WO2017155009A1 - Resin-impregnated fiber bundle, compression molded article and method for producing same - Google Patents

Resin-impregnated fiber bundle, compression molded article and method for producing same Download PDF

Info

Publication number
WO2017155009A1
WO2017155009A1 PCT/JP2017/009353 JP2017009353W WO2017155009A1 WO 2017155009 A1 WO2017155009 A1 WO 2017155009A1 JP 2017009353 W JP2017009353 W JP 2017009353W WO 2017155009 A1 WO2017155009 A1 WO 2017155009A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
fiber bundle
impregnated fiber
impregnated
molded article
Prior art date
Application number
PCT/JP2017/009353
Other languages
French (fr)
Japanese (ja)
Inventor
高坂繁行
柴田悟
Original Assignee
ダイセルポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016074008A external-priority patent/JP6739210B2/en
Application filed by ダイセルポリマー株式会社 filed Critical ダイセルポリマー株式会社
Priority to CN201780016661.5A priority Critical patent/CN108778655B/en
Priority to US16/078,178 priority patent/US10703019B2/en
Priority to EP17763349.2A priority patent/EP3427913B1/en
Publication of WO2017155009A1 publication Critical patent/WO2017155009A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Abstract

Provided is a resin-impregnated fiber bundle which enables the achievement of a molded article having high surface impact strength. A resin-impregnated fiber bundle which is obtained by impregnating and integrating (A) 100 parts by mass of a bundle of fiber materials with (B) 25-300 parts by mass of a thermoplastic resin, and wherein: the resin-impregnated fiber bundle has a flattened shape that has a cross-sectional shape having a major axis and a minor axis (major axis length > minor axis length) in the width direction; the average major axis length (D1) is 0.5-2.0 mm; the average flatness ratio (D1/D2) as calculated from the average major axis length (D1) and the average minor axis length (D2) is 1.2-8.0; the length (L) of the resin-impregnated fiber bundle is 11-50 mm, and the ratio of the L to the D1 (L/D1) is 10-50; and the bulk density of the resin-impregnated fiber bundle is 0.1-0.4 g/cm3.

Description

樹脂含浸繊維束、圧縮成形品およびその製造方法Resin-impregnated fiber bundle, compression molded product, and method for producing the same
 本発明は、熱可塑性樹脂と補強繊維を含む樹脂含浸繊維束、圧縮成形品およびその製造方法に関する。
背景技術
The present invention relates to a resin-impregnated fiber bundle containing a thermoplastic resin and reinforcing fibers, a compression molded article, and a method for producing the same.
Background art
 熱可塑性樹脂と補強繊維からなるペレットを射出成形することで、成形品を得る方法が汎用されている。
 しかし、射出成形法を適用すると、射出成形の過程で補強繊維が折れて短くなってしまい、補強効果が低下するという問題がある。
 特許文献1(特許第3631994号公報)、特許文献2(特許第4743592号公報)では、射出成形法に替えてプレス成形法を適用する発明が記載されている。
A widely used method is to obtain a molded product by injection molding a pellet made of a thermoplastic resin and reinforcing fibers.
However, when the injection molding method is applied, there is a problem that the reinforcing fiber is broken and shortened during the injection molding process, and the reinforcing effect is lowered.
Patent Document 1 (Japanese Patent No. 3631994) and Patent Document 2 (Japanese Patent No. 4743592) describe an invention in which a press molding method is applied instead of an injection molding method.
 特許文献1には、幅0.2~5mmおよび長さ10~150mmの一方向長繊維強化熱可塑性樹脂(以下L-FRTPという)からなる線材がランダムに配向され、該線材同士の接点が固着しており、目付け量30~500g/m2で、開口部を有し、厚さが0.1~1mmであるL-FRTPシートと、さらに前記L-FRTPシートが特定の母材の少なくとも片面または内部に配されている複合成形体の発明が記載されている(特許請求の範囲)。
 発明の効果の欄(段落番号0051)には、L-FRTPシートの面剛性が向上できることが記載されている。
 L-FRTPの断面形状は円形または楕円形であり、断面の長径/短径が3以下であると記載されている(段落番号0016)が、実施例で使用されているものは円形のみであり(実施例1)、楕円のものは使用されていないことから、発明の効果を得るためには、断面が円形のものが好ましいことが開示されていることになる。
In Patent Document 1, a wire made of a unidirectional long fiber reinforced thermoplastic resin (hereinafter referred to as L-FRTP) having a width of 0.2 to 5 mm and a length of 10 to 150 mm is randomly oriented, and a contact between the wires is fixed. An L-FRTP sheet having a basis weight of 30 to 500 g / m 2 , an opening, and a thickness of 0.1 to 1 mm; and the L-FRTP sheet is at least one side of a specific base material Or the invention of the composite molded body arranged inside is described (Claims).
In the column of the effect of the invention (paragraph number 0051), it is described that the surface rigidity of the L-FRTP sheet can be improved.
The cross-sectional shape of L-FRTP is a circle or an ellipse, and it is described that the major axis / minor axis of the cross section is 3 or less (paragraph number 0016). However, what is used in the examples is only a circle. (Embodiment 1) Since an elliptical shape is not used, it is disclosed that a circular shape is preferable in order to obtain the effects of the invention.
 特許文献2には、長繊維強化熱可塑性樹脂線状成形材料と、長繊維強化熱可塑性樹脂成形品の製造方法の発明が記載されている(特許請求の範囲)。
 長繊維強化熱可塑性樹脂線状成形材料の断面形状については、「(a)円形又は楕円形に近い断面形状を有する。これにより、線状成形材料を三次元的に配向して散布することが容易となり、このように散布されたものをプレス成形すると、強化繊維が三次元的に配向したシート材料又は成形品を得ることができる(段落番号0028)」と記載されているが、実施例、参考例および比較例には断面形状の記載はないため、特許文献1の発明と同様に円形のものであると考えられる。
発明の概要
Patent Document 2 describes an invention of a method for producing a long fiber reinforced thermoplastic resin linear molding material and a long fiber reinforced thermoplastic resin molded product (claims).
As for the cross-sectional shape of the long fiber reinforced thermoplastic resin linear molding material, “(a) it has a cross-sectional shape close to a circle or an ellipse. This allows the linear molding material to be distributed in a three-dimensional orientation. It becomes easy to obtain a sheet material or a molded article in which the reinforcing fibers are three-dimensionally oriented by press molding what is spread in this way (paragraph number 0028). Since there is no description of the cross-sectional shape in the reference example and the comparative example, it is considered that the reference example and the comparative example are circular like the invention of Patent Document 1.
Summary of the Invention
 本発明は、面衝撃強度の高い成形品が得られる樹脂含浸繊維束と、前記樹脂含浸繊維束から得られる圧縮成形品およびその製造方法を提供することを課題とする。 An object of the present invention is to provide a resin-impregnated fiber bundle from which a molded article having high surface impact strength is obtained, a compression-molded article obtained from the resin-impregnated fiber bundle, and a method for producing the same.
 本発明は、
 (A)繊維材料の束100質量部に対して(B)熱可塑性樹脂25~300質量部が含浸されて一体化された樹脂含浸繊維束であり、
 前記樹脂含浸繊維束が、幅方向の断面形状が長軸と短軸(長軸長さ>短軸長さ)を有する扁平形状のものであり、
 前記長軸の平均長さ(D1)が0.5~2.0mmであり、
 前記長軸の平均長さ(D1)と前記短軸の平均長さ(D2)から求められる平均扁平比(D1/D2)が1.2~8.0であり、
 前記樹脂含浸繊維束の長さ(L)が11~50mmであり、前記Lと前記D1の比(L/D1)が10~50であり、
 嵩密度が0.1~0.4g/cm3である、樹脂含浸繊維束、それから得られる圧縮成形品、前記圧縮成形品の製造方法を提供する。
The present invention
(A) A resin-impregnated fiber bundle in which 25 to 300 parts by mass of a thermoplastic resin are impregnated with 100 parts by mass of a bundle of fiber materials,
The resin-impregnated fiber bundle has a flat shape in which the cross-sectional shape in the width direction has a major axis and a minor axis (major axis length> minor axis length),
An average length (D1) of the major axis is 0.5 to 2.0 mm;
An average aspect ratio (D1 / D2) determined from an average length (D1) of the major axis and an average length (D2) of the minor axis is 1.2 to 8.0;
The resin-impregnated fiber bundle has a length (L) of 11 to 50 mm, and the ratio of L to D1 (L / D1) is 10 to 50,
Provided are a resin-impregnated fiber bundle having a bulk density of 0.1 to 0.4 g / cm 3 , a compression molded product obtained therefrom, and a method for producing the compression molded product.
 本発明の樹脂含浸繊維束から得られた圧縮成形品は、特に面衝撃強度が高い。
 また本発明の圧縮成形品の製造方法は、非接触型ヒーターによる予備加熱工程とその後の圧縮工程を組み合わせているため、得られた圧縮成形品の密度の調整が容易になる。
発明を実施するための形態
The compression molded product obtained from the resin-impregnated fiber bundle of the present invention has particularly high surface impact strength.
Moreover, since the compression-molded article manufacturing method of the present invention combines a preheating step using a non-contact heater and a subsequent compression step, the density of the obtained compression-molded product can be easily adjusted.
BEST MODE FOR CARRYING OUT THE INVENTION
 <樹脂含浸繊維束>
 (A)成分の繊維材料の束で使用する繊維材料は、炭素繊維、ガラス繊維、及びアラミド繊維から選ばれるものが好ましいが、これらに制限されるものではない。
 繊維材料の束の本数は、樹脂含浸繊維束の外径(長軸長さおよび短軸長さ)を考慮して調整するものであり、例えば、100~30000本の範囲から選択することができる。
<Resin-impregnated fiber bundle>
The fiber material used in the bundle of component (A) fiber materials is preferably selected from carbon fibers, glass fibers, and aramid fibers, but is not limited thereto.
The number of fiber material bundles is adjusted in consideration of the outer diameter (major axis length and minor axis length) of the resin-impregnated fiber bundle, and can be selected from a range of, for example, 100 to 30,000. .
 (B)成分の熱可塑性樹脂としては、ポリアミド樹脂(ポリアミド6、ポリアミド66、ポリアミド12など)、オレフィン樹脂(ポリプロピレン、高密度ポリエチレン、酸変性ポリプロピレンなど)、ポリフェニレンスルフィド樹脂、ポリエステル(ポリエチレンテレフタレート、ポリブチレンテレフタレートなど)、熱可塑性ウレタン樹脂(TPU)、ポリオキシメチレン樹脂(POM)、ABS樹脂、ポリカーボネート樹脂、ポリカーボネート樹脂とABS樹脂のアロイなどから選ばれるものを用いることができる。
 (B)成分の熱可塑性樹脂は、2種以上からなるアロイも用いることができ、その場合には、適当な相溶化剤も含有することができる。
As the thermoplastic resin of component (B), polyamide resins (polyamide 6, polyamide 66, polyamide 12 etc.), olefin resins (polypropylene, high density polyethylene, acid-modified polypropylene etc.), polyphenylene sulfide resins, polyesters (polyethylene terephthalate, poly Butylene terephthalate or the like), thermoplastic urethane resin (TPU), polyoxymethylene resin (POM), ABS resin, polycarbonate resin, an alloy of polycarbonate resin and ABS resin, or the like can be used.
(B) The thermoplastic resin of a component can also use the alloy which consists of 2 or more types, In that case, a suitable compatibilizer can also be contained.
 (A)成分の繊維材料の束と(B)成分の熱可塑性樹脂の含有割合は、(A)成分100質量部に対して(B)成分25~300質量部であり、好ましくは30~150質量部であり、より好ましくは40~100質量部である。 The content ratio of the bundle of the fiber material of component (A) and the thermoplastic resin of component (B) is 25 to 300 parts by weight, preferably 30 to 150 parts by weight, for 100 parts by weight of component (A). Part by mass, more preferably 40 to 100 parts by mass.
 樹脂含浸繊維束は、用途に応じて、公知の樹脂用添加剤を含有することができる。樹脂用添加剤としては、難燃剤、熱安定剤、光安定剤、着色剤、酸化防止剤、帯電防止剤、滑剤などを挙げることができる。 The resin-impregnated fiber bundle may contain a known resin additive depending on the application. Examples of the resin additive include a flame retardant, a heat stabilizer, a light stabilizer, a colorant, an antioxidant, an antistatic agent, and a lubricant.
 樹脂含浸繊維束は、幅方向の断面形状が長軸と短軸(長軸長さ>短軸長さ)を有する扁平形状のものである。
 樹脂含浸繊維束の長軸の平均長さ(D1)は0.5~2.0mmであり、0.5~1.5mmが好ましい。
 樹脂含浸繊維束の長軸の平均長さ(D1)と短軸の平均長さ(D2)から求められる平均扁平比(D1/D2)は1.2~8.0であり、1.5~5.0が好ましく、1.5~3.0がより好ましい。
 樹脂含浸繊維束の長さ(L)は11~50mmであり、15~40mmが好ましい。
 LとD1の比(L/D1)は10~50であり、15~50が好ましく、20~40がより好ましい。
 樹脂含浸繊維束は、嵩密度が0.1~0.4g/cm3であり、0.1~0.3g/cm3が好ましく、0.1~0.2g/cm3がさらに好ましい。
 ここで嵩密度とは、充填密度であり、秤量した樹脂含浸ガラス繊維束(質量m)を圧密せずにメスシンダーなどの計量容器に静かに入れ、タップしない(ゆるみ)状態でのゆるみかさ体積(v0)を読み取ることにより、嵩密度(m/v0)を算出することができる。
The resin-impregnated fiber bundle has a flat shape in which the cross-sectional shape in the width direction has a major axis and a minor axis (major axis length> minor axis length).
The average length (D1) of the major axis of the resin-impregnated fiber bundle is 0.5 to 2.0 mm, preferably 0.5 to 1.5 mm.
The average aspect ratio (D1 / D2) obtained from the average length (D1) of the major axis of the resin-impregnated fiber bundle and the average length (D2) of the minor axis is 1.2 to 8.0, 1.5 to 5.0 is preferable, and 1.5 to 3.0 is more preferable.
The length (L) of the resin-impregnated fiber bundle is 11 to 50 mm, preferably 15 to 40 mm.
The ratio of L to D1 (L / D1) is 10 to 50, preferably 15 to 50, more preferably 20 to 40.
Resin-impregnated fiber bundle has a bulk density of 0.1 ~ 0.4g / cm 3, preferably 0.1 ~ 0.3g / cm 3, more preferably 0.1 ~ 0.2g / cm 3.
Here, the bulk density is the packing density, and the weighed resin-impregnated glass fiber bundle (mass m) is gently put into a measuring container such as a female cinder without being compacted, and the loose bulk volume in a state where it is not tapped (loosened) ( v 0) by reading the, it is possible to calculate the bulk density (m / v 0).
 樹脂含浸繊維束は、幅方向の断面形状が楕円形であるものと、楕円形でないものを含むものである。
 幅方向の断面形状が楕円形であるものは、全ての面が曲面のものであるが、幅方向の断面形状が楕円形でないものは、一部面が平面からなるものであり、例えば、短軸に面している面の全部または一部が平面のものである。
 樹脂含浸繊維束の長軸が同じであるとき、短軸の長さが小さいもの(平面を有しているもの)の方が、狭い隙間に入り込み易くなるため好ましい。
The resin-impregnated fiber bundle includes those having a cross-sectional shape in the width direction that is elliptical and those that are not elliptical.
When the cross-sectional shape in the width direction is elliptical, all surfaces are curved surfaces, but when the cross-sectional shape in the width direction is not elliptical, some surfaces are flat surfaces. All or part of the surface facing the axis is planar.
When the major axis of the resin-impregnated fiber bundle is the same, the one with a shorter minor axis (having a flat surface) is preferable because it easily enters a narrow gap.
 樹脂含浸繊維束の製造方法はクロスヘッドダイを使用した方法が公知であり、例えば、特開2013-107979号公報(製造例1の樹脂含浸ガラス長繊維束の製造)、特開2013-121988号公報(製造例1の樹脂含浸ガラス長繊維束の製造)、特開2012-52093号公報(実施例1~9)、特開2012-131104号公報(製造例1の樹脂含浸ガラス長繊維束の製造、製造例2の樹脂含浸炭素繊維長繊維束の製造)、特開2012-131918号公報(製造例1の樹脂含浸炭素繊維束の製造、製造例2の樹脂含浸ガラス繊維束の製造)、特開2011-162905号公報(実施例1)、特開2004-14990号公報(実施例1~7)に記載の方法に準じて製造することができる。
 樹脂含浸繊維束を上記した扁平比のものにするには、クロスヘッドダイの出口形状を調整する方法、クロスヘッドダイの出口から出た後、冷却する前の段階にて、上下に配置した2本のローラー(整形ロール)間を通す方法などを適用することができる。
As a method for producing a resin-impregnated fiber bundle, a method using a crosshead die is known. For example, JP 2013-109779 A (Manufacturing of a resin-impregnated glass long fiber bundle of Production Example 1), JP 2013-121988 A Publication (Manufacture of resin-impregnated glass long fiber bundle of Production Example 1), Japanese Patent Application Laid-Open No. 2012-52093 (Examples 1 to 9), Japanese Patent Application Laid-Open No. 2012-131104 (Production of Resin-impregnated glass long fiber bundle of Production Example 1) Production, production of resin-impregnated carbon fiber long fiber bundle of production example 2), JP 2012-131918 (production of resin-impregnated carbon fiber bundle of production example 1, production of resin-impregnated glass fiber bundle of production example 2), It can be produced according to the methods described in JP 2011-162905 A (Example 1) and JP 2004-14990 A (Examples 1 to 7).
In order to make the resin-impregnated fiber bundle to have the above-described aspect ratio, a method of adjusting the outlet shape of the crosshead die, and the two arranged vertically at the stage after exiting from the outlet of the crosshead die and before cooling. A method of passing between the rollers (shaping rolls) of the book can be applied.
 <圧縮成形品>
 本発明の圧縮成形品は、樹脂含浸繊維束の所要量がランダムに配置された状態で、接触している樹脂含浸繊維束同士が互いに融着された状態のものである。
<Compression molded product>
The compression molded product of the present invention is a state in which the resin impregnated fiber bundles in contact with each other are fused with each other in a state where required amounts of the resin impregnated fiber bundles are randomly arranged.
 樹脂含浸繊維束の所要量とは、目的とする圧縮成形品の大きさ(容積)と密度に応じて使用する樹脂含浸繊維束の総本数である。
 樹脂含浸繊維束の所要量は、基準となる圧縮成形品の大きさ(容積)と密度を決めておき、それに必要な樹脂含浸繊維束の総本数を予め試作して求めておくことで算出することができる。
 目的とする圧縮成形品の大きさ(容積)と密度は、用途に応じて決めることができる。
The required amount of the resin-impregnated fiber bundle is the total number of resin-impregnated fiber bundles used according to the size (volume) and density of the target compression molded product.
The required amount of the resin-impregnated fiber bundle is calculated by determining the size (volume) and density of a compression-molded product as a reference, and obtaining the total number of resin-impregnated fiber bundles necessary for the trial production in advance. be able to.
The size (volume) and density of the target compression molded product can be determined according to the application.
 本発明の圧縮成形品は、
 (I)樹脂含浸繊維束の所要量が、面方向(例えば、水平面又は垂直面)のみにランダムに配置された状態(二次元に配置された状態)で、接触している樹脂含浸繊維束同士が互いに融着された形態のもの、
 (II)樹脂含浸繊維束の所要量が、面方向および前記面方向に対して斜め方向になるようにランダムに配置された状態(三次元に配置された状態)で、接触している前記樹脂含浸繊維束同士が互いに融着された形態のもの、などにすることができる。
The compression molded product of the present invention is
(I) The resin-impregnated fiber bundles in contact with each other in a state where the required amount of the resin-impregnated fiber bundle is randomly arranged (two-dimensionally arranged) only in the plane direction (for example, a horizontal plane or a vertical plane) In the form of being fused together,
(II) The resin in contact in a state where the required amount of the resin-impregnated fiber bundle is randomly arranged so as to be oblique to the surface direction and the surface direction (state arranged in three dimensions) The impregnated fiber bundles can be in the form of being fused together.
 本発明の樹脂含浸繊維束は、上記した扁平比が1.2~8.0の範囲のものであることから、断面が円形またはそれに近い楕円と比べると、上記(I)の形態および(II)の形態のいずれにおいても、近接する樹脂含浸繊維束同士が接触し易くなり、接触面積も大きくなる。このため、加熱雰囲気に置かれたとき、樹脂含浸繊維束同士が融着し易くなる。
 さらに本発明の樹脂含浸繊維束は、上記した扁平比が1.2~8.0の範囲のものであることから、断面が円形またはそれに近い楕円と比べると、(II)の形態になりやすくなるので好ましい。例えば、樹脂含浸繊維束間に隙間があるとき、円形のものでは前記隙間には入り込み難いが、扁平形状のものであれば前記隙間に入り込み易くなるため、三次元配置が容易にできるようになる。
 特に本発明の樹脂含浸繊維束が平面を有しているものを使用すると、さらに(II)の形態になりやすくなるので好ましい。
Since the resin-impregnated fiber bundle of the present invention has an aspect ratio in the range of 1.2 to 8.0, the cross-section of the resin-impregnated fiber bundle is larger than the shape of (I) and (II) In any of the embodiments, the adjacent resin-impregnated fiber bundles are easily brought into contact with each other, and the contact area is also increased. For this reason, the resin-impregnated fiber bundles are easily fused together when placed in a heated atmosphere.
Furthermore, since the resin-impregnated fiber bundle of the present invention has a flatness ratio in the range of 1.2 to 8.0, the cross section is likely to be in the form of (II) when compared with a circle or an ellipse close thereto. This is preferable. For example, when there is a gap between the resin-impregnated fiber bundles, it is difficult to enter the gap if it is circular, but if it is a flat shape, it will be easier to enter the gap, so that a three-dimensional arrangement can be facilitated. .
In particular, it is preferable to use the resin-impregnated fiber bundle of the present invention having a flat surface because the form (II) is more easily obtained.
 本発明の圧縮成形品は、厚みが1.5~10mm、密度が1.10~1.80g/cm3であるものが好ましい。
 本発明の圧縮成形品は、平面形状だけでなく、曲面形状を有するものも含まれる。
 本発明の圧縮成形品は、特に面衝撃強度が高いため、平板形状品にしたとき、使用寿命を大幅に延長することができる。
The compression molded product of the present invention preferably has a thickness of 1.5 to 10 mm and a density of 1.10 to 1.80 g / cm 3 .
The compression molded product of the present invention includes not only a planar shape but also a curved shape.
Since the compression molded product of the present invention has a particularly high surface impact strength, the service life can be greatly extended when it is formed into a flat plate.
 <圧縮成形品の製造方法>
 本発明の圧縮成形品の製造方法を説明する。
 最初の工程にて、加熱容器内に所要量の樹脂含浸繊維束をランダムに配置された状態、好ましく面方向、および前記面方向に対して斜め方向になるように三次元にランダムに配置された状態で投入する。前記樹脂含浸繊維束は嵩密度が0.1~0.4g/cm3と小さいため、加熱容器内に投入した樹脂含浸繊維束の厚みは偏りが小さく、ほぼ均一にすることができる。
 なお、必要に応じて加熱容器に対して振動を加えることで、投入後の樹脂含浸繊維束の厚みをならすようにすることができる。
 前記振動を加えるときは、加熱容器に対して上下方向、左右方向、上下および左右方向の3通りの方法を適用できるが、より短時間で樹脂含浸繊維束の厚みを調整できるため、上下方向、または上下および左右方向に振動を加える方法が好ましい。
<Method for producing compression molded product>
The manufacturing method of the compression molded product of this invention is demonstrated.
In the first step, the resin-impregnated fiber bundle of a required amount is randomly arranged in the heating container, preferably in a three-dimensional manner so as to be in a plane direction and an oblique direction with respect to the plane direction. Input in the state. Since the resin-impregnated fiber bundle has a bulk density as small as 0.1 to 0.4 g / cm 3 , the thickness of the resin-impregnated fiber bundle charged into the heating container is small and can be made almost uniform.
In addition, the thickness of the resin-impregnated fiber bundle after charging can be smoothed by applying vibration to the heating container as necessary.
When applying the vibration, three methods of the vertical direction, the horizontal direction, the vertical direction and the horizontal direction can be applied to the heating container, but the thickness of the resin-impregnated fiber bundle can be adjusted in a shorter time, so the vertical direction, Or the method of applying a vibration to an up-down and left-right direction is preferable.
 次の工程にて、非接触型ヒーターにて、前記加熱容器内の前記樹脂含浸繊維束を予備加熱する。
 非接触型ヒーターとしては、熱源として赤外線、近赤外線、誘導加熱(IH)および熱風から選択されるものが好ましい。
 予備加熱は、加熱容器内に投入した樹脂含浸繊維束同士が融着して、全体が動かない程度に一体化されるまで実施する。
 前工程で使用した樹脂含浸繊維束は嵩密度が0.1~0.4g/cm3と小さく、樹脂含浸繊維束間に隙間が多く存在しているため、非接触型ヒーターを使用した場合であっても、加熱容器内の樹脂含浸繊維束全体に対して熱が速やかに行き渡ることから、短時間の処理で一体化させることができる。
In the next step, the resin-impregnated fiber bundle in the heating container is preheated with a non-contact heater.
As the non-contact type heater, a heat source selected from infrared rays, near infrared rays, induction heating (IH) and hot air is preferable.
The preheating is performed until the resin-impregnated fiber bundles charged in the heating container are fused and integrated so that the whole does not move.
The resin-impregnated fiber bundle used in the previous process has a small bulk density of 0.1 to 0.4 g / cm 3 and there are many gaps between the resin-impregnated fiber bundles. Even if it exists, since heat spreads quickly with respect to the whole resin impregnated fiber bundle in a heating container, it can be integrated by a short process.
 次の工程にて、予備加熱後の前記樹脂含浸繊維束を加熱しながら圧縮して圧縮成形品を得る。
 この圧縮工程では、前工程で得られた樹脂含浸繊維束の一体化物をプレス用金型に入れた後で加熱しながら圧縮する。
 圧縮時の加熱温度は、樹脂含浸繊維束に含まれている熱可塑性樹脂の軟化点より低い温度であり、予備加熱温度よりも低いことが好ましい。
 圧縮工程では、成形サイクル時間を短くさせたり、表面外観を高めたりするために、ヒートアンドクール成形法を適用することもできる。
 ヒートアンドクール成形法は、圧縮成形前に金型温度を急速に高温にした状態で成形した後、急激に冷却する方法である。
 また、圧縮成形後の成形品に対して再度上記した予備加熱処理をした後、再度圧縮成形することにより、成形品中の繊維の分散性が向上されて、成形品の均一性が高められることから、さらに安定した製品(成形品中における繊維の分散性が良いことから、成形品の機械的性質などが安定する)を得ることもできる。
 圧縮時、圧縮成形品の厚みは、1.5~10mmで、密度が1.10~1.80g/cm3になるようにする。
実施例
In the next step, the pre-heated resin-impregnated fiber bundle is compressed while being heated to obtain a compression molded product.
In this compression step, the resin impregnated fiber bundle integrated product obtained in the previous step is put into a pressing mold and then compressed while being heated.
The heating temperature at the time of compression is lower than the softening point of the thermoplastic resin contained in the resin-impregnated fiber bundle, and is preferably lower than the preheating temperature.
In the compression step, a heat and cool molding method can be applied in order to shorten the molding cycle time or enhance the surface appearance.
The heat and cool molding method is a method of rapidly cooling after molding in a state where the mold temperature is rapidly increased before compression molding.
In addition, after the above-mentioned preheating treatment is again performed on the molded product after compression molding, the fiber dispersibility in the molded product is improved and the uniformity of the molded product is enhanced by compression molding again. Therefore, a more stable product (because the dispersibility of the fiber in the molded product is good, the mechanical properties of the molded product are stabilized) can be obtained.
At the time of compression, the thickness of the compression molded product is 1.5 to 10 mm, and the density is 1.10 to 1.80 g / cm 3 .
Example
 実施例1(樹脂含浸ガラス繊維束の製造)
 (A)成分のガラス長繊維からなる集束剤で束ねられた繊維束(ガラス繊維1:直径13μmのガラス繊維約1600本の束)をクロスヘッドダイに通した。
 そのとき、クロスヘッドダイには、別の2軸押出機(シリンダー温度290℃)から(B)成分のポリプロピレン(PMB02A,サンアロマー(株)製)の溶融物を供給してガラス長繊維束に含浸させた。
 その後、クロスヘッドダイ出口の賦形ノズルで賦形し、整形ロールで形を整えた後、ペレタイザーにより所定長さに切断し、表1に示す樹脂含浸繊維束を得た。
 このようにして得た樹脂含浸繊維束を切断して確認したところ、ガラス長繊維が長さ方向にほぼ平行になっており、中心部まで樹脂が含浸されていた。
Example 1 (Production of resin-impregnated glass fiber bundle)
A fiber bundle (glass fiber 1: a bundle of about 1600 glass fibers having a diameter of 13 μm) bundled with a sizing agent composed of the long glass fiber (A) was passed through a crosshead die.
At that time, the melt of the component (B) polypropylene (PMB02A, manufactured by Sun Allomer Co., Ltd.) is supplied to the crosshead die from another twin-screw extruder (cylinder temperature 290 ° C.) to impregnate the long glass fiber bundle. I let you.
Then, after shaping with a shaping nozzle at the exit of the crosshead die and shaping with a shaping roll, it was cut into a predetermined length by a pelletizer to obtain a resin-impregnated fiber bundle shown in Table 1.
When the resin-impregnated fiber bundle thus obtained was cut and confirmed, the long glass fibers were almost parallel to the length direction, and the resin was impregnated to the center.
 長軸の平均長さ(D1)と短軸の平均長さ(D2)の計測は、次の方法により実施した。
 10本の樹脂含浸ガラス繊維束を取り出し、走査型電子顕微鏡を使用して、断面(端面)の長軸長さと短軸長さを測定して平均値を求めた。具体的には、断面と交差する直線で断面の外周部と直線の2つの交点の長さが最も長くなるものを長軸とし、長軸と垂直に交わる直線でその直線と断面の外周部との2つの交点の長さで最も長くなるものを短軸とした。
The average length (D1) of the long axis and the average length (D2) of the short axis were measured by the following method.
Ten resin-impregnated glass fiber bundles were taken out, and the average value was obtained by measuring the major axis length and minor axis length of the cross section (end face) using a scanning electron microscope. Specifically, the longest axis is the straight line that intersects the cross section and the length of the two intersections between the outer periphery of the cross section and the straight line is the longest axis, and the straight line that intersects the long axis perpendicularly The longest of the two intersection points was defined as the short axis.
 (嵩密度の測定法)
 0.1%の精度で秤量した約200gの樹脂含浸ガラス繊維束(質量m)を圧密せずに乾いた1000mlメスシリンダー(最小目盛単位:2ml)に静かに入れ、タップしない(ゆるみ)状態でのゆるみかさ体積(v0)を最小目盛単位まで読み取とった。その後、m/v0から嵩密度(g/cm3)を求めた。
(Measurement method of bulk density)
About 200 g of resin-impregnated glass fiber bundle (mass m) weighed with an accuracy of 0.1% is gently put into a dry 1000 ml graduated cylinder (minimum scale unit: 2 ml) without being compacted, and is not tapped (loosened). The loose bulk volume (v 0 ) was read to the minimum scale unit. Thereafter, the bulk density (g / cm 3 ) was determined from m / v 0 .
 実施例1、2、比較例1、参考例1
 上記した樹脂含浸ガラス繊維束約150gを用意して、ステンレス製の平底容器内に高さ15~20cmの位置からほぼ均一厚さになるように投入した。
 その後、炉(日本碍子(株)製のインプラスタイン炉N7GS;熱源として赤外線ヒーターを備えている)中にて、200℃で100秒の加熱(非接触型加熱)を計3回実施した。この加熱処理によって、平底容器内の含浸ガラス繊維束は、ポリプロピレン同士が融着されて一体化されていた。
 その後、樹脂含浸ガラス繊維束の一体化物をプレス機(三友(株)製のSTI-1.6-220VF)により10秒間プレスした(プレス温度170℃,プレス圧2t)。
 その後、室温まで冷却して、平面形状が長方形の圧縮成形体(縦200mm、横200mm,厚み2mm、密度1.50g/cm3)を得た。
Examples 1 and 2, Comparative Example 1, Reference Example 1
About 150 g of the resin-impregnated glass fiber bundle described above was prepared and put into a flat bottom container made of stainless steel so as to have a substantially uniform thickness from a position of 15 to 20 cm in height.
Thereafter, heating (non-contact heating) at 200 ° C. for 100 seconds was carried out three times in a furnace (Impressine furnace N7GS manufactured by Nippon Choshi Co., Ltd .; equipped with an infrared heater as a heat source). By this heat treatment, the impregnated glass fiber bundle in the flat bottom container was integrated by fusing polypropylene together.
Thereafter, the integrated product of the resin-impregnated glass fiber bundle was pressed for 10 seconds by a press (STI-1.6-220VF manufactured by Mitomo Co., Ltd.) (press temperature 170 ° C., press pressure 2 t).
Then, it cooled to room temperature and obtained the compression molded object (200 mm in length, 200 mm in width, 2 mm in thickness, the density 1.50 g / cm < 3 >) in the planar shape.
 (面衝撃強度の測定法)
  落錘衝撃試験
  測定機器:グラフィックインパクトテスターB型(東洋精機製作所製)
    仕様:ストライカー径=φ12.7mm
       サンプルホルダー径=φ76mm
       落下高さ:80cm
       ウエイト質量:6.5kg
       測定温度:23℃
   測定サンプル:100mm角に切削したサンプル
 測定は、測定サンプルの中心に衝撃を加え、そのときの最大荷重Nと全吸収エネルギーJを測定した。
(Measurement method of surface impact strength)
Drop weight impact test Measuring instrument: Graphic impact tester B type (manufactured by Toyo Seiki Seisakusho)
Specifications: Striker diameter = φ12.7mm
Sample holder diameter = φ76mm
Drop height: 80cm
Weight mass: 6.5kg
Measurement temperature: 23 ℃
Measurement sample: Sample cut to 100 mm square In measurement, an impact was applied to the center of the measurement sample, and the maximum load N and total absorbed energy J at that time were measured.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1、2と比較例1の対比から、本発明の樹脂含浸繊維束を使用し、本発明の製造方法を適用して得られた圧縮成形品は、面衝撃強度が優れていた。
産業上の利用可能性
From the comparison between Examples 1 and 2 and Comparative Example 1, the compression molded product obtained by using the resin-impregnated fiber bundle of the present invention and applying the production method of the present invention was excellent in surface impact strength.
Industrial applicability
 本発明の樹脂含浸繊維束から得られた圧縮成形品は、薄くて高い面衝撃強度を有しているため、自動車部品、機械部品、建築材料、家庭用および業務用の食器やトレイ、各種日用品、安全靴部品などに利用することができる。 Since the compression molded product obtained from the resin-impregnated fiber bundle of the present invention is thin and has high surface impact strength, it is used for automobile parts, machine parts, building materials, household and commercial tableware and trays, and various daily necessities. It can be used for safety shoe parts.

Claims (7)

  1.  (A)繊維材料の束100質量部に対して(B)熱可塑性樹脂25~300質量部が含浸されて一体化された樹脂含浸繊維束であり、
     前記樹脂含浸繊維束が、幅方向の断面形状が長軸と短軸(長軸長さ>短軸長さ)を有する扁平形状のものであり、
     前記長軸の平均長さ(D1)が0.5~2.0mmであり、
     前記長軸の平均長さ(D1)と前記短軸の平均長さ(D2)から求められる平均扁平比(D1/D2)が1.2~8.0であり、
     前記樹脂含浸繊維束の長さ(L)が11~50mmであり、前記Lと前記D1の比(L/D1)が10~50であり、
     嵩密度が0.1~0.4g/cm3である、樹脂含浸繊維束。
    (A) A resin-impregnated fiber bundle in which 25 to 300 parts by mass of a thermoplastic resin are impregnated with 100 parts by mass of a bundle of fiber materials,
    The resin-impregnated fiber bundle has a flat shape in which the cross-sectional shape in the width direction has a major axis and a minor axis (major axis length> minor axis length),
    An average length (D1) of the major axis is 0.5 to 2.0 mm;
    An average aspect ratio (D1 / D2) determined from an average length (D1) of the major axis and an average length (D2) of the minor axis is 1.2 to 8.0;
    The resin-impregnated fiber bundle has a length (L) of 11 to 50 mm, and the ratio of L to D1 (L / D1) is 10 to 50,
    A resin-impregnated fiber bundle having a bulk density of 0.1 to 0.4 g / cm 3 .
  2.  前記平均扁平比(D1/D2)が1.5~8.0である、請求項2記載の樹脂含浸繊維束。 3. The resin-impregnated fiber bundle according to claim 2, wherein the average aspect ratio (D1 / D2) is 1.5 to 8.0.
  3.  (A)成分の繊維材料が、炭素繊維、ガラス繊維、及びアラミド繊維から選ばれるものである、請求項1または2記載の樹脂含浸繊維束。 The resin-impregnated fiber bundle according to claim 1 or 2, wherein the fiber material of component (A) is selected from carbon fiber, glass fiber, and aramid fiber.
  4.  請求項1~3の何れか1項記載の樹脂含浸繊維束からなる圧縮成形品であって、
     前記圧縮成形品が、前記樹脂含浸繊維束の所要量がランダムに配置された状態で、接触している前記樹脂含浸繊維束同士が互いに融着された形態のものであり、
     厚みが1.5~10mm、密度が1.10~1.80g/cm3である、圧縮成形品。
    A compression molded article comprising the resin-impregnated fiber bundle according to any one of claims 1 to 3,
    The compression-molded product is in a form in which the resin-impregnated fiber bundles in contact with each other are in a state where the required amount of the resin-impregnated fiber bundles are randomly arranged,
    Thickness of 1.5 ~ 10 mm, density of 1.10 ~ 1.80g / cm 3, a compression molded article.
  5.  請求項1~3の何れか1項記載の樹脂含浸繊維束からなる圧縮成形品であって、
     前記圧縮成形品が、前記樹脂含浸繊維束の所要量が、面方向、および前記面方向に対して斜め方向になるように三次元にランダムに配置された状態で、接触している前記樹脂含浸繊維束同士が互いに融着された形態のものであり、
     厚みが1.5~10mm、密度が1.10~1.80g/cm3である、圧縮成形品。
    A compression molded article comprising the resin-impregnated fiber bundle according to any one of claims 1 to 3,
    The resin-impregnated product is in contact with the compression-molded product in a state where the required amount of the resin-impregnated fiber bundle is randomly arranged in three dimensions so that the required amount of the resin-impregnated fiber bundle is oblique to the surface direction. The fiber bundles are fused together,
    A compression molded article having a thickness of 1.5 to 10 mm and a density of 1.10 to 1.80 g / cm 3 .
  6.  請求項4または5記載の圧縮成形品の製造方法であって、
     加熱容器内に所要量の前記樹脂含浸繊維束をランダムに入れる工程、
     次に非接触型ヒーターにて、前記加熱容器内の前記樹脂含浸繊維束を予備加熱する工程、
     次に、予備加熱後の前記樹脂含浸繊維束を加熱圧縮する工程、
    を有している圧縮成形品の製造方法。
    A method for producing a compression molded article according to claim 4 or 5,
    A step of randomly placing a required amount of the resin-impregnated fiber bundle in a heating container;
    Next, a step of preheating the resin-impregnated fiber bundle in the heating container with a non-contact heater,
    Next, a step of heating and compressing the resin-impregnated fiber bundle after the preheating,
    A method for producing a compression molded article having
  7.  前記非接触型ヒーターが、熱源として赤外線、近赤外線、誘導加熱(IH)および熱風から選択されるものを使用している、請求項6記載の圧縮成形品の製造方法。 The method for producing a compression molded article according to claim 6, wherein the non-contact type heater uses a heat source selected from infrared rays, near infrared rays, induction heating (IH) and hot air.
PCT/JP2017/009353 2016-03-11 2017-03-09 Resin-impregnated fiber bundle, compression molded article and method for producing same WO2017155009A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780016661.5A CN108778655B (en) 2016-03-11 2017-03-09 Resin-impregnated fiber bundle, compression-molded article, and method for producing same
US16/078,178 US10703019B2 (en) 2016-03-11 2017-03-09 Resin-impregnated fiber bundle, compression molded article, and a method for producing the same
EP17763349.2A EP3427913B1 (en) 2016-03-11 2017-03-09 Resin-impregnated fiber bundle, compression molded article and method for producing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016048232 2016-03-11
JP2016-048232 2016-03-11
JP2016-074008 2016-04-01
JP2016074008A JP6739210B2 (en) 2016-03-11 2016-04-01 Resin-impregnated fiber bundle, compression molded product and method for producing the same

Publications (1)

Publication Number Publication Date
WO2017155009A1 true WO2017155009A1 (en) 2017-09-14

Family

ID=59789516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009353 WO2017155009A1 (en) 2016-03-11 2017-03-09 Resin-impregnated fiber bundle, compression molded article and method for producing same

Country Status (1)

Country Link
WO (1) WO2017155009A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000210933A (en) * 1999-01-21 2000-08-02 Nitto Boseki Co Ltd Resin-coated fiber bundle and its manufacture
JP2012153109A (en) * 2011-01-28 2012-08-16 Mitsubishi Heavy Ind Ltd Fiber reinforced plastic plate, and method of manufacturing the same
JP2013107979A (en) * 2011-11-21 2013-06-06 Daicel Polymer Ltd Resin composition
WO2014030633A1 (en) * 2012-08-21 2014-02-27 株式会社 豊田自動織機 Three-dimensional fiber-reinforced composite
JP2015147428A (en) * 2006-05-25 2015-08-20 三菱エンジニアリングプラスチックス株式会社 Fiber reinforced thermoplastic resin molded article
JP2016020465A (en) * 2014-06-18 2016-02-04 ダイセルポリマー株式会社 Fiber reinforced resin composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000210933A (en) * 1999-01-21 2000-08-02 Nitto Boseki Co Ltd Resin-coated fiber bundle and its manufacture
JP2015147428A (en) * 2006-05-25 2015-08-20 三菱エンジニアリングプラスチックス株式会社 Fiber reinforced thermoplastic resin molded article
JP2012153109A (en) * 2011-01-28 2012-08-16 Mitsubishi Heavy Ind Ltd Fiber reinforced plastic plate, and method of manufacturing the same
JP2013107979A (en) * 2011-11-21 2013-06-06 Daicel Polymer Ltd Resin composition
WO2014030633A1 (en) * 2012-08-21 2014-02-27 株式会社 豊田自動織機 Three-dimensional fiber-reinforced composite
JP2016020465A (en) * 2014-06-18 2016-02-04 ダイセルポリマー株式会社 Fiber reinforced resin composition

Similar Documents

Publication Publication Date Title
JP6877615B2 (en) Resin impregnated fiber bundle for compression molded products
RU2553299C1 (en) Production of shaped article with invariable isotropy
EP2752442A1 (en) Molded body having rising surface, and method for producing same
JP7163911B2 (en) Method for manufacturing press-molded products
EP3029089B1 (en) Fiber-reinforced composite material and method for producing same
Arai et al. Effects of short-glass-fiber content on material and part properties of poly (butylene terephthalate) processed by selective laser sintering
EP3492233B1 (en) Press molding production method
KR20140057264A (en) Production method for composite molded body having undercut section
CN108472838A (en) Including the compression moulding material of Discontinuous Reinforcement fiber and the thermoplastic resin as matrix, its formed products and its manufacturing method
WO2017155009A1 (en) Resin-impregnated fiber bundle, compression molded article and method for producing same
CN106687266A (en) Production method for fiber-reinforced thermoplastic resin composite material, production method for fiber-reinforced thermoplastic resin tape, production method for press-molding material, production method for molded article, unidirectional prepreg, and molded article
JP2014104641A (en) Laminate substrate and fiber-reinforced composite material
JP7096159B2 (en) Resin composition
CN108025463B (en) Molded article with hole and method for producing the same
WO2017119516A1 (en) Fiber-reinforced resin molded body having embossed portion on at least part of surface thereof and method for producing same
EP3398746B1 (en) Fiber-reinforced resin shaped product having grains on at least part of the surface
JP2018134770A (en) Stab-proof plate and stab-proof clothing
Tripathi et al. An Experimental Investigation into Effect of Reinforcement Material on Mechanical Properties of Linear Low Density Polyethylene (LLDPE).
JPH0716854A (en) Production of fiber reinforced resin molded product

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017763349

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017763349

Country of ref document: EP

Effective date: 20181011

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763349

Country of ref document: EP

Kind code of ref document: A1