vary from 1 to 5 nm.
7. Aparato de electrodeposición de metal desde soluciones que lo contienen de geometría circular de acuerdo con la reivindicación 1 a 6 CARACTERIZADO porque la membrana de intercambio iónico de separación de los electrodos cátodo/ánodo es tubular encapsulada entre mallas de material eléctricamente aislante. 7. Metal electrodeposition apparatus from solutions containing circular geometry according to claim 1 to 6 CHARACTERIZED because the ion exchange membrane separating the cathode / anode electrodes is tubular encapsulated between meshes of electrically insulating material.
8. Aparato de electro deposición de metal desde soluciones que lo contienen de geometría circular de acuerdo con cualquiera de las reivindicaciones anteriores CARACTERIZADO porque la corriente suministrada al dispositivo permite alcanzar densidades de corriente entre 100 - 3000 A/rn2. 8. Electro metal deposition apparatus from solutions containing circular geometry according to any of the preceding claims CHARACTERIZED because the current supplied to the device allows to reach current densities between 100-3000 A / rn 2 .
9. Aparato de electro deposición de metal desde soluciones que lo contienen de geometría circular de acuerdo con cualquiera de las reivindicaciones anteriores CARACTERIZADO porque la temperatura de las soluciones de catolito y anolito varía entre 0 - 60 °C. 9. Electro metal deposition apparatus from solutions containing circular geometry according to any of the preceding claims CHARACTERIZED because the temperature of the catholyte and anolyte solutions varies between 0-60 ° C.
10. Aparato de electro deposición de metal desde soluciones que lo contienen de geometría circular de acuerdo con cualquiera de las reivindicaciones anteriores CARACTERIZADO porque el aparato se puede aplicar a cualquier licor o solución conteniendo metales disueltos, entre estos, cobre, zinc, oro, plata, cadmio, níquel, cobalto, uranio, hierro, entre otros, con contenidos que varían entre 0,5 a 50 g/1. 10. Electro metal deposition apparatus from solutions containing circular geometry according to any of the preceding claims CHARACTERIZED because the apparatus can be applied to any liquor or solution containing dissolved metals, including copper, zinc, gold, silver , cadmium, nickel, cobalt, uranium, iron, among others, with contents ranging from 0.5 to 50 g / 1.
PCT/CL2017/000006 2016-03-18 2017-03-17 Tubular electrochemical apparatus for the electrowinning of metal, formed by separate concentric inner layers consisting of electrodes and an ion exchange membrane between said electrodes WO2017156644A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL638-2016 2016-03-18
CL2016000638A CL2016000638A1 (en) 2016-03-18 2016-03-18 Tubular electrochemical apparatus for electro obtaining metal from solutions, consisting of a cover and a pair of non-conductive material end caps with anolyte and catholyte inlets and outlets, and separate internal concentric layers composed of electrodes and an ion exchange membrane between they.

Publications (1)

Publication Number Publication Date
WO2017156644A1 true WO2017156644A1 (en) 2017-09-21

Family

ID=56610140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2017/000006 WO2017156644A1 (en) 2016-03-18 2017-03-17 Tubular electrochemical apparatus for the electrowinning of metal, formed by separate concentric inner layers consisting of electrodes and an ion exchange membrane between said electrodes

Country Status (2)

Country Link
CL (1) CL2016000638A1 (en)
WO (1) WO2017156644A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4212722A (en) * 1976-05-11 1980-07-15 Noranda Mines Limited Apparatus for electrowinning metal from metal bearing solutions
US4585539A (en) * 1982-08-17 1986-04-29 Technic, Inc. Electrolytic reactor
US4834849A (en) * 1988-05-20 1989-05-30 Gunter Woog Metal recovery method and apparatus
WO1996038602A1 (en) * 1995-06-01 1996-12-05 Electrometals Mining Limited Mineral recovery apparatus
WO2007071714A1 (en) * 2005-12-20 2007-06-28 Industrie De Nora S.P.A. Electrolytic cell for metal deposition
KR20110027192A (en) * 2009-09-10 2011-03-16 삼덕금속(주) Method and apparatus for electrowinning for recovery of precious metals in dilute solutions
WO2012031753A1 (en) * 2010-09-07 2012-03-15 Coventya Gmbh Anode and use thereof in an alkaline electroplating bath

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4212722A (en) * 1976-05-11 1980-07-15 Noranda Mines Limited Apparatus for electrowinning metal from metal bearing solutions
US4585539A (en) * 1982-08-17 1986-04-29 Technic, Inc. Electrolytic reactor
US4834849A (en) * 1988-05-20 1989-05-30 Gunter Woog Metal recovery method and apparatus
WO1996038602A1 (en) * 1995-06-01 1996-12-05 Electrometals Mining Limited Mineral recovery apparatus
WO2007071714A1 (en) * 2005-12-20 2007-06-28 Industrie De Nora S.P.A. Electrolytic cell for metal deposition
KR20110027192A (en) * 2009-09-10 2011-03-16 삼덕금속(주) Method and apparatus for electrowinning for recovery of precious metals in dilute solutions
WO2012031753A1 (en) * 2010-09-07 2012-03-15 Coventya Gmbh Anode and use thereof in an alkaline electroplating bath

Also Published As

Publication number Publication date
CL2016000638A1 (en) 2016-07-01

Similar Documents

Publication Publication Date Title
CA3001630C (en) Filter press device for electrodeposition of metal from solutions, which is made up of separating elements conformed by ion exchange membranes forming a plurality of anolyte and catholyte chambers, wherein the electrodes are connected in series with automatic detachment of the metal product
US3972795A (en) Axial flow electrolytic cell
RU2114935C1 (en) Electrolyzer and device for recovery of metal from mineral and method for production of metal from mineral by electrolysis
CN107849713B (en) The reduction method and electrolysis system of carbon dioxide are utilized for electrochemistry
JPH07509536A (en) water electrochemical treatment equipment
PT2010456E (en) Process and apparatus for sewage water purification
NO144043B (en) PROCEDURE FOR ELECTROLYTIC DEPOSITION OF A METAL FROM A MAJOR ELECTROLYTY, AND APPARATUS FOR CARRYING OUT THE PROCEDURE
CN101886271A (en) Rotational-flow electrolysis method and device thereof
SK14792002A3 (en) Electrolytic cell and method for electrolysis
EP0171478A2 (en) Electrolyzing process and electrolytic cell employing fluidized bed
KR100947254B1 (en) Cylindrical electrolysis cell reactor
US4202752A (en) Cell with multiple anode-cathode chambers for fluid bed electrolysis
FI88017C (en) Process and apparatus for electrolytic treatment of liquids, in particular wastewater
CA2841236C (en) Electrochemical cell used in production of hydrogen using cu-cl thermochemical cycle
KR20130110359A (en) Seawater electrolytic apparatus
WO2017156644A1 (en) Tubular electrochemical apparatus for the electrowinning of metal, formed by separate concentric inner layers consisting of electrodes and an ion exchange membrane between said electrodes
KR20140008781A (en) Electrolysis pipe in mixer electrode
CN101624228A (en) Pipe-type packed bed electrolyzing device and method for treating organic wastewater
KR101912205B1 (en) electrolysis-electrodeposition bath for water treatment
WO2012127438A2 (en) Electrolytic cell for the winning of metals by reactive electrodialysis and electrolytic process for the winning of metals that uses said cell
FI60723C (en) MED KVICKSILVERKATOD FOERSEDD VERTIKAL ELEKTROLYSERINGSANORDNING
FI63069C (en) OVER APPARATUS FOR ELECTRICAL EQUIPMENT OPERATING EQUIPMENT WITH FRAME AND LOWERING
WO2019218095A1 (en) Single-chamber electrolytic cell and sealed horizontal pressure apparatus for electrodepositing metal from electrolytic solutions
NO161181B (en) PROCEDURE FOR ELECTROLYTIC SOLUTION OF POLLUTANEIC NICKEL REFINING ANODES.
RU2187567C1 (en) Apparatus for electrochemical leaching of precious metals from sludge and concentrates

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17765627

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/03/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17765627

Country of ref document: EP

Kind code of ref document: A1