WO2017152683A1 - 一种提高金属工件疲劳寿命的超声强化方法及其应用 - Google Patents
一种提高金属工件疲劳寿命的超声强化方法及其应用 Download PDFInfo
- Publication number
- WO2017152683A1 WO2017152683A1 PCT/CN2016/110945 CN2016110945W WO2017152683A1 WO 2017152683 A1 WO2017152683 A1 WO 2017152683A1 CN 2016110945 W CN2016110945 W CN 2016110945W WO 2017152683 A1 WO2017152683 A1 WO 2017152683A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ultrasonic
- ultrasonic machining
- metal workpiece
- machining tool
- fatigue life
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D10/00—Modifying the physical properties by methods other than heat treatment or deformation
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/02—Modifying the physical properties of iron or steel by deformation by cold working
- C21D7/04—Modifying the physical properties of iron or steel by deformation by cold working of the surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23P—METAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
- B23P9/00—Treating or finishing surfaces mechanically, with or without calibrating, primarily to resist wear or impact, e.g. smoothing or roughening turbine blades or bearings; Features of such surfaces not otherwise provided for, their treatment being unspecified
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23P—METAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
- B23P9/00—Treating or finishing surfaces mechanically, with or without calibrating, primarily to resist wear or impact, e.g. smoothing or roughening turbine blades or bearings; Features of such surfaces not otherwise provided for, their treatment being unspecified
- B23P9/04—Treating or finishing by hammering or applying repeated pressure
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/04—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering with simultaneous application of supersonic waves, magnetic or electric fields
Definitions
- the invention relates to an ultrasonic strengthening method and an application thereof for improving the fatigue life of a metal workpiece, and belongs to the technical field of ultrasonic processing.
- Fatigue life refers to the number of stress cycles that a material experiences before fatigue failure. Fatigue damage of metal workpieces occurs in parts and components subjected to alternating stress (or strain). After repeated action of alternating stress (or strain) below the yield limit of the material, after a certain number of cycles Cracks are generated in the stress concentration part, and the crack expands under certain conditions, and finally breaks suddenly. This failure process is called fatigue failure.
- the fatigue life of metal workpieces is often improved by different treatment methods.
- the methods for improving the fatigue life of metal workpieces are as follows: 1. Select anti-fatigue materials, such as alloy steel; 2. Use forging process; 4. Use heat treatment process; 4. Avoid and slow down stress concentration of parts. Deburring, edge chamfering, and rounded corners are effective methods to reduce stress concentration; 5. Preset compressive stress; The direction of the fiber and the main direction of the force should be the same, because the bearing strength in the vertical fiber direction will decrease by about 20%; 7. The design of the load, cooling, and lubrication; 8. Use a symmetrical structure as much as possible to avoid eccentricity.
- the structure in the asymmetry should pay attention to the stress caused by local bending; 9, pay attention to the corrosion resistance of the material; 10, the structural parts should reduce the opening as much as possible, especially in the tensioned surface as far as possible; 11, as much as possible or Eliminate initial cracks that may occur on the surface of the part.
- Ultrasonic strengthening technology is a new processing technology that uses mirroring parts and surface modification to process metal parts by using the composite energy of activation energy and impact energy.
- the essence of ultrasonic strengthening technology is to convert ultrasonic energy into mechanical energy, and use the characteristics of cold plasticity of metal at normal temperature to perform high-frequency tapping on the surface of metal parts, so that the surface of metal parts can meet more ideal surface roughness requirements and improve parts. Microhardness, abrasion resistance and corrosion resistance of the surface.
- Chinese patent document CN102002581A discloses a method for eliminating residual stress in welding by ultrasonic shock, which mainly utilizes an ultrasonic impact device, which comprises an ultrasonic generator, an acoustic system and a frame, and the ultrasonic generator and the acoustic system are arranged on the frame.
- the acoustic system has a transducer that converts a 50 Hz power frequency AC point on the grid into an ultrasonic frequency 20 kHz alternating current through an ultrasonic generator to excite the transducer of the acoustic system, and the transducer of the acoustic system converts the electrical energy to the same frequency Mechanical vibration, at a temperature of 400 ⁇ 800 ° C, the above-mentioned ultrasonic vibration of the mechanical vibration is transmitted to the weld on the workpiece, so that the surface of the weld site produces a plastic deformation layer of sufficient depth, to some extent improved welding Fatigue life.
- the Chinese patent document CN102560078A provides a method for nano-surface surface of a steel material, which is roughened by removing the material, so that the surface roughness Ra is controlled to be between 6.0 and 7.0 ⁇ m;
- the processing workpiece is mounted on the machine tool spindle, and the workpiece to be processed is treated in an axial constant velocity close-packed manner by using an ultrasonic surface strengthening treatment device.
- the comprehensive effect of surface nano-treatment on the rim of the locomotive wheel increases the surface hardness of the rim of the locomotive wheel, reduces the roughness of the wheel rim of the machine tool, increases the wear resistance of the rim of the locomotive wheel; the grain gradually becomes smaller, forming from the base to the base
- the gradient structure of the surface has a uniform residual compressive stress layer to improve fatigue life.
- the present application seeks to find an ultrasonic strengthening method by which a desired compressive stress can be generated on a surface of a metal workpiece, and the ultrasonic strengthening method can be used to control the magnitude of the compressive stress formed on the surface of the metal workpiece, and finally through the metal workpiece.
- the surface forms a suitable compressive stress to increase the fatigue life of the metal workpiece.
- the present invention provides an ultrasonic strengthening method for improving the fatigue life of a metal workpiece.
- the present invention also provides an application of an ultrasonic strengthening method for improving the fatigue life of a metal workpiece.
- An ultrasonic strengthening method for improving the fatigue life of a metal workpiece the metal workpiece is clamped on the ultrasonic processing machine, and the surface of the metal workpiece is ultrasonically processed by the ultrasonic machining tool, and the ultrasonic processing parameter is: the linear velocity is 2-120 m/min, The feed rate is 0.08-1.7mm/r, and the pressure of the ultrasonic machining tool on the machined surface is 50-3000N.
- the parameters of the ultrasonic machining are: a linear velocity of 20-60 m/min, a feed amount of 0.2-0.5 mm/r, and an ultrasonic machining tool having a pressure of 600-1800 N on the surface to be processed.
- the number of ultrasonic machining is 1 to 3 times.
- the ultrasonic machining has an amplitude of 5-25 ⁇ m.
- the ultrasonic machining has an amplitude of 6-8 ⁇ m.
- the metal workpiece includes a bearing, an aero engine blade, a locomotive wheel, an axle, and a sucker rod.
- the ultrasonic machining tool is used for ultrasonic machining, that is, the outer ring raceway, the inner ring raceway and the rolling body are ultrasonically processed by the ultrasonic machining tool, and the ultrasonic machining parameters are: line speed 2-100 m/min.
- the feed rate is 0.08-0.8mm/r, and the pressure of the ultrasonic machining tool on the machined surface is 300-2400N.
- the outer ring raceway, the inner ring raceway and the rolling body are ultrasonically processed by the ultrasonic machining tool, and the ultrasonic machining parameters are: linear speed 3.08 m/min, feed amount 0.08 mm/r, ultrasonic wave.
- the pressure of the processing tool on the machined surface is 1500N.
- the ultrasonic machining tool is used for ultrasonic machining of the aero-engine blade, that is, the surface of the aero-engine blade rotating along the main shaft is ultrasonically processed by using an ultrasonic machining tool, and the ultrasonic machining parameters are: linear velocity of 2-10 m/min, ultrasonic wave.
- the feed rate of the tool is 0.08-0.8mm/r, and the pressure of the ultrasonic machining tool on the machined surface is 300-2500N.
- the surface of the aero-engine blade rotating along the main shaft is ultrasonically processed by an ultrasonic machining tool.
- the parameters of the ultrasonic machining are: a linear velocity of 3 m/min, and an ultrasonic tool feed of 0.15-0.25 mm/r, and an ultrasonic wave.
- the pressure of the processing tool on the machined surface is 800-1000N.
- the locomotive wheel is ultrasonically processed by using an ultrasonic machining tool, that is, the surface of the locomotive wheel rotating along the main shaft is ultrasonically processed by using an ultrasonic machining tool, and the ultrasonic machining parameter is: the linear speed of the locomotive wheel is 15-120 m/min, The feed rate is 0.08-0.2mm/r, and the pressure of the ultrasonic machining tool on the machined surface is 300-3000N.
- the surface of the locomotive wheel that rotates along the main shaft is ultrasonically processed by using an ultrasonic machining tool, and the parameters of the ultrasonic machining are: the linear speed of the locomotive wheel is 57 m/min, the feed amount is 0.1 mm/r, and the ultrasonic machining tool treats The pressure on the machined surface is 1200N.
- the ultrasonic machining tool is used for ultrasonic machining of the axle, that is, the ultrasonic machining tool is used to ultrasonically machine the surface of the axle rotating along the main shaft, and the ultrasonic machining parameters are: the linear speed of the axle is 10-120 m/min, and the feed amount is For 0.1-0.6mm/r, the pressure of the ultrasonic machining tool on the machined surface is 300-3000N.
- the ultrasonic machining tool is used for ultrasonic machining of the axle.
- the parameters of the ultrasonic machining are: the linear speed of the axle is 50-60 m/min, the feed amount is 0.35-0.45 mm/r, and the pressure of the ultrasonic machining tool on the surface to be processed is 1700-1800N.
- the sucker rod is ultrasonically processed by using an ultrasonic machining tool, that is, the ultrasonic machining tool is used to ultrasonically machine the surface of the rod body and/or the thread portion rotating along the main shaft, and the parameters of the ultrasonic machining are: the linear speed of the sucker rod 2 -120m/min, the feed rate is 0.08-0.8mm/r, and the pressure of the ultrasonic machining tool on the machined surface is 300-3000N.
- the surface of the rod body and/or the thread portion rotating along the main shaft is ultrasonically processed by an ultrasonic machining tool, and the parameters of the ultrasonic machining are: a linear speed of the sucker rod of 38 m/min, a feed amount of 0.3 mm/r, and an ultrasonic wave.
- the pressure of the processing tool on the machined surface is 1500-1600N.
- the sucker rod is a semi-finished sucker rod.
- the semi-finished sucker rod has a surface roughness of 3.2 to 10 ⁇ m.
- the ultrasonic strengthening method of the invention focuses on realizing the preset compressive stress on the surface of the metal workpiece by adjusting the different pressures of the ultrasonic processing tool to the working surface, thereby achieving the purpose of eliminating the residual stress, and refining the surface of the metal workpiece, and the surface microhardness Improve, wear resistance and corrosion resistance, and ultimately improve the fatigue life of the workpiece.
- the existing ultrasonic processing method is mainly used to reduce the roughness of the surface of the metal workpiece, so that the surface of the metal workpiece reaches a mirror effect, and the surface performance of the metal workpiece is effectively improved by the ultrasonic strengthening method of the invention, and the effect is obviously superior to the existing one. Ultrasonic processing method.
- Figure 1 is a graph of pressure value - surface compressive stress value in Example 1;
- Figure 2 is a graph of pressure value - surface compressive stress value in Example 3;
- Embodiment 3 is a graph showing the cycle number and fatigue limit of the metal workpiece before and after ultrasonic strengthening processing in Embodiment 3;
- Figure 4 is a graph showing the pressure value of the surface pressure of the locomotive wheel in Example 5;
- Figure 5 is a graph showing the pressure value-bearing surface compressive stress value in Example 7.
- Figure 6 is a graph showing the pressure value of the surface of the sucker rod in Example 9;
- FIG. 7 is a metallographic diagram of the surface of the sucker rod after ultrasonic strengthening processing in Embodiment 9;
- the embodiment provides an ultrasonic strengthening method for improving the fatigue life of a metal workpiece, and the ultrasonic machining tool is used for ultrasonic machining of the bearing, that is, the outer ring raceway, the inner ring raceway and the rolling body are ultrasonically processed by the ultrasonic machining tool.
- the ultrasonic machining parameters of the outer ring raceway, the inner raceway and the rolling race are the same: the linear speed is 2m/min, the feed rate is 0.08mm/r, and the ultrasonic machining tool has a pressure of 300 on the machined surface. -2400N, this pressure is the constant normal force of the ultrasonic machining tool when machining the workpiece, and the number of ultrasonic machining is 3 times.
- the curve of the compressive stress on the bearing surface after ultrasonic strengthening processing is obtained by changing the pressure of the surface to be machined by the ultrasonic machining tool under the condition that other parameters are unchanged. It can be seen from Fig. 1 that when the pressure value of the ultrasonic machining tool to be processed is about 1000N, the preset compressive stress on the surface of the workpiece reaches a maximum value of -900 MPa, and the compressive stress preset on the surface of the workpiece increases with the increase of the pressure value. The value does not change much.
- the outer ring raceway, the inner ring raceway and the rolling element are ultrasonically strengthened, and the fatigue life of the bearing can be increased by more than 5 times compared with the conventionally processed bearing.
- the feed rate is 0.8mm/r
- the ultrasonic machining tool is to be processed.
- the surface pressure is 300-2400N, which is the constant normal force of the ultrasonic machining tool when machining the workpiece, and the number of ultrasonic machining is 3 times.
- the pressure of the surface of the bearing surface after ultrasonic strengthening processing is still shown in Fig. 1 by changing the pressure of the surface to be machined by the ultrasonic machining tool while the other parameters are unchanged.
- the fatigue life of its bearings can be increased by more than 5 times compared to conventionally processed bearings. It can be seen that the preset compressive stress on the surface of the metal workpiece is generally only related to the pressure of the surface of the ultrasonic machining tool to be processed.
- the embodiment provides an ultrasonic strengthening method for improving the fatigue life of a metal workpiece, and the ultrasonic machining tool is used for ultrasonic machining of the bearing, that is, the outer ring raceway, the inner ring raceway and the rolling body are ultrasonically processed by the ultrasonic machining tool.
- the ultrasonic machining parameters of the outer ring raceway, the inner raceway and the rolling race are the same: the linear speed of the workpiece is 3.08 m/min, the feed rate is 0.08 mm/r, and the pressure of the ultrasonic machining tool on the machined surface It is 1500N, which is the constant normal force of the ultrasonic machining tool when machining the workpiece.
- the number of ultrasonic machining is 3 times.
- Ultrasonic machining is used to ultrasonically process aero-engine blades.
- the parameters of ultrasonic machining are: the linear speed of the ultrasonic tool is 2m/min, and the feed of the ultrasonic tool is 0.08mm/ r, the pressure of the ultrasonic machining tool to be machined surface is 300N-2500N. The number of ultrasonic machining was 3 times.
- the pressure of the surface of the aero-engine blade after ultrasonic strengthening processing is obtained by changing the pressure of the surface to be machined by the ultrasonic machining tool. It can be seen from Fig. 2 that when the pressure value of the ultrasonic machining tool to be processed is about 1000N, the preset compressive stress on the surface of the workpiece reaches a maximum value of -720 MPa, and the compressive stress preset on the surface of the workpiece increases with the increase of the pressure value. The value does not change much.
- the aero-engine blade is processed by the ultrasonic strengthening method of the present embodiment, and the cycle number and fatigue limit of the used aero-engine blade are as shown in FIG. 3, and the fatigue life of the blade after ultrasonic strengthening can be increased by more than 6 times.
- An ultrasonic strengthening method for improving the fatigue life of metal workpieces, using ultrasonic machining tools to ultrasonically process aero-engine blades The parameters of ultrasonic machining are: the linear speed of the ultrasonic tool is 10 m/min, and the feed of the ultrasonic tool is 0.8 mm/ r, the pressure of the ultrasonic machining tool on the surface to be machined is 800-1000N. The number of ultrasonic machining was 3 times.
- An ultrasonic strengthening method for improving the fatigue life of metal workpieces using ultrasonic machining tools to perform locomotive wheels
- Ultrasonic machining that is, the ultrasonic machining tool is used to ultrasonically machine the surface of the locomotive wheel rotating along the main shaft.
- the parameters of the ultrasonic machining are: the linear speed of the locomotive wheel is 15m/min, the feed rate is 0.08mm/r, and the ultrasonic machining tool is to be processed.
- the surface pressure is 300-3000N.
- the pressure of the surface of the locomotive wheel after ultrasonic strengthening processing is obtained by changing the pressure of the surface to be machined by the ultrasonic machining tool, as shown in Fig. 4. It can be seen from Fig. 4 that when the pressure value of the ultrasonic machining tool to be processed is about 1250N, the preset compressive stress on the surface of the workpiece reaches a maximum value of -850 MPa, and the compressive stress preset on the surface of the workpiece increases with the increase of the pressure value. The value does not change much.
- the locomotive wheel is processed by the ultrasonic strengthening method of the embodiment, and the fatigue life of the locomotive wheel before and after ultrasonic strengthening processing is as shown in Table 1.
- the ultrasonic machining tool is used for ultrasonic machining of the locomotive wheel, that is, the surface of the locomotive wheel rotating along the main shaft is ultrasonically processed by using an ultrasonic machining tool, and the parameters of the ultrasonic machining are: the locomotive wheel The line speed is 120m/min, the feed rate is 0.2mm/r, and the pressure of the ultrasonic machining tool on the machined surface is 300-3000N.
- Ultrasonic strengthening method for improving the fatigue life of metal workpieces using ultrasonic machining tools to ultrasonically axle Machining, that is, the ultrasonic machining tool is used to ultrasonically machine the surface of the axle rotating along the main shaft.
- the parameters of the ultrasonic machining are: the linear speed of the axle is 120m/min, the feed rate is 0.6mm/r, and the pressure of the ultrasonic machining tool on the surface to be processed It is 300-3000N. The number of ultrasonic machining was 3 times.
- the pressure of the surface of the locomotive wheel after ultrasonic strengthening processing is obtained by changing the pressure of the surface to be machined by the ultrasonic machining tool, as shown in Fig. 5. It can be seen from Fig. 5 that when the pressure value of the ultrasonic machining tool to be processed is about 1750 N, the preset compressive stress on the surface of the workpiece reaches a maximum value of -900 MPa, and the compressive stress preset on the surface of the workpiece increases with the increase of the pressure value. The value does not change much.
- axle samples of the same material were processed by conventional turning + grinding original processing and ultrasonic strengthening method.
- the comparison results are as follows:
- Table 3 Axle specimens are processed by ultrasonic strengthening method
- the ultrasonic machining tool is used for ultrasonic machining of the axle, that is, the ultrasonic machining tool is used to ultrasonically machine the surface of the axle rotating along the main shaft, and the ultrasonic machining parameters are: the linear speed of the axle is 10 m. /min, the feed rate is 0.1mm/r, and the pressure of the ultrasonic machining tool on the machined surface is 300-3000N. The number of ultrasonic machining was 3 times.
- An ultrasonic strengthening method for improving the fatigue life of a metal workpiece wherein the surface of the rod body and/or the thread portion of the sucker rod rotating along the main shaft is ultrasonically processed by an ultrasonic machining tool, wherein the sucker rod is roughened after being semi-finished A sucker rod of 3.2 ⁇ m.
- the parameters of ultrasonic machining are: the linear speed of the sucker rod is 2m/min, the feed rate is 0.08mm/r, and the pressure of the ultrasonic machining tool on the machined surface is 300-3000N.
- the pressure of the surface of the sucker rod after ultrasonic strengthening processing is obtained by changing the pressure of the surface to be processed by the ultrasonic processing tool, as shown in Fig. 6. It can be seen from Fig. 6 that when the pressure value of the ultrasonic machining tool to be processed is about 1500 N, the preset compressive stress on the surface of the workpiece reaches a maximum value of -830 MPa, and the compressive stress preset on the surface of the workpiece increases with the increase of the pressure value. The value does not change much.
- the surface metallographic diagram of the sucker rod after ultrasonic machining is shown as 7.
- the fatigue life comparison test of the sucker rod before and after ultrasonic strengthening processing is shown in Table 4:
- the ultrasonic machining tool is used to ultrasonically machine the surface of the rod body and/or the thread portion of the sucker rod rotating along the main shaft.
- the parameters of ultrasonic machining are: the linear speed of the sucker rod is 120m/min, the feed rate is 0.8mm/r, and the pressure of the ultrasonic machining tool on the machined surface is 300-3000N.
- the sucker rod is a sucker rod whose surface roughness is 10 ⁇ m after semi-finishing.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
- Milling Processes (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
一种提高金属工件疲劳寿命的超声强化方法及其应用,通过将金属工件装夹在超声波加工机床上,利用超声波加工刀具对金属工件表面进行超声加工,所述的超声强化方法重点在于通过调整超声波加工刀具对待加工工作面的不同压力来实现对金属工件表面预置压应力,最终达到消除残余应力,提高疲劳寿命的目的。同时该超声强化方法能使金属工件表面晶粒细化,表面显微硬度提高,耐磨性和耐腐蚀性提高,从而大幅提高工件的疲劳寿命。而现有的超声加工方法主要用来降低金属工件表面的粗糙度,使金属工件表面达到镜面效果,通过所述的超声强化方法可有效改善了金属工件的表面性能,其效果明显优于现有的超声加工方法。
Description
本发明涉及一种提高金属工件疲劳寿命的超声强化方法及其应用,属于超声加工技术领域。
疲劳寿命,是指材料在疲劳破坏前所经历的应力循环数。金属工件的疲劳损伤发生在受交变应力(或应变)作用的零件和构件中,零件和构件在低于材料屈服极限的交变应力(或应变)的反复作用下,经过一定的循环次数以后,在应力集中部位萌生裂纹,裂纹在一定条件下扩展,最终突然断裂,这一失效过程称为疲劳破坏。
在机械加工过程中,常通过不同的处理方法来提高金属工件的疲劳寿命,目前提高金属工件疲劳寿命的方法主要有:1、选用抗疲劳的材料,如合金钢;2、采用锻造工艺;3、采用热处理工艺;4、避免和减缓零件应力集中,采用去毛刺、边缘倒角、弯角处用圆角过渡是减小应力集中的有效方法;5、预置压应力;6、注意轧材、锻材等的纤维方向和主要受力方向应一致,因为在垂直纤维方向承载强度会下降20%左右;7、降荷,降温、润滑设计;8、尽可能采用对称结构,避免带有偏心的结构,在不对称处应注意局部弯曲引起的应力;9、注意材料的抗腐蚀性能;10、结构件应尽可能减少开口,特别在受拉表面尽量不开口;11、尽可能地减少或消除零件表面可能发生的初始裂纹。
超声波强化技术是利用激活能和冲击能的复合能对金属零件进行加工,从而获得镜面零件及表面改性的一种新型加工技术。超声波强化技术的实质是将超声波能转化为机械能,利用金属在常温下冷塑性的特点,对金属零部件表面进行高频敲击,使金属零部件表面达到更理想的表面粗糙度要求,提高零件表面的显微硬度,耐磨性及耐腐蚀性。
中国专利文献CN102002581A公开了一种超声冲击消除焊接中残余应力的方法,该方法主要利用超声冲击装置,该装置包括超声波发生器、声学系统和机架,超声波发生器和声学系统设置在机架上,声学系统具有换能器,通过超声波发生器将电网上50Hz工频交流点转变成超声频的20kHz交流电,用以激励声学系统的换能器,声学系统的换能器将电能转换成相同频率的机械振动,在400~800℃的温度下,将上述超声频的机械振动传递给工件上的焊缝,使焊缝部位表面产生足够深度的塑变层,在一定程度上提高了焊
缝疲劳寿命。
中国专利文献CN102560078A提供了一种钢铁材料表面纳米化的方法,采用去除材料的方式将待处理工件表面粗糙化,使表面粗糙度Ra控制在6.0-7.0μm之间;将经表面粗糙化的待处理工件安装于机床主轴上,采用超声波表面强化处理装置对待处理工件沿轴向等速密排处理。表面纳米化处理对机车车轮轮缘的综合作用,增加机车车轮轮缘的表面硬度,降低机床车轮轮缘的粗糙度;增加机车车轮轮缘的磨损抗力;晶粒逐渐变小,形成从基体到表面的梯度结构,具有均匀的残余压应力层,提高疲劳寿命。
本申请旨在寻求一种超声强化方法,利用该超声强化方法能够使金属工件表面产生理想的压应力,且利用该超声强化方法能够控制在金属工件表面形成的压应力大小,最终通过在金属工件表面形成合适的压应力来提高金属工件的疲劳寿命。
发明内容
针对现有技术的不足,本发明提供一种提高金属工件疲劳寿命的超声强化方法。
本发明还提供一种提高金属工件疲劳寿命的超声强化方法的应用。
本发明的技术方案如下:
一种提高金属工件疲劳寿命的超声强化方法,将金属工件装夹在超声波加工机床上,利用超声波加工刀具对金属工件表面进行超声加工,超声加工的参数为:线速度为2-120m/min,进给量为0.08-1.7mm/r,超声波加工刀具对待加工表面的压力为50-3000N。
优选的,超声加工的参数为:线速度为20-60m/min,进给量为0.2-0.5mm/r,超声波加工刀具对待加工表面的压力为600-1800N。
优选的,超声加工的次数为1~3次。
优选的,超声加工的振幅为5-25μm。
进一步优选的,超声加工的振幅为6-8μm。
优选的,所述金属工件包括轴承、航空发动机叶片、机车车轮、车轴和抽油杆。
优选的,利用超声波加工刀具对轴承进行超声加工,即利用超声波加工刀具对轴承的外圈滚道,内圈滚道和滚动体进行超声加工,超声加工的参数为:线速度2-100m/min,进给量为0.08-0.8mm/r,超声波加工刀具对待加工表面的压力为300-2400N。
进一步优选的,利用超声波加工刀具对轴承的外圈滚道,内圈滚道和滚动体进行超声加工,超声加工的参数为:线速度3.08m/min,进给量为0.08mm/r,超声波加工刀具对待加工表面的压力为1500N。
优选的,利用超声波加工刀具对航空发动机叶片进行超声加工,即利用超声波加工刀具对沿主轴旋转的航空发动机叶片的表面进行超声加工,超声加工的参数为:线速度为2-10m/min,超声波刀具的进给量为0.08-0.8mm/r,超声波加工刀具对待加工表面的压力为300-2500N。
进一步优选的,利用超声波加工刀具对沿主轴旋转的航空发动机叶片的表面进行超声加工,超声加工的参数为:线速度为3m/min,超声波刀具的进给量为0.15-0.25mm/r,超声波加工刀具对待加工表面的压力为800-1000N。
优选的,利用超声波加工刀具对机车车轮进行超声加工,即利用超声波加工刀具对沿主轴旋转的机车车轮的表面进行超声加工,超声加工的参数为:机车车轮的线速度为15-120m/min,进给量为0.08-0.2mm/r,超声波加工刀具对待加工表面的压力为300-3000N。
进一步优选的,利用超声波加工刀具对沿主轴旋转的机车车轮的表面进行超声加工,超声加工的参数为:机车车轮的线速度为57m/min,进给量为0.1mm/r,超声波加工刀具对待加工表面的压力为1200N。
优选的,利用超声波加工刀具对车轴进行超声加工,即利用超声波加工刀具对沿主轴旋转的车轴的表面进行超声加工,超声加工的参数为:车轴的线速度为10-120m/min,进给量为0.1-0.6mm/r,超声波加工刀具对待加工表面的压力为300-3000N。
进一步优选的,利用超声波加工刀具对车轴进行超声加工,超声加工的参数为:车轴的线速度50-60m/min,进给量为0.35-0.45mm/r,超声波加工刀具对待加工表面的压力为1700-1800N。
优选的,利用超声波加工刀具对抽油杆进行超声加工,即利用超声波加工刀具对沿主轴旋转的杆体或/和螺纹部的表面进行超声加工,超声加工的参数为:抽油杆的线速度2-120m/min,进给量为0.08-0.8mm/r,超声波加工刀具对待加工表面的压力为300-3000N。
优选的,利用超声波加工刀具对沿主轴旋转的杆体或/和螺纹部的表面进行超声加工,超声加工的参数为:抽油杆的线速度38m/min,进给量为0.3mm/r,超声波加工刀具对待加工表面的压力为1500-1600N。
优选的,抽油杆是经过半精加工后的抽油杆。
进一步优选的,经过半精加工后的抽油杆,表面粗糙度为3.2-10μm。
本发明的有益效果在于:
本发明超声强化方法重点在于通过调整超声波加工刀具对待加工工作面的不同压力来实现对金属工件表面预置压应力,达到消除残余应力的目的,使金属工件表面晶粒细化,表面显微硬度提高,耐磨性和耐腐蚀性提高,最终大幅提高工件的疲劳寿命。而现有的超声加工方法主要用来降低金属工件表面的粗糙度,使金属工件表面达到镜面效果,通过本发明的超声强化方法有效改善了金属工件的表面性能,其效果明显优于现有的超声加工方法。
图1为实施例1中压力值-表面压应力值的曲线图;
图2为实施例3中压力值-表面压应力值的曲线图;
图3为实施例3中金属工件经过超声强化加工前后循环次数与疲劳极限的曲线图;
图4为实施例5中压力值-机车车轮表面压应力值的曲线图;
图5为实施例7中压力值-车轴表面压应力值的曲线图;
图6为实施例9中压力值-抽油杆表面压应力值的曲线图;
图7为实施例9中超声强化加工后抽油杆的表面金相图;
下面通过实施例并结合附图对本发明做进一步说明,但不限于此。
实施例1:
本实施例提供一种提高金属工件疲劳寿命的超声强化方法,利用超声波加工刀具对轴承进行超声加工,即利用超声波加工刀具对轴承的外圈滚道,内圈滚道和滚动体进行超声加工,在加工外圈滚道,内圈滚道和滚动体三者时的超声加工的参数相同:线速度为2m/min,进给量为0.08mm/r,超声波加工刀具对待加工表面的压力为300-2400N,该压力为超声波加工刀具对工件加工时的恒定法向力,超声加工的次数为3次。
在其他参数不变的情况下,通过改变超声波加工刀具对待加工表面的压力,得到超声强化加工后轴承表面的压应力的曲线图如图1所示。从图1中可知,超声波加工刀具对待加工表面的压力值大约在1000N时,工件表面预置的压应力基本达到最大值-900MPa,以后随着压力值的增大,工件表面预置的压应力值基本变化不大。
利用本实施例的超声强化方法对外圈滚道,内圈滚道和滚动体进行超声强化加工后,其轴承的疲劳寿命相比传统工艺加工的轴承可提高5倍以上。
当改变工件的线速度为100m/min,进给量为0.8mm/r,超声波加工刀具对待加工表
面的压力为300-2400N,该压力为超声波加工刀具对工件加工时的恒定法向力,超声加工的次数为3次。通过改变其他参数后,在其他参数不变的情况下,通过改变超声波加工刀具对待加工表面的压力,得到超声强化加工后轴承表面的压应力的曲线图依然如图1所示。其轴承的疲劳寿命相比传统工艺加工的轴承可提高5倍以上。由此可知,对金属工件的表面预置压应力一般只与超声波加工刀具对待加工表面的压力相关。
实施例2:
本实施例提供一种提高金属工件疲劳寿命的超声强化方法,利用超声波加工刀具对轴承进行超声加工,即利用超声波加工刀具对轴承的外圈滚道,内圈滚道和滚动体进行超声加工,在加工外圈滚道,内圈滚道和滚动体三者时的超声加工的参数相同:工件的线速度3.08m/min,进给量为0.08mm/r,超声波加工刀具对待加工表面的压力为1500N,该压力为超声波加工刀具对工件加工时的恒定法向力,超声加工的次数为3次。
实施例3:
一种提高金属工件疲劳寿命的超声强化方法,利用超声波加工刀具对航空发动机叶片进行超声加工,超声加工的参数为:超声波刀具的线速度为2m/min,超声波刀具的进给量为0.08mm/r,超声波加工刀具对待加工表面的压力为300N-2500N。超声加工的次数为3次。
在其他参数不变的情况下,通过改变超声波加工刀具对待加工表面的压力,得到超声强化加工后航空发动机叶片表面的压应力的曲线图如图2所示。从图2中可知,超声波加工刀具对待加工表面的压力值大约在1000N时,工件表面预置的压应力基本达到最大值-720MPa,以后随着压力值的增大,工件表面预置的压应力值基本变化不大。
利用本实施例的超声强化方法对航空发动机叶片进行加工,加工后的航空发动机叶片使用的循环次数与疲劳极限如图3所示,叶片经超声强化后疲劳寿命可提高6倍以上。
实施例4:
一种提高金属工件疲劳寿命的超声强化方法,利用超声波加工刀具对航空发动机叶片进行超声加工,超声加工的参数为:超声波刀具的线速度为10m/min,超声波刀具的进给量为0.8mm/r,超声波加工刀具对待加工表面的压力为800-1000N。超声加工的次数为3次。
实施例5:
一种提高金属工件疲劳寿命的超声强化方法,利用超声波加工刀具对机车车轮进行
超声加工,即利用超声波加工刀具对沿主轴旋转的机车车轮的表面进行超声加工,超声加工的参数为:机车车轮的线速度15m/min,进给量为0.08mm/r,超声波加工刀具对待加工表面的压力为300-3000N。
在其他参数不变的情况下,通过改变超声波加工刀具对待加工表面的压力,得到超声强化加工后机车车轮表面的压应力的曲线图如图4所示。从图4中可知,超声波加工刀具对待加工表面的压力值大约在1250N时,工件表面预置的压应力基本达到最大值-850MPa,以后随着压力值的增大,工件表面预置的压应力值基本变化不大。
利用本实施例的超声强化方法对机车车轮进行加工,机车车轮经超声强化加工前后的疲劳寿命如表一所示。
表一:机车车轮在超声强化加工前后的疲劳寿命对比表
从表一可知,在针对相同的7个机车车轮试样分别给予不同的压力值时,其经过超声强化加工后,其疲劳寿命相比未经过超声强化加工时可提高2倍以上。
实施例6:
一种提高金属工件疲劳寿命的超声强化方法,利用超声波加工刀具对机车车轮进行超声加工,即利用超声波加工刀具对沿主轴旋转的机车车轮的表面进行超声加工,超声加工的参数为:机车车轮的线速度120m/min,进给量为0.2mm/r,超声波加工刀具对待加工表面的压力为300-3000N。
实施例7:
一种提高金属工件疲劳寿命的超声强化方法,利用超声波加工刀具对车轴进行超声
加工,即利用超声波加工刀具对沿主轴旋转的车轴的表面进行超声加工,超声加工的参数为:车轴的线速度120m/min,进给量为0.6mm/r,超声波加工刀具对待加工表面的压力为300-3000N。超声加工的次数为3次。
在其他参数不变的情况下,通过改变超声波加工刀具对待加工表面的压力,得到超声强化加工后机车车轮表面的压应力的曲线图如图5所示。从图5中可知,超声波加工刀具对待加工表面的压力值大约在1750N时,工件表面预置的压应力基本达到最大值-900MPa,以后随着压力值的增大,工件表面预置的压应力值基本变化不大。
对同样材料的车轴试样分别进行传统的车削+磨削原工艺加工以及利用超声强化方法加工,其对比结果如下:
表二:车轴试样进行车削+磨削原工艺加工
表三:车轴试样进行超声强化方法加工
注:其中“×”表示未通过107次,“O”表示通过107次。
其疲劳极限为
标准差为
对比表二和表三可知,经超声加工处理后,车轴的疲劳强度从300MPa左右提高到401MPa左右,相比与原有的车削+磨削原工艺加工,经超声强化后,大大提高了车轴的疲劳寿命。
实施例8:
一种提高金属工件疲劳寿命的超声强化方法,利用超声波加工刀具对车轴进行超声加工,即利用超声波加工刀具对沿主轴旋转的车轴的表面进行超声加工,超声加工的参数为:车轴的线速度10m/min,进给量为0.1mm/r,超声波加工刀具对待加工表面的压力为300-3000N。超声加工的次数为3次。
实施例9:
一种提高金属工件疲劳寿命的超声强化方法,利用超声波加工刀具对沿主轴旋转的抽油杆的杆体或/和螺纹部的表面进行超声加工,其中,抽油杆是经过半精加工后表面粗糙度为3.2μm的抽油杆。超声加工的参数为:抽油杆的线速度2m/min,进给量为0.08mm/r,超声波加工刀具对待加工表面的压力为300-3000N。
在其他参数不变的情况下,通过改变超声波加工刀具对待加工表面的压力,得到超声强化加工后抽油杆表面的压应力的曲线图如图6所示。从图6中可知,超声波加工刀具对待加工表面的压力值大约在1500N时,工件表面预置的压应力基本达到最大值-830MPa,以后随着压力值的增大,工件表面预置的压应力值基本变化不大。
经过超声加工后的抽油杆的表面金相图如7所示。通过超声强化加工前、后的抽油杆的疲劳寿命对比试验见表四:
表四:疲劳寿命对比试验报告
由表四可知,利用超声强化加工后,抽油杆的循环使用次数明显比未经过超声加工处理的抽油杆的循环使用次数要多。经过超声加工后的抽油杆具有明显优势。
实施例10:
一种提高金属工件疲劳寿命的超声强化方法,利用超声波加工刀具对沿主轴旋转的抽油杆的杆体或/和螺纹部的表面进行超声加工。超声加工的参数为:抽油杆的线速度120m/min,进给量为0.8mm/r,超声波加工刀具对待加工表面的压力为300-3000N。其中,抽油杆是经过半精加工后表面粗糙度为Ra值10μm的抽油杆。
Claims (10)
- 一种提高金属工件疲劳寿命的超声强化方法,其特征在于,包括以下步骤:将金属工件装夹在超声波加工机床上,利用超声波加工刀具对金属工件表面进行超声加工,超声加工的参数为:线速度为2-120m/min,进给量为0.08-1.7mm/r,超声波加工刀具对待加工表面的压力为50-3000N。
- 如权利要求1所述的提高金属工件疲劳寿命的超声强化方法,其特征在于,超声加工的参数为:线速度为20-60m/min,进给量为0.2-0.5mm/r,超声波加工刀具对待加工表面的压力为600-1800N。
- 如权利要求1所述的提高金属工件疲劳寿命的超声强化方法,其特征在于,超声加工的次数为1~3次。
- 如权利要求1所述的提高金属工件疲劳寿命的超声强化方法,其特征在于,超声加工的振幅为5-25μm。
- 如权利要求1或2所述的提高金属工件疲劳寿命的超声强化方法,其特征在于,所述金属工件包括轴承、航空发动机叶片、机车车轮、车轴和抽油杆。
- 如权利要求5所述的提高金属工件疲劳寿命的超声强化方法,其特征在于,利用超声波加工刀具对轴承进行超声加工,即利用超声波加工刀具对轴承的外圈滚道,内圈滚道和滚动体进行超声加工,超声加工的参数为:线速度2-100m/min,进给量为0.08-0.8mm/r,超声波加工刀具对待加工表面的压力为300-2400N;优选的,线速度3.08m/min,进给量为0.08mm/r,超声波加工刀具对待加工表面的压力为1500N。
- 如权利要求5所述的提高金属工件疲劳寿命的超声强化方法,其特征在于,利用超声波加工刀具对航空发动机叶片进行超声加工,即利用超声波加工刀具对沿主轴旋转的航空发动机叶片的表面进行超声加工,超声加工的参数为:线速度为2-10m/min,超声波刀具的进给量为0.08-0.8mm/r,超声波加工刀具对待加工表面的压力为300-2500N;优选的,线速度为3m/min,超声波刀具的进给量为0.15-0.25mm/r,超声波加工刀具对待加工表面的压力为800-1000N。
- 如权利要求5所述的提高金属工件疲劳寿命的超声强化方法,其特征在于,利用超声波加工刀具对机车车轮进行超声加工,即利用超声波加工刀具对沿主轴旋转的机车 车轮的表面进行超声加工,超声加工的参数为:机车车轮的线速度为15-120m/min,进给量为0.08-0.2mm/r,超声波加工刀具对待加工表面的压力为300-3000N;优选的,机车车轮的线速度为57m/min,进给量为0.1mm/r,超声波加工刀具对待加工表面的压力为1200N。
- 如权利要求5所述的提高金属工件疲劳寿命的超声强化方法,其特征在于,利用超声波加工刀具对车轴进行超声加工,即利用超声波加工刀具对沿主轴旋转的车轴的表面进行超声加工,超声加工的参数为:车轴的线速度为10-120m/min,进给量为0.1-0.6mm/r,超声波加工刀具对待加工表面的压力为300-3000N;优选的,车轴的线速度50-60m/min,进给量为0.35-0.45mm/r,超声波加工刀具对待加工表面的压力为1700-1800N。
- 如权利要求5所述的提高金属工件疲劳寿命的超声强化方法,其特征在于,利用超声波加工刀具对抽油杆进行超声加工,即利用超声波加工刀具对沿主轴旋转的杆体或/和螺纹部的表面进行超声加工,超声加工的参数为:抽油杆的线速度2-120m/min,进给量为0.08-0.8mm/r,超声波加工刀具对待加工表面的压力为300-3000N;优选的,抽油杆的线速度38m/min,进给量为0.3mm/r,超声波加工刀具对待加工表面的压力为1500-1600N。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/071,464 US20190024207A1 (en) | 2016-03-08 | 2016-12-20 | Ultrasound enhancing method for prolonging fatigue life of metal workpiece and use thereof |
EP16893326.5A EP3399057A4 (en) | 2016-03-08 | 2016-12-20 | ULTRASOUND REINFORCEMENT METHOD FOR EXTENDING THE TEMPERATURE RESISTANCE OF A METALLIC WORKPIECE AND USE THEREOF |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610128715.4 | 2016-03-08 | ||
CN201610128715.4A CN105734233B (zh) | 2016-03-08 | 2016-03-08 | 一种提高金属工件疲劳寿命的超声强化方法及其应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017152683A1 true WO2017152683A1 (zh) | 2017-09-14 |
Family
ID=56250016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/110945 WO2017152683A1 (zh) | 2016-03-08 | 2016-12-20 | 一种提高金属工件疲劳寿命的超声强化方法及其应用 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20190024207A1 (zh) |
EP (1) | EP3399057A4 (zh) |
CN (1) | CN105734233B (zh) |
WO (1) | WO2017152683A1 (zh) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105734233B (zh) * | 2016-03-08 | 2018-02-16 | 山东华云机电科技有限公司 | 一种提高金属工件疲劳寿命的超声强化方法及其应用 |
CN107254581B (zh) | 2017-05-04 | 2018-10-09 | 江苏大学 | 一种激光冲击和超声振动挤压协同强化装置及方法 |
CN107253001A (zh) * | 2017-06-14 | 2017-10-17 | 南昌大学 | 用于消除焊接残余应力和变形的焊后超声滚压方法 |
CN107460302A (zh) * | 2017-08-08 | 2017-12-12 | 合肥正明机械有限公司 | 一种提高焊接件疲劳寿命的处理方法 |
CN109500682A (zh) * | 2018-11-14 | 2019-03-22 | 中国航发动力股份有限公司 | 一种提高榫头销钉式结构转子叶片的抗疲劳方法 |
CN109465680A (zh) * | 2018-12-17 | 2019-03-15 | 中国航发动力股份有限公司 | 一种用于整体叶盘或叶片型面超声强化的方法 |
CN109605126B (zh) * | 2018-12-30 | 2021-09-03 | 深圳市五湖智联实业有限公司 | 一种数控机床在线检测刀具寿命系统 |
CN110000514B (zh) * | 2019-02-28 | 2024-06-28 | 信利光电股份有限公司 | 一种超声振动滚压加工装置 |
CN112894263A (zh) * | 2019-12-04 | 2021-06-04 | 杨庆增 | 加工旋转类零件的表面的方法 |
CN112662966A (zh) * | 2020-06-12 | 2021-04-16 | 武汉理工大学 | 一种快速提升7系航空铝合金疲劳寿命的方法 |
CN113070362B (zh) * | 2021-03-29 | 2022-09-13 | 江苏江南创佳型材有限公司 | 基于机械超声振动的耐蚀铝合金板材的连续挤压制备方法 |
CN114293121B (zh) * | 2021-12-30 | 2022-06-24 | 西北工业大学 | 一种薄壁叶片分区域超声冲击强化方法 |
CN114850510A (zh) * | 2022-04-27 | 2022-08-05 | 中国人民解放军空军工程大学 | 一种预防金属部件增材修复热变形方法和装置 |
CN114905132B (zh) * | 2022-05-17 | 2023-02-07 | 天津宏基伟业科技发展有限公司 | 一种破碎机配件焊缝强化焊接装置 |
CN114799776B (zh) * | 2022-06-29 | 2022-09-13 | 中国空气动力研究与发展中心超高速空气动力研究所 | 一种提高轴对称喷管内型面表面粗糙度和硬度的工艺方法 |
CN115786666A (zh) * | 2022-12-02 | 2023-03-14 | 中国科学院金属研究所 | 滚动轴承套圈滚道表面机械强化装置及强化方法 |
CN117464327B (zh) * | 2023-12-25 | 2024-03-19 | 中北大学 | 一种提高6061铝合金加氢枪输氢管疲劳寿命的方法 |
CN117983837A (zh) * | 2024-01-16 | 2024-05-07 | 山东建筑大学 | 一种提升激光定向能量沉积钛合金表面质量与性能的设备及方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101220405A (zh) * | 2007-10-10 | 2008-07-16 | 天津大学 | 一种超声表面滚压加工纳米化方法及装置 |
CN101941082A (zh) * | 2010-09-20 | 2011-01-12 | 中煤邯郸煤矿机械有限责任公司 | 大缸径液压缸杆类外表面的超声波加工方法 |
CN102560078A (zh) * | 2010-12-24 | 2012-07-11 | 北京有色金属研究总院 | 一种钢铁材料表面纳米化的方法 |
CN103072049A (zh) * | 2013-01-28 | 2013-05-01 | 赵显华 | 外圆磨床超声波金属表面加工工艺 |
CN103084634A (zh) * | 2013-01-28 | 2013-05-08 | 赵显华 | 铣床超声波金属表面加工工艺 |
CN105666035A (zh) * | 2016-03-08 | 2016-06-15 | 山东朝文能源装备有限公司 | 一种用于抽油杆的超声波加工方法及其应用 |
CN105734233A (zh) * | 2016-03-08 | 2016-07-06 | 山东华云机电科技有限公司 | 一种提高金属工件疲劳寿命的超声强化方法及其应用 |
CN105834671A (zh) * | 2016-05-30 | 2016-08-10 | 山东华云机电科技有限公司 | 一种加工环形槽的超声强化方法及超声加工刀具头 |
CN105945511A (zh) * | 2016-05-30 | 2016-09-21 | 山东华云机电科技有限公司 | 一种对活塞环槽进行超声强化加工的方法及刀具头 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100463777C (zh) * | 2006-08-15 | 2009-02-25 | 天津大学 | 一种金属材料表面纳米层的加工方法及设备 |
CN103084608A (zh) * | 2013-01-28 | 2013-05-08 | 赵显华 | 镗床超声波金属表面加工工艺 |
CN103111791A (zh) * | 2013-01-28 | 2013-05-22 | 赵显华 | 叶片表面超声波加工工艺 |
CN103111792A (zh) * | 2013-01-28 | 2013-05-22 | 赵显华 | 车床超声波金属表面加工工艺 |
CN105195975A (zh) * | 2015-08-19 | 2015-12-30 | 辽阳液压件有限公司 | Agc伺服缸的缸筒内表面的加工方法 |
-
2016
- 2016-03-08 CN CN201610128715.4A patent/CN105734233B/zh active Active
- 2016-12-20 WO PCT/CN2016/110945 patent/WO2017152683A1/zh active Application Filing
- 2016-12-20 US US16/071,464 patent/US20190024207A1/en not_active Abandoned
- 2016-12-20 EP EP16893326.5A patent/EP3399057A4/en not_active Withdrawn
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101220405A (zh) * | 2007-10-10 | 2008-07-16 | 天津大学 | 一种超声表面滚压加工纳米化方法及装置 |
CN101941082A (zh) * | 2010-09-20 | 2011-01-12 | 中煤邯郸煤矿机械有限责任公司 | 大缸径液压缸杆类外表面的超声波加工方法 |
CN102560078A (zh) * | 2010-12-24 | 2012-07-11 | 北京有色金属研究总院 | 一种钢铁材料表面纳米化的方法 |
CN103072049A (zh) * | 2013-01-28 | 2013-05-01 | 赵显华 | 外圆磨床超声波金属表面加工工艺 |
CN103084634A (zh) * | 2013-01-28 | 2013-05-08 | 赵显华 | 铣床超声波金属表面加工工艺 |
CN105666035A (zh) * | 2016-03-08 | 2016-06-15 | 山东朝文能源装备有限公司 | 一种用于抽油杆的超声波加工方法及其应用 |
CN105734233A (zh) * | 2016-03-08 | 2016-07-06 | 山东华云机电科技有限公司 | 一种提高金属工件疲劳寿命的超声强化方法及其应用 |
CN105834671A (zh) * | 2016-05-30 | 2016-08-10 | 山东华云机电科技有限公司 | 一种加工环形槽的超声强化方法及超声加工刀具头 |
CN105945511A (zh) * | 2016-05-30 | 2016-09-21 | 山东华云机电科技有限公司 | 一种对活塞环槽进行超声强化加工的方法及刀具头 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3399057A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3399057A4 (en) | 2019-09-11 |
EP3399057A1 (en) | 2018-11-07 |
CN105734233B (zh) | 2018-02-16 |
US20190024207A1 (en) | 2019-01-24 |
CN105734233A (zh) | 2016-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017152683A1 (zh) | 一种提高金属工件疲劳寿命的超声强化方法及其应用 | |
CN104531979A (zh) | 一种电脉冲和超声耦合实现金属表面晶粒细化的工艺 | |
CN110756980B (zh) | 分段式扩散焊接方法、其应用和航空发动机空心叶片 | |
CN101294237A (zh) | 一种超声表面线型滚压加工设备及其使用方法 | |
CN111690794B (zh) | 一种工程机械终传动齿轮的制备方法 | |
CN112708832A (zh) | 一种提高铝合金耐腐蚀性能的表面改性方法 | |
CN105779756B (zh) | 孔角强化处理方法 | |
CN103014249A (zh) | 一种大幅度提高RuT300表面硬度的激光熔凝淬火工艺 | |
CN101220406A (zh) | 一种半波长超声表面滚压加工用执行机构及加工方法 | |
CN104451042B (zh) | 提高列车车轮辐板疲劳性能的高效表面处理方法和装置 | |
CN112775616A (zh) | 基于纵扭复合振动的超声滚压内孔表面强化方法及装置 | |
JP5657940B2 (ja) | チタン金属製耐摩耗性部材 | |
CN117305743A (zh) | 一种高效增大航发叶片轴承材料纳米晶厚度的方法 | |
CN210996506U (zh) | 一种脉冲电流与超声复合辅助切削加工装置 | |
CN107020427B (zh) | 车削加工装置 | |
CN107020408B (zh) | 铣削加工装置 | |
Bai et al. | Wear and breakage behaviors of PCD small-diameter end-mill: a case study on machining 2A12 aluminum alloy | |
Singh et al. | Microstructural and mechanical behaviour evaluation of Mg-Al-Zn alloy friction stir welded joint | |
Machai et al. | Machining of a hollow shaft made of β-titanium Ti-10V-2Fe-3Al | |
RU2668645C1 (ru) | Способ восстановления наплавкой роликов машин непрерывного литья заготовок | |
CN103436675A (zh) | 一种低电压大电流超声表面滚压加工装置 | |
WO2017113040A1 (zh) | 金属冷热切圆锯片及其制造工艺 | |
CN109202552B (zh) | 一种基于超声辅助磨料冲击的抗疲劳加工方法 | |
CN111644826A (zh) | 一种减速机齿轮加工工艺 | |
Yang et al. | The different electroplastic effects of cutting directions during the turning process of Ti-6Al-4V titanium alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2016893326 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2016893326 Country of ref document: EP Effective date: 20180802 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |