WO2017155212A1 - Hybrid cold storage and release system in vehicle - Google Patents

Hybrid cold storage and release system in vehicle Download PDF

Info

Publication number
WO2017155212A1
WO2017155212A1 PCT/KR2017/001307 KR2017001307W WO2017155212A1 WO 2017155212 A1 WO2017155212 A1 WO 2017155212A1 KR 2017001307 W KR2017001307 W KR 2017001307W WO 2017155212 A1 WO2017155212 A1 WO 2017155212A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
pcm
brine
cooler
heat
Prior art date
Application number
PCT/KR2017/001307
Other languages
French (fr)
Korean (ko)
Inventor
신근수
Original Assignee
신근수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신근수 filed Critical 신근수
Publication of WO2017155212A1 publication Critical patent/WO2017155212A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60PVEHICLES ADAPTED FOR LOAD TRANSPORTATION OR TO TRANSPORT, TO CARRY, OR TO COMPRISE SPECIAL LOADS OR OBJECTS
    • B60P3/00Vehicles adapted to transport, to carry or to comprise special loads or objects
    • B60P3/20Refrigerated goods vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall

Definitions

  • the present invention relates to a refrigeration refrigeration system of a vehicle, and more particularly, to shorten the temperature recovery time according to the opening and closing of the interior space and to improve the inconvenience and inefficiency of the limited operation of the vehicle according to the limited cooling time. It is possible to improve the problems of the existing PCM axial cooling system, and to take advantage of the existing PCM axial cooling system. It is about.
  • a method of installing a refrigerator on a vehicle bed and maintaining the inside of the refrigerator at a set temperature is used.
  • PCM Phase Change Material
  • Some PCM axial cooling systems are also used.
  • PCM axial cooling system has been introduced to solve the problems in the high temperature management using a refrigerator, after cooling the PCM of the vehicle PCM storage cold storage tank using a refrigerator outside the vehicle, and then stored the PCM of the cold storage PCM. Heat exchange with liquid brine and forced circulation of low temperature brine to convert cold air through the unit cooler to maintain the temperature inside the air.
  • the ground PCM shaft using the external freezer by installing the ground PCM shaft cooling tank outside the vehicle is used.
  • the introduction of the PCM axial cooling method eliminates the need for onboard refrigeration, which can reduce the vehicle load resulting from the operation of the freezer, reduce fuel consumption, and add additional benefits, such as carbon credit sales, due to carbon dioxide reduction.
  • the temperature must be absolutely dependent on the PCM temperature in the onboard PCM cold storage tank, and the holding time of the high temperature is absolutely dependent on the set temperature holding time of the PCM temperature, that is, the normal cooling time. Also, if the vehicle is moved beyond the normal cooling time due to frequent opening and closing of the space, a fatal disadvantage is that it is impossible to guarantee the maintenance of the internal temperature.
  • the present invention has been made in view of solving the problems described above and in consideration of this, it is possible to shorten the temperature recovery time according to the opening and closing of the interior space, and the inconvenience and inefficiency of limited operation of the vehicle according to the limited cooling time It is possible to improve the problems of the existing PCM axial cooling system, and to take advantage of the existing PCM axial cooling system to make the distribution products safer, more reliable and economical.
  • the object is to provide a hybrid onboard axial cooling system.
  • the present invention is not only to maintain the temperature in the high temperature through PCM cooling, but also to configure the vehicle to maintain the high temperature by cooling the on-board chiller, and hybrid vehicle that is configured to allow the vehicle PCM storage cooling anywhere in the vehicle regardless of where the vehicle is moving
  • the purpose is to provide an axial cooling system.
  • the present invention can reduce the amount of carbon emissions while saving fuel, to provide a more economic means compared to the distribution through the existing refrigeration refrigeration, and is not limited by the time and space, which is a problem of the existing refrigeration method storage storage And it is possible to perform the cooling, and to provide a hybrid vehicle axial cooling system to enable safer and more reliable product delivery and distribution.
  • PCM storage cold storage 40 having a phase change material (PCM) phase change material (PCM) of the direct expansion or indirect expansion system.
  • PCM phase change material
  • PCM phase change material
  • a heat exchanger 20 for a hybrid interface is installed to exchange heat before and after the inflow to the freezer 10 and after it flows out of the on-vehicle cooler 10, and passes through the on-vehicle cooler 10 and the PCM storage cold storage tank 40.
  • a circulation unit 50 is installed to circulate the liquid brine, and the PCM accumulator 40 is an axial cooling heat exchanger for performing heat exchange to absorb heat from the circulated liquid brine. 41), wherein the circulation unit 50 removes air in the circulation pump 51 for circulation of the liquid brine and the circulation pipe 53 in which the liquid brine is circulated and supplements the liquid brine lost. It characterized in that it comprises a brine tank (52).
  • the heat exchanger 20 absorbs heat of the liquid brine flowing in the circulation pipe 53 from the refrigerant discharged from the on-vehicle refrigerator 10. It consists of a plate heat exchanger to increase the heat exchange efficiency with respect to volume and cost as well as to use as a function;
  • the heat exchanger 20 is connected to only use to heat-exchange the liquid brine flowing into the on-vehicle refrigerator 10 side, and the on-vehicle refrigerator 10 is a liquid-liquid exchanged heat. Since the discharge of brine is directly connected to the circulation pipe 53 side by reducing the number of heat exchange is characterized in that the configuration to minimize the energy loss due to heat exchange.
  • the circulation pump 51 uses an AC in-line type for high efficiency with low power, and uses an AC or DC underwater type to properly remove even the air in the circulation pipe 53 when it is not dependent on the amount of power.
  • the brine tank 52 is configured to be opened or closed for a part or the whole for the effective discharge of air in the circulation pipe 53, and is characterized in that placed in a position higher than the PCM storage cold storage tank (40).
  • the unit cooler 30 is disposed between the heat exchanger 20 for the hybrid interface and the PCM storage cooling tank 40, and performs heat exchange of the air formed in the furnace together with the liquid brine;
  • the unit cooler 30 absorbs heat from the air formed in the air through the air exchanger and the heat exchanger 31 for absorbing heat from the liquid brine and air circulated through the circulation pipe 53 and A blower 32 for circulating in the air;
  • the liquid brine circulated through the circulation pipe 53 is provided with a cooling pipe 60 having a shutoff valve 61 on the circulation pipe 53 and the unit cooler 30 when the unit cooler 30 is connected to the unit cooler 30. It is characterized in that it is configured to minimize the loss of cold energy during the flow of the liquid brine through this so as not to flow to the side.
  • the PCM storage refrigeration tank 40 is connected to the external storage cooler 71 so as to cool the PCM inside the PCM storage refrigeration tank 40 without operating the on-vehicle cooler 10, the external storage cooler 71
  • the external storage cooler 71 In order to process the liquid brine circulation with the) is characterized in that it is provided with a vehicle input line 75 and the vehicle output line 76, the connection pipe.
  • the air conditioning cooler 80 is connected to the circulation pipe 53 and disposed between the unit cooler 30 and the PCM storage cold storage tank 40; further comprising the air conditioning cooler 80, the heat exchanger It includes a machine 81 and a blower 82, using the unit cooler 30 as the main cooler for the entire air conditioning in the interior, the local air due to opening and closing of the interior space by using the air conditioning cooler 80 as an auxiliary cooler It is characterized in that it is configured to compensate for the loss of cold air.
  • bypass line (90) for allowing the liquid brine to be circulated on the circulation pipe 53 to selectively control the passage through or not through the PCM storage cold storage tank (40);
  • the bypass line 90 includes a selection valve 91 for selective circulation of the liquid brine to the PCM storage tank 40 and a check valve 92 for preventing backflow to the PCM storage tank 40. It is characterized by.
  • the present invention it is possible to shorten the temperature recovery time according to the opening and closing of the interior space, and to improve the inconvenience and inefficiency of the limited operation of the vehicle according to the limited cooling time of the conventional PCM axial cooling system Useful effects can be achieved that can improve problems.
  • the present invention can not only maintain the temperature in the high temperature through PCM cooling, but also can cool by selecting the on-vehicle refrigerator, regardless of where the vehicle is moving, it can be stored in the car PCM anywhere, and to maintain a safer and more reliable for the distribution goods. It is possible to provide a hybrid onboard axial cooling system.
  • the present invention can reduce the amount of fuel and carbon emissions can be economical compared to the distribution through the conventional refrigeration refrigeration, can be stored and refrigerated cooling and cooling without the constraints of time and space compared to the conventional, more secure and It is possible to provide a hybrid onboard axial cooling system that enables reliable product delivery and distribution.
  • FIG. 1 is a block diagram showing a hybrid vehicle on-vehicle cooling system according to an embodiment of the present invention.
  • Figure 2 is a block diagram showing a hybrid vehicle axial cooling system according to another embodiment of the present invention.
  • FIG. 3 is a block diagram showing a hybrid vehicle on-vehicle cooling system according to another embodiment of the present invention.
  • Figure 4 is a block diagram showing a hybrid vehicle on-vehicle cooling system according to another embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a main part of the hybrid vehicle axial cooling system according to another embodiment of the present invention.
  • the present invention is a direct expansion or indirect expansion of the on-vehicle freezer (10) and the PCM storage cold storage tank (40) having a phase change material (PCM) phase change material so that the mutual heat exchange through the flow of liquid brine (brine) Connect it,
  • PCM phase change material
  • Heat exchanger 20 for a hybrid interface is installed to exchange heat
  • a circulation unit 50 is installed to circulate the liquid brine so as to pass through the on-vehicle refrigerator 10 and the PCM cold storage tank 40.
  • the PCM storage cold storage tank 40 includes a heat storage cooling heat exchanger 41 for performing heat exchange that absorbs heat from the liquid brine to be circulated.
  • the circulation unit 50 removes the air in the circulation pump 51 for circulation of the liquid brine and the circulation pipe 53 through which the liquid brine is circulated, and the brine tank 52 for supplementing the liquid brine lost. It is to provide a hybrid vehicle-grade axial cooling system comprising.
  • Hybrid vehicle axial cooling system according to an embodiment of the present invention, as shown in Figures 1 to 5, the on-vehicle refrigerator 10 that can selectively have a configuration of the direct expansion method or indirect expansion method and PCM (phase change material) PCM storage cold storage tank (40) having a phase change material, and the on-vehicle refrigerator (10) and the PCM storage cold storage tank (40) through the circulation pipe (53) for heat exchange through the flow of liquid brine (brine) It consists of interconnected configurations.
  • PCM phase change material
  • the heat exchanger 20 for a hybrid interface is installed in each heat exchanger.
  • a circulation unit 50 is installed to circulate the liquid brine so as to pass through the on-vehicle refrigerator 10 and the PCM storage cold storage tank 40.
  • the PCM storage cooling tank 40 includes an axial cooling heat exchanger 41 for performing heat exchange to absorb heat from the liquid brine circulated through the circulation unit 50.
  • the circulation unit 50 removes the air in the circulation pump 51 for circulation of the liquid brine and the circulation pipe 53 through which the liquid brine is circulated, and the brine tank 52 for supplementing the liquid brine lost. Include.
  • the hybrid interface heat exchanger 20 is a liquid phase flowing through the circulation pipe 53, the refrigerant discharged from the on-vehicle refrigerator (10) It is preferable that the plate heat exchanger is configured to use heat absorbing function of brine and increase heat exchange efficiency with respect to volume and cost.
  • the heat exchanger 20 is connected to only use for heat-exchanging the liquid brine introduced into the on-vehicle refrigerator 10 and the on-vehicle refrigerator ( Since 10) discharges the heat exchanged liquid brine, it is preferable to directly connect to the circulation pipe 53 to reduce the number of heat exchange, thereby minimizing energy loss due to heat exchange.
  • the circulation pump 51 uses an in-line type or an underwater type, but in order to use it with high efficiency with less power, it is preferable to use an AC inline type, and the circulation pipe ( 53) It is preferable to use the AC or DC submersible type to properly remove even the air inside.
  • the brine tank 52 is configured to be opened or closed for a part or the whole for the effective discharge of air in the circulation pipe 53, and preferably disposed at a position higher than the PCM storage cold storage tank (40). Do.
  • the PCM which is a phase change material used for refrigeration or freezing, preferably uses a phase change material having a freezing point at a temperature lower than a high internal temperature required for refrigeration or freezing.
  • the liquid brine used for heat exchange while being circulated through the circulation pipe 53 is used having a freezing point lower than the set temperature in the high temperature, but it is preferable to use a propylene glycol series in consideration of corrosiveness and non-toxicity with the use environment. In case where ultra low temperature is required, it is preferable to use methylene chloride.
  • the circulation pump 51 or the like, by connecting a vehicle auxiliary battery in order to distribute the overload of the vehicle, DC power is directly connected or AC power is supplied through the inverter. It can be configured for use.
  • the main engine in the vehicle or the sub-engine based on fossil fuel may be directly connected to the vehicle, and in the case of connecting the auxiliary battery to the main battery of the vehicle, the reverse flow does not flow.
  • a separate safety circuit may be required.
  • the liquid brine circulated through the circulation pipe 53 flows from the PCM storage cooling tank 40 to the circulation unit 50 in the circulation direction, or the PCM storage cooling tank 40 in the circulation unit 50. It can be configured to flow to the side.
  • the on-vehicle refrigerator 10 may use a power source or a power source inside the vehicle, or may be configured to be used without starting the vehicle using an external AC power source or a DC power source.
  • the hybrid interface may include a unit cooler 30 for performing heat exchange between the heat exchanger 20 and the PCM storage cooling tank 40 and the air formed in the chamber together with the liquid brine.
  • the unit cooler 30 absorbs heat from the air formed in the chamber through the heat exchanger 31 for absorbing heat from the liquid brine and air circulated through the circulation pipe 53 and air. And a blower 32 for circulating the inside of the refrigerator.
  • the air-conditioning piping 60 having a shut-off valve 61 It is preferable to provide, through which the liquid brine circulated through the circulation pipe 53 may be selectively controlled so as not to be introduced to the unit cooler 30 side of the cold energy of the flow process of the circulation process of the liquid brine The loss can be minimized.
  • the liquid brine circulated through the circulation pipe 53 by closing the shutoff valve 61 is the unit cooler ( 30) can be selectively controlled to flow directly to the PCM storage cold storage tank 40 without being introduced to the side.
  • the PCM storage cold storage tank 40 is configured to connect the external storage cold storage 71 to cool the PCM inside the PCM storage cooling tank 40 without operating the on-vehicle refrigerator 10. can do.
  • a vehicle input line 75 and a vehicle output line 76 which are connection pipes for the liquid brine circulation process with the external storage cooler 71.
  • the external storage cooler 71 outputs the liquid brine in the brine tank 73 by driving the circulation pump 72 and flows to the vehicle phase through the vehicle input line 75 connected to the external output line 74. After being used for the PCM storage cooling in the PCM storage cooling tank 40, it is circulated through the external input line 77 connected to the vehicle output line 76.
  • piping fittings such as one-touch valves and the like that are easily detachable from each other such as the external output line 74 and the on-vehicle input line 75 and the like.
  • a material such as Viton or PTFE (polytetrafluoroethylene) to gasket or package the inside.
  • a check valve 78 is installed on the pipe leading to the PCM storage cooling tank 40 through the vehicle input line 75 to prevent the brine from flowing out or to prevent the brine from flowing to the heat exchanger 20 side. It is preferable to install a power valve 79 to prevent the brine output from the heat exchanger 41 of the PCM storage cooling tank 40 to flow into the circulation unit 50.
  • the power valve 79 is controlled to open when the cold storage is carried out using the on-vehicle cooler 10 or the on-vehicle cooling is performed, and closed control to perform the cold storage by using the external cooler 71. .
  • the method of cooling by using the external storage cooler 71 can use a greater freezing capacity than the vehicle, compared to the method of carrying out PCM cooling by using the on-vehicle refrigerator 10 on the vehicle, so it is faster depending on the design form. It is possible to have more storage capacity in time, it can be used as a very effective storage method when the reduction of the storage time is required.
  • an air conditioning cooler 80 is connected on the circulation pipe 53 and disposed between the unit cooler 30 and the PCM storage cooling tank 40.
  • the air conditioning cooler 80 includes a heat exchanger 81 and a blower 82.
  • the unit cooler 30 can be used as a main cooler for the overall air conditioning of the vehicle interior and the air conditioning cooler 80 as a secondary cooler to compensate for the local cold air loss due to the opening and closing of the interior space.
  • the configuration including the air conditioning cooler 80 can minimize the temperature rise due to the opening and closing of the interior space and enable high-speed temperature recovery, in the case of refrigerated refrigeration car suddenly due to the opening and closing of the interior space during the delivery process Since a large cold loss is generated, it is possible to play a role of air curtain through local cold air blowing around the door immediately after opening and closing, and to perform local cold air replenishment.
  • the temperature recovery of the entire interior is delayed, and the product safety can be improved by preventing deterioration by preventing the deterioration of merchandise for the products caused by the rapid temperature change around the door. Because it can be performed in parallel with local cooling, high temperature can be quickly adjusted to the set temperature and evenly distributed, which can provide the advantages of safe and reliable refrigeration and freezing delivery.
  • bypass line 90 for allowing the control of the liquid brine to be circulated to pass through the PCM storage cold storage tank 40 or not to pass through the selection. It can be configured to include.
  • the bypass line 90 checks to prevent backflow to the selection valve 91 and the PCM storage tank 40, such as a three-way valve for selective circulation of the liquid brine to the PCM storage tank 40.
  • Valve 92 may be configured instead of the selector valve 91, or a shutoff valve may be configured instead of the check valve 92.
  • the configuration including the bypass line 90 is to enable fast temperature recovery and reliable commercial preservation of the load of cold air loss due to the opening and closing of the internal space, and the cold storage in the PCM cold storage tank 40.
  • the PCM is used as an auxiliary temperature maintaining means, and in particular, when the door is opened and closed and the vehicle is stopped, the control can be selected for use only as a cooling means.
  • the bypass line 90 is closed before the PCM cold storage tank 40, and when the cold-cooled PCM in the PCM cold storage tank 40 is not required.
  • opening the bypass line 90 to induce a brine circulation it is possible to selectively control the brine circulation without passing through the PCM storage cold tank 40.
  • the refrigerant discharged from the cold-cooled refrigerator 10 is transferred through the heat exchanger 20 for the hybrid interface.
  • the liquid brine that is circulated is deprived of heat, and the cooled liquid brine flows to the unit cooler 30, and after cooling the air through the heat exchanger 31, the PCM storage cold tank 40 and the circulation unit 50. After passing through and repeats the cycle circulated to the on-vehicle refrigerator 10 and the heat exchanger 20 for the hybrid interface.
  • the liquid brine used for cooling is forcedly circulated through the circulation pump 51.
  • heat is lost through the heat exchanger 41 to the accumulated PCM in the PCM cold storage tank 40 and flows to the heat exchanger 31 in the unit cooler 30 through the heat exchanger 20 for the hybrid interface. It takes the heat of the air by the air and heat transfer introduced by the drive of the blower 32 to circulate in the interior.
  • the liquid brine circulated through the circulation pipe 53 It is also possible to control to pass directly through the heat exchanger 31 of the PCM storage cold storage 40 and the unit cooler 30 without passing through the heat exchanger 20 which is the hybrid interface.
  • the present invention can shorten the temperature recovery time according to the opening and closing of the interior space compared to the PCM axial cooling systems that are being used and improve the inconvenience and inefficiency of the limited operation of the vehicle according to the limited cooling time. Can provide such advantages.
  • the present invention enables to shorten the temperature recovery time according to the opening and closing of the interior space and to improve the inconvenience and inefficiency of the limited operation of the vehicle according to the limited cooling time of the conventional PCM axial cooling system It can be applied to the field of hybrid vehicle axial cooling system, which can improve the problems, take advantage of the existing PCM axial cooling system, make the distribution goods safer, more reliable, and pursue economics.

Abstract

The present invention relates to a hybrid cold storage and release system in a vehicle, which can not only solve the problems of conventionally used PCM cold storage and release systems, for example, can shorten the time required to recover temperature according to opening and closing of a refrigerator compartment and improve inconvenience and inefficiency caused by limited running of the vehicle due to the limited duration of cold release, but can also take advantage of the conventional PCM cold storage and release systems, thereby achieving improved safety, reliability, and efficiency for distributed products.

Description

하이브리드 차상 축방냉 시스템Hybrid onboard axial cooling system
본 발명은 차량의 냉장 냉동 시스템에 관한 것으로서, 더욱 상세하게는 고내 공간의 개폐에 따른 온도 복원 시간을 단축시킬 수 있도록 하고 제한적인 방냉 시간에 따른 차량의 제한적인 운행의 불편함과 비효율성을 개선할 수 있도록 하는 등 기존 사용되고 있는 PCM 축방냉 시스템의 문제점들을 개선할 수 있도록 하며, 기존 PCM 축방냉 시스템의 장점은 취하여 보다 안전하면서도 신뢰성을 갖도록 하며 경제성을 추구할 수 있도록 한 하이브리드 차상 축방냉 시스템에 관한 것이다.The present invention relates to a refrigeration refrigeration system of a vehicle, and more particularly, to shorten the temperature recovery time according to the opening and closing of the interior space and to improve the inconvenience and inefficiency of the limited operation of the vehicle according to the limited cooling time. It is possible to improve the problems of the existing PCM axial cooling system, and to take advantage of the existing PCM axial cooling system. It is about.
일반적으로 냉장 또는 냉동 차량의 적재공간 내부, 즉 고내를 냉장 또는 냉동의 저온으로 설정하고 이를 유지하기 위한 여러 가지 방법이 개시되어 있다.In general, various methods have been disclosed for setting and maintaining the inside of a loading space of a refrigerated or frozen vehicle, that is, the inside of the refrigerator, at a low temperature of refrigerated or frozen.
통상, 차상(車上)에 냉동기를 설치하여 고내를 설정온도로 유지하는 방법이 사용되고 있는데, 드라이아이스나 얼음 등을 고내에 두고 사용하는 방법도 있으며, 차상에 PCM(Phase Change Material; 상변화물질) 축냉조를 설치하고 이를 활용하는 PCM 축방냉 시스템도 일부 사용되고 있다.In general, a method of installing a refrigerator on a vehicle bed and maintaining the inside of the refrigerator at a set temperature is used. There is also a method of using dry ice or ice in the refrigerator. PCM (Phase Change Material) Some PCM axial cooling systems are also used.
이때, 냉동기만을 사용하여 고내 온도를 유지하는 방식의 경우, 냉동기의 가동으로 인한 차내 연료 소모가 극심하고 고내 공간을 개폐하고 난 이후 원하는 설정온도로 복원하기 위하여는 약 30분에서 1시간 가량이 소요되므로 복원시간 동안에 고내 적재된 물건의 상품성이 떨어지거나 심한 경우 부패가 진행되어 상품 안전성이 저하되는 것을 피할 수 없게 되며, 이는 고내 공간의 개폐가 잦을 때 더욱 심각해질 수 있다.At this time, in the case of maintaining the temperature inside the refrigerator using only the freezer, the fuel consumption in the vehicle due to the operation of the freezer is extremely severe, and it takes about 30 minutes to 1 hour to restore the desired set temperature after opening and closing the interior space. Therefore, during the restoration time, the merchandise of the goods loaded in the interior is deteriorated or, if severe, deterioration of the product safety is inevitable, which can be avoided, which can be more serious when frequent opening and closing of the interior space.
이와 같이, 냉동기를 사용한 고내 온도 관리에 있어서의 문제점을 해결하고자 PCM 축방냉 시스템이 도입되었는데, 차량 외부의 냉동기를 사용한 차상 PCM축냉조의 PCM을 축냉한 다음 이러한 차상 PCM축냉조의 축냉된 PCM을 액상 브라인으로 열교환하고 저온의 브라인을 강제 순환시켜 유니트쿨러를 통해 차가운 공기로 변환하여 고내의 온도를 유지하는 방식이 사용되기도 하며, 차량 외부에 지상 PCM축냉조를 설치하여 외부 냉동기를 사용한 지상 PCM축냉조의 PCM을 축냉하고 차상 PCM을 축냉할 경우 외부 냉동기 대신 지상 PCM축냉조 내부의 축냉된 PCM을 브라인으로 열교환하여 순환시스템을 통해 차상 PCM축냉조 내의 PCM을 축냉하며 이외의 방식과 동일 또는 유사한 방식으로 고내를 방냉하는 방식이 사용되기도 한다.Thus, PCM axial cooling system has been introduced to solve the problems in the high temperature management using a refrigerator, after cooling the PCM of the vehicle PCM storage cold storage tank using a refrigerator outside the vehicle, and then stored the PCM of the cold storage PCM. Heat exchange with liquid brine and forced circulation of low temperature brine to convert cold air through the unit cooler to maintain the temperature inside the air.In addition, the ground PCM shaft using the external freezer by installing the ground PCM shaft cooling tank outside the vehicle is used. When cooling the PCM of cold tank and cooling the car PCM, heat accumulate the PCM inside the terrestrial PCM storage tank with brine instead of an external freezer, and accumulate the PCM in the vehicle PCM storage tank through a circulation system. As a result, a method of cooling the inside of the refrigerator may be used.
이러한 PCM 축방냉 방식의 도입으로 차상 냉동기를 사용하지 않아도 되어 냉동기 가동으로 인한 차량 부하를 줄일 수 있으면서 연료 소비를 줄일 수 있고 이산화탄소 절감으로 인한 탄소배출권 판매 등의 부가 이익을 기대할 수 있으나, 이에 반하여 고내 온도는 차상 PCM축냉조 내의 PCM 온도에 절대적으로 의존하여야 하고, 고내 온도의 유지시간은 PCM 온도의 설정온도 유지시간 즉 정상 방냉 시간에 절대적으로 의존하게 되므로 교통량 증가로 인한 차량 정체를 비롯한 과다한 배송지 이동과 고내 잦은 공간 개폐 등의 원인으로 정상 방냉 시간을 초과하여 차량을 이동하게 되는 경우 고내 온도의 유지를 보장할 수 없게 되는 치명적인 단점 또한 지니게 된다.The introduction of the PCM axial cooling method eliminates the need for onboard refrigeration, which can reduce the vehicle load resulting from the operation of the freezer, reduce fuel consumption, and add additional benefits, such as carbon credit sales, due to carbon dioxide reduction. The temperature must be absolutely dependent on the PCM temperature in the onboard PCM cold storage tank, and the holding time of the high temperature is absolutely dependent on the set temperature holding time of the PCM temperature, that is, the normal cooling time. Also, if the vehicle is moved beyond the normal cooling time due to frequent opening and closing of the space, a fatal disadvantage is that it is impossible to guarantee the maintenance of the internal temperature.
이에, 상기의 단점을 보완하기 위한 방책으로서 차량이 이동하는 곳곳에 축냉용 스테이션을 배치하여 사용하는 방안도 검토할 수 있겠으나, 이는 사회 전반에 걸쳐 인프라를 설치하여야 하는 것으로서, 수익을 기반으로 하는 막대한 자본이 투입되어야 하고 정책적인 검토가 선행되어야 한다.Therefore, as a measure to compensate for the above drawbacks, a method of arranging a cold storage station in various places in which the vehicle moves may be considered, but this is because the infrastructure should be installed throughout the society. Enormous capital must be invested and policy review must be preceded.
한편, 최근에는 냉장 냉동을 필요로 하는 식품과 약품 등이 많아지고 있고 이들의 수요가 증가하고 있는 추세로서, 지구 온난화에 따른 탄소배출량 감소 및 화석연료 소비를 줄이고자 하는 필요와 노력 또한 더욱 커지고 있다.On the other hand, in recent years, the number of foods and medicines that require refrigeration and freezing is increasing, and their demand is increasing, and the need and effort to reduce the carbon emission and fossil fuel consumption due to global warming are also increasing. .
덧붙여, 냉장 냉동을 필요로 하는 식품의 경우에는 재배 또는 생산 이후에 저온 배송이 제대로 이루어지지 않아 배송과정 중 많은 상품들의 손실이 발생되고 있고, 이로 인해 인체에 대한 안전성 또한 위협받게 되므로 실질적인 저온 유통관리 기준을 세워야 함은 물론 이에 대한 검사를 강화하기 위한 각 국 및 해당 기관들의 노력들이 더욱 커지고 있는 실정에 있다.In addition, in the case of foods that require refrigeration and freezing, low-temperature delivery is not performed properly after cultivation or production, which causes the loss of many products during the delivery process, which threatens the safety of the human body. In addition to setting standards, efforts are being made by countries and agencies to strengthen inspections.
본 발명은 상술한 바와 같은 문제점을 해소 및 이를 감안하여 안출된 것으로서, 고내 공간의 개폐에 따른 온도 복원 시간을 단축시킬 수 있도록 하고 제한적인 방냉 시간에 따른 차량의 제한적인 운행의 불편함과 비효율성을 개선할 수 있도록 하는 등 기존 사용되고 있는 PCM 축방냉 시스템의 문제점들을 개선할 수 있도록 하며, 기존 PCM 축방냉 시스템의 장점을 취하여 유통 물품에 대해 보다 안전하면서도 신뢰성을 갖도록 하며 경제성을 추구할 수 있도록 한 하이브리드 차상 축방냉 시스템을 제공하는데 그 목적이 있다.The present invention has been made in view of solving the problems described above and in consideration of this, it is possible to shorten the temperature recovery time according to the opening and closing of the interior space, and the inconvenience and inefficiency of limited operation of the vehicle according to the limited cooling time It is possible to improve the problems of the existing PCM axial cooling system, and to take advantage of the existing PCM axial cooling system to make the distribution products safer, more reliable and economical. The object is to provide a hybrid onboard axial cooling system.
본 발명은 PCM 방냉을 통한 고내 온도 유지는 물론 차상냉동기를 선택하여 방냉함으로써 고내 온도를 유지할 수 있도록 구성함과 더불어 차량의 이동지가 어디든지 관계없이 어느 곳에서나 차상 PCM 축냉이 가능하도록 구성하는 하이브리드 차상 축방냉 시스템을 제공하는데 그 목적이 있다.The present invention is not only to maintain the temperature in the high temperature through PCM cooling, but also to configure the vehicle to maintain the high temperature by cooling the on-board chiller, and hybrid vehicle that is configured to allow the vehicle PCM storage cooling anywhere in the vehicle regardless of where the vehicle is moving The purpose is to provide an axial cooling system.
본 발명은 연료를 절감할 수 있으면서 탄소배출량을 줄일 수 있도록 하여 기존 냉장 냉동을 통한 유통에 비해 보다 경제적인 수단을 제공할 수 있도록 하고, 기존 축냉 방식의 문제점인 시간과 공간의 제약을 받지 않고 축냉 및 방냉을 수행할 수 있도록 하며, 보다 안전하고 신뢰성 있는 상품 배송 및 유통을 가능하게 하는 하이브리드 차상 축방냉 시스템을 제공하는데 그 목적이 있다.The present invention can reduce the amount of carbon emissions while saving fuel, to provide a more economic means compared to the distribution through the existing refrigeration refrigeration, and is not limited by the time and space, which is a problem of the existing refrigeration method storage storage And it is possible to perform the cooling, and to provide a hybrid vehicle axial cooling system to enable safer and more reliable product delivery and distribution.
상기의 목적을 달성하기 위한 본 발명에 따른 하이브리드 차상 축방냉 시스템은, 직접 팽창방식 또는 간접 팽창방식의 차상냉동기(10)와 상변화물질인 PCM(Phase Change Material)을 갖는 PCM축냉조(40)가 액상 브라인(brine)의 흐름을 통해 열교환할 수 있도록 상호 연결하되, 상기 차상냉동기(10)와 PCM축냉조(40)의 사이에 위치하고 순환배관(53)을 통해 순환 처리되는 액상 브라인에 대해 차상냉동기(10) 측으로 유입되기 전과 차상냉동기(10)로부터 유출된 후에 각각 열교환할 수 있도록 하이브리드 인터페이스용 열교환기(20)가 설치되며, 상기 차상냉동기(10)와 PCM축냉조(40)를 경유하도록 액상 브라인을 순환 처리하기 위한 순환유니트(50)가 설치되며, 상기 PCM축냉조(40)는 순환 처리되는 액상 브라인으로부터 열을 흡수하는 열교환을 수행하기 위한 축방냉용 열교환기(41)를 포함하고, 상기 순환유니트(50)는 액상 브라인의 순환을 위한 순환펌프(51)와 액상 브라인이 순환 처리되는 순환배관(53) 내의 공기를 제거함과 더불어 손실되는 액상 브라인을 보충하기 위한 브라인탱크(52)를 포함하는 것을 특징으로 한다.Hybrid on-vehicle axial cooling system according to the present invention for achieving the above object, PCM storage cold storage 40 having a phase change material (PCM) phase change material (PCM) of the direct expansion or indirect expansion system. Are interconnected to exchange heat through a flow of liquid brine, and are located between the on-vehicle cooler 10 and the PCM storage cold storage 40 and circulated through the circulation pipe 53 for the liquid phase brine. A heat exchanger 20 for a hybrid interface is installed to exchange heat before and after the inflow to the freezer 10 and after it flows out of the on-vehicle cooler 10, and passes through the on-vehicle cooler 10 and the PCM storage cold storage tank 40. A circulation unit 50 is installed to circulate the liquid brine, and the PCM accumulator 40 is an axial cooling heat exchanger for performing heat exchange to absorb heat from the circulated liquid brine. 41), wherein the circulation unit 50 removes air in the circulation pump 51 for circulation of the liquid brine and the circulation pipe 53 in which the liquid brine is circulated and supplements the liquid brine lost. It characterized in that it comprises a brine tank (52).
여기에서, 상기 차상냉동기(10)가 직접 팽창방식의 냉동기인 경우, 상기 열교환기(20)는 차상냉동기(10)로부터 토출되는 냉매가 순환배관(53) 내를 흐르는 액상 브라인의 열을 흡수하는 작용으로 사용토록 함과 더불어 부피 및 비용 대비 열교환효율을 높일 수 있도록 판형 열교환기로 구성하며; 상기 차상냉동기(10)가 간접 팽창방식의 냉동기인 경우, 상기 열교환기(20)는 차상냉동기(10) 측으로 유입되는 액상 브라인을 열교환하는데만 사용토록 연결하고 상기 차상냉동기(10)가 열교환된 액상 브라인을 토출하므로 순환배관(53) 측에 직접 연결하여 열교환 회수를 줄임으로써 열교환으로 인한 에너지 손실을 최소화할 수 있도록 구성하는 것을 특징으로 한다.Here, when the on-vehicle refrigerator 10 is a direct expansion type refrigerator, the heat exchanger 20 absorbs heat of the liquid brine flowing in the circulation pipe 53 from the refrigerant discharged from the on-vehicle refrigerator 10. It consists of a plate heat exchanger to increase the heat exchange efficiency with respect to volume and cost as well as to use as a function; When the on-vehicle refrigerator 10 is an indirect expansion-type freezer, the heat exchanger 20 is connected to only use to heat-exchange the liquid brine flowing into the on-vehicle refrigerator 10 side, and the on-vehicle refrigerator 10 is a liquid-liquid exchanged heat. Since the discharge of brine is directly connected to the circulation pipe 53 side by reducing the number of heat exchange is characterized in that the configuration to minimize the energy loss due to heat exchange.
여기에서, 상기 순환펌프(51)는 적은 전력으로 고효율 사용을 위한 경우 AC 인라인타입을 사용하고, 전력량에 의존적이지 않은 경우 순환배관(53) 내의 공기까지 적절히 제거할 수 있도록 AC 또는 DC 수중타입을 사용하며; 상기 브라인탱크(52)는 순환배관(53) 내 공기의 효과적인 배출을 위해 일부 또는 전체에 대해 개폐 가능한 구조로 구성함과 더불어 상기 PCM축냉조(40) 보다 높은 위치에 배치하는 것을 특징으로 한다.Here, the circulation pump 51 uses an AC in-line type for high efficiency with low power, and uses an AC or DC underwater type to properly remove even the air in the circulation pipe 53 when it is not dependent on the amount of power. Use; The brine tank 52 is configured to be opened or closed for a part or the whole for the effective discharge of air in the circulation pipe 53, and is characterized in that placed in a position higher than the PCM storage cold storage tank (40).
여기에서, 상기 하이브리드 인터페이스용 열교환기(20)와 PCM축냉조(40)의 사이에 배치되고, 액상 브라인과 더불어 고내에 형성되는 공기의 열교환을 수행하기 위한 유니트쿨러(30);를 더 포함하되, 상기 유니트쿨러(30)는 상기 순환배관(53)을 통해 순환 처리되는 액상 브라인과 공기로부터 열을 흡수하기 위한 열교환기(31)와, 공기 송풍을 통해 고내에 형성되는 공기로부터 열을 흡수 및 고내에 순환 처리하기 위한 송풍기(32)를 포함하며; 상기 순환배관(53) 상에는 상기 유니트쿨러(30)와 연결시 차단밸브(61)를 갖는 방냉배관(60)을 구비하여 순환배관(53)을 통해 순환 처리되는 액상 브라인이 상기 유니트쿨러(30) 측으로 유입되지 않도록 하고, 이를 통해 액상 브라인의 흐름 과정 중 냉에너지의 손실을 최소화할 수 있도록 구성하는 것을 특징으로 한다.Here, the unit cooler 30 is disposed between the heat exchanger 20 for the hybrid interface and the PCM storage cooling tank 40, and performs heat exchange of the air formed in the furnace together with the liquid brine; In addition, the unit cooler 30 absorbs heat from the air formed in the air through the air exchanger and the heat exchanger 31 for absorbing heat from the liquid brine and air circulated through the circulation pipe 53 and A blower 32 for circulating in the air; The liquid brine circulated through the circulation pipe 53 is provided with a cooling pipe 60 having a shutoff valve 61 on the circulation pipe 53 and the unit cooler 30 when the unit cooler 30 is connected to the unit cooler 30. It is characterized in that it is configured to minimize the loss of cold energy during the flow of the liquid brine through this so as not to flow to the side.
여기에서, 상기 PCM축냉조(40)에는 외부 축냉기(71)를 연결하여 차상냉동기(10)를 가동하지 않고 PCM축냉조(40) 내부의 PCM을 축냉할 수 있도록 하되, 외부 축냉기(71)와의 액상 브라인 순환 처리를 위해 연결 배관인 차상입력라인(75)과 차상출력라인(76)을 차상에 구비하는 것을 특징으로 한다.Here, the PCM storage refrigeration tank 40 is connected to the external storage cooler 71 so as to cool the PCM inside the PCM storage refrigeration tank 40 without operating the on-vehicle cooler 10, the external storage cooler 71 In order to process the liquid brine circulation with the) is characterized in that it is provided with a vehicle input line 75 and the vehicle output line 76, the connection pipe.
여기에서, 상기 순환배관(53) 상에 연결되고 상기 유니트쿨러(30)와 PCM축냉조(40)의 사이에 배치되는 공조쿨러(80);를 더 포함하되, 상기 공조쿨러(80)는 열교환기(81)와 송풍기(82)를 포함하며, 상기 유니트쿨러(30)를 고내 전체 공조를 위한 메인 쿨러로 사용하고, 상기 공조쿨러(80)를 보조 쿨러로 사용하여 고내 공간의 개폐로 인한 국소적인 냉기 손실을 보충할 수 있도록 구성하는 것을 특징으로 한다.Here, the air conditioning cooler 80 is connected to the circulation pipe 53 and disposed between the unit cooler 30 and the PCM storage cold storage tank 40; further comprising the air conditioning cooler 80, the heat exchanger It includes a machine 81 and a blower 82, using the unit cooler 30 as the main cooler for the entire air conditioning in the interior, the local air due to opening and closing of the interior space by using the air conditioning cooler 80 as an auxiliary cooler It is characterized in that it is configured to compensate for the loss of cold air.
여기에서, 상기 순환배관(53) 상에는 순환 처리되는 액상 브라인이 상기 PCM축냉조(40)를 통과하거나 또는 통과하지 않게 선택 제어할 수 있도록 하기 위한 바이패스라인(90);을 더 포함하며, 상기 바이패스라인(90)은 액상 브라인에 대해 상기 PCM축냉조(40)로의 선별적 순환을 위한 선택밸브(91)와 상기 PCM축냉조(40)로의 역류를 막기 위한 체크밸브(92)를 포함하는 것을 특징으로 한다.Here, the bypass line (90) for allowing the liquid brine to be circulated on the circulation pipe 53 to selectively control the passage through or not through the PCM storage cold storage tank (40); The bypass line 90 includes a selection valve 91 for selective circulation of the liquid brine to the PCM storage tank 40 and a check valve 92 for preventing backflow to the PCM storage tank 40. It is characterized by.
본 발명에 따르면, 고내 공간의 개폐에 따른 온도 복원 시간을 단축시킬 수 있고 제한적인 방냉 시간에 따른 차량의 제한적인 운행의 불편함과 비효율성을 개선할 수 있는 등 기존 사용되고 있는 PCM 축방냉 시스템의 문제점들을 개선할 수 있는 유용한 효과를 달성할 수 있다.According to the present invention, it is possible to shorten the temperature recovery time according to the opening and closing of the interior space, and to improve the inconvenience and inefficiency of the limited operation of the vehicle according to the limited cooling time of the conventional PCM axial cooling system Useful effects can be achieved that can improve problems.
본 발명은 PCM 방냉을 통한 고내 온도 유지는 물론 차상냉동기를 선택하여 방냉할 수 있고 차량의 이동지가 어디든지 관계없이 어느 곳에서나 차상 PCM 축냉이 가능하며, 유통 물품에 대해 보다 안전하면서도 신뢰성을 유지토록 할 수 있는 하이브리드 차상 축방냉 시스템을 제공할 수 있다.The present invention can not only maintain the temperature in the high temperature through PCM cooling, but also can cool by selecting the on-vehicle refrigerator, regardless of where the vehicle is moving, it can be stored in the car PCM anywhere, and to maintain a safer and more reliable for the distribution goods. It is possible to provide a hybrid onboard axial cooling system.
본 발명은 연료 및 탄소배출량을 절감할 수 있어 기존 냉장 냉동을 통한 유통에 비해 경제성을 추구할 수 있고, 기존에 비해 시간과 공간의 제약을 받지 않고 축냉 및 방냉을 수행할 수 있으며, 보다 안전하고 신뢰성 있는 상품 배송 및 유통을 가능하게 하는 하이브리드 차상 축방냉 시스템을 제공할 수 있다.The present invention can reduce the amount of fuel and carbon emissions can be economical compared to the distribution through the conventional refrigeration refrigeration, can be stored and refrigerated cooling and cooling without the constraints of time and space compared to the conventional, more secure and It is possible to provide a hybrid onboard axial cooling system that enables reliable product delivery and distribution.
도 1은 본 발명의 실시예에 따른 하이브리드 차상 축방냉 시스템을 나타낸 구성도이다.1 is a block diagram showing a hybrid vehicle on-vehicle cooling system according to an embodiment of the present invention.
도 2는 본 발명의 다른 실시예에 따른 하이브리드 차상 축방냉 시스템을 나타낸 구성도이다.Figure 2 is a block diagram showing a hybrid vehicle axial cooling system according to another embodiment of the present invention.
도 3은 본 발명의 또 다른 실시예에 따른 하이브리드 차상 축방냉 시스템을 나타낸 구성도이다.3 is a block diagram showing a hybrid vehicle on-vehicle cooling system according to another embodiment of the present invention.
도 4는 본 발명의 또 다른 실시예에 따른 하이브리드 차상 축방냉 시스템을 나타낸 구성도이다.Figure 4 is a block diagram showing a hybrid vehicle on-vehicle cooling system according to another embodiment of the present invention.
도 5는 본 발명의 또 다른 실시예에 따른 하이브리드 차상 축방냉 시스템을 설명하기 위해 나타낸 요부 구성도이다.FIG. 5 is a diagram illustrating a main part of the hybrid vehicle axial cooling system according to another embodiment of the present invention.
본 발명은 직접 팽창방식 또는 간접 팽창방식의 차상냉동기(10)와 상변화물질인 PCM(Phase Change Material)을 갖는 PCM축냉조(40)가 액상 브라인(brine)의 흐름을 통해 열교환할 수 있도록 상호 연결하되,The present invention is a direct expansion or indirect expansion of the on-vehicle freezer (10) and the PCM storage cold storage tank (40) having a phase change material (PCM) phase change material so that the mutual heat exchange through the flow of liquid brine (brine) Connect it,
상기 차상냉동기(10)와 PCM축냉조(40)의 사이에 위치하고 순환배관(53)을 통해 순환 처리되는 액상 브라인에 대해 차상냉동기(10) 측으로 유입되기 전과 차상냉동기(10)로부터 유출된 후에 각각 열교환할 수 있도록 하이브리드 인터페이스용 열교환기(20)가 설치되며,The liquid brine located between the on-vehicle cooler 10 and the PCM axial refrigeration tank 40 and circulated through the circulation pipe 53 before being introduced into the on-vehicle freezer 10 and after being discharged from the on-vehicle freezer 10, respectively. Heat exchanger 20 for a hybrid interface is installed to exchange heat,
상기 차상냉동기(10)와 PCM축냉조(40)를 경유하도록 액상 브라인을 순환 처리하기 위한 순환유니트(50)가 설치되며,A circulation unit 50 is installed to circulate the liquid brine so as to pass through the on-vehicle refrigerator 10 and the PCM cold storage tank 40.
상기 PCM축냉조(40)는 순환 처리되는 액상 브라인으로부터 열을 흡수하는 열교환을 수행하기 위한 축방냉용 열교환기(41)를 포함하고,The PCM storage cold storage tank 40 includes a heat storage cooling heat exchanger 41 for performing heat exchange that absorbs heat from the liquid brine to be circulated.
상기 순환유니트(50)는 액상 브라인의 순환을 위한 순환펌프(51)와 액상 브라인이 순환 처리되는 순환배관(53) 내의 공기를 제거함과 더불어 손실되는 액상 브라인을 보충하기 위한 브라인탱크(52)를 포함하는 하이브리드 차상 축방냉 시스템을 제공하고자 하는 것이다.The circulation unit 50 removes the air in the circulation pump 51 for circulation of the liquid brine and the circulation pipe 53 through which the liquid brine is circulated, and the brine tank 52 for supplementing the liquid brine lost. It is to provide a hybrid vehicle-grade axial cooling system comprising.
본 발명에 대해 첨부한 도면을 참조하여 바람직한 실시예를 설명하면 다음과 같으며, 이와 같은 상세한 설명을 통해서 본 발명의 목적과 구성 및 그에 따른 특징들을 보다 잘 이해할 수 있게 될 것이다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings, and the detailed description will provide a better understanding of the purpose, configuration, and features thereof.
본 발명의 실시예에 따른 하이브리드 차상 축방냉 시스템은 도 1 내지 도 5에 나타낸 바와 같이, 직접 팽창방식 또는 간접 팽창방식의 구성을 선택적으로 가질 수 있는 차상냉동기(10)와 상변화물질인 PCM(Phase Change Material)을 갖는 PCM축냉조(40)를 포함하며, 이들 차상냉동기(10)와 PCM축냉조(40)가 액상 브라인(brine)의 흐름을 통해 열교환할 수 있도록 순환배관(53)을 통해 상호 연결되는 구성으로 이루어진다.Hybrid vehicle axial cooling system according to an embodiment of the present invention, as shown in Figures 1 to 5, the on-vehicle refrigerator 10 that can selectively have a configuration of the direct expansion method or indirect expansion method and PCM (phase change material) PCM storage cold storage tank (40) having a phase change material, and the on-vehicle refrigerator (10) and the PCM storage cold storage tank (40) through the circulation pipe (53) for heat exchange through the flow of liquid brine (brine) It consists of interconnected configurations.
상기 차상냉동기(10)와 PCM축냉조(40)의 사이에 위치하고 순환배관(53)을 통해 순환 처리되는 액상 브라인에 대해 차상냉동기(10) 측으로 유입되기 이전과 차상냉동기(10)로부터 유출된 이후에 각각 열교환할 수 있도록 하이브리드 인터페이스용 열교환기(20)가 설치된다.The liquid brine located between the on-vehicle refrigerator 10 and the PCM storage cold storage tank 40 and circulated through the circulation pipe 53 before being introduced into the on-vehicle refrigerator 10 side and after being discharged from the on-vehicle refrigerator 10. The heat exchanger 20 for a hybrid interface is installed in each heat exchanger.
상기 차상냉동기(10)와 PCM축냉조(40)를 경유하도록 액상 브라인을 순환 처리하기 위해 순환유니트(50)가 설치된다.A circulation unit 50 is installed to circulate the liquid brine so as to pass through the on-vehicle refrigerator 10 and the PCM storage cold storage tank 40.
이때, 상기 PCM축냉조(40)는 순환유니트(50)를 통해 순환 처리되는 액상 브라인으로부터 열을 흡수하는 열교환을 수행하기 위한 축방냉용 열교환기(41)를 포함한다.At this time, the PCM storage cooling tank 40 includes an axial cooling heat exchanger 41 for performing heat exchange to absorb heat from the liquid brine circulated through the circulation unit 50.
상기 순환유니트(50)는 액상 브라인의 순환을 위한 순환펌프(51)와 액상 브라인이 순환 처리되는 순환배관(53) 내의 공기를 제거함과 더불어 손실되는 액상 브라인을 보충하기 위한 브라인탱크(52)를 포함한다.The circulation unit 50 removes the air in the circulation pump 51 for circulation of the liquid brine and the circulation pipe 53 through which the liquid brine is circulated, and the brine tank 52 for supplementing the liquid brine lost. Include.
여기에서, 상기 차상냉동기(10)에 대해 직접 팽창방식의 냉동기로 구성하는 경우, 상기 하이브리드 인터페이스용 열교환기(20)는 차상냉동기(10)로부터 토출되는 냉매가 순환배관(53) 내를 흐르는 액상 브라인의 열을 흡수하는 작용으로 사용토록 함과 더불어 부피 및 비용 대비 열교환효율을 높일 수 있도록 판형 열교환기로 구성함이 바람직하다.Here, when the refrigeration system of the direct expansion type with respect to the on-vehicle refrigerator 10 is configured, the hybrid interface heat exchanger 20 is a liquid phase flowing through the circulation pipe 53, the refrigerant discharged from the on-vehicle refrigerator (10) It is preferable that the plate heat exchanger is configured to use heat absorbing function of brine and increase heat exchange efficiency with respect to volume and cost.
여기에서, 상기 차상냉동기(10)에 대해 간접 팽창방식의 냉동기로 구성하는 경우, 상기 열교환기(20)는 차상냉동기(10) 측으로 유입되는 액상 브라인을 열교환하는데만 사용토록 연결하고 상기 차상냉동기(10)가 열교환된 액상 브라인을 토출하므로 순환배관(53) 측에 직접 연결하여 열교환 회수를 줄임으로써 열교환으로 인한 에너지 손실을 최소화할 수 있도록 구성함이 바람직하다.Here, in the case of configuring the in-vehicle refrigerator with respect to the on-vehicle refrigerator 10, the heat exchanger 20 is connected to only use for heat-exchanging the liquid brine introduced into the on-vehicle refrigerator 10 and the on-vehicle refrigerator ( Since 10) discharges the heat exchanged liquid brine, it is preferable to directly connect to the circulation pipe 53 to reduce the number of heat exchange, thereby minimizing energy loss due to heat exchange.
여기에서, 상기 순환펌프(51)는 인라입타입 또는 수중타입을 사용함이 바람직한데, 적은 전력을 가지고 고효율로 사용하기 위한 경우 AC 인라인타입을 사용함이 바람직하고, 전력량에 의존적이지 않은 경우 순환배관(53) 내의 공기까지 적절히 제거할 수 있도록 AC 또는 DC 수중타입을 사용함이 바람직하다.Here, it is preferable that the circulation pump 51 uses an in-line type or an underwater type, but in order to use it with high efficiency with less power, it is preferable to use an AC inline type, and the circulation pipe ( 53) It is preferable to use the AC or DC submersible type to properly remove even the air inside.
여기에서, 상기 브라인탱크(52)는 순환배관(53) 내 공기의 효과적인 배출을 위해 일부 또는 전체에 대해 개폐 가능한 구조로 구성함과 더불어 상기 PCM축냉조(40) 보다 높은 위치에 배치하는 것이 바람직하다.Here, the brine tank 52 is configured to be opened or closed for a part or the whole for the effective discharge of air in the circulation pipe 53, and preferably disposed at a position higher than the PCM storage cold storage tank (40). Do.
여기에서, 냉장 또는 냉동을 위하여 사용되는 상변화물질인 PCM은 냉장 또는 냉동을 위하여 요구되는 고내 온도보다 낮은 온도에서 어는점을 갖는 상변화물질을 사용함이 바람직하다.Here, the PCM, which is a phase change material used for refrigeration or freezing, preferably uses a phase change material having a freezing point at a temperature lower than a high internal temperature required for refrigeration or freezing.
여기에서, 상기 순환배관(53)을 통해 순환 처리되면서 열교환에 사용되는 액상 브라인은 고내 설정온도보다 낮은 어는점을 지닌 것을 사용하되 사용환경과 더불어 부식성 및 무독성을 고려하여 프로필렌글리콜 계열을 사용함이 바람직하며, 초저온이 필요한 경우 메칠렌클로라이드를 사용함이 바람직하다.Here, the liquid brine used for heat exchange while being circulated through the circulation pipe 53 is used having a freezing point lower than the set temperature in the high temperature, but it is preferable to use a propylene glycol series in consideration of corrosiveness and non-toxicity with the use environment. In case where ultra low temperature is required, it is preferable to use methylene chloride.
여기에서, 상기 차상냉동기(10), 순환펌프(51) 등 전원이 필요한 곳에는 차량의 과부하를 배분하기 위하여 차량용 보조배터리를 연결함으로써 직접적으로 DC 전원을 연결하여 사용하거나 또는 인버터를 통하여 AC 전원을 사용토록 구성할 수 있다.Here, where power is required, such as the on-vehicle refrigerator 10, the circulation pump 51, or the like, by connecting a vehicle auxiliary battery in order to distribute the overload of the vehicle, DC power is directly connected or AC power is supplied through the inverter. It can be configured for use.
여기에서, 상기 차상냉동기(10)의 경우에는 차량 내의 메인 엔진 또는 화석연료를 기반으로 하는 서브 엔진을 직접 연결하여 구동할 수도 있으며, 보조배터리를 차량의 메인배터리와 연결하는 경우에는 역류가 흐르지 않도록 별도의 안전회로가 필요할 수도 있다 할 것이다.Here, in the case of the on-vehicle refrigerator 10, the main engine in the vehicle or the sub-engine based on fossil fuel may be directly connected to the vehicle, and in the case of connecting the auxiliary battery to the main battery of the vehicle, the reverse flow does not flow. A separate safety circuit may be required.
여기에서, 상기 순환배관(53)을 통해 순환 처리되는 액상 브라인은 그 순환 방향에 대해 PCM축냉조(40)에서 순환유니트(50) 측으로 흐르게 하거나 또는 순환유니트(50)에서 PCM축냉조(40) 측으로 흐르도록 구성할 수 있다.Here, the liquid brine circulated through the circulation pipe 53 flows from the PCM storage cooling tank 40 to the circulation unit 50 in the circulation direction, or the PCM storage cooling tank 40 in the circulation unit 50. It can be configured to flow to the side.
여기에서, 상기 차상냉동기(10)는 차량 내부의 전원 또는 동력원을 사용할 수도 있고, 외부의 AC 전원 또는 DC 전원을 이용하여 차량의 시동없이 사용하도록 구성할 수도 있다.Here, the on-vehicle refrigerator 10 may use a power source or a power source inside the vehicle, or may be configured to be used without starting the vehicle using an external AC power source or a DC power source.
또한, 상기 하이브리드 인터페이스용 열교환기(20)와 PCM축냉조(40)의 사이에 배치되고 액상 브라인과 더불어 고내에 형성되는 공기의 열교환을 수행하기 위한 유니트쿨러(30)를 포함할 수 있다.In addition, the hybrid interface may include a unit cooler 30 for performing heat exchange between the heat exchanger 20 and the PCM storage cooling tank 40 and the air formed in the chamber together with the liquid brine.
이때, 상기 유니트쿨러(30)는 상기 순환배관(53)을 통해 순환 처리되는 액상 브라인과 공기로부터 열을 흡수하기 위한 열교환기(31)와, 공기 송풍을 통해 고내에 형성되는 공기로부터 열을 흡수 및 고내에 순환 처리하기 위한 송풍기(32)를 포함한다.At this time, the unit cooler 30 absorbs heat from the air formed in the chamber through the heat exchanger 31 for absorbing heat from the liquid brine and air circulated through the circulation pipe 53 and air. And a blower 32 for circulating the inside of the refrigerator.
*이러한 상기 유니트쿨러(30)를 포함하여 구성하는 경우, 도 2에 나타낸 바와 같이, 상기 순환배관(53) 상에는 상기 유니트쿨러(30)와 연결되고 차단밸브(61)를 갖는 방냉배관(60)을 구비함이 바람직한데, 이를 통해 상기 순환배관(53)을 통해 순환 처리되는 액상 브라인이 상기 유니트쿨러(30) 측으로 유입되지 않도록 선택 제어할 수도 있고 액상 브라인의 순환 처리하는 흐름 과정 중 냉에너지의 손실을 최소화할 수 있다.* In the case of including the unit cooler 30, as shown in Figure 2, on the circulation pipe 53 is connected to the unit cooler 30, the air-conditioning piping 60 having a shut-off valve 61 It is preferable to provide, through which the liquid brine circulated through the circulation pipe 53 may be selectively controlled so as not to be introduced to the unit cooler 30 side of the cold energy of the flow process of the circulation process of the liquid brine The loss can be minimized.
즉, 차상냉동기(10)를 이용하여 PCM축냉조(40) 내부의 PCM을 축냉하고자 하는 경우에는 차단밸브(61)를 닫아 상기 순환배관(53)을 통해 순환 처리되는 액상 브라인이 상기 유니트쿨러(30) 측으로 유입되지 않고 바로 PCM축냉조(40)로 흐르도록 선택 제어할 수 있다.That is, when it is desired to cool the PCM inside the PCM storage cold storage tank 40 using the on-vehicle refrigerator 10, the liquid brine circulated through the circulation pipe 53 by closing the shutoff valve 61 is the unit cooler ( 30) can be selectively controlled to flow directly to the PCM storage cold storage tank 40 without being introduced to the side.
또한, 상기 PCM축냉조(40)에는 도 3에 나타낸 바와 같이, 외부 축냉기(71)를 연결하여 차상냉동기(10)를 가동하지 않고 PCM축냉조(40) 내부의 PCM을 축냉할 수 있도록 구성할 수 있다.In addition, as shown in FIG. 3, the PCM storage cold storage tank 40 is configured to connect the external storage cold storage 71 to cool the PCM inside the PCM storage cooling tank 40 without operating the on-vehicle refrigerator 10. can do.
이때, 상기 외부 축냉기(71)와의 액상 브라인 순환 처리를 위해 연결 배관인 차상입력라인(75)과 차상출력라인(76)을 차상에 구비함이 바람직하다.At this time, it is preferable to include a vehicle input line 75 and a vehicle output line 76 which are connection pipes for the liquid brine circulation process with the external storage cooler 71.
여기에서, 상기 외부 축냉기(71)는 순환펌프(72)의 구동으로 브라인탱크(73) 내 액상 브라인을 출력하고 외부출력라인(74)과 연결되는 차상입력라인(75)을 통해 차상으로 흐르게 되고, PCM축냉조(40) 내부의 PCM 축냉에 사용된 후 차상출력라인(76)과 연결되는 외부입력라인(77)을 통해 순환 처리된다.Here, the external storage cooler 71 outputs the liquid brine in the brine tank 73 by driving the circulation pump 72 and flows to the vehicle phase through the vehicle input line 75 connected to the external output line 74. After being used for the PCM storage cooling in the PCM storage cooling tank 40, it is circulated through the external input line 77 connected to the vehicle output line 76.
여기에서, 상기 외부출력라인(74)과 차상입력라인(75) 등의 단말부는 원터치밸브 등과 같이 상호간에 탈장착이 간단한 배관 피팅 밸드류를 적용하는 것이 바람직하며, 브라인 등 저온 유체의 흐름에 대해 지속적인 내구성을 가질 수 있도록 바이톤이나 PTFE(폴리테트라플루오로에틸렌) 등의 소재를 적용하여 내부의 개스킷 또는 패키징을 하는 것이 바람직하다.Here, it is preferable to apply piping fittings such as one-touch valves and the like that are easily detachable from each other such as the external output line 74 and the on-vehicle input line 75 and the like. In order to have durability, it is preferable to apply a material such as Viton or PTFE (polytetrafluoroethylene) to gasket or package the inside.
여기에서, 상기 차상입력라인(75)를 통하여 PCM축냉조(40)에 이르는 배관 상에는 체크밸브(78)를 설치하여 브라인의 유출을 막거나 브라인이 열교환기(20) 측으로 흐르는 것을 방지토록 하며, 상기 PCM축냉조(40)의 열교환기(41)로부터 출력되는 브라인이 순환유니트(50)로 흐르는 것을 방지하기 위하여 동력밸브(79)를 설치함이 바람직하다.Here, a check valve 78 is installed on the pipe leading to the PCM storage cooling tank 40 through the vehicle input line 75 to prevent the brine from flowing out or to prevent the brine from flowing to the heat exchanger 20 side. It is preferable to install a power valve 79 to prevent the brine output from the heat exchanger 41 of the PCM storage cooling tank 40 to flow into the circulation unit 50.
여기에서, 상기 동력밸브(79)는 차상냉동기(10)를 사용하여 축냉을 실시하거나 차상 방냉을 실시하는 경우 개방 제어하고, 외부 축냉기(71)를 사용하여 축냉을 실시하고자 하는 경우 폐쇄 제어한다.Here, the power valve 79 is controlled to open when the cold storage is carried out using the on-vehicle cooler 10 or the on-vehicle cooling is performed, and closed control to perform the cold storage by using the external cooler 71. .
여기에서, 차상에서 차상냉동기(10)을 사용하여 PCM 축냉을 실시하는 방식에 비해 상기 외부 축냉기(71)를 사용하여 축냉하는 방식이 차상보다 큰 냉동능력을 사용할 수 있게 되므로 설계 형태에 따라 빠른 시간에 더욱 많은 축냉량을 갖게 할 수 있으며, 축냉시간의 단축 등이 필요한 경우 매우 효과적인 축냉방식으로 사용될 수 있다 할 것이다.Here, the method of cooling by using the external storage cooler 71 can use a greater freezing capacity than the vehicle, compared to the method of carrying out PCM cooling by using the on-vehicle refrigerator 10 on the vehicle, so it is faster depending on the design form. It is possible to have more storage capacity in time, it can be used as a very effective storage method when the reduction of the storage time is required.
또한, 도 4에 나타낸 바와 같이, 상기 순환배관(53) 상에 연결되고 상기 유니트쿨러(30)와 PCM축냉조(40)의 사이에 배치되는 공조쿨러(80)를 포함하도록 구성할 수 있다.In addition, as shown in Figure 4, it may be configured to include an air conditioning cooler 80 is connected on the circulation pipe 53 and disposed between the unit cooler 30 and the PCM storage cooling tank 40.
이때, 상기 공조쿨러(80)는 열교환기(81)와 송풍기(82)를 포함한다.In this case, the air conditioning cooler 80 includes a heat exchanger 81 and a blower 82.
여기에서, 상기 유니트쿨러(30)를 차상의 고내에 대한 전체 공조를 위한 메인 쿨러로 사용하고 상기 공조쿨러(80)를 보조 쿨러로 사용하여 고내 공간의 개폐로 인한 국소적인 냉기 손실을 보충할 수 있도록 구성할 수 있다.Here, the unit cooler 30 can be used as a main cooler for the overall air conditioning of the vehicle interior and the air conditioning cooler 80 as a secondary cooler to compensate for the local cold air loss due to the opening and closing of the interior space. Can be configured to
여기에서, 상기 공조쿨러(80)를 포함하는 구성은 고내 공간의 개폐로 인한 온도상승을 최소화하고 고속의 온도 복원을 가능하게 할 수 있는데, 냉장 냉동차의 경우 배송과정 중 고내 공간의 개폐로 인하여 급격하게 큰 냉손실이 발생되므로 개방과 폐쇄 직후에 개폐문 주변에서의 국소적인 냉기 송풍을 통해 에어커튼 역할을 수행케 할 수 있으면서 국소적인 냉기 보충을 수행하는 역할을 담당할 수 있다.Here, the configuration including the air conditioning cooler 80 can minimize the temperature rise due to the opening and closing of the interior space and enable high-speed temperature recovery, in the case of refrigerated refrigeration car suddenly due to the opening and closing of the interior space during the delivery process Since a large cold loss is generated, it is possible to play a role of air curtain through local cold air blowing around the door immediately after opening and closing, and to perform local cold air replenishment.
부연하여, 차상의 고내 공간 개폐로 인해 고내 전체의 온도 복원이 늦어지고 개폐문 주위의 급격한 온도변화로 인하여 발생되는 물품에 대해 상품성 저하를 막아 부패를 방지하는 등 상품 안전성을 높여줄 수 있으며, 전체적인 방냉과 국소적인 방냉을 병행하여 수행할 수 있으므로 고내 온도를 빠르게 설정온도로 맞출 수 있고 고르게 분포시킬 수 있어 안전하면서도 신뢰성있는 냉장 냉동 배송을 구현할 수 있는 장점을 제공할 수 있다.In addition, due to the opening and closing of the vehicle's interior space, the temperature recovery of the entire interior is delayed, and the product safety can be improved by preventing deterioration by preventing the deterioration of merchandise for the products caused by the rapid temperature change around the door. Because it can be performed in parallel with local cooling, high temperature can be quickly adjusted to the set temperature and evenly distributed, which can provide the advantages of safe and reliable refrigeration and freezing delivery.
또한, 도 5에 나타낸 바와 같이, 상기 순환배관(53) 상에는 순환 처리되는 액상 브라인이 상기 PCM축냉조(40)를 통과하거나 또는 통과하지 않게 선택 제어할 수 있도록 하기 위한 바이패스라인(90)을 포함하도록 구성할 수 있다.In addition, as shown in Figure 5, on the circulation pipe 53 bypass line 90 for allowing the control of the liquid brine to be circulated to pass through the PCM storage cold storage tank 40 or not to pass through the selection. It can be configured to include.
이때, 상기 바이패스라인(90)은 액상 브라인에 대해 상기 PCM축냉조(40)로의 선별적 순환을 위한 3방향 밸브 등 선택밸브(91)와 상기 PCM축냉조(40)로의 역류를 막기 위한 체크밸브(92)를 포함한다. 물론, 선택밸브(91) 대신 2개의 차단밸브를 구성할 수도 있고, 체크밸브(92) 대신 차단밸브를 구성할 수도 있다.At this time, the bypass line 90 checks to prevent backflow to the selection valve 91 and the PCM storage tank 40, such as a three-way valve for selective circulation of the liquid brine to the PCM storage tank 40. Valve 92. Of course, two shutoff valves may be configured instead of the selector valve 91, or a shutoff valve may be configured instead of the check valve 92.
여기에서, 상기 바이패스라인(90)을 포함하는 구성은 고내 공간의 개폐에 따른 냉기 손실에 대한 빠른 온도복원과 적재물의 상품성을 신뢰성 있게 보존할 수 있도록 한 것으로서, PCM축냉조(40) 내의 축냉된 PCM을 보조적인 온도 유지수단으로 사용하고, 특히 개폐문이 개폐되는 경우 및 차량의 시동이 멈춘 상태에서 방냉수단으로만 사용하기 위해 선택 제어할 수 있도록 한 것이다.In this case, the configuration including the bypass line 90 is to enable fast temperature recovery and reliable commercial preservation of the load of cold air loss due to the opening and closing of the internal space, and the cold storage in the PCM cold storage tank 40. The PCM is used as an auxiliary temperature maintaining means, and in particular, when the door is opened and closed and the vehicle is stopped, the control can be selected for use only as a cooling means.
부연하면, PCM축냉조(40) 내의 축냉된 PCM을 사용해야 하는 경우 PCM축냉조(40) 이전에 바이패스라인(90)을 닫고, PCM축냉조(40) 내의 축냉된 PCM을 사용하지 않아도 되는 경우 바이패스라인(90)을 열어 브라인 순환을 유도함으로써 PCM축냉조(40)를 거치지 않는 브라인 순환이 이루어지도록 선택 제어할 수 있다.In other words, when the cold-cooled PCM in the PCM cold storage tank 40 should be used, the bypass line 90 is closed before the PCM cold storage tank 40, and when the cold-cooled PCM in the PCM cold storage tank 40 is not required. By opening the bypass line 90 to induce a brine circulation, it is possible to selectively control the brine circulation without passing through the PCM storage cold tank 40.
한편, 본 발명에 있어 차상냉동기(10) 또는 PCM축냉조(40) 내부의 축냉된 PCM을 활용하여 차상 방냉을 실시하는 경우를 설명하면 다음과 같다.On the other hand, in the present invention will be described in the case of performing vehicle-vehicle cooling by utilizing the cold-cooled PCM in the on-vehicle refrigerator 10 or PCM storage cold storage tank 40 as follows.
먼저, 직접팽창방식의 차상냉동기(10)를 사용하여 고내의 온도를 설정온도로 유지하기 위한 방냉을 실시하는 경우, 차상냉동기(10)로부터 배출되는 냉매는 하이브리드 인터페이스용 열교환기(20)를 통해 순환 처리되는 액상 브라인으로부터 열을 빼앗고, 이에 의해 냉각된 액상 브라인은 유니트쿨러(30)로 흐르게 되며, 열교환기(31)를 통해 공기를 냉각시킨 후 PCM축냉조(40)와 순환유니트(50)를 통과하여 다시 차상냉동기(10)와 하이브리드 인터페이스용 열교환기(20) 측으로 순환되는 과정을 반복한다.First, when cooling is performed to maintain the temperature in the refrigerator at the set temperature using the in-vehicle cold refrigerator 10 of the direct expansion method, the refrigerant discharged from the cold-cooled refrigerator 10 is transferred through the heat exchanger 20 for the hybrid interface. The liquid brine that is circulated is deprived of heat, and the cooled liquid brine flows to the unit cooler 30, and after cooling the air through the heat exchanger 31, the PCM storage cold tank 40 and the circulation unit 50. After passing through and repeats the cycle circulated to the on-vehicle refrigerator 10 and the heat exchanger 20 for the hybrid interface.
이러한 과정을 고내의 온도가 설정온도에 도달할 때까지 계속한다.This process is continued until the temperature in the chamber reaches the set temperature.
이때, 고내의 온도보다 PCM축냉조(40)의 PCM을 통과한 액상 브라인의 온도가 더 낮다면 차상냉동기(10)을 통한 설정온도 도달이 더욱 효과적으로 이루어지게 된다.At this time, when the temperature of the liquid brine passing through the PCM of the PCM storage cold storage tank 40 is lower than the temperature in the refrigerator, the onset of reaching the set temperature through the on-vehicle refrigerator 10 becomes more effective.
이에 따라, PCM축냉조(40)의 PCM이 설정온도보다 충분히 낮은 온도로 축냉되어 있을 경우, 차상냉동기(10)를 통한 방냉이 효과적이며, 차상냉동기(10)를 사용한 냉동 성능을 더욱 증대시킬 수 있어 설정온도를 빠르게 회복시킬 수 있다.Accordingly, when the PCM of the PCM storage cold storage tank 40 is cooled down to a temperature sufficiently lower than the set temperature, cooling of the air through the on-vehicle refrigerator 10 is effective, and the freezing performance using the on-vehicle refrigerator 10 can be further increased. Can quickly restore the set temperature.
*또한, PCM축냉조(40) 내부의 축냉된 PCM을 사용하여 고내의 온도를 설정온도로 맞추기 위한 방냉을 실시하는 경우, 방냉에 사용되는 액상 브라인을 순환펌프(51)를 통해 강제로 순환 처리하면 순환과정 중 PCM축냉조(40) 내의 축냉된 PCM으로 열교환기(41)를 통해 열을 빼앗기게 되고 하이브리드 인터페이스용 열교환기(20)를 거쳐 유니트쿨러(30) 내의 열교환기(31)로 흐르게 되며 송풍기(32)의 구동으로 유입되는 공기와 열전달에 의해 공기의 열을 빼앗아 고내에 순환되게 한다.In addition, when cooling is performed to adjust the temperature in the refrigerator to the set temperature using the PCM stored in the PCM storage cold storage tank 40, the liquid brine used for cooling is forcedly circulated through the circulation pump 51. During the circulation process, heat is lost through the heat exchanger 41 to the accumulated PCM in the PCM cold storage tank 40 and flows to the heat exchanger 31 in the unit cooler 30 through the heat exchanger 20 for the hybrid interface. It takes the heat of the air by the air and heat transfer introduced by the drive of the blower 32 to circulate in the interior.
이러한 과정을 고내의 온도가 설정온도에 도달할 때까지 계속한다.This process is continued until the temperature in the chamber reaches the set temperature.
이때, 시스템 내 흐름 과정 중 냉에너지 손실을 최소화하기 위하여 차상냉동기(10)와 하이브리드 인터페이스용 열교환기(20)로의 흐름을 막을 수 있도록 구성할 수 있는데, 순환배관(53)을 통해 순환되는 액상 브라인이 하이브리드 인터페이스인 열교환기(20)를 통과하지 않고 직접 PCM축냉조(40)와 유니트쿨러(30)의 열교환기(31)를 통과하게 제어할 수도 있다.At this time, in order to minimize the loss of cold energy during the flow process in the system can be configured to prevent the flow to the on-vehicle refrigerator 10 and the heat exchanger 20 for the hybrid interface, the liquid brine circulated through the circulation pipe 53 It is also possible to control to pass directly through the heat exchanger 31 of the PCM storage cold storage 40 and the unit cooler 30 without passing through the heat exchanger 20 which is the hybrid interface.
*따라서, 본 발명은 기존 사용되고 있는 PCM 축방냉 시스템들에 비해 고내 공간의 개폐에 따른 온도 복원 시간을 단축시킬 수 있고 제한적인 방냉 시간에 따른 차량의 제한적인 운행의 불편함과 비효율성을 개선할 수 있는 등의 장점을 제공할 수 있다.Therefore, the present invention can shorten the temperature recovery time according to the opening and closing of the interior space compared to the PCM axial cooling systems that are being used and improve the inconvenience and inefficiency of the limited operation of the vehicle according to the limited cooling time. Can provide such advantages.
이상에서와 같이, 본 발명에 대해 구체적인 실시예를 들어 설명하였으나, 본 발명은 이 명세서에 개시된 실시예 및 첨부된 도면에 의하여 특별히 한정되지 않는다 할 것이며, 본 발명의 기술적 사상을 벗어나지 않는 범위 이내에서 당업자에 의하여 다양하게 변형 및 수정될 수 있음은 자명하다 할 것이다.As described above, the present invention has been described with reference to specific embodiments, but the present invention is not particularly limited by the embodiments disclosed in the present specification and the accompanying drawings, within the scope not departing from the technical spirit of the present invention. It will be apparent to those skilled in the art that various changes and modifications can be made.
본 발명은 고내 공간의 개폐에 따른 온도 복원 시간을 단축시킬 수 있도록 하고 제한적인 방냉 시간에 따른 차량의 제한적인 운행의 불편함과 비효율성을 개선할 수 있도록 하는 등 기존 사용되고 있는 PCM 축방냉 시스템의 문제점들을 개선할 수 있도록 하며, 기존 PCM 축방냉 시스템의 장점을 취하여 유통 물품에 대해 보다 안전하면서도 신뢰성을 갖도록 하며 경제성을 추구할 수 있도록 한 하이브리드 차상 축방냉 시스템 분야에 적용할 수 있다.The present invention enables to shorten the temperature recovery time according to the opening and closing of the interior space and to improve the inconvenience and inefficiency of the limited operation of the vehicle according to the limited cooling time of the conventional PCM axial cooling system It can be applied to the field of hybrid vehicle axial cooling system, which can improve the problems, take advantage of the existing PCM axial cooling system, make the distribution goods safer, more reliable, and pursue economics.

Claims (7)

  1. 직접 팽창방식 또는 간접 팽창방식의 차상냉동기(10)와 상변화물질인 PCM(Phase Change Material)을 갖는 PCM축냉조(40)가 액상 브라인(brine)의 흐름을 통해 열교환할 수 있도록 상호 연결하되,The direct expansion or indirect expansion of the on-vehicle refrigerator (10) and the PCM storage cold storage chamber (40) having a phase change material PCM (Phase Change Material) is connected to each other to exchange heat through the flow of liquid brine,
    상기 차상냉동기(10)와 PCM축냉조(40)의 사이에 위치하고 순환배관(53)을 통해 순환 처리되는 액상 브라인에 대해 차상냉동기(10) 측으로 유입되기 전과 차상냉동기(10)로부터 유출된 후에 각각 열교환할 수 있도록 하이브리드 인터페이스용 열교환기(20)가 설치되며,The liquid brine located between the on-vehicle cooler 10 and the PCM axial refrigeration tank 40 and circulated through the circulation pipe 53 before being introduced into the on-vehicle freezer 10 and after being discharged from the on-vehicle freezer 10, respectively. Heat exchanger 20 for a hybrid interface is installed to exchange heat,
    상기 차상냉동기(10)와 PCM축냉조(40)를 경유하도록 액상 브라인을 순환 처리하기 위한 순환유니트(50)가 설치되며,A circulation unit 50 is installed to circulate the liquid brine so as to pass through the on-vehicle refrigerator 10 and the PCM cold storage tank 40.
    상기 PCM축냉조(40)는 순환 처리되는 액상 브라인으로부터 열을 흡수하는 열교환을 수행하기 위한 축방냉용 열교환기(41)를 포함하고,The PCM storage cold storage tank 40 includes a heat storage cooling heat exchanger 41 for performing heat exchange that absorbs heat from the liquid brine to be circulated.
    상기 순환유니트(50)는 액상 브라인의 순환을 위한 순환펌프(51)와 액상 브라인이 순환 처리되는 순환배관(53) 내의 공기를 제거함과 더불어 손실되는 액상 브라인을 보충하기 위한 브라인탱크(52)를 포함하는 것을 특징으로 하는 하이브리드 차상 축방냉 시스템.The circulation unit 50 removes the air in the circulation pump 51 for circulation of the liquid brine and the circulation pipe 53 through which the liquid brine is circulated, and the brine tank 52 for supplementing the liquid brine lost. Hybrid onboard axial cooling system comprising a.
  2. 제 1항에 있어서,The method of claim 1,
    상기 차상냉동기(10)가 직접 팽창방식의 냉동기인 경우, 상기 열교환기(20)는 차상냉동기(10)로부터 토출되는 냉매가 순환배관(53) 내를 흐르는 액상 브라인의 열을 흡수하는 작용으로 사용토록 함과 더불어 부피 및 비용 대비 열교환효율을 높일 수 있도록 판형 열교환기로 구성하며;When the on-vehicle refrigerator 10 is a direct expansion type freezer, the heat exchanger 20 is used to absorb the heat of the liquid brine flowing in the circulation pipe 53 by the refrigerant discharged from the on-vehicle refrigerator 10. It is composed of a plate heat exchanger to increase heat exchange efficiency with respect to volume and cost;
    상기 차상냉동기(10)가 간접 팽창방식의 냉동기인 경우, 상기 열교환기(20)는 차상냉동기(10) 측으로 유입되는 액상 브라인을 열교환하는데만 사용토록 연결하고 상기 차상냉동기(10)가 열교환된 액상 브라인을 토출하므로 순환배관(53) 측에 직접 연결하여 열교환 회수를 줄임으로써 열교환으로 인한 에너지 손실을 최소화할 수 있도록 구성하는 것을 특징으로 하는 하이브리드 차상 축방냉 시스템.When the on-vehicle refrigerator 10 is an indirect expansion-type freezer, the heat exchanger 20 is connected to only use to heat-exchange the liquid brine flowing into the on-vehicle refrigerator 10 side, and the on-vehicle refrigerator 10 is a liquid-liquid exchanged heat. Hybrid vehicle on-vehicle cooling system characterized in that configured to minimize the energy loss due to heat exchange by reducing the number of heat exchange by directly connecting to the circulation pipe 53 side because discharge the brine.
  3. 제 1항에 있어서,The method of claim 1,
    상기 순환펌프(51)는 적은 전력으로 고효율 사용을 위한 경우 AC 인라인타입을 사용하고, 전력량에 의존적이지 않은 경우 순환배관(53) 내의 공기까지 적절히 제거할 수 있도록 AC 또는 DC 수중타입을 사용하며;The circulation pump 51 uses an AC inline type for high efficiency use with low power, and uses an AC or DC underwater type to properly remove even air in the circulation pipe 53 when it is not dependent on the amount of power;
    상기 브라인탱크(52)는 순환배관(53) 내 공기의 효과적인 배출을 위해 일부 또는 전체에 대해 개폐 가능한 구조로 구성함과 더불어 상기 PCM축냉조(40) 보다 높은 위치에 배치하는 것을 특징으로 하는 하이브리드 차상 축방냉 시스템.The brine tank 52 is composed of a structure that can be opened and closed for a part or the whole for the effective discharge of air in the circulation pipe 53, and is characterized in that the hybrid position, which is disposed at a position higher than the PCM storage cold storage tank (40) Onboard axial cooling system.
  4. 제 1항에 있어서,The method of claim 1,
    상기 하이브리드 인터페이스용 열교환기(20)와 PCM축냉조(40)의 사이에 배치되고, 액상 브라인과 더불어 고내에 형성되는 공기의 열교환을 수행하기 위한 유니트쿨러(30); 를 더 포함하되,A unit cooler (30) disposed between the heat exchanger (20) for the hybrid interface and the PCM storage cold storage tank (40), and performing heat exchange of air formed in the refrigerator together with the liquid brine; Include more,
    상기 유니트쿨러(30)는 상기 순환배관(53)을 통해 순환 처리되는 액상 브라인과 공기로부터 열을 흡수하기 위한 열교환기(31)와, 공기 송풍을 통해 고내에 형성되는 공기로부터 열을 흡수 및 고내에 순환 처리하기 위한 송풍기(32)를 포함하며;The unit cooler 30 is a heat exchanger 31 for absorbing heat from the liquid brine and air circulated through the circulation pipe 53, and absorbs heat from the air formed in the air through the air blowing A blower 32 for circulating the inside;
    상기 순환배관(53) 상에는 상기 유니트쿨러(30)와 연결시 차단밸브(61)를 갖는 방냉배관(60)을 구비하여 순환배관(53)을 통해 순환 처리되는 액상 브라인이 상기 유니트쿨러(30) 측으로 유입되지 않도록 하고, 이를 통해 액상 브라인의 흐름 과정 중 냉에너지의 손실을 최소화할 수 있도록 구성하는 것을 특징으로 하는 하이브리드 차상 축방냉 시스템.The liquid brine circulated through the circulation pipe 53 is provided with a cooling pipe 60 having a shutoff valve 61 on the circulation pipe 53 and the unit cooler 30 when the unit cooler 30 is connected to the unit cooler 30. Hybrid on-vehicle cooling system characterized in that it is configured to minimize the loss of cold energy during the flow of liquid brine through this, so as not to flow to the side.
  5. 제 1항에 있어서,The method of claim 1,
    상기 PCM축냉조(40)에는 외부 축냉기(71)를 연결하여 차상냉동기(10)를 가동하지 않고 PCM축냉조(40) 내부의 PCM을 축냉할 수 있도록 하되, 외부 축냉기(71)와의 액상 브라인 순환 처리를 위해 연결 배관인 차상입력라인(75)과 차상출력라인(76)을 차상에 구비하는 것을 특징으로 하는 하이브리드 차상 축방냉 시스템.The PCM storage cold storage tank 40 is connected to an external storage cooling device 71 to allow the PCM storage of the PCM storage cooling tank 40 to be cooled without operating the on-vehicle cooler 10, but with a liquid phase with the external storage cold storage 71. Hybrid on-vehicle cooling system characterized in that the vehicle is equipped with a vehicle input line (75) and the vehicle output line (76) as the connection pipe for the brine circulation process.
  6. 제 4항에 있어서,The method of claim 4, wherein
    상기 순환배관(53) 상에 연결되고 상기 유니트쿨러(30)와 PCM축냉조(40)의 사이에 배치되는 공조쿨러(80); 를 더 포함하되,An air conditioning cooler (80) connected to the circulation pipe (53) and disposed between the unit cooler (30) and the PCM storage cold storage tank (40); Include more,
    상기 공조쿨러(80)는 열교환기(81)와 송풍기(82)를 포함하며,The air conditioning cooler 80 includes a heat exchanger 81 and a blower 82,
    상기 유니트쿨러(30)를 고내 전체 공조를 위한 메인 쿨러로 사용하고, 상기 공조쿨러(80)를 보조 쿨러로 사용하여 고내 공간의 개폐로 인한 국소적인 냉기 손실을 보충할 수 있도록 구성하는 것을 특징으로 하는 하이브리드 차상 축방냉 시스템.The unit cooler 30 is used as a main cooler for the entire air conditioning in the air, and using the air conditioning cooler 80 as an auxiliary cooler characterized in that configured to compensate for the local cold air loss due to opening and closing of the interior space Hybrid vehicle axial cooling system.
  7. 제 1항에 있어서,The method of claim 1,
    상기 순환배관(53) 상에는 순환 처리되는 액상 브라인이 상기 PCM축냉조(40)를 통과하거나 또는 통과하지 않게 선택 제어할 수 있도록 하기 위한 바이패스라인(90); 을 더 포함하며,A bypass line (90) for allowing the liquid brine to be circulated on the circulation pipe (53) to be selectively controlled to pass through or not to pass through the PCM storage tank (40); More,
    상기 바이패스라인(90)은 액상 브라인에 대해 상기 PCM축냉조(40)로의 선별적 순환을 위한 선택밸브(91) 또는 2개의 차단밸브와, 상기 PCM축냉조(40)로의 역류를 막기 위한 체크밸브(92) 또는 차단밸브를 포함하는 것을 특징으로 하는 하이브리드 차상 축방냉 시스템.The bypass line 90 is a check valve 91 or two shut-off valves for selective circulation of the liquid brine to the PCM storage tank 40, and a check to prevent backflow to the PCM storage cooling tank 40. Hybrid onboard axial cooling system comprising a valve (92) or a shutoff valve.
PCT/KR2017/001307 2016-03-07 2017-02-06 Hybrid cold storage and release system in vehicle WO2017155212A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0027176 2016-03-07
KR1020160027176A KR101700948B1 (en) 2016-03-07 2016-03-07 Hybrid system for charge and discharge of cold in vehicle

Publications (1)

Publication Number Publication Date
WO2017155212A1 true WO2017155212A1 (en) 2017-09-14

Family

ID=57990744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001307 WO2017155212A1 (en) 2016-03-07 2017-02-06 Hybrid cold storage and release system in vehicle

Country Status (2)

Country Link
KR (1) KR101700948B1 (en)
WO (1) WO2017155212A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109157861A (en) * 2018-09-29 2019-01-08 南京五洲制冷集团有限公司 With the indirect condensing formula petroleum vapor recovery unit from the function that defrosts
CN113716052A (en) * 2021-09-06 2021-11-30 南京工业大学 Airplane environment control system and method for supplying hot water by air circulation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101096615B1 (en) * 2011-08-25 2012-01-04 주식회사 티알엑서지 Hybrid type heat pump system
KR20130041407A (en) * 2011-10-17 2013-04-25 (주)에이스써모 Brine circulation multi cooling type phase-change material thermal storage system
KR20140091911A (en) * 2013-01-14 2014-07-23 박혜원 Cold-storage module using brine-cooled heat exchanger system.
KR101472689B1 (en) * 2013-11-21 2014-12-12 (주)에이스써모 Hybrid sub-type vehicle refrigeration systems.
KR20150045689A (en) * 2013-10-21 2015-04-29 이창흠 Cooling system of refrigeration top car using phase-change material and control method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110103514A (en) 2010-03-15 2011-09-21 성 준 박 Electrical energy using refrigeration truck of full icing reserving type

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101096615B1 (en) * 2011-08-25 2012-01-04 주식회사 티알엑서지 Hybrid type heat pump system
KR20130041407A (en) * 2011-10-17 2013-04-25 (주)에이스써모 Brine circulation multi cooling type phase-change material thermal storage system
KR20140091911A (en) * 2013-01-14 2014-07-23 박혜원 Cold-storage module using brine-cooled heat exchanger system.
KR20150045689A (en) * 2013-10-21 2015-04-29 이창흠 Cooling system of refrigeration top car using phase-change material and control method thereof
KR101472689B1 (en) * 2013-11-21 2014-12-12 (주)에이스써모 Hybrid sub-type vehicle refrigeration systems.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109157861A (en) * 2018-09-29 2019-01-08 南京五洲制冷集团有限公司 With the indirect condensing formula petroleum vapor recovery unit from the function that defrosts
CN109157861B (en) * 2018-09-29 2024-02-06 南京五洲制冷集团有限公司 Indirect condensation type oil gas recovery unit with self-defrosting function
CN113716052A (en) * 2021-09-06 2021-11-30 南京工业大学 Airplane environment control system and method for supplying hot water by air circulation

Also Published As

Publication number Publication date
KR101700948B1 (en) 2017-01-31

Similar Documents

Publication Publication Date Title
US11207947B2 (en) Cooling system for a motor vehicle and motor vehicle having such a cooling system
US11919360B2 (en) Vehicle heat management system
US9649909B2 (en) Vehicle heat management system including a switching valve
US10571164B2 (en) Air-conditioning system of a motor vehicle and method for operating the air-conditioning system
CN111409411A (en) Air conditioning and battery cooling device and method for operating an air conditioning and battery cooling device
EP1788323B1 (en) Air refrigerant type cooling apparatus
US20200101816A1 (en) Vehicle heat management system
CN110816207A (en) Integrated comprehensive thermal management system for electric automobile
CN105428749A (en) Actively-switched direct refrigerant battery cooling
WO2015178596A1 (en) Outdoor heat exchanger
CN108332455B (en) Refrigerant circuit and method for operating a refrigerant circuit
CN111319514B (en) Heat management system and new energy automobile
WO2018124789A1 (en) Heat pump for automobile
WO2009119985A2 (en) Refrigerating device for refrigerated truck
WO2017155212A1 (en) Hybrid cold storage and release system in vehicle
WO2018135850A1 (en) Waste heat recovery type hybrid heat pump system
US11884134B2 (en) Cooling system of a vehicle, comprising a coolant circuit which can be operated as a cooling circuit for an AC operation and as a heat pump circuit for a heating operation
WO2013172649A1 (en) Cold storage device using brine circulation
WO2018026137A1 (en) Heat exchanger alternating-type heat pump system
WO2017115919A1 (en) Refrigerating, freezing and rapid-cooling storage apparatus
CN110758924A (en) Cold chain unit distribution box with independent cold accumulation space
US9835362B2 (en) De-icing/defogging device for electrically propelled vehicles
WO2018048173A1 (en) Hybrid type air-condition and heat pump system
CN107031490A (en) Refrigerating transport vehicle and refrigerating method
IT201900015376A1 (en) SYSTEM FOR CHECKING THE TEMPERATURE OF A BATTERY IN A VEHICLE AND FOR DEFROSTING A RADIATOR ASSOCIATED WITH THIS SYSTEM.

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763475

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17763475

Country of ref document: EP

Kind code of ref document: A1