WO2017154086A1 - Gas-liquid separator fixing tool, airtight compressor, device for manufacturing airtight compressor, and method for manufacturing airtight compressor - Google Patents
Gas-liquid separator fixing tool, airtight compressor, device for manufacturing airtight compressor, and method for manufacturing airtight compressor Download PDFInfo
- Publication number
- WO2017154086A1 WO2017154086A1 PCT/JP2016/057068 JP2016057068W WO2017154086A1 WO 2017154086 A1 WO2017154086 A1 WO 2017154086A1 JP 2016057068 W JP2016057068 W JP 2016057068W WO 2017154086 A1 WO2017154086 A1 WO 2017154086A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- liquid separator
- hermetic compressor
- protrusion
- protrusions
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
- F04B39/12—Casings; Cylinders; Cylinder heads; Fluid connections
Definitions
- the present invention relates to a gas-liquid separator fixture for fixing a gas-liquid separator to a hermetic compressor, a hermetic compressor including the gas-liquid separator fixture, and gas-liquid separation using the gas-liquid separator fixture
- the present invention relates to an apparatus for manufacturing a hermetic compressor for fixing a compressor and a method for manufacturing a hermetic compressor.
- Patent Document 1 As a conventional gas-liquid separator fixture, for example, in Patent Document 1, a fastening member such as a bolt, a screw, and a rivet, or an accumulator and a sealed container of a compressor are used by welding or brazing such as arc welding. A connecting accumulator securing device is disclosed.
- Patent Document 2 and Patent Document 3 disclose an accumulator mounting device that connects an accumulator and a sealed container of a compressor by projection welding.
- the accumulator and the hermetic container of the compressor are sealed by welding a protrusion provided on the support fitting of the accumulator mounting device and fixing it to an object to be welded such as a housing of the accumulator. Can be connected.
- the present invention is intended to solve the above-described problems, and it is possible to ensure reliability with respect to strength and to reduce a manufacturing cost.
- a gas-liquid separator fixture, a hermetic compressor, and a hermetic compressor An object of the present invention is to provide a manufacturing apparatus and a manufacturing method of a hermetic compressor.
- a gas-liquid separator fixture is a gas-liquid separator fixture for fixing a gas-liquid separator to a sealed container of a hermetic compressor, and a fixing part fixed to the sealed container; A support portion extending from the fixed portion and supporting the gas-liquid separator; and a plurality of protrusions disposed on the support portion and restraining the gas-liquid separator.
- the hermetic compressor according to the present invention includes the gas-liquid separator fixture described above.
- the manufacturing apparatus for a hermetic compressor according to the present invention applies pressure to the protrusion of the gas-liquid separator fixture by applying the gas-liquid separator arranged in the gas-liquid separator fixture. And a plurality of electrodes for causing a current to flow through the protrusions to melt the protrusions and fixing the gas-liquid separator to the gas-liquid separator fixture.
- the method for manufacturing a hermetic compressor according to the present invention includes a step of arranging the gas-liquid separator in the gas-liquid separator fixture described above, and applying the pressure to the protrusion to The step of restraining by the protrusion, and the step of passing an electric current through the protrusion to melt the protrusion and fixing the gas-liquid separator to the gas-liquid separator fixture.
- the present invention by providing a plurality of protrusions for restraining the gas-liquid separator on the gas-liquid separator fixture, even when projection welding is used, the contact portion between the protrusions and the workpiece to be welded is provided. A shift can be avoided.
- the gas-liquid separator fixture and the gas-liquid separator are fixed by the protrusions, so the base material of the gas-liquid separator is reduced and the strength of the gas-liquid separator is reduced. There is nothing.
- a hermetic compressor can be manufactured at low cost. Therefore, according to the present invention, a gas-liquid separator fixture, a hermetic compressor, a hermetic compressor manufacturing apparatus, and hermetic compression that can ensure reliability in strength and can reduce manufacturing costs. A method for manufacturing a machine can be provided.
- FIG. 8 is a schematic view showing a state in which pressure is applied to a protrusion 76 by a pressure cylinder 79. It is the schematic which shows an example of the state after the pressure application in FIG.
- FIG. 1 is a schematic diagram illustrating an example of an internal configuration of a hermetic compressor 100 according to the first embodiment.
- the size and shape of each component or the relationship between the sizes of each component may be different from the actual one.
- symbol is attached
- symbol is abbreviate
- the front-rear, left-right, or top-bottom positional relationship between the constituent members of the hermetic compressor 100 is, as a general rule, set in a state where the hermetic compressor 100 can be used. The positional relationship of time.
- the hermetic compressor 100 is a fluid machine that is used in a refrigeration cycle apparatus such as an air conditioner and discharges a low-pressure gas refrigerant sucked into the sealed container 10 as a high-pressure gas refrigerant.
- a rolling piston type rotary compressor is illustrated as an example of the hermetic compressor 100.
- the sealed container 10 of the hermetic compressor 100 is configured as a cylinder-shaped container.
- the hermetic container 10 is composed of a main body portion 1 having a U-shaped longitudinal section and a lid portion 3 having an inverted U-shaped longitudinal section, and an outer surface of the opening portion of the lid portion 3 is an opening portion of the main body portion 1. It is fixed to the inner surface of the.
- the fixed portion between the main body 1 and the lid 3 is joined by welding or the like, for example.
- a base 5 for arranging the hermetic compressor 100 in a vertical type is provided on the outer surface of the bottom surface of the main body 1.
- the discharge pipe 7 is fixed through the upper surface of the lid 3 of the sealed container 10.
- the discharge pipe 7 is a refrigerant pipe that discharges high-pressure gas refrigerant to the outside of the sealed container 10.
- the fixed portion between the discharge pipe 7 and the lid 3 is joined, for example, by brazing.
- a glass terminal 9 is disposed on the upper surface of the lid 3 of the sealed container 10.
- the glass terminal 9 provides an interface for connecting an external power source.
- the external power supply is a power supply device that supplies power to the hermetic compressor 100, and a general commercial AC power supply having an AC frequency of 50 Hz or 60 Hz, or an inverter power supply capable of changing the AC frequency is used.
- the frequency variable inverter power supply is used, the number of revolutions of the hermetic compressor 100 can be changed. Therefore, the hermetic compressor 100 can control the discharge amount of the high-pressure gas refrigerant from the discharge pipe 7. .
- the external power source connected to the glass terminal 9 is not shown.
- an electric motor unit 20 In the sealed container 10, an electric motor unit 20, a crankshaft 30, and a compression mechanism unit 40 are accommodated.
- the electric motor unit 20 is disposed above the compression mechanism unit 40.
- the crankshaft 30 is disposed between the electric motor unit 20 and the compression mechanism unit 40 at the center of the sealed container 10 and extends in the vertical direction at the center of the sealed container 10.
- the electric motor unit 20 In the hermetic compressor 100, the electric motor unit 20 is also referred to as an electric element, and the compression mechanism unit 40 is also referred to as a compression element.
- the electric motor unit 20 is configured as a motor that generates a rotational driving force using electric power supplied from an external power source and transmits the rotational driving force to the compression mechanism unit 40 via the crankshaft 30.
- the electric motor unit 20 includes a stator 22 having a hollow cylindrical appearance in a top view, and a cylindrical rotor 24 that is rotatably disposed inside the inner surface of the stator 22.
- the stator 22 is fixed to the inner surface of the main body 1 of the hermetic container 10 and is connected to the glass terminal 9 via a conducting wire 26.
- the electric motor unit 20 can rotate the rotor 24 inside the inner surface of the stator 22 by supplying electric power from an external power source to the coil wound around the stator 22 via the conductor 26.
- a DC brushless motor or the like is used as the electric motor unit 20.
- a crankshaft 30 is fixed to the center of the rotor 24 so as to penetrate the rotor 24.
- the crankshaft 30 is a rotating shaft that fixes the rotor 24 on the outer surface of the crankshaft 30 and transmits the rotational driving force of the rotor 24 to the compression mechanism 40.
- crankshaft 30 has a cylindrical eccentric portion 32 disposed inside the compression mechanism portion 40.
- a rolling piston 34 is attached to the outer surface of the eccentric portion 32 so as to be rotatable along the outer surface of the eccentric portion 32.
- the refrigerating machine oil 50 stored in the bottom of the main body 1 of the sealed container 10 is compressed on the crankshaft 30 by centrifugal force due to the rotational movement of the crankshaft 30.
- An oil hole for supplying to the mechanism unit 40 is provided.
- the compression mechanism unit 40 compresses the low-pressure gas refrigerant sucked into the sealed container 10 into a high-pressure gas refrigerant by the rotational driving force supplied from the electric motor unit 20, and the compressed high-pressure gas refrigerant is compressed into the compression mechanism unit. 40 is discharged upward.
- the compression mechanism unit 40 includes a hollow cylindrical cylinder 41.
- the outer surface of the cylinder 41 is fixed to the inner surface of the main body 1 of the sealed container 10.
- the hollow portion 41a of the cylinder 41 accommodates the eccentric portion 32 of the crankshaft 30 and the rolling piston 34. That is, the cylinder 41 is configured such that the eccentric portion 32 of the crankshaft 30 and the rolling piston 34 can eccentrically rotate in the hollow portion 41 a by the rotation of the crankshaft 30.
- the cylinder 41 is provided with a vane groove 41b extending in the radial direction from the inner surface of the cylinder 41 constituting the hollow portion 41a of the cylinder 41.
- a vane 42 is accommodated in the vane groove 41 b of the cylinder 41.
- the vane 42 is pressed against the surface of the rolling piston 34 by the restoring force of an elastic body such as a spring provided inside the vane groove 41b, and reciprocates inside the vane groove 41b by the eccentric motion of the rolling piston 34.
- This is a sliding member configured as described above.
- a main bearing 43 is disposed on the hollow disk surface on the upper side of the cylinder 41.
- a sub-bearing 44 is disposed on the lower hollow disk surface of the cylinder 41.
- the main bearing 43 and the auxiliary bearing 44 are sliding bearings that support the crankshaft 30 so as to be slidable.
- the main bearing 43 has a hollow disc shape when viewed from above.
- the main bearing 43 has a fixed portion 43a that is fixed to the upper hollow disk surface of the cylinder 41, and a bearing portion 43b that slidably supports the outer surface of the crankshaft 30.
- the main bearing 43 is displayed as two L-shaped members in FIG.
- the main bearing 43 is being fixed to the hollow disc surface above the cylinder 41 with the volt
- the auxiliary bearing 44 has a hollow disk shape when viewed from the bottom.
- the sub-bearing 44 has a fixed portion 44a that is fixed to the lower hollow disk surface of the cylinder 41, and a bearing portion 44b that slidably supports the outer surface of the crankshaft 30. Note that the sub-bearing 44 is shown as two L-shaped members in FIG.
- the auxiliary bearing 44 is fixed to the lower hollow disk surface of the cylinder 41 with, for example, bolts.
- a sealable space surrounded by the rolling piston 34, the cylinder 41, the vane 42, the fixing part 43 a of the main bearing 43, and the fixing part 44 a of the auxiliary bearing 44 is sucked into the sealed container 10.
- a compression chamber for compressing the low-pressure gas refrigerant formed is configured.
- the high-pressure gas refrigerant compressed in the compression chamber is discharged from the discharge port provided in the main bearing 43.
- the discharge port provided in the main bearing 43 is not shown in the following drawings including FIG.
- FIG. 2 is a schematic diagram illustrating an example of the suction muffler 60 before being fixed to the sealed container 10 in the hermetic compressor 100 according to the first embodiment.
- FIG. 2 the attachment direction of the suction muffler 60 is illustrated by arrows.
- FIG. 3 is a schematic diagram illustrating an example of the suction muffler 60 after being fixed to the hermetic container 10 in the hermetic compressor 100 according to the first embodiment.
- a housing 62 of a suction muffler 60 is attached to the gas-liquid separator fixture 70 disposed on the outer surface of the sealed container 10 on the outer surface of the main body 1 of the sealed container 10. It is fixed.
- An inflow pipe 64 is fixed to the top of the housing 62 of the suction muffler 60 through the housing 62.
- the inflow pipe 64 is, for example, a refrigerant pipe through which a low-pressure gas refrigerant or a two-phase refrigerant having a high dryness flowing out from the evaporator of the refrigeration cycle apparatus flows into the housing 62 of the suction muffler 60.
- a suction pipe 66 that communicates between the suction muffler 60 and the sealed container 10 passes through and is fixed to the bottom of the housing 62 of the suction muffler 60.
- a suction port 68 configured to communicate with the compression chamber of the compression mechanism 40 is provided on the outer surface of the main body 1 of the sealed container 10, and the other end of the suction pipe 66 is a suction port 68. It is fixed.
- the suction muffler 60 is a gas-liquid separator that functions as an accumulator having a refrigerant storage function for storing excess refrigerant and a gas-liquid separation function for retaining liquid refrigerant that is temporarily generated when the operating state changes. is there.
- the gas-liquid separation function can prevent a large amount of liquid refrigerant from flowing into the sealed container 10 and liquid compression by the hermetic compressor 100.
- the suction muffler 60 also has a function as a silencer that reduces or eliminates noise generated by the refrigerant flowing from the inflow pipe 64.
- the hermetic compressor 100 is used as a rotary compressor, and the suction muffler 60 as a gas-liquid separator is attached.
- the hermetic compressor 100 is used as a scroll compressor, and the gas-liquid separator is used. It is good also as a structure which attaches a certain accumulator.
- the eccentric part 32 and the rolling piston 34 housed in the cylinder 41 are eccentrically rotated together with the crankshaft 30.
- the vane 42 provided inside the vane groove 41b of the cylinder 41 performs a piston motion.
- the low-pressure gas refrigerant that has flowed into the compression mechanism portion 40 from the suction pipe 66 through the suction port 68 enters the rolling piston 34, the cylinder 41, the vane 42, the fixed portion 43a of the main bearing 43, and the fixed portion 44a of the auxiliary bearing 44. It flows into the compression chamber which is an enclosed sealed space.
- the low-pressure gas refrigerant that has flowed into the compression chamber is compressed into the high-pressure gas refrigerant as the volume of the compression chamber decreases due to the eccentric rotation of the rolling piston 34.
- the high-pressure gas refrigerant is discharged into the high-pressure space inside the sealed container 10 located between the electric motor unit 20 and the compression mechanism unit 40 through the discharge port provided in the main bearing 43, and through the discharge pipe 7. Then, it is discharged out of the sealed container 10.
- FIG. 4 is a schematic view showing the structure of the gas-liquid separator fixture 70 according to the first embodiment in a top view.
- the gas-liquid separator fixture 70 includes a fixing portion 72 fixed to the outer surface of the hermetic container 10 of the hermetic compressor 100, a support portion 74 extending from the fixing portion 72 and supporting the suction muffler 60, and a support. It can be configured to include a plurality of protrusions 76 that are disposed in the portion 74 and restrain the suction muffler 60.
- the fixing portion 72 can be configured as a curved plate-like member having an arc-shaped fixing surface 72 a along the outer surface of the sealed container 10 in a top view.
- the support portion 74 includes a first support member 74 a that extends from the first end portion 72 b of the fixing portion 72 and extends away from the sealed container 10 in a top view.
- the support portion 74 extends from the second end portion 72c of the fixing portion 72 in a top view, and extends in parallel with the first support member 74a in a direction away from the sealed container 10. 2 support members 74b.
- the first support member 74a is provided with a first inner side surface 74c
- the second support member 74b is provided with a second inner side surface 74d facing the first inner side surface 74c.
- the first support member 74a and the second support member 74b are configured as flat plate-like members, for example.
- the first protrusion 76a and the second protrusion 76b are provided on the first inner surface 74c of the first support member 74a.
- a third projecting portion 76c and a fourth projecting portion 76d are provided on the second inner surface 74d of the second support member 74b.
- the four protrusions 76 of the first protrusion 76a, the second protrusion 76b, the third protrusion 76c, and the fourth protrusion 76d are used.
- the outer surface of the housing 62 of the suction muffler 60 can be restrained.
- the protruding portion 76 can be provided on the support portion 74 by, for example, pressing.
- the gas-liquid separator fixture 70 may be configured to fix the fixing portion 72 to the sealed container 10 by brazing or the like, or may be configured integrally with the sealed container 10.
- FIG. 5 is a schematic diagram showing the structure of the manufacturing apparatus 200 for the hermetic compressor 100 according to the first embodiment.
- the manufacturing apparatus 200 of the hermetic compressor 100 is configured as a welding apparatus such as a resistance welder.
- the manufacturing apparatus 200 of the hermetic compressor 100 applies a suction muffler 60 disposed in the gas-liquid separator fixture 70 to the protrusion 76 of the gas-liquid separator fixture 70.
- a pressurizing cylinder 79 to be restrained.
- the pressurizing cylinder 79 can be configured as, for example, a pneumatic cylinder or a hydraulic cylinder whose pressure is adjusted by a flow rate adjusting valve.
- the manufacturing apparatus 200 of the hermetic compressor 100 includes a plurality of electrodes 80 for causing a current to flow through the protrusion 76 to melt the protrusion 76 and fixing the suction muffler 60 to the gas-liquid separator fixture 70.
- the electrode 80 can be configured as, for example, a pure metal electrode such as a pure tungsten electrode or a pure molybdenum electrode, or an alloy electrode such as a copper alumina alloy electrode.
- the manufacturing apparatus 200 of the hermetic compressor 100 has an arcuate recess 90a along the outer surface of the hermetic container 10, and supports the movement range of the hermetic container 10 during the manufacturing of the hermetic compressor 100.
- a stand 90 is provided.
- the manufacturing apparatus 200 of the hermetic compressor 100 includes, for example, a welding power source 82 that converts AC power supplied from a commercial AC power source into power used for welding, and amplifies the current flowing from the welding power source 82 for welding. And a welding transformer 84 that flows to the electrode 80.
- the welding power source 82 is configured as an inverter type power source, for example.
- the electrode 80 may be supported by, for example, a housing of the welding transformer 84, or a welding work table or the like may be provided in the manufacturing apparatus 200 of the hermetic compressor 100. It is good also as a structure supported on the worktable for welding.
- FIG. 6 is a schematic diagram showing a state in which pressure is applied to the protrusion 76 by the pressure cylinder 79 in the manufacturing apparatus 200 of the hermetic compressor 100 according to the first embodiment.
- the protrusion 76 to which pressure is applied is surrounded by a dotted line as a region A. Further, the pressure direction of the pressure cylinder 79 is indicated by a black arrow.
- the hermetic container 10 of the hermetic compressor 100 is disposed on the support base 90, and the suction muffler 60 is disposed on the gas-liquid separator fixture 70. Can start welding.
- the suction muffler 60 can be restrained by applying pressure to the protrusion 76 of the gas-liquid separator fixture 70.
- the suction muffler 60 can be fixed to the gas-liquid separator fixture 70 by flowing an electric current from the electrode 80 to the protrusion 76 to melt the protrusion 76.
- the first support member 74 a of the gas-liquid separator fixture 70 is provided with two protrusions 76 that contact the outer surface of the housing 62 of the suction muffler 60.
- the second support member 74 b of the gas-liquid separator fixture 70 is provided with two protrusions 76 that come into contact with the outer surface of the housing 62 of the suction muffler 60.
- the suction muffler 60 is restrained by the four protrusions 76 of the gas-liquid separator fixture 70, and therefore when the pressure is applied to the protrusion 76 by the pressure cylinder 79. Even if it exists, it can prevent that the suction muffler 60 moves. Therefore, in the manufacturing apparatus 200 of the hermetic compressor 100, by preventing the movement of the suction muffler 60, it is possible to prevent poor contact of the protrusions 76 with the suction muffler 60 and avoid poor welding.
- FIG. 7 shows a manufacturing apparatus 200 for a hermetic compressor 100 according to the first embodiment.
- One protrusion 76 is provided on each of the first support member 74a and the second support member 74b of the gas-liquid separator fixture 70.
- FIG. FIG. 5 is a schematic view showing a state in which pressure is applied to the protrusion 76 by the pressurizing cylinder 79 one by one.
- the protrusion 76 to which pressure is applied is surrounded by a dotted line as a region B.
- the pressure direction of the pressure cylinder 79 is indicated by a black arrow.
- FIG. 8 is a schematic diagram illustrating an example of a state after application of pressure in FIG.
- the suction muffler 60 is restrained by the four protrusions 76 of the gas-liquid separator fixture 70, thereby preventing poor contact of the protrusions 76 with the suction muffler 60, Welding defects can be avoided.
- FIG. 9 is a schematic diagram illustrating an example of a method for manufacturing the hermetic compressor 100 according to the first embodiment.
- the pressurizing direction at the time of manufacturing the hermetic compressor 100 is indicated by a solid line arrow.
- a direction from the center portion of the housing 62 of the suction muffler 60 toward the center portion of the sealed container 10 is indicated by a broken-line arrow with the x direction as the direction.
- the suction muffler 60 is fixed to the gas-liquid separator fixture 70 by projection welding.
- projection welding a plurality of electrodes 80 are used to pressurize the protrusions 76 and melt the protrusions 76 by heat generated by passing an electric current through the protrusions 76, and fix the casing 62 of the suction muffler 60 to a gas-liquid separator. This is a type of resistance welding to be fixed to the tool 70.
- the casing 62 of the suction muffler 60 is disposed on the gas-liquid separator fixture 70.
- the housing 62 of the suction muffler 60 includes the first protrusion 76a and the second protrusion 76b of the first support member 74a, and the third protrusion 76c and the second protrusion 76c of the second support member 74b.
- the four protrusions 76d are arranged so as to sandwich the outer surface of the housing 62 of the suction muffler 60.
- the casing 80 of the suction muffler 60 is formed by applying pressure to the protrusion 76 using the electrode 80 disposed on the support portion 74. Restrained by the protrusion 76.
- the first electrode 80a is disposed on the outer surface side of the first support member 74a
- the second electrode 80b is disposed on the outer surface side of the second support member 74b.
- the housing 62 of the suction muffler 60 is restrained by contacting the housing 62 of the 60.
- the manufacturing method of the hermetic compressor 100 according to the first embodiment using the first electrode 80a and the second electrode 80b, current is passed through the protrusion 76 to melt the protrusion 76, and the suction is performed.
- the muffler 60 is fixed to the gas-liquid separator fixture 70.
- the manufacturing method of the hermetic compressor 100 according to the first embodiment since the displacement of the suction muffler 60 in the x direction can be avoided by pressurizing the protrusion 76, the casing 62 and the gas-liquid of the suction muffler 60 can be avoided. A welding failure with the separator fixture 70 can be avoided.
- the gas-liquid separator fixture 70 of the first embodiment is a gas-liquid separator fixture for fixing the suction muffler 60, which is an example of a gas-liquid separator, to the hermetic compressor 100.
- 70 a fixed portion 72 fixed to the hermetic container 10 of the hermetic compressor 100, a support portion 74 extending from the fixed portion 72 and supporting the suction muffler 60, and disposed on the support portion 74.
- a plurality of protrusions 76 for restraining the muffler 60.
- the hermetic compressor 100 according to the first embodiment includes the gas-liquid separator fixture 70 described above.
- the manufacturing apparatus 200 of the hermetic compressor 100 applies a suction muffler 60, which is an example of a gas-liquid separator disposed in the gas-liquid separator fixture 70, to the protrusion 76 of the gas-liquid separator fixture 70.
- the step of placing the suction muffler 60 as an example of the gas-liquid separator in the gas-liquid separator fixture 70 described above and the pressure on the protrusion 76 are described.
- the plurality of protrusions 76 that restrain the suction muffler 60 are provided on the gas-liquid separator fixture 70, so that the protrusion 76 and the housing 62 of the suction muffler 60 can be used even when projection welding is used. It is possible to avoid the occurrence of deviation in the contact portion with the.
- the gas-liquid separator fixture 70 and the suction muffler 60 are fixed by the protrusions 76, so that the base material of the suction muffler 60 is reduced and the strength of the suction muffler 60 is reduced. There is no.
- the hermetic compressor 100 can be manufactured at low cost. Therefore, according to the above-described configuration, the gas-liquid separator fixture 70, the hermetic compressor 100, and the hermetic compressor 100 that can ensure the reliability of strength such as durability and can reduce the manufacturing cost.
- the manufacturing apparatus 200 and the manufacturing method of the hermetic compressor 100 can be provided.
- the suction muffler 60 is fixed by projection welding, the welding time is short and the heating range can be narrowed, so that energy can be reduced during production, and the hermetic compressor 100 can be produced at low cost.
- the support part 74 is separated from the first support member 74a extending in a direction away from the sealed container 10 and the sealed container 10 in a top view.
- the third protrusion 76c and the fourth protrusion 76d can be provided. According to the above-described configuration, the suction muffler 60 is restrained by the first protrusion 76a, the second protrusion 76b, the third protrusion 76c, and the fourth protrusion 76d, so that stable projection welding is performed. It becomes possible.
- FIG. A gas-liquid separator fixture 70 according to Embodiment 2 of the present invention will be described with reference to FIGS.
- the gas-liquid separator fixture 70 of the second embodiment is a modification of the above-described first embodiment. Since the contents except the structure of the gas-liquid separator fixture 70 and the manufacturing method of the hermetic compressor 100 are the same as those in the first embodiment, the description thereof is omitted.
- FIG. 10 is a schematic diagram illustrating an example of the suction muffler 60 after being fixed to the hermetic container 10 in the hermetic compressor 100 according to the second embodiment.
- FIG. 11 is a schematic diagram showing the structure of the gas-liquid separator fixture 70 according to the second embodiment in a top view.
- FIG. 12 is a schematic diagram illustrating an example of a method for manufacturing the hermetic compressor 100 according to the second embodiment.
- the pressurizing direction at the time of manufacturing the hermetic compressor 100 is indicated by a solid line arrow.
- the direction perpendicular to the direction connecting the center portion of the casing 62 of the suction muffler 60 and the center portion of the sealed container 10 is defined as a y direction, and is indicated by a dashed arrow.
- the gas-liquid separator fixture 70 has a fixing portion 72 that is fixed to the sealed container 10 and a gap from the outer surface of the sealed container 10 in a side view.
- a support portion 74 extending in parallel with the fixed portion 72 and a connecting portion 78 for connecting the upper end portion of the fixed portion 72 and the lower end portion of the support portion 74 are provided.
- the gas-liquid separator fixture 70 of the second embodiment is configured as a step-like plate-like member in a side view.
- the support portion 74 has an arc-shaped support surface 74 e along the outer surface of the housing 62 of the suction muffler 60.
- a fifth protrusion 76e and a sixth protrusion 76f are arranged in contact with the outer surface of the housing 62 of the suction muffler 60.
- the fifth protrusion 76e and the sixth protrusion 76f are brought into contact with the outer surface of the casing 62 of the suction muffler 60. To place.
- the third electrode 80c is provided with the fifth protrusion 76e and the sixth protrusion on the outer surface of the housing 62 of the suction muffler 60. It arrange
- the fourth electrode 80d is disposed on the surface located above the connecting portion 78 and on the opposite side of the support surface 74e of the support portion 74.
- the fifth protrusion 76e and the sixth protrusion 76f are pressed against the casing 62 of the suction muffler 60, and the casing of the suction muffler 60 62 is restrained.
- the displacement of the suction muffler 60 in the y direction during the manufacture of the hermetic compressor 100 is avoided. be able to.
- a current is supplied to the fifth protrusion 76e and the sixth protrusion 76f using the third electrode 80c and the fourth electrode 80d.
- the suction muffler 60 is fixed to the gas-liquid separator fixture 70.
- the displacement of the suction muffler 60 in the y direction can be avoided by pressurizing the fifth protrusion 76e and the sixth protrusion 76f. Therefore, in the method for manufacturing the hermetic compressor 100 according to the second embodiment, it is possible to avoid poor welding between the casing 62 of the suction muffler 60 and the gas-liquid separator fixture 70.
- the support 74 has the support surface 74e along the outer surface of the suction muffler 60, which is an example of the gas-liquid separator.
- the plurality of protrusions 76 can be configured to be arranged on the support surface 74e. That is, in the gas-liquid separator fixture 70 according to the second embodiment, the fifth protrusion 76e and the sixth protrusion 76f can be arranged on the support surface 74e. According to the above-described configuration, stable projection welding can be performed with only the two protrusions 76, that is, the fifth protrusion 76e and the sixth protrusion 76f. For example, the number of press working steps can be reduced and the cost can be reduced. Thus, the hermetic compressor 100 can be manufactured.
- FIG. A gas-liquid separator fixture 70 according to Embodiment 3 of the present invention will be described with reference to FIGS. 13 and 14.
- the gas-liquid separator fixture 70 of the third embodiment is a modification of the above-described first embodiment. Since the contents except the structure of the gas-liquid separator fixture 70 and the manufacturing method of the hermetic compressor 100 are the same as those in the first embodiment, the description thereof is omitted.
- FIG. 13 is a schematic view showing the structure of the gas-liquid separator fixture 70 according to the third embodiment in a top view.
- FIG. 14 is a schematic diagram illustrating an example of a method for manufacturing the hermetic compressor 100 according to the third embodiment. In FIG. 14, the pressurizing direction at the time of manufacturing the hermetic compressor 100 is indicated by a solid arrow.
- the gas-liquid separator fixture 70 of the third embodiment has a fixing portion 72 that is fixed to the sealed container 10.
- the support portion 74 includes an L-shaped third support member 74f that extends from the first end portion 72b of the fixed portion 72 and extends in a direction away from the sealed container 10 in a top view. Yes.
- the support portion 74 has an L-shaped fourth support member 74 g that extends from the second end portion 72 c of the fixed portion 72 and extends in a direction away from the sealed container 10.
- the first convex bent portion 76g of the third support member 74f and the second convex bent portion 76h of the fourth support member 74g are configured to face each other.
- the first convex bent portion 76g and the second convex bent portion 76h are configured as a protruding portion 76 in the gas-liquid separator fixture 70.
- the first convex bent portion 76g and the second convex bent portion 76h are provided on the outer surface of the casing 62 of the suction muffler 60. Place it so that it touches.
- the fifth electrode 80e includes the first convex bent portion 76g and the second convex shape in the housing 62 of the suction muffler 60. It arrange
- the sixth electrode 80f is disposed on a surface located on the opposite side to the surface constituting the first convex bent portion 76g.
- the seventh electrode 80g is disposed on a surface located on a surface constituting the second convex bent portion 76h.
- the first convex bent portion 76g and the second convex bent portion 76 h is pressed against the housing 62 of the suction muffler 60. Since the housing 62 of the suction muffler 60 is restrained by pressing the first convex bent portion 76g and the second convex bent portion 76h against the housing 62, it is possible to avoid the displacement of the suction muffler 60. it can.
- the first convex bent portion 76g using the fifth electrode 80e, the sixth electrode 80f, and the seventh electrode 80g.
- the current muffler 60 is fixed to the gas-liquid separator fixture 70 by causing the current to flow through the second convex bent portion 76h to be melted.
- the displacement of the suction muffler 60 can be avoided by pressurizing the first convex bent portion 76g and the second convex bent portion 76h. Therefore, in the method for manufacturing the hermetic compressor 100 according to the third embodiment, it is possible to avoid poor welding between the casing 62 of the suction muffler 60 and the gas-liquid separator fixture 70.
- the support portion 74 extends in the direction away from the sealed container 10 and has the first convex bent portion 76g. It has a support member 74f and a fourth support member 74g extending in a direction away from the sealed container 10 and having a second convex bent portion 76h.
- the first convex bent portion 76g The first convex bent portion 76g and the second convex bent portion 76h constrain a suction muffler 60, which is an example of a gas-liquid separator, facing the second convex bent portion 76h.
- the protrusion 76 can be configured only by the bending work of the third support member 74f and the fourth support member 74g. For example, press working for providing the protrusion 76 is performed.
- the hermetic compressor 100 can be manufactured at a low cost.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Compressor (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
This gas-liquid separator fixing tool is used for fixing a gas-liquid separator to an airtight container of an airtight compressor, wherein the gas-liquid separator fixing tool is provided with a fixed part fixed to the airtight container, a support part extending from the fixed part and supporting the gas-liquid separator, and a plurality of protrusions that are disposed on the support part and that restrain the gas-liquid separator. The airtight compressor according to the present invention is provided with the gas-liquid separator fixing tool described above. A device for manufacturing the airtight compressor is provided with a pressurizing cylinder for applying pressure to the protrusions of the gas-liquid separator fixing tool to restrain the gas-liquid separator disposed on the gas-liquid separator fixing tool described above, and a plurality of electrodes for running an electric current to the protrusions to melt the protrusions and fix the gas-liquid separator to the gas-liquid separator fixing tool. A method for manufacturing the airtight compressor includes a step for disposing the gas-liquid separator on the gas-liquid separator fixing tool described above, a step for applying pressure to the protrusions to restrain the gas-liquid separator using the protrusions, and a step for running an electric current to the protrusions to melt the protrusions and fix the gas-liquid separator to the gas-liquid separator fixing tool.
Description
本発明は、気液分離器を密閉型圧縮機へ固定するための気液分離器固定具、該気液分離器固定具を備える密閉型圧縮機、該気液分離器固定具で気液分離器を固定する密閉型圧縮機の製造装置及び密閉型圧縮機の製造方法に関する。
The present invention relates to a gas-liquid separator fixture for fixing a gas-liquid separator to a hermetic compressor, a hermetic compressor including the gas-liquid separator fixture, and gas-liquid separation using the gas-liquid separator fixture The present invention relates to an apparatus for manufacturing a hermetic compressor for fixing a compressor and a method for manufacturing a hermetic compressor.
従来の気液分離器固定具としては、例えば、特許文献1には、ボルト、ネジ、リベット等の締結部材、又はアーク溶接等の溶接若しくはろう付け等により、アキュムレータと圧縮機の密閉容器とを連結するアキュムレータ固定装置が開示されている。
As a conventional gas-liquid separator fixture, for example, in Patent Document 1, a fastening member such as a bolt, a screw, and a rivet, or an accumulator and a sealed container of a compressor are used by welding or brazing such as arc welding. A connecting accumulator securing device is disclosed.
また、特許文献2及び特許文献3には、プロジェクション溶接により、アキュムレータと圧縮機の密閉容器とを連結するアキュムレータ取付装置が開示されている。特許文献2及び特許文献3におけるプロジェクション溶接では、アキュムレータ取付装置の支持金具に設けた突起部を溶接してアキュムレータの筐体等の被溶接物に固定することにより、アキュムレータと圧縮機の密閉容器との連結が可能となる。
Further, Patent Document 2 and Patent Document 3 disclose an accumulator mounting device that connects an accumulator and a sealed container of a compressor by projection welding. In the projection welding in Patent Document 2 and Patent Document 3, the accumulator and the hermetic container of the compressor are sealed by welding a protrusion provided on the support fitting of the accumulator mounting device and fixing it to an object to be welded such as a housing of the accumulator. Can be connected.
しかしながら、特許文献1のアキュムレータ固定装置で締結部材を用いた場合、アキュムレータ固定装置の部品数が多くなり、製造工程も多くなるため、密閉型圧縮機の製造コストが高くなるという課題があった。また、特許文献1においてアーク溶接等の溶接を用いた場合には、アキュムレータ固定装置をアキュムレータに取り付ける溶接時間が長くなり、溶接時の加熱範囲が広くなる。したがって、特許文献1においてアーク溶接等の溶接を用いた場合には、アキュムレータの筐体等の母材が減肉し、アキュムレータの強度が低減することにより、密閉型圧縮機の強度に対する信頼性を確保できない可能性があるという課題があった。また、例えば、特許文献1においてTIG溶接等のアーク溶接を用いた場合には、シールドガス又は溶加棒等の副資材が必要となるため、密閉型圧縮機の製造コストが高くなるという課題があった。
However, when the fastening member is used in the accumulator fixing device of Patent Document 1, the number of parts of the accumulator fixing device is increased and the number of manufacturing processes is increased, which causes a problem that the manufacturing cost of the hermetic compressor is increased. Moreover, when welding, such as arc welding, is used in Patent Document 1, the welding time for attaching the accumulator fixing device to the accumulator becomes longer, and the heating range during welding becomes wider. Therefore, when welding such as arc welding is used in Patent Document 1, the base material such as the accumulator housing is thinned, and the strength of the accumulator is reduced. There was a problem that there was a possibility that it could not be secured. In addition, for example, when arc welding such as TIG welding is used in Patent Document 1, additional materials such as a shielding gas or a filler rod are required, which increases the manufacturing cost of the hermetic compressor. there were.
また、特許文献2及び特許文献3におけるプロジェクション溶接では、プロジェクション溶接時の加圧により、溶接用の突起と被溶接物との接触部分にずれが生じる場合がある。したがって、特許文献2及び特許文献3におけるプロジェクション溶接では、溶接用の突起と被溶接物との接触部分で溶接不良が生じ、密閉型圧縮機の強度に対する信頼性を確保できない可能性があるという課題があった。
Further, in the projection welding in Patent Document 2 and Patent Document 3, there is a case where the contact portion between the welding projection and the workpiece to be welded is displaced by pressurization at the time of projection welding. Therefore, in the projection welding in Patent Literature 2 and Patent Literature 3, there is a possibility that poor welding occurs at the contact portion between the welding projection and the work piece, and the reliability with respect to the strength of the hermetic compressor may not be ensured. was there.
本発明は、上述の課題を解決するためのものであり、強度に対する信頼性を確保可能であり、かつ、製造コストを低減可能な気液分離器固定具、密閉型圧縮機、密閉型圧縮機の製造装置、及び密閉型圧縮機の製造方法を提供することを目的とする。
The present invention is intended to solve the above-described problems, and it is possible to ensure reliability with respect to strength and to reduce a manufacturing cost. A gas-liquid separator fixture, a hermetic compressor, and a hermetic compressor An object of the present invention is to provide a manufacturing apparatus and a manufacturing method of a hermetic compressor.
本発明に係る気液分離器固定具は、密閉型圧縮機の密閉容器に気液分離器を固定するための気液分離器固定具であって、前記密閉容器に固定される固定部と、前記固定部から延在し、前記気液分離器を支持する支持部と、前記支持部に配置され、前記気液分離器を拘束する複数の突起部とを備える。
A gas-liquid separator fixture according to the present invention is a gas-liquid separator fixture for fixing a gas-liquid separator to a sealed container of a hermetic compressor, and a fixing part fixed to the sealed container; A support portion extending from the fixed portion and supporting the gas-liquid separator; and a plurality of protrusions disposed on the support portion and restraining the gas-liquid separator.
また、本発明に係る密閉型圧縮機は、上述の気液分離器固定具を備える。
Moreover, the hermetic compressor according to the present invention includes the gas-liquid separator fixture described above.
また、本発明に係る密閉型圧縮機の製造装置は、上述の気液分離器固定具に配置された前記気液分離器を、前記気液分離器固定具の前記突起部に圧力を印加して拘束させる加圧シリンダと、前記突起部に電流を流して前記突起部を溶かし、前記気液分離器を前記気液分離器固定具に固定させる複数の電極とを備える。
The manufacturing apparatus for a hermetic compressor according to the present invention applies pressure to the protrusion of the gas-liquid separator fixture by applying the gas-liquid separator arranged in the gas-liquid separator fixture. And a plurality of electrodes for causing a current to flow through the protrusions to melt the protrusions and fixing the gas-liquid separator to the gas-liquid separator fixture.
また、本発明に係る密閉型圧縮機の製造方法は、上述の気液分離器固定具に前記気液分離器を配置する工程と、前記突起部に圧力を印加して前記気液分離器を前記突起部で拘束する工程と、前記突起部に電流を流して前記突起部を溶かし、前記気液分離器を前記気液分離器固定具に固定させる工程とを含む。
The method for manufacturing a hermetic compressor according to the present invention includes a step of arranging the gas-liquid separator in the gas-liquid separator fixture described above, and applying the pressure to the protrusion to The step of restraining by the protrusion, and the step of passing an electric current through the protrusion to melt the protrusion and fixing the gas-liquid separator to the gas-liquid separator fixture.
本発明によれば、気液分離器を拘束する複数の突起部を気液分離器固定具に設けることにより、プロジェクション溶接を用いる場合であっても、突起部と被溶接物との接触部分にずれが生じるのを回避することができる。また、プロジェクション溶接を用いた場合、突起部で気液分離器固定具と気液分離器とを固定するため、気液分離器の母材を減肉し、気液分離器の強度が低減することがない。また、本発明では、気液分離器固定具に気液分離器を固定するのに、副資材を使用しないため、安価に密閉型圧縮機を製造できる。したがって、本発明によれば、強度に対する信頼性を確保可能であり、かつ、製造コストを低減可能な気液分離器固定具、密閉型圧縮機、密閉型圧縮機の製造装置、及び密閉型圧縮機の製造方法を提供することができる。
According to the present invention, by providing a plurality of protrusions for restraining the gas-liquid separator on the gas-liquid separator fixture, even when projection welding is used, the contact portion between the protrusions and the workpiece to be welded is provided. A shift can be avoided. In addition, when projection welding is used, the gas-liquid separator fixture and the gas-liquid separator are fixed by the protrusions, so the base material of the gas-liquid separator is reduced and the strength of the gas-liquid separator is reduced. There is nothing. Moreover, in this invention, since a secondary material is not used for fixing a gas-liquid separator to a gas-liquid separator fixing tool, a hermetic compressor can be manufactured at low cost. Therefore, according to the present invention, a gas-liquid separator fixture, a hermetic compressor, a hermetic compressor manufacturing apparatus, and hermetic compression that can ensure reliability in strength and can reduce manufacturing costs. A method for manufacturing a machine can be provided.
実施の形態1.
本発明の実施の形態1に係る密閉型圧縮機100について説明する。図1は、本実施の形態1に係る密閉型圧縮機100の内部構成の一例を示す概略図である。なお、図1を含む以下の図面では、各構成部材の寸法及び形状又は各構成部材相互における寸法の関係は、実際のものとは異なる場合がある。また、以下の図面では、同一の又は類似する部材又は部分には、同一の符号を付すか、又は符号を付すことを省略している。また、図1を含む以下の図面では、密閉型圧縮機100の各々の構成部材同士の前後、左右、若しくは上下の位置関係は、原則として、密閉型圧縮機100を使用可能な状態に設置したときの位置関係とする。Embodiment 1 FIG.
Ahermetic compressor 100 according to Embodiment 1 of the present invention will be described. FIG. 1 is a schematic diagram illustrating an example of an internal configuration of a hermetic compressor 100 according to the first embodiment. In the following drawings including FIG. 1, the size and shape of each component or the relationship between the sizes of each component may be different from the actual one. Moreover, in the following drawings, the same code | symbol is attached | subjected to the same or similar member or part, or the code | symbol is abbreviate | omitted. Moreover, in the following drawings including FIG. 1, the front-rear, left-right, or top-bottom positional relationship between the constituent members of the hermetic compressor 100 is, as a general rule, set in a state where the hermetic compressor 100 can be used. The positional relationship of time.
本発明の実施の形態1に係る密閉型圧縮機100について説明する。図1は、本実施の形態1に係る密閉型圧縮機100の内部構成の一例を示す概略図である。なお、図1を含む以下の図面では、各構成部材の寸法及び形状又は各構成部材相互における寸法の関係は、実際のものとは異なる場合がある。また、以下の図面では、同一の又は類似する部材又は部分には、同一の符号を付すか、又は符号を付すことを省略している。また、図1を含む以下の図面では、密閉型圧縮機100の各々の構成部材同士の前後、左右、若しくは上下の位置関係は、原則として、密閉型圧縮機100を使用可能な状態に設置したときの位置関係とする。
A
密閉型圧縮機100は、空気調和装置等の冷凍サイクル装置で用いられ、密閉容器10の内部に吸入した低圧のガス冷媒を、高圧のガス冷媒として吐出する流体機械である。図1では、密閉型圧縮機100の一例として、ローリングピストン型のロータリ圧縮機が例示されている。
The hermetic compressor 100 is a fluid machine that is used in a refrigeration cycle apparatus such as an air conditioner and discharges a low-pressure gas refrigerant sucked into the sealed container 10 as a high-pressure gas refrigerant. In FIG. 1, a rolling piston type rotary compressor is illustrated as an example of the hermetic compressor 100.
密閉型圧縮機100の密閉容器10は、シリンダ形状の容器として構成されている。密閉容器10は、縦断面がU字形状の本体部1と、縦断面が逆U字形状の蓋部3とにより構成され、蓋部3の開口部の外側面は、本体部1の開口部の内側面に固定されている。本体部1と蓋部3との固定部分は、例えば溶接等によって接合されている。また、本体部1の底面の外側面には、密閉型圧縮機100を縦置型に配置するための台5が設けられている。
The sealed container 10 of the hermetic compressor 100 is configured as a cylinder-shaped container. The hermetic container 10 is composed of a main body portion 1 having a U-shaped longitudinal section and a lid portion 3 having an inverted U-shaped longitudinal section, and an outer surface of the opening portion of the lid portion 3 is an opening portion of the main body portion 1. It is fixed to the inner surface of the. The fixed portion between the main body 1 and the lid 3 is joined by welding or the like, for example. In addition, a base 5 for arranging the hermetic compressor 100 in a vertical type is provided on the outer surface of the bottom surface of the main body 1.
密閉容器10の蓋部3の上面には、吐出管7が貫通して固定されている。吐出管7は、高圧のガス冷媒を密閉容器10の外部に吐出させる冷媒配管である。吐出管7と蓋部3との固定部分は、例えばろう付け等によって接合されている。
The discharge pipe 7 is fixed through the upper surface of the lid 3 of the sealed container 10. The discharge pipe 7 is a refrigerant pipe that discharges high-pressure gas refrigerant to the outside of the sealed container 10. The fixed portion between the discharge pipe 7 and the lid 3 is joined, for example, by brazing.
更に、密閉容器10の蓋部3の上面には、ガラス端子9が配置されている。ガラス端子9は、外部電源を接続するインタフェースを提供している。外部電源は、密閉型圧縮機100に電力を供給する電源装置であり、交流周波数が50Hz又は60Hzの一般商用交流電源、又は交流周波数を変化させることが可能なインバータ電源が用いられる。周波数可変のインバータ電源を用いた場合、密閉型圧縮機100の回転数を変化させることができるため、密閉型圧縮機100では高圧のガス冷媒の吐出管7からの吐出量を制御することができる。なお、図1を含む以下の図面では、ガラス端子9に接続される外部電源は図示していない。
Furthermore, a glass terminal 9 is disposed on the upper surface of the lid 3 of the sealed container 10. The glass terminal 9 provides an interface for connecting an external power source. The external power supply is a power supply device that supplies power to the hermetic compressor 100, and a general commercial AC power supply having an AC frequency of 50 Hz or 60 Hz, or an inverter power supply capable of changing the AC frequency is used. When the frequency variable inverter power supply is used, the number of revolutions of the hermetic compressor 100 can be changed. Therefore, the hermetic compressor 100 can control the discharge amount of the high-pressure gas refrigerant from the discharge pipe 7. . In the following drawings including FIG. 1, the external power source connected to the glass terminal 9 is not shown.
密閉容器10の内部には、電動機部20と、クランクシャフト30と、圧縮機構部40が収容されている。電動機部20は、圧縮機構部40より上方に配置されている。クランクシャフト30は、密閉容器10の中心部において、電動機部20と圧縮機構部40との間に配置され、密閉容器10の中心部を上下方向に延在している。なお、密閉型圧縮機100においては、電動機部20は電動要素とも称され、圧縮機構部40は圧縮要素とも称される。
In the sealed container 10, an electric motor unit 20, a crankshaft 30, and a compression mechanism unit 40 are accommodated. The electric motor unit 20 is disposed above the compression mechanism unit 40. The crankshaft 30 is disposed between the electric motor unit 20 and the compression mechanism unit 40 at the center of the sealed container 10 and extends in the vertical direction at the center of the sealed container 10. In the hermetic compressor 100, the electric motor unit 20 is also referred to as an electric element, and the compression mechanism unit 40 is also referred to as a compression element.
電動機部20は、外部電源から供給された電力を用いて回転駆動力を発生させ、クランクシャフト30を介して圧縮機構部40に回転駆動力を伝達するモータとして構成される。電動機部20は、上面視において中空円筒状の外観を有する固定子22と、固定子22の内側面の内側に回転可能に配置された円筒状の回転子24とを備えている。固定子22は、密閉容器10の本体部1の内側面に固定され、導線26を介してガラス端子9に接続されている。電動機部20は、外部電源からの電力を導線26を介して固定子22に巻回されたコイルに供給することにより、固定子22の内側面の内側で回転子24を回転させることができる。密閉型圧縮機100においては、例えばDCブラシレスモータ等が電動機部20として用いられる。
The electric motor unit 20 is configured as a motor that generates a rotational driving force using electric power supplied from an external power source and transmits the rotational driving force to the compression mechanism unit 40 via the crankshaft 30. The electric motor unit 20 includes a stator 22 having a hollow cylindrical appearance in a top view, and a cylindrical rotor 24 that is rotatably disposed inside the inner surface of the stator 22. The stator 22 is fixed to the inner surface of the main body 1 of the hermetic container 10 and is connected to the glass terminal 9 via a conducting wire 26. The electric motor unit 20 can rotate the rotor 24 inside the inner surface of the stator 22 by supplying electric power from an external power source to the coil wound around the stator 22 via the conductor 26. In the hermetic compressor 100, for example, a DC brushless motor or the like is used as the electric motor unit 20.
回転子24の中心部には、クランクシャフト30が回転子24を貫通して固定されている。クランクシャフト30は、クランクシャフト30の外側面で回転子24を固定し、圧縮機構部40に回転子24の回転駆動力を伝達する回転軸である。
A crankshaft 30 is fixed to the center of the rotor 24 so as to penetrate the rotor 24. The crankshaft 30 is a rotating shaft that fixes the rotor 24 on the outer surface of the crankshaft 30 and transmits the rotational driving force of the rotor 24 to the compression mechanism 40.
また、クランクシャフト30は、圧縮機構部40の内部に配置される円筒形状の偏心部32を有している。偏心部32の外側面には、偏心部32の外側面に沿って回転自在にローリングピストン34が取り付けられている。なお、図1を含む以下の図面では、図示しないが、クランクシャフト30には、クランクシャフト30の回転運動による遠心力により、密閉容器10の本体部1の底部に貯留された冷凍機油50を圧縮機構部40に供給する油穴が設けられている。
Further, the crankshaft 30 has a cylindrical eccentric portion 32 disposed inside the compression mechanism portion 40. A rolling piston 34 is attached to the outer surface of the eccentric portion 32 so as to be rotatable along the outer surface of the eccentric portion 32. In the following drawings including FIG. 1, although not shown, the refrigerating machine oil 50 stored in the bottom of the main body 1 of the sealed container 10 is compressed on the crankshaft 30 by centrifugal force due to the rotational movement of the crankshaft 30. An oil hole for supplying to the mechanism unit 40 is provided.
圧縮機構部40は、電動機部20から供給された回転駆動力により、密閉容器10の内部に吸入された低圧のガス冷媒を高圧のガス冷媒に圧縮し、圧縮した高圧のガス冷媒を圧縮機構部40の上方に吐出するものである。
The compression mechanism unit 40 compresses the low-pressure gas refrigerant sucked into the sealed container 10 into a high-pressure gas refrigerant by the rotational driving force supplied from the electric motor unit 20, and the compressed high-pressure gas refrigerant is compressed into the compression mechanism unit. 40 is discharged upward.
圧縮機構部40は、中空円筒形状のシリンダ41を備えている。シリンダ41の外側面は密閉容器10の本体部1の内側面に固定されている。シリンダ41の中空部分41aには、クランクシャフト30の偏心部32及びローリングピストン34が収容されている。すなわち、シリンダ41は、クランクシャフト30の回転により、中空部分41aにおいてクランクシャフト30の偏心部32及びローリングピストン34が偏心回転できるように構成されている。
The compression mechanism unit 40 includes a hollow cylindrical cylinder 41. The outer surface of the cylinder 41 is fixed to the inner surface of the main body 1 of the sealed container 10. The hollow portion 41a of the cylinder 41 accommodates the eccentric portion 32 of the crankshaft 30 and the rolling piston 34. That is, the cylinder 41 is configured such that the eccentric portion 32 of the crankshaft 30 and the rolling piston 34 can eccentrically rotate in the hollow portion 41 a by the rotation of the crankshaft 30.
シリンダ41には、シリンダ41の中空部分41aを構成するシリンダ41の内側面から半径方向に延在するベーン溝41bが設けられている。シリンダ41のベーン溝41bには、ベーン42が収容されている。ベーン42は、例えば、ベーン溝41bの内部に設けられたバネ等の弾性体の復元力によって、ローリングピストン34の表面に押しつけられ、ローリングピストン34の偏心運動によってベーン溝41bの内部を往復運動するように構成された摺動部材である。
The cylinder 41 is provided with a vane groove 41b extending in the radial direction from the inner surface of the cylinder 41 constituting the hollow portion 41a of the cylinder 41. A vane 42 is accommodated in the vane groove 41 b of the cylinder 41. The vane 42 is pressed against the surface of the rolling piston 34 by the restoring force of an elastic body such as a spring provided inside the vane groove 41b, and reciprocates inside the vane groove 41b by the eccentric motion of the rolling piston 34. This is a sliding member configured as described above.
シリンダ41の上側の中空円板面には、主軸受43が配置されている。シリンダ41の下側の中空円板面には、副軸受44が配置されている。主軸受43及び副軸受44は、クランクシャフト30を摺動可能に支持するすべり軸受である。
A main bearing 43 is disposed on the hollow disk surface on the upper side of the cylinder 41. A sub-bearing 44 is disposed on the lower hollow disk surface of the cylinder 41. The main bearing 43 and the auxiliary bearing 44 are sliding bearings that support the crankshaft 30 so as to be slidable.
主軸受43は、上面視において中空円板状の形状を有している。主軸受43は、シリンダ41の上側の中空円板面に固定される固定部43aと、クランクシャフト30の外側面を摺動可能に支持する軸受部43bとを有している。なお、主軸受43は、図1においては、2つのL字形状の部材として表示されている。また、主軸受43は、例えば、ボルト等によりシリンダ41の上側の中空円板面に固定されている。
The main bearing 43 has a hollow disc shape when viewed from above. The main bearing 43 has a fixed portion 43a that is fixed to the upper hollow disk surface of the cylinder 41, and a bearing portion 43b that slidably supports the outer surface of the crankshaft 30. In addition, the main bearing 43 is displayed as two L-shaped members in FIG. Moreover, the main bearing 43 is being fixed to the hollow disc surface above the cylinder 41 with the volt | bolt etc., for example.
副軸受44は、下面視において中空円板状の形状を有している。副軸受44は、シリンダ41の下側の中空円板面に固定される固定部44aと、クランクシャフト30の外側面を摺動可能に支持する軸受部44bとを有している。なお、副軸受44は、図1においては、2つのL字形状の部材として表示されている。また、副軸受44は、例えば、ボルト等によりシリンダ41の下側の中空円板面に固定されている。
The auxiliary bearing 44 has a hollow disk shape when viewed from the bottom. The sub-bearing 44 has a fixed portion 44a that is fixed to the lower hollow disk surface of the cylinder 41, and a bearing portion 44b that slidably supports the outer surface of the crankshaft 30. Note that the sub-bearing 44 is shown as two L-shaped members in FIG. The auxiliary bearing 44 is fixed to the lower hollow disk surface of the cylinder 41 with, for example, bolts.
圧縮機構部40においては、ローリングピストン34、シリンダ41、ベーン42、主軸受43の固定部43a、及び副軸受44の固定部44aに囲まれた密閉自在な空間は、密閉容器10の内部に吸入された低圧のガス冷媒を圧縮する圧縮室を構成する。圧縮室で圧縮された高圧のガス冷媒は、主軸受43に設けられた吐出口から吐出される。なお、主軸受43に設けられた吐出口は、図1を含む以下の図面では図示していない。
In the compression mechanism 40, a sealable space surrounded by the rolling piston 34, the cylinder 41, the vane 42, the fixing part 43 a of the main bearing 43, and the fixing part 44 a of the auxiliary bearing 44 is sucked into the sealed container 10. A compression chamber for compressing the low-pressure gas refrigerant formed is configured. The high-pressure gas refrigerant compressed in the compression chamber is discharged from the discharge port provided in the main bearing 43. The discharge port provided in the main bearing 43 is not shown in the following drawings including FIG.
次に、本実施の形態1に係る密閉型圧縮機100の密閉容器10に固定されるサクションマフラ60について、図1に加えて、図2及び図3を用いて説明する。図2は、本実施の形態1に係る密閉型圧縮機100における、密閉容器10への固定前のサクションマフラ60の一例を示す概略図である。図2では、サクションマフラ60の取付方向を矢印にて図示している。図3は、本実施の形態1に係る密閉型圧縮機100における、密閉容器10に固定された後のサクションマフラ60の一例を示す概略図である。
Next, the suction muffler 60 fixed to the hermetic container 10 of the hermetic compressor 100 according to the first embodiment will be described with reference to FIGS. 2 and 3 in addition to FIG. FIG. 2 is a schematic diagram illustrating an example of the suction muffler 60 before being fixed to the sealed container 10 in the hermetic compressor 100 according to the first embodiment. In FIG. 2, the attachment direction of the suction muffler 60 is illustrated by arrows. FIG. 3 is a schematic diagram illustrating an example of the suction muffler 60 after being fixed to the hermetic container 10 in the hermetic compressor 100 according to the first embodiment.
図1~図3に示すように、密閉容器10の本体部1の外側面部には、サクションマフラ60の筐体62が、密閉容器10の外側面に配置された気液分離器固定具70に固定されている。サクションマフラ60の筐体62の頂部には、流入管64が筐体62を貫通して固定されている。流入管64は、例えば、冷凍サイクル装置の蒸発器から流出した低圧のガス冷媒又は乾き度の高い二相冷媒をサクションマフラ60の筐体62の内部に流入させる冷媒配管である。また、サクションマフラ60の筐体62の底部には、サクションマフラ60と密閉容器10との間を連通する吸入管66の一端が貫通して固定されている。密閉容器10の本体部1の外側面部には、圧縮機構部40の圧縮室と連通するように構成された吸入ポート68が設けられており、吸入管66の他の一端は、吸入ポート68で固定されている。
As shown in FIGS. 1 to 3, a housing 62 of a suction muffler 60 is attached to the gas-liquid separator fixture 70 disposed on the outer surface of the sealed container 10 on the outer surface of the main body 1 of the sealed container 10. It is fixed. An inflow pipe 64 is fixed to the top of the housing 62 of the suction muffler 60 through the housing 62. The inflow pipe 64 is, for example, a refrigerant pipe through which a low-pressure gas refrigerant or a two-phase refrigerant having a high dryness flowing out from the evaporator of the refrigeration cycle apparatus flows into the housing 62 of the suction muffler 60. In addition, one end of a suction pipe 66 that communicates between the suction muffler 60 and the sealed container 10 passes through and is fixed to the bottom of the housing 62 of the suction muffler 60. A suction port 68 configured to communicate with the compression chamber of the compression mechanism 40 is provided on the outer surface of the main body 1 of the sealed container 10, and the other end of the suction pipe 66 is a suction port 68. It is fixed.
サクションマフラ60は、余剰冷媒を貯留する冷媒貯留機能と、運転状態が変化する際に一時的に発生する液冷媒を滞留させることによる気液分離機能とを有するアキュムレータとして機能する気液分離器である。サクションマフラ60では、気液分離機能により、密閉容器10の内部に大量の液冷媒が流入し、密閉型圧縮機100で液圧縮が行われるのを防ぐことができる。また、サクションマフラ60は、流入管64から流入する冷媒により発生する騒音を低減又は除去する消音器としての機能も有している。
The suction muffler 60 is a gas-liquid separator that functions as an accumulator having a refrigerant storage function for storing excess refrigerant and a gas-liquid separation function for retaining liquid refrigerant that is temporarily generated when the operating state changes. is there. In the suction muffler 60, the gas-liquid separation function can prevent a large amount of liquid refrigerant from flowing into the sealed container 10 and liquid compression by the hermetic compressor 100. The suction muffler 60 also has a function as a silencer that reduces or eliminates noise generated by the refrigerant flowing from the inflow pipe 64.
なお、上述の説明では、密閉型圧縮機100をロータリ圧縮機として、気液分離器であるサクションマフラ60を取り付ける構造としたが、密閉型圧縮機100をスクロール圧縮機として、気液分離器であるアキュムレータを取り付ける構造としてもよい。
In the above description, the hermetic compressor 100 is used as a rotary compressor, and the suction muffler 60 as a gas-liquid separator is attached. However, the hermetic compressor 100 is used as a scroll compressor, and the gas-liquid separator is used. It is good also as a structure which attaches a certain accumulator.
次に、本実施の形態1の密閉型圧縮機100の動作について説明する。
Next, the operation of the hermetic compressor 100 of the first embodiment will be described.
電動機部20の駆動によりクランクシャフト30が回転すると、クランクシャフト30とともに、シリンダ41の内部に収容された偏心部32及びローリングピストン34が偏心回転する。ローリングピストン34の偏心回転と連動し、シリンダ41のベーン溝41bの内部に設けられたベーン42がピストン運動する。吸入管66から吸入ポート68を介して圧縮機構部40に流入した低圧のガス冷媒は、ローリングピストン34、シリンダ41、ベーン42、主軸受43の固定部43a、及び副軸受44の固定部44aに囲まれた密閉空間である圧縮室に流入する。圧縮室の内部に流入した低圧のガス冷媒は、ローリングピストン34の偏心回転による圧縮室の容積の減少に伴い、高圧のガス冷媒に圧縮される。高圧のガス冷媒は、主軸受43に設けられた吐出口を介して、電動機部20と圧縮機構部40との間に位置する密閉容器10の内部の高圧空間に吐出され、吐出管7を介して密閉容器10の外へと吐出される。
When the crankshaft 30 is rotated by driving the electric motor unit 20, the eccentric part 32 and the rolling piston 34 housed in the cylinder 41 are eccentrically rotated together with the crankshaft 30. In conjunction with the eccentric rotation of the rolling piston 34, the vane 42 provided inside the vane groove 41b of the cylinder 41 performs a piston motion. The low-pressure gas refrigerant that has flowed into the compression mechanism portion 40 from the suction pipe 66 through the suction port 68 enters the rolling piston 34, the cylinder 41, the vane 42, the fixed portion 43a of the main bearing 43, and the fixed portion 44a of the auxiliary bearing 44. It flows into the compression chamber which is an enclosed sealed space. The low-pressure gas refrigerant that has flowed into the compression chamber is compressed into the high-pressure gas refrigerant as the volume of the compression chamber decreases due to the eccentric rotation of the rolling piston 34. The high-pressure gas refrigerant is discharged into the high-pressure space inside the sealed container 10 located between the electric motor unit 20 and the compression mechanism unit 40 through the discharge port provided in the main bearing 43, and through the discharge pipe 7. Then, it is discharged out of the sealed container 10.
次に、本実施の形態1に係る気液分離器固定具70の構造を図4を用いて説明する。
Next, the structure of the gas-liquid separator fixture 70 according to the first embodiment will be described with reference to FIG.
図4は、本実施の形態1に係る気液分離器固定具70の上面視における構造を示す概略図である。気液分離器固定具70は、密閉型圧縮機100の密閉容器10の外側面に固定される固定部72と、固定部72から延在し、サクションマフラ60を支持する支持部74と、支持部74に配置され、サクションマフラ60を拘束する複数の突起部76を備える構成にできる。
FIG. 4 is a schematic view showing the structure of the gas-liquid separator fixture 70 according to the first embodiment in a top view. The gas-liquid separator fixture 70 includes a fixing portion 72 fixed to the outer surface of the hermetic container 10 of the hermetic compressor 100, a support portion 74 extending from the fixing portion 72 and supporting the suction muffler 60, and a support. It can be configured to include a plurality of protrusions 76 that are disposed in the portion 74 and restrain the suction muffler 60.
例えば、図4に示すように、固定部72は、上面視において、密閉容器10の外側面に沿った円弧形状の固定面72aを有する湾曲した板状部材として構成できる。
For example, as shown in FIG. 4, the fixing portion 72 can be configured as a curved plate-like member having an arc-shaped fixing surface 72 a along the outer surface of the sealed container 10 in a top view.
また、図4に示すように、支持部74は、上面視において、固定部72の第1の末端部72bから延在し、密閉容器10から離れる方向に延在する第1の支持部材74aを有している。また、支持部74は、上面視において、固定部72の第2の末端部72cから延在し、密閉容器10から離れる方向に第1の支持部材74aと間隔を開けて平行に延在する第2の支持部材74bを有している。第1の支持部材74aには第1の内側面74cが設けられており、第2の支持部材74bには第1の内側面74cと対面する第2の内側面74dが設けられている。第1の支持部材74a及び第2の支持部材74bは、例えば平板状の板状部材として構成されている。
As shown in FIG. 4, the support portion 74 includes a first support member 74 a that extends from the first end portion 72 b of the fixing portion 72 and extends away from the sealed container 10 in a top view. Have. The support portion 74 extends from the second end portion 72c of the fixing portion 72 in a top view, and extends in parallel with the first support member 74a in a direction away from the sealed container 10. 2 support members 74b. The first support member 74a is provided with a first inner side surface 74c, and the second support member 74b is provided with a second inner side surface 74d facing the first inner side surface 74c. The first support member 74a and the second support member 74b are configured as flat plate-like members, for example.
第1の支持部材74aの第1の内側面74cには、第1の突起部76a及び第2の突起部76bが設けられている。第2の支持部材74bの第2の内側面74dには、第3の突起部76c及び第4の突起部76dが設けられている。本実施の形態1の気液分離器固定具70では、第1の突起部76a、第2の突起部76b、第3の突起部76c、及び第4の突起部76dの4つの突起部76によって、サクションマフラ60の筐体62の外側面を拘束することができる。突起部76は、例えば、プレス加工などで支持部74に設けることができる。
The first protrusion 76a and the second protrusion 76b are provided on the first inner surface 74c of the first support member 74a. A third projecting portion 76c and a fourth projecting portion 76d are provided on the second inner surface 74d of the second support member 74b. In the gas-liquid separator fixture 70 of the first embodiment, the four protrusions 76 of the first protrusion 76a, the second protrusion 76b, the third protrusion 76c, and the fourth protrusion 76d are used. The outer surface of the housing 62 of the suction muffler 60 can be restrained. The protruding portion 76 can be provided on the support portion 74 by, for example, pressing.
なお、気液分離器固定具70は、ろう付け等により固定部72を密閉容器10に固定する構成としてもよいし、密閉容器10と一体化して構成してもよい。
The gas-liquid separator fixture 70 may be configured to fix the fixing portion 72 to the sealed container 10 by brazing or the like, or may be configured integrally with the sealed container 10.
次に、本実施の形態1に係る密閉型圧縮機100の製造装置200の構造について説明する。
Next, the structure of the manufacturing apparatus 200 for the hermetic compressor 100 according to the first embodiment will be described.
図5は、本実施の形態1に係る密閉型圧縮機100の製造装置200の構造を示す概略図である。密閉型圧縮機100の製造装置200は、抵抗溶接機等の溶接装置として構成されている。
FIG. 5 is a schematic diagram showing the structure of the manufacturing apparatus 200 for the hermetic compressor 100 according to the first embodiment. The manufacturing apparatus 200 of the hermetic compressor 100 is configured as a welding apparatus such as a resistance welder.
図5に示すように、密閉型圧縮機100の製造装置200は、気液分離器固定具70に配置されたサクションマフラ60を、気液分離器固定具70の突起部76に圧力を印加して拘束させる加圧シリンダ79を備えている。加圧シリンダ79は、例えば、流量調整弁により圧力が調整される空気圧シリンダ又は油圧シリンダとして構成できる。
As shown in FIG. 5, the manufacturing apparatus 200 of the hermetic compressor 100 applies a suction muffler 60 disposed in the gas-liquid separator fixture 70 to the protrusion 76 of the gas-liquid separator fixture 70. And a pressurizing cylinder 79 to be restrained. The pressurizing cylinder 79 can be configured as, for example, a pneumatic cylinder or a hydraulic cylinder whose pressure is adjusted by a flow rate adjusting valve.
また、密閉型圧縮機100の製造装置200は、突起部76に電流を流して突起部76を溶かし、サクションマフラ60を気液分離器固定具70に固定させる複数の電極80を備えている。電極80は、例えば、純タングステン電極、純モリブデン電極等の純金属電極、又は銅アルミナ合金電極等の合金電極として構成できる。
Further, the manufacturing apparatus 200 of the hermetic compressor 100 includes a plurality of electrodes 80 for causing a current to flow through the protrusion 76 to melt the protrusion 76 and fixing the suction muffler 60 to the gas-liquid separator fixture 70. The electrode 80 can be configured as, for example, a pure metal electrode such as a pure tungsten electrode or a pure molybdenum electrode, or an alloy electrode such as a copper alumina alloy electrode.
また、密閉型圧縮機100の製造装置200は、密閉容器10の外側面に沿った円弧状の凹部90aを有し、密閉型圧縮機100の製造中における密閉容器10の移動範囲を制限する支持台90を備えている。
Further, the manufacturing apparatus 200 of the hermetic compressor 100 has an arcuate recess 90a along the outer surface of the hermetic container 10, and supports the movement range of the hermetic container 10 during the manufacturing of the hermetic compressor 100. A stand 90 is provided.
また、密閉型圧縮機100の製造装置200は、例えば商用の交流電源から供給される交流電力を、溶接で用いられる電力に変換する溶接電源82と、溶接電源82から流れる電流を溶接用に増幅して電極80に流す溶接変圧器84とを備えている。溶接電源82は、例えばインバータ式の電源として構成される。
Moreover, the manufacturing apparatus 200 of the hermetic compressor 100 includes, for example, a welding power source 82 that converts AC power supplied from a commercial AC power source into power used for welding, and amplifies the current flowing from the welding power source 82 for welding. And a welding transformer 84 that flows to the electrode 80. The welding power source 82 is configured as an inverter type power source, for example.
なお、電極80は、図5に示すように、例えば溶接変圧器84の筐体に支持する構成としてもよいし、密閉型圧縮機100の製造装置200に別途溶接用の作業台等を設けて、溶接用の作業台に支持する構成としてもよい。
As shown in FIG. 5, the electrode 80 may be supported by, for example, a housing of the welding transformer 84, or a welding work table or the like may be provided in the manufacturing apparatus 200 of the hermetic compressor 100. It is good also as a structure supported on the worktable for welding.
図6は、本実施の形態1に係る密閉型圧縮機100の製造装置200において、加圧シリンダ79で突起部76に圧力を印加した状態を示す概略図である。図6では、圧力が印加された突起部76を領域Aとして点線で囲っている。また、加圧シリンダ79の加圧方向を黒矢印で示している。
FIG. 6 is a schematic diagram showing a state in which pressure is applied to the protrusion 76 by the pressure cylinder 79 in the manufacturing apparatus 200 of the hermetic compressor 100 according to the first embodiment. In FIG. 6, the protrusion 76 to which pressure is applied is surrounded by a dotted line as a region A. Further, the pressure direction of the pressure cylinder 79 is indicated by a black arrow.
図6に示すように、密閉型圧縮機100の製造装置200においては、密閉型圧縮機100の密閉容器10を支持台90に配置し、気液分離器固定具70にサクションマフラ60を配置することにより溶接を開始できる。次いで、密閉型圧縮機100の製造装置200においては、気液分離器固定具70の突起部76に圧力を印加することによりサクションマフラ60を拘束できる。次いで、密閉型圧縮機100の製造装置200においては、電極80から突起部76に電流を流して突起部76を溶かすことにより、サクションマフラ60を気液分離器固定具70に固定できる。
As shown in FIG. 6, in the manufacturing apparatus 200 of the hermetic compressor 100, the hermetic container 10 of the hermetic compressor 100 is disposed on the support base 90, and the suction muffler 60 is disposed on the gas-liquid separator fixture 70. Can start welding. Next, in the manufacturing apparatus 200 of the hermetic compressor 100, the suction muffler 60 can be restrained by applying pressure to the protrusion 76 of the gas-liquid separator fixture 70. Next, in the manufacturing apparatus 200 of the hermetic compressor 100, the suction muffler 60 can be fixed to the gas-liquid separator fixture 70 by flowing an electric current from the electrode 80 to the protrusion 76 to melt the protrusion 76.
図6の領域Aに示すように、気液分離器固定具70の第1の支持部材74aには、サクションマフラ60の筐体62の外側面と接触する2つの突起部76が設けられている。また、気液分離器固定具70の第2の支持部材74bにも同様に、サクションマフラ60の筐体62の外側面と接触する2つの突起部76が設けられている。
As shown in region A of FIG. 6, the first support member 74 a of the gas-liquid separator fixture 70 is provided with two protrusions 76 that contact the outer surface of the housing 62 of the suction muffler 60. . Similarly, the second support member 74 b of the gas-liquid separator fixture 70 is provided with two protrusions 76 that come into contact with the outer surface of the housing 62 of the suction muffler 60.
密閉型圧縮機100の製造装置200では、気液分離器固定具70の4つの突起部76でサクションマフラ60が拘束されているため、加圧シリンダ79で突起部76に圧力を印加した場合であっても、サクションマフラ60が移動するのを防止することができる。したがって、密閉型圧縮機100の製造装置200では、サクションマフラ60の移動を防止することにより、突起部76のサクションマフラ60への接触不良を防ぎ、溶接不良を回避することができる。
In the manufacturing apparatus 200 of the hermetic compressor 100, the suction muffler 60 is restrained by the four protrusions 76 of the gas-liquid separator fixture 70, and therefore when the pressure is applied to the protrusion 76 by the pressure cylinder 79. Even if it exists, it can prevent that the suction muffler 60 moves. Therefore, in the manufacturing apparatus 200 of the hermetic compressor 100, by preventing the movement of the suction muffler 60, it is possible to prevent poor contact of the protrusions 76 with the suction muffler 60 and avoid poor welding.
これに対し、気液分離器固定具70の第1の支持部材74a及び第2の支持部材74bに突起部76を1つずつしか設けなかった場合を考える。図7は、本実施の形態1に係る密閉型圧縮機100の製造装置200において、気液分離器固定具70の第1の支持部材74a及び第2の支持部材74bに突起部76を1つずつ設け、加圧シリンダ79で突起部76に圧力を印加した状態を示す概略図である。図7では、圧力が印加された突起部76を領域Bとして点線で囲っている。また、図7では、加圧シリンダ79の加圧方向を黒矢印で示している。図8は、図7における圧力印加後の状態の一例を示す概略図である。
On the other hand, consider a case where only oneprotrusion 76 is provided on each of the first support member 74 a and the second support member 74 b of the gas-liquid separator fixture 70. 7 shows a manufacturing apparatus 200 for a hermetic compressor 100 according to the first embodiment. One protrusion 76 is provided on each of the first support member 74a and the second support member 74b of the gas-liquid separator fixture 70. FIG. FIG. 5 is a schematic view showing a state in which pressure is applied to the protrusion 76 by the pressurizing cylinder 79 one by one. In FIG. 7, the protrusion 76 to which pressure is applied is surrounded by a dotted line as a region B. In FIG. 7, the pressure direction of the pressure cylinder 79 is indicated by a black arrow. FIG. 8 is a schematic diagram illustrating an example of a state after application of pressure in FIG.
On the other hand, consider a case where only one
図7の領域Bに示すように、気液分離器固定具70の第1の支持部材74a及び第2の支持部材74bに突起部76を1つずつしか設けなかった場合、加圧シリンダ79で突起部76に圧力を印加した際に、図8に示すように、サクションマフラ60の移動を防止できない可能性がある。図8に示すように、サクションマフラ60の位置が移動した場合、突起部76のサクションマフラ60への接触不良が生じ、溶接不良が発生する可能性がある。
As shown in region B of FIG. 7, when only one protrusion 76 is provided on each of the first support member 74 a and the second support member 74 b of the gas-liquid separator fixture 70, When pressure is applied to the protrusion 76, the movement of the suction muffler 60 may not be prevented as shown in FIG. As shown in FIG. 8, when the position of the suction muffler 60 is moved, poor contact of the protrusions 76 with the suction muffler 60 may occur, resulting in poor welding.
したがって、密閉型圧縮機100の製造装置200では、気液分離器固定具70の4つの突起部76でサクションマフラ60を拘束することにより、突起部76のサクションマフラ60への接触不良を防ぎ、溶接不良を回避することができる。
Therefore, in the manufacturing apparatus 200 of the hermetic compressor 100, the suction muffler 60 is restrained by the four protrusions 76 of the gas-liquid separator fixture 70, thereby preventing poor contact of the protrusions 76 with the suction muffler 60, Welding defects can be avoided.
次に、本実施の形態1に係る密閉型圧縮機100の製造方法を図9を用いて説明する。
Next, a manufacturing method of the hermetic compressor 100 according to the first embodiment will be described with reference to FIG.
図9は、本実施の形態1に係る密閉型圧縮機100の製造方法の一例を示す概略図である。図9では、密閉型圧縮機100の製造時の加圧方向を実線の矢印で図示している。また、サクションマフラ60の筐体62の中心部から密閉容器10の中心部に向かう方向をx方向として、破線の矢印で図示している。
FIG. 9 is a schematic diagram illustrating an example of a method for manufacturing the hermetic compressor 100 according to the first embodiment. In FIG. 9, the pressurizing direction at the time of manufacturing the hermetic compressor 100 is indicated by a solid line arrow. In addition, a direction from the center portion of the housing 62 of the suction muffler 60 toward the center portion of the sealed container 10 is indicated by a broken-line arrow with the x direction as the direction.
本実施の形態1に係る密閉型圧縮機100においては、サクションマフラ60は、プロジェクション溶接により気液分離器固定具70に固定される。プロジェクション溶接は、複数の電極80を用いて、突起部76を加圧し、電流を突起部76に流すことによって生じる発熱により突起部76を溶かし、サクションマフラ60の筐体62を気液分離器固定具70に固定させる抵抗溶接の一種である。
In the hermetic compressor 100 according to the first embodiment, the suction muffler 60 is fixed to the gas-liquid separator fixture 70 by projection welding. In projection welding, a plurality of electrodes 80 are used to pressurize the protrusions 76 and melt the protrusions 76 by heat generated by passing an electric current through the protrusions 76, and fix the casing 62 of the suction muffler 60 to a gas-liquid separator. This is a type of resistance welding to be fixed to the tool 70.
本実施の形態1に係る密閉型圧縮機100の製造方法においては、最初に、気液分離器固定具70にサクションマフラ60の筐体62を配置する。図9では、サクションマフラ60の筐体62は、第1の支持部材74aの第1の突起部76a及び第2の突起部76b、並びに第2の支持部材74bの第3の突起部76c及び第4の突起部76dで、サクションマフラ60の筐体62の外側面を挟むように配置されている。
In the method for manufacturing the hermetic compressor 100 according to the first embodiment, first, the casing 62 of the suction muffler 60 is disposed on the gas-liquid separator fixture 70. In FIG. 9, the housing 62 of the suction muffler 60 includes the first protrusion 76a and the second protrusion 76b of the first support member 74a, and the third protrusion 76c and the second protrusion 76c of the second support member 74b. The four protrusions 76d are arranged so as to sandwich the outer surface of the housing 62 of the suction muffler 60.
次いで、本実施の形態1に係る密閉型圧縮機100の製造方法においては、支持部74に配置された電極80を用いて、突起部76に圧力を印加してサクションマフラ60の筐体62を突起部76で拘束する。図9では、第1の支持部材74aの外側面側に第1の電極80aが配置され、第2の支持部材74bの外側面側に第2の電極80bが配置されている。第1の電極80aを第2の電極80bの方向に加圧することにより、第1の突起部76a、第2の突起部76b、第3の突起部76c、及び第4の突起部76dはサクションマフラ60の筐体62に接触し、サクションマフラ60の筐体62を拘束する。圧力を印加して突起部76にサクションマフラ60を拘束させることにより、密閉型圧縮機100の製造時における、サクションマフラ60のx方向へのずれを回避することができる。
Next, in the manufacturing method of the hermetic compressor 100 according to the first embodiment, the casing 80 of the suction muffler 60 is formed by applying pressure to the protrusion 76 using the electrode 80 disposed on the support portion 74. Restrained by the protrusion 76. In FIG. 9, the first electrode 80a is disposed on the outer surface side of the first support member 74a, and the second electrode 80b is disposed on the outer surface side of the second support member 74b. By pressurizing the first electrode 80a in the direction of the second electrode 80b, the first protrusion 76a, the second protrusion 76b, the third protrusion 76c, and the fourth protrusion 76d are suction mufflers. The housing 62 of the suction muffler 60 is restrained by contacting the housing 62 of the 60. By applying pressure and restraining the suction muffler 60 on the protrusion 76, it is possible to avoid the displacement of the suction muffler 60 in the x direction during the manufacture of the hermetic compressor 100.
次いで、本実施の形態1に係る密閉型圧縮機100の製造方法においては、第1の電極80a及び第2の電極80bを用いて、突起部76に電流を流して突起部76を溶かし、サクションマフラ60を気液分離器固定具70に固定させる。本実施の形態1に係る密閉型圧縮機100の製造方法においては、サクションマフラ60のx方向へのずれを突起部76への加圧により回避できるため、サクションマフラ60の筐体62と気液分離器固定具70との溶接不良を回避することができる。
Next, in the manufacturing method of the hermetic compressor 100 according to the first embodiment, using the first electrode 80a and the second electrode 80b, current is passed through the protrusion 76 to melt the protrusion 76, and the suction is performed. The muffler 60 is fixed to the gas-liquid separator fixture 70. In the manufacturing method of the hermetic compressor 100 according to the first embodiment, since the displacement of the suction muffler 60 in the x direction can be avoided by pressurizing the protrusion 76, the casing 62 and the gas-liquid of the suction muffler 60 can be avoided. A welding failure with the separator fixture 70 can be avoided.
以上に説明したように、本実施の形態1の気液分離器固定具70は、密閉型圧縮機100に気液分離器の一例であるサクションマフラ60を固定するための気液分離器固定具70であって、密閉型圧縮機100の密閉容器10に固定される固定部72と、固定部72から延在し、サクションマフラ60を支持する支持部74と、支持部74に配置され、サクションマフラ60を拘束する複数の突起部76とを備えている。また、本実施の形態1の密閉型圧縮機100は、上述の気液分離器固定具70を備える。
As described above, the gas-liquid separator fixture 70 of the first embodiment is a gas-liquid separator fixture for fixing the suction muffler 60, which is an example of a gas-liquid separator, to the hermetic compressor 100. 70, a fixed portion 72 fixed to the hermetic container 10 of the hermetic compressor 100, a support portion 74 extending from the fixed portion 72 and supporting the suction muffler 60, and disposed on the support portion 74. And a plurality of protrusions 76 for restraining the muffler 60. Further, the hermetic compressor 100 according to the first embodiment includes the gas-liquid separator fixture 70 described above.
また、密閉型圧縮機100の製造装置200は、気液分離器固定具70に配置された気液分離器の一例であるサクションマフラ60を、気液分離器固定具70の突起部76に圧力を印加して拘束させる加圧シリンダ79と、突起部76に電流を流して突起部76を溶かし、サクションマフラ60を気液分離器固定具70に固定させる複数の電極80とを備える。また、本実施の形態1の密閉型圧縮機100の製造方法は、上述の気液分離器固定具70に気液分離器の一例であるサクションマフラ60を配置する工程と、突起部76に圧力を印加してサクションマフラ60を突起部76で拘束する工程と、突起部76に電流を流して突起部76を溶かし、サクションマフラ60を気液分離器固定具70に固定させる工程とを含む。
In addition, the manufacturing apparatus 200 of the hermetic compressor 100 applies a suction muffler 60, which is an example of a gas-liquid separator disposed in the gas-liquid separator fixture 70, to the protrusion 76 of the gas-liquid separator fixture 70. And a plurality of electrodes 80 for fixing the suction muffler 60 to the gas-liquid separator fixture 70 by applying a current to the protrusion 76 to melt the protrusion 76. Further, in the manufacturing method of the hermetic compressor 100 according to the first embodiment, the step of placing the suction muffler 60 as an example of the gas-liquid separator in the gas-liquid separator fixture 70 described above and the pressure on the protrusion 76 are described. And a step of restraining the suction muffler 60 by the protrusion 76 and a step of passing an electric current through the protrusion 76 to melt the protrusion 76 and fixing the suction muffler 60 to the gas-liquid separator fixture 70.
上述の構成によれば、サクションマフラ60を拘束する複数の突起部76を気液分離器固定具70に設けることにより、プロジェクション溶接を用いたとしても、突起部76とサクションマフラ60の筐体62との接触部分にずれが生じるのを回避することができる。また、プロジェクション溶接を用いた場合、突起部76で気液分離器固定具70とサクションマフラ60とを固定するため、サクションマフラ60の母材を減肉し、サクションマフラ60の強度が低減することがない。また、本発明では、気液分離器固定具70にサクションマフラ60を固定するのに、副資材を使用しないため、安価に密閉型圧縮機100を製造できる。したがって、上述の構成によれば、耐久性等の強度に対する信頼性を確保可能であり、かつ、製造コストを低減可能な気液分離器固定具70、密閉型圧縮機100、密閉型圧縮機100の製造装置200、及び密閉型圧縮機100の製造方法を提供できる。
According to the above-described configuration, the plurality of protrusions 76 that restrain the suction muffler 60 are provided on the gas-liquid separator fixture 70, so that the protrusion 76 and the housing 62 of the suction muffler 60 can be used even when projection welding is used. It is possible to avoid the occurrence of deviation in the contact portion with the. In addition, when projection welding is used, the gas-liquid separator fixture 70 and the suction muffler 60 are fixed by the protrusions 76, so that the base material of the suction muffler 60 is reduced and the strength of the suction muffler 60 is reduced. There is no. In the present invention, since the auxiliary material is not used to fix the suction muffler 60 to the gas-liquid separator fixture 70, the hermetic compressor 100 can be manufactured at low cost. Therefore, according to the above-described configuration, the gas-liquid separator fixture 70, the hermetic compressor 100, and the hermetic compressor 100 that can ensure the reliability of strength such as durability and can reduce the manufacturing cost. The manufacturing apparatus 200 and the manufacturing method of the hermetic compressor 100 can be provided.
また、プロジェクション溶接により、サクションマフラ60を固定すれば、溶接時間が短く、加熱範囲が狭くできるため、製造時におけるエネルギーの削減が可能であり、密閉型圧縮機100を安価に製造できる。
Further, if the suction muffler 60 is fixed by projection welding, the welding time is short and the heating range can be narrowed, so that energy can be reduced during production, and the hermetic compressor 100 can be produced at low cost.
また、本実施の形態1の気液分離器固定具70においては、支持部74は、上面視において、密閉容器10から離れる方向に延在する第1の支持部材74aと、密閉容器10から離れる方向に第1の支持部材74aと間隔を開けて平行に延在する第2の支持部材74bとを有し、複数の突起部76は、第1の支持部材74a及び第2の支持部材74bにそれぞれ2つずつ配置される構成にできる。すなわち、例えば、第1の支持部材74aの第1の内側面74cに、第1の突起部76a及び第2の突起部76bを設け、第2の支持部材74bの第2の内側面74dに、第3の突起部76c及び第4の突起部76dを設ける構成にできる。上述の構成によれば、サクションマフラ60が第1の突起部76a、第2の突起部76b、第3の突起部76c、及び第4の突起部76dにより拘束されるため、安定したプロジェクション溶接が可能となる。
Further, in the gas-liquid separator fixture 70 according to the first embodiment, the support part 74 is separated from the first support member 74a extending in a direction away from the sealed container 10 and the sealed container 10 in a top view. The first support member 74a in the direction and the second support member 74b extending in parallel with a gap therebetween, and the plurality of protrusions 76 are formed on the first support member 74a and the second support member 74b. Two each can be arranged. That is, for example, the first protrusion 76a and the second protrusion 76b are provided on the first inner surface 74c of the first support member 74a, and the second inner surface 74d of the second support member 74b is provided on the second inner surface 74d. The third protrusion 76c and the fourth protrusion 76d can be provided. According to the above-described configuration, the suction muffler 60 is restrained by the first protrusion 76a, the second protrusion 76b, the third protrusion 76c, and the fourth protrusion 76d, so that stable projection welding is performed. It becomes possible.
実施の形態2.
本発明の実施の形態2に係る気液分離器固定具70について図10~図12を用いて説明する。本実施の形態2の気液分離器固定具70は、上述の実施の形態1の変形例である。気液分離器固定具70の構造及び密閉型圧縮機100の製造方法を除く内容は、上述の実施の形態1と同一であるため説明は省略する。 Embodiment 2. FIG.
A gas-liquid separator fixture 70 according to Embodiment 2 of the present invention will be described with reference to FIGS. The gas-liquid separator fixture 70 of the second embodiment is a modification of the above-described first embodiment. Since the contents except the structure of the gas-liquid separator fixture 70 and the manufacturing method of the hermetic compressor 100 are the same as those in the first embodiment, the description thereof is omitted.
本発明の実施の形態2に係る気液分離器固定具70について図10~図12を用いて説明する。本実施の形態2の気液分離器固定具70は、上述の実施の形態1の変形例である。気液分離器固定具70の構造及び密閉型圧縮機100の製造方法を除く内容は、上述の実施の形態1と同一であるため説明は省略する。 Embodiment 2. FIG.
A gas-
図10は、本実施の形態2に係る密閉型圧縮機100における、密閉容器10に固定された後のサクションマフラ60の一例を示す概略図である。図11は、本実施の形態2に係る気液分離器固定具70の上面視における構造を示す概略図である。図12は、本実施の形態2に係る密閉型圧縮機100の製造方法の一例を示す概略図である。図12では、密閉型圧縮機100の製造時の加圧方向を実線の矢印で図示している。また、サクションマフラ60の筐体62の中心部と密閉容器10の中心部とを結ぶ方向と垂直な方向をy方向として、破線の矢印で図示している。
FIG. 10 is a schematic diagram illustrating an example of the suction muffler 60 after being fixed to the hermetic container 10 in the hermetic compressor 100 according to the second embodiment. FIG. 11 is a schematic diagram showing the structure of the gas-liquid separator fixture 70 according to the second embodiment in a top view. FIG. 12 is a schematic diagram illustrating an example of a method for manufacturing the hermetic compressor 100 according to the second embodiment. In FIG. 12, the pressurizing direction at the time of manufacturing the hermetic compressor 100 is indicated by a solid line arrow. Further, the direction perpendicular to the direction connecting the center portion of the casing 62 of the suction muffler 60 and the center portion of the sealed container 10 is defined as a y direction, and is indicated by a dashed arrow.
図10に示すように、本実施の形態2の気液分離器固定具70は、密閉容器10に固定される固定部72と、側面視において、密閉容器10の外側面と間隔を開けて、固定部72と平行に延在する支持部74と、固定部72の上端部と支持部74の下端部とを連結する連結部78とを有している。本実施の形態2の気液分離器固定具70は、側面視において、階段形状の板状部材として構成されている。
As shown in FIG. 10, the gas-liquid separator fixture 70 according to the second embodiment has a fixing portion 72 that is fixed to the sealed container 10 and a gap from the outer surface of the sealed container 10 in a side view. A support portion 74 extending in parallel with the fixed portion 72 and a connecting portion 78 for connecting the upper end portion of the fixed portion 72 and the lower end portion of the support portion 74 are provided. The gas-liquid separator fixture 70 of the second embodiment is configured as a step-like plate-like member in a side view.
図11に示すように、支持部74は、サクションマフラ60の筐体62の外側面に沿った円弧形状の支持面74eを有している。支持面74eには、第5の突起部76e及び第6の突起部76fがサクションマフラ60の筐体62の外側面に接触して配置されている。
As shown in FIG. 11, the support portion 74 has an arc-shaped support surface 74 e along the outer surface of the housing 62 of the suction muffler 60. On the support surface 74e, a fifth protrusion 76e and a sixth protrusion 76f are arranged in contact with the outer surface of the housing 62 of the suction muffler 60.
次に、本実施の形態2に係る密閉型圧縮機100の製造方法を図12を用いて説明する。
Next, a manufacturing method of the hermetic compressor 100 according to the second embodiment will be described with reference to FIG.
本実施の形態2に係る密閉型圧縮機100の製造方法においては、最初に、第5の突起部76e及び第6の突起部76fが、サクションマフラ60の筐体62の外側面に接触するように配置する。
In the method for manufacturing the hermetic compressor 100 according to the second embodiment, first, the fifth protrusion 76e and the sixth protrusion 76f are brought into contact with the outer surface of the casing 62 of the suction muffler 60. To place.
次いで、本実施の形態2に係る密閉型圧縮機100の製造方法においては、第3の電極80cは、サクションマフラ60の筐体62の外側面における、第5の突起部76e及び第6の突起部76fの配置面の逆側に位置する面に配置されている。また、第4の電極80dは、連結部78の上方、かつ支持部74の支持面74eの逆側に位置する面に配置されている。第3の電極80cを第4の電極80dの方向に加圧することにより、第5の突起部76e及び第6の突起部76fはサクションマフラ60の筐体62に押しつけられ、サクションマフラ60の筐体62を拘束する。圧力を印加して第5の突起部76e及び第6の突起部76fにサクションマフラ60を拘束させることにより、密閉型圧縮機100の製造時における、サクションマフラ60のy方向へのずれを回避することができる。
Next, in the method for manufacturing the hermetic compressor 100 according to the second embodiment, the third electrode 80c is provided with the fifth protrusion 76e and the sixth protrusion on the outer surface of the housing 62 of the suction muffler 60. It arrange | positions in the surface located in the reverse side of the arrangement surface of the part 76f. In addition, the fourth electrode 80d is disposed on the surface located above the connecting portion 78 and on the opposite side of the support surface 74e of the support portion 74. By pressing the third electrode 80c in the direction of the fourth electrode 80d, the fifth protrusion 76e and the sixth protrusion 76f are pressed against the casing 62 of the suction muffler 60, and the casing of the suction muffler 60 62 is restrained. By applying pressure and restraining the suction muffler 60 on the fifth protrusion 76e and the sixth protrusion 76f, the displacement of the suction muffler 60 in the y direction during the manufacture of the hermetic compressor 100 is avoided. be able to.
次いで、本実施の形態2に係る密閉型圧縮機100の製造方法においては、第3の電極80c及び第4の電極80dを用いて、第5の突起部76e及び第6の突起部76fに電流を流して溶かし、サクションマフラ60を気液分離器固定具70に固定させる。本実施の形態1に係る密閉型圧縮機100の製造方法においては、サクションマフラ60のy方向へのずれを第5の突起部76e及び第6の突起部76fへの加圧により回避できる。したがって、本実施の形態2に係る密閉型圧縮機100の製造方法においては、サクションマフラ60の筐体62と気液分離器固定具70との溶接不良を回避することができる。
Next, in the method for manufacturing the hermetic compressor 100 according to the second embodiment, a current is supplied to the fifth protrusion 76e and the sixth protrusion 76f using the third electrode 80c and the fourth electrode 80d. The suction muffler 60 is fixed to the gas-liquid separator fixture 70. In the manufacturing method of the hermetic compressor 100 according to the first embodiment, the displacement of the suction muffler 60 in the y direction can be avoided by pressurizing the fifth protrusion 76e and the sixth protrusion 76f. Therefore, in the method for manufacturing the hermetic compressor 100 according to the second embodiment, it is possible to avoid poor welding between the casing 62 of the suction muffler 60 and the gas-liquid separator fixture 70.
以上のように、本実施の形態2の気液分離器固定具70においては、支持部74は、気液分離器の一例であるサクションマフラ60の外側面に沿った支持面74eを有しており、複数の突起部76は、支持面74eに2つ配置されるように構成できる。すなわち、本実施の形態2の気液分離器固定具70においては、第5の突起部76e及び第6の突起部76fを支持面74eに配置した構成にできる。上述の構成によれば、第5の突起部76e及び第6の突起部76fという2つの突起部76のみで、安定したプロジェクション溶接が可能となるため、例えば、プレス加工の工数を低減でき、安価に密閉型圧縮機100を製造することが可能となる。
As described above, in the gas-liquid separator fixture 70 according to the second embodiment, the support 74 has the support surface 74e along the outer surface of the suction muffler 60, which is an example of the gas-liquid separator. In addition, the plurality of protrusions 76 can be configured to be arranged on the support surface 74e. That is, in the gas-liquid separator fixture 70 according to the second embodiment, the fifth protrusion 76e and the sixth protrusion 76f can be arranged on the support surface 74e. According to the above-described configuration, stable projection welding can be performed with only the two protrusions 76, that is, the fifth protrusion 76e and the sixth protrusion 76f. For example, the number of press working steps can be reduced and the cost can be reduced. Thus, the hermetic compressor 100 can be manufactured.
実施の形態3.
本発明の実施の形態3に係る気液分離器固定具70について図13及び図14を用いて説明する。本実施の形態3の気液分離器固定具70は、上述の実施の形態1の変形例である。気液分離器固定具70の構造及び密閉型圧縮機100の製造方法を除く内容は、上述の実施の形態1と同一であるため説明は省略する。Embodiment 3 FIG.
A gas-liquid separator fixture 70 according to Embodiment 3 of the present invention will be described with reference to FIGS. 13 and 14. The gas-liquid separator fixture 70 of the third embodiment is a modification of the above-described first embodiment. Since the contents except the structure of the gas-liquid separator fixture 70 and the manufacturing method of the hermetic compressor 100 are the same as those in the first embodiment, the description thereof is omitted.
本発明の実施の形態3に係る気液分離器固定具70について図13及び図14を用いて説明する。本実施の形態3の気液分離器固定具70は、上述の実施の形態1の変形例である。気液分離器固定具70の構造及び密閉型圧縮機100の製造方法を除く内容は、上述の実施の形態1と同一であるため説明は省略する。
A gas-
図13は、本実施の形態3に係る気液分離器固定具70の上面視における構造を示す概略図である。図14は、本実施の形態3に係る密閉型圧縮機100の製造方法の一例を示す概略図である。図14では、密閉型圧縮機100の製造時の加圧方向を実線の矢印で図示している。
FIG. 13 is a schematic view showing the structure of the gas-liquid separator fixture 70 according to the third embodiment in a top view. FIG. 14 is a schematic diagram illustrating an example of a method for manufacturing the hermetic compressor 100 according to the third embodiment. In FIG. 14, the pressurizing direction at the time of manufacturing the hermetic compressor 100 is indicated by a solid arrow.
図13に示すように、本実施の形態3の気液分離器固定具70は、密閉容器10に固定される固定部72を有している。また、支持部74は、上面視において、固定部72の第1の末端部72bから延在し、密閉容器10から離れる方向に延在するL字形状の第3の支持部材74fを有している。また、支持部74は、固定部72の第2の末端部72cから延在し、密閉容器10から離れる方向に延在するL字形状の第4の支持部材74gを有している。第3の支持部材74fの第1の凸状屈曲部76g及び第4の支持部材74gの第2の凸状屈曲部76hは、互いに対面するように構成されている。第1の凸状屈曲部76g及び第2の凸状屈曲部76hは、気液分離器固定具70における突起部76として構成される。
As shown in FIG. 13, the gas-liquid separator fixture 70 of the third embodiment has a fixing portion 72 that is fixed to the sealed container 10. Further, the support portion 74 includes an L-shaped third support member 74f that extends from the first end portion 72b of the fixed portion 72 and extends in a direction away from the sealed container 10 in a top view. Yes. The support portion 74 has an L-shaped fourth support member 74 g that extends from the second end portion 72 c of the fixed portion 72 and extends in a direction away from the sealed container 10. The first convex bent portion 76g of the third support member 74f and the second convex bent portion 76h of the fourth support member 74g are configured to face each other. The first convex bent portion 76g and the second convex bent portion 76h are configured as a protruding portion 76 in the gas-liquid separator fixture 70.
次に、本実施の形態3に係る密閉型圧縮機100の製造方法を図14を用いて説明する。
Next, a manufacturing method of the hermetic compressor 100 according to the third embodiment will be described with reference to FIG.
本実施の形態3に係る密閉型圧縮機100の製造方法においては、最初に、第1の凸状屈曲部76g及び第2の凸状屈曲部76hが、サクションマフラ60の筐体62の外側面に接触するように配置する。
In the manufacturing method of the hermetic compressor 100 according to the third embodiment, first, the first convex bent portion 76g and the second convex bent portion 76h are provided on the outer surface of the casing 62 of the suction muffler 60. Place it so that it touches.
次いで、本実施の形態3に係る密閉型圧縮機100の製造方法においては、第5の電極80eは、サクションマフラ60の筐体62における、第1の凸状屈曲部76g及び第2の凸状屈曲部76hが取り囲む円弧面と逆側に位置する面に配置されている。また、第6の電極80fは、第1の凸状屈曲部76gを構成する面と逆側に位置する面に配置されている。また、第7の電極80gは、第2の凸状屈曲部76hを構成する面とに位置する面に配置されている。第5の電極80eを、第6の電極80fと第7の電極80gとを結ぶ線分の中点の方向に加圧することにより、第1の凸状屈曲部76g及び第2の凸状屈曲部76hはサクションマフラ60の筐体62に押しつけられる。第1の凸状屈曲部76g及び第2の凸状屈曲部76hが筐体62に押しつけられることにより、サクションマフラ60の筐体62は拘束されるため、サクションマフラ60のずれを回避することができる。
Next, in the method for manufacturing the hermetic compressor 100 according to the third embodiment, the fifth electrode 80e includes the first convex bent portion 76g and the second convex shape in the housing 62 of the suction muffler 60. It arrange | positions on the surface located on the opposite side to the circular arc surface which the bending part 76h surrounds. The sixth electrode 80f is disposed on a surface located on the opposite side to the surface constituting the first convex bent portion 76g. Further, the seventh electrode 80g is disposed on a surface located on a surface constituting the second convex bent portion 76h. By pressing the fifth electrode 80e in the direction of the midpoint of the line segment connecting the sixth electrode 80f and the seventh electrode 80g, the first convex bent portion 76g and the second convex bent portion 76 h is pressed against the housing 62 of the suction muffler 60. Since the housing 62 of the suction muffler 60 is restrained by pressing the first convex bent portion 76g and the second convex bent portion 76h against the housing 62, it is possible to avoid the displacement of the suction muffler 60. it can.
次いで、本実施の形態3に係る密閉型圧縮機100の製造方法においては、第5の電極80e、第6の電極80f、及び第7の電極80gを用いて、第1の凸状屈曲部76g及び第2の凸状屈曲部76hに電流を流して溶かし、サクションマフラ60を気液分離器固定具70に固定させる。本実施の形態3に係る密閉型圧縮機100の製造方法においては、サクションマフラ60のずれを第1の凸状屈曲部76g及び第2の凸状屈曲部76hへの加圧により回避できる。したがって、本実施の形態3に係る密閉型圧縮機100の製造方法においては、サクションマフラ60の筐体62と気液分離器固定具70との溶接不良を回避することができる。
Next, in the manufacturing method of the hermetic compressor 100 according to the third embodiment, the first convex bent portion 76g using the fifth electrode 80e, the sixth electrode 80f, and the seventh electrode 80g. The current muffler 60 is fixed to the gas-liquid separator fixture 70 by causing the current to flow through the second convex bent portion 76h to be melted. In the manufacturing method of the hermetic compressor 100 according to the third embodiment, the displacement of the suction muffler 60 can be avoided by pressurizing the first convex bent portion 76g and the second convex bent portion 76h. Therefore, in the method for manufacturing the hermetic compressor 100 according to the third embodiment, it is possible to avoid poor welding between the casing 62 of the suction muffler 60 and the gas-liquid separator fixture 70.
以上のように、本実施の形態3の気液分離器固定具70においては、支持部74は、密閉容器10から離れる方向に延在し、第1の凸状屈曲部76gを有する第3の支持部材74fと、密閉容器10から離れる方向に延在し、第2の凸状屈曲部76hを有する第4の支持部材74gとを有しており、第1の凸状屈曲部76gは、前記第2の凸状屈曲部76hと対面しており、第1の凸状屈曲部76g及び第2の凸状屈曲部76hは、突起部76として気液分離器の一例であるサクションマフラ60を拘束するように構成できる。上述の構成によれば、第3の支持部材74f及び第4の支持部材74gの屈曲作業のみで、突起部76を構成することが可能となるため、例えば、突起部76を設けるためのプレス加工等の工数を低減でき、安価に密閉型圧縮機100を製造することが可能となる。
As described above, in the gas-liquid separator fixture 70 according to the third embodiment, the support portion 74 extends in the direction away from the sealed container 10 and has the first convex bent portion 76g. It has a support member 74f and a fourth support member 74g extending in a direction away from the sealed container 10 and having a second convex bent portion 76h. The first convex bent portion 76g The first convex bent portion 76g and the second convex bent portion 76h constrain a suction muffler 60, which is an example of a gas-liquid separator, facing the second convex bent portion 76h. Can be configured to According to the above-described configuration, the protrusion 76 can be configured only by the bending work of the third support member 74f and the fourth support member 74g. For example, press working for providing the protrusion 76 is performed. Thus, the hermetic compressor 100 can be manufactured at a low cost.
その他の実施の形態.
上述の実施の形態は、例えば、家庭用又は業務用の空気調和機等の冷凍サイクル装置に適用可能である。 Other embodiments.
The above-described embodiment can be applied to a refrigeration cycle apparatus such as an air conditioner for home use or business use.
上述の実施の形態は、例えば、家庭用又は業務用の空気調和機等の冷凍サイクル装置に適用可能である。 Other embodiments.
The above-described embodiment can be applied to a refrigeration cycle apparatus such as an air conditioner for home use or business use.
1 本体部、3 蓋部、5 台、7 吐出管、9 ガラス端子、10 密閉容器、20 電動機部、22 固定子、24 回転子、26 導線、30 クランクシャフト、32 偏心部、34 ローリングピストン、40 圧縮機構部、41 シリンダ、41a 中空部分、41b ベーン溝、42 ベーン、43 主軸受、43a 固定部、43b 軸受部、44 副軸受、44a 固定部、44b 軸受部、50 冷凍機油、60 サクションマフラ、62 筐体、64 流入管、66 吸入管、68 吸入ポート、70 気液分離器固定具、72 固定部、72a 固定面、72b 第1の末端部、72c 第2の末端部、74 支持部、74a 第1の支持部材、74b 第2の支持部材、74c 第1の内側面、74d 第2の内側面、74e 支持面、74f 第3の支持部材、74g 第4の支持部材、76 突起部、76a 第1の突起部、76b 第2の突起部、76c 第3の突起部、76d 第4の突起部、76e 第5の突起部、76f 第6の突起部、76g 第1の凸状屈曲部、76h 第2の凸状屈曲部、78 連結部、79 加圧シリンダ、80 電極、80a 第1の電極、80b 第2の電極、80c 第3の電極、80d 第4の電極、80e 第5の電極、80f 第6の電極、80g 第7の電極、82 溶接電源、84 溶接変圧器、90 支持台、90a 凹部、100 密閉型圧縮機、200 製造装置。
1 body part, 3 lid parts, 5 units, 7 discharge pipes, 9 glass terminals, 10 sealed containers, 20 motor parts, 22 stators, 24 rotors, 26 conductors, 30 crankshafts, 32 eccentric parts, 34 rolling pistons, 40 compression mechanism part, 41 cylinder, 41a hollow part, 41b vane groove, 42 vane, 43 main bearing, 43a fixed part, 43b bearing part, 44 secondary bearing, 44a fixed part, 44b bearing part, 50 refrigerating machine oil, 60 suction muffler , 62 housing, 64 inflow pipe, 66 suction pipe, 68 suction port, 70 gas-liquid separator fixture, 72 fixing part, 72a fixing surface, 72b first terminal part, 72c second terminal part, 74 supporting part , 74a first support member, 74b second support member, 74c first inner surface, 74d second Side, 74e support surface, 74f third support member, 74g fourth support member, 76 projection, 76a first projection, 76b second projection, 76c third projection, 76d fourth projection Part, 76e fifth projection part, 76f sixth projection part, 76g first convex bent part, 76h second convex bent part, 78 connecting part, 79 pressurizing cylinder, 80 electrode, 80a first Electrode, 80b second electrode, 80c third electrode, 80d fourth electrode, 80e fifth electrode, 80f sixth electrode, 80g seventh electrode, 82 welding power source, 84 welding transformer, 90 support base , 90a recess, 100 hermetic compressor, 200 manufacturing equipment.
Claims (7)
- 密閉型圧縮機の密閉容器に気液分離器を固定するための気液分離器固定具であって、
前記密閉容器に固定される固定部と、
前記固定部から延在し、前記気液分離器を支持する支持部と、
前記支持部に配置され、前記気液分離器を拘束する複数の突起部と
を備える
気液分離器固定具。 A gas-liquid separator fixture for fixing the gas-liquid separator to the sealed container of the hermetic compressor,
A fixing portion fixed to the sealed container;
A support portion extending from the fixed portion and supporting the gas-liquid separator;
A gas-liquid separator fixture comprising a plurality of protrusions disposed on the support portion and restraining the gas-liquid separator. - 前記支持部は、
前記密閉容器から離れる方向に延在する第1の支持部材と、
前記密閉容器から離れる方向に前記第1の支持部材と間隔を開けて平行に延在する第2の支持部材と
を有しており、
前記複数の突起部は、前記第1の支持部材及び第2の支持部材にそれぞれ2つずつ配置されている
請求項1に記載の気液分離器固定具。 The support part is
A first support member extending in a direction away from the sealed container;
A second support member extending in parallel with a distance from the first support member in a direction away from the sealed container;
2. The gas-liquid separator fixture according to claim 1, wherein two of the plurality of protrusions are disposed on each of the first support member and the second support member. - 前記支持部は、前記気液分離器の外側面に沿った支持面を有しており、
前記複数の突起部は、前記支持面に2つ配置されている
請求項1に記載の気液分離器固定具。 The support part has a support surface along the outer surface of the gas-liquid separator,
The gas-liquid separator fixture according to claim 1, wherein two of the plurality of protrusions are arranged on the support surface. - 前記支持部は、
前記密閉容器から離れる方向に延在し、第1の凸状屈曲部を有する第3の支持部材と、
前記密閉容器から離れる方向に延在し、第2の凸状屈曲部を有する第4の支持部材と
を有しており、
前記第1の凸状屈曲部は、前記第2の凸状屈曲部と対面しており、
前記第1の凸状屈曲部及び前記第2の凸状屈曲部は、前記突起部として前記気液分離器を拘束する
請求項1に記載の気液分離器固定具。 The support part is
A third support member extending in a direction away from the sealed container and having a first convex bent portion;
A fourth support member extending in a direction away from the sealed container and having a second convex bent portion;
The first convex bent portion faces the second convex bent portion,
The gas-liquid separator fixture according to claim 1, wherein the first convex bent portion and the second convex bent portion restrain the gas-liquid separator as the protrusion. - 請求項1~4のいずれか一項に記載の気液分離器固定具を備える密閉型圧縮機。 A hermetic compressor comprising the gas-liquid separator fixture according to any one of claims 1 to 4.
- 請求項1~4のいずれか一項に記載の気液分離器固定具に配置された前記気液分離器を、前記気液分離器固定具の前記突起部に圧力を印加して拘束させる加圧シリンダと、
前記突起部に電流を流して前記突起部を溶かし、前記気液分離器を前記気液分離器固定具に固定させる複数の電極と
を備える
密閉型圧縮機の製造装置。 The gas-liquid separator disposed in the gas-liquid separator fixture according to any one of claims 1 to 4 is restrained by applying pressure to the protrusion of the gas-liquid separator fixture. A pressure cylinder;
An apparatus for manufacturing a hermetic compressor, comprising: a plurality of electrodes that cause current to flow through the protrusions to melt the protrusions and fix the gas-liquid separator to the gas-liquid separator fixture. - 請求項1~4のいずれか一項に記載の気液分離器固定具に前記気液分離器を配置する工程と、
前記突起部に圧力を印加して前記気液分離器を前記突起部で拘束する工程と、
前記突起部に電流を流して前記突起部を溶かし、前記気液分離器を前記気液分離器固定具に固定させる工程と
を含む
密閉型圧縮機の製造方法。 Disposing the gas-liquid separator on the gas-liquid separator fixture according to any one of claims 1 to 4,
Applying pressure to the protrusions to restrain the gas-liquid separator with the protrusions;
A method of manufacturing a hermetic compressor, comprising: passing an electric current through the protrusion to melt the protrusion, and fixing the gas-liquid separator to the gas-liquid separator fixture.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/057068 WO2017154086A1 (en) | 2016-03-08 | 2016-03-08 | Gas-liquid separator fixing tool, airtight compressor, device for manufacturing airtight compressor, and method for manufacturing airtight compressor |
CN201680082829.8A CN108700052B (en) | 2016-03-08 | 2016-03-08 | Gas-liquid separator fixing tool, hermetic compressor, manufacturing device for hermetic compressor, and manufacturing method for hermetic compressor |
JP2018503879A JP6611907B2 (en) | 2016-03-08 | 2016-03-08 | Gas-liquid separator fixture, hermetic compressor, hermetic compressor manufacturing apparatus, and hermetic compressor manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/057068 WO2017154086A1 (en) | 2016-03-08 | 2016-03-08 | Gas-liquid separator fixing tool, airtight compressor, device for manufacturing airtight compressor, and method for manufacturing airtight compressor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017154086A1 true WO2017154086A1 (en) | 2017-09-14 |
Family
ID=59790172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/057068 WO2017154086A1 (en) | 2016-03-08 | 2016-03-08 | Gas-liquid separator fixing tool, airtight compressor, device for manufacturing airtight compressor, and method for manufacturing airtight compressor |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6611907B2 (en) |
CN (1) | CN108700052B (en) |
WO (1) | WO2017154086A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020202493A1 (en) * | 2019-04-03 | 2020-10-08 | 三菱電機株式会社 | Metal fitting, hermetic-type compressor, and method for manufacturing hermetic-type compressor |
JP2021032135A (en) * | 2019-08-23 | 2021-03-01 | 株式会社東芝 | Compressor and air-conditioning device |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021171583A1 (en) * | 2020-02-28 | 2021-09-02 | 三菱電機株式会社 | Method for manufacturing sealed compressor |
CN112343791A (en) * | 2020-09-28 | 2021-02-09 | 珠海格力节能环保制冷技术研究中心有限公司 | Compressor and refrigerator |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60149888U (en) * | 1984-03-16 | 1985-10-04 | 松下電器産業株式会社 | Accumulator fixing device for hermetic compressor |
JPH01244181A (en) * | 1988-03-25 | 1989-09-28 | Mitsubishi Electric Corp | Enclosed compressor |
JPH01262379A (en) * | 1988-04-11 | 1989-10-19 | Daikin Ind Ltd | Supporting structure for compressor |
JP2012154184A (en) * | 2011-01-24 | 2012-08-16 | Hitachi Appliances Inc | Sealed electric compressor unit |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57120775U (en) * | 1981-01-20 | 1982-07-27 | ||
CN1715646A (en) * | 2004-06-28 | 2006-01-04 | 乐金电子(天津)电器有限公司 | Gas/liquid separator fixer of sealed compressor |
CN1781642A (en) * | 2004-11-29 | 2006-06-07 | 乐金电子(天津)电器有限公司 | Convex welding structure and mounting structure of reciprocating compressor brake with said structure |
JP4793087B2 (en) * | 2006-05-11 | 2011-10-12 | 三菱電機株式会社 | Compressor manufacturing method |
CN201050466Y (en) * | 2007-06-05 | 2008-04-23 | 西安庆安制冷设备股份有限公司 | All-enclosed type compressor closed barrel and gas-liquid separator connection device |
CN101349273A (en) * | 2007-07-20 | 2009-01-21 | 乐金电子(天津)电器有限公司 | Structure for connecting compressor and gas liquid separator |
CN103900302A (en) * | 2012-12-27 | 2014-07-02 | 浙江三花制冷集团有限公司 | Gas-liquid separator and assembling method thereof |
CN203584746U (en) * | 2013-12-12 | 2014-05-07 | 珠海格力电器股份有限公司 | Air conditioning unit, compressor and casing thereof |
JP6408808B2 (en) * | 2014-07-10 | 2018-10-17 | 三菱重工サーマルシステムズ株式会社 | Electric compressor |
-
2016
- 2016-03-08 CN CN201680082829.8A patent/CN108700052B/en active Active
- 2016-03-08 JP JP2018503879A patent/JP6611907B2/en not_active Expired - Fee Related
- 2016-03-08 WO PCT/JP2016/057068 patent/WO2017154086A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60149888U (en) * | 1984-03-16 | 1985-10-04 | 松下電器産業株式会社 | Accumulator fixing device for hermetic compressor |
JPH01244181A (en) * | 1988-03-25 | 1989-09-28 | Mitsubishi Electric Corp | Enclosed compressor |
JPH01262379A (en) * | 1988-04-11 | 1989-10-19 | Daikin Ind Ltd | Supporting structure for compressor |
JP2012154184A (en) * | 2011-01-24 | 2012-08-16 | Hitachi Appliances Inc | Sealed electric compressor unit |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020202493A1 (en) * | 2019-04-03 | 2020-10-08 | 三菱電機株式会社 | Metal fitting, hermetic-type compressor, and method for manufacturing hermetic-type compressor |
JP2021032135A (en) * | 2019-08-23 | 2021-03-01 | 株式会社東芝 | Compressor and air-conditioning device |
JP7175860B2 (en) | 2019-08-23 | 2022-11-21 | 株式会社東芝 | compressor and air conditioner |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017154086A1 (en) | 2018-09-13 |
JP6611907B2 (en) | 2019-11-27 |
CN108700052B (en) | 2020-10-09 |
CN108700052A (en) | 2018-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6611907B2 (en) | Gas-liquid separator fixture, hermetic compressor, hermetic compressor manufacturing apparatus, and hermetic compressor manufacturing method | |
US8936449B2 (en) | Hermetic compressor and manufacturing method thereof | |
EP3567212A1 (en) | Compressor having oldham's ring | |
CN116097001B (en) | Compressor and method for manufacturing compressor | |
WO2020202493A1 (en) | Metal fitting, hermetic-type compressor, and method for manufacturing hermetic-type compressor | |
CN109153063B (en) | Compressor, method for manufacturing compressor, and pipe expander | |
WO2020202296A1 (en) | Welding bead crushing jig, and method for manufacturing compressor | |
CN110762006B (en) | Rotary compressor and refrigeration equipment | |
JP2005140064A (en) | Electric compressor | |
EP4215751B1 (en) | Accumulator fixing device for compressor and compressor having the same | |
JP2004150370A (en) | Sealed electric compressor | |
JP2014020209A (en) | Two-stage compressor and two-stage compression system | |
WO2017141309A1 (en) | Rotary compressor | |
WO2023218587A1 (en) | Compressor and refrigeration cycle device | |
CN109209867B (en) | Compressor with a compressor body having a rotor with a rotor shaft | |
JP2009121380A (en) | Hermetic compressor | |
JP2010037973A (en) | Rotary compressor | |
WO2019123609A1 (en) | Hermetic compressor and refrigeration cycle device | |
KR20200095993A (en) | Scroll compressor having a structure for preventing abrasion | |
JP2005220793A (en) | Compressor | |
JP4609520B2 (en) | Rotary fluid machine | |
JP2005214110A (en) | Compressor | |
JP4748585B2 (en) | Manufacturing method of scroll compressor | |
KR101708308B1 (en) | Hermetic compressor and manufacturing method thereof | |
CN116940764A (en) | Compressor and refrigeration cycle device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018503879 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16893418 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16893418 Country of ref document: EP Kind code of ref document: A1 |