WO2017154749A1 - Medical device - Google Patents

Medical device Download PDF

Info

Publication number
WO2017154749A1
WO2017154749A1 PCT/JP2017/008401 JP2017008401W WO2017154749A1 WO 2017154749 A1 WO2017154749 A1 WO 2017154749A1 JP 2017008401 W JP2017008401 W JP 2017008401W WO 2017154749 A1 WO2017154749 A1 WO 2017154749A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
shaft
medical device
shaft outer
peripheral surface
Prior art date
Application number
PCT/JP2017/008401
Other languages
French (fr)
Japanese (ja)
Inventor
北岡孝史
千田高寛
今井正臣
増渕雄輝
金本和明
加藤幸俊
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2017154749A1 publication Critical patent/WO2017154749A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for

Definitions

  • the present invention relates to a medical device used by being inserted into a living body lumen.
  • a medical device to be inserted into a biological lumen such as a blood vessel may be connected with a plurality of tubes side by side.
  • a tube for distributing a drug, a contrast medium, a physiological saline, or the like, or inserting another device, and a tube for inserting a guide wire are connected side by side.
  • the functions of the tubes do not interfere with each other, and the operability and functions of the catheter can be improved.
  • a catheter in which a plurality of tubes are arranged has a difference in the ease of bending of each tube depending on the direction of bending, directionality occurs in the bending rigidity of the entire catheter. For this reason, when a catheter is inserted into a bent biological lumen, the anisotropy of the rigidity of the catheter affects the reachability of the catheter to the lesioned part and the performance of the catheter following the lumen. .
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a medical device that can reduce the anisotropy of bending rigidity of a medical device including a plurality of tubes and can suppress a decrease in performance.
  • the medical device according to the present invention that achieves the above object is a medical device having a long main tube and a sub tube connected to the main tube along with the main tube, the sub tube being the main tube
  • the lumens of the tube and the second tube communicate directly or indirectly through other members, and the first tube and the second tube are relatively movable along the main tube. is there.
  • the first tube and the second tube move relatively along the main tube, so that the anisotropy of the bending rigidity is reduced. For this reason, even if the medical device is inserted into a bent biological lumen, it is possible to suppress a decrease in performance.
  • FIG. 5 is a cross-sectional view showing a shaft outer tube and a guide wire tube It is sectional drawing which shows the state which the outer tube
  • the medical device 10 is inserted into a blood vessel in deep vein thrombosis, and is used for a treatment for crushing and removing the thrombus.
  • the side of the device that is inserted into the blood vessel is referred to as the “distal side”
  • the proximal side that is operated is referred to as the “proximal side”.
  • the object to be removed is not necessarily limited to the thrombus, and any object that can exist in the living body lumen can be applicable.
  • the dimension ratio of drawing is exaggerated on account of description, and may differ from an actual ratio.
  • the medical device 10 includes an elongated shaft portion 20 that is rotationally driven, an outer sheath 90 that can accommodate the shaft portion 20, and a slide portion that is slidable with respect to the shaft portion 20. 50 and a crushing portion 60 that is rotated by the shaft portion 20.
  • the medical device 10 further includes a rotation driving unit 70 that rotates the shaft unit 20, a hub 80 provided at a proximal end portion of the shaft unit 20, and a syringe 100 connected to the proximal side of the hub 80. ing.
  • the shaft portion 20 includes a long hollow shaft outer tube 21 (main tube), a shaft inner tube 30, and a guide wire tube 40 (sub tube).
  • the distal end of the shaft outer tube 21 is the distal portion of the shaft portion 20, and the proximal end portion is located in the rotation drive unit 70.
  • the shaft outer tube 21 can be reciprocated along the circumferential direction by the rotation drive unit 70.
  • the shaft outer tube 21 is not limited to one that reciprocates, and may be one that rotates in one direction.
  • the shaft outer tube 21 has a lumen 24 that accommodates the shaft inner tube 30 therein.
  • the inner diameter of the shaft outer tube 21 is larger than the outer diameter of the shaft inner tube 30.
  • the shaft outer tube 21 has a long hole-shaped opening 22 in the axial direction in the vicinity of the distal portion, and the inside and outside of the shaft outer tube 21 communicate with each other.
  • a cylindrical contact portion 23 that closes the lumen 24 is provided at the distal end portion of the shaft outer tube 21.
  • the proximal surface of the contact portion 23 is a contact surface 23 ⁇ / b> A that faces the distal surface of the shaft inner tube 30.
  • the contact surface 23 ⁇ / b> A is located on the distal side of the distal end of the opening 22 of the shaft outer tube 21.
  • the contact part 23 is made of stainless steel or the like.
  • the shaft inner tube 30 is coaxially stored in the hollow interior of the shaft outer tube 21.
  • the inner shaft tube 30 is movable in the axial direction with respect to the outer shaft tube 21.
  • the distal end portion of the shaft inner tube 30 is located at the proximal end portion of the opening 22 of the shaft outer tube 21 or at the proximal side thereof.
  • the proximal end portion of the shaft inner tube 30 extends further to the proximal side than the proximal end portion of the shaft outer tube 21 and is connected to the hub 80.
  • a cutting portion 31 is provided in the hollow interior of the distal end portion of the shaft inner tube 30.
  • the cutting portion 31 is a metal thin plate, has a width corresponding to the diameter of the shaft inner tube 30, and has a sharp blade portion 31A on the distal side.
  • the distal end face of the blade portion 31A and the distal end face of the shaft inner tube 30 are arranged so that there is no step. For this reason, when the distal surface of the shaft inner tube 30 contacts the contact surface 23A of the contact portion 23, the blade portion 31A also contacts the contact surface 23A.
  • the shaft inner tube 30 is at least from the base side (position shown in FIG. 4) to the contact surface 23A of the contact portion 23 with respect to the shaft outer tube 21, from the base end of the opening portion 22, It can be reciprocated along the axial direction.
  • the cutting part 31 is arranged so as to bisect the cross-sectional shape of the hollow part of the shaft inner tube 30.
  • the guide wire tube 40 is connected to the shaft outer tube 21 along the outer surface of the distal portion of the shaft outer tube 21.
  • the guide wire tube 40 has a guide wire lumen 44 (lumen) into which a guide wire can be inserted.
  • the guide wire tube 40 includes a third tube provided between the first tube 41 and the second tube 42, the first tube 41 on the most distal side, the second tube 42 on the most proximal side, and the third tube 42. Tube.
  • the first tube 41 is arranged in parallel with the shaft outer tube 21.
  • the first tube 41 is fixed to the shaft outer tube 21 at the first connecting portion 45 only at the distal portion. For this reason, it can deform
  • the second tube 42 is arranged in parallel with the shaft outer tube 21 on the proximal side of the first tube 41.
  • the distal end of the second tube 42 is located closer to the proximal side than the proximal end of the first tube 41.
  • the second tube 42 is fixed to the shaft outer tube 21 at the second connecting portion 46 only at the proximal portion. For this reason, it can deform
  • the first tube 41 and the second tube 42 have the same inner diameter and outer diameter. Note that the first tube 41 and the second tube 42 may have different inner and outer diameters.
  • the third tube 43 is located between the first connection portion 45 and the second connection portion 46 and is arranged in parallel with the shaft outer tube 21.
  • the proximal portion of the first tube 41 enters the lumen from the distal opening of the third tube 43.
  • the inner peripheral surface of the third tube 43 is slidable with the outer peripheral surface of the first tube 41.
  • the distal portion of the second tube 42 enters the lumen from the opening on the proximal side.
  • the inner peripheral surface of the third tube 43 is slidable with the outer peripheral surface of the second tube 42.
  • the third tube 43 is fixed to the shaft outer tube 21 by a third connecting portion 47 located between the proximal end portion of the first tube 41 and the distal end portion of the second tube 42. ing.
  • the inner diameter of the third tube 43 is slightly larger than the outer diameters of the first tube 41 and the second tube 42. As a result, the first tube 41 and the second tube 42 can slide inside the third tube 43.
  • the third tube 43 has such a length that the first tube 41 and the second tube 42 do not come out of the lumen of the third tube 43 even if the shaft portion 20 is curved. Accordingly, the lumens of the first tube 41, the third tube 43, and the second tube 42 communicate with each other to form one guide wire lumen 44.
  • the outer peripheral surfaces of the first tube 41 and the second tube 42 are separated from the outer peripheral surface of the shaft outer tube 21 by a gap d that is equal to or greater than the thickness of the third tube 43. For this reason, the third tube 43 is movable between the first tube 41 and the shaft outer tube 21 and between the second tube 42 and the shaft outer tube 21.
  • the distal portion of the first tube 41 is fixed to the shaft outer tube 21 by the first connecting portion 45.
  • the proximal portion of the second tube 42 is fixed to the shaft outer tube 21 by the second connecting portion 46. Therefore, as shown in FIGS. 5 and 6, when the shaft outer tube 21 is bent from a straight state, the proximal end of the first tube 41 and the distal side of the second tube 42 depend on the degree and direction of the curve. The edge approaches.
  • the guide wire tube 40 is positioned inside the curve of the curved outer shaft tube 21, the proximal end of the first tube 41 and the distal end of the second tube 42 are closest to each other. .
  • the length in which the third tube 43 and the first tube 41 overlap is L5
  • the length in which the third tube 43 overlaps the second tube 42 is L6.
  • the lengths L5 and L6 are longer than the uncurved state (see FIG. 5) when the guide wire tube body 40 is positioned inside the curved outer shaft tube 21 (see FIG. 6).
  • the lengths L5 and L6 are longer than when the guide wire tube body 40 is positioned outside the curve of the curved shaft outer tube 21 (see FIG. 7) and not bent (see FIG. 5). Become.
  • the distance between the axial centers of the shaft outer tube 21 and the guide wire tube 40 is x
  • the distance between the first connecting portion 45 and the second connecting portion 46 of the shaft outer tube 21 is Lm
  • the first tube is Ld
  • the minimum allowable radius of curvature of the axis of the shaft outer tube 21 is r
  • a surface orthogonal to the axis of the first connecting portion 45 and a surface orthogonal to the axis of the second connecting portion 46 are present.
  • the angle formed is A degrees.
  • the distance Lm, the first connecting portion 45 along the axis of the guide wire tubular body 40, and the second The length Ls between the connecting portions 46 is as shown in the following formulas (1) and (2).
  • Lm 2r ⁇ A ⁇ ⁇ / 180 (1)
  • Ls (2r ⁇ 2x) ⁇ A ⁇ ⁇ / 180 (2)
  • the guide wire tube body 40 when the guide wire tube body 40 is positioned outside the curve of the curved outer shaft tube 21, the proximal end portion of the first tube 41 and the second tube 42. The distal end is farthest away.
  • the length Lt between the first connecting portion 45 and the second connecting portion 46 along the axis of the guide wire tubular body 40 is expressed by the following equation (5).
  • the shaft outer tube 21 is preferably flexible and capable of transmitting rotational power acting from the proximal side to the distal side. It is preferable that the shaft inner tube 30 is flexible and can transmit the power of the reciprocating motion before and after acting from the proximal side to the distal side.
  • the guide wire tube 40 is preferably flexible. The constituent materials of the shaft outer tube 21, the shaft inner tube 30, and the guide wire tube 40 are not particularly limited.
  • a multilayer coiled tube body such as a three-layer coil in which the right and left and the winding direction are alternated
  • Polyolefins such as polyethylene and polypropylene
  • polyesters such as polyamide and polyethylene terephthalate
  • fluorine-based polymers such as ETFE (ethylene / tetrafluoroethylene copolymer), PEEK (polyetheretherketone), polyimide, or combinations of these materials
  • ETFE ethylene / tetrafluoroethylene copolymer
  • PEEK polyetheretherketone
  • polyimide polyimide
  • the outer sheath 90 can accommodate the shaft portion 20 and can reduce the diameter of the crushing portion 60 connected to the shaft portion 20.
  • the outer sheath 90 is slidable in the axial direction with respect to the shaft portion 20.
  • the constituent material of the outer sheath 90 is not particularly limited, for example, polyolefins such as polyethylene and polypropylene, polyesters such as polyamide and polyethylene terephthalate, fluorine-based polymers such as ETFE, PEEK, and polyimide are preferable. Moreover, it may be comprised with several material and reinforcement members, such as a wire, may be embed
  • the crushing part 60 is provided in the distal part of the shaft outer tube 21, as shown in FIGS.
  • the crushing part 60 includes a plurality of spiral parts 61.
  • Each spiral portion 61 is twisted in the same circumferential direction along the axial direction of the shaft outer tube 21.
  • a proximal end portion of each spiral portion 61 is fixed to the shaft outer tube 21 by a connecting portion 62.
  • a distal end portion of each spiral portion 61 is fixed to a slide portion 50 that can slide with respect to the shaft portion 20.
  • the fixing positions of the spiral portions 61 with respect to the connecting portion 62 and the slide portion 50 are different in the circumferential direction.
  • Each spiral portion 61 is arranged in the circumferential direction at a position where the central portion in the axial direction of the curve is separated from the shaft outer tube 21 in the radial direction. Thereby, the crushing part 60 has a uniform bulge in the circumferential direction as a whole. If the shaft part 20 rotates, the crushing part 60 will also rotate in connection with it, and the thrombus in the blood vessel can be crushed, or the crushed thrombus can be stirred.
  • the spiral part 61 which comprises the crushing part 60 is comprised by the metal thin wire which has flexibility.
  • the crushing part 60 is kept in the outer sheath 90 until the shaft part 20 is inserted into the target site.
  • the slide portion 50 to which the distal portion of the spiral portion 61 is connected is moved to the distal side along the shaft portion 20.
  • the spiral part 61 reduces the swelling of the center part along an axial center direction, and approaches the outer peripheral surface of the shaft outer tube
  • the outer sheath 90 After inserting the shaft portion 20 to the target site of the blood vessel, the outer sheath 90 is slid proximally with respect to the shaft portion 20, so that the crushing portion 60 is exposed to the outside of the outer sheath 90, and its own elastic force Extend by. At this time, the slide part 50 moves to the proximal side along the shaft part 20.
  • the spiral portion 61 is made of a material having shape memory properties.
  • a shape memory alloy, stainless steel, or the like to which a shape memory effect or superelasticity is imparted by heat treatment is suitable.
  • the shape memory alloy Ni—Ti, Cu—Al—Ni, Cu—Zn—Al, a combination thereof, or the like is preferable.
  • the slide part 50 has a C-shaped cross section perpendicular to the axial direction of the shaft part 20.
  • the slide portion 50 has a slit 58 that extends from the first end portion to the second end portion of the slide portion 50 in the axial direction.
  • the slit 58 accommodates the guide wire tube 40. Accordingly, the distal portion of the spiral portion 61 is fixed to the slide portion 50, and the slide portion 50 can slide in the axial direction without rotating with respect to the outer peripheral surface of the shaft outer tube 21.
  • the constituent material of the slide portion 50 is not particularly limited as long as the shape can be maintained.
  • polyolefin such as stainless steel, aluminum, polyethylene, and polypropylene
  • polyester such as polyamide and polyethylene terephthalate
  • fluorine-based polymer such as ETFE, PEEK, polyimide, Etc. are suitable.
  • the rotary drive unit 70 includes a drive motor 71 and a gear unit 72 that links the drive motor 71 with the shaft outer tube 21 of the shaft unit 20.
  • the shaft outer tube 21 rotates in the circumferential direction.
  • the shaft outer tube 21 is driven by the drive motor 71 so as to rotate alternately in two directions of positive and negative in the circumferential direction.
  • the blood flow can alternately turn in the opposite direction.
  • a protective member such as a filter or a balloon that restricts the flow of fluid in the blood vessel is disposed downstream of the thrombus in the blood vessel (the side where the blood flow is directed). It is desirable to keep it.
  • an elastic body 111 made of a wire that expands by its own elastic force by being pushed out from a sheath or the like, and a film-like film disposed on the outer peripheral surface of the elastic body 111
  • a filter device 110 including a filter 112 and a wire portion 113 connected to the elastic body 111 is used.
  • the filter 112 When the elastic body 111 pushed out from the sheath or the like expands and the filter 112 comes into contact with the blood vessel, the filter 112 restricts blood circulation. Thereby, the crushed thrombus can be prevented from flowing through the blood vessel and moving to another location.
  • the medical device 10 in a state in which the distal portion of the shaft portion 20 including the crushing portion 60 is accommodated in the outer sheath 90 is prepared.
  • the proximal end portion of the wire portion 113 is inserted into the guide wire lumen 44 (see FIG. 4) of the medical device 10.
  • the medical device 10 is made to reach the proximal side of the thrombus 300 using the wire portion 113 as a guide.
  • the outer sheath 90 is moved proximally with respect to the shaft portion 20, as shown in FIG. 8B, the crushing portion 60 is exposed to the outside of the outer sheath 90 and is expanded by its own elastic force. To do.
  • the slide part 50 moves to the proximal side with respect to the shaft part 20.
  • the crushing part 60 when the crushing part 60 has entered the vicinity of the thrombus 300 and the rotation driving part 70 (see FIG. 1) rotates the shaft outer tube 21, the crushing part 60 also rotates accordingly.
  • the crushing part 60 When the crushing part 60 is moved to the distal side in this state, the crushing part 60 comes into contact with the thrombus 300, and the crushing part 60 crushes in a state where the crushing part 60 is fixed in the blood vessel. If the crushing unit 60 continues to rotate, the blood flow is restricted by the filter device 110, and therefore, as shown in FIG. 9, the thrombus 300 fixed in the blood vessel is crushed.
  • the crushed thrombus 301 is in a floating state without being settled in the staying blood vessel.
  • the crushing part 60 When the crushing part 60 contacts the thrombus 300 by rotating, it receives a reaction force in the direction opposite to the rotating direction.
  • a proximal portion of the crushing portion 60 is fixed to the shaft portion 20 by a connecting portion 62. Further, the distal portion of the crushing portion 60 is connected to the slide portion 50, and the slide portion 50 is restricted from rotating relative to the shaft portion 20. For this reason, in the crushing portion 60, relative rotation of the proximal end portion and the distal end portion is limited, and twisting is suppressed. For this reason, the swelling of the crushing part 60 can be maintained at a desired size, and the range in which the thrombus can be crushed can be appropriately maintained.
  • the shaft portion 20 rotates in a curved state along the blood vessel.
  • the guide wire tube 40 swings around the shaft outer tube 21 that is rotationally driven.
  • the guide wire tube 40 maintains the guide wire lumen 44, and the third tube 43 slides in the axial direction with respect to the first tube 41 and the second tube 42 as it rotates.
  • the contraction or extension is repeated in the axial direction.
  • the bending rigidity of the shaft portion 20 including the shaft outer tube 21 and the guide wire tube 40 is compared with the case where the entire axial direction of the guide wire tube is fixed to the shaft outer tube 21. Low anisotropy due to bending direction. Therefore, even in the curved blood vessel, since the shaft portion 20 rotates smoothly, the crushing portion 60 does not swing more than necessary, and the cutting property of the thrombus 300 can be maintained well.
  • the shaft portion 20 including the shaft outer tube 21 and the guide wire tubular body 40 is twisted, as indicated by a dashed line in FIG.
  • the guide wire tube 40 is deformed so as to draw a spiral along the outer periphery of the shaft outer tube 21, and the entire length becomes longer.
  • the guide wire tubular body 40 is difficult to extend and contract in the axial direction. For this reason, the shaft outer tube 21 may be bent by receiving a force from the guide wire tube 40 that is difficult to extend and contract.
  • the shaft outer tube 21 is unlikely to be bent by twisting. For this reason, the shaft part 20 can rotate smoothly. Moreover, the crushing part 60 does not shake more than necessary, and the machinability of the thrombus 300 can be maintained well.
  • the pusher of the syringe 100 (see FIG. 1) is pulled to bring the hollow inside of the shaft inner tube 30 into a negative pressure state. Since the distal end portion of the inner shaft tube 30 communicates with the hollow interior of the outer shaft tube 21 and the outer shaft tube 21 communicates with the outside of the shaft portion 20 through the opening portion 22, the opening portion 22 is connected to the shaft portion. A suction force is generated to the outside of the 20. For this reason, the opening 22 draws the crushed thrombus 301 floating in the blood vessel. As shown in FIG. 11, a part of the thrombus 301 attracted to the opening 22 enters the hollow interior of the shaft outer tube 21.
  • the shaft inner tube 30 After pulling the pusher of the syringe 100, the shaft inner tube 30 is moved in the axial direction with respect to the shaft outer tube 21.
  • the shaft inner tube 30 is moved from the state proximal to the opening 22 toward the distal side of the shaft outer tube 21, that is, the side closer to the contact portion 23, FIG. As shown, a part of the thrombus 301 that has entered the hollow interior of the outer shaft tube 21 through the opening 22 is cut off while being compressed by the distal surface of the inner tube 30.
  • the thrombus 302 is cut into two by the blade portion 31A of the cutting portion 31 provided at the distal portion of the shaft inner tube 30.
  • the blade portion 31A also contacts the contact surface 23A, and the thrombus 302 cut off in the hollow inside of the shaft outer tube 21
  • the blade portion 31A is cut while being pressed against the blade 23.
  • the thrombus 302 that has been cut off can be reliably cut to a size smaller than the inner diameter of the shaft inner tube 30. Thereby, it is possible to suppress clogging of the cut thrombus 302 in the hollow inside of the shaft inner tube 30.
  • the cut thrombus 302 moves toward the proximal side of the hollow interior of the tube 30 within the shaft. Moving. Further, by moving the inner shaft tube 30 away from the contact portion 23 to the proximal side, the opening portion 22 is opened again, and the thrombus 301 is sucked and enters the hollow interior of the outer shaft tube 21. Therefore, the thrombus 301 can be continuously sucked while being finely cut by repeating the reciprocation of the inner tube 30 in the axial direction.
  • the rotating operation of the shaft outer tube 21 is continued while the crushed thrombus 301 is sucked by the shaft portion 20. Since the shaft outer tube 21 rotates, a vortex is generated in the blood in the blood vessel, and the thrombus 301 tends to gather near the center of rotation, that is, near the center in the radial direction of the blood vessel. It becomes easy to suck. Further, the vortex generated in the vicinity of the opening 22 also affects the flow inside the hollow of the shaft inner tube 30, and a vortex swirl is generated also inside the shaft inner tube 30. Thereby, the flow resistance with respect to the axial direction is reduced inside the inner tube 30 and the cut thrombus 302 can be sucked smoothly.
  • the shaft outer tube 21 rotates and the shaft inner tube 30 reciprocates in the axial direction with respect to the shaft outer tube 21, but other operations are performed. May be added.
  • suction is performed on the opening 22.
  • the thrombus 301 formed can be more reliably cut out and guided to the hollow inside of the shaft outer tube 21.
  • a wider range of the thrombus 300 can be crushed and stirred.
  • the reciprocating and rotating motions of the shaft outer tube 21 and the shaft inner tube 30 are stopped.
  • the crushing part 60 is accommodated in the outer sheath 90, and the medical device 10 is extracted from the blood vessel.
  • the filter device 110 is accommodated in a sheath or the like and removed from the blood vessel, and the treatment is completed.
  • the medical device 10 includes a long shaft outer tube 21 (main tube) and a guide wire tube 40 (sub-unit) connected to the shaft outer tube 21 along with the shaft outer tube 21.
  • the guide wire tube 40 includes a first tube 41 connected to the distal portion of the shaft outer tube 21, and the first tube 41 with respect to the shaft outer tube 21.
  • the second tube 42 connected at the proximal side, and the lumens of the first tube 41 and the second tube 42 are indirectly connected via the third tube 43 (other member).
  • the first tube 41 and the second tube 42 are relatively movable along the shaft outer tube 21. Note that the relative movement along the shaft outer tube 21 is not necessarily limited to the case of moving in parallel along the shaft outer tube 21.
  • the medical device 10 configured as described above is bent because the first tube 41 and the second tube 42 move relatively along the shaft outer tube 21 (main tube) when the medical device 10 is bent. Stiffness anisotropy is reduced. For this reason, even if the medical device 10 is inserted into a bent biological lumen, it is possible to suppress a decrease in performance.
  • the names of “main tube” and “sub tube” do not limit the function of each tube. Therefore, the function of the secondary tube is not limited to the incidental function with respect to the function of the main tube.
  • the shaft outer tube 21 (main tube) is curved, the length from the proximal end portion of the first tube 41 to the distal end portion of the second tube 42 changes. Thereby, the curve of the shaft outer tube 21 is not hindered by the guide wire tubular body 40 (sub tube). Therefore, even if the medical device 10 is inserted into a bent biological lumen, it can suppress a decrease in performance.
  • the medical device 10 has a first end portion slidably in contact with the outer peripheral surface of the first tube 41, and a second end portion slidably in contact with the outer peripheral surface of the second tube 42.
  • the third tube 43 is provided.
  • the third tube 43 is connected to the shaft outer tube 21 (main tube). Thereby, even if the medical device 10 is bent, since the third tube 43 is not separated from the shaft outer tube 21, it is possible to suppress the third tube 43 from interfering with other members (for example, the crushing portion 60). . For this reason, even if the medical device 10 is inserted into a bent biological lumen, it is possible to suppress a decrease in performance. In addition, the third tube 43 is unlikely to fall off in the living body lumen, and safety can be improved.
  • the shaft outer tube 21 (main tube) and the guide wire tube 40 (sub tube) can be integrally rotated in a connected state.
  • the direction of bending repeatedly changes with rotation.
  • the first tube 41 and the second tube 42 continue to move relatively with the rotation, and the anisotropy of the bending rigidity is reduced.
  • the shaft outer tube 21 and the guide wire tube 40 receive a torsional force by rotating, but the first tube 41 and the second tube 42 move relatively along the shaft outer tube 21.
  • the bending of the outer shaft tube 21 and the guide wire tube 40 due to twisting can be suppressed. Therefore, the medical device 10 can suppress a decrease in performance even when the medical device 10 rotates and twists.
  • the medical device 10 has a rotation center axis inside the shaft outer tube 21 (main tube).
  • the guide wire tubular body 40 swings around the outer shaft tube 21 positioned at the center of rotation.
  • a tube that swings around a curved tube needs to expand and contract in the axial direction during rotation. Therefore, the guide wire tube 40 having the relatively movable first tube 41 and the second tube 42 is a “swing tube”, so that smooth rotation around the shaft outer tube 21 is possible. It becomes possible.
  • the medical device 10 is connected to the distal portion of the outer shaft tube 21 (main tube) or the guide wire tube 40 (sub tube) and can be rotated, and can be deformed in a plurality of ways so as to have a plurality of gaps. It further has a crushing portion 60 that is formed into a cylindrical shape as a whole by the wire 61 and can be expanded in the radial direction of the shaft outer tube 21. Thereby, even if the medical device 10 is inserted into the bent biological lumen, the bending rigidity anisotropy is reduced, so that the appropriate position of the crushing portion 60 can be maintained, and the thrombus 300 in the biological lumen can be maintained. Appropriate and efficient crushing is possible.
  • the medical device 10 can suppress the degradation of the crushing performance even when twisting occurs when crushing the thrombus 300 by the crushing unit 60.
  • the third tube 43 (other member) of the first tube 41 and the second tube 42 is provided.
  • the lengths L5 and L6 in the axial direction of the portion in contact with the outer peripheral surface are larger than the length when the shaft outer tube 21 and the guide wire tube 40 are linear during one rotation of the shaft outer tube 21. Has both long and short states. For this reason, the state where the shaft outer tube 21 and the guide wire tube 40 are curved can be well maintained even during rotation.
  • the living body lumen into which the medical device 10 is inserted is not limited to a blood vessel, and may be, for example, a blood vessel, a ureter, a bile duct, an oviduct, a hepatic duct, or the like.
  • the present invention can be applied to any device that is used by being inserted into a living body lumen. Therefore, the medical device may not have a function of rotating, may not have a function of crushing an object, and may not have a function of sucking. Further, a plurality of main tubes may be provided, or a plurality of sub tubes may be provided.
  • the third tube 43 may not be connected to the shaft outer tube 21 as in the modification shown in FIG.
  • symbol is attached
  • the following expression (8) is satisfied so that the third tube 43 does not come out even if it moves to the distal side.
  • the following formula (9) is satisfied so that the third tube 43 does not come out even if it moves to the proximal side.
  • the third tube 43 is not connected to the shaft outer tube 21, so that the third tube 43 is easily separated from the shaft outer tube 21.
  • the rigidity of the guide wire may affect the rotation.
  • the influence of the guide wire on the rotation can be reduced by separating the third tube 43 from the shaft outer tube 21, which is effective.
  • the secondary tube 40 and the shaft outer tube 21 rotate with two separate axes when the secondary tube 40 is separated from the shaft outer tube 21, even if a thrombus enters the crushing portion 60, the secondary tube 40 and the shaft outer tube 21 rotate. The thrombus can be satisfactorily crushed by the tube 40 and the shaft outer tube 21.
  • the third tube 48 is not disposed on the outer peripheral surface side of the first tube 41 and the second tube 42, but the first tube 41 and It may be arranged on the inner peripheral surface side of the second tube 42.
  • the third tube 51 may be disposed on the outer peripheral surface side of the first tube 41 and on the inner peripheral surface side of the second tube 50. . Further, the third tube may be arranged on the inner peripheral surface side of the first tube and on the outer peripheral surface side of the second tube.
  • the third tube may not be provided.
  • the proximal portion of the first tube 41 enters the lumen from the opening on the distal side. Accordingly, the distal end of the second tube 49 is located on the distal side of the proximal end of the first tube 41.
  • the inner peripheral surface of the second tube 49 is slidable with the outer peripheral surface of the first tube 41.
  • 20 may be a structure in which the distal end portion of the second tube 42 enters from the opening on the proximal side of the first tube 52 as in another modification shown in FIG.
  • the cutting unit 31 that sucks the thrombus 301 while cutting the thrombus 301 is provided inside the shaft unit 20, but the cutting unit 31 that cuts the thrombus 301 is not provided inside the shaft unit. May be.
  • the shaft portion may not have a function of sucking the thrombus 301.
  • the crushed thrombus 301 can be sucked by the outer sheath 90 or other sheath that accommodates the shaft portion.
  • a guide wire lumen can be arranged inside the shaft outer tube without providing the shaft inner tube. In this case, a separate guide wire tube having a guide wire lumen may not be provided on the outer peripheral surface of the distal portion of the shaft outer tube.
  • the convex part slidably fitted into the slit 58 of the slide part 50 may be a solid member extending in the axial direction of the shaft outer tube, instead of a hollow guide wire tube.
  • the convex portion may be configured integrally with the shaft outer tube.

Abstract

Provided is a medical device whereby it is possible to suppress a reduction in performance and reduce anisotropy in the bending rigidity of a medical device provided with a plurality of tubes. A medical device (10) having a long shaft outer pipe (21) and a guide wire pipe body (40) arranged beside the shaft outer pipe (21) and connected to the shaft outer pipe (21), wherein the guide wire pipe body (40) has a first tube (41) connected to a distal part of the shaft outer pipe (21), and a second tube (42) connected to the shaft outer pipe (21) at a more proximal location than the first tube (41), bores of the first tube (41) and the second tube (42) being communicated, and the first tube (41) and the second tube (42) being capable of moving relative to each other along the shaft outer pipe (21).

Description

医療デバイスMedical device
 本発明は、生体管腔に挿入されて用いられる医療デバイスに関する。 The present invention relates to a medical device used by being inserted into a living body lumen.
 血管などの生体管腔に挿入される医療デバイスは、複数のチューブが並んで連結される場合がある。例えば、血管内に挿入されるカテーテルは、薬剤、造影剤または生理食塩液等を流通させたり、他のデバイスを挿入したりするためのチューブと、ガイドワイヤを挿入するためのチューブが並んで連結される場合がある(例えば、特許文献1を参照)。このように、目的に応じて異なるチューブを設けることで、各チューブの機能が干渉せず、カテーテルの操作性や機能を高めることができる。 A medical device to be inserted into a biological lumen such as a blood vessel may be connected with a plurality of tubes side by side. For example, in a catheter inserted into a blood vessel, a tube for distributing a drug, a contrast medium, a physiological saline, or the like, or inserting another device, and a tube for inserting a guide wire are connected side by side. (For example, refer to Patent Document 1). Thus, by providing different tubes according to the purpose, the functions of the tubes do not interfere with each other, and the operability and functions of the catheter can be improved.
米国特許第8983582号明細書US Pat. No. 8,983,582
 複数のチューブが並んだカテーテルは、曲がる方向によって各チューブの曲がりやすさに差が生じるため、カテーテル全体としての曲げ剛性に方向性が発生する。このため、屈曲した生体管腔内へカテーテルを挿入する場合に、カテーテルの剛性の異方性は、カテーテルの病変部への到達性や、管腔に対するカテーテルの追従性などの性能に影響を及ぼす。 Since a catheter in which a plurality of tubes are arranged has a difference in the ease of bending of each tube depending on the direction of bending, directionality occurs in the bending rigidity of the entire catheter. For this reason, when a catheter is inserted into a bent biological lumen, the anisotropy of the rigidity of the catheter affects the reachability of the catheter to the lesioned part and the performance of the catheter following the lumen. .
 本発明は、上述した課題を解決するためになされたものであり、複数のチューブを備える医療デバイスの曲げ剛性の異方性を低減でき、性能の低下を抑制できる医療デバイスを提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a medical device that can reduce the anisotropy of bending rigidity of a medical device including a plurality of tubes and can suppress a decrease in performance. And
 上記目的を達成する本発明に係る医療デバイスは、長尺な主チューブおよび当該主チューブと並んで当該主チューブに連結される副チューブを有する医療デバイスであって、前記副チューブは、前記主チューブの遠位部と連結されている第1のチューブと、前記主チューブに対して前記第1のチューブよりも近位側で連結されている第2のチューブと、を有し、前記第1のチューブおよび第2のチューブの内腔が直接的にまたは他の部材を介して間接的に連通し、かつ前記第1のチューブおよび第2のチューブは前記主チューブに沿って相対的に移動可能である。 The medical device according to the present invention that achieves the above object is a medical device having a long main tube and a sub tube connected to the main tube along with the main tube, the sub tube being the main tube A first tube connected to the distal portion of the first tube and a second tube connected to the main tube on a more proximal side than the first tube, the first tube The lumens of the tube and the second tube communicate directly or indirectly through other members, and the first tube and the second tube are relatively movable along the main tube. is there.
 上記のように構成した医療デバイスは、主チューブが屈曲すると、第1のチューブと第2のチューブが主チューブに沿って相対的に移動するため、曲げ剛性の異方性が減少する。このため、医療デバイスは、屈曲した生体管腔に挿入しても、性能の低下を抑制できる。 In the medical device configured as described above, when the main tube is bent, the first tube and the second tube move relatively along the main tube, so that the anisotropy of the bending rigidity is reduced. For this reason, even if the medical device is inserted into a bent biological lumen, it is possible to suppress a decrease in performance.
実施形態に係る医療デバイスを示す平面図である。It is a top view which shows the medical device which concerns on embodiment. 医療デバイスの遠位部を示す斜視図である。It is a perspective view which shows the distal part of a medical device. 医療デバイスの遠位部を示す拡大斜視図である。It is an expansion perspective view which shows the distal part of a medical device. 医療デバイスの遠位部を示す断面図である。It is sectional drawing which shows the distal part of a medical device. シャフト外管およびガイドワイヤ用管体を示す断面図であるFIG. 5 is a cross-sectional view showing a shaft outer tube and a guide wire tube シャフト外管およびガイドワイヤ用管体が湾曲した状態を示す断面図であるIt is sectional drawing which shows the state which the outer tube | pipe and the pipe body for guide wires curved. シャフト外管およびガイドワイヤ用管体が逆方向へ湾曲した状態を示す断面図であるIt is sectional drawing which shows the state which the shaft outer tube and the pipe body for guide wires curved in the reverse direction 血管内の状態を示す断面図であり、(A)は医療デバイスを血管内に挿入した状態、(B)は医療デバイスの破砕部を血管内に露出させた状態を示す。It is sectional drawing which shows the state in the blood vessel, (A) shows the state which inserted the medical device in the blood vessel, (B) shows the state which exposed the crushing part of the medical device in the blood vessel. 医療デバイスにより血栓を破砕した状態を示す断面図である。It is sectional drawing which shows the state which crushed the thrombus with the medical device. 医療デバイスの遠位部を示す斜視図である。It is a perspective view which shows the distal part of a medical device. 破砕された血栓がシャフト外管の開口部に吸引された状態を示す医療デバイスの遠位部の拡大断面図である。It is an expanded sectional view of the distal part of a medical device which shows the state where the crushed thrombus was sucked into the opening of the shaft outer tube. シャフト外管の開口部に吸引された血栓がシャフト内管により切り取られる過程を示す医療デバイスの遠位部の拡大断面図である。It is an expanded sectional view of the distal part of a medical device which shows the process in which the thrombus attracted | sucked to the opening part of the outer shaft tube is cut off by the inner tube. シャフト内管により切り取られた血栓が切断部により切断された状態を示す医療デバイスの遠位部の拡大断面図である。It is an expanded sectional view of the distal part of a medical device which shows the state where the thrombus cut off by the tube in a shaft was cut by the cutting part. 切断部により切断された血栓がシャフト内管の近位側に吸引される過程を示す医療デバイスの遠位部の拡大断面図である。It is an expanded sectional view of the distal part of the medical device which shows the process in which the thrombus cut | disconnected by the cutting part is attracted | sucked to the proximal side of the tube in a shaft. 医療デバイスの変形例を示す断面図である。It is sectional drawing which shows the modification of a medical device. 図15に示す医療デバイスの変形例の遠位部を湾曲させた状態を示す断面図である。It is sectional drawing which shows the state which curved the distal part of the modification of the medical device shown in FIG. 医療デバイスの他の変形例を示す断面図である。It is sectional drawing which shows the other modification of a medical device. 医療デバイスのさらに他の変形例を示す断面図である。It is sectional drawing which shows the further another modification of a medical device. 医療デバイスのさらに他の変形例を示す断面図である。It is sectional drawing which shows the further another modification of a medical device. 医療デバイスのさらに他の変形例を示す断面図である。It is sectional drawing which shows the further another modification of a medical device.
 以下、図面を参照して、本発明の実施の形態を説明する。本実施形態に係る医療デバイス10は、深部静脈血栓症において、血管内に挿入され、血栓を破砕して除去する処置に用いられる。本明細書では、デバイスの血管に挿入する側を「遠位側」、操作する手元側を「近位側」と称することとする。なお、除去する物体は、必ずしも血栓に限定されず、生体管腔内に存在し得る物体は、全て該当し得る。なお、図面の寸法比率は、説明の都合上、誇張されて実際の比率とは異なる場合がある。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The medical device 10 according to the present embodiment is inserted into a blood vessel in deep vein thrombosis, and is used for a treatment for crushing and removing the thrombus. In this specification, the side of the device that is inserted into the blood vessel is referred to as the “distal side”, and the proximal side that is operated is referred to as the “proximal side”. Note that the object to be removed is not necessarily limited to the thrombus, and any object that can exist in the living body lumen can be applicable. In addition, the dimension ratio of drawing is exaggerated on account of description, and may differ from an actual ratio.
 医療デバイス10は、図1~4に示すように、長尺であって回転駆動されるシャフト部20と、シャフト部20を収容できる外シース90と、シャフト部20に対してスライド可能なスライド部50と、シャフト部20によって回転する破砕部60とを備えている。医療デバイス10は、さらに、シャフト部20を回転させる回転駆動部70と、シャフト部20の近位側端部に設けられるハブ80と、ハブ80の近位側に接続されるシリンジ100とを備えている。 As shown in FIGS. 1 to 4, the medical device 10 includes an elongated shaft portion 20 that is rotationally driven, an outer sheath 90 that can accommodate the shaft portion 20, and a slide portion that is slidable with respect to the shaft portion 20. 50 and a crushing portion 60 that is rotated by the shaft portion 20. The medical device 10 further includes a rotation driving unit 70 that rotates the shaft unit 20, a hub 80 provided at a proximal end portion of the shaft unit 20, and a syringe 100 connected to the proximal side of the hub 80. ing.
 シャフト部20は、それぞれ長尺中空状のシャフト外管21(主チューブ)と、シャフト内管30と、ガイドワイヤ用管体40(副チューブ)とを有する。 The shaft portion 20 includes a long hollow shaft outer tube 21 (main tube), a shaft inner tube 30, and a guide wire tube 40 (sub tube).
 シャフト外管21は、遠位側端部がシャフト部20の遠位部であり、近位側端部が回転駆動部70に位置している。シャフト外管21は、回転駆動部70によって周方向に沿って往復動可能とされている。ただし、シャフト外管21は往復動するものに限られず、一方向に回転するものであってもよい。シャフト外管21は、内部にシャフト内管30を収容するルーメン24を有している。シャフト外管21の内径はシャフト内管30の外径よりも大きい。シャフト外管21は、遠位部近傍に、軸心方向に沿って長孔状の開口部22を有しており、シャフト外管21の内外が連通している。シャフト外管21の遠位側端部には、ルーメン24を塞ぐ円筒状の当接部23が設けられている。当接部23の近位面は、シャフト内管30の遠位面と対向する当接面23Aとなっている。当接面23Aは、シャフト外管21の開口部22の遠位側端部よりも遠位側に位置している。当接部23はステンレス等によって構成される。 The distal end of the shaft outer tube 21 is the distal portion of the shaft portion 20, and the proximal end portion is located in the rotation drive unit 70. The shaft outer tube 21 can be reciprocated along the circumferential direction by the rotation drive unit 70. However, the shaft outer tube 21 is not limited to one that reciprocates, and may be one that rotates in one direction. The shaft outer tube 21 has a lumen 24 that accommodates the shaft inner tube 30 therein. The inner diameter of the shaft outer tube 21 is larger than the outer diameter of the shaft inner tube 30. The shaft outer tube 21 has a long hole-shaped opening 22 in the axial direction in the vicinity of the distal portion, and the inside and outside of the shaft outer tube 21 communicate with each other. A cylindrical contact portion 23 that closes the lumen 24 is provided at the distal end portion of the shaft outer tube 21. The proximal surface of the contact portion 23 is a contact surface 23 </ b> A that faces the distal surface of the shaft inner tube 30. The contact surface 23 </ b> A is located on the distal side of the distal end of the opening 22 of the shaft outer tube 21. The contact part 23 is made of stainless steel or the like.
 シャフト内管30は、シャフト外管21の中空内部に同軸的に納められる。シャフト内管30は、シャフト外管21に対して、軸心方向に移動可能となっている。シャフト内管30の遠位側端部は、シャフト外管21の開口部22の近位側端部の位置またはそれよりも近位側に位置している。シャフト内管30の近位側端部は、シャフト外管21の近位側端部よりもさらに近位側まで伸びており、ハブ80に接続されている。ハブ80にシリンジ100を接続することによって、シャフト内管30の中空内部を吸引し、負圧状態とすることができる。シャフト内管30の遠位側端部の中空内部に切断部31が設けられている。切断部31は、金属製の薄板で、シャフト内管30の直径に相当する幅を有し、遠位側に鋭利な刃部31Aを有している。 The shaft inner tube 30 is coaxially stored in the hollow interior of the shaft outer tube 21. The inner shaft tube 30 is movable in the axial direction with respect to the outer shaft tube 21. The distal end portion of the shaft inner tube 30 is located at the proximal end portion of the opening 22 of the shaft outer tube 21 or at the proximal side thereof. The proximal end portion of the shaft inner tube 30 extends further to the proximal side than the proximal end portion of the shaft outer tube 21 and is connected to the hub 80. By connecting the syringe 100 to the hub 80, the hollow inside of the shaft inner tube 30 can be sucked into a negative pressure state. A cutting portion 31 is provided in the hollow interior of the distal end portion of the shaft inner tube 30. The cutting portion 31 is a metal thin plate, has a width corresponding to the diameter of the shaft inner tube 30, and has a sharp blade portion 31A on the distal side.
 刃部31Aの遠位側端面とシャフト内管30の遠位側端面は、段差がないように配置されている。このため、シャフト内管30の遠位面が当接部23の当接面23Aに対して当接すると、刃部31Aも当接面23Aに対して当接する。シャフト内管30は、シャフト外管21に対し、少なくとも開口部22の基端よりも基部側(図4に示す位置)から当接部23の当接面23Aに対して当接する位置までを、軸心方向に沿って往復動可能とされている。切断部31は、シャフト内管30の中空部分の断面形状を二分するように配置されている。 The distal end face of the blade portion 31A and the distal end face of the shaft inner tube 30 are arranged so that there is no step. For this reason, when the distal surface of the shaft inner tube 30 contacts the contact surface 23A of the contact portion 23, the blade portion 31A also contacts the contact surface 23A. The shaft inner tube 30 is at least from the base side (position shown in FIG. 4) to the contact surface 23A of the contact portion 23 with respect to the shaft outer tube 21, from the base end of the opening portion 22, It can be reciprocated along the axial direction. The cutting part 31 is arranged so as to bisect the cross-sectional shape of the hollow part of the shaft inner tube 30.
 ガイドワイヤ用管体40は、シャフト外管21の遠位部の外表面に沿ってシャフト外管21に連結される。ガイドワイヤ用管体40は、ガイドワイヤを挿入可能なガイドワイヤルーメン44(内腔)を有している。ガイドワイヤ用管体40は、最も遠位側の第1のチューブ41と、最も近位側の第2のチューブ42と、第1のチューブ41および第2のチューブ42の間に設けられる第3のチューブとを有する。 The guide wire tube 40 is connected to the shaft outer tube 21 along the outer surface of the distal portion of the shaft outer tube 21. The guide wire tube 40 has a guide wire lumen 44 (lumen) into which a guide wire can be inserted. The guide wire tube 40 includes a third tube provided between the first tube 41 and the second tube 42, the first tube 41 on the most distal side, the second tube 42 on the most proximal side, and the third tube 42. Tube.
 第1のチューブ41は、シャフト外管21と平行に並んで配置される。第1のチューブ41は、遠位部のみで第1連結部45にてシャフト外管21に固定されている。このため、第1のチューブ41の第1連結部45に固定される部位以外は、シャフト外管21から独立して変形可能である。 The first tube 41 is arranged in parallel with the shaft outer tube 21. The first tube 41 is fixed to the shaft outer tube 21 at the first connecting portion 45 only at the distal portion. For this reason, it can deform | transform independently from the shaft outer tube | pipe 21 except the site | part fixed to the 1st connection part 45 of the 1st tube 41. FIG.
 第2のチューブ42は、第1のチューブ41よりも近位側でシャフト外管21と平行に並んで配置される。第2のチューブ42の遠位側の端部は、第1のチューブ41の近位側の端部よりも近位側に位置する。第2のチューブ42は、近位部のみで第2連結部46にてシャフト外管21に固定されている。このため、第2のチューブ42の第2連結部46に固定される部位以外は、シャフト外管21から独立して変形可能である。第1のチューブ41および第2のチューブ42は、同一の内径および外径を有する。なお、第1のチューブ41および第2のチューブ42は、異なる内径および外径を有してもよい。 The second tube 42 is arranged in parallel with the shaft outer tube 21 on the proximal side of the first tube 41. The distal end of the second tube 42 is located closer to the proximal side than the proximal end of the first tube 41. The second tube 42 is fixed to the shaft outer tube 21 at the second connecting portion 46 only at the proximal portion. For this reason, it can deform | transform independently from the shaft outer tube | pipe 21 except the site | part fixed to the 2nd connection part 46 of the 2nd tube 42. FIG. The first tube 41 and the second tube 42 have the same inner diameter and outer diameter. Note that the first tube 41 and the second tube 42 may have different inner and outer diameters.
 第3のチューブ43は、第1連結部45および第2連結部46の間に位置し、シャフト外管21と平行に並んで配置される。第3のチューブ43の遠位側の開口から内腔に第1のチューブ41の近位部が入り込んでいる。第3のチューブ43の内周面は、第1のチューブ41の外周面と摺動可能である。また、第3のチューブ43は、近位側の開口から内腔に第2のチューブ42の遠位部が入り込んでいる。第3のチューブ43の内周面は、第2のチューブ42の外周面と摺動可能である。第3のチューブ43は、第1のチューブ41の近位側端部と、第2のチューブ42の遠位側端部の間に位置する第3連結部47により、シャフト外管21に固定されている。第3のチューブ43の内径は、第1のチューブ41および第2のチューブ42の外径よりもわずかに大きい。これにより、第1のチューブ41および第2のチューブ42が、第3のチューブ43の内部で摺動可能である。第3のチューブ43は、シャフト部20が湾曲しても、第1のチューブ41および第2のチューブ42が第3のチューブ43の内腔から抜けない長さを有している。したがって、第1のチューブ41、第3のチューブ43および第2のチューブ42の内腔は、連通して1つのガイドワイヤルーメン44を構成する。 The third tube 43 is located between the first connection portion 45 and the second connection portion 46 and is arranged in parallel with the shaft outer tube 21. The proximal portion of the first tube 41 enters the lumen from the distal opening of the third tube 43. The inner peripheral surface of the third tube 43 is slidable with the outer peripheral surface of the first tube 41. Further, in the third tube 43, the distal portion of the second tube 42 enters the lumen from the opening on the proximal side. The inner peripheral surface of the third tube 43 is slidable with the outer peripheral surface of the second tube 42. The third tube 43 is fixed to the shaft outer tube 21 by a third connecting portion 47 located between the proximal end portion of the first tube 41 and the distal end portion of the second tube 42. ing. The inner diameter of the third tube 43 is slightly larger than the outer diameters of the first tube 41 and the second tube 42. As a result, the first tube 41 and the second tube 42 can slide inside the third tube 43. The third tube 43 has such a length that the first tube 41 and the second tube 42 do not come out of the lumen of the third tube 43 even if the shaft portion 20 is curved. Accordingly, the lumens of the first tube 41, the third tube 43, and the second tube 42 communicate with each other to form one guide wire lumen 44.
 第1のチューブ41および第2のチューブ42の外周面は、シャフト外管21の外周面から、第3のチューブ43の肉厚以上の隙間dで離れている。このため、第3のチューブ43が、第1のチューブ41とシャフト外管21の間、および第2のチューブ42とシャフト外管21の間を移動可能である。 The outer peripheral surfaces of the first tube 41 and the second tube 42 are separated from the outer peripheral surface of the shaft outer tube 21 by a gap d that is equal to or greater than the thickness of the third tube 43. For this reason, the third tube 43 is movable between the first tube 41 and the shaft outer tube 21 and between the second tube 42 and the shaft outer tube 21.
 第1のチューブ41の遠位部が第1連結部45によりシャフト外管21に固定される。第2のチューブ42の近位部が第2連結部46によりシャフト外管21に固定される。そのため、図5、6に示すように、シャフト外管21が直線状態から湾曲すると、湾曲の程度および方向によって、第1のチューブ41の近位側端部および第2のチューブ42の遠位側端部が近づく。湾曲するシャフト外管21の湾曲の内側にガイドワイヤ用管体40が位置する場合に、第1のチューブ41の近位側端部および第2のチューブ42の遠位側端部は、最も近づく。ここで、湾曲しない直線状態において第3のチューブ43と第1のチューブ41が重なる長さをL5、第3のチューブ43が第2のチューブ42と重なる長さをL6とする。長さL5、L6は、湾曲するシャフト外管21の湾曲の内側にガイドワイヤ用管体40が位置する場合(図6を参照)に、湾曲しない状態(図5を参照)よりも長くなる。また、長さL5、L6は、湾曲するシャフト外管21の湾曲の外側にガイドワイヤ用管体40が位置する場合(図7を参照)に、湾曲しない状態(図5を参照)よりも長くなる。ここで、シャフト外管21とガイドワイヤ用管体40の軸心間の距離をx、シャフト外管21の第1連結部45と第2連結部46の間の距離をLm、第1のチューブ41の近位側端部および第2のチューブ42の遠位側端部の間の距離をLdとする。さらに、シャフト外管21の軸心の許容される最少の曲率半径をr、最少曲率状態において第1連結部45における軸心と直交する面と第2連結部46における軸心と直交する面がなす角度をA度とする。シャフト外管21が湾曲した場合に、シャフト外管21の軸心に沿う長さ変化しないと仮定すると、距離Lmと、ガイドワイヤ用管体40の軸心に沿う第1連結部45と第2連結部46の間の長さLsは、以下の式(1)、(2)の通りとなる。 The distal portion of the first tube 41 is fixed to the shaft outer tube 21 by the first connecting portion 45. The proximal portion of the second tube 42 is fixed to the shaft outer tube 21 by the second connecting portion 46. Therefore, as shown in FIGS. 5 and 6, when the shaft outer tube 21 is bent from a straight state, the proximal end of the first tube 41 and the distal side of the second tube 42 depend on the degree and direction of the curve. The edge approaches. When the guide wire tube 40 is positioned inside the curve of the curved outer shaft tube 21, the proximal end of the first tube 41 and the distal end of the second tube 42 are closest to each other. . Here, in a straight line that is not curved, the length in which the third tube 43 and the first tube 41 overlap is L5, and the length in which the third tube 43 overlaps the second tube 42 is L6. The lengths L5 and L6 are longer than the uncurved state (see FIG. 5) when the guide wire tube body 40 is positioned inside the curved outer shaft tube 21 (see FIG. 6). In addition, the lengths L5 and L6 are longer than when the guide wire tube body 40 is positioned outside the curve of the curved shaft outer tube 21 (see FIG. 7) and not bent (see FIG. 5). Become. Here, the distance between the axial centers of the shaft outer tube 21 and the guide wire tube 40 is x, the distance between the first connecting portion 45 and the second connecting portion 46 of the shaft outer tube 21 is Lm, and the first tube. The distance between the proximal end portion of 41 and the distal end portion of the second tube 42 is Ld. Further, the minimum allowable radius of curvature of the axis of the shaft outer tube 21 is r, and in the minimum curvature state, a surface orthogonal to the axis of the first connecting portion 45 and a surface orthogonal to the axis of the second connecting portion 46 are present. The angle formed is A degrees. Assuming that the length along the axis of the shaft outer tube 21 does not change when the shaft outer tube 21 is curved, the distance Lm, the first connecting portion 45 along the axis of the guide wire tubular body 40, and the second The length Ls between the connecting portions 46 is as shown in the following formulas (1) and (2).
 Lm=2r・A・π/180  ・・・式(1)
 Ls=(2r-2x)・A・π/180  ・・・式(2)
Lm = 2r · A · π / 180 (1)
Ls = (2r−2x) · A · π / 180 (2)
 したがって、シャフト外管21が最少曲率半径rで湾曲すると、ガイドワイヤ用管体40の軸心に沿う長さLsの減少量ΔLsは、以下の式(3)の通りとなる。 Therefore, when the shaft outer tube 21 is bent with the minimum radius of curvature r, the reduction amount ΔLs of the length Ls along the axis of the guide wire tube 40 is expressed by the following equation (3).
 ΔLs=Lm-Ls=2x・A・π/180  ・・・式(3) ΔLs = Lm−Ls = 2x · A · π / 180 (3)
 したがって、シャフト部20が許容される最少の曲率半径rで湾曲する場合であっても、第1のチューブ41の近位側端部および第2のチューブ42の遠位側端部が干渉しないように、以下の式(4)を満たすことが好ましい。
 Ld≧ΔLs  ・・・式(4)
Therefore, even when the shaft portion 20 is curved with the minimum allowable radius of curvature r, the proximal end portion of the first tube 41 and the distal end portion of the second tube 42 do not interfere with each other. In addition, it is preferable to satisfy the following formula (4).
Ld ≧ ΔLs Formula (4)
 また、図7に示すように、湾曲するシャフト外管21の湾曲の外側にガイドワイヤ用管体40が位置する場合に、第1のチューブ41の近位側端部および第2のチューブ42の遠位側端部は、最も離れる。この場合、ガイドワイヤ用管体40の軸心に沿う第1連結部45と第2連結部46の間の長さLtは、以下の式(5)の通りとなる。 Further, as shown in FIG. 7, when the guide wire tube body 40 is positioned outside the curve of the curved outer shaft tube 21, the proximal end portion of the first tube 41 and the second tube 42. The distal end is farthest away. In this case, the length Lt between the first connecting portion 45 and the second connecting portion 46 along the axis of the guide wire tubular body 40 is expressed by the following equation (5).
 Lt=(2r+2x)・A・π/180  ・・・式(5) Lt = (2r + 2x) · A · π / 180 Equation (5)
 したがって、最少の曲率半径rでシャフト外管21が湾曲すると、ガイドワイヤ用管体40の軸心に沿う長さLtの増加量ΔLtは、以下の式(6)の通りとなる。 Therefore, when the shaft outer tube 21 is bent with the minimum curvature radius r, the increase amount ΔLt of the length Lt along the axis of the guide wire tube 40 is expressed by the following equation (6).
 ΔLt=Lt-Lm=2x・A・π/180  ・・・式(6) ΔLt = Lt−Lm = 2x · A · π / 180 (formula 6)
 第3のチューブ43に対する第3連結部47の位置にも依存するが、第3のチューブ43が第1のチューブ41および第2のチューブ42から抜けないように、少なくとも以下の式(7)を満たすことが好ましい。 Although depending on the position of the third connecting portion 47 with respect to the third tube 43, at least the following expression (7) is set so that the third tube 43 does not come out of the first tube 41 and the second tube 42. It is preferable to satisfy.
 L5+L6>ΔLt  ・・・式(7) L5 + L6> ΔLt Expression (7)
 シャフト外管21は、柔軟で、かつ近位側から作用する回転の動力を遠位側に伝達可能であることが好ましい。シャフト内管30は、柔軟で、かつ近位側から作用する前後の往復運動の動力を遠位側に伝達可能であることが好ましい。ガイドワイヤ用管体40は、柔軟であることが好ましい。シャフト外管21、シャフト内管30およびガイドワイヤ用管体40の構成材料は、特に限定されないが、例えば、右左右と巻き方向を交互にしている3層コイルなどの多層コイル状の管体、ポリエチレン、ポリプロピレンなどのポリオレフィン、ポリアミド、ポリエチレンテレフタレートなどのポリエステル、ETFE(エチレン・四フッ化エチレン共重合体)等のフッ素系ポリマー、PEEK(ポリエーテルエーテルケトン)、ポリイミド、またはこれらの組み合わせに線材などの補強部材が埋設されたものが好適である。 The shaft outer tube 21 is preferably flexible and capable of transmitting rotational power acting from the proximal side to the distal side. It is preferable that the shaft inner tube 30 is flexible and can transmit the power of the reciprocating motion before and after acting from the proximal side to the distal side. The guide wire tube 40 is preferably flexible. The constituent materials of the shaft outer tube 21, the shaft inner tube 30, and the guide wire tube 40 are not particularly limited. For example, a multilayer coiled tube body such as a three-layer coil in which the right and left and the winding direction are alternated, Polyolefins such as polyethylene and polypropylene, polyesters such as polyamide and polyethylene terephthalate, fluorine-based polymers such as ETFE (ethylene / tetrafluoroethylene copolymer), PEEK (polyetheretherketone), polyimide, or combinations of these materials It is preferable that the reinforcing member is embedded.
 外シース90は、図1に示すように、シャフト部20を収容できるとともに、シャフト部20に連結された破砕部60を縮径させつつ収容できる。外シース90は、シャフト部20に対して軸心方向に摺動可能である。 As shown in FIG. 1, the outer sheath 90 can accommodate the shaft portion 20 and can reduce the diameter of the crushing portion 60 connected to the shaft portion 20. The outer sheath 90 is slidable in the axial direction with respect to the shaft portion 20.
 外シース90の構成材料は、特に限定されないが、例えばポリエチレン、ポリプロピレンなどのポリオレフィン、ポリアミド、ポリエチレンテレフタレートなどのポリエステル、ETFE等のフッ素系ポリマー、PEEK、ポリイミド、などが好適である。また、複数の材料によって構成されてもよく、線材などの補強部材が埋設されてもよい。 Although the constituent material of the outer sheath 90 is not particularly limited, for example, polyolefins such as polyethylene and polypropylene, polyesters such as polyamide and polyethylene terephthalate, fluorine-based polymers such as ETFE, PEEK, and polyimide are preferable. Moreover, it may be comprised with several material and reinforcement members, such as a wire, may be embed | buried.
 破砕部60は、図1、2に示すように、シャフト外管21の遠位部に設けられている。破砕部60は、複数の螺旋部61を備えている。各々の螺旋部61は、シャフト外管21の軸心方向に沿っていずれも同じ周方向に向かう捻りを施されている。各螺旋部61の近位側端部は、連結部62にてシャフト外管21に対して固定されている。各螺旋部61の遠位側端部は、シャフト部20に対してスライド可能なスライド部50に固定されている。連結部62およびスライド部50に対する各螺旋部61の固定位置が周方向に異なる。各螺旋部61は湾曲する軸心方向の中央部がシャフト外管21から径方向に離れた位置で、周方向に並んでいる。これにより、破砕部60は、全体としては周方向に均一な膨らみを有している。シャフト部20が回転すると、それに伴い破砕部60も回転し、血管内の血栓を破砕したり、あるいは破砕した血栓を撹拌したりすることができる。 The crushing part 60 is provided in the distal part of the shaft outer tube 21, as shown in FIGS. The crushing part 60 includes a plurality of spiral parts 61. Each spiral portion 61 is twisted in the same circumferential direction along the axial direction of the shaft outer tube 21. A proximal end portion of each spiral portion 61 is fixed to the shaft outer tube 21 by a connecting portion 62. A distal end portion of each spiral portion 61 is fixed to a slide portion 50 that can slide with respect to the shaft portion 20. The fixing positions of the spiral portions 61 with respect to the connecting portion 62 and the slide portion 50 are different in the circumferential direction. Each spiral portion 61 is arranged in the circumferential direction at a position where the central portion in the axial direction of the curve is separated from the shaft outer tube 21 in the radial direction. Thereby, the crushing part 60 has a uniform bulge in the circumferential direction as a whole. If the shaft part 20 rotates, the crushing part 60 will also rotate in connection with it, and the thrombus in the blood vessel can be crushed, or the crushed thrombus can be stirred.
 破砕部60を構成する螺旋部61は、可撓性を有する金属製の細線によって構成されている。破砕部60は、シャフト部20を目的部位に挿入するまで、外シース90の内部に納められた状態となっている。螺旋部61を外シース90に収容する際には、螺旋部61の遠位部が連結されるスライド部50を、シャフト部20に沿って遠位側へ移動させる。これにより、螺旋部61は、軸心方向に沿う中央部の膨らみを減少し、シャフト外管21の外周面に近づく。これにより、螺旋部61は、縮径されて外シース90の内部に収容される。シャフト部20を血管の目的部位まで挿入した後、外シース90をシャフト部20に対して近位側に摺動させることで、破砕部60が外シース90の外部に露出し、自己の弾性力により拡張する。このとき、スライド部50は、シャフト部20に沿って近位側へ移動する。このため、螺旋部61は、形状記憶性を有した材料で構成されることが望ましい。螺旋部61の構成材料は、例えば、熱処理により形状記憶効果や超弾性が付与される形状記憶合金、ステンレス、などが好適である。形状記憶合金としては、Ni-Ti系、Cu-Al-Ni系、Cu-Zn-Al系またはこれらの組み合わせなどが好適である。 The spiral part 61 which comprises the crushing part 60 is comprised by the metal thin wire which has flexibility. The crushing part 60 is kept in the outer sheath 90 until the shaft part 20 is inserted into the target site. When the spiral portion 61 is accommodated in the outer sheath 90, the slide portion 50 to which the distal portion of the spiral portion 61 is connected is moved to the distal side along the shaft portion 20. Thereby, the spiral part 61 reduces the swelling of the center part along an axial center direction, and approaches the outer peripheral surface of the shaft outer tube | pipe 21. FIG. Accordingly, the spiral portion 61 is reduced in diameter and is accommodated in the outer sheath 90. After inserting the shaft portion 20 to the target site of the blood vessel, the outer sheath 90 is slid proximally with respect to the shaft portion 20, so that the crushing portion 60 is exposed to the outside of the outer sheath 90, and its own elastic force Extend by. At this time, the slide part 50 moves to the proximal side along the shaft part 20. For this reason, it is desirable that the spiral portion 61 is made of a material having shape memory properties. As the constituent material of the spiral portion 61, for example, a shape memory alloy, stainless steel, or the like to which a shape memory effect or superelasticity is imparted by heat treatment is suitable. As the shape memory alloy, Ni—Ti, Cu—Al—Ni, Cu—Zn—Al, a combination thereof, or the like is preferable.
 スライド部50は、シャフト部20の軸心方向と直交する断面がC字形状である。スライド部50は、軸心方向のスライド部50の第1の端部から第2の端部まで延びるスリット58を有している。スリット58は、ガイドワイヤ用管体40が収容される。これにより、螺旋部61の遠位部がスライド部50に固定され、スライド部50がシャフト外管21の外周面に対して、回転することなく軸心方向へ摺動可能となる。 The slide part 50 has a C-shaped cross section perpendicular to the axial direction of the shaft part 20. The slide portion 50 has a slit 58 that extends from the first end portion to the second end portion of the slide portion 50 in the axial direction. The slit 58 accommodates the guide wire tube 40. Accordingly, the distal portion of the spiral portion 61 is fixed to the slide portion 50, and the slide portion 50 can slide in the axial direction without rotating with respect to the outer peripheral surface of the shaft outer tube 21.
 スライド部50の構成材料は、形状を維持できれば、特に限定されないが、例えば、ステンレス、アルミニウム、ポリエチレン、ポリプロピレンなどのポリオレフィン、ポリアミド、ポリエチレンテレフタレートなどのポリエステル、ETFE等のフッ素系ポリマー、PEEK、ポリイミド、などが好適である。 The constituent material of the slide portion 50 is not particularly limited as long as the shape can be maintained. For example, polyolefin such as stainless steel, aluminum, polyethylene, and polypropylene, polyester such as polyamide and polyethylene terephthalate, fluorine-based polymer such as ETFE, PEEK, polyimide, Etc. are suitable.
 回転駆動部70は、図1に示すように、駆動モータ71と、駆動モータ71をシャフト部20のシャフト外管21と連係させるギア部72とを有している。駆動モータ71を回転させることで、シャフト外管21が周方向に回転する。本実施形態では、シャフト外管21は周方向の正負二方向に向かって交互に回転するように、駆動モータ71によって駆動される。正負二方向に向かって交互に回転することで、血流が交互に反対方向を向くことができる。 As shown in FIG. 1, the rotary drive unit 70 includes a drive motor 71 and a gear unit 72 that links the drive motor 71 with the shaft outer tube 21 of the shaft unit 20. By rotating the drive motor 71, the shaft outer tube 21 rotates in the circumferential direction. In this embodiment, the shaft outer tube 21 is driven by the drive motor 71 so as to rotate alternately in two directions of positive and negative in the circumferential direction. By alternately rotating in the positive and negative directions, the blood flow can alternately turn in the opposite direction.
 次に、本実施形態に係る医療デバイス10の使用方法を、血管内の血栓を破砕して吸引する場合を例として説明する。 Next, a method of using the medical device 10 according to the present embodiment will be described by taking as an example a case where a thrombus in a blood vessel is crushed and sucked.
 本実施形態の医療デバイス10のシャフト部20を挿入する前に、血管内の血栓よりも下流側(血流が向う側)に、血管における流体の流通を制限するフィルタやバルーン等の保護部材を配置しておくことが望ましい。本実施形態では、図8(A)に示すように、シース等から押し出すことで、自己の弾性力により拡張する線材からなる弾性体111と、弾性体111の外周面に配置される膜状のフィルタ112と、弾性体111に連結されるワイヤ部113を備えるフィルタデバイス110を用いる。シース等から押し出された弾性体111が拡張してフィルタ112が血管に接触すると、フィルタ112が血液の流通を制限する。これにより、破砕した血栓が、血管内を流れて他の箇所に移動することを防止できる。 Before inserting the shaft portion 20 of the medical device 10 of the present embodiment, a protective member such as a filter or a balloon that restricts the flow of fluid in the blood vessel is disposed downstream of the thrombus in the blood vessel (the side where the blood flow is directed). It is desirable to keep it. In this embodiment, as shown in FIG. 8 (A), an elastic body 111 made of a wire that expands by its own elastic force by being pushed out from a sheath or the like, and a film-like film disposed on the outer peripheral surface of the elastic body 111 A filter device 110 including a filter 112 and a wire portion 113 connected to the elastic body 111 is used. When the elastic body 111 pushed out from the sheath or the like expands and the filter 112 comes into contact with the blood vessel, the filter 112 restricts blood circulation. Thereby, the crushed thrombus can be prevented from flowing through the blood vessel and moving to another location.
 次に、破砕部60を含むシャフト部20の遠位部が、外シース90に納められた状態の医療デバイス10を準備する。次に、医療デバイス10のガイドワイヤルーメン44(図4を参照)に、ワイヤ部113の近位側端部を挿入する。次に、ワイヤ部113をガイドとして、医療デバイス10を血栓300の近位側へ到達させる。この後、外シース90をシャフト部20に対して近位側へ移動させると、図8(B)に示すように、破砕部60が外シース90の外部に露出し、自己の弾性力により拡張する。このとき、スライド部50は、シャフト部20に対して近位側へ移動する。 Next, the medical device 10 in a state in which the distal portion of the shaft portion 20 including the crushing portion 60 is accommodated in the outer sheath 90 is prepared. Next, the proximal end portion of the wire portion 113 is inserted into the guide wire lumen 44 (see FIG. 4) of the medical device 10. Next, the medical device 10 is made to reach the proximal side of the thrombus 300 using the wire portion 113 as a guide. Thereafter, when the outer sheath 90 is moved proximally with respect to the shaft portion 20, as shown in FIG. 8B, the crushing portion 60 is exposed to the outside of the outer sheath 90 and is expanded by its own elastic force. To do. At this time, the slide part 50 moves to the proximal side with respect to the shaft part 20.
 次に、破砕部60が血栓300の近傍まで進入した状態で、回転駆動部70(図1を参照)が、シャフト外管21を回転させると、破砕部60もそれに伴って回転する。この状態で破砕部60を遠位側へ移動させると、破砕部60が血栓300に接触し、破砕部60が血管内で固着した状態の血栓300を破砕する。破砕部60の回転を継続すると、血液の流れがフィルタデバイス110により制限されているため、図9に示すように、血管内で固着していた血栓300が破砕される。破砕された血栓301は、滞留している血管内で沈殿等することなく、浮遊した状態となる。 Next, when the crushing part 60 has entered the vicinity of the thrombus 300 and the rotation driving part 70 (see FIG. 1) rotates the shaft outer tube 21, the crushing part 60 also rotates accordingly. When the crushing part 60 is moved to the distal side in this state, the crushing part 60 comes into contact with the thrombus 300, and the crushing part 60 crushes in a state where the crushing part 60 is fixed in the blood vessel. If the crushing unit 60 continues to rotate, the blood flow is restricted by the filter device 110, and therefore, as shown in FIG. 9, the thrombus 300 fixed in the blood vessel is crushed. The crushed thrombus 301 is in a floating state without being settled in the staying blood vessel.
 破砕部60は、回転することで血栓300と接触すると、回転方向と逆方向の反力を受ける。破砕部60の近位部は、連結部62によってシャフト部20に固定されている。また、破砕部60の遠位部は、スライド部50に連結されており、スライド部50は、シャフト部20に対して相対的な回転が制限されている。このため、破砕部60は、近位側の端部および遠位側の端部の相対的な回転が制限され、捩れが抑制される。このため、破砕部60の膨らみを望ましい大きさに維持でき、血栓を破砕可能な範囲を適切に維持できる。 When the crushing part 60 contacts the thrombus 300 by rotating, it receives a reaction force in the direction opposite to the rotating direction. A proximal portion of the crushing portion 60 is fixed to the shaft portion 20 by a connecting portion 62. Further, the distal portion of the crushing portion 60 is connected to the slide portion 50, and the slide portion 50 is restricted from rotating relative to the shaft portion 20. For this reason, in the crushing portion 60, relative rotation of the proximal end portion and the distal end portion is limited, and twisting is suppressed. For this reason, the swelling of the crushing part 60 can be maintained at a desired size, and the range in which the thrombus can be crushed can be appropriately maintained.
 そして、血栓300が存在する血管が湾曲している場合に、シャフト部20は血管に沿って湾曲した状態で回転する。このとき、図6、7に示すように、回転駆動されるシャフト外管21を中心にガイドワイヤ用管体40が振れ回る。この際、ガイドワイヤ用管体40は、ガイドワイヤルーメン44を維持しつつ、回転に伴って第3のチューブ43が第1のチューブ41および第2のチューブ42に対して軸心方向に摺動し、軸心方向に収縮または伸長を繰り返す。このため、シャフト外管21およびガイドワイヤ用管体40を含むシャフト部20の曲げ剛性は、ガイドワイヤ用管体の軸心方向の全体がシャフト外管21に固定される場合と比較して、曲げ方向による異方性が低い。したがって、湾曲した血管内であっても、シャフト部20が円滑に回転するため、破砕部60が必要以上に振れ回らず、血栓300の切削性を良好に維持できる。 Then, when the blood vessel in which the thrombus 300 exists is curved, the shaft portion 20 rotates in a curved state along the blood vessel. At this time, as shown in FIGS. 6 and 7, the guide wire tube 40 swings around the shaft outer tube 21 that is rotationally driven. At this time, the guide wire tube 40 maintains the guide wire lumen 44, and the third tube 43 slides in the axial direction with respect to the first tube 41 and the second tube 42 as it rotates. The contraction or extension is repeated in the axial direction. For this reason, the bending rigidity of the shaft portion 20 including the shaft outer tube 21 and the guide wire tube 40 is compared with the case where the entire axial direction of the guide wire tube is fixed to the shaft outer tube 21. Low anisotropy due to bending direction. Therefore, even in the curved blood vessel, since the shaft portion 20 rotates smoothly, the crushing portion 60 does not swing more than necessary, and the cutting property of the thrombus 300 can be maintained well.
 また、破砕部60が血栓300に接触することで、図10の一点鎖線のように、シャフト外管21およびガイドワイヤ用管体40を含むシャフト部20に捩れが生じる。シャフト外管21に捩れが生じると、ガイドワイヤ用管体40は、シャフト外管21の外周に沿って螺旋を描くように変形し、全長が長くなる。これに対し、第1のチューブ41および第2のチューブ42が、軸心方向に相対的に移動できない場合、ガイドワイヤ用管体40は、軸心方向へ伸長および収縮が困難となる。このため、シャフト外管21が、伸長および収縮が困難なガイドワイヤ用管体40から力を受けて屈曲する可能性がある。しかしながら、本実施形態の第1のチューブ41および第2のチューブ42は、軸心方向へ相対的に移動可能であるため、捩れによってシャフト外管21の屈曲が発生し難くなる。このため、シャフト部20が円滑に回転可能である。また、破砕部60が必要以上に振れ回らず、血栓300の切削性を良好に維持できる。 Further, when the crushing portion 60 comes into contact with the thrombus 300, the shaft portion 20 including the shaft outer tube 21 and the guide wire tubular body 40 is twisted, as indicated by a dashed line in FIG. When the shaft outer tube 21 is twisted, the guide wire tube 40 is deformed so as to draw a spiral along the outer periphery of the shaft outer tube 21, and the entire length becomes longer. On the other hand, when the first tube 41 and the second tube 42 cannot move relatively in the axial direction, the guide wire tubular body 40 is difficult to extend and contract in the axial direction. For this reason, the shaft outer tube 21 may be bent by receiving a force from the guide wire tube 40 that is difficult to extend and contract. However, since the first tube 41 and the second tube 42 of the present embodiment are relatively movable in the axial direction, the shaft outer tube 21 is unlikely to be bent by twisting. For this reason, the shaft part 20 can rotate smoothly. Moreover, the crushing part 60 does not shake more than necessary, and the machinability of the thrombus 300 can be maintained well.
 次に、シリンジ100(図1を参照)の押し子を引いて、シャフト内管30の中空内部を負圧状態とする。シャフト内管30の遠位側端部はシャフト外管21の中空内部と連通し、さらにシャフト外管21は開口部22を通じてシャフト部20の外部と連通しているため、開口部22はシャフト部20の外部に対して吸引力を生じる。このため、開口部22は、血管内を浮遊する破砕された血栓301を引き寄せる。図11に示すように、開口部22に引き寄せられた血栓301は、一部がシャフト外管21の中空内部に侵入する。 Next, the pusher of the syringe 100 (see FIG. 1) is pulled to bring the hollow inside of the shaft inner tube 30 into a negative pressure state. Since the distal end portion of the inner shaft tube 30 communicates with the hollow interior of the outer shaft tube 21 and the outer shaft tube 21 communicates with the outside of the shaft portion 20 through the opening portion 22, the opening portion 22 is connected to the shaft portion. A suction force is generated to the outside of the 20. For this reason, the opening 22 draws the crushed thrombus 301 floating in the blood vessel. As shown in FIG. 11, a part of the thrombus 301 attracted to the opening 22 enters the hollow interior of the shaft outer tube 21.
 シリンジ100の押し子を引いた後、シャフト内管30をシャフト外管21に対し軸心方向に移動させる。シャフト内管30が開口部22よりも近位側にある状態から、シャフト内管30をシャフト外管21の遠位側、すなわち当接部23に近づく側に向かって移動させると、図12に示すように、開口部22からシャフト外管21の中空内部に侵入した血栓301の一部分は、シャフト内管30の遠位面によって圧縮されながら切り取られていく。 After pulling the pusher of the syringe 100, the shaft inner tube 30 is moved in the axial direction with respect to the shaft outer tube 21. When the shaft inner tube 30 is moved from the state proximal to the opening 22 toward the distal side of the shaft outer tube 21, that is, the side closer to the contact portion 23, FIG. As shown, a part of the thrombus 301 that has entered the hollow interior of the outer shaft tube 21 through the opening 22 is cut off while being compressed by the distal surface of the inner tube 30.
 シャフト内管30の遠位面が当接部23の当接面23Aに当接するまで、シャフト内管30を移動させると、図13に示すように、切り取られた血栓302は、シャフト内管30の中空内部に納まる。このとき、シャフト内管30の遠位部に設けられた切断部31の刃部31Aによって、血栓302は2つに切断される。シャフト内管30が当接部23の当接面23Aに当接することで、刃部31Aも当接面23Aに当接し、シャフト外管21の中空内部で切り取られた血栓302は、当接部23に押し当てられながら刃部31Aによって切断される。このため、切り取られた血栓302を確実に切断し、シャフト内管30の内径よりも小さい大きさとすることができる。これによって、切り取られた血栓302がシャフト内管30の中空内部で詰まることを抑制できる。 When the inner tube 30 is moved until the distal surface of the inner shaft tube 30 abuts against the abutting surface 23A of the abutting portion 23, as shown in FIG. Fits inside the hollow. At this time, the thrombus 302 is cut into two by the blade portion 31A of the cutting portion 31 provided at the distal portion of the shaft inner tube 30. When the shaft inner tube 30 contacts the contact surface 23A of the contact portion 23, the blade portion 31A also contacts the contact surface 23A, and the thrombus 302 cut off in the hollow inside of the shaft outer tube 21 The blade portion 31A is cut while being pressed against the blade 23. For this reason, the thrombus 302 that has been cut off can be reliably cut to a size smaller than the inner diameter of the shaft inner tube 30. Thereby, it is possible to suppress clogging of the cut thrombus 302 in the hollow inside of the shaft inner tube 30.
 シャフト内管30の中空内部は、シリンジ100によって引き続き負圧状態となっているので、図14に示すように、切り取られた血栓302は、シャフト内管30の中空内部を近位側に向かって移動する。また、シャフト内管30を当接部23から離れて近位側に移動させることにより、再び開口部22が開放され、血栓301が吸引されてシャフト外管21の中空内部に侵入してくる。したがって、シャフト内管30の軸心方向への往復動を繰り返すことにより、血栓301を細かく切断しながら継続的に吸引できる。 Since the hollow interior of the tube 30 within the shaft is continuously in a negative pressure state by the syringe 100, as shown in FIG. 14, the cut thrombus 302 moves toward the proximal side of the hollow interior of the tube 30 within the shaft. Moving. Further, by moving the inner shaft tube 30 away from the contact portion 23 to the proximal side, the opening portion 22 is opened again, and the thrombus 301 is sucked and enters the hollow interior of the outer shaft tube 21. Therefore, the thrombus 301 can be continuously sucked while being finely cut by repeating the reciprocation of the inner tube 30 in the axial direction.
 破砕された血栓301をシャフト部20で吸引している間、シャフト外管21の回動動作は継続していることが望ましい。シャフト外管21が回転していることで、血管内の血液に渦流が発生し、血栓301が回転中心付近、すなわち血管の径方向における中心付近に集まりやすくなるので、血栓301を開口部22から吸引しやすくなる。また、開口部22付近に生じた渦流は、シャフト内管30の中空内部の流れにも影響し、シャフト内管30の内部においても渦の旋回流が生じる。これによって、シャフト内管30の内部で、軸心方向に対する流動抵抗が低減し、切断された血栓302を円滑に吸引できる。 It is desirable that the rotating operation of the shaft outer tube 21 is continued while the crushed thrombus 301 is sucked by the shaft portion 20. Since the shaft outer tube 21 rotates, a vortex is generated in the blood in the blood vessel, and the thrombus 301 tends to gather near the center of rotation, that is, near the center in the radial direction of the blood vessel. It becomes easy to suck. Further, the vortex generated in the vicinity of the opening 22 also affects the flow inside the hollow of the shaft inner tube 30, and a vortex swirl is generated also inside the shaft inner tube 30. Thereby, the flow resistance with respect to the axial direction is reduced inside the inner tube 30 and the cut thrombus 302 can be sucked smoothly.
 本実施形態では、血栓301の吸引中に、シャフト外管21は回転動し、シャフト内管30はシャフト外管21に対して軸心方向に往復動するものとしたが、これ以外の動作を加えてもよい。例えば、シャフト内管30がシャフト外管21に対して相対的に異なる回転動する動作(回転方向が逆方向、または回転方向は同一だが回転速度が異なる)を加えることで、開口部22に吸引された血栓301をより確実に切り取って、シャフト外管21の中空内部に導くことができる。また、シャフト外管21の往復動を加えることによって、より広い範囲の血栓300を破砕、撹拌できる。 In this embodiment, during the suction of the thrombus 301, the shaft outer tube 21 rotates and the shaft inner tube 30 reciprocates in the axial direction with respect to the shaft outer tube 21, but other operations are performed. May be added. For example, when the inner tube 30 rotates differently relative to the outer shaft tube 21 (the rotation direction is the reverse direction, or the rotation direction is the same, but the rotation speed is different), suction is performed on the opening 22. The thrombus 301 formed can be more reliably cut out and guided to the hollow inside of the shaft outer tube 21. In addition, by adding the reciprocating motion of the shaft outer tube 21, a wider range of the thrombus 300 can be crushed and stirred.
 血栓301の吸引が完了した後、シャフト外管21とシャフト内管30の往復動や回転動を停止する。次に、破砕部60を外シース90に収容し、医療デバイス10を血管から抜去する。この後、フィルタデバイス110をシース等に収容して血管から抜去し、処置が完了する。 <After the suction of the thrombus 301 is completed, the reciprocating and rotating motions of the shaft outer tube 21 and the shaft inner tube 30 are stopped. Next, the crushing part 60 is accommodated in the outer sheath 90, and the medical device 10 is extracted from the blood vessel. Thereafter, the filter device 110 is accommodated in a sheath or the like and removed from the blood vessel, and the treatment is completed.
 以上のように、実施形態に係る医療デバイス10は、長尺なシャフト外管21(主チューブ)および当該シャフト外管21と並んでシャフト外管21に連結されるガイドワイヤ用管体40(副チューブ)を有するデバイスであって、ガイドワイヤ用管体40は、シャフト外管21の遠位部と連結されている第1のチューブ41と、シャフト外管21に対して第1のチューブ41よりも近位側で連結されている第2のチューブ42と、を有し、第1のチューブ41および第2のチューブ42の内腔が第3のチューブ43(他の部材)を介して間接的に連通し、かつ第1のチューブ41および第2のチューブ42はシャフト外管21に沿って相対的に移動可能である。なお、シャフト外管21に沿った相対的な移動とは、必ずしもシャフト外管21に沿って平行に移動する場合に限定されない。 As described above, the medical device 10 according to the embodiment includes a long shaft outer tube 21 (main tube) and a guide wire tube 40 (sub-unit) connected to the shaft outer tube 21 along with the shaft outer tube 21. The guide wire tube 40 includes a first tube 41 connected to the distal portion of the shaft outer tube 21, and the first tube 41 with respect to the shaft outer tube 21. And the second tube 42 connected at the proximal side, and the lumens of the first tube 41 and the second tube 42 are indirectly connected via the third tube 43 (other member). And the first tube 41 and the second tube 42 are relatively movable along the shaft outer tube 21. Note that the relative movement along the shaft outer tube 21 is not necessarily limited to the case of moving in parallel along the shaft outer tube 21.
 上記のように構成した医療デバイス10は、当該医療デバイス10が屈曲すると、第1のチューブ41と第2のチューブ42がシャフト外管21(主チューブ)に沿って相対的に移動するため、曲げ剛性の異方性が減少する。このため、医療デバイス10は、屈曲した生体管腔に挿入しても、性能の低下を抑制できる。なお、「主チューブ」および「副チューブ」の名称は、各チューブの機能を限定するものではない。したがって、副チューブの機能は、主チューブの機能に対する付随的な機能に限定されない。 The medical device 10 configured as described above is bent because the first tube 41 and the second tube 42 move relatively along the shaft outer tube 21 (main tube) when the medical device 10 is bent. Stiffness anisotropy is reduced. For this reason, even if the medical device 10 is inserted into a bent biological lumen, it is possible to suppress a decrease in performance. The names of “main tube” and “sub tube” do not limit the function of each tube. Therefore, the function of the secondary tube is not limited to the incidental function with respect to the function of the main tube.
 また、シャフト外管21(主チューブ)が湾曲する際に、第1のチューブ41の近位端部から第2のチューブ42の遠位端部までの長さが変化する。これにより、シャフト外管21の湾曲がガイドワイヤ用管体40(副チューブ)により阻害されない。したがって、医療デバイス10は、屈曲した生体管腔に挿入しても、性能の低下を抑制できる。 Also, when the shaft outer tube 21 (main tube) is curved, the length from the proximal end portion of the first tube 41 to the distal end portion of the second tube 42 changes. Thereby, the curve of the shaft outer tube 21 is not hindered by the guide wire tubular body 40 (sub tube). Therefore, even if the medical device 10 is inserted into a bent biological lumen, it can suppress a decrease in performance.
 また、医療デバイス10は、第1の端部が第1のチューブ41の外周面に摺動可能に接触し、第2の端部が第2のチューブ42の外周面に摺動可能に接触している第3のチューブ43を有する。これにより、離れて位置する第1のチューブ41および第2のチューブ42を、第3のチューブ43によって内腔を連通させつつ滑らかに連結できる。このため、ガイドワイヤ用管体40の内部に一体的な内腔(ガイドワイヤルーメン44)が維持され、ガイドワイヤ用管体40の機能(ガイドワイヤを導く機能)が損なわれない。 The medical device 10 has a first end portion slidably in contact with the outer peripheral surface of the first tube 41, and a second end portion slidably in contact with the outer peripheral surface of the second tube 42. The third tube 43 is provided. As a result, the first tube 41 and the second tube 42 that are located apart can be connected smoothly with the third tube 43 communicating with the lumen. For this reason, an integral lumen (guide wire lumen 44) is maintained inside the guide wire tube 40, and the function of the guide wire tube 40 (function of guiding the guide wire) is not impaired.
 また、第3のチューブ43は、シャフト外管21(主チューブ)に連結されている。これにより、医療デバイス10が屈曲しても、第3のチューブ43がシャフト外管21から離れないため、第3のチューブ43が他の部材(例えば、破砕部60)と干渉することを抑制できる。このため、医療デバイス10は、屈曲した生体管腔に挿入しても、性能の低下を抑制できる。また、第3のチューブ43が生体管腔内で脱落し難くなり、安全性を向上できる。 The third tube 43 is connected to the shaft outer tube 21 (main tube). Thereby, even if the medical device 10 is bent, since the third tube 43 is not separated from the shaft outer tube 21, it is possible to suppress the third tube 43 from interfering with other members (for example, the crushing portion 60). . For this reason, even if the medical device 10 is inserted into a bent biological lumen, it is possible to suppress a decrease in performance. In addition, the third tube 43 is unlikely to fall off in the living body lumen, and safety can be improved.
 また、シャフト外管21(主チューブ)およびガイドワイヤ用管体40(副チューブ)は、連結された状態で一体的に回転可能である。シャフト外管21およびガイドワイヤ用管体40が屈曲した状態で回転すると、屈曲の方向が回転に伴って繰り返し変化することになる。このような場合であっても、回転に伴って第1のチューブ41と第2のチューブ42が相対的に移動し続けて、曲げ剛性の異方性が減少される。このため、医療デバイス10は、屈曲した生体管腔で回転しても、性能の低下を抑制できる。また、シャフト外管21およびガイドワイヤ用管体40は、回転することで捩り力を受けるが、第1のチューブ41と第2のチューブ42がシャフト外管21に沿って相対的に移動するため、捩れによりシャフト外管21およびガイドワイヤ用管体40が屈曲することを抑制できる。したがって、医療デバイス10は、回転して捩れが発生する場合であっても、性能の低下を抑制できる。 Also, the shaft outer tube 21 (main tube) and the guide wire tube 40 (sub tube) can be integrally rotated in a connected state. When the shaft outer tube 21 and the guide wire tube 40 are rotated in a bent state, the direction of bending repeatedly changes with rotation. Even in such a case, the first tube 41 and the second tube 42 continue to move relatively with the rotation, and the anisotropy of the bending rigidity is reduced. For this reason, even if the medical device 10 rotates with the bent biological lumen, it can suppress a performance fall. Further, the shaft outer tube 21 and the guide wire tube 40 receive a torsional force by rotating, but the first tube 41 and the second tube 42 move relatively along the shaft outer tube 21. The bending of the outer shaft tube 21 and the guide wire tube 40 due to twisting can be suppressed. Therefore, the medical device 10 can suppress a decrease in performance even when the medical device 10 rotates and twists.
 また、医療デバイス10は、シャフト外管21(主チューブ)の内部に回転中心軸を有する。これにより、回転の中心に位置するシャフト外管21の回りをガイドワイヤ用管体40が振れ回る。湾曲したチューブの回りを振れ回るチューブは、回転時に軸心方向の伸長および収縮が必要となる。したがって、相対的に移動可能な第1のチューブ41と第2のチューブ42を有するガイドワイヤ用管体40が“振れ回るチューブ”であることで、シャフト外管21を中心とした円滑な回転が可能となる。 Further, the medical device 10 has a rotation center axis inside the shaft outer tube 21 (main tube). As a result, the guide wire tubular body 40 swings around the outer shaft tube 21 positioned at the center of rotation. A tube that swings around a curved tube needs to expand and contract in the axial direction during rotation. Therefore, the guide wire tube 40 having the relatively movable first tube 41 and the second tube 42 is a “swing tube”, so that smooth rotation around the shaft outer tube 21 is possible. It becomes possible.
 また、医療デバイス10は、シャフト外管21(主チューブ)またはガイドワイヤ用管体40(副チューブ)の遠位部に連結されて回転可能であり、複数の間隙を有するように複数の変形可能な線材61により全体として筒状に構成されてシャフト外管21の径方向へ拡張可能な破砕部60をさらに有する。これにより、医療デバイス10は、屈曲した生体管腔内に挿入しても、曲げ剛性の異方性が減少するため、破砕部60の適切な位置を維持でき、生体管腔内の血栓300の適切かつ効率的な破砕が可能である。また、破砕部60により血栓300を破砕する際に、シャフト外管21およびガイドワイヤ用管体40に捩り力が作用するが、第1のチューブ41と第2のチューブ42がシャフト外管21に沿って相対的に移動するため、捩れによりシャフト外管21およびガイドワイヤ用管体40が屈曲することを抑制できる。したがって、医療デバイス10は、破砕部60により血栓300を破砕する際に捩れが発生する場合であっても、破砕性能の低下を抑制できる。 The medical device 10 is connected to the distal portion of the outer shaft tube 21 (main tube) or the guide wire tube 40 (sub tube) and can be rotated, and can be deformed in a plurality of ways so as to have a plurality of gaps. It further has a crushing portion 60 that is formed into a cylindrical shape as a whole by the wire 61 and can be expanded in the radial direction of the shaft outer tube 21. Thereby, even if the medical device 10 is inserted into the bent biological lumen, the bending rigidity anisotropy is reduced, so that the appropriate position of the crushing portion 60 can be maintained, and the thrombus 300 in the biological lumen can be maintained. Appropriate and efficient crushing is possible. Further, when the clot 300 is crushed by the crushing portion 60, a torsional force acts on the shaft outer tube 21 and the guide wire tube 40, but the first tube 41 and the second tube 42 are applied to the shaft outer tube 21. Accordingly, the shaft outer tube 21 and the guide wire tube 40 can be prevented from being bent by twisting. Therefore, the medical device 10 can suppress the degradation of the crushing performance even when twisting occurs when crushing the thrombus 300 by the crushing unit 60.
 また、シャフト外管21(主チューブ)およびガイドワイヤ用管体40(副チューブ)が湾曲している場合、第1のチューブ41および第2のチューブ42の、第3のチューブ43(他の部材)の外周面と接する部位の軸心方向の長さL5、L6は、シャフト外管21の1回転の間で、シャフト外管21およびガイドワイヤ用管体40が直線状の場合の長さよりも長い状態と短い状態の両方を有する。このため、回転時においても、シャフト外管21およびガイドワイヤ用管体40が湾曲した状態を良好に維持することができる。 Further, when the shaft outer tube 21 (main tube) and the guide wire tube 40 (sub tube) are curved, the third tube 43 (other member) of the first tube 41 and the second tube 42 is provided. The lengths L5 and L6 in the axial direction of the portion in contact with the outer peripheral surface are larger than the length when the shaft outer tube 21 and the guide wire tube 40 are linear during one rotation of the shaft outer tube 21. Has both long and short states. For this reason, the state where the shaft outer tube 21 and the guide wire tube 40 are curved can be well maintained even during rotation.
 なお、本発明は、上述した実施形態のみに限定されるものではなく、本発明の技術的思想内において当業者により種々変更が可能である。例えば、医療デバイス10が挿入される生体管腔は、血管に限定されず、例えば、脈管、尿管、胆管、卵管、肝管等であってもよい。 Note that the present invention is not limited to the above-described embodiment, and various modifications can be made by those skilled in the art within the technical idea of the present invention. For example, the living body lumen into which the medical device 10 is inserted is not limited to a blood vessel, and may be, for example, a blood vessel, a ureter, a bile duct, an oviduct, a hepatic duct, or the like.
 また、本発明は、生体管腔に挿入されて使用されるデバイスであれば適用できる。したがって、医療デバイスは、回転する機能を備えなくてもよく、物体を破砕する機能を備えなくてもよく、吸引する機能を備えなくてもよい。また、主チューブが複数設けられてもよく、または副チューブが複数設けられてもよい。 Further, the present invention can be applied to any device that is used by being inserted into a living body lumen. Therefore, the medical device may not have a function of rotating, may not have a function of crushing an object, and may not have a function of sucking. Further, a plurality of main tubes may be provided, or a plurality of sub tubes may be provided.
 また、医療デバイスは、図15に示す変形例のように、第3のチューブ43が、シャフト外管21に連結されなくてもよい。なお、前述の実施形態と同様の機能を有する部位には、同一の符号を付し、説明を省略する。この場合、第3のチューブ43は、遠位側へ移動しても抜けないように、以下の式(8)を満たすことが好ましい。また、第3のチューブ43は、近位側へ移動しても抜けないように、以下の式(9)を満たすことが好ましい。 In the medical device, the third tube 43 may not be connected to the shaft outer tube 21 as in the modification shown in FIG. In addition, the same code | symbol is attached | subjected to the site | part which has a function similar to the above-mentioned embodiment, and description is abbreviate | omitted. In this case, it is preferable that the following expression (8) is satisfied so that the third tube 43 does not come out even if it moves to the distal side. Moreover, it is preferable that the following formula (9) is satisfied so that the third tube 43 does not come out even if it moves to the proximal side.
 L3>L1+Ld  ・・・式(8)
 L3>L2+Ld  ・・・式(9)
L3> L1 + Ld (8)
L3> L2 + Ld (9)
 第3のチューブ43が、シャフト外管21に連結されないことで、第3のチューブ43は、シャフト外管21から離れやすくなる。例えば第3のチューブ43に挿入されるガイドワイヤが硬く、第3のチューブ43がシャフト外管21に連結されると、ガイドワイヤの剛性が回転に影響を与える場合がある。このような場合などには、図16に示すように、第3のチューブ43がシャフト外管21から離れることで、ガイドワイヤが回転に与える影響を低減でき、有効である。また、副チューブ40がシャフト外管21から離れることで、副チューブ40およびシャフト外管21が2つの離れた軸を有して回転するため、破砕部60の内側に血栓が入っても、副チューブ40およびシャフト外管21により血栓を良好に破砕できる。 The third tube 43 is not connected to the shaft outer tube 21, so that the third tube 43 is easily separated from the shaft outer tube 21. For example, if the guide wire inserted into the third tube 43 is hard and the third tube 43 is connected to the shaft outer tube 21, the rigidity of the guide wire may affect the rotation. In such a case, as shown in FIG. 16, the influence of the guide wire on the rotation can be reduced by separating the third tube 43 from the shaft outer tube 21, which is effective. In addition, since the secondary tube 40 and the shaft outer tube 21 rotate with two separate axes when the secondary tube 40 is separated from the shaft outer tube 21, even if a thrombus enters the crushing portion 60, the secondary tube 40 and the shaft outer tube 21 rotate. The thrombus can be satisfactorily crushed by the tube 40 and the shaft outer tube 21.
 また、図17に示す他の変形例のように、第3のチューブ48は、第1のチューブ41および第2のチューブ42の外周面側に配置されるのではなく、第1のチューブ41および第2のチューブ42の内周面側に配置されてもよい。 In addition, as in another modification shown in FIG. 17, the third tube 48 is not disposed on the outer peripheral surface side of the first tube 41 and the second tube 42, but the first tube 41 and It may be arranged on the inner peripheral surface side of the second tube 42.
 また、図18に示すさらに他の変形例のように、第3のチューブ51が、第1のチューブ41の外周面側であって第2のチューブ50の内周面側に配置されてもよい。また、第3のチューブが、第1のチューブの内周面側であって第2のチューブの外周面側に配置されてもよい。 18, the third tube 51 may be disposed on the outer peripheral surface side of the first tube 41 and on the inner peripheral surface side of the second tube 50. . Further, the third tube may be arranged on the inner peripheral surface side of the first tube and on the outer peripheral surface side of the second tube.
 また、図19に示すさらに他の変形例のように、第3のチューブが設けられなくてもよい。第2のチューブ49は、遠位側の開口から内腔に第1のチューブ41の近位部が入り込んでいる。したがって、第2のチューブ49の遠位端部が、第1のチューブ41の近位端部の遠位側に位置する。第2のチューブ49の内周面は、第1のチューブ41の外周面と摺動可能である。これにより、第1のチューブ41と第2のチューブ49の間に他の部材(第3のチューブ)が不要となるため、部品点数を減らすことができる。部品点数が減ることで、使用時の部品の脱落の可能性が低減して安全性を向上でき、構造がシンプルになることで故障し難くなり、かつコストを低減できる。 Further, as in still another modification shown in FIG. 19, the third tube may not be provided. In the second tube 49, the proximal portion of the first tube 41 enters the lumen from the opening on the distal side. Accordingly, the distal end of the second tube 49 is located on the distal side of the proximal end of the first tube 41. The inner peripheral surface of the second tube 49 is slidable with the outer peripheral surface of the first tube 41. Thereby, since another member (3rd tube) becomes unnecessary between the 1st tube 41 and the 2nd tube 49, a number of parts can be reduced. By reducing the number of parts, the possibility of parts falling off during use can be reduced and safety can be improved, and the simple structure makes it difficult to break down and the cost can be reduced.
 また、図20に示すさらに他の変形例のように、第1のチューブ52の近位側の開口から、第2のチューブ42の遠位端部が入り込む構造であってもよい。 20 may be a structure in which the distal end portion of the second tube 42 enters from the opening on the proximal side of the first tube 52 as in another modification shown in FIG.
 また、上述した実施形態では、シャフト部20の内部に、血栓301を切断しつつ吸引する切断部31が設けられているが、シャフト部の内部に血栓301を切断する切断部31が設けられなくてもよい。また、シャフト部は、血栓301を吸引する機能を有しなくてもよい。この場合、破砕された血栓301は、シャフト部を収容する外シース90または他のシースにより吸引され得る。また、シャフト外管の内部に、シャフト内管を設けずに、ガイドワイヤルーメンを配置することもできる。この場合、シャフト外管の遠位部の外周面に、ガイドワイヤルーメンを有する別途のガイドワイヤ用管体を設けなくてもよい。したがって、スライド部50のスリット58にスライド可能に嵌合する凸部は、中空のガイドワイヤ用管体ではなく、シャフト外管の軸心方向に延在する中実の部材であってもよい。凸部は、シャフト外管と一体的に構成されてもよい。 Further, in the above-described embodiment, the cutting unit 31 that sucks the thrombus 301 while cutting the thrombus 301 is provided inside the shaft unit 20, but the cutting unit 31 that cuts the thrombus 301 is not provided inside the shaft unit. May be. The shaft portion may not have a function of sucking the thrombus 301. In this case, the crushed thrombus 301 can be sucked by the outer sheath 90 or other sheath that accommodates the shaft portion. In addition, a guide wire lumen can be arranged inside the shaft outer tube without providing the shaft inner tube. In this case, a separate guide wire tube having a guide wire lumen may not be provided on the outer peripheral surface of the distal portion of the shaft outer tube. Therefore, the convex part slidably fitted into the slit 58 of the slide part 50 may be a solid member extending in the axial direction of the shaft outer tube, instead of a hollow guide wire tube. The convex portion may be configured integrally with the shaft outer tube.
 さらに、本出願は、2016年3月9日に出願された日本特許出願番号2016-45556号に基づいており、それらの開示内容は、参照され、全体として、組み入れられている。 Furthermore, this application is based on Japanese Patent Application No. 2016-45556 filed on Mar. 9, 2016, the disclosures of which are referenced and incorporated as a whole.
  10  医療デバイス、
  20  シャフト部、
  21  シャフト外管(主チューブ)、
  40  ガイドワイヤ用管体(副チューブ)、
  41、52  第1のチューブ、
  42、49、50  第2のチューブ、
  43、48、51  第3のチューブ(他の部材)、
  44  ガイドワイヤルーメン(内腔)、
  45  第1連結部、
  46  第2連結部、
  47  第3連結部、
  60  破砕部、
  300、301、302  血栓。
10 medical devices,
20 shaft part,
21 Shaft outer tube (main tube),
40 Tube for guide wire (sub tube),
41, 52 first tube,
42, 49, 50 second tube,
43, 48, 51 Third tube (other member),
44 Guide wire lumen (lumen),
45 1st connection part,
46 2nd connection part,
47 3rd connection part,
60 crushing section,
300, 301, 302 Thrombus.

Claims (8)

  1.  長尺な主チューブおよび当該主チューブと並んで当該主チューブに連結される副チューブを有する医療デバイスであって、
     前記副チューブは、
     前記主チューブの遠位部と連結されている第1のチューブと、
     前記主チューブに対して前記第1のチューブよりも近位側で連結されている第2のチューブと、を有し、
     前記第1のチューブおよび第2のチューブの内腔が直接的にまたは他の部材を介して間接的に連通し、かつ前記第1のチューブおよび第2のチューブは前記主チューブに沿って相対的に移動可能である医療デバイス。
    A medical device having a long main tube and a secondary tube connected to the main tube along with the main tube,
    The secondary tube is
    A first tube connected to a distal portion of the main tube;
    A second tube connected to the main tube on a more proximal side than the first tube,
    The lumens of the first tube and the second tube communicate directly or indirectly through other members, and the first tube and the second tube are relative to each other along the main tube. Medical device that is movable to.
  2.  前記第1のチューブの近位部の内周面または外周面は、前記第2のチューブの遠位部の外周面または内周面が摺動可能に接触している請求項1に記載の医療デバイス。 The medical device according to claim 1, wherein the inner peripheral surface or the outer peripheral surface of the proximal portion of the first tube is slidably in contact with the outer peripheral surface or the inner peripheral surface of the distal portion of the second tube. device.
  3.  前記他の部材は、第3のチューブであり、前記第3のチューブは第1の端部と第2の端部を有し、前記第1の端部が前記第1のチューブの内周面または外周面に摺動可能に接触し、前記第2の端部が前記第2のチューブの内周面または外周面に摺動可能に接触している請求項1に記載の医療デバイス。 The other member is a third tube, and the third tube has a first end and a second end, and the first end is an inner peripheral surface of the first tube. The medical device according to claim 1, wherein the medical device is slidably in contact with an outer peripheral surface, and the second end portion is slidably in contact with an inner peripheral surface or an outer peripheral surface of the second tube.
  4.  前記第3のチューブは、前記主チューブに連結されている請求項3に記載の医療デバイス。 The medical device according to claim 3, wherein the third tube is connected to the main tube.
  5.  前記主チューブおよび副チューブは、連結された状態で一体的に回転可能である請求項1~4のいずれか1項に記載の医療デバイス。 The medical device according to any one of claims 1 to 4, wherein the main tube and the sub tube are integrally rotatable in a connected state.
  6.  前記主チューブの内部に回転中心軸を有する請求項5に記載の医療デバイス。 The medical device according to claim 5, which has a rotation center axis inside the main tube.
  7.  前記主チューブまたは副チューブの遠位部に連結されて前記シャフト部とともに回転可能であり、複数の間隙を有するように複数の変形可能な線材により全体として筒状に構成されて前記主チューブまたは副チューブの径方向へ拡張可能な破砕部をさらに有する請求項1~6のいずれか1項に記載の医療デバイス。 The main tube or the sub tube is connected to the distal portion of the main tube or the sub tube and is rotatable together with the shaft portion. The main tube or the sub tube is configured as a whole by a plurality of deformable wires so as to have a plurality of gaps. The medical device according to any one of claims 1 to 6, further comprising a crushing portion expandable in a radial direction of the tube.
  8.  前記主チューブおよび副チューブが湾曲している場合、前記第1のチューブおよび第2のチューブの、他のチューブの内周面または外周面と接する部位の軸心方向の長さは、前記主チューブの1回転の間で、前記主チューブおよび副チューブが直線状の場合の長さよりも長い状態と短い状態の両方を有する請求項1~7のいずれか1項に記載の医療デバイス。 When the main tube and the sub tube are curved, the length in the axial direction of the portion of the first tube and the second tube in contact with the inner peripheral surface or the outer peripheral surface of the other tube is the main tube. The medical device according to any one of claims 1 to 7, wherein the medical device has both a longer state and a shorter state than the length in the case where the main tube and the sub tube are straight.
PCT/JP2017/008401 2016-03-09 2017-03-03 Medical device WO2017154749A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016045556A JP2019071914A (en) 2016-03-09 2016-03-09 Medical device
JP2016-045556 2016-03-09

Publications (1)

Publication Number Publication Date
WO2017154749A1 true WO2017154749A1 (en) 2017-09-14

Family

ID=59789492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008401 WO2017154749A1 (en) 2016-03-09 2017-03-03 Medical device

Country Status (2)

Country Link
JP (1) JP2019071914A (en)
WO (1) WO2017154749A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019069739A1 (en) * 2017-10-04 2019-04-11 テルモ株式会社 Medical device, method for controlling rotation of medical device, and rotation control equipment
CN112336966A (en) * 2020-05-27 2021-02-09 深圳北芯生命科技有限公司 Microcatheter with dual lumen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138430A (en) * 1982-02-13 1983-08-17 高田 昌純 Flexible body cavity insert instrument
JPH08509639A (en) * 1993-04-29 1996-10-15 シメッド ライフ システムズ インコーポレイテッド Expandable vascular obstruction remover
JP2012100833A (en) * 2010-11-09 2012-05-31 Goodman Co Ltd Medical instrument
WO2016152548A1 (en) * 2015-03-20 2016-09-29 テルモ株式会社 Catheter system and treating method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138430A (en) * 1982-02-13 1983-08-17 高田 昌純 Flexible body cavity insert instrument
JPH08509639A (en) * 1993-04-29 1996-10-15 シメッド ライフ システムズ インコーポレイテッド Expandable vascular obstruction remover
JP2012100833A (en) * 2010-11-09 2012-05-31 Goodman Co Ltd Medical instrument
WO2016152548A1 (en) * 2015-03-20 2016-09-29 テルモ株式会社 Catheter system and treating method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019069739A1 (en) * 2017-10-04 2019-04-11 テルモ株式会社 Medical device, method for controlling rotation of medical device, and rotation control equipment
JPWO2019069739A1 (en) * 2017-10-04 2020-11-05 テルモ株式会社 Medical devices, rotation control methods and rotation control devices for medical devices
JP7280831B2 (en) 2017-10-04 2023-05-24 テルモ株式会社 Medical device, rotation control method and rotation control device for medical device
US11826072B2 (en) 2017-10-04 2023-11-28 Terumo Kabushiki Kaisha Medical device, method for controlling rotation of medical device, and rotation controller
CN112336966A (en) * 2020-05-27 2021-02-09 深圳北芯生命科技有限公司 Microcatheter with dual lumen
CN112336966B (en) * 2020-05-27 2021-04-23 深圳北芯生命科技有限公司 Microcatheter with dual lumen

Also Published As

Publication number Publication date
JP2019071914A (en) 2019-05-16

Similar Documents

Publication Publication Date Title
CN107666871B (en) Inner tubular member for an angularly rotatable surgical instrument
US10743905B2 (en) Medical device and treatment method
WO2016204137A1 (en) Medical device and treatment method
WO2016152548A1 (en) Catheter system and treating method
EP3508148B1 (en) Medical device
US20220233212A1 (en) Medical device and treatment method for crushing object in body lumen
WO2019188918A1 (en) Medical device and usage for treatment
WO2017154749A1 (en) Medical device
WO2018052121A1 (en) Medical device
US11013891B2 (en) Medical elongated body
US11191562B2 (en) Medical device and treatment method
WO2017154748A1 (en) Medical device and treatment method
WO2017164119A1 (en) Medical device and treatment method
JP2016174811A (en) Catheter system
EP3777728A1 (en) Medical device
JP2017158785A (en) Medical device and treatment method
WO2022201246A1 (en) Medical device
US11896259B2 (en) Atherectomy device and method
WO2019188657A1 (en) Medical device
WO2018131401A1 (en) Medical device
JP2019165754A (en) Medical elongated body
JP2019165753A (en) Medical elongated body

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763089

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17763089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP