WO2017155335A1 - Anti-reflective film - Google Patents

Anti-reflective film Download PDF

Info

Publication number
WO2017155335A1
WO2017155335A1 PCT/KR2017/002580 KR2017002580W WO2017155335A1 WO 2017155335 A1 WO2017155335 A1 WO 2017155335A1 KR 2017002580 W KR2017002580 W KR 2017002580W WO 2017155335 A1 WO2017155335 A1 WO 2017155335A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
low refractive
inorganic nanoparticles
refractive index
hard coating
Prior art date
Application number
PCT/KR2017/002580
Other languages
French (fr)
Korean (ko)
Inventor
변진석
구자필
김부경
장석훈
장영래
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202010756995.XA priority Critical patent/CN111929751B/en
Priority to EP17763596.8A priority patent/EP3376266A4/en
Priority to CN201780005924.2A priority patent/CN108474870A/en
Priority to US16/068,249 priority patent/US10895667B2/en
Priority to JP2018518611A priority patent/JP2018533068A/en
Priority claimed from KR1020170029954A external-priority patent/KR101907653B1/en
Publication of WO2017155335A1 publication Critical patent/WO2017155335A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/34Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with oxygen or oxygen-containing groups
    • C08C19/40Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with oxygen or oxygen-containing groups with epoxy radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings

Definitions

  • the present invention relates to an anti-reflection film, and more particularly, to an anti-reflection film that can simultaneously realize high scratch resistance and antifouling property while having a low reflectance and a high light transmittance, and can increase the sharpness of a screen of a display device.
  • a flat panel display device such as a PDP or LCD is equipped with an anti-reflection film for minimizing reflection of light incident from the outside.
  • a method for minimizing the reflection of light a method of dispersing fillers such as inorganic fine particles in resin and coating on a base film and imparting irregularities (ant i ⁇ glare: AG coating); The method of using the interference of light by forming a plurality of layers having different refractive indices on the base film (AR coating), or a common method thereof.
  • the absolute amount of reflected light is equivalent to that of a general hard coating, but a low reflection effect can be obtained by reducing the amount of light entering the eye by using light scattering through unevenness.
  • the AG coating has poor screen clarity due to surface irregularities, much research has recently been conducted on AR coatings.
  • the AR coating film may be a multi-layered structure in which a hard coating layer (high refractive index layer) and a low reflection coating layer are laminated on a base film. It is commercialized.
  • the method of forming a plurality of layers as described above has a disadvantage in that scratch resistance is inferior due to weak adhesion between the layers (interface adhesion force) as a separate process of forming each layer.
  • the present invention is to provide an anti-reflection film having a low reflectance and a high light transmittance and at the same time can implement a high scratch resistance and antifouling resistance and can increase the sharpness of the screen of the display device.
  • the photopolymerizable compound is collectively referred to as a compound that causes polymerization reaction when light is irradiated, for example, visible light or ultraviolet light.
  • a fluorine-containing compound means the compound containing at least 1 or more fluorine elements among the compounds.
  • (meth) acryl [(Meth) acryl] is meant to include both acryl and Methacryl.
  • (co) polymer is meant to include both copolymers and homopolymers.
  • the hollow silica particles is a silica particle derived from a silicon compound or an organosilicon compound, means a particle in the form of an empty space on the surface and / or inside of the silica particles. do .
  • the thickness of 35 ran to 55 nm from the surface of the Cu-K c (Four ier transform analysis results of X-ray reflectance measurement results by rays)
  • An antireflection film can be provided that exhibits one extreme at and one extreme at a thickness of 85 nm to 105 ran from the surface.
  • the present inventors have conducted research on the antireflection film, and from the results of Fourier transform analysi s on the X-ray reflectance measurement result by Cu-K ⁇ -ray, 35 nm to 55 from the surface.
  • An antireflection film exhibiting one extreme value in the thickness of the ran and one extreme value in the thickness of 85 nm to 105 ran from the surface has high scratch resistance and antifouling property with low reflectance and high light transmittance. Experiments confirmed that it can be implemented at the same time and completed the invention.
  • the Fourier transform analysis results of the X-ray reflectance measurement results by Cu— ⁇ ⁇ for the anti-reflection film are graphs of the Y axis versus the thickness of the film on the X axis. Fourier transform magni tude.
  • the extreme value of the Fourier transform intensity is related to the change of the electron density in the thickness direction, and from 35 ran to 55 ran from the surface described above. If the extremes of one Fourier transform intensity in thickness and the extremes of one Fourier transform intensity in thickness between 85 ⁇ and 105 nm from the surface, two layers with different electron densities in the film thickness direction While present, it is possible to realize a lower reflectance and to improve scratch resistance and antifouling properties.
  • the anti-reflection film is one in the thickness of 35 nm to 55 nm from the surface in the Fourier transform analysis (Fourier transform analysis) results graph for the X-ray reflectance measurement results by Cu-K ⁇ -rays
  • Fourier transform analysis Frier transform analysis
  • the extreme value is convex in the direction of the Fourier transform analysis intensity of the reflectance corresponding to the y-axis in the Fourier transform analysis result graph of the X-ray reflectance measurement result by the Cu-K ⁇ ray for the antireflection film. It means the point that appears.
  • the extremal value is the thickness of the X-axis that appears in the graph of the Fourier transform analysis of the Cu-K c (X-ray reflectance measurement result by the ray for the antireflection film ( Fourier transform magnitude on the Y axis for the thickness) is the largest or smallest value compared to the surrounding function, for example, the Fourier transform strength on the Y axis for the thickness of the X axis.
  • (Fourier transform magnitude) means a point at which the value differentiating the function of 1 is 0.
  • the extreme value may mean a local maximum.
  • X-ray reflectance measurement by the Cu-K ⁇ -rays was measured using a Cu-K ⁇ -ray having a wavelength of 1.5418 A for the antireflection film having a size of 1 cm * l cm (horizontal * vertical). It can be measured. Specifically, after adjusting the sample stage so that the value of 2theta (29) becomes 0, checking the hal f-cut of the sample, and then performing reflectance measurement with the incident angle and the reflecting angle satisfying the specular condition, thereby performing the X-ray reflectance pattern Measure
  • Fourier transform analysis of the X-ray reflectance measurement result by the Cu-K ⁇ -rays can be performed using the X 'pert reflective avi ty program of PANalytical.
  • Fourier transform input values include start angle, end angle, and cr iti cal angle.For example, start angle is set to 0.01 °, end angle is set to 1.2 °, and cr it ical angle is set. You can enter 0. 163 0 or 0. 18 °. .
  • the Fourier transform analysis result of the X-ray reflectance measurement by Cu-K ⁇ -ray shows one extreme value at a thickness of 35 ran to 55 nm in the graph of the results of Fourier transform analysis.
  • the antireflection film exhibiting one extreme value in the thickness of the ran may be achieved by adjusting components, optical properties, surface properties, internal properties, and the like included in the antireflection film.
  • the antireflection film of the embodiment may comprise a conventionally known detailed configuration, for example the antireflection film may comprise a hard coating layer; And a low refractive layer formed on the hard coating layer, and may further include one or more layers having other characteristics as necessary.
  • a thickness of 35 nm to 55 ran and a thickness of 85 nm to 105 nm, respectively, from the surface are defined or measured from the surface of the antireflective film, and as described above, the antireflective film may include a hard coating layer; And a low refractive layer formed on the hard coating layer, each of the thickness of 35 nm to 55 ⁇ and the thickness of 85 ran to 105 nm may be the thickness from the surface of the low refractive layer.
  • the anti-reflection film is a hard coating layer; And hollow inorganic nanoparticles and solid particles dispersed in the binder resin and the binder resin. It may include; low refractive index layer containing inorganic nanoparticles.
  • the solid inorganic nanoparticles may be distributed more than the hollow inorganic nanoparticles near the interface between the hard coating layer and the low refractive layer.
  • the hollow inorganic nanoparticles and the solid inorganic nanoparticles so as to be distinguished from each other in the low refractive layer included in the antireflection film, they have high scratch resistance and antifouling resistance while having low reflectance and high light transmittance. Can be implemented at the same time.
  • the solid inorganic nanoparticles are mainly distributed near the interface between the hard coating layer and the low refractive layer among the low refractive layers of the antireflection film, and the hollow inorganic nanoparticles are mainly distributed toward the opposite side of the interface. It is possible to achieve a lower reflectance compared to the actual reflectivity previously obtained using inorganic particles, and the low refractive index layer can realize a significantly improved scratch resistance and antifouling resistance.
  • the Fourier transform analysis result of the X-ray reflectance measurement by Cu-K ⁇ -ray shows one extreme value at a thickness of 35 ran to 55 nm in the graph of the results of Fourier transform analysis.
  • the anti-radiation film exhibiting one extreme value in the thickness of nm may be due to the surface or internal characteristics of the low refractive layer.
  • the anti-reflection film has a thickness of 35 ran to 55 ran in a Fourier transform analysis (F 0ur i er transform analysi s) result graph for X-ray reflectance measurement results by Cu-K ⁇ -rays.
  • F 0ur i er transform analysi s Fourier transform analysis
  • the low refractive layer includes a binder resin, hollow inorganic nanoparticles and solid inorganic nanoparticles dispersed in the binder resin, and may be formed on one surface of the hard coating layer, the solid inorganic nano More than 70 volume 3 ⁇ 4 »of the total particles may be present within 50% of the total thickness of the low refractive index layer from the interface between the hard coating layer and the low refractive index layer.
  • At least 70% by volume of the total solid inorganic nanoparticles is present in a specific region 'is defined as meaning that the solid inorganic nanoparticles are mostly present in the specific region in the cross-section of the low refractive index layer. At least 70% by volume of the total solid inorganic nanoparticles may be confirmed by measuring the volume of the whole solid inorganic nanoparticles.
  • Whether the hollow inorganic nanoparticles and the solid inorganic nanoparticles are present in the specified region is determined by whether each of the hollow inorganic nanoparticles or the solid inorganic nanoparticles is present in the specified region, and wherein the specific It is determined by excluding particles that exist across the interface of the region.
  • the hollow inorganic nanoparticles may be mainly distributed toward the opposite surface of the interface between the hard coating layer and the low refractive layer in the low refractive index layer.
  • the volume% or more, 50 volume% or more, or 70 volume% or more may be present at a distance farther in the thickness direction of the low refractive index layer from the interface between the hard coating layer and the low refractive index layer than the entire solid inorganic nanoparticles.
  • 70% by volume or more of the entire solid inorganic nanoparticles may be present within 30% of the total thickness of the low refractive layer from the interface between the hard coating layer and the low refractive layer.
  • at least 70% by volume 3 ⁇ 4> of the entire hollow inorganic nanoparticle may be present in an area of more than 30% of the total thickness of the low refractive index layer from an interface between the hard coating layer and the low refractive index layer.
  • the solid inorganic nanoparticles are mainly distributed near the interface between the hard coating layer and the low refractive layer, and the hollow inorganic nanoparticles are mainly distributed toward the opposite side of the interface.
  • Two or more parts or two having different refractive indices in the low refractive layer The above layer may be formed, and thus the reflectance of the anti-reflection film may be lowered.
  • the photocurable resin composition for forming a low refractive layer including the nanoparticles of a species can be obtained by controlling the drying temperature.
  • the solid inorganic nanoparticles may have a density of 0.50 g / cin 3 or more higher than the hollow inorganic nanoparticles, and the difference in density between the solid inorganic nanoparticles and the hollow inorganic nanoparticles may be 0.50 g / crf to 1.50 g / cin 3 , or 0.60 g / cirf to 1.00 g / cin 3 . Due to the density difference, the solid inorganic nanoparticles may be located closer to the hard coating layer in the low refractive layer formed on the hard coating layer.
  • the reflective ring film has an average of 1.5% or less, or 1.0% or less, or 0.50 to 1.0%, 0.7% or less, or 0.60% to 0.70%, or 0.62% to 0.67% in the visible light wavelength range of 380 nm to 780 ran. It can indicate reflectance.
  • the low refractive layer is a crab containing at least 70% by volume of the total solid inorganic nanoparticles and the crab containing at least 70% by volume of the entire hollow inorganic nanoparticles It may include two layers, wherein the first layer is the hard coating layer and the low refractive layer compared to the second layer It can be located closer to the interface of the liver.
  • the solid inorganic nanoparticles are mainly distributed near the interface between the hard coating layer and the low refractive index, and the hollow inorganic nanoparticles are mainly distributed toward the opposite side of the interface.
  • a region in which the solid inorganic nanoparticles and the hollow inorganic nanoparticles are mainly distributed may form an independent layer that is visually identified in the low refractive layer.
  • the first layer containing 70% by volume or more of the total solid inorganic nanoparticles may be located within 50% of the total thickness of the low refractive index layer from the interface between the hard coating layer and the low refractive index layer. More specifically, there may be a first layer including 70 vol 3 ⁇ 4 or more of the entire solid inorganic nanoparticles within 30% of the total thickness of the low refractive index layer from the interface between the hard coating layer and the low refractive index layer.
  • the hollow inorganic nanoparticles may be mainly distributed toward the opposite surface of the interface between the hard coating layer and the low refractive layer in the low refractive layer.
  • the volume% or more, or 50 volume 3 ⁇ 4> or more, or 70 volume% or more may be present at a distance farther in the thickness direction of the low refractive layer from the interface between the hard coating layer and the low refractive layer than the entire solid inorganic nanoparticle.
  • the first layer may be located closer to the interface between the hard coating layer and the low refractive layer than the second layer.
  • each of the first layer and the crab 2 layer which are areas in which the solid inorganic nanoparticles and the hollow inorganic nanoparticles are mainly distributed, is present in the low refractive layer.
  • the transmission electron microscope [Scanning Electron Mi croscope] or the scanning electron microscope [Scanning Electron Mi croscope], etc. can be visually confirmed that each of the first layer and the second layer in the low refractive layer.
  • the ratio of the solid inorganic nanoparticles and the hollow inorganic nanoparticles distributed in each of the crab 1 layer and the crab 2 layer in the low refractive layer can also be confirmed.
  • each of the first and second layers including at least 70% by volume of the entire hollow inorganic nanoparticles may share common optical properties in one layer, and thus may be defined as one layer.
  • each of the first layer and the second layer has a specific Kosh parameter A when the ellipticity of the polarity measured by ellipsometry is optimized by the Cauchy model of the general formula (1). , B and C, so that the first layer and the second layer can be distinguished from each other.
  • the thickness of the first layer and the second layer of the crab can be derived by fitting the ellipticity of the polarization measured by the ellipsometry to the Cauchy model of the following general formula (1), In the low refractive layer, definition of a crab layer and a crab layer is possible.
  • nO is a refractive index at lambda wavelength
  • lambda is in the range of 300 nm to 1800 nm
  • A, B and C are Kosh parameters.
  • the coarse parameters A, B, and (:) obtained when the ellipticity of the polarization measured by the ellipsometry is optimized by the Cauchy model of Equation 1 Accordingly, when an interface exists between the first and second crab layers, there may be a region where the Kosh parameters A, B, and C of the first and second layers overlap. However, even in such a case, the thicknesses and positions of the first and second layers may be specified according to the regions satisfying the average values of the Cosch parameters A, B and () of the first and second layers, respectively. Can be.
  • the following A Is 1.0 to 1.65 and B is 0.0010 to 0.0350, and C is from 0 to 1 x may satisfy the condition of 10-3, but also with respect to the said first layer comprises a low refractive index layer, and A is 1.30 to 1.55, or from 1.40 to 1.52, or 1.491 to 1.511, yet, the B is from 0 to 0.005, or from 0 to 0.00580, or yet from 0 to 0.00573, the C is from 0 to 1 ⁇ 10 _3 eu or 0 to 5.0 * 10-4, or from 0 to 4.1352 * 10-4 can be satisfied with the conditions.
  • the ellipticity of the polarization measured by el lsosometry (el l ipsometry) for the two layers included in the low refractive index layer is optimized (Cauchy model) of Formula 1 (fi tt ing)
  • the A is 1.0 to 1.50
  • the B is 0 to 0.007
  • the C may satisfy the condition of 0 to 1 * 1 ( ⁇ 3 , and for the two layers included in the low refractive layer, the A is 1. 10.
  • the B is from 0 to 0.007, or from 0 to about 0.00550, or from 0 to 00 513 while flying
  • the C is from 0 to 1 * 10-3, or from 0 to 5.0 * 10 — 4 , or 0 to 4.8685 * 10 — 4 can be satisfied.
  • the first layer and the crab layer 2 included in the low refractive layer may have a different refractive index.
  • the first layer included in the low refractive layer may have a refractive index of 1.420 to 1.600, or 1.450 to 1.550, or 1.480 to 1.520, or 1.491 to 1.511 at 550 ran.
  • the second layer included in the low refractive layer may have a refractive index of 1.200 to 1.410, or 1.210 to 1.400, or 1.211 to 1.375 at 550 nm.
  • Measurement of the above-described refractive index may use a conventionally known method, for example, the elliptical polarization measured at a wavelength of 380 nm to 1,000 nm for each of the first layer and the second layer included in the low refractive layer;
  • the Cauchy model can be used to calculate and determine the refractive index at 550 nm.
  • the solid-type inorganic nanoparticles mean a particle having a maximum diameter of less than 100 ran and there is no empty space therein.
  • the hollow inorganic nanoparticles have a maximum diameter of less than 200 ran and the particles having a form having an empty space on the surface and / or inside thereof it means.
  • the solid inorganic nanoparticles may have a diameter of 0.5 to 100 nm, or 1 to 30 ran.
  • the hollow inorganic nanoparticles may have a diameter of 1 to 200 nm, or 10 to 100 nm.
  • the diameter of the solid inorganic nanoparticles and the hollow inorganic nanoparticles may refer to the longest diameter identified in the particle cross section.
  • each of the solid inorganic nanoparticles and the hollow inorganic nanoparticles are at least one half selected from the group consisting of (meth) acrylate group, epoxide group, vinyl group (Vinyl) and thio group (Thiol) on the surface It may contain male functional groups.
  • the low refractive index layer may have a higher degree of crosslinking, thereby improving scratch and antifouling properties. It can be secured.
  • the above-described low refractive layer may be prepared from a photocurable coating composition including a photopolymerizable compound, a fluorine-containing compound including a photoreactive functional group, a hollow inorganic nanoparticle, a solid inorganic nanoparticle, and a photoinitiator.
  • the binder resin contained in the low refractive index layer may comprise a crosslinked (co) polymer between the authentication box containing (co) polymer and a functional group of the photopolymerizable compound male flare fluoride "compound.
  • the photopolymerizable compound included in the photocurable coating composition of the embodiment may form a base material of the binder resin of the low refractive index layer to be prepared.
  • the photopolymerizable compound may include a monomer or oligomer including a (meth) acrylate or a vinyl group. More specifically, the photopolymerizable compound may include a monomer or oligomer containing (meth) acrylate or vinyl group of one or more, or two or more, or three or more.
  • the monomer or oligomer containing the (meth) acrylate include pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, Dipenta erythri nucleus (meth) acrylate, tripentaerythri Hepta (meth) acrylate, triylene diisocyanate, xylene diisocyanate, nusamethylene diisocyanate, trimethylolpropane tri (meth) acrylate, trimethylolpropane polyethoxy tri (meth) acrylate, trimethyl propanetrimethacryl Ethylene glycol dimethacrylate, butanediol dimethacrylate, nuxaethyl methacrylate, butyl methacrylate or two or more kinds thereof, or urethane modified acrylate oligomers,
  • the monomer or oligomer containing the vinyl group include divinylbenzene, styrene or paramethylstyrene.
  • the content of the photopolymerizable compound in the photocurable coating composition is not particularly limited, the content of the photopolymerizable compound in the solid content of the photocurable coating composition in consideration of the mechanical properties of the low refractive index layer or the anti-reflection film to be produced finally May be from 5% to 80% by weight.
  • Solid content of the photocurable coating composition means only the components of the solid except the components of the liquid, for example, an organic solvent that may be optionally included as described below in the photocurable coating composition.
  • the photopolymerizable compound may further include a fluorine-based (meth) acrylate monomer or oligomer in addition to the above-described monomer or oligomer.
  • a fluorine-based (meth) acrylate monomer or oligomer in addition to the above-described monomer or oligomer.
  • the fluorine (meth) acrylate monomer or oligomer further comprises, the weight ratio of the fluorine (meth) acrylate monomer or oligomer to the monomer or oligomer containing the (meth) acrylate or vinyl group is 0.1. % To 10%.
  • fluorine-based (meth) acrylate monomers or oligomers may include at least one compound selected from the group consisting of the following Chemical Formulas 1 to 5.
  • R 1 is a hydrogen group or an alkyl group having 6 to 6 carbon atoms and an integer of 7, b is an integer of 1 to 3.
  • Formula 2 c is an integer of 1 to 10.
  • d is an integer of 1 to 11.
  • e is an integer of 1 to 5.
  • f is an integer of 4 to 10.
  • the low refractive index layer may include a portion derived from the fluorine-containing compound including the photo-reflective functional group.
  • One or more photoreactive functional groups may be included or substituted in the fluorine-containing compound including the photoreactive functional group, and the photoreactive functional groups may participate in the polymerization reaction by irradiation of light, for example, by irradiation of visible light or ultraviolet light.
  • the photoreactive functional group may include various functional groups known to be able to participate in the polymerization reaction by irradiation of light, and specific examples thereof include (meth) acrylate groups, epoxide groups, vinyl groups, or thiol groups ( Thiol) is mentioned.
  • Each of the fluorine-containing compounds including the photo-cyclic functional groups may have a weight average molecular weight (weight average molecular weight in terms of polystyrene measured by GPC method) of 2, 000 to 200, 000, preferably 5, 000 to 100, 000. have.
  • the fluorine-containing compounds in the photocurable coating composition may not be uniformly and effectively arranged on the surface of the fluorine-containing compound, and thus are located inside the low refractive layer that is finally manufactured Accordingly, the antifouling property of the surface of the low refractive index layer is lowered, and the crosslinking density of the low refractive index layer is lowered, so that mechanical properties such as overall strength and scratch resistance may be reduced.
  • the weight average molecular weight of the fluorine-containing compound containing the photo-banung functional group is too high, different from the photocurable coating composition
  • the compatibility with the components may be lowered, and thus the haze of the low refractive layer to be produced may be increased or the light transmittance may be lowered, and the strength of the low refractive layer may be lowered.
  • the fluorine-containing compound including the photo-cyclic functional group is i) an aliphatic compound or aliphatic ring compound in which at least one photo-cyclic functional group is substituted, at least one fluorine is substituted in at least one carbon; i i) a heteroaliphatic compound or a heteroaliphatic ring compound substituted with one or more photocyclic functional groups, at least one hydrogen substituted with fluorine, and one or more carbons substituted with silicon; i i i) polydialkylsiloxane polymers (eg, polydimethylsiloxane polymers) in which at least one photoreactive functional group is substituted and at least one fluorine is substituted in at least one silicon; iv) a polyether compound substituted with at least one photoreactive functional group and at least one hydrogen is substituted with fluorine, or a mixture of two or more of the above i) to iv) or a copolymer thereof.
  • the photocurable coating composition may include 300 parts by weight of the inside of the fluorine-containing compound 20 including the photobanung functional group based on 100 parts by weight of the photopolymerizable compound.
  • the excess amount of the habso compound containing the photo-banung functional group compared to the photopolymerizable compound is reduced in the coating property of the photocurable coating composition of the embodiment or the low refractive index layer obtained from the photocurable coating composition has a durable durability or scratch You may not have a last name.
  • the amount of the fluorine-containing compound containing the photo-reflective functional group relative to the photopolymerizable compound is too small, the low refractive index layer obtained from the photocurable coating composition may not have mechanical properties such as layered antifouling or scratch resistance.
  • the fluorine-containing compound including the photobanung functional group may further include silicon or a silicon compound.
  • the fluorine-containing compound including the photoreactive functional group may optionally contain a silicon or silicon compound therein, specifically, the content of silicon in the fluorine-containing compound including the additive photo-banung functional group is from 0.1 to 3 ⁇ 4 to 20 Weight%.
  • Silicon contained in the fluorine-containing compound containing the photo-banung functional group is It can increase the compatibility with other components included in the photocurable coating composition of the embodiment and thus may act to increase the transparency by preventing the generation of haze (haze) in the refractive layer to be finally produced.
  • the content of silicon in the fluorine-containing compound containing the photoreactive functional group is too large, the compatibility between the other components included in the photocurable coating composition and the fluorine-containing compound may be rather lowered, thereby resulting in low Since the refractive layer or the antireflection film does not have sufficient light transmittance or antireflection performance, the antifouling property of the surface may also be reduced.
  • the low refractive layer may include 10 to 400 parts by weight of the hollow inorganic nanoparticles and 10 to 400 parts by weight of the solid inorganic nanoparticles relative to 100 parts by weight of the (co) polymer of the photopolymerizable compound.
  • phase separation between the hollow inorganic nanoparticles and the solid inorganic nanoparticles does not sufficiently occur in the low refractive layer manufacturing process.
  • the reflectance may be increased, and surface irregularities may occur excessively, thereby degrading antifouling properties.
  • the content of the hollow inorganic nanoparticles and the solid inorganic nanoparticles in the low refractive index layer is too small, many of the solid inorganic nanoparticles are located in a region close to the interface between the hard coating layer and the low refractive layer. It may be difficult to, and the reflectance of the low refractive index layer may be greatly increased.
  • the low refractive index layer may have a thickness of Iran to 300 ran ⁇ or 50ran to 200 nm, or 85 nm to 300 nm.
  • the hard coating layer a conventionally known hard coating layer can be used without great limitation.
  • the photocurable resin included in the hard coating layer is a polymer of a photocurable compound that can cause polymerization reaction when irradiated with light such as ultraviolet rays, It may be conventional in the art.
  • the photocurable resin is a semi-aromatic acrylate oligomer group consisting of urethane acrylate oligomer, epoxide acrylate oligomer, polyester acrylate, and polyether acrylate; And dipentaerythritol nucleoacrylate, dipentaerythroxy hydroxy pentaacrylate, pentaerythriri tetraacrylate, pentaerythriri triacrylate, trimethylene propyl triacrylate, propoxylated glycerol Multifunctional acryl consisting of triacrylate, trimethylpropane ethoxy triacrylate, 1, 6-nucleic acid diol diacrylate, propoxylated glycerol triacrylate, tripropylene glycol diacrylate, and ethylene glycol diacrylate It may include one or more selected from the group of the rate monomers.
  • the organic or inorganic fine particles are not particularly limited in particle size, for example, the organic fine particles may have a particle size of 1 to 10 mm 3, and the inorganic particles may have a particle size of 1 ran to 500 nm or Iran to 300 ran. have.
  • the particle size of the organic or inorganic fine particles may be defined as a volume average particle diameter.
  • the organic or inorganic fine particles included in the hard coating film are not limited.
  • the organic or inorganic fine particles may be organic fine particles or oxidized or composed of acrylic resin, styrene resin, epoxide resin and nylon resin. It may be an inorganic fine particle consisting of silicon, titanium dioxide, indium oxide, tin oxide, zirconium oxide and zinc oxide.
  • the binder resin of the hard coating layer may further include a high molecular weight (co) polymer having a weight average molecular weight of 10, 000 or more.
  • the high molecular weight (co) polymer may be one or more selected from the group consisting of cellulose-based polymers, acrylic polymers, styrene-based polymers, epoxide-based polymers, nylon-based polymers, urethane-based polymers, and polyolefin-based polymers.
  • a binder resin of a photocurable resin As another example of the hard coating film, a binder resin of a photocurable resin; And the hard coat film containing the antistatic agent disperse
  • the photocurable resin included in the hard coating layer is a polymer of a photocurable compound that may cause polymerization reaction when irradiated with light such as ultraviolet rays, and may be conventional in the art.
  • the photocurable compound may be a polyfunctional (meth) acrylate-based monomer or an oligomer, wherein the number of the (meth) acrylate-based functional groups is 2 to 10, preferably 2 to 8, Preferably 2 to 7, it is advantageous in terms of securing physical properties of the hard coating layer.
  • the photocurable compound is pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythrite nucleus ( Meth) acrylate, dipentaerythritol hepta (meth) acrylate, tripentaerythritol hepta (meth) acrylate, triylene diisocyanate, xylene diisocyanate, nusamethylene diisocyanate, trimethylolpropane tri (meth ) Acrylate, and trimethylolpropane polyethoxy tri (meth) acrylate may be one or more selected from the group consisting of.
  • the antistatic agent is a quaternary ammonium salt compound; Pyridinium salts; Cationic compounds having from 1 to 3 amino groups; Anionic compounds such as sulfonic acid base, sulfate ester base, phosphate ester base and phosphonic acid base; Positive compounds, such as an amino acid type or amino sulfate ester type compound; Nonionic compounds such as imino alcohol compounds, glycerin compounds, and polyethylene glycol compounds; Organometallic compounds such as metal alkoxide compounds including tin or titanium; Metal chelating "compounds such as acetyl acetonate salt of the organic metal compound; Two or more semi-ungmuls or polymerized compounds of these compounds; It may be a combination of two or more of these compounds.
  • the quaternary ammonium salt compound may be a compound having one or more quaternary ammonium salt groups in the molecule, it can be used without limitation low molecular type or polymer type.
  • a conductive polymer and metal oxide fine particles may also be used as the antistatic agent.
  • the conductive polymer include aromatic conjugated poly (paraphenylene), polycyclic heterocyclic conjugated polyolefin, polythiophene, aliphatic conjugated polyacetylene, and heteroanimal polyaniline conjugated conjugated system.
  • the metal oxide fine particles include zinc oxide, antimony oxide, tin oxide cerium oxide, indium tin oxide, indium oxide, aluminium oxide, antimony doped tin oxide, aluminum doped zinc oxide, and the like.
  • Binder resin of the photocurable resin; And an antistatic agent dispersed in the binder resin may further include one or more compounds selected from the group consisting of alkoxy silane oligomers and metal alkoxide oligomers.
  • the alkoxy silane compound may be conventional in the art, but preferably tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, methyltrimethoxysilane, methoxy triethoxysilane, methacryloxy It may be at least one compound selected from the group consisting of propyltrimethoxysilane, glycidoxypropyl trimethoxysilane, and glycidoxypropyl triethoxysilane.
  • the metal alkoxide-based oligomer may be prepared through the sol-gel reaction of the composition comprising a metal alkoxide-based compound and water.
  • the sol-gel reaction can be carried out by a method similar to the method for producing an alkoxy silane oligomer described above.
  • the sol-gel reaction may be performed by diluting the metal alkoxide compound in an organic solvent and slowly dropping water.
  • the molar ratio of the metal alkoxide compound to water is preferably adjusted within the range of 3 to 170.
  • the metal alkoxide-based compound may be at least one compound selected from the group consisting of titanium tetra-isopropoxide, zirconium isopropoxide, and aluminum isopropoxide.
  • the hard coating layer may have a thickness of 0.01 / 100. It may further include a substrate bonded to the other side of the hard coating layer.
  • the specific kind or thickness of the substrate is not particularly limited, and a substrate known to be used in the manufacture of a low refractive index layer or an antireflection film can be used without great limitation.
  • the anti-reflection film of the embodiment a photocurable compound or its
  • a resin composition for forming a low refractive index layer including a (co) polymer, a fluorine-containing compound including a photoreactive functional group, a photoinitiator, hollow inorganic nanoparticles, and solid inorganic nanoparticles is applied on a hard coating layer, and then 35 ° C to 100 ° C. Drying at a temperature of; And photocuring the dried product of the resin composition.
  • the anti-reflection film provided by the method of manufacturing the anti-reflection film is distributed in the low refractive layer so that the hollow inorganic nanoparticles and the solid inorganic nanoparticles can be distinguished from each other, thereby providing a low reflectance and a high light transmittance. It can have high scratch resistance and antifouling at the same time.
  • the anti-reflection film is a hard coating layer; And a low refractive index layer formed on one surface of the hard coating layer, the binder resin and hollow inorganic nanoparticles dispersed in the binder resin and solid inorganic nanoparticles; and between the hard coating layer and the low refractive layer.
  • 70 volume 3 ⁇ 4> or more of the entire solid inorganic nanoparticle may be present within 50% of the total thickness of the low refractive layer from an interface.
  • At least 30% by volume of the entire hollow inorganic nanoparticles may be present at a greater distance in the thickness direction of the low refractive layer than the interface between the hard coating layer and the low refractive layer than the entire solid inorganic nanoparticles.
  • more than 70 vol 3> of the solid inorganic nanoparticles may be present within 30% of the total thickness of the low refractive index layer from the interface between the hard coating layer and the low refractive index layer.
  • the hollow type in an area of more than 30% of the total thickness of the low refractive index layer from the interface between the hard coating layer and the low refractive index layer At least 70% by volume of the total inorganic nanoparticles may be present.
  • the low refractive index layer is a crab layer and the entire hollow inorganic nanoparticles containing at least 70% by weight of the total solid inorganic nanoparticles.
  • the crab may include two layers of 70 wt% or more, and the first layer may be located closer to the interface between the hard coating layer and the low refractive layer than the two layers of crabs.
  • the low refractive index layer comprises a photocurable compound or a (co) polymer thereof, a fluorine-containing compound including a photoreactive functional group, a photoinitiator, hollow inorganic nanoparticles, and a resin composition for forming a low refractive index layer including solid inorganic nanoparticles on a hard coating layer. It can be formed by applying to and drying at a temperature of 35 ° C to 100 ° C, or 40 ° C to 80 0 C.
  • the temperature for drying the low refractive index layer-forming resin composition applied on the hard coating layer is less than 35 0 C, antifouling property of the low refractive index layer may be greatly reduced.
  • the temperature of drying the resin composition for forming the low refractive index layer applied on the hard coating layer is more than 100 o C, phase separation between the hollow inorganic nanoparticles and solid inorganic nanoparticles in the low refractive layer manufacturing process layer It is not common to occur, so that the scratch resistance and antifouling property of the low refractive index layer may be lowered, and the reflectance may be greatly increased.
  • Low refractive index layer having the above-described characteristics by controlling the density difference between the solid inorganic nanoparticles and the hollow inorganic nanoparticles with the drying temperature in the process of drying the resin composition for forming the low refractive index layer applied on the hard coating layer Can be formed.
  • the solid inorganic nanoparticles may have a density of 0.50 g / cin 3 or more higher than that of the hollow inorganic nanoparticles, and due to the density difference, the solid inorganic nanoparticles in the low refractive layer formed on the hard coating layer. May be located closer to the hard coating layer.
  • the solid inorganic nanoparticles are 2.00 g / cin 3 to 4.00 It has a density of g / crf, the hollow inorganic nanoparticles may have a density of 1.50 g / cirf to 3.50 g / orf.
  • the step of drying the resin composition for forming the low refractive index layer applied on the hard coating layer at a temperature of 35 ° C to 100 0 C may be performed for 10 seconds to 5 minutes, or 30 seconds to 4 minutes.
  • the low refractive layer may be prepared from a photocurable coating composition including a photocurable compound or a (co) polymer thereof, a fluorine-containing compound including a photoreactive functional group, a hollow inorganic nanoparticle, a solid inorganic nanoparticle, and a photoinitiator. .
  • the low refractive layer can be obtained by applying the photocurable coating composition on a predetermined substrate and photocuring the applied resultant.
  • the specific kind or thickness of the substrate is not particularly limited, and a substrate known to be used in the manufacture of a low refractive index layer or an antireflection film can be used without great care.
  • the method and apparatus conventionally used to apply the photocurable coating composition may be used without particular limitation, for example, bar coating method such as Meyer bar, gravure coating method, 2 rol l reverse coating method, vacuum s lot die coating, 2 roll coating, and the like can be used.
  • the low refractive layer may have a thickness of lnm to 300 ran, or 50 ⁇ to 200 rai. Accordingly, the thickness of the photocurable coating composition applied on the predetermined substrate may be about Iran to 300 ran, or 50nm to 200 nm.
  • the photocurable coating composition may be irradiated with ultraviolet light or visible light having a wavelength of 200 ⁇ 400nm, the exposure amount is preferably from 100 to 4,000 mJ / crf. Exposure time is also special It is not limited, It can change suitably according to the exposure apparatus used, the wavelength of irradiation light, or an exposure amount.
  • the photocurable coating composition may be nitrogen purging to apply nitrogen atmospheric conditions.
  • photocurable compound Details of the photocurable compound, the hollow inorganic nanoparticles, the solid inorganic nanoparticles, and the fluorine-containing compound including the photoreactive functional group include the above-described contents with respect to the anti-reflection film of the embodiment.
  • Each of the hollow inorganic nanoparticles and the solid inorganic nanoparticles may be included in the composition in the form of a colloid dispersed in a predetermined dispersion medium.
  • Each colloidal phase including the hollow inorganic nanoparticles and the solid inorganic nanoparticles may include an organic solvent as a dispersion medium.
  • the colloidal phase of each of the hollow inorganic nanoparticles and the solid inorganic nanoparticles in consideration of the content range of the hollow inorganic nanoparticles and the solid inorganic nanoparticles or the viscosity of the photocurable coating composition in the photocurable coating composition Heavy content may be determined, for example, the solid content of each of the hollow inorganic nanoparticles and the solid inorganic nanoparticles in the colloidal phase may be 5% by weight to 60% by weight.
  • examples of the organic solvent in the dispersion medium include alcohols such as methanol, isopropyl alcohol, ethylene glycol and butanol; Ketones such as methyl ethyl ketone and methyl isobutyl ketone; Aromatic hydrocarbons such as toluene and xylene; Dimethylformamide. Amides such as dimethylacetamide and N-methylpyridone; Esters such as ethyl acetate, butyl acetate and gamma butyrolactone; Ethers such as tetrahydrofuran and 1,4-dioxane; Or combinations thereof.
  • alcohols such as methanol, isopropyl alcohol, ethylene glycol and butanol
  • Ketones such as methyl ethyl ketone and methyl isobutyl ketone
  • Aromatic hydrocarbons such as toluene and xylene
  • Dimethylformamide Amides such as dimethylacetamide and N-
  • the photopolymerization initiator may be used without any limitation as long as it is a compound known to be used in the photocurable resin composition, and specifically, a benzophenone compound, acetophenone compound, biimidazole compound, triazine compound, oxime compound, or the like. Two or more kinds thereof can be used. With respect to 100 parts by weight of the photopolymerizable compound, the photopolymerization initiator may be used in an amount of 1 to 100 parts by weight. If the amount of the photopolymerization initiator is too small, it is uncured in the photocuring step of the photocurable coating composition Residual material may be issued. If the amount of the photopolymerization initiator is too large, the non-aqueous initiator may remain as an impurity or have a low crosslinking density, thereby lowering mechanical properties or reflectance of the film.
  • the photocurable coating composition may further include an organic solvent.
  • organic solvents include ketones, alcohols, acetates and ethers, or combinations of two or more thereof. Specific examples of such organic solvents include ketones such as methyl ethyl kenone, methyl isobutyl ketone, acetylacetone or isobutyl ketone; Alcohols such as methanol, ethanol, diacetone alcohol, n-propanol, i-propanol, n-butanol, i_butanol, or t-butanol; Acetates such as ethyl acetate, i-propyl acetate, or polyethylene glycol monomethyl ether acetate; Ethers such as tetrahydrofuran or propylene glycol monomethyl ether; Or two or more kinds thereof.
  • the organic solvent may be included in the photocurable coating composition while being added at the time of mixing each component included in the photocurable coating composition or in the state in which each component is dispersed or mixed in the organic solvent. If the content of the organic solvent in the photocurable coating composition is too small, defects may occur, such as streaks in the resulting film due to the flowability of the photocurable coating composition is reduced. In addition, the solid content is lowered when the excessive amount of the organic solvent is added, the coating and film formation is not divided, the physical properties and surface properties of the film may be lowered, and a poor amount may occur during the drying and curing process. Accordingly,.
  • the photocurable coating composition may include an organic solvent such that the concentration of the total solids of the components included is 1% by weight to 50% by weight, or 2 to 20% by weight.
  • the hard coating layer may be used without any limitation as long as it is a material known to be used for the antireflection film.
  • the method for producing the anti-reflection film may further include applying a photocurable compound or a polymer resin composition for forming a hard coating layer including a (co) polymer, a photoinitiator, and an antistatic agent on a substrate and photocuring the same.
  • a hard coating layer may be formed.
  • the components used to form the hard coat layer are the same as described above with respect to the antireflection film of the embodiment.
  • the polymer resin composition for forming the hard coating layer may further include at least one compound selected from the group consisting of an alkoxy silane oligomer and a metal alkoxide oligomer.
  • Methods and apparatuses commonly used to apply the polymer resin composition for forming the hard coating layer may be used without particular limitation, for example, a bar coating method such as Meyer bar, gravure coating method, 2 roll l reverse coating method, Vacuum slot die coating and 2 roll coating can be used.
  • the step of photocuring the polymer resin composition for forming the hard coating layer may be irradiated with ultraviolet light or visible light having a wavelength of 200 ⁇ 400nm, the amount of exposure during irradiation is preferably 100 to 4,000 mJ / cin 2 .
  • Exposure time is not specifically limited, either, According to the exposure apparatus used, wavelength of an irradiation light, or exposure amount, it can change suitably.
  • the step of photocuring the polymer resin composition for forming the hard coating layer may be purged with nitrogen in order to apply nitrogen atmospheric conditions.
  • an anti-reflection film and a method of manufacturing the anti-reflection film can be provided that can simultaneously realize high scratch resistance and antifouling property while having a low reflectance and a high light transmittance and can increase the sharpness of the screen of the display device. .
  • Figure 1 shows a cross-sectional TEM photograph of the anti-reflection film of Example 1.
  • Figure 2 shows a cross-sectional TEM photograph of the anti-reflection film of Example 2.
  • Figure 3 shows a cross-sectional TEM photograph of the anti-reflection film of Example 3.
  • Figure 4 shows a cross-sectional TEM photograph of the anti-reflection film of Example 4.
  • Figure 5 shows a cross-sectional TEM photograph of the anti-reflection film of Example 5.
  • Figure 6 shows a cross-sectional TEM photograph of the anti-reflection film of Example 6.
  • FIG. 7 shows a cross-sectional TEM photograph of the antireflective film of Comparative Example 1.
  • FIG. 8 shows a cross-sectional TEM photograph of the antireflective film of Comparative Example 2.
  • FIG. 9 shows a cross-sectional TEM photograph of the antireflective film of Comparative Example 3.
  • FIG. 10 shows a graph obtained by Fourier transform analysis of the results of measuring X-ray reflectance by Cu-K ⁇ -rays for the antireflection film of Example 1.
  • FIG. 11 shows a graph obtained by Fourier transform analysis of the result of measuring X-ray reflectance by Cu-K ⁇ -rays for the antireflection film of Example 2.
  • FIG. 12 shows a graph obtained by Fourier transform analysis of the results of measuring X-ray reflectance by Cu-K ⁇ -rays for the antireflection film of Example 3.
  • FIG. 12 shows a graph obtained by Fourier transform analysis of the results of measuring X-ray reflectance by Cu-K ⁇ -rays for the antireflection film of Example 3.
  • FIG. 13 shows the graph which carried out the Fourier transform analysis of the X-ray reflectance measurement result by Cu-K (alpha) ray about the antireflection film of Example 4.
  • FIG. 14 shows a graph obtained by Fourier transform analysis of the results of measuring X-ray reflectance by Cu-K ⁇ -rays for the antireflection film of Example 5.
  • FIG. 15 shows a graph obtained by Fourier transform analysis of X-ray reflectance measurement results using Cu-K ⁇ rays for the antireflection film of Example 6.
  • FIG. FIG. 16 shows the graph which carried out the Fourier transform analysis of the X-ray reflectance measurement result by Cu-K (alpha) ray about the antireflective film of the comparative example 1.
  • FIG. 17 shows a graph obtained by Fourier transform analysis of X-ray reflectance measurement results using Cu-K ⁇ -rays for the antireflection film of Comparative Example 2.
  • FIG. 18 shows a graph obtained by Fourier transform analysis of X-ray reflectance measurement results using Cu-K ⁇ rays for the antireflection film of Comparative Example 3.
  • KY0EISHA salt type antistatic hard coating solution 50 wt% solids, product name: LJD-1000 was coated on a triacetyl cellulose film with # 10 mayer bar.
  • the photocurable coating composition obtained above was coated with a # 4 mayer bar so as to have a thickness of about 110 to 120 ran, and dried and cured at the temperatures and times shown in Table 1 below. At the time of curing, the dried coating was irradiated with ultraviolet light of 252 mJ / ciif under nitrogen purge.
  • Example 5
  • 268 parts by weight of hollow silica nanoparticles (diameter: about 50 to 60 ran, density: 1.96 g / cin 1 , manufactured by JSC catalyst and chemi cals) based on 100 parts by weight of trimethylolpropane triacrylate (TMPTA), Solid silica nanoparticles (Diameter: about 12 ran, Density: 2.65 g / citf) 55 parts by weight, Crab 1 fluorine compound (X-71-1203M, ShinEtsu) 144 parts by weight, second fluorine-containing compound (RS- 537, DIC Corp.) 21 parts by weight, and 31 parts by weight of an initiator (Irgacure 127, Ciba) were diluted so as to have a solid concentration of 3% by weight in a MIBK (methyl i sobutyl ketone) solvent.
  • TMPTA trimethylolpropane triacrylate
  • Solid silica nanoparticles (Diameter: about 12 ran, Dens
  • the photocurable coating composition ⁇ obtained above was coated with a # 4 mayer bar to have a thickness of about 110 to 120 nm, and dried and cured at the temperatures and times shown in Table 1 below. At the time of curing, the dried coating was irradiated with ultraviolet light of 252 mJ / cuf under nitrogen purge.
  • HD2 Pentaerythritol triacrylate 30 g, high molecular weight copolymer (BEAMSET 371, Era, Epoxy Acrylate, molecular weight 40,000) 2.5 g, methyl ethyl ketone 20 g and leveling agent (Tego wet 270) )
  • BEAMSET 371, Era, Epoxy Acrylate, molecular weight 40,000 2.5 g
  • methyl ethyl ketone 20 g and leveling agent Tego wet 270
  • 2 g of an acrylic-styrene copolymer volume average particle diameter: 2 ⁇ m, manufacturer: Sekisui Plastic
  • the hard coating composition thus obtained was coated on a triacetylcell film with # 10 mayer bar and dried at 90 ° C. for 1 minute.
  • 150 mJ / crf was irradiated to the dried material to prepare a hard coating layer having a thickness of 5.
  • the photocurable coating composition for preparing the low refractive index layer obtained above was coated with a # 4 mayer bar to have a thickness of about 110 to 120 ran, dried at a temperature of 60 X for 1 minute, and Cured. At the time of curing, the dried coating was irradiated with ultraviolet light of 252 mJ / cuf under nitrogen purge. Comparative Example: Preparation of Antireflection Film
  • the antireflection film was prepared in the same manner as in Example 1 except that the photocurable coating composition for preparing the low refractive index layer was dried and dried at room temperature (25 ° C). Comparative Example 2
  • the antireflection film was prepared in the same manner as in Example 5 except that the photocurable coating composition for preparing the low refractive layer was dried and dried at about 140 ° C.
  • the average reflectance which the antireflective film obtained by the Example and the comparative example shows in visible region (380-780 nm) was measured using the Sol idspec 3700 (SHIMADZU) apparatus.
  • the steel wool was loaded and reciprocated 10 times at a speed of 27 rpm to rub the surface of the antireflective film obtained in Examples and Comparative Examples.
  • the maximum load at which one scratch or less of 1 cm or less observed with the naked eye was observed was measured.
  • the refractive index at 550 nm was calculated using the Cauchy model and the elliptical polarization measured at a wavelength of 380 nm to 1,000 nm for the phase-separated regions of the low refractive index layers obtained in the above examples. Specifically, for the low refractive index layer obtained in each of the above examples, J. A. Woo 11 am Co. Using the device of M-2000, an angle of incidence of 70 ° was applied and linearly polarized light was measured in the wavelength range of 380 nm to 1000 nm.
  • the measured linear light measurement data (Ellipsometry (1 ⁇ 3 ( ⁇ , ⁇ )) was applied to the first and second layers (Layer 1, Layer 2) of the low refractive index layer by using the Complete EASE software.
  • a Cauchy model was used to fit the MSE to 3 or less.
  • ⁇ ( ⁇ ) is a refractive index at ⁇ wavelength
  • is in the range of 300 ran to 1800 ran
  • A, B and C are Kosh parameters.
  • X-ray reflectivity is about lcm * lcm (horizontal * vertical) sized antireflection film
  • the device used was a PANalytical X'Pert Pro MRD XRD, and applied a voltage of 45 kV and a current of 40 mA.
  • the optics used are as follows.
  • Diffracted beam optic Parallel plate col 1 imator (PPC) with silt (0.27)
  • the Fourier transform analysis on the X-ray reflectance measurement result by the Cu-K ⁇ -ray was performed using PANalytical's X'pert Reflectivity program, and the input angle during the Fourier transform was 0. ⁇ 5 as the start angle. Input was 1.2 ° for end angle and 0.163 ° for critical angle.
  • [PI] and [P2] are thicknesses in which the poles of the Fourier transform intensity of the Y-axis appear in the Fourier transform analysis result graph for the X-ray reflectance measurement results by Cu-K ⁇ rays, respectively.
  • hollow inorganic nanoparticles and solid inorganic nanoparticles are phase-separated in the low refractive layer of the antireflection film of Examples 1 to 6, and the solid inorganic nanoparticles are It is confirmed that most of the hollow inorganic nanoparticles are concentrated and existed toward the interface between the hard coating layer and the low refractive index layer of the anti-reflection film.
  • the hollow U nanoparticles and the second region in which the hollow inorganic nanoparticles and the solid inorganic nanoparticles are separated from each other by phases exhibit different refractive indices. It was confirmed that the first region in which the inorganic inorganic nanoparticles were mainly distributed showed a refractive index of 1.420 or more, and the second region in which the hollow inorganic nanoparticles were mainly distributed had a refractive index of 1.400 or less.
  • the low refractive layer of the antireflection films of Comparative Examples 1 to 3 may have a Fourier transform analysis (Four) on Cu-K c (X-ray reflectance measurement results by rays).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

The present invention relates to an anti-reflective film which has one extremum appearing at a 35 nm to 55 nm thickness and one extremum appearing at a 85 nm to 105 nm thickness on a graph showing the result of a Fourier transform analysis for an X-ray reflectivity result measured using a Cu-Kα ray.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
반사 방지 필름  Antireflection film
【기술분야】  Technical Field
관련 출원 (들)과의 상호 인용  Cross Citation with Related Application (s)
본 출원은 2016년 3월 9일자 한국특허출원 제 1으2016-0028468호, 2016년 3월 11일자 한국특허출원 제 10-2016-0029336 호, 2016년 3월 14일자 한국특허출원 제 10-2016-0030395호, 및 2017년 3월 9일자 한국특허출원 제 10-2017-0029954호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.  This application is filed with Korean Patent Application No. 1, 2016-0028468, filed March 9, 2016, Korean Patent Application No. 10-2016-0029336, filed March 11, 2016, and Korean Patent Application No. 10-2016, March 14, 2016. -0030395, and the benefit of priority based on Korean Patent Application No. 10-2017-0029954 dated March 9, 2017, all the contents disclosed in the documents of the relevant Korean patent applications are incorporated as part of this specification.
본 발명은 반사 방지 필름에 관한 것으로서, 보다 상세하게는 낮은 반사율 및 높은 투광율을 가지면서 높은 내스크래치성 및 방오성을 동시에 구현할 수 있고 디스플레이 장치의 화면의 선명도를 높일 수 있는 반사 방지 필름에 관한 것이다.  The present invention relates to an anti-reflection film, and more particularly, to an anti-reflection film that can simultaneously realize high scratch resistance and antifouling property while having a low reflectance and a high light transmittance, and can increase the sharpness of a screen of a display device.
【발명의 배경이 되는 기술】  [Technique to become background of invention]
일반적으로 PDP, LCD 등의 평판 디스플레이 장치에는 외부로부터 입사되는 빛의 반사를 최소화하기 위한 반사 방지 필름이 장착된다.  In general, a flat panel display device such as a PDP or LCD is equipped with an anti-reflection film for minimizing reflection of light incident from the outside.
빛의 반사를 최소화하기 위한 방법으로는 수지에 무기 미립자 등의 필러를 분산시켜 기재 필름 상에 코팅하고 요철을 부여하는 방법 (ant i¬ glare : AG 코팅) ; 기재 필름 상에 굴절율이 다른 다수의 층을 형성시켜 빛의 간섭을 이용하는 방법 (ant i-ref lect ion: AR 코팅) 또는 이들을 흔용하는 방법 등이 있다. As a method for minimizing the reflection of light, a method of dispersing fillers such as inorganic fine particles in resin and coating on a base film and imparting irregularities (ant i ¬ glare: AG coating); The method of using the interference of light by forming a plurality of layers having different refractive indices on the base film (AR coating), or a common method thereof.
그 중, 상기 AG 코팅의 경우 반사되는 빛의 절대량은 일반적인 하드 코팅과 동등한 수준이지만, 요철을 통한 빛의 산란을 이용해 눈에 들어오는 빛의 양을 줄임으로써 저반사 효과를 얻을 수 있다. 그러나, 상기 AG 코팅은 표면 요철로 인해 화면의 선명도가 떨어지기 때문에, 최근에는 AR 코팅에 대한 많은 연구가 이루어지고 있다.  Among them, in the case of the AG coating, the absolute amount of reflected light is equivalent to that of a general hard coating, but a low reflection effect can be obtained by reducing the amount of light entering the eye by using light scattering through unevenness. However, since the AG coating has poor screen clarity due to surface irregularities, much research has recently been conducted on AR coatings.
상기 AR 코팅을 이용한 필름으로는 기재 필름 상에 하드 코팅층 (고굴절율층) , 저반사 코팅층 등이 적층된 다충 구조인 것이 상용화되고 있다. 그러나, 상기와 같이 다수의 층을 형성시키는 방법은 각 층을 형성하는 공정을 별도로 수행함에 따라 층간 밀착력 (계면 접착력 )이 약해 내스크래치성이 떨어지는 단점이 있다. The AR coating film may be a multi-layered structure in which a hard coating layer (high refractive index layer) and a low reflection coating layer are laminated on a base film. It is commercialized. However, the method of forming a plurality of layers as described above has a disadvantage in that scratch resistance is inferior due to weak adhesion between the layers (interface adhesion force) as a separate process of forming each layer.
또한, 이전에는 반사 방지 필름에 포함되는 저굴절충의 내스크래치성을 향상시키기 위해서는 나노미터 사이즈의 다양한 입자 (예를 들어, 실리카, 알루미나, 제올라이트 등의 입자)를 첨가하는 방법이 주로 시도되었다. 그러나, 상기와 같이 나노미터 사이즈의 입자를 사용하는 경우 저굴절충의 반사율을 낮추면서 내스크래치성을 동시에 높이기 어려운 한계가 있었으며, 나노미터의 사이즈의 입자로 인하여 저굴절층 표면이 갖는 방오성이 크게 저하되었다 .  In addition, in order to improve the scratch resistance of the low refractive index included in the antireflection film, a method of adding various particles having a nanometer size (for example, particles of silica, alumina, zeolite, etc.) has been mainly attempted. However, in the case of using the nanometer size particles as described above, there was a limit that it is difficult to simultaneously increase the scratch resistance while reducing the reflectance of the low refractive index, and the antifouling property of the surface of the low refractive layer due to the nanometer size particles is greatly reduced. It became.
이에 따라, 외부로부터 입사되는 빛의 절대 반사량을 줄이고 표면의 내스크래치성과 함께 방오성을 향상시키기 위한 많은 연구가 이루어지고 있으나, 이에 따른 물성 개선의 정도가 미흡한 실정이다.  Accordingly, many studies have been made to reduce the absolute reflection of light incident from the outside and to improve the antifouling property together with the scratch resistance of the surface. However, the improvement of the physical properties is insufficient.
【발명의 내용】  [Content of invention]
【해결하고자 하는 과제】  Problem to be solved
본 발명은 낮은 반사율 및 높은 투광율을 가지면서 높은 내스크래치성 및 방오성을 동시에 구현할 수 있고 디스플레이 장치의 화면의 선명도를 높일 수 있는 반사 방지 필름을 제공하기 위한 것이다. 【과제의 해결 수단】  The present invention is to provide an anti-reflection film having a low reflectance and a high light transmittance and at the same time can implement a high scratch resistance and antifouling resistance and can increase the sharpness of the screen of the display device. [Measures of problem]
본 명세서에서는, Cu-K α선에 의한 X-선 반사율 측정 결과에 대한 푸리에 변환 해석 (Four ier transform analysi s) 결과 그래프에서, 표면으로부터 35 nm 내지 55 ran의 두께 (thickness)에서 1개의 극값을 나타내고 표면으로부터 85 ran내지 105 ran의 두께 (thi ckness)에서 1개의 극값을 나타내는 반사 방지 필름이 제공된다.  In the present specification, in the Fourier transform analysis results graph for X-ray reflectance measurement results by Cu-K α-rays, one extreme value is determined at a thickness of 35 nm to 55 ran from the surface. And an antireflection film is provided that exhibits one extreme at a thickness of 85 ran to 105 ran from the surface.
이하 발명의 구체적인 구현예에 따른 반사 방지 필름에 관하여 보다 상세하게 설명하기로 한다. 본 명세서에서, 광중합성 화합물은 빛이 조사되면, 예를 들어 가시 광선 또는 자외선의 조사되면 중합 반웅을 일으키는 화합물을 통칭한다. 또한, 함불소 화합물은 화합물 중 적어도 1개 이상의 불소 원소가 포함된 화합물을 의미한다. Hereinafter, an antireflection film according to a specific embodiment of the present invention will be described in detail. In the present specification, the photopolymerizable compound is collectively referred to as a compound that causes polymerization reaction when light is irradiated, for example, visible light or ultraviolet light. In addition, a fluorine-containing compound means the compound containing at least 1 or more fluorine elements among the compounds.
또한, (메트)아크릴 [ (Meth)acryl ]은 아크릴 (acryl ) 및 메타크릴레이트 (Methacryl ) 양쪽 모두를 포함하는 의미이다.  In addition, (meth) acryl [(Meth) acryl] is meant to include both acryl and Methacryl.
또한 (공)중합체는 공중합체 (co-polymer) 및 단독 중합체 (hoiro- polymer ) 양쪽 모두를 포함하는 의미이다.  In addition, (co) polymer is meant to include both copolymers and homopolymers.
또한, 중공 실리카 입자 (si l ica hol low part icles)라 함은 규소 화합물 또는 유기 규소 화합물로부터 도출되는 실리카 입자로서, 상기 실리카 입자의 표면 및 /또는 내부에 빈 공간이 존재하는 형태의 입자를 의미한다 .  In addition, the hollow silica particles (si l ica hol low part icles) is a silica particle derived from a silicon compound or an organosilicon compound, means a particle in the form of an empty space on the surface and / or inside of the silica particles. do .
발명의 일 구현예에 따르면, Cu-K c (선에 의한 X-선 반사율 측정 결과에 대한 푸리에 변환 해석 (Four ier transform analysi s) 결과 그래프에서, 표면으로부터 35 ran 내지 55 nm의 두께 (thickness)에서 1개의 극값을 나타내고 표면으로부터 85 nm내지 105 ran의 두께 (thi ckness)에서 1개의 극값을 나타내는 반사 방지 필름이 제공될 수 있다. According to one embodiment of the invention, the thickness of 35 ran to 55 nm from the surface of the Cu-K c (Four ier transform analysis results of X-ray reflectance measurement results by rays) An antireflection film can be provided that exhibits one extreme at and one extreme at a thickness of 85 nm to 105 ran from the surface.
이에, 본 발명자들은 반사 방지 필름에 관한 연구를 진행하여, Cu-K α선에 의한 X-선 반사율 측정 결과에 대한 푸리에 변환 해석 (Four ier transform analysi s) 결과 그래프에서, 표면으로부터 35 nm 내지 55 ran의 두께 (thickness)에서 1개의 극값을 나타내고 표면으로부터 85 nm내지 105 ran의 두께 (thi ckness)에서 1개의 극값을 나타내는 반사 방지 필름은 낮은 반사율 및 높은 투광율을 가지면서 높은 내스크래치성 및 방오성을 동시에 구현할 수 있다는 점을 실험을 통하여 확인하고 발명을 완성하였다.  Accordingly, the present inventors have conducted research on the antireflection film, and from the results of Fourier transform analysi s on the X-ray reflectance measurement result by Cu-K α-ray, 35 nm to 55 from the surface. An antireflection film exhibiting one extreme value in the thickness of the ran and one extreme value in the thickness of 85 nm to 105 ran from the surface has high scratch resistance and antifouling property with low reflectance and high light transmittance. Experiments confirmed that it can be implemented at the same time and completed the invention.
구체적으로, 상기 반사 방지 필름에 대한 Cu— Κ α선에 의한 X-선 반사율 측정 결과에 대한 푸리에 변환 해석 (Four ier transform analysi s) 결과 그래프는 X축의 필름의 두께 (thi ckness)에 대한 Y축의 푸리에 변환 강도 (Four ier transform magni tude)를 나타낸다.  Specifically, the Fourier transform analysis results of the X-ray reflectance measurement results by Cu— κ α for the anti-reflection film are graphs of the Y axis versus the thickness of the film on the X axis. Fourier transform magni tude.
상기 푸리에 변환 강도의 극값은 두께 방향으로의 전자 밀도의 변화와 관계되며, 상술한 표면으로부터 35 ran 내지 55 ran의 두께 (thickness)에서 1개의 푸리에 변환 강도의 극값을 나타내고 표면으로부터 85 ηπᅵ내지 105 nm의 두께 (thickness)에서 1개의 푸리에 변환 강도의 극값을 나타내면, 필름 두께 방향으로 전자 밀도가 다른 2개의 층이 존재하면서, 보다 낮은 반사율을 구현할 수 있고 내스크래치 특성 및 방오성 향상도 함께 구현 가능할 수 있다. The extreme value of the Fourier transform intensity is related to the change of the electron density in the thickness direction, and from 35 ran to 55 ran from the surface described above. If the extremes of one Fourier transform intensity in thickness and the extremes of one Fourier transform intensity in thickness between 85 ηπ and 105 nm from the surface, two layers with different electron densities in the film thickness direction While present, it is possible to realize a lower reflectance and to improve scratch resistance and antifouling properties.
구체적으로, 상기 반사 방지 필름은 Cu-K α선에 의한 X-선 반사율 측정 결과에 대한 푸리에 변환 해석 (Fourier transform analysis) 결과 그래프에서, 표면으로부터 35 nm 내지 55 nm의 두께 (thickness)에서 1개의 극값을 나타내고 표면으로부터 85 nm내지 105 nm의 두께 (thickness)에서 1개의 극값을 나타냄에 따라서, 내부에 최적화된 전자 밀도 및 굴절율 분포를 유지할 수 있으며, 이에 따라 보다 낮은 반사율을 구현하고, 스크래치 또는 외부 오염 물질에 대하여 상대적으로 안정적인 구조를 가질 수 있다.  Specifically, the anti-reflection film is one in the thickness of 35 nm to 55 nm from the surface in the Fourier transform analysis (Fourier transform analysis) results graph for the X-ray reflectance measurement results by Cu-K α-rays By exhibiting an extreme value and one extreme value from a thickness of 85 nm to 105 nm from the surface, it is possible to maintain an optimized internal electron density and refractive index distribution, thus realizing lower reflectance, scratch or external It may have a relatively stable structure against contaminants.
상기 극값은 상기 반사 방지 필름에 대한 Cu-K α선에 의한 X-선 반사율 측정 결과에 대한 푸리에 변환 해석 (Fourier transform analysis) 결과 그래프에서, y축에 해당하는 반사율의 푸리에 변환 해석 강도 방향으로 볼록하게 나타나는 지점 (point)를 의미한다.  The extreme value is convex in the direction of the Fourier transform analysis intensity of the reflectance corresponding to the y-axis in the Fourier transform analysis result graph of the X-ray reflectance measurement result by the Cu-K α ray for the antireflection film. It means the point that appears.
보다 구체적으로, 상기 극값 (extremal value)은 상기 반사 방지 필름에 대한 Cu-K c (선에 의한 X-선 반사율 측정 결과에 대한 푸리에 변환 해석 (Fourier transform analysis) 결과 그래프에 나타나는 'X축의 두께 (thickness)에 대한 Y축의 푸리에 변환 강도 (Fourier transform magnitude)'의 함수값이 주변 함수값과 비교했을 때 가장 크거나 작은 경우이며, 예를 들어 'X축의 두께 (thickness)에 대한 Y축의 푸리에 변환 강도 (Fourier transform magnitude)1의 함수를 미분한 값이 0인 지점을 의미한다. 또한, 상기 극값 (extremal value)은 극대값 (Local Maximum)을 의미할 수 있다. More specifically, the extremal value is the thickness of the X-axis that appears in the graph of the Fourier transform analysis of the Cu-K c (X-ray reflectance measurement result by the ray for the antireflection film ( Fourier transform magnitude on the Y axis for the thickness) is the largest or smallest value compared to the surrounding function, for example, the Fourier transform strength on the Y axis for the thickness of the X axis. (Fourier transform magnitude) means a point at which the value differentiating the function of 1 is 0. In addition, the extreme value may mean a local maximum.
상기 Cu-K α선에 의한 X-선 반사율 측정은 1cm* lcm (가로 *세로)의 크기의 반사 방지 필름에 대하여 1.5418 A의 파장의 Cu-K α선을 이용하여 측정할 수 있다. 구체적으로, 2theta(29) 값이 0이 되도록 샘플 스테이지를 조정한 후, 샘플의 hal f-cut을 확인하고, 이후 입사각과 반사각이 specular 조건을 만족하는 상태로 반사율 측정을 수행하여 X선 반사율 패턴을 측정한다. X-ray reflectance measurement by the Cu-K α-rays was measured using a Cu-K α-ray having a wavelength of 1.5418 A for the antireflection film having a size of 1 cm * l cm (horizontal * vertical). It can be measured. Specifically, after adjusting the sample stage so that the value of 2theta (29) becomes 0, checking the hal f-cut of the sample, and then performing reflectance measurement with the incident angle and the reflecting angle satisfying the specular condition, thereby performing the X-ray reflectance pattern Measure
상기 Cu-K α선에 의한 X-선 반사율 측정 결과에 대한 푸리에 변환 해석은 PANalyt ical 사의 X' pert Ref lect ivi ty 프로그램을 사용하여 수행할 수 있다. 구체적으로, 푸리에 변환시 input 값으로는 start angle , end angle , cr i t i cal angle이 있으며, 예를 들어 start angle로는 0. 1°을 입력하고, end angle 로는 1.2°를 입력하고, cr i t ical angle로는 0. 163 0또는 0. 18°을 입력할수 있다. . 한편, Cu-K α선에 의한 X-선 반사율 측정 결과에 대한 푸리에 변환 해석 (Four ier transform analysi s) 결과 그래프에서 35 ran 내지 55 nm의 두께 (thickness)에서 1개의 극값을 나타내고 85 nm내지 105 ran의 두께 (thickness)에서 1개의 극값을 나타내는 상기 방사 방지 필름의 특성은 반사 방지 필름에 포함되는 성분, 광학 특성, 표면 특성 및 내부 특성 등을 조절하여 달성할 수 있다. Fourier transform analysis of the X-ray reflectance measurement result by the Cu-K α-rays can be performed using the X 'pert reflective avi ty program of PANalytical. Specifically, Fourier transform input values include start angle, end angle, and cr iti cal angle.For example, start angle is set to 0.01 °, end angle is set to 1.2 °, and cr it ical angle is set. You can enter 0. 163 0 or 0. 18 °. . On the other hand, the Fourier transform analysis result of the X-ray reflectance measurement by Cu-K α-ray shows one extreme value at a thickness of 35 ran to 55 nm in the graph of the results of Fourier transform analysis. The antireflection film exhibiting one extreme value in the thickness of the ran may be achieved by adjusting components, optical properties, surface properties, internal properties, and the like included in the antireflection film.
상기 구현예의 반사 방지 필름은 통상적으로 알려진 세부 구성을 포함할 수 있으며, 예를 들어 상기 반사 방지 필름은 하드 코팅층; 및 상기 하드 코팅층 상에 형성된 저굴절층을 포함할 수 있고, 필요에 따라서 다른 특성을 갖는 층을 1개 이상 더 포함할 수 도 있다.  The antireflection film of the embodiment may comprise a conventionally known detailed configuration, for example the antireflection film may comprise a hard coating layer; And a low refractive layer formed on the hard coating layer, and may further include one or more layers having other characteristics as necessary.
상기 표면으로부터 35 nm 내지 55 ran의 두께 및 85 nm내지 105 nm 각각은 상기 반사 방지 필름의 표면으로부터 정의 또는 측정되는 두께이며, 상술한 바와 같이 상기 반사 방지 필름은 하드 코팅층; 및 상기 하드 코팅충 상에 형성된 저굴절층을 포함하는 경우, 상기 표면으로부터 35 nm 내지 55 ηπι의 두께 및 85 ran내지 105 nm 각각은 상기 저굴절층의 표면에서부터의 두께일 수 있다.  A thickness of 35 nm to 55 ran and a thickness of 85 nm to 105 nm, respectively, from the surface are defined or measured from the surface of the antireflective film, and as described above, the antireflective film may include a hard coating layer; And a low refractive layer formed on the hard coating layer, each of the thickness of 35 nm to 55 ηπι and the thickness of 85 ran to 105 nm may be the thickness from the surface of the low refractive layer.
보다 구체적으로, 상기 반사 방지 필름은 하드 코팅층; 및 바인더 수지와 상기 바인더 수지에 분산된 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자를 포함하는 저굴절층;을 포함할 수 있다. More specifically, the anti-reflection film is a hard coating layer; And hollow inorganic nanoparticles and solid particles dispersed in the binder resin and the binder resin. It may include; low refractive index layer containing inorganic nanoparticles.
구체적으로, 상기 반사 방지 필름에서, 상기 하드 코팅충 및 상기 저굴절층 간의 계면 가까이에 솔리드형 무기 나노 입자가 중공형 무기 나노 입자 보다 많이 분포할 수 있다.  Specifically, in the anti-reflection film, the solid inorganic nanoparticles may be distributed more than the hollow inorganic nanoparticles near the interface between the hard coating layer and the low refractive layer.
이전에는 반사 방지 필름의 내스크래치성을 높이기 위하여 무기 입자를 과량 첨가하였으나, 반사 방지 필름의 내스크래치성을 높이는데 한계가 있었고 오히려 반사율과 방오성이 저하되는 문제점이 있었다.  Previously, an excessive amount of inorganic particles was added to increase scratch resistance of the antireflection film, but there was a limit in improving scratch resistance of the antireflection film, but there was a problem in that reflectance and antifouling property were lowered.
이에 반하여, 상기 반사 방지 필름에 포함되는 저굴절층 내에서 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자가 서로 구분될 수 있도록 분포시키는 경우, 낮은 반사율 및 높은 투광율을 가지면서 높은 내스크래치성 및 방오성을동시에 구현할 수 있다.  On the contrary, in the case of distributing the hollow inorganic nanoparticles and the solid inorganic nanoparticles so as to be distinguished from each other in the low refractive layer included in the antireflection film, they have high scratch resistance and antifouling resistance while having low reflectance and high light transmittance. Can be implemented at the same time.
구체적으로, 상기 반사 방지 필름의 저굴절층 중 상기 하드 코팅층 및 상기 저굴절층 간의 계면 가까이에 솔리드형 무기 나노 입자를 주로 분포시키고 상기 계면의 반대면 쪽으로는 중공형 무기 나노 입자를 주로 분포시키는 경우, 이전에 무기 입자를 사용하여 얻어질 수 있었던 실제 반사율에 비하여 보다 낮은 반사율을 달성할 수 있으며, 또한 상기 저굴절층이 크게 향상된 내스크래치성 및 방오성을 함께 구현할 수 있다. 또한, Cu-K α선에 의한 X-선 반사율 측정 결과에 대한 푸리에 변환 해석 (Four ier transform analysi s) 결과 그래프에서 35 ran 내지 55 nm의 두께 (thickness)에서 1개의 극값을 나타내고 85 nm내지 105 nm의 두께 (thi ckness)에서 1개의 극값을 나타내는 상기 방사 방지 필름의 특성은 상기 저굴절층의 표면 또는 내부 특성에 의한 것일 수 있다.  Specifically, in the case where the solid inorganic nanoparticles are mainly distributed near the interface between the hard coating layer and the low refractive layer among the low refractive layers of the antireflection film, and the hollow inorganic nanoparticles are mainly distributed toward the opposite side of the interface. It is possible to achieve a lower reflectance compared to the actual reflectivity previously obtained using inorganic particles, and the low refractive index layer can realize a significantly improved scratch resistance and antifouling resistance. In addition, the Fourier transform analysis result of the X-ray reflectance measurement by Cu-K α-ray shows one extreme value at a thickness of 35 ran to 55 nm in the graph of the results of Fourier transform analysis. The anti-radiation film exhibiting one extreme value in the thickness of nm may be due to the surface or internal characteristics of the low refractive layer.
상술한 바와 같이, 상기 반사 방지 필름은 Cu-K α선에 의한 X-선 반사율 측정 결과에 대한 푸리에 변환 해석 (F0ur ier transform analysi s) 결과 그래프에서, 35 ran 내지 55 ran의 두께 (thickness)에서 1개의 극값을 나타내고 85 nm 내지 105 nm의 두께 (thi ckness)에서 1개의 극값을 나타냄에 따라서, 내부에 최적화된 전자 밀도 및 굴절율 분포를 유지할 수 있으며, 이에 따라 보다 낮은 반사율을 구현하고, 스크래치 또는 외부 오염 물질에 대하여 상대적으로 안정적인 구조를 가질 수 있다. 상술한 바와 같이, 상기 저굴절층은 바인더 수지와 상기 바인더 수지에 분산된 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자를 포함하며, 상기 하드 코팅층의 일면에 형성될 수 있는데, 상기 솔리드형 무기 나노 입자 전체 중 70부피 ¾» 이상은 상기 하드 코팅층 및 상기 저굴절층 간의 계면으로부터 상기 저굴절층 전체 두께 50% 이내에 존재할 수 있다. As described above, the anti-reflection film has a thickness of 35 ran to 55 ran in a Fourier transform analysis (F 0ur i er transform analysi s) result graph for X-ray reflectance measurement results by Cu-K α-rays. By representing one extreme value at) and one extreme value at a thickness of 85 nm to 105 nm, an optimized internal electron density and refractive index distribution can be maintained, thereby realizing a lower reflectance. It may have a relatively stable structure against scratches or external contaminants. As described above, the low refractive layer includes a binder resin, hollow inorganic nanoparticles and solid inorganic nanoparticles dispersed in the binder resin, and may be formed on one surface of the hard coating layer, the solid inorganic nano More than 70 volume ¾ »of the total particles may be present within 50% of the total thickness of the low refractive index layer from the interface between the hard coating layer and the low refractive index layer.
1상기 솔리드형 무기 나노 입자 전체 중 70 부피 % 이상이 특정 영역에 존재한다'는 상기 저굴절층의 단면에서 상기 솔리드형 무기 나노 입자가 상기 특정 영역에 대부분 존재한다는 의미로 정의되며, 구체적으로 상기 솔리드형 무기 나노 입자 전체 중 70 부피 % 이상은 상기 솔리드형 무기 나노 입자 전체의 부피를 측정하여 확인 가능하다. 1 at least 70% by volume of the total solid inorganic nanoparticles is present in a specific region 'is defined as meaning that the solid inorganic nanoparticles are mostly present in the specific region in the cross-section of the low refractive index layer. At least 70% by volume of the total solid inorganic nanoparticles may be confirmed by measuring the volume of the whole solid inorganic nanoparticles.
상기 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자가 특정된 영역에 존재하는지 여부는 각각의 중공형 무기 나노 입자 또는 솔리드형 무기 나노 입자가 상기 특정된 영역 내에 입자 존재하는지 여부로 결정하며, 상기 특정 영역의 경계면에 걸쳐 존재하는 입자는 제외하고 결정한다.  Whether the hollow inorganic nanoparticles and the solid inorganic nanoparticles are present in the specified region is determined by whether each of the hollow inorganic nanoparticles or the solid inorganic nanoparticles is present in the specified region, and wherein the specific It is determined by excluding particles that exist across the interface of the region.
또한, 상술한 바와 같이, 상기 저굴절층에서 상기 하드 코팅층 및 상기 저굴절층 간의 계면의 반대면 쪽으로는 중공형 무기 나노 입자가 주로 분포할 수 있는데, 구체적으로 상기 중공형 무기 나노 입자 전체 중 30 부피 % 이상, 50부피 % 이상, 또는 70부피%이상이 상기 솔리드형 무기 나노 입자 전체 보다 상기 하드 코팅층 및 상기 저굴절층 간의 계면으로부터 상기 저굴절층의 두께 방향으로 보다 먼 거리에 존재할수 있다.  In addition, as described above, the hollow inorganic nanoparticles may be mainly distributed toward the opposite surface of the interface between the hard coating layer and the low refractive layer in the low refractive index layer. The volume% or more, 50 volume% or more, or 70 volume% or more may be present at a distance farther in the thickness direction of the low refractive index layer from the interface between the hard coating layer and the low refractive index layer than the entire solid inorganic nanoparticles.
보다 구체적으로, 상기 하드 코팅층과 상기 저굴절층의 계면으로부터 상기 저굴절층 전체 두께 30% 이내에 상기 솔리드형 무기 나노 입자 전체 중 70 부피 % 이상이 존재할 수 있다. 또한, 상기 하드 코팅층과 상기 저굴절층의 계면으로부터 상기 저굴절층 전체 두께 30% 초과의 영역에 상기 중공형 무기 나노 입자 전체 중 70 부피 ¾> 이상이 존재할 수 있다.  More specifically, 70% by volume or more of the entire solid inorganic nanoparticles may be present within 30% of the total thickness of the low refractive layer from the interface between the hard coating layer and the low refractive layer. In addition, at least 70% by volume ¾> of the entire hollow inorganic nanoparticle may be present in an area of more than 30% of the total thickness of the low refractive index layer from an interface between the hard coating layer and the low refractive index layer.
상기 반사 방지 필름의 저굴절층 중 상기 하드 코팅층 및 상기 저굴절층 간의 계면 가까이에 솔리드형 무기 나노 입자를 주로 분포시키고 상기 계면의 반대면 쪽으로는 중공형 무기 나노 입자를 주로 분포시킴에 따라서, 상기 저굴절층 내에 서로 굴절율이 다른 2개 이상의 부분 또는 2개 이상의 층이 형성될 수 있으며, 이에 따라 상기 반사 방지 필름의 반사율이 낮아질 수 있다. In the low refractive layer of the antireflection film, the solid inorganic nanoparticles are mainly distributed near the interface between the hard coating layer and the low refractive layer, and the hollow inorganic nanoparticles are mainly distributed toward the opposite side of the interface. Two or more parts or two having different refractive indices in the low refractive layer The above layer may be formed, and thus the reflectance of the anti-reflection film may be lowered.
상기 저굴절층에서 상기 솔리드형 무기 나노 입자 및 중공형 무기 나노 입자의 특이적 분포는 후술하는 특정의 제조 방법에서, 상기 솔리드형 무기 나노 입자 및 중공형 무기 나노 입자 간의 밀도 차이를 조절하고 상기 2종의 나노 입자를 포함한 저굴절층 형성용 광경화성 수지 조성물을 건조 온도를 조절함으로 얻어질 수 있다.  The specific distribution of the solid inorganic nanoparticles and the hollow inorganic nanoparticles in the low refractive index layer in the specific manufacturing method described below, the density difference between the solid inorganic nanoparticles and hollow inorganic nanoparticles and the 2 The photocurable resin composition for forming a low refractive layer including the nanoparticles of a species can be obtained by controlling the drying temperature.
구체적으로, 상기 솔리드형 무기 나노 입자가상기 중공형 무기 나노 입자에 비하여 0.50 g/cin3 이상 높은 밀도를 가질 수 있으며, 또한 상기 솔리드형 무기 나노 입자 및 상기 중공형 무기 나노 입자 간의 밀도의 차이는 0.50 g/crf 내지 1.50 g/cin3 , 또는 0.60 g/cirf 내지 1.00 g/cin3 일 수 있다. 이러한 밀도 차이로 인하여 상기 하드 코팅층 상에 형성되는 저굴절층에서 상기 솔리드형 무기 나노 입자가 하드 코팅층 쪽에 보다 가까운 쪽에 위치할 수 있다. 다만, 후술하는 제조 방법이나 실시예 등에서 확인되는 바와 같이, 상기 2 종의 입자 간의 밀도의 차이에도 불구하고 소정의 건조 온도 및 시간을 작용하여야 상술한 저굴절층 내에서의 입자의 분포 양상을 구현할 수 있다. 상기 반사 방지 필름의 저굴절층 중 상기 하드 코팅층 및 상기 저굴절층 간의 계면 가까이에 솔리드형 무기 나노 입자를 주로 분포시키고 상기 계면의 반대면 쪽으로는 중공형 무기 나노 입자를 주로 분포시키는 경우, 이전에 무기 입자를 사용하여 얻어질 수 있었던 반사율 보다 낮은 반사율을 구현할 수 있다. 구체적으로 상기 반사 반지 필름은 380nm 내지 780ran의 가시 광선 파장대 영역에서 1.5%이하, 또는 1.0% 이하, 또는 0.50 내지 1.0%, 0.7%이하, 또는 0.60% 내지 0.70%, 또는 0.62% 내지 0.67%의 평균 반사율을 나타낼 수 있다. Specifically, the solid inorganic nanoparticles may have a density of 0.50 g / cin 3 or more higher than the hollow inorganic nanoparticles, and the difference in density between the solid inorganic nanoparticles and the hollow inorganic nanoparticles may be 0.50 g / crf to 1.50 g / cin 3 , or 0.60 g / cirf to 1.00 g / cin 3 . Due to the density difference, the solid inorganic nanoparticles may be located closer to the hard coating layer in the low refractive layer formed on the hard coating layer. However, as can be seen in the manufacturing methods and examples described below, despite the difference in density between the two particles, a predetermined drying temperature and time must be applied to implement the distribution pattern of the particles in the above-described low refractive layer. Can be. When the solid inorganic nanoparticles are mainly distributed near the interface between the hard coating layer and the low refractive layer among the low refractive layers of the antireflection film and the hollow inorganic nanoparticles are mainly distributed toward the opposite side of the interface, It is possible to realize reflectance lower than that which could be obtained using inorganic particles. Specifically, the reflective ring film has an average of 1.5% or less, or 1.0% or less, or 0.50 to 1.0%, 0.7% or less, or 0.60% to 0.70%, or 0.62% to 0.67% in the visible light wavelength range of 380 nm to 780 ran. It can indicate reflectance.
한편, 상기 구현예의 반사 방지 필름에서, 상기 저굴절층은 상기 솔리드형 무기 나노 입자 전체 중 70부피 % 이상이 포함된 게 1층과 상기 중공형 무기 나노 입자 전체 중 70 부피 % 이상이 포함된 게 2층을 포함할 수 있으며, 상기 제 1층이 제 2층에 비하여 상기 하드 코팅층 및 상기 저굴절층 간의 계면에 보다 가까이 위치할수 있다. On the other hand, in the anti-reflection film of the embodiment, the low refractive layer is a crab containing at least 70% by volume of the total solid inorganic nanoparticles and the crab containing at least 70% by volume of the entire hollow inorganic nanoparticles It may include two layers, wherein the first layer is the hard coating layer and the low refractive layer compared to the second layer It can be located closer to the interface of the liver.
상술한 바와 같이 , 상기 반사 방지 필름의 저굴절층에서는 상기 하드 코팅층 및 상기 저굴절충 간의 계면 가까이에 솔리드형 무기 나노 입자가 주로 분포하고 상기 계면의 반대면 쪽으로는 중공형 무기 나노 입자가 주로 분포하는데, 상기 솔리드형 무기 나노 입자 및 중공형 무기 나노 입자 각각이 주로 분포하는 영역이 저굴절층 내에서 가시적으로 확인되는 독립된 층을 형성할 수 있다.  As described above, in the low refractive layer of the antireflection film, the solid inorganic nanoparticles are mainly distributed near the interface between the hard coating layer and the low refractive index, and the hollow inorganic nanoparticles are mainly distributed toward the opposite side of the interface. In addition, a region in which the solid inorganic nanoparticles and the hollow inorganic nanoparticles are mainly distributed may form an independent layer that is visually identified in the low refractive layer.
또한, 상기 솔리드형 무기 나노 입자 전체 중 70부피 % 이상이 포함된 제 1층은 상기 하드 코팅층 및 상기 저굴절층 간의 계면으로부터 상기 저굴절층 전체 두께 50% 이내에 위치할 수 있다. 보다 구체적으로, 상기 하드 코팅층과 상기 저굴절층의 계면으로부터 상기 저굴절층 전체 두께 30% 이내에 상기 솔리드형 무기 나노 입자 전체 중 70부피 ¾> 이상이 포함된 제 1층이 존재할수 있다.  In addition, the first layer containing 70% by volume or more of the total solid inorganic nanoparticles may be located within 50% of the total thickness of the low refractive index layer from the interface between the hard coating layer and the low refractive index layer. More specifically, there may be a first layer including 70 vol ¾ or more of the entire solid inorganic nanoparticles within 30% of the total thickness of the low refractive index layer from the interface between the hard coating layer and the low refractive index layer.
또한, 상술한 바와 같이, 상기 저굴절층에서 상기 하드 코팅층 및 상기 저굴절층 간의 계면의 반대면 쪽으로는 중공형 무기 나노 입자가 주로 분포할 수 있는데, 구체적으로 상기 중공형 무기 나노 입자 전체 중 30 부피 % 이상, 또는 50부피 ¾> 이상, 또는 70부피 % 이상이 상기 솔리드형 무기 나노 입자 전체 보다 상기 하드 코팅층 및 상기 저굴절층 간의 계면으로부터 상기 저굴절층의 두께 방향으로 보다 먼 거리에 존재할 수 있다. 이에 따라 상술한 바와 같이, 상기 계 1층이 계 2충에 비하여 상기 하드 코팅층 및 상기 저굴절층 간의 계면에 보다 가까이 위치할 수 있다. 또한, 상술한 바와 같이, 상기 솔리드형 무기 나노 입자 및 중공형 무기 나노 입자 각각이 주로 분포하는 영역인 제 1층 및 게 2층 각각이 저굴절층 내에 존재한다는 점을 가시적으로 확인될 수 있다. 예를 들어 투과 전자현미경 [Transmi ssion Electron Mi croscope] 또는 주사전자현미경 [Scanning Electron Mi croscope] 등을 이용하여 게 1층 및 계 2층 각각이 저굴절층 내에 존재한다는 점을 가시적으로 확인할 수 있으며, 또한 저굴절층 내에서 게 1층 및 게 2층 각각에 분포하는 솔리드형 무기 나노 입자 및 중공형 무기 나노 입자의 비율 또한 확인할 수 있다.  In addition, as described above, the hollow inorganic nanoparticles may be mainly distributed toward the opposite surface of the interface between the hard coating layer and the low refractive layer in the low refractive layer. The volume% or more, or 50 volume ¾> or more, or 70 volume% or more may be present at a distance farther in the thickness direction of the low refractive layer from the interface between the hard coating layer and the low refractive layer than the entire solid inorganic nanoparticle. have. Accordingly, as described above, the first layer may be located closer to the interface between the hard coating layer and the low refractive layer than the second layer. In addition, as described above, it can be visually confirmed that each of the first layer and the crab 2 layer, which are areas in which the solid inorganic nanoparticles and the hollow inorganic nanoparticles are mainly distributed, is present in the low refractive layer. For example, using the transmission electron microscope [Scanning Electron Mi croscope] or the scanning electron microscope [Scanning Electron Mi croscope], etc. can be visually confirmed that each of the first layer and the second layer in the low refractive layer, In addition, the ratio of the solid inorganic nanoparticles and the hollow inorganic nanoparticles distributed in each of the crab 1 layer and the crab 2 layer in the low refractive layer can also be confirmed.
한편, 상기 솔리드형 무기 나노 입자 전체 중 70부피 ¾> 이상이 포함된 제 1중 및 상기 중공형 무기 나노 입자 전체 증 70 부피 % 이상이 포함된 제 2층 각각은 하나의 층 안에서 공통된 광학 특성을 공유할 수 있으며, 이에 따라 하나의 층으로 정의될 수 있다. On the other hand, more than 70 vol ¾> of the solid inorganic nanoparticles in total Each of the first and second layers including at least 70% by volume of the entire hollow inorganic nanoparticles may share common optical properties in one layer, and thus may be defined as one layer.
보다 구체적으로, 상기 제 1층 및 제 2층 각각은 타원편광법 (ellipsometry)으로 측정한 편극의 타원율을 상기 일반식 1의 코쉬 모델 (Cauchy model)로 최적화 (fitting)하였을 때, 특정한 코쉬 파라미터 A, B 및 C를 갖게 되며, 이에 따라 제 1층 및 제 2층은 서로 구분될 수 있다. 또한 상기 타원편광법 (ellipsometry)으로 측정한 편극의 타원율을 하기 일반식 1의 코쉬 모델 (Cauchy model)로 최적화 (fitting)를 통하여 상기 제 1층 및 게 2층의 두께도 도출될 수 있기 때문에, 상기 저굴절층 내에서 게 1층 및 게 2층의 정의가 가능해진다.  More specifically, each of the first layer and the second layer has a specific Kosh parameter A when the ellipticity of the polarity measured by ellipsometry is optimized by the Cauchy model of the general formula (1). , B and C, so that the first layer and the second layer can be distinguished from each other. In addition, since the thickness of the first layer and the second layer of the crab can be derived by fitting the ellipticity of the polarization measured by the ellipsometry to the Cauchy model of the following general formula (1), In the low refractive layer, definition of a crab layer and a crab layer is possible.
[일반식 1]
Figure imgf000012_0001
상기 일반식 1에서, nO 는 λ파장에서의 굴절율 (refractive index)이고, λ는 300 nm 내지 1800nm의 범위이고, A, B 및 C는 코쉬 파라미터이다.
[Formula 1]
Figure imgf000012_0001
In Formula 1, nO is a refractive index at lambda wavelength, lambda is in the range of 300 nm to 1800 nm, and A, B and C are Kosh parameters.
한편, 상기 타원편광법 (ellipsometry)으로 측정한 편극의 타원율을 상기 일반식 1의 코쉬 모델 (Cauchy model)로 최적화 (fitting)하였을 때 도출되는 코쉬 파라미터 A, B 및 (:는 하나의 층 내에서의 평균값일 수 있다. 이에 따라, 상기 게 1층 및 제 2층 사이에 계면이 존재하는 경우, 상기 제 1층 및 게 2층이 갖는 코쉬 파라미터 A, B 및 C가 중첩되는 영역이 존재할 수 있다. 다만, 이러한 경우에도, 상기 제 1층 및 제 2층 각각이 갖는 코쉬 파라미터 A, B 및 (:의 평균값을 만족하는 영역의 따라서, 상기 게 1층 및 제 2층이 두께 및 위치가특정될 수 있다.  On the other hand, the coarse parameters A, B, and (:) obtained when the ellipticity of the polarization measured by the ellipsometry is optimized by the Cauchy model of Equation 1 Accordingly, when an interface exists between the first and second crab layers, there may be a region where the Kosh parameters A, B, and C of the first and second layers overlap. However, even in such a case, the thicknesses and positions of the first and second layers may be specified according to the regions satisfying the average values of the Cosch parameters A, B and () of the first and second layers, respectively. Can be.
예를 들어, 상기 저굴절층에 포함된 계 1층에 대하여 타원편광법 (ellipsometry)으로 측정한 편극의 타원율을 하기 일반식 1의 코쉬 모델 (Cauchy model)로 최적화 (fitting)하였을 때, 하기 A는 1.0 내지 1.65이고 B는 0.0010 내지 0.0350이고 C는 0 내지 1*10— 3의 조건을 만족할 수 있으며, 또한 상기 저굴절층에 포함된 제 1층에 대하여, 상기 A는 1.30 내지 1.55 , 또는 1.40 내지 1.52, 또는 1.491 내지 1.511이면서, 상기 B는 0 내지 0.005, 또는 0 내지 0.00580, 또는 0 내지 0.00573이면서, 상기 C는 0 내지 1*10_3ᅳ 또는 0 내지 5.0*10— 4, 또는 0 내지 4. 1352*10— 4 인 조건을 만족할수 있다. For example, when the ellipticity of the polarization measured by ellipsometry of the system 1 layer included in the low refractive layer is optimized by the Cauchy model of the following general formula (1), the following A Is 1.0 to 1.65 and B is 0.0010 to 0.0350, and C is from 0 to 1 x may satisfy the condition of 10-3, but also with respect to the said first layer comprises a low refractive index layer, and A is 1.30 to 1.55, or from 1.40 to 1.52, or 1.491 to 1.511, yet, the B is from 0 to 0.005, or from 0 to 0.00580, or yet from 0 to 0.00573, the C is from 0 to 1 × 10 _3 eu or 0 to 5.0 * 10-4, or from 0 to 4.1352 * 10-4 can be satisfied with the conditions.
또한, 상기 저굴절층에 포함된 게 2층에 대하여 타원편광법 (el l ipsometry)으로 측정한 편극의 타원율을 상기 일반식 1의 코쉬 모델 (Cauchy model )로 최적화 ( f i tt ing)하였을 때, 상기 A는 1.0 내지 1.50이고 B는 0 내지 0.007이고 C는 0 내지 1*1(Γ3의 조건을 만족할 수 있으며, 또한 상기 저굴절층에 포함된 게 2층에 대하여, 상기 Α는 1. 10 내지 1.40, 또는 1.20 내지 1.35, 또는 1.211 내지 1.349이면서, 상기 B는 0 내지 0.007, 또는 0 내지 0.00550, 또는 0 내지 으 00513이면서, 상기 C는 0 내지 1*10— 3, 또는 0 내지 5.0*10— 4, 또는 0 내지 4.8685*10— 4 인 조건을 만족할 수 있다. In addition, when the ellipticity of the polarization measured by el lsosometry (el l ipsometry) for the two layers included in the low refractive index layer is optimized (Cauchy model) of Formula 1 (fi tt ing), The A is 1.0 to 1.50, the B is 0 to 0.007 and the C may satisfy the condition of 0 to 1 * 1 (Γ 3 , and for the two layers included in the low refractive layer, the A is 1. 10. yet to 1.40, or 1.20 to 1.35, or 1.211 to 1.349, and the B is from 0 to 0.007, or from 0 to about 0.00550, or from 0 to 00 513 while flying, the C is from 0 to 1 * 10-3, or from 0 to 5.0 * 10 — 4 , or 0 to 4.8685 * 10 — 4 can be satisfied.
한편, 상술한 구현예 (들)의 반사 방지 필름에서, 상기 저굴절층에 포함되는 제 1층과 게 2층은 상이한 범위의 굴절율을 가질 수 있다.  On the other hand, in the anti-reflection film of the above-described embodiment (s), the first layer and the crab layer 2 included in the low refractive layer may have a different refractive index.
보다 구체적으로, 상기 저굴절층에 포함되는 제 1층은 550 ran에서 1.420 내지 1.600, 또는 1.450 내지 1.550 , 또는 1.480 내지 1.520, 또는 1.491 내지 1.511의 굴절율을 가질 수 있다. 또한, 상기 저굴절층에 포함되는 제 2층은 550 nm에서 1.200 내지 1.410 , 또는 1.210 내지 1.400, 또는 1.211 내지 1.375의 굴절율을 가질 수 있다.  More specifically, the first layer included in the low refractive layer may have a refractive index of 1.420 to 1.600, or 1.450 to 1.550, or 1.480 to 1.520, or 1.491 to 1.511 at 550 ran. In addition, the second layer included in the low refractive layer may have a refractive index of 1.200 to 1.410, or 1.210 to 1.400, or 1.211 to 1.375 at 550 nm.
상술한 굴절율의 측정은 통상적으로 알려진 방법을 사용할 수 있으며, 예를 들어 상기 저굴절층에 포함되는 제 1층과 제 2층 각각에 대하여 380 nm 내지 1 , 000 nm의 파장에서 측정된 타원 편광과 Cauchy 모델을 이용하여 550nm에서의 굴절율을 계산하여 결정할 수 있다.  Measurement of the above-described refractive index may use a conventionally known method, for example, the elliptical polarization measured at a wavelength of 380 nm to 1,000 nm for each of the first layer and the second layer included in the low refractive layer; The Cauchy model can be used to calculate and determine the refractive index at 550 nm.
한편, 상기 솔리드형 무기 나노 입자는 100 ran미만의 최대 직경을 가지며 그 내부에 빈 공간이 존재하지 않는 형태의 입자를 의미한다.  On the other hand, the solid-type inorganic nanoparticles mean a particle having a maximum diameter of less than 100 ran and there is no empty space therein.
또한, 상기 중공형 무기 나노 입자는 200 ran미만의 최대 직경을 가지며 그 표면 및 /또는 내부에 빈 공간이 존재하는 형태의 입자를 의미한다. In addition, the hollow inorganic nanoparticles have a maximum diameter of less than 200 ran and the particles having a form having an empty space on the surface and / or inside thereof it means.
상기 솔리드형 무기 나노 입자는 0.5 내지 lOOnm , 또는 1 내지 30ran 의 직경을 가질 수 있다.  The solid inorganic nanoparticles may have a diameter of 0.5 to 100 nm, or 1 to 30 ran.
상기 중공형 무기 나노 입자는 1 내지 200nm , 또는 10 내지 lOOnm 의 직경을 가질 수 있다.  The hollow inorganic nanoparticles may have a diameter of 1 to 200 nm, or 10 to 100 nm.
상기 솔리드형 무기 나노 입자 및 중공형 무기 나노 입자의 직경을 입자 단면에서 확인되는 최장 직경을 의미할 수 있다.  The diameter of the solid inorganic nanoparticles and the hollow inorganic nanoparticles may refer to the longest diameter identified in the particle cross section.
한편, 상기 솔리드형 무기 나노 입자 및 상기 중공형 무기 나노 입자 각각은 표면에 (메트)아크릴레이트기, 에폭사이드기, 비닐기 (Vinyl ) 및 싸이을기 (Thiol )로 이루어진 군에서 선택된 1종 이상의 반웅성 작용기를 함유할 수 있다. 상기 솔리드형 무기 나노 입자 및 상기 중공형 무기 나노 입자 각각이 표면에 상술한 반웅성 작용기를 함유함에 따라서, 상기 저굴절층은 보다 높은 가교도를 가질 수 있으며, 이에 따라 보다 향상된 내스크래치성 및 방오성을 확보할 수 있다.  On the other hand, each of the solid inorganic nanoparticles and the hollow inorganic nanoparticles are at least one half selected from the group consisting of (meth) acrylate group, epoxide group, vinyl group (Vinyl) and thio group (Thiol) on the surface It may contain male functional groups. As each of the solid inorganic nanoparticles and the hollow inorganic nanoparticles contain the semi-functional functional groups described above on the surface, the low refractive index layer may have a higher degree of crosslinking, thereby improving scratch and antifouling properties. It can be secured.
한편, 상술한 저굴절층은 광중합성 화합물, 광반응성 작용기를 포함한 함불소 화합물, 중공형 무기 나노 입자, 솔리드형 무기 나노 입자 및 광개시제를 포함한광경화성 코팅 조성물로부터 제조될 수 있다.  Meanwhile, the above-described low refractive layer may be prepared from a photocurable coating composition including a photopolymerizable compound, a fluorine-containing compound including a photoreactive functional group, a hollow inorganic nanoparticle, a solid inorganic nanoparticle, and a photoinitiator.
이에 따라, 상기 저굴절층에 포함되는 바인더 수지는 광중합성 화합물의 (공)중합체 및 광반웅성 작용기를 포함한 함불소 '화합물 간의 가교 (공)증합체를 포함할 수 있다. Accordingly, the binder resin contained in the low refractive index layer may comprise a crosslinked (co) polymer between the authentication box containing (co) polymer and a functional group of the photopolymerizable compound male flare fluoride "compound.
상기 구현예의 광경화성 코팅 조성물에 포함되는 광중합성 화합물은 제조되는 저굴절층의 바인더 수지의 기재를 형성할 수 있다. 구체적으로, 상기 광중합성 화합물은 (메트)아크릴레이트 또는 비닐기를 포함하는 단량체 또는 올리고머를 포함할 수 있다. 보다 구체적으로, 상기 광중합성 화합물은 (메트)아크릴레이트 또는 비닐기를 1 이상, 또는 2 이상, 또는 3 이상 포함하는 단량체 또는 올리고머를 포함할 수 있다.  The photopolymerizable compound included in the photocurable coating composition of the embodiment may form a base material of the binder resin of the low refractive index layer to be prepared. Specifically, the photopolymerizable compound may include a monomer or oligomer including a (meth) acrylate or a vinyl group. More specifically, the photopolymerizable compound may include a monomer or oligomer containing (meth) acrylate or vinyl group of one or more, or two or more, or three or more.
상기 (메트)아크릴레이트를 포함한 단량체 또는 올리고머의 구체적인 예로는, 펜타에리스리를 트리 (메트)아크릴레이트, 펜타에리스리를 테트라 (메트)아크릴레이트, 디펜타에리스리를 펜타 (메트)아크릴레이트, 디펜타에리스리를 핵사 (메트)아크릴레이트, 트리펜타에리스리를 헵타 (메트)아크릴레이트, 트릴렌 디이소시아네이트, 자일렌 디이소시아네이트, 핵사메틸렌 디이소시아네이트, 트리메틸올프로판 트리 (메트)아크릴레이트, 트리메틸올프로판 폴리에톡시 트리 (메트 )아크릴레이트, 트리메틸를프로판트리메타크릴레이트, 에틸렌글리콜 디메타크릴레이트, 부탄디올 디메타크릴레이트, 핵사에틸 메타크릴레이트, 부틸 메타크릴레이트 또는 이들의 2종 이상의 흔합물이나, 또는 우레탄 변성 아크릴레이트 을리고머, 에폭사이드 아크릴레이트 올리고머, 에테르아크릴레이트 올리고머, 덴드리틱 아크릴레이트 올리고머, 또는 이들의 2종 이상의 흔합물을 들 수 있다. 이때 상기 을리고머의 분자량은 1 , 000 내지 10 , 000인 것이 바람직하다. Specific examples of the monomer or oligomer containing the (meth) acrylate include pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, Dipenta erythri nucleus (meth) acrylate, tripentaerythri Hepta (meth) acrylate, triylene diisocyanate, xylene diisocyanate, nusamethylene diisocyanate, trimethylolpropane tri (meth) acrylate, trimethylolpropane polyethoxy tri (meth) acrylate, trimethyl propanetrimethacryl Ethylene glycol dimethacrylate, butanediol dimethacrylate, nuxaethyl methacrylate, butyl methacrylate or two or more kinds thereof, or urethane modified acrylate oligomers, epoxide acrylate oligomers, Etheracrylate oligomers, dendritic acrylate oligomers, or combinations of two or more thereof. At this time, the molecular weight of the oligomer is preferably 1,000 to 10,000.
상기 비닐기를 포함하는 단량체 또는 을리고머의 구체적인 예로는, 디비닐벤젠, 스티렌 또는 파라메틸스티렌을 들 수 있다.  Specific examples of the monomer or oligomer containing the vinyl group include divinylbenzene, styrene or paramethylstyrene.
상기 광경화성 코팅 조성물 중 상기 광중합성 화합물의 함량이 크게 한정되는 것은 아니나, 최종 제조되는 저굴절층이나 반사 방지 필름의 기계적 물성 등을 고려하여 상기 광경화성 코팅 조성물의 고형분 중 상기 광중합성 화합물의 함량은 5중량 % 내지 80중량 %일 수 있다. 상기 광경화성 코팅 조성물의 고형분은 상기 광경화성 코팅 조성물 중 액상의 성분, 예들 들어 후술하는 바와 같이 선택적으로 포함될 수 있는 유기 용매 등의 성분을 제외한 고체의 성분만을 의미한다.  Although the content of the photopolymerizable compound in the photocurable coating composition is not particularly limited, the content of the photopolymerizable compound in the solid content of the photocurable coating composition in consideration of the mechanical properties of the low refractive index layer or the anti-reflection film to be produced finally May be from 5% to 80% by weight. Solid content of the photocurable coating composition means only the components of the solid except the components of the liquid, for example, an organic solvent that may be optionally included as described below in the photocurable coating composition.
한편, 상기 광중합성 화합물은 상술한 단량체 또는 올리고머 이외로 불소계 (메트)아크릴레이트계 단량체 또는 올리고머를 더 포함할 수 있다. 상기 불소계 (메트)아크릴레이트계 단량체 또는 올리고머를 더 포함하는 경우, 상기 (메트)아크릴레이트 또는 비닐기를 포함하는 단량체 또는 올리고머에 대한 상기 불소계 (메트)아크릴레이트계 단량체 또는 올리고머의 중량비는 0. 1% 내지 10%일 수 있다.  On the other hand, the photopolymerizable compound may further include a fluorine-based (meth) acrylate monomer or oligomer in addition to the above-described monomer or oligomer. When the fluorine (meth) acrylate monomer or oligomer further comprises, the weight ratio of the fluorine (meth) acrylate monomer or oligomer to the monomer or oligomer containing the (meth) acrylate or vinyl group is 0.1. % To 10%.
상기 불소계 (메트)아크릴레이트계 단량체 또는 올리고머의 구체적인 예로는 하기 화학식 1 내지 5로 이루어진 군에서 선택되는 1종 이상의 화합물을 들 수 있다.  Specific examples of the fluorine-based (meth) acrylate monomers or oligomers may include at least one compound selected from the group consisting of the following Chemical Formulas 1 to 5.
[화학식 1] .
Figure imgf000016_0001
[Formula 1].
Figure imgf000016_0001
상기 화학식 1에서, R1은 수소기 또는 탄소수 내지 6의 알킬기이고 지 7의 정수이며, b는 1 내지 3의 정수이다. In Formula 1, R 1 is a hydrogen group or an alkyl group having 6 to 6 carbon atoms and an integer of 7, b is an integer of 1 to 3.
[화학식 2] [Formula 2]
Figure imgf000016_0002
상기 화학식 2에서 c는 1 내지 10의 정수이다.
Figure imgf000016_0002
In Formula 2 c is an integer of 1 to 10.
[화학식 3] [Formula 3]
Figure imgf000016_0003
Figure imgf000016_0003
상기 화학식 3에서 d는 1 내지 11의 정수이다. In Formula 3, d is an integer of 1 to 11.
[화학식 4] [Formula 4]
Figure imgf000016_0004
상기 화학식 4에서, e는 1 내지 5의 정수이다.
Figure imgf000016_0004
In Chemical Formula 4, e is an integer of 1 to 5.
[화학식 5] [Formula 5]
Figure imgf000017_0001
Figure imgf000017_0001
상기 화학식 5에서, f는 4 내지 10의 정수이다.  In Formula 5, f is an integer of 4 to 10.
한편, 상기 저굴절층에는 상기 광반웅성 작용기를 포함한 함불소 화합물로부터 유래한부분이 포함될 수 있다.  On the other hand, the low refractive index layer may include a portion derived from the fluorine-containing compound including the photo-reflective functional group.
상기 광반웅성 작용기를 포함한 함불소 화합물에는 1 이상의 광반응성 작용기가 포함 또는 치환될 수 있으며, 상기 광반응성 작용기는 빛의 조사에 의하여, 예를 들어 가시 광선 또는 자외선의 조사에 의하여 중합 반응에 참여할 수 있는 작용기를 의미한다 . 상기 광반웅성 작용기는 빛의 조사에 의하여 중합 반웅에 참여할 수 있는 것으로 알려진 다양한 작용기를 포함할 수 있으며, 이의 구체적인 예로는 (메트)아크릴레이트기, 에폭사이드기, 비닐기 (Vinyl ) 또는 싸이올기 (Thiol )를 들 수 있다.  One or more photoreactive functional groups may be included or substituted in the fluorine-containing compound including the photoreactive functional group, and the photoreactive functional groups may participate in the polymerization reaction by irradiation of light, for example, by irradiation of visible light or ultraviolet light. Means a functional group. The photoreactive functional group may include various functional groups known to be able to participate in the polymerization reaction by irradiation of light, and specific examples thereof include (meth) acrylate groups, epoxide groups, vinyl groups, or thiol groups ( Thiol) is mentioned.
상기 광반웅성 작용기를 포함한 함불소 화합물 각각은 2 , 000 내지 200 , 000 , 바람직하게는 5 , 000 내지 100 , 000의 중량평균분자량 (GPC법에 의해 측정한 폴리스티렌 환산의 중량 평균 분자량)을 가질 수 있다.  Each of the fluorine-containing compounds including the photo-cyclic functional groups may have a weight average molecular weight (weight average molecular weight in terms of polystyrene measured by GPC method) of 2, 000 to 200, 000, preferably 5, 000 to 100, 000. have.
상기 광반웅성 작용기를 포함한 함불소 화합물의 증량평균분자량이 너무 작으면, 상기 광경화성 코팅 조성물에서 함불소 화합물들이 표면에 균일하고 효과적으로 배열하지 못하고 최종 제조되는 저굴절층의 내부에 위치하게 되는데, 이에 따라 상기 저굴절층의 표면이 갖는 방오성이 저하되고 상기 저굴절층의 가교 밀도가 낮아져서 전체적인 강도나 내크스래치성 등의 기계적 물성이 저하될 수 있다.  If the increase average molecular weight of the fluorine-containing compound including the photo-reflective functional group is too small, the fluorine-containing compounds in the photocurable coating composition may not be uniformly and effectively arranged on the surface of the fluorine-containing compound, and thus are located inside the low refractive layer that is finally manufactured Accordingly, the antifouling property of the surface of the low refractive index layer is lowered, and the crosslinking density of the low refractive index layer is lowered, so that mechanical properties such as overall strength and scratch resistance may be reduced.
또한, 상기 광반웅성 작용기를 포함한 함불소 화합물의 중량평균분자량이 너무 높으면, 상기 광경화성 코팅 조성물에서 다른 성분들과의 상용성이 낮아질 수 있고, 이에 따라 최종 제조되는 저굴절층의 헤이즈가 높아지거나 광투과도가 낮아질 수 있으며, 상기 저굴절층의 강도 또한 저하될 수 있다. In addition, if the weight average molecular weight of the fluorine-containing compound containing the photo-banung functional group is too high, different from the photocurable coating composition The compatibility with the components may be lowered, and thus the haze of the low refractive layer to be produced may be increased or the light transmittance may be lowered, and the strength of the low refractive layer may be lowered.
구체적으로, 상기 광반웅성 작용기를 포함한 함불소 화합물은 i ) 하나 이상의 광반웅성 작용기가 치환되고, 적어도 하나의 탄소에 1이상의 불소가 치환된 지방족 화합물 또는 지방족 고리 화합물; i i ) 1 이상의 광반웅성 작용기로 치환되고, 적어도 하나의 수소가 불소로 치환되고, 하나 이상의 탄소가 규소로 치환된 헤테로 (hetero) 지방족 화합물 또는 헤테로 (hetero)지방족 고리 화합물; i i i ) 하나 이상의 광반웅성 작용기가 치환되고, 적어도 하나의 실리콘에 1이상의 불소가 치환된 폴리디알킬실록산계 고분자 (예를 들어, 폴리디메틸실록산계 고분자) ; iv) 1 이상의 광반웅성 작용기로 치환되고 적어도 하나의 수소가 불소로 치환된 폴리에테르 화합물, 또는 상기 i ) 내지 iv) 중 2이상의 흔합물 또는 이들의 공중합체를 들 수 있다.  Specifically, the fluorine-containing compound including the photo-cyclic functional group is i) an aliphatic compound or aliphatic ring compound in which at least one photo-cyclic functional group is substituted, at least one fluorine is substituted in at least one carbon; i i) a heteroaliphatic compound or a heteroaliphatic ring compound substituted with one or more photocyclic functional groups, at least one hydrogen substituted with fluorine, and one or more carbons substituted with silicon; i i i) polydialkylsiloxane polymers (eg, polydimethylsiloxane polymers) in which at least one photoreactive functional group is substituted and at least one fluorine is substituted in at least one silicon; iv) a polyether compound substituted with at least one photoreactive functional group and at least one hydrogen is substituted with fluorine, or a mixture of two or more of the above i) to iv) or a copolymer thereof.
상기 광경화성 코팅 조성물은 상기 광중합성 화합물 100중량부에 대하여 상기 광반웅성 작용기를 포함한 함불소 화합물 20 내자 300중량부를 포함할 수 있다.  The photocurable coating composition may include 300 parts by weight of the inside of the fluorine-containing compound 20 including the photobanung functional group based on 100 parts by weight of the photopolymerizable compound.
상기 광중합성 화합물 대비 상기 광반웅성 작용기를 포함한 함블소 화합물이 과량으로 첨가되는 경우 상기 구현예의 광경화성 코팅 조성물의 코팅성이 저하되거나 상기 광경화성 코팅 조성물로부터 얻어진 저굴절층이 층분한 내구성이나 내스크래치성을 갖지 못할 수 있다. 또한, 상기 광중합성 화합물 대비 상기 광반웅성 작용기를 포함한 함불소 화합물의 양이 너무 작으면, 상기 광경화성 코팅 조성물로부터 얻어진 저굴절층이 층분한 방오성이나 내스크래치성 등의 기계적 물성을 갖지 못할 수 있다. 상기 광반웅성 작용기를 포함한 함불소 화합물은 규소 또는 규소 화합물을 더 포함할 수 있다. 즉, 상기 광반응성 작용기를 포함한 함불소 화합물은 선택적으로 내부에 규소 또는 규소 화합물을 함유할 수 있고, 구체적으로 상가 광반웅성 작용기를 포함한 함불소 화합물 중 규소의 함량은 0. 1 중량 ¾>내지 20중량 %일 수 있다.  When the excess amount of the habso compound containing the photo-banung functional group compared to the photopolymerizable compound is reduced in the coating property of the photocurable coating composition of the embodiment or the low refractive index layer obtained from the photocurable coating composition has a durable durability or scratch You may not have a last name. In addition, when the amount of the fluorine-containing compound containing the photo-reflective functional group relative to the photopolymerizable compound is too small, the low refractive index layer obtained from the photocurable coating composition may not have mechanical properties such as layered antifouling or scratch resistance. . The fluorine-containing compound including the photobanung functional group may further include silicon or a silicon compound. That is, the fluorine-containing compound including the photoreactive functional group may optionally contain a silicon or silicon compound therein, specifically, the content of silicon in the fluorine-containing compound including the additive photo-banung functional group is from 0.1 to ¾ to 20 Weight%.
상기 광반웅성 작용기를 포함한 함불소 화합물에 포함되는 규소는 상기 구현예의 광경화성 코팅 조성물에 포함되는 다른 성분과의 상용성을 높일 수 있으며 이에 따라 최종 제조되는 굴절층에 헤이즈 (haze)가 발생하는 것을 방자하여 투명도를 높이는 역할을 할 수 있다. 한편, 상기 광반응성 작용기를 포함한 함불소 화합물 중 규소의 함량이 너무 커지면, 상기 광경화성 코팅 조성물에 포함된 다른 성분과 상기 함불소 화합물 간의 상용성이 오히려 저하될 수 있으며, 이에 따라 최종 제조되는 저굴절층이나 반사 방지 필름이 층분한 투광도나 반사 방지 성능을 갖지 못하여 표면의 방오성 또한 저하될 수 있다. Silicon contained in the fluorine-containing compound containing the photo-banung functional group is It can increase the compatibility with other components included in the photocurable coating composition of the embodiment and thus may act to increase the transparency by preventing the generation of haze (haze) in the refractive layer to be finally produced. On the other hand, when the content of silicon in the fluorine-containing compound containing the photoreactive functional group is too large, the compatibility between the other components included in the photocurable coating composition and the fluorine-containing compound may be rather lowered, thereby resulting in low Since the refractive layer or the antireflection film does not have sufficient light transmittance or antireflection performance, the antifouling property of the surface may also be reduced.
상기 저굴절층은 상기 광중합성 화합물의 (공)중합체 100중량부 대비 상기 중공형 무기 나노 입자 10 내지 400 중량부 및 상기 솔리드형 무기 나노 입자 10 내지 400중량부를 포함할 수 있다.  The low refractive layer may include 10 to 400 parts by weight of the hollow inorganic nanoparticles and 10 to 400 parts by weight of the solid inorganic nanoparticles relative to 100 parts by weight of the (co) polymer of the photopolymerizable compound.
상기 저굴절층 중 상기 증공형 무기 나노 입자 및 솔리드형 무기 나노 입자의 함량이 과다해지는 경우, 상기 저굴절층 제조 과정에서 상기 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자 간의 상분리가 충분히 일어나지 않고 흔재되어 반사율이 높아질 수 있으며, 표면 요철이 과다하게 발생하여 방오성이 저하될 수 있다. 또한, 상기 저굴절층 중 상기 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자의 함량이 과소한 경우, 상기 하드 코팅층 및 상기 저굴절층 간의 계면으로부터 가까운 영역에 상기 솔리드형 무기 나노 입자 중 다수가 위치하기 어려울 수 있으며, 상기 저굴절층의 반사율은 크게 높아질 수 있다.  When the content of the thickened inorganic nanoparticles and the solid inorganic nanoparticles in the low refractive index layer becomes excessive, phase separation between the hollow inorganic nanoparticles and the solid inorganic nanoparticles does not sufficiently occur in the low refractive layer manufacturing process. As a result, the reflectance may be increased, and surface irregularities may occur excessively, thereby degrading antifouling properties. Also, when the content of the hollow inorganic nanoparticles and the solid inorganic nanoparticles in the low refractive index layer is too small, many of the solid inorganic nanoparticles are located in a region close to the interface between the hard coating layer and the low refractive layer. It may be difficult to, and the reflectance of the low refractive index layer may be greatly increased.
상기 저굴절층은 Iran 내지 300 ranᅳ 또는 50ran 내지 200 nm , 또는 85 nm 내지 300 nm의 두께를 가질 수 있다.  The low refractive index layer may have a thickness of Iran to 300 ran ᅳ or 50ran to 200 nm, or 85 nm to 300 nm.
한편, 상기 하드 코팅층으로는 통상적으로 알려진 하드 코팅층을 큰 제한 없이 사용할 수 있다.  On the other hand, as the hard coating layer, a conventionally known hard coating layer can be used without great limitation.
상기 하드 코팅층의 일 예로서, 광경화성 수지를 포함하는 바인더 수지 및 상기 바인더 수지에 분산된 유기 또는 무기 미립자;를 포함하는 하드 코팅층을 들 수 있다. 상기 하드코팅층에 포함되는 광경화형 수지는 자외선 등의 광이 조사되면 중합 반웅을 일으킬 수 있는 광경화형 화합물의 중합체로서, 당업계에서 통상적인 것일 수 있다. 구체적으로, 상기 광경화성 수지는 우레탄 아크릴레이트 올리고머, 에폭사이드 아크릴레이트 올리고머, 폴리에스터 아크릴레이트, 및 폴리에테르 아크릴레이트로 이루어진 반웅성 아크릴레이트 올리고머 군; 및 디펜타에리스리를 핵사아크릴레이트, 디펜타에리스리를 하이드록시 펜타아크릴레이트, 펜타에리스리를 테트라아크릴레이트, 펜타에리스리를 트리아크릴레이트, 트리메틸렌 프로필 트리아크릴레이트, 프로폭시레이티드 글리세를 트리아크릴레이트, 트리메틸프로판 에톡시 트리아크릴레이트, 1 , 6-핵산디올디아크릴레이트, 프로폭시레이티드 글리세로 트리아크릴레이트, 트리프로필렌 글리콜 디아크릴레이트, 및 에틸렌글리콜 디아크릴레이트로 이루어진 다관능성 아크릴레이트 단량체 군에서 선택되는 1 종 이상을 포함할 수 있다. As an example of the said hard coat layer, the hard coat layer containing the binder resin containing photocurable resin, and the organic or inorganic fine particle disperse | distributed to the said binder resin; The photocurable resin included in the hard coating layer is a polymer of a photocurable compound that can cause polymerization reaction when irradiated with light such as ultraviolet rays, It may be conventional in the art. Specifically, the photocurable resin is a semi-aromatic acrylate oligomer group consisting of urethane acrylate oligomer, epoxide acrylate oligomer, polyester acrylate, and polyether acrylate; And dipentaerythritol nucleoacrylate, dipentaerythroxy hydroxy pentaacrylate, pentaerythriri tetraacrylate, pentaerythriri triacrylate, trimethylene propyl triacrylate, propoxylated glycerol Multifunctional acryl consisting of triacrylate, trimethylpropane ethoxy triacrylate, 1, 6-nucleic acid diol diacrylate, propoxylated glycerol triacrylate, tripropylene glycol diacrylate, and ethylene glycol diacrylate It may include one or more selected from the group of the rate monomers.
상기 유기 또는 무기 미립자는 입경의 구체적으로 한정되는 것은 아니나, 예들 들어 유기 미립자는 1 내지 10 卿의 입경을 가질 수 있으며, 상기 무기 입자는 1 ran 내지 500 nm , 또는 Iran 내지 300ran의 입경을 가질 수 있다. 상기 유기 또는 무기 미립자는 입경은 부피 평균 입경으로 정의될 수 있다.  The organic or inorganic fine particles are not particularly limited in particle size, for example, the organic fine particles may have a particle size of 1 to 10 mm 3, and the inorganic particles may have a particle size of 1 ran to 500 nm or Iran to 300 ran. have. The particle size of the organic or inorganic fine particles may be defined as a volume average particle diameter.
또한, 상기 하드 코팅 필름에 포함되는 유기 또는 무기 미립자의 구체적인 예가 한정되는 것은 아니나, 예를 ᅳ들어 상기 유기 또는 무기 미립자는 아크릴계 수지, 스티렌계 수지, 에폭사이드 수지 및 나일론 수지로 이루어진 유기 미립자이거나 산화규소, 이산화티탄, 산화인듐, 산화주석, 산화지르코늄 및 산화아연으로 이루어진 무기 미립자일 수 있다. 상기 하드 코팅층의 바인더 수지는 중량평균분자량 10 , 000 이상의 고분자량 (공)중합체를 더 포함할 수 있다. 상기 고분자량 (공)중합체는 셀를로스계 폴리머, 아크릴계 폴리머, 스티렌계 폴리머, 에폭사이드계 폴리머, 나일론계 폴리머, 우레탄계 폴리머, 및 폴리올레핀계 폴리머로 이루어진 군에서 선택되는 1 종 이상일 수 있다. 한편, 상기 하드 코팅 필름의 또 다른 일 예로서 , 광경화성 수지의 바인더 수지; 및 상기 바인더 수지에 분산된 대전 방지제를 포함하는 하드 코팅 필름을 들 수 있다. 상기 하드코팅층에 포함되는 광경화형 수지는 자외선 등의 광이 조사되면 중합 반웅을 일으킬 수 있는 광경화형 화합물의 중합체로서, 당업계에서 통상적인 것일 수 있다. 다만, 바람직하게는, 상기 광경화형 화합물은 다관능성 (메트)아크릴레이트계 단량체 또는 을리고머일 수 있고, 이때 (메트)아크릴레이트계 관능기의 수는 2 내지 10, 바람직하게는 2 내지 8, 보다 바람직하게는 2 내지 7인 것이, 하드코팅층의 물성 확보 측면에서 유리하다. 보다 바람직하게는, 상기 광경화형 화합물은 펜타에리스리를 트리 (메트)아크릴레이트, 펜타에리스리를 테트라 (메트)아크릴레이트, 디펜타에리스리를 펜타 (메트)아크릴레이트, 디펜타에리스리틀 핵사 (메트)아크릴레이트, 디펜타에리스리를 헵타 (메트)아크릴레이트, 트리펜타에리스리를 헵타 (메트)아크릴레이트, 트릴렌 디이소시아네이트, 자일렌 디이소시아네이트, 핵사메틸렌 디이소시아네이트, 트리메틸올프로판 트리 (메트)아크릴레이트, 및 트리메틸올프로판 폴리에록시 트리 (메트)아크릴레이트로 이루어진 군에서 선택되는 1종 이상일 수 있다. 상기 대전 방지제는 4급 암모늄염 화합물; 피리디늄염; 1 내지 3개의 아미노기를 갖는 양이온성 화합물; 설폰산 염기, 황산 에스테르 염기, 인산 에스테르 염기 포스폰산 염기 등의 음이온성 화합물; 아미노산계 또는 아미노 황산 에스테르계 화합물 등의 양성 화합물; 이미노 알코올계 화합물, 글리세린계 화합물, 폴리에틸렌 글리콜계 화합물 등의 비이온성 화합물; 주석 또는 티타늄 등을 포함한 금속 알콕사이드 화합물 등의 유기 금속 화합물; 상기 유기 금속 화합물의 아세틸아세토네이트 염 등의 금속 킬레이트 화'합물; 이러한 화합물들의 2종 이상의 반웅물 또는 고분자화물; 이러한 화합물들의 2종 이상의 흔합물일 수 있다. 여기서, 상기 4급 암모늄염 화합물은 분자 내에 1개 이상의 4급 암모늄염기를 가지는 화합물일 수 있으며, 저분자형 또는 고분자형을 제한 없이 사용할 수 있다. 또한, 상기 대전 방지제로는 도전성 고분자와 금속 산화물 미립자도 사용할 수 있다. 상기 도전성 고분자로는 방향족 공액계 폴리 (파라페닐렌) , 헤테로고리식 공액계의 폴리피를, 폴리티오펜, 지방족 공액계의 폴리아세틸렌, 헤테로 원자를 함유한 공액예의 폴리아닐린, 흔합 형태 공액계의 폴리 (페닐렌 비닐렌), 분자중에 복수의 공액 사슬을 갖는 공액계인 복쇄형 공액계 화합물, 공액 고분자 사슬을 포화 고분자에 그래프트 또는 블록 공중합시킨 도전성 복합체 등이 있다. 또한, 상기 금속 산화물 미립자로는 산화 아연, 산화 안티몬, 산화 주석 산화 세륨, 인듐 주석 산화물, 산화 인듐, 산화 알루니뮴, 안티몬 도핑된 산화 주석, 알루미늄 도핑된 산화 아연 등을 들 수 있다. In addition, specific examples of the organic or inorganic fine particles included in the hard coating film are not limited. For example, the organic or inorganic fine particles may be organic fine particles or oxidized or composed of acrylic resin, styrene resin, epoxide resin and nylon resin. It may be an inorganic fine particle consisting of silicon, titanium dioxide, indium oxide, tin oxide, zirconium oxide and zinc oxide. The binder resin of the hard coating layer may further include a high molecular weight (co) polymer having a weight average molecular weight of 10, 000 or more. The high molecular weight (co) polymer may be one or more selected from the group consisting of cellulose-based polymers, acrylic polymers, styrene-based polymers, epoxide-based polymers, nylon-based polymers, urethane-based polymers, and polyolefin-based polymers. On the other hand, as another example of the hard coating film, a binder resin of a photocurable resin; And the hard coat film containing the antistatic agent disperse | distributed to the said binder resin is mentioned. The photocurable resin included in the hard coating layer is a polymer of a photocurable compound that may cause polymerization reaction when irradiated with light such as ultraviolet rays, and may be conventional in the art. However, preferably, the photocurable compound may be a polyfunctional (meth) acrylate-based monomer or an oligomer, wherein the number of the (meth) acrylate-based functional groups is 2 to 10, preferably 2 to 8, Preferably 2 to 7, it is advantageous in terms of securing physical properties of the hard coating layer. More preferably, the photocurable compound is pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythrite nucleus ( Meth) acrylate, dipentaerythritol hepta (meth) acrylate, tripentaerythritol hepta (meth) acrylate, triylene diisocyanate, xylene diisocyanate, nusamethylene diisocyanate, trimethylolpropane tri (meth ) Acrylate, and trimethylolpropane polyethoxy tri (meth) acrylate may be one or more selected from the group consisting of. The antistatic agent is a quaternary ammonium salt compound; Pyridinium salts; Cationic compounds having from 1 to 3 amino groups; Anionic compounds such as sulfonic acid base, sulfate ester base, phosphate ester base and phosphonic acid base; Positive compounds, such as an amino acid type or amino sulfate ester type compound; Nonionic compounds such as imino alcohol compounds, glycerin compounds, and polyethylene glycol compounds; Organometallic compounds such as metal alkoxide compounds including tin or titanium; Metal chelating "compounds such as acetyl acetonate salt of the organic metal compound; Two or more semi-ungmuls or polymerized compounds of these compounds; It may be a combination of two or more of these compounds. Here, the quaternary ammonium salt compound may be a compound having one or more quaternary ammonium salt groups in the molecule, it can be used without limitation low molecular type or polymer type. In addition, a conductive polymer and metal oxide fine particles may also be used as the antistatic agent. Examples of the conductive polymer include aromatic conjugated poly (paraphenylene), polycyclic heterocyclic conjugated polyolefin, polythiophene, aliphatic conjugated polyacetylene, and heteroanimal polyaniline conjugated conjugated system. Poly (phenylene vinylene), having a plurality of conjugated chains in a molecule And conjugated double-chain conjugated compounds, conductive composites obtained by grafting or block copolymerizing conjugated polymer chains to saturated polymers. Further, the metal oxide fine particles include zinc oxide, antimony oxide, tin oxide cerium oxide, indium tin oxide, indium oxide, aluminium oxide, antimony doped tin oxide, aluminum doped zinc oxide, and the like.
상기 광경화성 수지의 바인더 수지 ; 및 상기 바인더 수지에 분산된 대전 방지제를 포함하는 하드 코팅 필름은 알콕시 실란계 올리고머 및 금속 알콕사이드계 올리고머로 이루어진 군에서 선택되는 1종 이상의 화합물을 더 포함할 수 있다.  Binder resin of the photocurable resin; And an antistatic agent dispersed in the binder resin may further include one or more compounds selected from the group consisting of alkoxy silane oligomers and metal alkoxide oligomers.
상기 알콕시 실란계 화합물은 당업계에서 통상적인 것일 수 있으나, 바람직하게는 테트라메록시실란, 테트라에록시실란, 테트라이소프로폭시실란, 메틸트리메록시실란, 메¾트리에록시실란, 메타크릴록시프로필트리메톡시실란, 글리시독시프로필 트리메톡시실란, 및 글리시독시프로필 트리에록시실란으로 이루어진 군에서 선택되는 1종 이상의 화합물일 수 있다.  The alkoxy silane compound may be conventional in the art, but preferably tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, methyltrimethoxysilane, methoxy triethoxysilane, methacryloxy It may be at least one compound selected from the group consisting of propyltrimethoxysilane, glycidoxypropyl trimethoxysilane, and glycidoxypropyl triethoxysilane.
또한, 상기 금속 알콕사이드계 올리고머는 금속 알콕사이드계 화합물 및 물을 포함하는 조성물의 졸-겔 반웅을 통해 제조할 수 있다. 상기 졸-겔 반웅은 전술한 알콕시 실란계 올리고머의 제조 방법에 준하는 방법으로 수행할 수 있다.  In addition, the metal alkoxide-based oligomer may be prepared through the sol-gel reaction of the composition comprising a metal alkoxide-based compound and water. The sol-gel reaction can be carried out by a method similar to the method for producing an alkoxy silane oligomer described above.
다만, 상기 금속 알콕사이드계 화합 ΐ"은 물과 급격하게 반웅할 수 있으므로, 상기 금속 알콕사이드계 화합물을 유기용매에 희석한 후 물을 천천히 드로핑하는 방법으로 상기 졸-겔 반웅을 수행할 수 있다. 이때, 반웅 효율 등을 감안하여, 물에 대한 금속 알콕사이드 화합물의 몰비 (금속이온 기준)는 3 내지 170인 범위 내에서 조절하는 것이 바람직하다.  However, since the metal alkoxide compound ΐ ″ may be rapidly reacted with water, the sol-gel reaction may be performed by diluting the metal alkoxide compound in an organic solvent and slowly dropping water. At this time, in consideration of reaction efficiency, the molar ratio of the metal alkoxide compound to water (based on metal ions) is preferably adjusted within the range of 3 to 170.
여기서, 상기 금속 알콕사이드계 화합물은 티타늄 테트라- 이소프로폭사이드, 지르코늄 이소프로폭사이드, 및 알루미늄 이소프로폭사이드로 이루어진 군쎄서 선택되는 1종 이상의 화합물일 수 있다.  Here, the metal alkoxide-based compound may be at least one compound selected from the group consisting of titanium tetra-isopropoxide, zirconium isopropoxide, and aluminum isopropoxide.
상기 하드 코팅층은 0. 1/ 내지 100 의 두께를 가질 수 있다. 상기 하드 코팅층의 다른 일면에 결합된 기재를 더 포함할 수 있다. 상기 기재의 구체적인 종류나 두께는 크게 한정되는 것은 아니며, 저굴절층 또는 반사 방지 필름의 제조에 사용되는 것으로 알려진 기재를 큰 제한 없이 사용할 수 있다. The hard coating layer may have a thickness of 0.01 / 100. It may further include a substrate bonded to the other side of the hard coating layer. The specific kind or thickness of the substrate is not particularly limited, and a substrate known to be used in the manufacture of a low refractive index layer or an antireflection film can be used without great limitation.
한편, 상기 구현예의 반사 방지 필름은, 광경화형 화합물 또는 이의 On the other hand, the anti-reflection film of the embodiment, a photocurable compound or its
(공)중합체, 광반웅성 작용기를 포함한 함불소 화합물, 광개시제, 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자를 포함한 저굴절층 형성용 수지 조성물을 하드 코팅층 상에 도포하고 35 °C 내지 100 °C의 온도에서 건조하는 단계; 및 상기 수지 조성물의 건조물을 광경화하는 단계;를 포함하는 반사 방지 필름의 제조 방법을 통하여 제공될 수 았다. A resin composition for forming a low refractive index layer including a (co) polymer, a fluorine-containing compound including a photoreactive functional group, a photoinitiator, hollow inorganic nanoparticles, and solid inorganic nanoparticles is applied on a hard coating layer, and then 35 ° C to 100 ° C. Drying at a temperature of; And photocuring the dried product of the resin composition.
구체적으로, 상기 반사 방지 필름의 제조 방법에 의하여 제공되는 반사 방지 필름은 저굴절층 내에서 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자가 서로 구분될 수 있도록 분포시키고 이에 따라 낮은 반사율 및 높은 투광율을 가지면서 높은 내스크래치성 및 방오성을 동시에 구현할 수 있다.  Specifically, the anti-reflection film provided by the method of manufacturing the anti-reflection film is distributed in the low refractive layer so that the hollow inorganic nanoparticles and the solid inorganic nanoparticles can be distinguished from each other, thereby providing a low reflectance and a high light transmittance. It can have high scratch resistance and antifouling at the same time.
보다 상세하게는, 상기 반사 방지 필름은 하드 코팅층; 및 상기 하드 코팅층의 일면에 형성되며, 바인더 수지와 상기 바인더 수지에 분산된 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자를 포함하는 저굴절층;을 포함하며, 상기 하드 코팅층 및 상기 저굴절층 간의 계면으로부터 상기 저굴절층 전체 두께 50% 이내에 상기 솔리드형 무기 나노 입자 전체 중 70부피 ¾> 이상이 존재할 수 있다.  More specifically, the anti-reflection film is a hard coating layer; And a low refractive index layer formed on one surface of the hard coating layer, the binder resin and hollow inorganic nanoparticles dispersed in the binder resin and solid inorganic nanoparticles; and between the hard coating layer and the low refractive layer. 70 volume ¾> or more of the entire solid inorganic nanoparticle may be present within 50% of the total thickness of the low refractive layer from an interface.
또한, 상기 중공형 무기 나노 입자 전체 중 30 부피 % 이상이 상기 솔리드형 무기 나노 입자 전체 보다 상기 하드 코팅층 및 상기 저굴절층 간의 계면으로부터 상기 저굴절층의 두께 방향으로 보다 먼 거리에 존재할 수 있다.  In addition, at least 30% by volume of the entire hollow inorganic nanoparticles may be present at a greater distance in the thickness direction of the low refractive layer than the interface between the hard coating layer and the low refractive layer than the entire solid inorganic nanoparticles.
또한, 상기 하드 코팅층과 상기 저굴절층의 계면으로부터 상기 저굴절층 전체 두께 30% 이내에 상기 솔리드형 무기 나노 입자 전체 중 70 부피 ¾> 이상이 존재할 수 있다. 또한, 상기 하드 코팅층과 상기 저굴절층의 계면으로부터 상기 저굴절층 전체 두께 30% 초과의 영역에 상기 중공형 무기 나노 입자 전체 중 70 부피 % 이상이 존재할 수 있다. In addition, more than 70 vol 3> of the solid inorganic nanoparticles may be present within 30% of the total thickness of the low refractive index layer from the interface between the hard coating layer and the low refractive index layer. In addition, the hollow type in an area of more than 30% of the total thickness of the low refractive index layer from the interface between the hard coating layer and the low refractive index layer At least 70% by volume of the total inorganic nanoparticles may be present.
또한, 상기 반사 방지 필름의 제조 방법에 의하여 제공되는 반사 방지 필름에서, 상기 저굴절층은 상기.솔리드형 무기 나노 입자 전체 중 70중량 % 이상이 포함된 게 1층과 상기 중공형 무기 나노 입자 전체 중 70중량 % 이상이 포함된 게 2층을 포함할 수 있으며, 상기 제 1층이 게 2층에 비하여 상기 하드 코팅층 및 상기 저굴절층 간의 계면에 보다 가까이 위치할 수 있다.  In addition, in the anti-reflection film provided by the method for manufacturing the anti-reflection film, the low refractive index layer is a crab layer and the entire hollow inorganic nanoparticles containing at least 70% by weight of the total solid inorganic nanoparticles. The crab may include two layers of 70 wt% or more, and the first layer may be located closer to the interface between the hard coating layer and the low refractive layer than the two layers of crabs.
상기 저굴절층은 광경화형 화합물 또는 이의 (공)중합체, 광반응성 작용기를 포함한 함불소 화합물, 광개시제, 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자를 포함한 저굴절층 형성용 수지 조성물을 하드 코팅층 상에 도포하고 35 °C 내지 100 °C , 또는 40 °C 내지 80 0C의 온도에서 건조함으로서 형성될 수 있다. The low refractive index layer comprises a photocurable compound or a (co) polymer thereof, a fluorine-containing compound including a photoreactive functional group, a photoinitiator, hollow inorganic nanoparticles, and a resin composition for forming a low refractive index layer including solid inorganic nanoparticles on a hard coating layer. It can be formed by applying to and drying at a temperature of 35 ° C to 100 ° C, or 40 ° C to 80 0 C.
상기 하드 코팅층 상에 도포된 저굴절층 형성용 수지 조성물을 건조하는 온도가 350C 미만이면, 상기 형성되는 저굴절층이 갖는 방오성이 크게 저하될 수 있다. 또한, 상기 하드 코팅층 상에 도포된 저굴절층 형성용 수지 조성물을 건조하는 온도가 100oC 초과이면, 상기 저굴절층 제조 과정에서 상기 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자 간의 상분리가 층분히 일어나지 않고 흔재되어 상기 저굴절층의 내스크래치성 및 방오성이 저하될 뿐만 아니라 반사율도 크게 높아질 수 있다. When the temperature for drying the low refractive index layer-forming resin composition applied on the hard coating layer is less than 35 0 C, antifouling property of the low refractive index layer may be greatly reduced. In addition, if the temperature of drying the resin composition for forming the low refractive index layer applied on the hard coating layer is more than 100 o C, phase separation between the hollow inorganic nanoparticles and solid inorganic nanoparticles in the low refractive layer manufacturing process layer It is not common to occur, so that the scratch resistance and antifouling property of the low refractive index layer may be lowered, and the reflectance may be greatly increased.
상기 하드 코팅층 상에 도포된 저굴절층 형성용 수지 조성물을 건조하는 과정에서 상기 건조 온도와 함께 상기 솔리드형 무기 나노 입자 및 중공형 무기 나노 입자 간의 밀도 차이를 조절함으로서 상술한 특성을 갖는 저굴절층을 형성할 수 있다. 상기 솔리드형 무기 나노 입자가 상기 중공형 무기 나노 입자에 비하여 0.50 g/cin3 이상 높은 밀도를 가질 수 있으며, 이러한 밀도 차이로 인하여 상기 하드 코팅층 상에 형성되는 저굴절층에서 상기 솔리드형 무기 나노 입자가 하드 코팅층 쪽에 보다 가까운 쪽에 위치할 수 있다. Low refractive index layer having the above-described characteristics by controlling the density difference between the solid inorganic nanoparticles and the hollow inorganic nanoparticles with the drying temperature in the process of drying the resin composition for forming the low refractive index layer applied on the hard coating layer Can be formed. The solid inorganic nanoparticles may have a density of 0.50 g / cin 3 or more higher than that of the hollow inorganic nanoparticles, and due to the density difference, the solid inorganic nanoparticles in the low refractive layer formed on the hard coating layer. May be located closer to the hard coating layer.
구체적으로, 상기 솔리드형 무기 나노 입자는 2.00 g/cin3 내지 4.00 g/crf의 밀도를 갖고, 상기 중공형 무기 나노 입자는 1.50 g/cirf 내지 3.50 g/orf의 밀도를 가질 수 있다. Specifically, the solid inorganic nanoparticles are 2.00 g / cin 3 to 4.00 It has a density of g / crf, the hollow inorganic nanoparticles may have a density of 1.50 g / cirf to 3.50 g / orf.
한편, 상기 하드 코팅층 상에 도포된 저굴절층 형성용 수지 조성물을 35 °C 내지 100 0C의 온도에서 건조하는 단계는 10초 내지 5분간, 또는 30초 내지 4분간 수행될 수 있다. On the other hand, the step of drying the resin composition for forming the low refractive index layer applied on the hard coating layer at a temperature of 35 ° C to 100 0 C may be performed for 10 seconds to 5 minutes, or 30 seconds to 4 minutes.
상기 건조 시간이 너무 짧은 경우, 상술한 상기 솔리드형 무기 나노 입자 및 중공형 무기 나노 입자 간의 상분리 현상이 층분히 일어나지 않을 수 있다. 이에 반하여, 상기 건조 시간이 너무 긴 경우, 상기 형성되는 저굴절층이 하드 코팅층을 침식할 수 있다.  When the drying time is too short, phase separation between the solid inorganic nanoparticles and the hollow inorganic nanoparticles described above may not occur. In contrast, when the drying time is too long, the formed low refractive index layer may erode the hard coating layer.
한편, 상기 저굴절층은 광경화형 화합물 또는 이의 (공)중합체, 광반응성 작용기를 포함한 함불소 화합물, 중공형 무기 나노 입자, 솔리드형 무기 나노 입자 및 광개시제를 포함한 광경화성 코팅 조성물로부터 제조될 수 있다.  Meanwhile, the low refractive layer may be prepared from a photocurable coating composition including a photocurable compound or a (co) polymer thereof, a fluorine-containing compound including a photoreactive functional group, a hollow inorganic nanoparticle, a solid inorganic nanoparticle, and a photoinitiator. .
상기 저굴절층은 상기 광경화성 코팅 조성물을 소정의 기재 상에 도포하고 도포된 결과물을 광경화함으로써 얻어질 수 있다. 상기 기재의 구체적인 종류나 두께는 크게 한정되는 것은 아니며, 저굴절층 또는 반사 방지 필름의 제조에 사용되는 것으로 알려진 기재를 큰 쎄한 없이 사용할 수 있다.  The low refractive layer can be obtained by applying the photocurable coating composition on a predetermined substrate and photocuring the applied resultant. The specific kind or thickness of the substrate is not particularly limited, and a substrate known to be used in the manufacture of a low refractive index layer or an antireflection film can be used without great care.
상기 광경화성 코팅 조성물을 도포하는데 통상적으로 사용되는 방법 및 장치를 별 다른 제한 없이 사용할 수 있으며, 예를 들어, Meyer bar 등의 바 코팅법, 그라비아 코팅법, 2 rol l reverse 코팅법, vacuum s lot di e 코팅법, 2 rol l 코팅법 등을 사용할 수 있다.  The method and apparatus conventionally used to apply the photocurable coating composition may be used without particular limitation, for example, bar coating method such as Meyer bar, gravure coating method, 2 rol l reverse coating method, vacuum s lot die coating, 2 roll coating, and the like can be used.
상기 저굴절층은 lnm 내지 300 ran , 또는 50ηηι 내지 200 rai의 두께를 가질 수 있다. 이에 따라, 상기 소정의 기재 상에 도포되는 상기 광경화성 코팅 조성물의 두께는 약 Iran 내지 300 ran , 또는 50nm 내지 200 nm일 수 있다.  The low refractive layer may have a thickness of lnm to 300 ran, or 50ηηι to 200 rai. Accordingly, the thickness of the photocurable coating composition applied on the predetermined substrate may be about Iran to 300 ran, or 50nm to 200 nm.
상기 광경화성 코팅 조성물을 광경화 시키는 단계에서는 200~400nm파장의 자외선 또는 가시 광선을 조사할 수 있고, 조사시 노광량은 100 내지 4, 000 mJ/crf 이 바람직하다. 노광 시간도 특별히 한정되는 것이 아니고, 사용 되는 노광 장치, 조사 광선의 파장 또는 노광량에 따라 적절히 변화시킬 수 있다. In the step of photocuring the photocurable coating composition may be irradiated with ultraviolet light or visible light having a wavelength of 200 ~ 400nm, the exposure amount is preferably from 100 to 4,000 mJ / crf. Exposure time is also special It is not limited, It can change suitably according to the exposure apparatus used, the wavelength of irradiation light, or an exposure amount.
또한, 상기 광경화성 코팅 조성물을 광경화 시키는 단계에서는 질소 대기 조건을 적용하기 위하여 질소 퍼징 등을 할 수 있다.  In addition, in the step of photocuring the photocurable coating composition may be nitrogen purging to apply nitrogen atmospheric conditions.
상기 광경화형 화합물, 중공형 무기 나노 입자, 솔리드형 무기 나노 입자 및 광반웅성 작용기를 포함한 함불소 화합물에 관한 구체적인 내용은 상기 일 구현예의 반사 방지 필름에 관하여 상술한 내용을 포함한다.  Details of the photocurable compound, the hollow inorganic nanoparticles, the solid inorganic nanoparticles, and the fluorine-containing compound including the photoreactive functional group include the above-described contents with respect to the anti-reflection film of the embodiment.
상기 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자 각각은 소정의 분산매에 분산된 콜로이드상으로 조성물에 포함될 수 있다. 상기 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자를 포함하는 각각의 콜로이드상은 분산매로 유기 용매를 포함할 수 있다.  Each of the hollow inorganic nanoparticles and the solid inorganic nanoparticles may be included in the composition in the form of a colloid dispersed in a predetermined dispersion medium. Each colloidal phase including the hollow inorganic nanoparticles and the solid inorganic nanoparticles may include an organic solvent as a dispersion medium.
상기 광경화성 코팅 조성물 중 상기 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자 각각의 함량 범위나 상기 광경화성 코팅 조성물의 점도 등을 고려하여 상기 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자 각각의 콜로이드 상 중 함량이 결정될 수 있으며, 예를 들어 상기 콜로이드상 중 상기 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자 각각의 고형분 함량은 5중량 %내지 60중량%일 수 있다.  The colloidal phase of each of the hollow inorganic nanoparticles and the solid inorganic nanoparticles in consideration of the content range of the hollow inorganic nanoparticles and the solid inorganic nanoparticles or the viscosity of the photocurable coating composition in the photocurable coating composition Heavy content may be determined, for example, the solid content of each of the hollow inorganic nanoparticles and the solid inorganic nanoparticles in the colloidal phase may be 5% by weight to 60% by weight.
여기서, 상기 분산매 중 유기 용매로는 메탄올, 이소프로필알코올, 에틸렌글리콜, 부탄올 등의 알코을류; 메틸에틸케톤, 메틸이소부틸케톤 등의 케톤류; 를루엔, 자일렌 등의 방향족 탄화수소류; 디메틸포름아미드. 디메틸아세트아미드, N-메틸피를리돈 등의 아미드류 ; 초산에틸, 초산부틸, 감마부틸로락톤 등의 에스테르류; 테트라하이드로퓨란, 1 , 4-디옥산 등의 에테르류; 또는 이들의 흔합물이 포함될 수 있다.  Herein, examples of the organic solvent in the dispersion medium include alcohols such as methanol, isopropyl alcohol, ethylene glycol and butanol; Ketones such as methyl ethyl ketone and methyl isobutyl ketone; Aromatic hydrocarbons such as toluene and xylene; Dimethylformamide. Amides such as dimethylacetamide and N-methylpyridone; Esters such as ethyl acetate, butyl acetate and gamma butyrolactone; Ethers such as tetrahydrofuran and 1,4-dioxane; Or combinations thereof.
상기 광중합 개시제로는 광경화성 수지 조성물에 사용될 수 있는 것으로 알려진 화합물이면 크게 제한 없이 사용 가능하며, 구체적으로 벤조 페논계 화합물, 아세토페논계 화합물, 비이미다졸계 화합물, 트리아진계 화합물, 옥심계 화합물 또는 이들의 2종 이상의 흔합물을 사용할 수 있다. 상기 광중합성 화합물 100중량부에 대하여, 상기 광중합 개시제는 1 내지 100중량부의 함량으로 사용될 수 있다. 상기 광중합 개시제의 양이 너무 작으면, 상기 광경화성 코팅 조성물의 광경화 단계에서 미경화되어 잔류하는 물질이 발행할 수 있다. 상기 광중합 개시제의 양이 너무 많으면, 미반웅 개시제가 불순물로 잔류하거나 가교 밀도가 낮아져서 제조되는 필름의 기계적 물성이 저하되거나 반사율이 크게 높아질 수 있다. The photopolymerization initiator may be used without any limitation as long as it is a compound known to be used in the photocurable resin composition, and specifically, a benzophenone compound, acetophenone compound, biimidazole compound, triazine compound, oxime compound, or the like. Two or more kinds thereof can be used. With respect to 100 parts by weight of the photopolymerizable compound, the photopolymerization initiator may be used in an amount of 1 to 100 parts by weight. If the amount of the photopolymerization initiator is too small, it is uncured in the photocuring step of the photocurable coating composition Residual material may be issued. If the amount of the photopolymerization initiator is too large, the non-aqueous initiator may remain as an impurity or have a low crosslinking density, thereby lowering mechanical properties or reflectance of the film.
한편, 상기 광경화성 코팅 조성물은 유기 용매를 더 포함할 수 있다. 상기 유기 용매의 비제한적인 예를 들면 케톤류, 알코올류, 아세테이트류 및 에테르류, 또는 이들의 2종 이상의 흔합물을 들 수 있다. 이러한 유기 용매의 구체적인 예로는, 메틸에틸케논, 메틸이소부틸케톤, 아세틸아세톤 또는 이소부틸케톤 등의 케톤류; 메탄올, 에탄올, 디아세톤알코올, n-프로판올, i—프로판올, n-부탄올, i_부탄올, 또는 t-부탄올 등의 알코올류; 에틸아세테이트, i-프로필아세테이트, 또는 폴리에틸렌글리콜 모노메틸에테르 아세테이트 등의 아세테이트류; 테트라하이드로퓨란 또는 프로필렌글라이콜 모노메틸에테르 등의 에테르류; 또는 이들의 2종 이상의 흔합물을 들 수 있다.  Meanwhile, the photocurable coating composition may further include an organic solvent. Non-limiting examples of the organic solvents include ketones, alcohols, acetates and ethers, or combinations of two or more thereof. Specific examples of such organic solvents include ketones such as methyl ethyl kenone, methyl isobutyl ketone, acetylacetone or isobutyl ketone; Alcohols such as methanol, ethanol, diacetone alcohol, n-propanol, i-propanol, n-butanol, i_butanol, or t-butanol; Acetates such as ethyl acetate, i-propyl acetate, or polyethylene glycol monomethyl ether acetate; Ethers such as tetrahydrofuran or propylene glycol monomethyl ether; Or two or more kinds thereof.
상기 유기 용매는 상기 광경화성 코팅 조성물에 포함되는 각 성분들을 흔합하는 시기에 첨가되거나 각 성분들이 유기 용매에 분산 또는 흔합된 상태로 첨가되면서 상기 광경화성 코팅 조성물에 포함될 수 있다. 상기 광경화성 코팅 조성물 중 유기 용매의 함량이 너무 작으면, 상기 광경화성 코팅 조성물의 흐름성이 저하되어 최종 제조되는 필름에 줄무늬가 생기는 등 불량이 발생할 수 있다. 또한, 상기 유기 용매의 과량 첨가시 고형분 함량이 낮아져, 코팅 및 성막이 층분히 되지 않아서 필름의 물성이나 표면 특성이 저하될 수 있고, 건조 및 경화 과정에서 블량이 발생할 수 있다. 이에 따라,. 상기 광경화성 코팅 조성물은 포함되는 성분들의 전체 고형분의 농도가 1중량 % 내지 50중량 %, 또는 2 내지 20중량 %가 되도록 유기 용매를 포함할 수 있다.  The organic solvent may be included in the photocurable coating composition while being added at the time of mixing each component included in the photocurable coating composition or in the state in which each component is dispersed or mixed in the organic solvent. If the content of the organic solvent in the photocurable coating composition is too small, defects may occur, such as streaks in the resulting film due to the flowability of the photocurable coating composition is reduced. In addition, the solid content is lowered when the excessive amount of the organic solvent is added, the coating and film formation is not divided, the physical properties and surface properties of the film may be lowered, and a poor amount may occur during the drying and curing process. Accordingly,. The photocurable coating composition may include an organic solvent such that the concentration of the total solids of the components included is 1% by weight to 50% by weight, or 2 to 20% by weight.
상기 하드 코팅층은 반사 방지 필름에 사용할 수 있는 것으로 알려진 재질이면 큰 제한 없이 사용할 수 있다.  The hard coating layer may be used without any limitation as long as it is a material known to be used for the antireflection film.
구체적으로, 상기 반사 방지 필름의 제조 방법은 광경화형 화합물 또는 이의 (공)중합체, 광개시제 및 대전 방지제를 포함한 하드 코팅층 형성용 고분자 수지 조성물을 기재 상에 도포하고 광경화하는 단계를 더 포함할 수 있으며, 상기 단계를 통하여 하드 코팅층을 형성할 수 있다. 상기 하드 코팅층 형성에 사용되는 성분에 관해서는 상기 일 구현예의 반사 방지 필름에 관하여 상술한 바와 같다. Specifically, the method for producing the anti-reflection film may further include applying a photocurable compound or a polymer resin composition for forming a hard coating layer including a (co) polymer, a photoinitiator, and an antistatic agent on a substrate and photocuring the same. Through the above steps, a hard coating layer may be formed. The components used to form the hard coat layer are the same as described above with respect to the antireflection film of the embodiment.
또한, 상기 하드 코팅층 형성용 고분자 수지 조성물은 알콕시 실란계 올리고머 및 금속 알콕사이드계 올리고머로 이루어진 군에서 선택되는 1종 이상의 화합물을 더 포함할 수 있다.  In addition, the polymer resin composition for forming the hard coating layer may further include at least one compound selected from the group consisting of an alkoxy silane oligomer and a metal alkoxide oligomer.
상기 하드 코팅층 형성용 고분자 수지 조성물을 도포하는데 통상적으로 사용되는 방법 및 장치를 별 다른 제한 없이 사용할 수 있으며, 예를 들어, Meyer bar 등의 바 코팅법, 그라비아 코팅법, 2 rol l reverse 코팅법, vacuum slot die 코팅법, 2 rol l 코팅법 등을사용할 수 있다. 상기 하드 코팅층 형성용 고분자 수지 조성물을 광경화 시키는 단계에서는 200~400nm파장의 자외선 또는 가시 광선을 조사할 수 있고, 조사시 노광량은 100 내지 4 , 000 mJ/cin2 이 바람직하다. 노광 시간도 특별히 한정되는 것이 아니고, 사용 되는 노광 장치, 조사 광선의 파장 또는 노광량에 따라 적절히 변화시킬 수 있다. 또한, 상기 하드 코팅층 형성용 고분자 수지 조성물을 광경화 시키는 단계에서는 질소 대기 조건을 적용하기 위하여 질소 퍼징 등을 할 수 있다. Methods and apparatuses commonly used to apply the polymer resin composition for forming the hard coating layer may be used without particular limitation, for example, a bar coating method such as Meyer bar, gravure coating method, 2 roll l reverse coating method, Vacuum slot die coating and 2 roll coating can be used. In the step of photocuring the polymer resin composition for forming the hard coating layer may be irradiated with ultraviolet light or visible light having a wavelength of 200 ~ 400nm, the amount of exposure during irradiation is preferably 100 to 4,000 mJ / cin 2 . Exposure time is not specifically limited, either, According to the exposure apparatus used, wavelength of an irradiation light, or exposure amount, it can change suitably. In addition, in the step of photocuring the polymer resin composition for forming the hard coating layer may be purged with nitrogen in order to apply nitrogen atmospheric conditions.
【발명의 효과】  【Effects of the Invention】
본 발명에 따르면, 낮은 반사율 및 높은 투광율을 가지면서 높은 내스크래치성 및 방오성을 동시에 구현할 수 있고 디스플레이 장치의 화면의 선명도를 높일 수 있는 반사 방지 필름 및 상기 반사 방지 필름의 제조 방법이 제공될 수 있다.  According to the present invention, an anti-reflection film and a method of manufacturing the anti-reflection film can be provided that can simultaneously realize high scratch resistance and antifouling property while having a low reflectance and a high light transmittance and can increase the sharpness of the screen of the display device. .
【도면의 간단한 설명】  [Brief Description of Drawings]
도 1은 실시예 1의 반사 방지 방지 필름의 단면 TEM 사진을 나타낸 것이다.  Figure 1 shows a cross-sectional TEM photograph of the anti-reflection film of Example 1.
도 2은 실시예 2의 반사 방지 방지 필름의 단면 TEM 사진을 나타낸 것이다.  Figure 2 shows a cross-sectional TEM photograph of the anti-reflection film of Example 2.
도 3은 실시예 3의 반사 방지 방지 필름의 단면 TEM 사진을 나타낸 것이다.  Figure 3 shows a cross-sectional TEM photograph of the anti-reflection film of Example 3.
도 4은 실시예 4의 반사 방지 방지 필름의 단면 TEM 사진을 나타낸 것이다. 도 5은 실시예 5의 반사 방지 방지 필름의 단면 TEM 사진을 나타낸 것이다. Figure 4 shows a cross-sectional TEM photograph of the anti-reflection film of Example 4. Figure 5 shows a cross-sectional TEM photograph of the anti-reflection film of Example 5.
도 6은 실시예 6의 반사 방지 방지 필름의 단면 TEM 사진을 나타낸 것이다.  Figure 6 shows a cross-sectional TEM photograph of the anti-reflection film of Example 6.
도 7은 비교예 1의 반사 방지 방지 필름의 단면 TEM 사진을 나타낸 것이다.  7 shows a cross-sectional TEM photograph of the antireflective film of Comparative Example 1. FIG.
도 8은 비교예 2의 반사 방지 방지 필름의 단면 TEM 사진을 나타낸 것이다.  8 shows a cross-sectional TEM photograph of the antireflective film of Comparative Example 2. FIG.
도 9은 비교예 3의 반사 방지 방지 필름의 단면 TEM 사진을 나타낸 것이다.  9 shows a cross-sectional TEM photograph of the antireflective film of Comparative Example 3. FIG.
도 10은 실시예 1의 반사 방지 필름에 대한 Cu-K α선에 의한 X-선 반사율 측정 결과를 푸리에 변환 해석 (Four ier transform analysi s)한 그래프를 나타낸 것이다.  FIG. 10 shows a graph obtained by Fourier transform analysis of the results of measuring X-ray reflectance by Cu-K α-rays for the antireflection film of Example 1. FIG.
도 11은 실시예 2의 반사 방지 필름에 대한 Cu-K α선에 의한 X-선 반사율 측정 결과를 푸리에 변환 해석 (Four ier transform analysi s)한 그래프를 나타낸 것이다.  FIG. 11 shows a graph obtained by Fourier transform analysis of the result of measuring X-ray reflectance by Cu-K α-rays for the antireflection film of Example 2. FIG.
도 12은 실시예 3의 반사 방지 필름에 대한 Cu-K α선에 의한 X-선 반사율 측정 결과를 푸리에 변환 해석 (Four ier transform analysi s)한 그래프를 나타낸 것이다.  FIG. 12 shows a graph obtained by Fourier transform analysis of the results of measuring X-ray reflectance by Cu-K α-rays for the antireflection film of Example 3. FIG.
도 13은 실시예 4의 반사 방지 필름에 대한 Cu-K α선에 의한 X-선 반사율 측정 결과를 푸리에 변환 해석 (Four ier transform analysis)한 그래프를 나타낸 것이다.  FIG. 13: shows the graph which carried out the Fourier transform analysis of the X-ray reflectance measurement result by Cu-K (alpha) ray about the antireflection film of Example 4. FIG.
도 14은 실시예 5의 반사 방지 필름에 대한 Cu-K α선에 의한 X-선 반사율 측정 결과를 푸리에 변환 해석 (Four ier transform analysi s)한 그래프를 나타낸 것이다.  FIG. 14 shows a graph obtained by Fourier transform analysis of the results of measuring X-ray reflectance by Cu-K α-rays for the antireflection film of Example 5. FIG.
도 15은 실시예 6의 반사 방지 필름에 대한 Cu-K α선에 의한 X-선 반사율 측정 결과를 푸리에 변환 해석 (Four ier transform analysi s)한 그래프를 나타낸 것이다. 도 16은 비교예 1의 반사 방지 필름에 대한 Cu-K α선에 의한 X-선 반사율 측정 결과를 푸리에 변환 해석 (Four ier transform analysi s)한 그래프를 나타낸 것이다. FIG. 15 shows a graph obtained by Fourier transform analysis of X-ray reflectance measurement results using Cu-K α rays for the antireflection film of Example 6. FIG. FIG. 16: shows the graph which carried out the Fourier transform analysis of the X-ray reflectance measurement result by Cu-K (alpha) ray about the antireflective film of the comparative example 1. FIG.
도 17은 비교예 2의 반사 방지 필름에 대한 Cu-K α선에 의한 X-선 반사율 측정 결과를 푸리에 변환 .해석 (Four ier transform analysi s)한 그래프를 나타낸 것이다.  FIG. 17 shows a graph obtained by Fourier transform analysis of X-ray reflectance measurement results using Cu-K α-rays for the antireflection film of Comparative Example 2. FIG.
도 18은 비교예 3의 반사 방지 필름에 대한 Cu-K α선에 의한 X-선 반사율 측정 결과를 푸리에 변환 해석 (Four ier transform analysi s)한 그래프를 나타낸 것이다.  FIG. 18 shows a graph obtained by Fourier transform analysis of X-ray reflectance measurement results using Cu-K α rays for the antireflection film of Comparative Example 3.
【발명을 실시하기 위한 구체적인 내용】  [Specific contents to carry out invention]
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다. <제조예 >  The invention is explained in more detail in the following examples. However, the following examples are only for exemplifying the present invention, and the contents of the present invention are not limited to the following examples. <Production example>
제조예 : 하드코팅 필름의 제조  Preparation Example: Preparation of Hard Coating Film
KY0EISHA사 염타입의 대전 방지 하드 코팅액 (고형분 50중량 %, 제품명: LJD-1000)을 트리아세틸 셀루로스 필름에 #10 mayer bar로 코팅하고 KY0EISHA salt type antistatic hard coating solution (50 wt% solids, product name: LJD-1000) was coated on a triacetyl cellulose film with # 10 mayer bar.
90oC에서 1분 건조한 이후, 150 mJ/cin!의 자외선을 조사하여 약 5 내지 6/皿의 두께를 갖는 하드 코팅 필름을 제조하였다. After drying at 90 o C for 1 minute, 150 mJ / cin ! Was irradiated with UV light to prepare a hard coat film having a thickness of about 5 to 6 / mm 3.
<실시예 1 내지 5: 반사 방지 필름의 제조 > <Examples 1 to 5: Preparation of Anti-reflection Films>
실시예 1 내지 4  Examples 1-4
(1) 저굴절층 제조용 광경화성 코팅 조성물의 제조  (1) Preparation of photocurable coating composition for low refractive layer production
펜타에리트리를트리아크릴레이트 (PETA) 100중량부에 대하여, 중공형 실리카 나노 입자 (직경: 약 50 내지 60 ran , 밀도: 1.96 g/citf , JSC catalyst and chemi cal s사 제품) 281 중량부, 솔리드형 실리카 나노 입자 (직경: 약 12 ran , 밀도: 2.65 g/cirf) 63 중량부, 게 1함불소 화합물 (X-71-1203M, ShinEtsu사) 131중량부, 게 2함불소 화합물 (RS-537,DIC사) 19중량부, 개시제 ( Irgacure 127, Ciba사) 31중량부를, MIBK(methyl i sobutyl ketone)용매에 고형분 농도 3 중량%가 되도록 희석하였다. 281 parts by weight of hollow silica nanoparticles (diameter: about 50 to 60 ran, density: 1.96 g / citf, manufactured by JSC catalyst and chemi cal s) based on 100 parts by weight of pentaerythritol triacrylate (PETA), Solid silica nanoparticles (Diameter: about 12 ran, Density: 2.65 g / cirf) 63 parts by weight, Crab 1 fluorine compound (X-71-1203M, ShinEtsu Co., Ltd.) 131 parts by weight, crab 2-fluorine compound (RS-537, DIC) 19 parts by weight, initiator (Irgacure 127, Ciba) 31 parts by weight, solid content concentration of 3% by weight in a solvent of methyl i-butyl ketone Dilute to
(2) 저굴절층 및 반사방지 필름의 제조  (2) Preparation of low refractive layer and antireflection film
상기 제조예의 하드 코팅 필름 상에 , 상기에서 얻어진 광경화성 코팅 조성물을 #4 mayer bar로 두께가 약 110 내지 120ran가 되도록 코팅하고, 하기 표 1의 온도 및 시간으로 건조 및 경화하였다. 상기 경화시에는 질소 퍼징하에서 상기 건조된 코팅물에 252 mJ/ciif의 자외선을 조사하였다. 실시예 5  On the hard coat film of the above preparation, the photocurable coating composition obtained above was coated with a # 4 mayer bar so as to have a thickness of about 110 to 120 ran, and dried and cured at the temperatures and times shown in Table 1 below. At the time of curing, the dried coating was irradiated with ultraviolet light of 252 mJ / ciif under nitrogen purge. Example 5
( 1) 저굴절층 제조용 광경화성 코팅 조성물의 제조  (1) Preparation of photocurable coating composition for low refractive layer production
트리메틸올프로페인 트리아크릴레이트 (TMPTA) 100중량부에 대하여, 중공형 실리카 나노 입자 (직경: 약 50 내지 60 ran , 밀도: 1.96 g/cin1, JSC catalyst and chemi cals사 제품) 268 중량부, 솔리드형 실리카 나노 입자 (직경: 약 12 ran , 밀도: 2.65 g/citf) 55 증량부, 게 1함불소 화합물 (X- 71-1203M, ShinEtsu사) 144중량부, 제 2함불소 화합물 (RS-537, DIC사) 21중량부, 개시제 ( Irgacure 127, Ciba사) 31중량부를, MIBK(methyl i sobutyl ketone)용매에 고형분 농도 3 중량%가 되도록 희석하였다. 268 parts by weight of hollow silica nanoparticles (diameter: about 50 to 60 ran, density: 1.96 g / cin 1 , manufactured by JSC catalyst and chemi cals) based on 100 parts by weight of trimethylolpropane triacrylate (TMPTA), Solid silica nanoparticles (Diameter: about 12 ran, Density: 2.65 g / citf) 55 parts by weight, Crab 1 fluorine compound (X-71-1203M, ShinEtsu) 144 parts by weight, second fluorine-containing compound (RS- 537, DIC Corp.) 21 parts by weight, and 31 parts by weight of an initiator (Irgacure 127, Ciba) were diluted so as to have a solid concentration of 3% by weight in a MIBK (methyl i sobutyl ketone) solvent.
(2) 저굴절층 및 반사 방지 필름의 제조  (2) Preparation of low refractive index layer and antireflection film
상기 제조예의 하드 코팅 필름 상에, 상기에서 얻어진 광경화성 코팅 조성물을 #4 mayer bar로 두께가 약 110 내지 120nm가 되도록 코팅하고, 하기 표 1의 온도 및 시간으로 건조 및 경화하였다. 상기 경화시에는 질소 퍼징하에서 상기 건조된 코팅물에 252 mJ/cuf의 자외선을 조사하였다. On the hard coat film of the above preparation, the photocurable coating composition obtained above was coated with a # 4 mayer bar to have a thickness of about 110 to 120 nm, and dried and cured at the temperatures and times shown in Table 1 below. At the time of curing, the dried coating was irradiated with ultraviolet light of 252 mJ / cuf under nitrogen purge.
【표 11 Table 11
Figure imgf000031_0001
실시예 6
Figure imgf000031_0001
Example 6
(1) 하드 코팅층 (HD2)의 제조 펜타에리스리를 트리아크릴레이트 30g, 고분자량 공중합체 (BEAMSET 371, Arakawa 사, Epoxy Acrylate, 분자량 40,000) 2.5g, 메틸에틸케톤 20g 및 레벨링제 (Tego wet 270) 0.5g 을 균일하게 흔합한 이후에 굴절률이 1.525 인 미립자로서 아크릴-스티렌 공중합체 (부피평균입경: 2 μm, 제조사: Sekisui Plastic) 2g을 첨가하여 하드 코팅 조성물을 제조하였다. 이와 같이 얻어진 하드 코팅 조성 물을 트리아세틸셀를로오스 필름에 #10 mayer bar 로 코팅하고 90°C에서 1 분간 건조하였다. 상기 건조물에 150 mJ/crf 의 자외선을 조사하여 5 의 두께를 갖는 하드 코팅층을 제조하였다. (1) Preparation of hard coating layer (HD2) Pentaerythritol triacrylate 30 g, high molecular weight copolymer (BEAMSET 371, Era, Epoxy Acrylate, molecular weight 40,000) 2.5 g, methyl ethyl ketone 20 g and leveling agent (Tego wet 270) ) After uniformly mixing 0.5 g), 2 g of an acrylic-styrene copolymer (volume average particle diameter: 2 μm, manufacturer: Sekisui Plastic) was added as fine particles having a refractive index of 1.525 to prepare a hard coating composition. The hard coating composition thus obtained was coated on a triacetylcell film with # 10 mayer bar and dried at 90 ° C. for 1 minute. 150 mJ / crf was irradiated to the dried material to prepare a hard coating layer having a thickness of 5.
(2) 저굴절층 및 반사 방지 필름의 제조 펜타에리트리를트리아크릴레이트 (PETA) 100 중량부에 대하여, 중공형 실리카 나노 입자 (직경: 약 50 내지 60 nm, 밀도: 1.96 g/cirf, JGC catalyst and chemicals 사 제품) 135 중량부, 솔리드형 실리카 나노 입자 (직경: 약 12 nm, 밀도: 2.65 g/arf) 88 증량부, 제 1 함불소 화합물 (X-71- 1203M, ShinEtsu 사) 38 중량부, 제 2 함불소 화합물 (RS-537,DI 사) 11 중량부, 개시제 (Irgacure 127, Ciba 사) 7 중량부를, 메틸이소부틸케톤 (MIBK): 디아세톤알콜 (DM): 이소프로필알코을을 3:3:4 의 중량비로 흔합한 용매에 고형분 농도 3 중량 % 가 되도록 희석하여 저굴절층 제조용 광경화성 코팅 조성물의 제조하였다. 상기 제조된 하드 코팅층 (HD2) 상에, 상기에서 얻어진 저굴절층 제조용 광경화성 코팅 조성물을 #4 mayer bar 로 두께가 약 110 내지 120 ran가 되도록 코팅하고, 60 X의 온도에서 1 분 간 건조 및 경화하였다. 상기 경화시에는 질소 퍼징하에서 상기 건조된 코팅물에 252 mJ/cuf의 자외선을 조사하였다. <비교예 : 반사방지 필름의 제조 > (2) Preparation of low refractive index layer and antireflection film Hollow silica nanoparticles (diameter: about 50 to 60 nm, density: 1.96 g / cirf, JGC) based on 100 parts by weight of pentaerythritol triacrylate (PETA) catalyst and chemicals) 135 parts by weight, solid silica nanoparticles (diameter: about 12 nm, density: 2.65 g / arf) 88 parts by weight, first fluorine-containing compound (X-71-1203M, ShinEtsu) 38 parts by weight 11 parts by weight of the second fluorine-containing compound (RS-537, DI), 7 parts by weight of the initiator (Irgacure 127, Ciba), methyl isobutyl ketone (MIBK): diacetone alcohol (DM): isopropyl alcohol A photocurable coating composition for producing a low refractive index layer was prepared by diluting the solvent to a weight ratio of 3: 3: 4 to a solid content concentration of 3 wt%. On the prepared hard coating layer (HD2), the photocurable coating composition for preparing the low refractive index layer obtained above was coated with a # 4 mayer bar to have a thickness of about 110 to 120 ran, dried at a temperature of 60 X for 1 minute, and Cured. At the time of curing, the dried coating was irradiated with ultraviolet light of 252 mJ / cuf under nitrogen purge. Comparative Example: Preparation of Antireflection Film
비교예 1  Comparative Example 1
상기 저굴절층 제조용 광경화성 코팅 조성물을 도포하고 상온 (25°C)에서 건조한 점을 제외하고 실시예 1과 동일한 방법으로 반사 방지 필름을 제조하였다. 비교예 2  The antireflection film was prepared in the same manner as in Example 1 except that the photocurable coating composition for preparing the low refractive index layer was dried and dried at room temperature (25 ° C). Comparative Example 2
상기 실시예 1에서 사용한 솔리드형 실리카 나노 입자 63 중량부를 펜타에리트리를트리아크릴레이트 (PETA) 63중량부로 대체한 점을 제외하고, 상기 실시예 1과 동일한 방법으로 저굴절층 제조용 광경화성 코팅 조성물을 제조하고, 실시예 1과 동일한 방법으로 반사 방지 필름을 제조하였다. 비교예 3  Except for replacing 63 parts by weight of the solid silica nanoparticles used in Example 1 with 63 parts by weight of pentaerythritol triacrylate (PETA), the photocurable coating composition for producing a low refractive index layer in the same manner as in Example 1 To prepare a, antireflection film was prepared in the same manner as in Example 1. Comparative Example 3
상기 저굴절층 제조용 광경화성 코팅 조성물을 도포하고 약 140oC에서 건조한 점을 제외하고 실시예 5과 동일한 방법으로 반사 방지 필름을 제조하였다. The antireflection film was prepared in the same manner as in Example 5 except that the photocurable coating composition for preparing the low refractive layer was dried and dried at about 140 ° C.
<실험예: 반사방지 필름의 물성 측정 > Experimental Example: Measurement of Physical Properties of Antireflection Film
상기 실시예 및 비교예에서 얻어진 반사 방지 필름에 대하여 다음과 같은 항목의 실험을 시행하였다.  The antireflection films obtained in the Examples and Comparative Examples were subjected to the experiments as follows.
1. 반사 방지 필름의 반사율측정 1. Reflectance measurement of antireflection film
실시예 및 비교예에서 얻어진 반사 방지 필름이 가시 광선 영역 (380 내지 780nm)에서 나타내는 평균 반사율을 Sol idspec 3700(SHIMADZU) 장비를 이용하여 측정하였다.  The average reflectance which the antireflective film obtained by the Example and the comparative example shows in visible region (380-780 nm) was measured using the Sol idspec 3700 (SHIMADZU) apparatus.
2. 방오성 측정 2. Antifouling measurement
실시예 및 비교예에서 얻어진 반사 방지 필름의 표면에 검은색 네임펜으로 5 cm길이의 직선을 그리고, 무진천을 이용하여 문질렀을 때 지워지는 횟수를 확인하여 방오성을 측정하였다. When a straight line of 5 cm length was drawn with a black name pen on the surface of the antireflective film obtained in Examples and Comparative Examples, and rubbed using a dust-free cloth. Checking the number of times to erase the antifouling properties.
<측정 기준 >  <Measurement standard>
0: 지워지는 시점이 10회 이하  0: It is less than ten times to be erased
Δ: 지워지는 시점이 11회 내지 20회  Δ: 11 to 20 erase points
X: 지워지는 시점이 20회 초과  X : The erase point exceeds 20 times
3. 내스크래치성 측정 3. Scratch resistance measurement
상기 스틸울에 하중을 걸고 27 rpm의 속도로 10회 왕복하며 실시예 및 비교예에서 얻어진 반사 방지 필름의 표면을 문질렀다. 육안으로 관찰되는 1cm이하의 스크래치 1개 이하가 관찰되는 최대 하중을 측정하였다.  The steel wool was loaded and reciprocated 10 times at a speed of 27 rpm to rub the surface of the antireflective film obtained in Examples and Comparative Examples. The maximum load at which one scratch or less of 1 cm or less observed with the naked eye was observed was measured.
4. 상분리 여부 확인 4. Check for phase separation
도 1내지 7의 반사 방지 필름의 단면에서, 하드 코팅층으로부터 30nm이내에 사용한 솔리드형 무기 나노 입자 (솔리드형 나노 실리카 입자) 전체 중 70부피 ¾>가존재하는 경우 상분리가 일어난 것으로 결정하였다.  In the cross-sections of the antireflection films of FIGS. 1 to 7, it was determined that phase separation occurred when 70 volumes ¾> of all the solid inorganic nanoparticles (solid nano silica particles) used within 30 nm from the hard coating layer were present.
5. 굴절률의 측정 상기 실시예들에서 얻어진 저굴절율층 중 상분리된 영역에 대하여 대하여 380 nm 내지 1,000 nm 의 파장에서 측정된 타원 편광과 Cauchy 모델을 이용하여 550nm에서의 굴절율을 계산하였다. 구체적으로, 상기 실시예 각각에서 얻어진 저굴절율층에 대하여 J. A. Woo 11 am Co. M-2000 의 장치를 이용하여, 70°의 입사각을 적용하고 380 nm 내지 1000 nm의 파장 범위에서 선편광을 측정하였다. 상기 측정된 선평광 측정 데이터 (Ellipsometry (1^3(Ψ,Δ))를 Complete EASE software 를 이용하여 상기 저굴절율층의 제 1,2 층 (Layer 1, Layer 2)에 대하여 하기 일반식 1 의 코쉬 모델 (Cauchy model)로 MSE 가 3 이하가 되도록 최적화 (fitting)하였다. 5. Measurement of Refractive Index The refractive index at 550 nm was calculated using the Cauchy model and the elliptical polarization measured at a wavelength of 380 nm to 1,000 nm for the phase-separated regions of the low refractive index layers obtained in the above examples. Specifically, for the low refractive index layer obtained in each of the above examples, J. A. Woo 11 am Co. Using the device of M-2000, an angle of incidence of 70 ° was applied and linearly polarized light was measured in the wavelength range of 380 nm to 1000 nm. The measured linear light measurement data (Ellipsometry (1 ^ 3 (Ψ, Δ)) was applied to the first and second layers (Layer 1, Layer 2) of the low refractive index layer by using the Complete EASE software. A Cauchy model was used to fit the MSE to 3 or less.
[일반식 1]
Figure imgf000035_0001
상기 일반식 1 에서, η(λ)는 λ파장에서의 굴절율 (refractive index)이고, λ는 300 ran 내지 1800 ran의 범위이고, A, B 및 C 는 코쉬 파라미터이다,
[Formula 1]
Figure imgf000035_0001
In Formula 1, η (λ) is a refractive index at λ wavelength, λ is in the range of 300 ran to 1800 ran, and A, B and C are Kosh parameters.
6. Cu-K α선에 의한 X-선 반사율 측정 결과에 대한 푸리에 변환 해석 (Fourier transform analysis) 6. Fourier transform analysis of X-ray reflectance measurement results by Cu-K α-ray
X-선 반사율은 lcm*lcm (가로 *세로) 크기의 반사 방지 필름에 대하여, X-ray reflectivity is about lcm * lcm (horizontal * vertical) sized antireflection film,
1.5418 A의 파장의 Cu-K α선을 조사하여 측정하였다. 구체적으로, 사용 장치는 PANalytical X'Pert Pro MRD XRD를 이용하고, 45 kV의 전압 및 40 mA의 전류를 적용하였다. 사용한 optics는 다음과 같다. It measured by irradiating Cu-K (alpha) ray of the wavelength of 1.5418A. Specifically, the device used was a PANalytical X'Pert Pro MRD XRD, and applied a voltage of 45 kV and a current of 40 mA. The optics used are as follows.
-Incident beam opt ic: Primary mirror , Auto Attenuator , 1/16° FDS  -Incident beam opt ic : Primary mirror, Auto Attenuator, 1/16 ° FDS
-Diffracted beam optic: Parallel plate col 1 imator(PPC) with silt(0.27) Diffracted beam optic: Parallel plate col 1 imator (PPC) with silt (0.27)
-Soller slit(0.04 rad), Xe counter  -Soller slit (0.04 rad), Xe counter
그리고, 2theta(29) 값이 0이 되도록 샘플 스테이지를 조정한 후, 샘플의 half-cut을 확인하고, 이후 입사각과 반사각이 specular 조건을 만족하는 상태로 설정하고, Z Omega Z align을 하여 X-선 반사율을 측정할 수 있도록 준비여, 2Θ가 0.2°부터 3.2°까지 0.004°의 간격으로 측정한다. 이를 통해 X선 반사율 패턴을 측정하였다. After adjusting the sample stage so that the value of 2theta (29) becomes 0, check the half-cut of the sample, and then set the angle of incidence and the angle of reflection to satisfy the specular condition, and perform Z Omega Z alignment to perform X- Ready to measure the line reflectance, 2Θ is measured at intervals of 0.004 ° from 0.2 ° to 3.2 °. Through this, the X-ray reflectance pattern was measured.
상기 Cu-K α선에 의한 X-선 반사율 측정 결과에 대한 푸리에 변환 해석은 PANalytical 사의 X'pert Reflectivity 프로그램을 사용하여 수행하였으며, 푸리에 변환시 input 값으로 start angle로는 0.Γ5을 입력하고, end angle 로는 1.2°를 입력하고, critical angle로는 0.163 。을 입력하였다. The Fourier transform analysis on the X-ray reflectance measurement result by the Cu-K α-ray was performed using PANalytical's X'pert Reflectivity program, and the input angle during the Fourier transform was 0.Γ 5 as the start angle. Input was 1.2 ° for end angle and 0.163 ° for critical angle.
【표 2】 Table 2
Figure imgf000036_0001
Figure imgf000036_0001
[PI] 및 [P2]는 각각 Cu-K α선에 의한 X-선 반사율 측정 결과에 대한 푸리에 변환 해석 (Fourier transform analysis) 결과 그래프에서 Y축의 푸리에 변환 강도의 극점이 나타나는 두께 (thickness)이다.  [PI] and [P2] are thicknesses in which the poles of the Fourier transform intensity of the Y-axis appear in the Fourier transform analysis result graph for the X-ray reflectance measurement results by Cu-K α rays, respectively.
【표 3]
Figure imgf000036_0002
실시예 1내지 6의 반사 방지 필름은, 도 10 내지 15에서 확인되는 바와 같이 , Cu-K α선에 의한 X-선 반사율 측정 결과에 대한 푸리에 변환 해석 (Fourier transform analysis) 결과 그래프에서, 35 nm 내지 55 nm의 두께 (thickness)에서 1개의 푸리에 변환 강도의 극값을 나타내고 85 ran내지 105 ran의 두께 (thickness)에서 1개의 푸리에 변환 강도의 극값을 나타내는데, 상기 표 2에 나타난 바와 같이 실시예의 반사 방지 필름은 가시 광선 영역에서 으 70% 이하의 낮은 반사율을 나타내면서 높은 내스크래치성 및 방오성을 동시에 구현할 수 있다는 점이 확인되었다.
[Table 3]
Figure imgf000036_0002
Examples 1 to 6 of the antireflective film, as confirmed in Figs. 10 to 15, in the graph of Fourier transform analysis of the X-ray reflectance measurement results by Cu-K α-rays, 35 nm An extreme value of one Fourier transform intensity at a thickness of 55 nm to 55 nm and an extreme value of one Fourier transform intensity at a thickness of 85 ran to 105 ran, as shown in Table 2 above. Film is thorns It has been confirmed that high scratch resistance and antifouling property can be realized simultaneously with low reflectance of 70% or less in the light ray region.
또한, 도 1내지 6에 나타난 바와 같이, 실시예 1내지 6의 반사 방지 필름의 저굴절층에서는 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자가 상분리가 되어 있으며, 상기 솔리드형 무기 나노 입자가 상기 반사 방지 필름의 하드 코팅층 및 상기 저굴절층 간의 계면 쪽으로 대부분 존재하며 몰려 있으며, 상기 중공형 무기 나노 입자는 하드 코팅층으로부터 먼 쪽에 대부분 존재하며 몰려 있다는 점이 확인된다.  1 to 6, hollow inorganic nanoparticles and solid inorganic nanoparticles are phase-separated in the low refractive layer of the antireflection film of Examples 1 to 6, and the solid inorganic nanoparticles are It is confirmed that most of the hollow inorganic nanoparticles are concentrated and existed toward the interface between the hard coating layer and the low refractive index layer of the anti-reflection film.
또한, 상기 표 3에 나타난 바와 같이, 실시예의 저굴절층에서 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자가 상분리되어 구분되는 거 U영격 및 제 2영역은 상이한 범위의 굴절율을 나타내며, 구체적으로 솔리드형 무기 나노 입자가 주로 분포하는 제 1영역은 1.420 이상의 굴절율을 나타내고 중공형 무기 나노 입자가 주로 분포하는 게 2영역은 1.400이하의 굴절율을 나타낸다는 점이 확인되었다.  In addition, as shown in Table 3, in the low refractive layer of the embodiment, the hollow U nanoparticles and the second region in which the hollow inorganic nanoparticles and the solid inorganic nanoparticles are separated from each other by phases exhibit different refractive indices. It was confirmed that the first region in which the inorganic inorganic nanoparticles were mainly distributed showed a refractive index of 1.420 or more, and the second region in which the hollow inorganic nanoparticles were mainly distributed had a refractive index of 1.400 or less.
이와 같이 이에 반하여, 도 7 내지 9에 나타난 바와 같이, 비교예 1 내지 3 의 반사 방지 필름의 저굴절층에서는 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자가상분리되지 않고 흔재되어 있는 점이 확인된다. 또한, 상기 표 2 및 도 16 내지 18에서 나타난 바와 같이, 비교예 1 내지 3의 반사 방지 필름의 저굴절층은 Cu-K c (선에 의한 X-선 반사율 측정 결과에 대한 푸리에 변환 해석 (Four ier transform analysi s) 결과 그래프에서, 35 nm 내지 55 ran의 두께 (thi ckness) 및 85 nm내지 105 nm의 2개의 두께 (thi ckness) 범위에서 모두 극점을 나타내지 못하며, 또한 상대적으로 높은 반사율을 나타내면서 낮은 내스크래치성 및 방오성을 갖는다는 점이 확인되었다.  As described above, as shown in FIGS. 7 to 9, in the low refractive layer of the antireflection films of Comparative Examples 1 to 3, it is confirmed that the hollow inorganic nanoparticles and the solid inorganic nanoparticles are common without being separated. In addition, as shown in Table 2 and FIGS. 16 to 18, the low refractive layer of the antireflective films of Comparative Examples 1 to 3 may have a Fourier transform analysis (Four) on Cu-K c (X-ray reflectance measurement results by rays). ier transform analysi s) In the graph of results, both the thickness of 35 nm to 55 ran and the two thickness ranges of 85 nm to 105 nm do not exhibit poles, and also show relatively high reflectance and low It has been confirmed that it has scratch resistance and antifouling resistance.

Claims

【청구범위】  [Claim]
【청구항 11  [Claim 11
Cu-K α선에 의한 X-선 반사율 측정 결과에 대한 푸리에 변환 해석 (Four ier transform analysi s) 결과 그래프에서,  In the graph of Fourier transform analysis of the results of X-ray reflectance measurement by Cu-K α-ray,
표면으로부터 35 nm 내지 55 nm의 두께 (thi ckness)에서 1개의 극값을 나타내고 표면으로부터 85 ran내지 105 nm의 두께 (thi ckness)에서 1개의 극값을 나타내는,  Showing one extreme at a thickness of 35 nm to 55 nm from the surface and one extreme at a thickness of 85 ran to 105 nm from the surface,
반사 방지 필름.  Anti-reflection film.
【청구항 2】 [Claim 2]
제 1항에 있어서,  The method of claim 1,
상기 반사 방지 필름에 대한 Cu-K α선에 의한 X-선 반사율 측정 결과에 대한 푸리에 변환 해석 (Fourier transform analysi s) 결과 그래프는 X축의 필름의 두께 (thickness)에 대한 Y축의 푸리에 변환 강도 (Four ier transform magni tude)를 나타내는, 반사 방지 필름.  Fourier transform analysis results of the X-ray reflectance measurement results by Cu-K α-rays for the anti-reflection film (Fourier transform strength (Four) ier transform magni tude).
【청구항 3】 [Claim 3]
게 1항에 있어서,  According to claim 1,
상기 Cu-K α선에 의한 X-선 반사율 측정은 1cm* lcm (가로 *세로)의 크기의 반사 방지 필름에 대하여 1.5418 A의 파장의 Cu-K α선을 이용하여 측정하는  X-ray reflectance measurement by the Cu-K α-rays is measured using a Cu-K α-ray having a wavelength of 1.5418 A for the antireflection film having a size of 1 cm * lcm (horizontal * length).
반사 방지 필름.  Anti-reflection film.
【청구항 4】 [Claim 4]
게 1항에 있어서,  According to claim 1,
상기 반사 방지 필름은 하드 코팅층; 및 상기 하드 코팅층 상에 형성된 저굴절층을 포함하고,  The anti-reflection film is a hard coating layer; And a low refractive layer formed on the hard coating layer,
상기 표면으로부터 35 ran 내지 55 ran의 두께 및 85 ran내지 105 ran 각각은 상기 저굴절층의 표면에서부터의 두께인, 반사 방지 필름. 35 ran to 55 ran thickness and 85 ran to 105 ran from the surface Each being a thickness from the surface of the low refractive layer.
【청구항 5】 [Claim 5]
거 U항에 있어서,  In U,
상기 반사 방지 필름은 하드 코팅층; 및 바인더 수지와 상기 바인더 수지에 분산된 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자를 포함하는 저굴절층;을 포함하는, 반사 방지 필름.  The anti-reflection film includes a hard coating layer; and a low refractive index layer comprising a binder resin and hollow inorganic nanoparticles and solid inorganic nanoparticles dispersed in the binder resin.
[청구항 6】 [Claim 6]
게 5항에 있어서,  The method of claim 5,
상기 하드 코팅층 및 상기 저굴절층 간의 계면 가까이에 솔리드형 무기 나노 입자가 중공형 무기 나노 입자 보다 많이 분포하는, 반사 방지 필름  Anti-reflection film, wherein the solid inorganic nanoparticles are distributed more than the hollow inorganic nanoparticles near the interface between the hard coating layer and the low refractive index layer
【청구항 7】 [Claim 7]
제 6항에 있어서,  The method of claim 6,
상기 하드 코팅층 및 상기 저굴절층 간의 계면으로부터 상기 저굴절층 전체 두께 50% 이내에 상기 솔리드형 무기 나노 입자 전체 중 70부피 % 이상이 존재하는, 반사 방지 필름.  The anti-reflection film of 70% or more of the total solid inorganic nanoparticles present within 50% of the total thickness of the low refractive index layer from the interface between the hard coating layer and the low refractive index layer.
【청구항 8】 [Claim 8]
제 6항에 있어서,  The method of claim 6,
상기 중공형 무기 나노 입자 전체 중 30부피 % 이상이 상기 솔리드형 무기 나노 입자 전체 보다 상기 하드 코팅층 및 상기 저굴절층 간의 계면으로부터 상기 저굴절층의 두께 방향으로 보다 먼 거리에 존재하는, 반사 방지 필름.  30% by volume or more of the entire hollow inorganic nanoparticles are present at a distance farther in the thickness direction of the low refractive layer from the interface between the hard coating layer and the low refractive layer than the entire solid inorganic nanoparticles. .
[청구항 9】 [Claim 9]
게 6항에 있어서,  According to claim 6,
상기 하드 코팅층과:상기 저굴절층의 계면으로부터 상기 저굴절층 전체 두께 30¾> 이내에 상기 솔리드형 무기 나노 입자 전체 중 70부피 % 이상이 존재하는, 반사 방지 필름. The low refractive index layer from the interface between the low refractive index layer: The hard coat layer and An antireflective film, wherein at least 70% by volume of the total solid inorganic nanoparticles is present within a total thickness of 30¾>.
【청구항 10】 [Claim 10]
제 9항에 있어서,  The method of claim 9,
상기 하드 코팅층과 상기 저굴절층의 계면으로부터 상기 저굴절층 전체 두께 3 초과의 영역에 상기 증공형 무기 나노 입자 전체 중 70부피 % 이상이 존재하는, 반사 방지 필름.  The antireflection film of more than 70% by volume of the whole of the enhanced inorganic nanoparticles is present in the region of the total thickness of the low refractive index layer more than 3 from the interface between the hard coating layer and the low refractive index layer.
【청구항 11】 [Claim 11]
제 6항에 있어서,  The method of claim 6,
상기 저굴절층은 상기 솔리드형 무기 나노 입자 전체 중 70부피 ¾> 이상이 포함된 제 1층과 상기 중공형 무기 나노 입자 전체 중 70부피 % 이상이 포함된 제 2층을 포함하며,  The low refractive layer includes a first layer containing at least 70 volume ¾> of the total solid inorganic nanoparticles and a second layer containing at least 70 volume% of the entire hollow inorganic nanoparticles,
상기 게 1층이 게 2층에 비하여 상기 하드 코팅층 및 상기 저굴절층 간의 계면에 보다 가까이 위치하는, 반사 방지 필름.  The anti-reflection film of claim 1, wherein the crab layer is located closer to the interface between the hard coating layer and the low refractive layer than the crab layer 2.
【청구항 12] [Claim 12]
제 11항에 있어서,  The method of claim 11,
상기 솔리드형 무기 나노 입자 전체 중 70부피 % 이상이 포함된 제 1층은 상기 하드 코팅층 및 상기 저굴절층 간의 계면으로부터 상기 저굴절층 전체 두께 50% 이내에 위치하는, 반사 방지 필름.  The first layer containing at least 70% by volume of the total solid inorganic nanoparticles is located within 50% of the total thickness of the low refractive index layer from the interface between the hard coating layer and the low refractive index layer, anti-reflection film.
【청구항 13】 [Claim 13]
제 5항에 있어서,  The method of claim 5,
상기 솔리드형 무기 나노 입자가 상기 중공형 무기 나노 입자에 비하여 0.50 g/orf 이상 높은 밀도를 갖는, 반사 방지 필름.  The anti-reflection film of claim 1, wherein the solid inorganic nanoparticles have a density higher than or equal to 0.50 g / orf compared to the hollow inorganic nanoparticles.
【청구항 14] 제 5항에 있어서, [Claim 14] The method of claim 5,
상기 솔리드형 무기 나노 입자 및 상기 중공형 무기 나노 입자 각각은 표면에 (메트)아크릴레이트기, 에폭사이드기, 비닐기 (Vinyl ) 및 싸이올기 (Thiol )로 이루어진 군에서 선택된 1종 이상의 반응성 작용기를 함유하는, 반사 방지 필름.  Each of the solid inorganic nanoparticles and the hollow inorganic nanoparticles may have at least one reactive functional group selected from the group consisting of a (meth) acrylate group, an epoxide group, a vinyl group (Vinyl), and a thiol group (Thiol) on a surface thereof. Containing, antireflection film.
【청구항 15] [Claim 15]
제 5항에 있어서,  The method of claim 5,
상기 저굴절층에 포함되는 바인더 수지는 광중합성 화합물의 (공)중합체 및 광반응성 작용기를 포함한 함불소 화합물 간의 가교 (공)중합체를 포함하는, 반사 방지 필름.  The binder resin included in the low refractive index layer comprises a cross-linked (co) polymer between the (co) polymer of the photopolymerizable compound and the fluorine-containing compound including a photoreactive functional group, antireflection film.
【청구항 16】 [Claim 16]
제 15항에 있어서,  The method of claim 15,
상기 저굴절층은 상기 광중합성 화합물의 (공)중합체 100중량부 대비 상기 중공형 무기 나노 입자 10 내지 400 중량부 및 상기 솔리드형 무기 나노 입자 10 내지 400중량부를 포함하는, 반사 방지 필름.  The low refractive index layer comprises 10 to 400 parts by weight of the hollow inorganic nanoparticles and 10 to 400 parts by weight of the solid inorganic nanoparticles relative to 100 parts by weight of the (co) polymer of the photopolymerizable compound.
【청구항 17】 [Claim 17]
제 15항에 있어서,  The method of claim 15,
상기 광반웅성 작용기를 포함한 함불소 화합물은 각각 2 , 000 내지 The fluorine-containing compound containing the photo-banung functional groups are each 2,000 to
200, 000의 중량평균분자량을 갖는, 반사 방지 필름. An antireflection film having a weight average molecular weight of 200, 000.
【청구항 18】. [Claim 18] .
제 15항에 있어서,  The method of claim 15,
상기 바인더 수지는 상기 광중합성 화합물의 (공)중합체 100중량부에 대하여 상기 광반웅성 작용기를 포함한 함불소 화합물을 20 내지 300중량부로 포함하는, 반사 방지 필름.  The binder resin comprises an anti-reflective film containing 20 to 300 parts by weight of the fluorine-containing compound containing the photo-banung functional group with respect to 100 parts by weight of the (co) polymer of the photopolymerizable compound.
【청구항 19】 계 5항에 있어서, [Claim 19] The method according to claim 5,
상기 하드 코팅층은 광경화성 수지를 포함하는 바인더 수지 및 상기 바인더 수지에 분산된 유기 또는 무기 미립자;를 포함하는ᅤ 반사 방지 필름.  The hard coating layer comprises a binder resin containing a photocurable resin and organic or inorganic fine particles dispersed in the binder resin;
【청구항 20】 [Claim 20]
제 19항에 있어서,  The method of claim 19,
상기 유기 미립자는 1 내지 10 ^의 입경을 가지며,  The organic fine particles have a particle diameter of 1 to 10 ^,
상기 무기 입자는 1 nm 내지 500 ran의 입경을 갖는, 반사 방지 필름.  The inorganic particles have a particle size of 1 nm to 500 ran, anti-reflection film.
PCT/KR2017/002580 2016-03-09 2017-03-09 Anti-reflective film WO2017155335A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202010756995.XA CN111929751B (en) 2016-03-09 2017-03-09 Anti-reflection film
EP17763596.8A EP3376266A4 (en) 2016-03-09 2017-03-09 Anti-reflective film
CN201780005924.2A CN108474870A (en) 2016-03-09 2017-03-09 Anti-reflective film
US16/068,249 US10895667B2 (en) 2016-03-09 2017-03-09 Antireflection film
JP2018518611A JP2018533068A (en) 2016-03-09 2017-03-09 Antireflection film

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR20160028468 2016-03-09
KR10-2016-0028468 2016-03-09
KR20160029336 2016-03-11
KR10-2016-0029336 2016-03-11
KR20160030395 2016-03-14
KR10-2016-0030395 2016-03-14
KR1020170029954A KR101907653B1 (en) 2016-03-09 2017-03-09 Anti-reflective film
KR10-2017-0029954 2017-03-09

Publications (1)

Publication Number Publication Date
WO2017155335A1 true WO2017155335A1 (en) 2017-09-14

Family

ID=59789588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/002580 WO2017155335A1 (en) 2016-03-09 2017-03-09 Anti-reflective film

Country Status (1)

Country Link
WO (1) WO2017155335A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020535462A (en) * 2018-01-24 2020-12-03 エルジー・ケム・リミテッド Anti-reflective film, polarizing plate and display device
US11428848B2 (en) 2018-01-24 2022-08-30 Lg Chem, Ltd. Anti-reflective film, polarizing plate, and display apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090046873A (en) * 2006-08-04 2009-05-11 이 아이 듀폰 디 네모아 앤드 캄파니 Low refractive index composition
JP2009217258A (en) * 2008-02-13 2009-09-24 Fujifilm Corp Optical film, method for producing the same, polarizing plate, and image display device
WO2009120983A2 (en) * 2008-03-27 2009-10-01 Rensselaer Polytechnic Institute Ultra-low reflectance broadband omni-directional anti-reflection coating
KR20100039869A (en) * 2007-08-01 2010-04-16 다이니폰 인사츠 가부시키가이샤 Antireflection laminate
KR20120093212A (en) * 2009-10-16 2012-08-22 다이니폰 인사츠 가부시키가이샤 Optical film and display panel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090046873A (en) * 2006-08-04 2009-05-11 이 아이 듀폰 디 네모아 앤드 캄파니 Low refractive index composition
KR20100039869A (en) * 2007-08-01 2010-04-16 다이니폰 인사츠 가부시키가이샤 Antireflection laminate
JP2009217258A (en) * 2008-02-13 2009-09-24 Fujifilm Corp Optical film, method for producing the same, polarizing plate, and image display device
WO2009120983A2 (en) * 2008-03-27 2009-10-01 Rensselaer Polytechnic Institute Ultra-low reflectance broadband omni-directional anti-reflection coating
KR20120093212A (en) * 2009-10-16 2012-08-22 다이니폰 인사츠 가부시키가이샤 Optical film and display panel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3376266A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020535462A (en) * 2018-01-24 2020-12-03 エルジー・ケム・リミテッド Anti-reflective film, polarizing plate and display device
US11428848B2 (en) 2018-01-24 2022-08-30 Lg Chem, Ltd. Anti-reflective film, polarizing plate, and display apparatus
US11506820B2 (en) 2018-01-24 2022-11-22 Lg Chem, Ltd. Anti-reflective film, polarizing plate, and display apparatus

Similar Documents

Publication Publication Date Title
JP7344866B2 (en) anti-reflection film
KR101973196B1 (en) Anti-reflective film
TWI654238B (en) Antireflection film and preparation method thereof
TWI665273B (en) Anti-reflective film
KR101973197B1 (en) Anti-reflective film
KR102040223B1 (en) Anti-reflective film
JP6690808B2 (en) Antireflection film and manufacturing method thereof
WO2018199487A1 (en) Antireflective film
WO2019177271A1 (en) Anti-reflective film, polarizing plate, and display apparatus
KR101977934B1 (en) Anti-reflective film
CN108885282B (en) Anti-reflection film
WO2017155338A1 (en) Anti-reflective film
KR101977933B1 (en) Anti-reflective film and preparation method of the same
WO2017155335A1 (en) Anti-reflective film
KR101916944B1 (en) Anti-reflective film
WO2017155337A1 (en) Anti-reflection film
WO2017155358A1 (en) Anti-reflective film and method for producing same
KR20200020768A (en) Anti-reflective film and preparation method of the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018518611

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2017763596

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763596

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE