WO2017154087A1 - Electric motor stator and electric motor - Google Patents

Electric motor stator and electric motor Download PDF

Info

Publication number
WO2017154087A1
WO2017154087A1 PCT/JP2016/057069 JP2016057069W WO2017154087A1 WO 2017154087 A1 WO2017154087 A1 WO 2017154087A1 JP 2016057069 W JP2016057069 W JP 2016057069W WO 2017154087 A1 WO2017154087 A1 WO 2017154087A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric motor
opening
magnetic flux
stator
motor stator
Prior art date
Application number
PCT/JP2016/057069
Other languages
French (fr)
Japanese (ja)
Inventor
増本 浩二
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201690001591.7U priority Critical patent/CN208691029U/en
Priority to PCT/JP2016/057069 priority patent/WO2017154087A1/en
Priority to JP2018503880A priority patent/JP6598978B2/en
Publication of WO2017154087A1 publication Critical patent/WO2017154087A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures

Definitions

  • the present invention relates to an electric motor stator and an electric motor used for a compressor, a fan motor and the like.
  • Patent Documents 1 and 2 Conventional stators of electric motors are formed by laminating electromagnetic steel sheets in which an iron core is integrally punched by a press or the like.
  • a method for fastening laminated electromagnetic steel sheets a method of forming dowels by caulking the electromagnetic steel sheets in a press die and caulking the upper and lower electromagnetic steel sheets (clamping) and a method of welding are common.
  • Patent Documents 1 and 2 there has been proposed one in which an iron core is divided into a plurality of iron core pieces in consideration of high density winding and productivity.
  • Patent Document 3 discloses a stator that is joined by attaching a joining band when joining the divided iron core pieces. In this case, the stator is joined by caulking or the like.
  • JP 2008-43102 A Japanese Patent Laid-Open No. 7-7875 JP 59-6736 A
  • An object of the present invention is to solve the above-described problems, and an object of the present invention is to provide an electric motor stator and an electric motor that suppress the generation of eddy currents in fastening of laminated electromagnetic steel sheets and has high energy efficiency. Is.
  • the stator of the electric motor according to the present invention fastens the plurality of electromagnetic steel plates in the stacking direction with an iron core piece composed of a plurality of laminated electromagnetic steel plates having a core back portion and a teeth portion protruding from the core back portion to the inner peripheral surface.
  • a bonding band, and an opening is provided on an outer peripheral surface of the bonding band.
  • the opening is provided on the outer peripheral surface of the bonding band. Since there is no magnetic substance in the opening, the magnetic permeability of this portion is reduced, and the resistance (magnetic resistance) to the flow of magnetic flux is increased. Therefore, the magnetic flux flows around the opening, and the region where the magnetic flux flows on the outer peripheral surface of the bonding band is narrowed. And since the area
  • the eddy current generated is small in a portion where the electrical insulation resistance is high.
  • the stator and the motor of the electric motor according to the present invention it is possible to increase the resistance at the opening on the outer peripheral surface of the bonding band and to make the eddy current difficult to flow with respect to the eddy current at high frequency. Therefore, eddy current loss is suppressed, energy loss of the electric motor is reduced, and efficiency is improved.
  • FIG. 1 is a plan view of an electric motor using the stator of the electric motor according to Embodiment 1 of the present invention.
  • the electric motor 300 includes a stator 100 and a rotor 150.
  • the rotor 150 has a magnet 151, and the stator 100 has a winding 2.
  • the electric motor 300 is a permanent magnet type electric motor, but may be other types of electric motors such as an electromagnet type, a reluctance type, and a hysteris type.
  • FIG. 2 is a plan view of the stator of the electric motor according to Embodiment 1 of the present invention.
  • FIG. 3 is a plan view of the iron core piece of the stator of the electric motor according to Embodiment 1 of the present invention.
  • FIG. 4 is a front view of the iron core piece of the stator of the electric motor according to Embodiment 1 of the present invention.
  • a plurality of arc-shaped iron core pieces 101 are joined in an annular shape.
  • nine iron core pieces 101 are joined on the ring, but the number of iron core pieces constituting the ring is arbitrary, and one annular iron core that is not divided is used. It may be a piece.
  • the iron core piece 101 is formed by laminating a plurality of electromagnetic steel plates 104 in the vertical direction (Z-axis direction in FIG. 4).
  • the core piece 101 has a core back portion 103 that is positioned on the outer peripheral side of the stator 100 and becomes a core back when the stator 100 is formed, and a teeth portion 102 that protrudes from the core back portion 103 to the inner peripheral surface. ing.
  • a winding 2 is wound around the tooth portion 102 via the insulating member 1 (see FIGS. 1 and 2).
  • a groove 105 extending in the stacking direction of the electromagnetic steel plates 104 (Z-axis direction in FIG. 4) is formed on the outer periphery of the core back portion 103.
  • the groove 105 shown in FIGS. 2 and 3 is a square groove, but is not limited to this, and as long as the same function can be performed, a U-shaped groove, a V-shaped groove, and a semicircle are provided. It can be changed to various cross-sectional grooves such as a round groove.
  • FIG. 5 is a plan view of the iron core piece into which the joining band of the stator of the electric motor according to Embodiment 1 of the present invention is inserted.
  • FIG. 6 is a front view of the iron core piece into which the joining band of the stator of the electric motor according to Embodiment 1 of the present invention is inserted.
  • FIG. 7 is a left side view of the iron core piece into which the joining band of the stator of the electric motor according to Embodiment 1 of the present invention is inserted.
  • the bonding band 3 is inserted into the groove 105 of the iron core piece 101 shown in FIGS.
  • the joining band 3 is a prism that extends in the laminating direction (the Z-axis direction in FIGS.
  • the joining band 3 is inserted into the groove 105 shown in FIG. 3, and the laminated electromagnetic steel plates 104 constituting the iron core piece 101 are caulked and fastened by the upper end portion 4 and the lower end portion 5.
  • An opening 7 is formed on the surface of the outer peripheral surface 6 of the bonding band 3. Specifically, a plurality of openings 7 are arranged in the stacking direction of the electromagnetic steel sheets 104 (Z-axis direction in FIG. 6). Moreover, the arrangement
  • a plurality may be arranged in the circumferential direction (X-axis direction in FIG. 6).
  • the opening 7 may have a shape that is longer in the circumferential direction than the width in the stacking direction.
  • the width in the stacking direction and the width in the circumferential direction may be the same.
  • the opening part 7 should just have an opening in the surface of the outer peripheral surface part 6 of the joining band 3, and the opening may be a dent recessed in the inner peripheral surface direction, and may be a through-hole.
  • the bonding band 3 is preferably made of austenitic stainless steel or non-ferrous metal having a relative permeability of 1.01 or less.
  • the bonding band 3 is preferably composed of a SUS304 plate, a copper plate, a brass plate, an aluminum plate, or the like. If the bonding band 3 is made of such a material having a relative permeability of 1.01 or less, the magnetic resistance is sufficiently high with respect to the electromagnetic steel sheet, and no magnetic flux flows through the bonding band 3. Moreover, since these metals have appropriate strength and heat resistance, they can be constructed without having to increase the thickness and width of the bonding band 3.
  • the bonding band 3 may be made of engineering plastic.
  • the bonding band 3 is made of PPS, PBT, LCP, or PEEK material.
  • PPS polystyrene
  • PBT metal-oxide-semiconductor
  • LCP low-density polystyrene
  • PEEK polystyrene-semiconductor
  • Such an engineering plastic has a sufficiently low relative permeability with respect to a metal member, a sufficiently high magnetic resistance with respect to an electromagnetic steel sheet, and a magnetic flux does not flow through the bonding band 3.
  • the metal is light and has high electrical corrosion resistance, a long-life and lightweight motor can be obtained.
  • FIG. 8 is a diagram for explaining the flow of magnetic flux in the stator of a conventional electric motor.
  • the magnetic flux that flows through the stator 110 includes an outward radial magnetic flux 111 that extends from the center toward the circumference, a circumferential magnetic flux 112 that flows in the circumferential direction, and an inward radial magnetic flux 113 that extends from the circumference toward the center.
  • the direction of the magnetic flux is changed by changing + and-of the voltage applied to the electric motor, and the arrangement of the N pole and the S pole is spatially moved to generate a rotating magnetic field.
  • FIG. 9 is a diagram for explaining the flow of magnetic flux in the stator of the electric motor according to Embodiment 1 of the present invention.
  • the magnetic flux that flows through the stator 100 includes an outward radial magnetic flux 11 that extends from the center toward the circumference, a circumferential magnetic flux 12 that flows in the circumferential direction, and an inward radial magnetic flux 13 that extends from the circumference toward the center.
  • the circumferential eddy current 22 is an eddy current generated by the circumferential magnetic flux 12 in the bonding band 3
  • the inward radial eddy current 23 is an eddy current generated by the inward radial magnetic flux 13.
  • an outward radial eddy current is similarly generated with respect to the outward radial magnetic flux 11.
  • an opening 7 is provided in the joining band 3. Since there is no magnetic substance in the opening 7, the magnetic permeability of this portion is reduced, and the resistance (magnetic resistance) to the flow of the circumferential magnetic flux 12 is increased. Therefore, the circumferential magnetic flux 12 bypasses the opening 7 and flows through the non-opening 8, and the region where the circumferential magnetic flux 12 flows in the bonding band 3 becomes narrower. And since the area
  • the opening 7 is provided in the bonding band 3 to create a portion having a high insulation resistance against eddy currents at high frequencies. Therefore, even if circumferential eddy current 22, inward radial eddy current 23 and outward radial eddy current (not shown) generated by circumferential magnetic flux 12, outward radial magnetic flux 11 and inward radial magnetic flux 13 are generated. It is difficult for the openings 7 to have high electrical insulation resistance to flow, and eddy currents can be suppressed. Therefore, eddy current loss is suppressed, energy loss of the electric motor is reduced, and efficiency is improved.
  • the bonding band 3 into the groove 105 of the iron core piece 101, the position of the electromagnetic steel sheet 104 is fixed, and the electromagnetic steel sheet 104 is less likely to be displaced. Therefore, the iron core piece 101 on which the electromagnetic steel sheets 104 are laminated does not fall down or bend, and the shape accuracy in the lamination direction of the iron core piece 101 can be improved. Therefore, the productivity of windings and the like due to the shape accuracy is improved, and mechanical vibration and noise of the electric motor can be reduced and stabilized. Therefore, it is possible to obtain an electric motor with high efficiency, low vibration, low noise and high productivity.
  • FIG. FIG. 10 is a diagram for explaining the flow of magnetic flux in the stator of the electric motor according to Embodiment 2 of the present invention. 10, parts having the same configurations as those of the stators of FIGS. 2 to 9 are denoted by the same reference numerals and description thereof is omitted. As shown in FIG. 10, the magnetic flux flowing through the stator 120 has an outward radial magnetic flux 211 from the center toward the circumference, a circumferential magnetic flux 212, and an inward radial magnetic flux 213 from the circumference toward the center.
  • a plurality of openings 17 are arranged in the circumferential direction, and the openings 17 and the non-openings 18 are shifted. Since the opening 17 is arranged in this way, the path in the circumferential direction is blocked, and the circumferential magnetic flux 212 is less likely to flow, and the circumferential eddy current 222 can be suppressed. Further, since the opening portion 17 having an electrically high insulation resistance is displaced and a plurality of locations through which current flows can be blocked, the flow of the inward radial eddy current 223 with respect to the inward radial magnetic flux 213 is further hindered. Current can be suppressed. Although not shown, the outward radial eddy current with respect to the outward radial magnetic flux 211 can be similarly suppressed. Therefore, eddy current loss is suppressed, energy loss of the electric motor is reduced, and efficiency is improved.
  • the productivity of windings and the like due to the shape accuracy is improved, and mechanical vibration and noise of the electric motor are reduced and stabilized. Is possible. Therefore, it is possible to obtain an electric motor with high efficiency, low vibration, low noise and high productivity.
  • FIG. 11 is a diagram for explaining the flow of magnetic flux in the stator of the electric motor according to Embodiment 3 of the present invention.
  • parts having the same configurations as those of the stators of FIGS. 2 to 9 are denoted by the same reference numerals and description thereof is omitted.
  • the 11 has a coil end portion 9 protruding from the upper surface and the lower surface of the iron core piece 101.
  • the coil end portion 9 no magnetic steel sheet exists, but a magnetic flux 14 is also generated around the coil end portion 9.
  • the magnetic flux 14 at the coil end portion also passes through the electromagnetic steel sheet directly below and contributes to generating a rotating magnetic field. Therefore, the magnetic flux 15 that passes through the bonding band 53 in the radial direction is generated on the upper and lower surfaces of each iron core piece 101.
  • the stator 130 of the electric motor according to Embodiment 3 of the present invention has an opening portion 27 formed at an end portion in the laminating direction of the electromagnetic steel sheets as compared to the opening portion 7 formed at the center portion of the bonding band 53. Largely formed in the circumferential direction.
  • the opening 27 formed in the end portion of the bonding band 53 is formed larger in the circumferential direction than the opening 7 formed in the central portion, the vortex due to the magnetic flux 14 generated in the coil end portion 9 is formed. Current loss can be reduced.
  • the productivity of windings and the like resulting from the shape accuracy is improved, and mechanical vibration and noise of the electric motor are reduced and stabilized. It becomes possible. Therefore, it is possible to obtain an electric motor with high efficiency, low vibration, low noise and high productivity.
  • the bonding band may have a curved outer peripheral surface.
  • the surface shape of the opening 7 may be various shapes such as a rectangular shape, a circular shape, an elliptical shape, an oval shape, and may have an angle from the stacking direction to the circumferential direction.

Abstract

An electric motor stator and an electric motor of the present invention are provided with: a core piece comprising a plurality of laminated magnetic steel sheets each having a core back portion and a tooth portion projecting from the core back portion toward the inner circumferential surface; and a joining band for fastening the magnetic steel sheets in the lamination direction. Openings are provided in the outer circumferential surface of the joining band.

Description

電動機の固定子及び電動機Electric motor stator and electric motor
 本発明は、圧縮機やファンモーター等に使われる電動機の固定子及び電動機に関するものである。 The present invention relates to an electric motor stator and an electric motor used for a compressor, a fan motor and the like.
 従来の電動機の固定子は、鉄心がプレス等により一体に打ち抜かれた電磁鋼板を積層して形成されている。積層した電磁鋼板を締結する方法としては、プレス金型内で電磁鋼板を半抜きすることにより、ダボを形成し上下の電磁鋼板をかしめる方法(抜きカシメ)や溶接する方法が一般的である(例えば、特許文献1及び2参照)。また、巻線の高密度化及び生産性を考慮して鉄心を複数の鉄心片に分割するものが提案されている(例えば、特許文献3参照)。特許文献3には、分割した鉄心片を接合する際に接合バンドを装着して接合する固定子が開示され、この場合もカシメ等で接合される。 Conventional stators of electric motors are formed by laminating electromagnetic steel sheets in which an iron core is integrally punched by a press or the like. As a method for fastening laminated electromagnetic steel sheets, a method of forming dowels by caulking the electromagnetic steel sheets in a press die and caulking the upper and lower electromagnetic steel sheets (clamping) and a method of welding are common. (For example, refer to Patent Documents 1 and 2). In addition, there has been proposed one in which an iron core is divided into a plurality of iron core pieces in consideration of high density winding and productivity (for example, see Patent Document 3). Patent Document 3 discloses a stator that is joined by attaching a joining band when joining the divided iron core pieces. In this case, the stator is joined by caulking or the like.
特開2008-43102号公報JP 2008-43102 A 特開平7-7875号公報Japanese Patent Laid-Open No. 7-7875 特開昭59-6736号公報JP 59-6736 A
 特許文献1~3のように、抜きカシメや溶接を実施した場合、積層した電磁鋼板の接合部の電気的な絶縁は悪化してしまう。接合部の電気的な絶縁が悪化すると電磁鋼板間で導通し、導通している箇所で渦電流が発生してしまう。この渦電流は、鉄心内の電気抵抗により熱となって電磁エネルギーの損失(渦電流損)を生じさせる。高速運転を実現するために高周波数化した際には、渦電流損は飛躍的に上がり、電動機の効率が大きく低下する。 As in Patent Documents 1 to 3, when punching or welding is performed, the electrical insulation at the joint of the laminated electrical steel sheets deteriorates. When the electrical insulation of the joint portion deteriorates, the electrical steel plates conduct, and eddy currents are generated at the conducting locations. This eddy current becomes heat due to the electrical resistance in the iron core and causes loss of electromagnetic energy (eddy current loss). When the frequency is increased to realize high-speed operation, the eddy current loss increases dramatically, and the efficiency of the motor is greatly reduced.
 本発明は、以上のような課題を解決するためのもので、積層した電磁鋼板の締結において渦電流の発生を抑制し、エネルギー効率のよい電動機の固定子及び電動機を提供することを目的とするものである。 An object of the present invention is to solve the above-described problems, and an object of the present invention is to provide an electric motor stator and an electric motor that suppress the generation of eddy currents in fastening of laminated electromagnetic steel sheets and has high energy efficiency. Is.
 本発明における電動機の固定子は、コアバック部とコアバック部から内周面に突出するティース部とを有する積層した複数の電磁鋼板からなる鉄心片と、複数の電磁鋼板を積層方向に締結する接合バンドと、を備え、接合バンドの外周面には開口部が設けられているものである。 The stator of the electric motor according to the present invention fastens the plurality of electromagnetic steel plates in the stacking direction with an iron core piece composed of a plurality of laminated electromagnetic steel plates having a core back portion and a teeth portion protruding from the core back portion to the inner peripheral surface. A bonding band, and an opening is provided on an outer peripheral surface of the bonding band.
 本発明に係る電動機の固定子及び電動機によれば、接合バンドの外周面に開口部が設けられている。開口部には磁性体が存在しないためこの部分の透磁率が小さくなり、磁束の流れに対する抵抗(磁気抵抗)が大きくなる。そのため、磁束は開口部を迂回して流れ、接合バンドの外周面において磁束が流れる領域が狭くなる。そして、磁束が流れる領域が狭くなるため渦電流の発生領域も狭くなり、渦電流を抑制することができる。また、渦電流は低周波では導体全体に流れるが、高周波では導体の表面に多く流れる。また、一般に発生する渦電流は電気的な絶縁抵抗が高い部分では小さくなる。本発明に係る電動機の固定子及び電動機によれば、高周波時の渦電流に対し、接合バンドの外周面の開口部で抵抗を大きくし渦電流を流れにくくすることができる。そのため、渦電流損が抑制され、電動機のエネルギー損失が減り、効率が良くなる。 According to the stator and the motor of the electric motor according to the present invention, the opening is provided on the outer peripheral surface of the bonding band. Since there is no magnetic substance in the opening, the magnetic permeability of this portion is reduced, and the resistance (magnetic resistance) to the flow of magnetic flux is increased. Therefore, the magnetic flux flows around the opening, and the region where the magnetic flux flows on the outer peripheral surface of the bonding band is narrowed. And since the area | region where a magnetic flux flows becomes narrow, the generation | occurrence | production area | region of an eddy current also becomes narrow and an eddy current can be suppressed. In addition, eddy currents flow through the entire conductor at low frequencies, but flow more on the conductor surface at high frequencies. In general, the eddy current generated is small in a portion where the electrical insulation resistance is high. According to the stator and the motor of the electric motor according to the present invention, it is possible to increase the resistance at the opening on the outer peripheral surface of the bonding band and to make the eddy current difficult to flow with respect to the eddy current at high frequency. Therefore, eddy current loss is suppressed, energy loss of the electric motor is reduced, and efficiency is improved.
本発明の実施の形態1に係る電動機の固定子を用いた電動機の平面図である。It is a top view of the electric motor using the stator of the electric motor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る電動機の固定子の平面図である。It is a top view of the stator of the electric motor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る電動機の固定子の鉄心片の平面図である。It is a top view of the iron core piece of the stator of the electric motor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る電動機の固定子の鉄心片の正面図である。It is a front view of the iron core piece of the stator of the electric motor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る電動機の固定子の接合バンドを挿入した鉄心片の平面図である。It is a top view of the core piece which inserted the joining band of the stator of the electric motor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る電動機の固定子の接合バンドを挿入した鉄心片の正面図である。It is a front view of the iron core piece which inserted the joining band of the stator of the electric motor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る電動機の固定子の接合バンドを挿入した鉄心片の左側面図である。It is a left view of the iron core piece which inserted the joining band of the stator of the electric motor which concerns on Embodiment 1 of this invention. 従来の電動機の固定子の磁束の流れを説明する図である。It is a figure explaining the flow of the magnetic flux of the stator of the conventional electric motor. 本発明の実施の形態1に係る電動機の固定子の磁束の流れを説明する図である。It is a figure explaining the flow of the magnetic flux of the stator of the electric motor which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る電動機の固定子の磁束の流れを説明する図である。It is a figure explaining the flow of the magnetic flux of the stator of the electric motor which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る電動機の固定子の磁束の流れを説明する図である。It is a figure explaining the flow of the magnetic flux of the stator of the electric motor which concerns on Embodiment 3 of this invention.
 以下、本発明の実施の形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
実施の形態1.
 図1は、本発明の実施の形態1に係る電動機の固定子を用いた電動機の平面図である。電動機300は、固定子100と、回転子150とを有する。回転子150は、磁石151を有し、固定子100は、巻線2を有する。電動機300は、永久磁石式電動機であるが、電磁石式、リラクタンス式、ヒステリス式等他の種類の電動機であってもよい。
Embodiment 1 FIG.
FIG. 1 is a plan view of an electric motor using the stator of the electric motor according to Embodiment 1 of the present invention. The electric motor 300 includes a stator 100 and a rotor 150. The rotor 150 has a magnet 151, and the stator 100 has a winding 2. The electric motor 300 is a permanent magnet type electric motor, but may be other types of electric motors such as an electromagnet type, a reluctance type, and a hysteris type.
 図2は、本発明の実施の形態1に係る電動機の固定子の平面図である。図3は、本発明の実施の形態1に係る電動機の固定子の鉄心片の平面図である。図4は、本発明の実施の形態1に係る電動機の固定子の鉄心片の正面図である。図2~図4の固定子100は、円弧形状の複数の鉄心片101を円環状に接合している。なお、図2では、9個の鉄心片101が、円環上に接合されているが、円環を構成する鉄心片の数は任意であり、また、分割されていない1つの円環状の鉄心片でもよい。 FIG. 2 is a plan view of the stator of the electric motor according to Embodiment 1 of the present invention. FIG. 3 is a plan view of the iron core piece of the stator of the electric motor according to Embodiment 1 of the present invention. FIG. 4 is a front view of the iron core piece of the stator of the electric motor according to Embodiment 1 of the present invention. In the stator 100 of FIGS. 2 to 4, a plurality of arc-shaped iron core pieces 101 are joined in an annular shape. In FIG. 2, nine iron core pieces 101 are joined on the ring, but the number of iron core pieces constituting the ring is arbitrary, and one annular iron core that is not divided is used. It may be a piece.
 鉄心片101は、複数の電磁鋼板104を上下方向(図4のZ軸方向)に積層して形成されている。鉄心片101は、固定子100の外周側に位置し固定子100を形成した際にコアバックとなるコアバック部103と、コアバック部103から内周面に突出するティース部102とを有している。 The iron core piece 101 is formed by laminating a plurality of electromagnetic steel plates 104 in the vertical direction (Z-axis direction in FIG. 4). The core piece 101 has a core back portion 103 that is positioned on the outer peripheral side of the stator 100 and becomes a core back when the stator 100 is formed, and a teeth portion 102 that protrudes from the core back portion 103 to the inner peripheral surface. ing.
 ティース部102には、絶縁部材1を介し、巻線2が巻き回される(図1及び図2参照)。コアバック部103の外周は、電磁鋼板104の積層方向(図4のZ軸方向)に延びる溝105が形成されている。なお、図2及び図3に示されている溝105は、角溝であるが、これに限定されるものではなく、同一の機能を行うことができる限りU字溝、V字溝、半円状の丸溝等各種断面形状の溝に変更することができる。 A winding 2 is wound around the tooth portion 102 via the insulating member 1 (see FIGS. 1 and 2). A groove 105 extending in the stacking direction of the electromagnetic steel plates 104 (Z-axis direction in FIG. 4) is formed on the outer periphery of the core back portion 103. The groove 105 shown in FIGS. 2 and 3 is a square groove, but is not limited to this, and as long as the same function can be performed, a U-shaped groove, a V-shaped groove, and a semicircle are provided. It can be changed to various cross-sectional grooves such as a round groove.
 図5は、本発明の実施の形態1に係る電動機の固定子の接合バンドを挿入した鉄心片の平面図である。図6は、本発明の実施の形態1に係る電動機の固定子の接合バンドを挿入した鉄心片の正面図である。図7は、本発明の実施の形態1に係る電動機の固定子の接合バンドを挿入した鉄心片の左側面図である。図5~図7は、図3及び図4の鉄心片101の溝105に接合バンド3が挿入されたものである。接合バンド3は、電磁鋼板104の積層方向(図4及び図6のZ軸方向)に延びる角柱であり、積層方向の上端部4及び下端部5が内周面方向に突出する略コの字形状に形成されている。接合バンド3は、図3で示した溝105に挿入され、上端部4及び下端部5により鉄心片101を構成する積層された電磁鋼板104をかしめて締結する。 FIG. 5 is a plan view of the iron core piece into which the joining band of the stator of the electric motor according to Embodiment 1 of the present invention is inserted. FIG. 6 is a front view of the iron core piece into which the joining band of the stator of the electric motor according to Embodiment 1 of the present invention is inserted. FIG. 7 is a left side view of the iron core piece into which the joining band of the stator of the electric motor according to Embodiment 1 of the present invention is inserted. 5 to 7, the bonding band 3 is inserted into the groove 105 of the iron core piece 101 shown in FIGS. The joining band 3 is a prism that extends in the laminating direction (the Z-axis direction in FIGS. 4 and 6) of the electromagnetic steel sheet 104, and the upper end 4 and the lower end 5 in the laminating direction protrude in an inner circumferential surface direction. It is formed into a shape. The joining band 3 is inserted into the groove 105 shown in FIG. 3, and the laminated electromagnetic steel plates 104 constituting the iron core piece 101 are caulked and fastened by the upper end portion 4 and the lower end portion 5.
 接合バンド3の外周面部6の表面には、開口部7が形成されている。具体的には、開口部7の配置は、電磁鋼板104の積層方向(図6のZ軸方向)に複数配列されている。また、開口部7の配置は、周方向(図6のX軸方向)に単数である。さらに、開口部7は、周方向の幅より積層方向に長い形状を有する。なお、開口部7の配置や形状は、図面に記載されたものに限定されるものではなく、同一の機能を行うことができる限り各種形状に変更することができる。例えば、開口部7の配置は、電磁鋼板104の積層方向(図6のZ軸方向)に単数であってもよい。また、周方向(図6のX軸方向)に複数配列されてもよい。さらに、開口部7は、積層方向の幅より周方向に長い形状を有してもよい。また、積層方向の幅と周方向の幅が同一であってもよい。さらに、開口部7は、接合バンド3の外周面部6の表面に開口があればよく、開口は内周面方向に凹んだ窪みであってもよく、貫通孔でもよい。 An opening 7 is formed on the surface of the outer peripheral surface 6 of the bonding band 3. Specifically, a plurality of openings 7 are arranged in the stacking direction of the electromagnetic steel sheets 104 (Z-axis direction in FIG. 6). Moreover, the arrangement | positioning of the opening part 7 is single in the circumferential direction (X-axis direction of FIG. 6). Furthermore, the opening 7 has a shape that is longer in the stacking direction than in the circumferential direction. In addition, arrangement | positioning and shape of the opening part 7 are not limited to what was described in drawing, It can change into various shapes, as long as the same function can be performed. For example, the arrangement of the openings 7 may be singular in the stacking direction of the electromagnetic steel sheets 104 (Z-axis direction in FIG. 6). Further, a plurality may be arranged in the circumferential direction (X-axis direction in FIG. 6). Furthermore, the opening 7 may have a shape that is longer in the circumferential direction than the width in the stacking direction. The width in the stacking direction and the width in the circumferential direction may be the same. Furthermore, the opening part 7 should just have an opening in the surface of the outer peripheral surface part 6 of the joining band 3, and the opening may be a dent recessed in the inner peripheral surface direction, and may be a through-hole.
 接合バンド3は、比透磁率が1.01以下のオーステナイト系ステンレス鋼又は非鉄金属で構成されるのが望ましい。例えば、接合バンド3は、SUS304板、銅板、黄銅板、アルミ板等で構成されるのが望ましい。このような、比透磁率が1.01以下の材料で接合バンド3を構成していれば、電磁鋼板に対して、磁気抵抗が十分に高く、接合バンド3には磁束が流れない。しかも、これらの金属は適切な強度及び耐熱性を持っているため接合バンド3の厚さや幅を増す必要もなく構成することができる。 The bonding band 3 is preferably made of austenitic stainless steel or non-ferrous metal having a relative permeability of 1.01 or less. For example, the bonding band 3 is preferably composed of a SUS304 plate, a copper plate, a brass plate, an aluminum plate, or the like. If the bonding band 3 is made of such a material having a relative permeability of 1.01 or less, the magnetic resistance is sufficiently high with respect to the electromagnetic steel sheet, and no magnetic flux flows through the bonding band 3. Moreover, since these metals have appropriate strength and heat resistance, they can be constructed without having to increase the thickness and width of the bonding band 3.
 接合バンド3は、エンジニアリングプラスチックで構成されてもよい。例えば、接合バンド3は、PPS、PBT、LCP、PEEK材で構成される。このような、エンジニアリングプラスチックは金属部材に対し、比透磁率も十分に低く、電磁鋼板に対して、磁気抵抗が十分に高くなり、接合バンド3には磁束が流れない。さらに加えて金属に対して、軽量であり、かつ電気的な耐食性は高いため高寿命で軽量な電動機も得ることができる。 The bonding band 3 may be made of engineering plastic. For example, the bonding band 3 is made of PPS, PBT, LCP, or PEEK material. Such an engineering plastic has a sufficiently low relative permeability with respect to a metal member, a sufficiently high magnetic resistance with respect to an electromagnetic steel sheet, and a magnetic flux does not flow through the bonding band 3. In addition, since the metal is light and has high electrical corrosion resistance, a long-life and lightweight motor can be obtained.
 ここで、固定子の運転中の磁束の流れ及び渦電流の流れについて説明する。図8は、従来の電動機の固定子の磁束の流れを説明する図である。固定子110を流れる磁束は、中心から円周に向かう外向半径方向磁束111と、周方向に流れる周方向磁束112と、円周から中心方向に向かう内向半径方向磁束113とを有する。電動機に印加する電圧の+と-が変化することで磁束の向きが変わり、また、空間的にN極とS極の配置が移動して、回転磁界が発生する。そして、回転磁界の発生により、回転子(図示せず)を回転させるトルクが発生する。この時、磁束の流れる方向に直交して渦電流が発生する。接合バンド33においては、周方向磁束112と内向半径方向磁束113等により、その磁束に直交する周方向渦電流122及び内向半径方向渦電流123が発生する。なお、図示はしていないが同様に外向半径方向磁束111に対して外向半径方向渦電流が発生している。 Here, the flow of magnetic flux and eddy current during operation of the stator will be described. FIG. 8 is a diagram for explaining the flow of magnetic flux in the stator of a conventional electric motor. The magnetic flux that flows through the stator 110 includes an outward radial magnetic flux 111 that extends from the center toward the circumference, a circumferential magnetic flux 112 that flows in the circumferential direction, and an inward radial magnetic flux 113 that extends from the circumference toward the center. The direction of the magnetic flux is changed by changing + and-of the voltage applied to the electric motor, and the arrangement of the N pole and the S pole is spatially moved to generate a rotating magnetic field. And the torque which rotates a rotor (not shown) by generation | occurrence | production of a rotating magnetic field generate | occur | produces. At this time, an eddy current is generated perpendicular to the direction in which the magnetic flux flows. In the bonding band 33, a circumferential eddy current 122 and an inward radial eddy current 123 perpendicular to the magnetic flux are generated by the circumferential magnetic flux 112 and the inward radial magnetic flux 113. Although not shown, an outward radial eddy current is similarly generated with respect to the outward radial magnetic flux 111.
 図9は、本発明の実施の形態1に係る電動機の固定子の磁束の流れを説明する図である。固定子100を流れる磁束は、中心から円周に向かう外向半径方向磁束11と、周方向に流れる周方向磁束12と、円周から中心方向に向かう内向半径方向磁束13とを有する。周方向渦電流22は、接合バンド3において周方向磁束12によって発生する渦電流であり、内向半径方向渦電流23は、内向半径方向磁束13によって発生する渦電流である。なお、図示はしていないが同様に外向半径方向磁束11に対して外向半径方向渦電流が発生している。 FIG. 9 is a diagram for explaining the flow of magnetic flux in the stator of the electric motor according to Embodiment 1 of the present invention. The magnetic flux that flows through the stator 100 includes an outward radial magnetic flux 11 that extends from the center toward the circumference, a circumferential magnetic flux 12 that flows in the circumferential direction, and an inward radial magnetic flux 13 that extends from the circumference toward the center. The circumferential eddy current 22 is an eddy current generated by the circumferential magnetic flux 12 in the bonding band 3, and the inward radial eddy current 23 is an eddy current generated by the inward radial magnetic flux 13. Although not shown, an outward radial eddy current is similarly generated with respect to the outward radial magnetic flux 11.
 本発明の実施の形態1に係る電動機の固定子では、接合バンド3に開口部7が設けられている。開口部7には磁性体が存在しないためこの部分の透磁率が小さくなり、周方向磁束12の流れに対する抵抗(磁気抵抗)が大きくなる。そのため、周方向磁束12は開口部7を迂回して非開口部8を流れ、接合バンド3において周方向磁束12が流れる領域が狭くなる。そして、周方向磁束12が流れる領域が狭くなるため周方向渦電流22の発生領域も狭くなり、周方向渦電流22の発生を抑制することができる。また、渦電流は低周波では導体全体に流れるが、高周波では導体の表面に多く流れる。また、一般に、発生する渦電流は電気的な絶縁抵抗が高い部分では小さくなる。本発明の実施の形態1に係る電動機の固定子では、接合バンド3に開口部7を設けることにより高周波時の渦電流に対し電気的に絶縁抵抗が高い部分を作り出している。そのため、周方向磁束12と、外向半径方向磁束11及び内向半径方向磁束13によって発生する周方向渦電流22、内向半径方向渦電流23及び外向半径方向渦電流(図示せず)は発生しても電気的な絶縁抵抗が高い開口部7では流れにくく、渦電流を抑制することができる。そのため、渦電流損が抑制され、電動機のエネルギー損失が減り、効率が良くなる。 In the stator of the electric motor according to Embodiment 1 of the present invention, an opening 7 is provided in the joining band 3. Since there is no magnetic substance in the opening 7, the magnetic permeability of this portion is reduced, and the resistance (magnetic resistance) to the flow of the circumferential magnetic flux 12 is increased. Therefore, the circumferential magnetic flux 12 bypasses the opening 7 and flows through the non-opening 8, and the region where the circumferential magnetic flux 12 flows in the bonding band 3 becomes narrower. And since the area | region where the circumferential direction magnetic flux 12 flows becomes narrow, the generation | occurrence | production area | region of the circumferential direction eddy current 22 also becomes narrow, and generation | occurrence | production of the circumferential direction eddy current 22 can be suppressed. In addition, eddy currents flow through the entire conductor at low frequencies, but flow more on the conductor surface at high frequencies. In general, the generated eddy current is reduced in a portion where the electrical insulation resistance is high. In the stator of the electric motor according to Embodiment 1 of the present invention, the opening 7 is provided in the bonding band 3 to create a portion having a high insulation resistance against eddy currents at high frequencies. Therefore, even if circumferential eddy current 22, inward radial eddy current 23 and outward radial eddy current (not shown) generated by circumferential magnetic flux 12, outward radial magnetic flux 11 and inward radial magnetic flux 13 are generated. It is difficult for the openings 7 to have high electrical insulation resistance to flow, and eddy currents can be suppressed. Therefore, eddy current loss is suppressed, energy loss of the electric motor is reduced, and efficiency is improved.
 また、鉄心片101の溝105に接合バンド3挿入することにより、電磁鋼板104の位置が固定され、電磁鋼板104のずれが生じにくくなる。そのため、電磁鋼板104を積層した鉄心片101は倒れや曲がりが生じず、鉄心片101の積層方向の形状精度を良好にすることができる。よって、形状精度に起因する巻線等の生産性が良くなり、また、電動機の機械的振動、騒音を低減かつ安定化させることが可能となる。従って高効率、低振動、低騒音で生産性の高い電動機を得ることができる。 Also, by inserting the bonding band 3 into the groove 105 of the iron core piece 101, the position of the electromagnetic steel sheet 104 is fixed, and the electromagnetic steel sheet 104 is less likely to be displaced. Therefore, the iron core piece 101 on which the electromagnetic steel sheets 104 are laminated does not fall down or bend, and the shape accuracy in the lamination direction of the iron core piece 101 can be improved. Therefore, the productivity of windings and the like due to the shape accuracy is improved, and mechanical vibration and noise of the electric motor can be reduced and stabilized. Therefore, it is possible to obtain an electric motor with high efficiency, low vibration, low noise and high productivity.
実施の形態2.
 図10は、本発明の実施の形態2に係る電動機の固定子の磁束の流れを説明する図である。図10において図2~図9の固定子と同一の構成を有する部位には同一の符号を付してその説明を省略する。図10に示すように、固定子120を流れる磁束は、中心から円周に向かう外向半径方向磁束211と、周方向磁束212と、円周から中心方向に向かう内向半径方向磁束213を有する。
Embodiment 2. FIG.
FIG. 10 is a diagram for explaining the flow of magnetic flux in the stator of the electric motor according to Embodiment 2 of the present invention. 10, parts having the same configurations as those of the stators of FIGS. 2 to 9 are denoted by the same reference numerals and description thereof is omitted. As shown in FIG. 10, the magnetic flux flowing through the stator 120 has an outward radial magnetic flux 211 from the center toward the circumference, a circumferential magnetic flux 212, and an inward radial magnetic flux 213 from the circumference toward the center.
 図10に示すように、接合バンド43において、開口部17は周方向に複数に配列され、開口部17と非開口部18がずれている構造となっている。このように開口部17が配置しているため、周方向への経路が遮断され周方向磁束212はさらに流れにくく、周方向渦電流222を抑制できる。また、電気的に絶縁抵抗が高い開口部17をずれて有しており、電流が流れる箇所を複数で遮断できるので、内向半径方向磁束213に対する内向半径方向渦電流223の流れも更に阻害し渦電流を抑制することができる。なお、図示はしていないが外向半径方向磁束211に対する外向半径方向渦電流も同様に抑制できる。そのため、渦電流損が抑制され、電動機のエネルギー損失が減り、効率が良くなる。 As shown in FIG. 10, in the bonding band 43, a plurality of openings 17 are arranged in the circumferential direction, and the openings 17 and the non-openings 18 are shifted. Since the opening 17 is arranged in this way, the path in the circumferential direction is blocked, and the circumferential magnetic flux 212 is less likely to flow, and the circumferential eddy current 222 can be suppressed. Further, since the opening portion 17 having an electrically high insulation resistance is displaced and a plurality of locations through which current flows can be blocked, the flow of the inward radial eddy current 223 with respect to the inward radial magnetic flux 213 is further hindered. Current can be suppressed. Although not shown, the outward radial eddy current with respect to the outward radial magnetic flux 211 can be similarly suppressed. Therefore, eddy current loss is suppressed, energy loss of the electric motor is reduced, and efficiency is improved.
 また、本発明の実施の形態1に係る電動機の固定子と同様に、形状精度に起因する巻線等の生産性が良くなり、また、電動機の機械的振動、騒音を低減かつ安定化させることが可能となる。従って高効率、低振動、低騒音で生産性の高い電動機を得ることができる。 Further, like the stator of the electric motor according to the first embodiment of the present invention, the productivity of windings and the like due to the shape accuracy is improved, and mechanical vibration and noise of the electric motor are reduced and stabilized. Is possible. Therefore, it is possible to obtain an electric motor with high efficiency, low vibration, low noise and high productivity.
実施の形態3.
 図11は、本発明の実施の形態3に係る電動機の固定子の磁束の流れを説明する図である。図11において図2~図9の固定子と同一の構成を有する部位には同一の符号を付してその説明を省略する。
Embodiment 3 FIG.
FIG. 11 is a diagram for explaining the flow of magnetic flux in the stator of the electric motor according to Embodiment 3 of the present invention. In FIG. 11, parts having the same configurations as those of the stators of FIGS. 2 to 9 are denoted by the same reference numerals and description thereof is omitted.
 図11の巻線2は、鉄心片101の上面及び下面からはみ出しているコイルエンド部9を有する。コイルエンド部9には、電磁鋼板は存在しないが、コイルエンド部9の周りにも磁束14が発生する。コイルエンド部の磁束14は、直下の電磁鋼板を通り、回転磁界を発生させるのにも寄与している。よって、各鉄心片101の上面及び下面では接合バンド53を半径方向に通る磁束15が発生する。 11 has a coil end portion 9 protruding from the upper surface and the lower surface of the iron core piece 101. In the coil end portion 9, no magnetic steel sheet exists, but a magnetic flux 14 is also generated around the coil end portion 9. The magnetic flux 14 at the coil end portion also passes through the electromagnetic steel sheet directly below and contributes to generating a rotating magnetic field. Therefore, the magnetic flux 15 that passes through the bonding band 53 in the radial direction is generated on the upper and lower surfaces of each iron core piece 101.
 本発明の実施の形態3に係る電動機の固定子130は、電磁鋼板の積層方向において、接合バンド53の中央部分に形成される開口部7に比べて端部部分に形成される開口部27が周方向に大きく形成されている。 The stator 130 of the electric motor according to Embodiment 3 of the present invention has an opening portion 27 formed at an end portion in the laminating direction of the electromagnetic steel sheets as compared to the opening portion 7 formed at the center portion of the bonding band 53. Largely formed in the circumferential direction.
 接合バンド53の端部部分の形成される開口部27が、中央部部分に形成される開口部7に比べて周方向に大きく形成されているため、コイルエンド部9で発生する磁束14による渦電流損を低減することができる。 Since the opening 27 formed in the end portion of the bonding band 53 is formed larger in the circumferential direction than the opening 7 formed in the central portion, the vortex due to the magnetic flux 14 generated in the coil end portion 9 is formed. Current loss can be reduced.
 また、本発明の実施の形態1に係る電動機の固定子100と同様に、接合バンド53の周方向に磁束が流れにくくなり、渦電流損を減らすことができる。さらに、半径方向磁束については発生してもそれに直行する渦電流が開口部7及び開口部27により、流れにくく、同様に渦電流を低減することができる。 Further, similarly to the stator 100 of the electric motor according to the first embodiment of the present invention, it is difficult for the magnetic flux to flow in the circumferential direction of the bonding band 53, and eddy current loss can be reduced. Further, even if radial magnetic fluxes are generated, eddy currents perpendicular to the magnetic fluxes hardly flow through the openings 7 and 27, and the eddy currents can be similarly reduced.
 また、本発明の実施の形態1に係る電動機の固定子100と同様に、形状精度に起因する巻線等の生産性が良くなり、また、電動機の機械的振動、騒音を低減かつ安定化させることが可能となる。従って高効率、低振動、低騒音で生産性の高い電動機を得ることができる。 Further, like the stator 100 of the electric motor according to Embodiment 1 of the present invention, the productivity of windings and the like resulting from the shape accuracy is improved, and mechanical vibration and noise of the electric motor are reduced and stabilized. It becomes possible. Therefore, it is possible to obtain an electric motor with high efficiency, low vibration, low noise and high productivity.
 なお、本発明の実施の形態は、上記実施の形態1~3に限定されず、種々の変更を加えることができる。例えば、接合バンドは、外周面が曲面で形成されていてもよい。また、開口部7の表面形状は、矩形状、円形状、楕円形状、オーバル形状等種々の形状であってもよく、積層方向から周方向に角度を有していてもよい。 The embodiment of the present invention is not limited to the first to third embodiments, and various modifications can be made. For example, the bonding band may have a curved outer peripheral surface. The surface shape of the opening 7 may be various shapes such as a rectangular shape, a circular shape, an elliptical shape, an oval shape, and may have an angle from the stacking direction to the circumferential direction.
 1 絶縁部材、2 巻線、3 接合バンド、4 上端部、5 下端部、6 外周面部、7 開口部、8 非開口部、9 コイルエンド部、11 外向半径方向磁束、12 周方向磁束、13 内向半径方向磁束、14 磁束、15 磁束、17 開口部、18 非開口部、22 周方向渦電流、23 内向半径方向渦電流、27 開口部、33 接合バンド、43 接合バンド、53 接合バンド、100 固定子、101 鉄心片、102 ティース部、103 コアバック部、104 電磁鋼板、105 溝、110 固定子、111 外向半径方向磁束、112 周方向磁束、113 内向半径方向磁束、120 固定子、122 周方向渦電流、123 内向半径方向渦電流、130 固定子、150 回転子、151 磁石、211 外向半径方向磁束、212 周方向磁束、213 内向半径方向磁束、222 周方向渦電流、223 内向半径方向渦電流、300 電動機。 1 Insulating member, 2 winding, 3 bonding band, 4 upper end, 5 lower end, 6 outer peripheral surface, 7 opening, 8 non-opening, 9 coil end, 11 outward radial magnetic flux, 12 circumferential magnetic flux, 13 Inward radial magnetic flux, 14 magnetic flux, 15 magnetic flux, 17 opening, 18 non-opening, 22 circumferential eddy current, 23 inward radial eddy current, 27 opening, 33 bonding band, 43 bonding band, 53 bonding band, 100 Stator, 101 Iron core piece, 102 teeth part, 103 core back part, 104 magnetic steel sheet, 105 groove, 110 stator, 111 outward radial magnetic flux, 112 circumferential magnetic flux, 113 inward radial magnetic flux, 120 stator, 122 circumference Direction eddy current, 123 inward radial eddy current, 130 stator, 150 rotor, 151 magnet, 2 1 outward radial flux, 212 circumferential flux, 213 inward radial flux, 222 circumferential eddy currents, 223 inward radial eddy currents, 300 motor.

Claims (10)

  1.  コアバック部と前記コアバック部から内周面に突出するティース部とを有する積層した複数の電磁鋼板からなる鉄心片と、
     前記複数の電磁鋼板を積層方向に締結する接合バンドと、を備え、
     前記接合バンドの外周面には開口部が設けられている電動機の固定子。
    An iron core piece composed of a plurality of laminated electromagnetic steel sheets having a core back part and a teeth part protruding from the core back part to the inner peripheral surface;
    A bonding band for fastening the plurality of electromagnetic steel sheets in the stacking direction,
    An electric motor stator in which an opening is provided on an outer peripheral surface of the joining band.
  2.  前記開口部は、前記積層方向に複数配列されている請求項1に記載の電動機の固定子。 The motor stator according to claim 1, wherein a plurality of the openings are arranged in the stacking direction.
  3.  前記開口部は、周方向に複数配列されている請求項1又は2に記載の電動機の固定子。 The electric motor stator according to claim 1 or 2, wherein a plurality of the openings are arranged in a circumferential direction.
  4.  前記開口部と非開口部が周方向にずれている請求項3に記載の電動機の固定子。 The motor stator according to claim 3, wherein the opening and the non-opening are displaced in the circumferential direction.
  5.  前記開口部は、周方向の幅より前記積層方向に長い形状を有する請求項1~4のいずれか一項に記載の電動機の固定子。 The motor stator according to any one of claims 1 to 4, wherein the opening has a shape that is longer in the stacking direction than in a circumferential width.
  6.  前記開口部は、前記積層方向の幅より周方向に長い形状を有する請求項1~4のいずれか一項に記載の電動機の固定子。 The motor stator according to any one of claims 1 to 4, wherein the opening has a shape longer in a circumferential direction than a width in the stacking direction.
  7.  前記開口部は、前記積層方向の中央部分に形成される開口部に比べて端部部分に形成される開口部が周方向に大きい請求項2~6のいずれか一項に記載の電動機の固定子。 The motor fixing according to any one of claims 2 to 6, wherein the opening is formed such that an opening formed in an end portion is larger in a circumferential direction than an opening formed in a central portion in the stacking direction. Child.
  8.  前記接合バンドは、比透磁率が1.01以下のオーステナイト系ステンレス鋼又は非鉄金属で構成された請求項1~7のいずれか一項に記載の電動機の固定子。 The motor stator according to any one of claims 1 to 7, wherein the joining band is made of austenitic stainless steel or nonferrous metal having a relative permeability of 1.01 or less.
  9.  前記接合バンドは、エンジニアリングプラスチックで構成された請求項1~7のいずれか一項に記載の電動機の固定子。 The motor stator according to any one of claims 1 to 7, wherein the joining band is made of engineering plastic.
  10.  請求項1~9のいずれか一項に記載の固定子を備えた電動機。 An electric motor comprising the stator according to any one of claims 1 to 9.
PCT/JP2016/057069 2016-03-08 2016-03-08 Electric motor stator and electric motor WO2017154087A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201690001591.7U CN208691029U (en) 2016-03-08 2016-03-08 The stator and motor of motor
PCT/JP2016/057069 WO2017154087A1 (en) 2016-03-08 2016-03-08 Electric motor stator and electric motor
JP2018503880A JP6598978B2 (en) 2016-03-08 2016-03-08 Electric motor stator and electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/057069 WO2017154087A1 (en) 2016-03-08 2016-03-08 Electric motor stator and electric motor

Publications (1)

Publication Number Publication Date
WO2017154087A1 true WO2017154087A1 (en) 2017-09-14

Family

ID=59789073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057069 WO2017154087A1 (en) 2016-03-08 2016-03-08 Electric motor stator and electric motor

Country Status (3)

Country Link
JP (1) JP6598978B2 (en)
CN (1) CN208691029U (en)
WO (1) WO2017154087A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53117540U (en) * 1977-02-25 1978-09-19
JP2006157997A (en) * 2004-11-25 2006-06-15 Toshiba Corp Stator for dynamo-electric machine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1320580A (en) * 1962-04-26 1963-03-08 Cem Comp Electro Mec Advanced training in electrical machines
JPS5843150A (en) * 1981-09-08 1983-03-12 Fanuc Ltd Stator
JPS58212337A (en) * 1982-06-01 1983-12-10 Matsushita Electric Ind Co Ltd Stator for motor
JPS596736A (en) * 1982-07-02 1984-01-13 Matsushita Electric Ind Co Ltd Stator for motor
KR100429990B1 (en) * 2001-06-14 2004-05-04 엘지전자 주식회사 Single phase line start permanent magnet synchronous motor
JP2013243818A (en) * 2012-05-18 2013-12-05 Mitsubishi Electric Corp Dynamo-electric machine and compressor including the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53117540U (en) * 1977-02-25 1978-09-19
JP2006157997A (en) * 2004-11-25 2006-06-15 Toshiba Corp Stator for dynamo-electric machine

Also Published As

Publication number Publication date
CN208691029U (en) 2019-04-02
JPWO2017154087A1 (en) 2018-09-13
JP6598978B2 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
US10819169B2 (en) Axial gap rotating electrical machine and manufacturing method for the same
JP6328319B2 (en) Armature and rotating machine
JP6766679B2 (en) Rotating electric machine
JP2012228104A (en) Permanent magnet-embedded motor
JP6026021B2 (en) Magnetic inductor type motor and method of manufacturing the same
JP2008187841A (en) Armature core, armature, motor, and manufacturing method for armature core
JP2018068090A (en) Synchronous reluctance type rotary electric machine
EP1836760B1 (en) Rotating electric machine
JP6110062B2 (en) Rotating electric machine
JP6655290B2 (en) Axial gap type rotary electric machine
WO2018193969A1 (en) Dynamo-electric machine
WO2018051938A1 (en) Rotating electrical machine
JP4568639B2 (en) Stator
JP2016005419A (en) Permanent magnet motor
JP6598978B2 (en) Electric motor stator and electric motor
JP7150171B2 (en) Rotating electric machine stator, terminal block and rotating electric machine
JP2011199918A (en) Permanent-magnet electric motor
JP6641601B2 (en) Rotor for rotating electric machine
JP2019088033A (en) Armature
JP2011114989A (en) Rotary electric machine
JP2011244673A (en) Split stator
JPWO2020080479A1 (en) Coil device
JP2010268650A (en) Axial gap type rotary electric machine
JP6745212B2 (en) Rotor and reluctance rotating electric machine
JP6464905B2 (en) motor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018503880

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893419

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16893419

Country of ref document: EP

Kind code of ref document: A1