WO2017152630A1 - 基于摩擦发电机的储能装置 - Google Patents

基于摩擦发电机的储能装置 Download PDF

Info

Publication number
WO2017152630A1
WO2017152630A1 PCT/CN2016/103797 CN2016103797W WO2017152630A1 WO 2017152630 A1 WO2017152630 A1 WO 2017152630A1 CN 2016103797 W CN2016103797 W CN 2016103797W WO 2017152630 A1 WO2017152630 A1 WO 2017152630A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
inductive coil
switch control
control element
coil
Prior art date
Application number
PCT/CN2016/103797
Other languages
English (en)
French (fr)
Inventor
郝立星
徐传毅
程驰
赵颖
Original Assignee
纳智源科技(唐山)有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610134444.3A external-priority patent/CN105990908B/zh
Priority claimed from CN201610278895.4A external-priority patent/CN107332354B/zh
Application filed by 纳智源科技(唐山)有限责任公司 filed Critical 纳智源科技(唐山)有限责任公司
Publication of WO2017152630A1 publication Critical patent/WO2017152630A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J15/00Systems for storing electric energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators

Definitions

  • the present invention relates to the field of electronic circuits, and in particular to an energy storage device based on a friction generator.
  • the friction generator has a high impedance and the output electric energy is a pulse electric with a very high voltage
  • the impedance of the friction generator and the impedance of the energy storage element are greatly different, so the loss during the storage of the electric energy is large.
  • a large part of the electrical energy generated by the friction generator is wasted and not effectively utilized. Therefore, how to avoid the loss of electric energy in the storage process, thereby efficiently storing the electric energy outputted by the friction generator in the energy storage element, so as to timely replenish the electric energy consumed by the energy storage element has become an urgent problem to be solved.
  • the invention provides an energy storage device based on a friction generator, which solves the problem that the electric energy generated by the friction generator in the prior art is greatly lost in the storage process, resulting in low utilization rate.
  • the invention provides an energy storage device based on a friction generator, comprising: a first friction generator, a first rectifier circuit, a first switch control component, a coupled inductor coil group, a second switch control component and an energy storage component,
  • the first friction generator is configured to convert mechanical energy acting thereon into electrical energy
  • the first rectifying circuit is connected to the first friction generator for rectifying the electric energy output by the first friction generator
  • a first switch control component which is respectively connected to the first rectifying circuit and the coupled inductor coil group, and is configured to monitor the electric energy value output by the first rectifying circuit, and the detected electric energy value of the first rectifying circuit is smaller than the first preset
  • the threshold is turned off, and/or is closed when the monitored value of the electric energy output by the first rectifying circuit is greater than or equal to a first predetermined threshold
  • the coupled inductor coil group passes through the first switching control element and the first rectifying circuit Connected for storing electrical energy output by the first rectifier circuit when the first switch control element is closed
  • the present invention also provides an energy storage device based on a friction generator, the device comprising: a first friction generator, a first rectifier circuit, a first switch control element, a first inductor coil and a second inductor coil coupled to each other, a second switch control element and an energy storage element, wherein the first inductor coil and the second inductor coil are adjustable number of tap coils; the first friction generator is configured to convert mechanical energy acting thereon into electrical energy; a rectifying circuit connected to the first friction generator for rectifying the electric energy output by the first friction generator; the first switching control element being respectively connected to the first rectifying circuit and the first inductive coil for Controlling the communication or disconnection of the first rectifier circuit from the first inductor coil according to the monitored electrical energy value output by the first rectifier circuit; the first inductor coil is configured to store the first rectifier circuit output when it communicates with the first rectifier circuit Electrical energy; a second switch control element coupled to the second inductive coil and the energy storage element for monitoring the second inductive coil The electrical energy value controls the
  • the friction generator-based energy storage device In the friction generator-based energy storage device provided by the present invention, after the electric energy generated by the first friction generator is rectified, it is stored by the first inductor coil and the second inductor coil coupled to each other and then supplied to the energy storage component.
  • the impedance of the first friction generator and the impedance of the energy storage element can be matched by the impedance and coupling of the first and second induction coils coupled to each other, and the output power is maximized during impedance matching, so that the first friction
  • the electrical energy output by the generator is utilized to the utmost extent, avoiding a large loss of electrical energy during storage.
  • the first inductive coil and the second inductive coil are tapped coils with adjustable turns, and therefore, the first inductive coil and the first inductive coil can be flexibly adjusted according to the amount of electric energy generated by the first frictional generator.
  • FIG. 1 is a structural view showing a friction generator-based energy storage device provided by the present invention
  • FIG. 2a is a block diagram showing a structural diagram of a friction generator-based energy storage device according to Embodiment 1 of the present invention
  • FIG. 2b is a structural view showing an energy storage device based on a friction generator according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic view showing the relationship between the power and the resistance of the resistance of different resistance values when the friction resistance of the friction generator is measured by the internal resistance method;
  • FIG. 4 is a structural diagram of an energy storage device based on a friction generator according to Embodiment 2 of the present invention.
  • Figure 5a is a schematic view showing the structure of the first energy storage device of the first embodiment when the first switching control element of the first structure is included;
  • Figure 5b shows that the energy storage device of the second embodiment includes the first switch control element of the first structure. Schematic diagram of the structure
  • Figure 6a is a schematic view showing the structure of the first energy storage device of the first embodiment when the first switching control element of the second structure is included;
  • Fig. 6b is a schematic view showing the structure of the energy storage device of the second embodiment including the first switch control element of the second structure.
  • FIG. 7 is a view showing another structural diagram of a friction generator-based energy storage device provided by the present invention.
  • FIG. 8a is a block diagram showing a structural diagram of a friction generator-based energy storage device according to Embodiment 3 of the present invention.
  • FIG. 8b is a structural diagram of an energy storage device based on a friction generator according to Embodiment 3 of the present invention.
  • FIG. 9 is a structural diagram showing an energy storage device based on a friction generator according to Embodiment 4 of the present invention.
  • FIG. 10 is a structural diagram of an energy storage device based on a friction generator according to Embodiment 5 of the present invention.
  • the invention provides an energy storage device based on a friction generator, which can solve the problem that the electric energy generated by the friction generator in the prior art is greatly lost in the storage process, resulting in low utilization rate.
  • the energy storage device includes: a first friction generator 10, a first rectifier circuit 20, and a first a switch control element 30, a coupled inductor coil group 40, a second switch control element 50', and an energy storage element 60, wherein the first friction generator 10 is configured to convert mechanical energy acting thereon into electrical energy; a circuit 20 connected to the first friction generator 10 for rectifying the electrical energy output by the first friction generator 10; the first switch control element 30, respectively, and the first rectifier circuit 20 is connected to the coupled inductor coil group 40 for monitoring the value of the electric energy output by the first rectifying circuit 20, and disconnecting when the monitored electric energy value output by the first rectifying circuit 20 is less than the first preset threshold, and/or Closing when the monitored value of the electrical energy output by the first rectifier circuit 20 is greater than or equal to a first predetermined threshold; the coupled inductor coil assembly 40 is coupled to the first rectifier circuit 20 via the first switch control component 30
  • the value of the electrical energy is turned off when the monitored electrical energy value in the coupled inductive coil assembly 40 is less than a second predetermined threshold, and/or the electrical energy value in the monitored coupled inductive coil assembly 40 is greater than or equal to The second predetermined threshold is closed; the energy storage component 60 is coupled to the coupled inductor coil assembly 40 via the second switch control component 50 for storing the output of the coupled inductor coil assembly 40 when the second switch control component 50 is closed. Electricity.
  • the coupled inductor coil group can be implemented in various forms, for example, by one or more sets of inductor coils connected in parallel and/or in series with each other.
  • the coupled inductor coil set includes a first inductive coil and a second inductive coil.
  • the first inductive coil is connected to the first rectifying circuit through the first switching control element, and is configured to store the electric energy output by the first rectifying circuit; wherein the electric energy value output by the first switching control element in the monitored first rectifying circuit is less than Disconnecting when the first preset threshold is turned off, that is, controlling the first rectifying circuit to be disconnected from the first inductive coil, and/or closing when the monitored electric energy value output by the first rectifying circuit is greater than or equal to a first preset threshold, ie Controlling the first rectifier circuit to communicate with the first inductor coil; the second inductor coil and the first inductor coil are coupled to each other for storing electrical energy output by the first inductor coil; and the second inductor coil is coupled to the energy storage component by the second switch control component
  • the second switch control element is turned off when the monitored electrical energy value in the second inductive coil is less than a second predetermined threshold, that is, the second inductive coil is controlled to be disconnected from the energy storage element, and/or is monitored.
  • the electric energy generated by the first friction generator is rectified, stored by the coupled inductor coil group, and then supplied to the energy storage component, due to the coupling type.
  • the impedance and coupling function of the inductor coil group can match the impedance of the first friction generator with the impedance of the energy storage element, and the output power of the first friction generator is maximized due to the maximum output power during impedance matching. Avoiding the electrical energy during the storage process A lot of loss. Therefore, the energy storage device provided by the invention can replenish the electric energy consumed by the energy storage component in time, so that the energy storage device is always in a state of sufficient power.
  • FIG. 2a and 2b are structural views of an energy storage device based on a friction generator according to Embodiment 1 of the present invention.
  • 2a shows a modular structural diagram
  • FIG. 2b shows a structural diagram represented by electronic components.
  • the energy storage device includes a first friction generator 10, a first rectifier circuit 20, a first switch control element 30, a first inductor coil 401, a second inductor coil 402, a second switch control element 50, and an energy storage component 60.
  • the first friction generator 10 has at least two ends, a first end 10A and a second end 10B, respectively.
  • the first rectifier circuit 20 has four ends, which are a first end 20A, a second end 20B, a third end 20C, and a fourth end 20D, respectively.
  • the first switch control element 30 has three ends, which are a first end 30A, a second end 30B, a first power end 30C and a second power end (not shown). In actual situations, the first switch controls The second power terminal of the component 30 is generally grounded for use with the first power terminal 30C of the first switch control component 30. Of course, the second power terminal of the first switch control component 30 can also be connected to other reference potential points. No restrictions are imposed.
  • the first inductive coil 401 has two ends, which are a first end 401A and a second end 401B, respectively.
  • the second inductive coil 402 has two ends, a first end 402A' and a second end 402B, respectively.
  • the second switch control component 50 has three ends, which are a first end 50A, a second end 50B', a first power terminal 50C, and a second power terminal (not shown). In actual situations, the first switch The second power terminal of the control component 50 is generally grounded for use with the first power terminal 50C of the first switch control component 50. Of course, the second power terminal of the first switch control component 50 can also be connected to other reference potential points. There is no limit here.
  • the energy storage element 60 has two ends, a first end 60A and a second end 60B, respectively.
  • first end 10A and the second end 10B of the first friction generator 10 are respectively connected to the first end 20A and the second end 20B of the first rectifying circuit 20.
  • the third end 20C and the fourth end 20D of the first rectifying circuit 20 are respectively connected to the first end 30A of the first switching control element 30 and the second end 401B of the first inductive coil 401.
  • the second end 30B of the first switch control element 30 The first end 401A of the first inductive coil 401 is connected, and the first power terminal 30C of the first switch control element 30 is simultaneously connected to the first power terminal 50C of the second switch control element 50 and the first end 60A of the energy storage element 60.
  • the first end 50A and the second end 50B' of the second switch control element 50 are correspondingly coupled to the first end 402A' of the second inductive coil 402 and the first end 60A of the energy storage element 60, respectively.
  • the second end 402B of the second inductive coil 402 is simultaneously coupled to the second end 401B of the first inductive coil 401 and the second end 60B of the energy storage element 60.
  • a second power terminal (not shown) of the first switch control element 30 and a second power terminal (not shown) of the second switch control element 50 are both coupled to the second end 60B of the energy storage component 60.
  • FIG. 2a and FIG. 2b The circuit connection relationship shown in FIG. 2a and FIG. 2b is only a schematic one, and a person skilled in the art can also make various modifications to the connection mode of some of the components, which is not limited by the present invention.
  • the first switch control element 30 can obviously also be connected between the fourth end 20D of the first rectifier circuit 20 and the second end 401B of the first inductor coil 401; similarly, the second switch control element 50 is also apparently It can be connected between the second end 402B of the second inductive coil 402 and the second end 60B of the energy storage element 60.
  • the first end 60A of the energy storage component 60 is coupled to the first power terminal 30C of the first switch control component 30 and the first power terminal 50C of the second switch control component 50, and the second terminal 60B of the energy storage component 60
  • the second power supply terminal (not shown) of the first switch control element 30 is connected to the second power supply terminal (not shown) of the second switch control component 50 for the purpose of the first switch control component 30 and the
  • the two switch control elements 50 provide electrical energy, and those skilled in the art can also flexibly select other implementations.
  • the first switch control element 30 and the second switch control element 50 are implemented by passive components, in this manner.
  • the energy storage device in this embodiment further includes a first switch control element 30 (ie, a first power terminal 30C and a second power terminal of the first switch control element 30) and a second switch control element 50. (ie, the battery element connected to the first power supply terminal 50C and the second power supply terminal of the second switch control element 50).
  • a first switch control element 30 ie, a first power terminal 30C and a second power terminal of the first switch control element 30
  • a second switch control element 50 ie, the battery element connected to the first power supply terminal 50C and the second power supply terminal of the second switch control element 50.
  • the first end 60A of the energy storage component 60 and the first switch control can also be omitted.
  • Power terminal 30C of component 30 and second switch control Between the power terminals 50C of the component 50, and the second terminal 60B of the energy storage component 60 and the second power terminal (not shown) of the first switch control component 30 and the second power source of the second switch control component 50 A circuit connection between the terminals (not shown).
  • first switch control element 30 and/or the second switch control element 50 can also be connected to the battery element and the energy storage element at the same time, so that at least one of the battery element and the energy storage element can be selected for power supply according to actual conditions, for example, It is provided that when the energy storage element 60 is powered, the energy storage element 60 is preferentially powered; or, when the battery element is powered, the battery element is preferentially powered or the like.
  • those skilled in the art can perform various modifications to the above circuit structure as long as the purpose of improving the power output through the coupled inductor coil group can be achieved.
  • the first end 60A and the second end 60B of the energy storage element 60 can both input electrical energy and provide electrical energy outward.
  • the energy storage element 60 There may also be a separate power output from the first power terminal 30C and the second power terminal of the first switch control element 30, and the first power terminal 50C and the second power source of the second switch control element 50. Connected to the end.
  • the working principle of the energy storage device of the first embodiment will be described below in conjunction with the above-described circuit connection relationship: wherein the first friction generator 10 is used to convert mechanical energy acting thereon into electrical energy.
  • the first rectifier circuit 20 is for performing rectification processing on the electric energy output from the first friction generator 10.
  • the first switch control component 30 is configured to control disconnection or communication between the first rectifier circuit 20 and the first inductor coil 401 according to the value of the power output by the first rectifier circuit 20; the first inductor coil 401 and the second inductor coil 402 forms a coupled inductor coil set for storing electrical energy output by the first rectifier circuit 20; and a second switch control component 50 for controlling the second inductor coil 402 and the energy storage component according to the value of the electrical energy output by the second inductor 402
  • the disconnection or communication of 60; the energy storage component 60 is configured to store electrical energy output by the coupled inductor coil set formed by the first inductive coil 401 and the second inductive coil 402.
  • Step 1 When an external force acts on the first friction generator 10, the first friction generator 10 converts the mechanical energy acting thereon into electrical energy, and passes through the first end 10A and the second end of the first friction generator 10. 10B is output to the first rectifier circuit 20;
  • Step 2 After receiving the electric energy through the first end 20A and the second end 20B, the first rectifying circuit 20 rectifies the electric energy, and outputs the same to the first switch through the third end 20C and the fourth end 20D. a first end 30A of the component 30 and a second end 401B of the first inductive coil 401;
  • Step 3 During the steps 1 and 2 described above, the first switch control component 30 is output to the first power terminal 30C and the second power terminal through the first end 60A and the second end 60B of the energy storage component 60.
  • the electric energy value is monitored in real time, and the electric energy value outputted by the first rectifying circuit 20 is monitored in real time.
  • the switch in the first switching control element 30 remains in the normally open state.
  • the circuit between the first rectifier circuit 20 and the first inductor 401 is maintained in an off state; when the monitored value of the power output by the first rectifier circuit 20 is greater than or equal to a first preset threshold, the first switch is controlled.
  • the switch in the component 30 is switched from the normally open state to the closed state to connect the first rectifier circuit 20 with the first inductor coil 401, thereby storing the electrical energy output by the first rectifier circuit 20 in the first inductor coil 401.
  • the second preset voltage threshold (ie, the first preset threshold) in the first switch control element 30 is 100V
  • the first rectifier circuit 20 is connected to the first inductor 401 through the first switch control component 30, and the electrical energy output by the first rectifier circuit 20 is stored in the first inductor 401, if the first rectifier circuit When the voltage value of the output 20 is less than the second preset voltage threshold of 100V, the first switching control element 30 disconnects the first rectifier circuit 20 from the first inductor coil 401.
  • Step 4 After receiving the electric energy output by the first rectifying circuit 20 through the first end 401A and the second end 401B, the first inductive coil 401 stores the electric energy. Since the first inductive coil 401 and the second inductive coil 402 form a coupled inductive coil group, the electrical energy stored in the first inductive coil 401 is output to the second inductive coil 402 for storage. Preferably, as shown in FIG. 2b, the first inductive coil 401 and the second inductive coil 402 are coupled to each other by a different name end to improve the coupling formed by the first inductive coil 401 and the second inductive coil 402. The electrical energy storage rate of the inductor coil group.
  • Step 5 During the above steps 1 to 4, the second switch control element 50 outputs power to the first power terminal 50C and the second power terminal through the first end 60A and the second end 60B of the energy storage element 60.
  • the value of the electric energy output by the second inductive coil 402 is monitored in real time. If the electric energy value output by the second inductive coil 402 is greater than or equal to the second predetermined threshold, the second switching control element 50 connects the second inductive coil 402 to the energy storage element 60. And further storing the electrical energy output by the second inductive coil 402 in the energy storage component 60; if the electrical energy output by the second inductive coil 402 is less than the second The second switch control element 50 disconnects the second inductive coil 402 from the energy storage element 60 by a predetermined threshold.
  • the second preset voltage threshold (ie, the second preset threshold) in the second switch control element 50 is 100V
  • the second inductor coil 402 is connected to the energy storage component 60 through the second switch control component 50, and the electrical energy output by the second inductor coil 402 is stored in the energy storage component 60; if the voltage value of the second inductor coil 402 is output Below the first predetermined voltage threshold of 100V, the second switching control element 50 disconnects the second inductive coil 402 from the energy storage element 60.
  • the second preset threshold is set to 100V, each effective power generation can be made.
  • the electrical energy generated by the process is stored.
  • steps 1 to 5 are a cyclic process, which realizes the function of supplementing the power supply element 60 with power supply, and compensates for the loss of the energy storage element 60 for providing power to the outside, thereby prolonging the entire energy storage. The service life of the device.
  • the output power is maximized when the internal resistance of the signal source matches the load impedance. Therefore, in the first embodiment, the impedance of the first friction generator 10 and the energy storage element 60 are matched with each other by the coupled inductor coil group formed by the first inductor coil 401 and the second inductor coil 402, thereby making the first The output power of the friction generator 10 is maximized.
  • the relevant parameters of the coupled inductor coil group are determined by:
  • P power
  • U voltage
  • R resistance
  • the impedance of the energy storage element is determined.
  • the impedance of the energy storage element may be determined according to the parameter condition of the energy storage element used in the actual application, and the impedance of the energy storage element may also be determined by other various manners.
  • the parameters of the coupled inductor coil set are determined based on the impedance of the first friction generator and the impedance of the energy storage element.
  • the impedance of the first friction generator can be understood as a primary impedance
  • the impedance of the energy storage element can be understood as a secondary impedance.
  • N is the number of turns of the coil
  • R g is the magnetic resistance
  • ⁇ 0 is the magnetic permeability constant
  • a c is the cross-sectional area of the magnetic core
  • l g is the gap length.
  • the magnetic permeability constant ⁇ 0 , the core cross-sectional area A c , and the gap length l g are known amounts, which are related to the material of the selected magnetic core and the core geometry.
  • the impedance of the first friction generator and the impedance of the energy storage component are matched with each other, so that the output power of the first friction generator is achieved.
  • the maximum value effectively reduces the waste of electrical energy caused by impedance mismatch, which in turn can efficiently replenish energy storage components.
  • a first switch control component is disposed, and the first switch control component can monitor the power value output by the first rectifier circuit, and only when the power value output by the first rectifier circuit is higher than the first preset threshold.
  • the electrical energy is stored to the first inductive coil.
  • the first switch control component is further configured as a passive device or a device capable of being self-powered by the friction generator, thereby achieving the power of not only consuming the energy storage component but also monitoring the first The purpose of the electrical energy value output by the rectifier circuit.
  • the energy storage device includes: a first friction generator 10, and a first rectifier circuit 20.
  • the second friction generator 70 and the second rectifying module 80 are further added on the basis of the first embodiment, except that the rest of the second embodiment is the same as the first embodiment, Only the different parts of the second embodiment and the first embodiment will be described, and the same portions will not be described again herein.
  • the second friction generator 70 has at least two ends, which are a first end 70A and a second end 70B, respectively.
  • the second rectifier module 80 has four ends, which are a first end 80A, a second end 80B, a third end 80C, and a fourth end 80D.
  • the first end 70A and the second end 70B of the second friction generator 70 are respectively connected to the first end 80A and the second end 80B of the second rectifying module 80 for converting mechanical energy acting thereon into The electrical energy is output to the second rectifier module 80.
  • the third end 80C and the fourth end 80D of the second rectifying module 80 are respectively connected to the first end 60A and the second end 60B of the energy storage element 60 for rectifying the electric energy output by the second friction generator 70. Thereby energy is supplied to the energy storage element 60.
  • the second friction generator 70 and the second rectifier module 80 are provided to prevent the remaining electrical energy in the energy storage component 60 from being insufficient to drive the first switch control component 30 and/or the second switch control component 50. Causing the first switch control element 30 to fail to monitor the value of the electrical energy output by the first rectifier circuit 20 and/or the second switch control component 50 is unable to monitor the value of the electrical energy output by the second inductive coil 402, that is, when energy is stored When the remaining electrical energy in the component 60 is small, the mechanical energy acting thereon can be converted into electrical energy by the second friction generator 70, and after being rectified by the second rectifying module 80, the energy storage component 60 is supplied with electrical energy. In turn, electrical energy is supplied to the first switch control element 30 and/or the second switch control element 50 to ensure proper operation of the entire energy storage device.
  • the first switch control component sets the monitoring and switching functions in one body, that is, both the value of the electric energy output by the first rectifying circuit and the value of the electric energy output by the first rectifying circuit are monitored. Disconnect or close.
  • the first switch control element The device can also be realized by a simple switching circuit.
  • an additional switch controller can be additionally provided, and the switch controller is responsible for monitoring the electric energy value output by the first rectifying circuit and according to the monitored electric energy value output by the first rectifying circuit.
  • the on/off of the first switch control element is controlled, and the switch controller can select a plurality of power supply modes such as power supply by the energy storage element and/or power supply by the battery element.
  • the second switch control element can also be realized by a simple switch circuit, wherein the switch controller is responsible for monitoring the value of the electric energy in the coupled inductor coil group, and controlling the on/off of the second switch control element according to the monitoring result.
  • two switch controllers may be provided to respectively control the first switch control element and the second switch control element, or a switch controller may be provided while controlling the first switch control element and the second switch control element.
  • the two switch controllers can also take the active/standby mode of operation, that is, priority by the master Simultaneously controlling the first switch control element and the second switch control element with a switch controller, and controlling the first switch control element and the second switch control element by the standby switch controller when the main switch controller is faulty or has no power, thereby Improve the durability of energy storage devices.
  • the on/off of the first switch control element may be completely dependent on the value of the electric energy output by the first rectifying circuit, that is, the electric energy value output by the first rectifying circuit is monitored in real time, as long as the first rectification is monitored.
  • the power value outputted by the circuit is less than the first preset threshold, and is closed, and is greater than or equal to the first preset threshold
  • the control logic inside the first switch control component is: the power value outputted by the first rectifier circuit is less than The first preset threshold is turned off, and is closed when the energy value output by the first rectifier circuit is greater than or equal to the first predetermined threshold.
  • the first switch control element can also be realized by a normally open switch, that is, the first switch control element is in an off state by default, only when the monitored first rectifier circuit outputs an electric energy value greater than or equal to When the first preset threshold is described, the state is turned to the closed state. At this time, since the first switch control element is in the off state by default, the internal control logic is: when the energy value output by the first rectifier circuit is greater than or equal to the first Closed when a preset threshold is reached.
  • the first switch control component can also be implemented by a normally closed switch, that is, the first switch control component is in a closed state by default, only when the monitored first rectifier circuit outputs less power than the first preset.
  • the internal control logic is: when the energy value in the output of the first rectifier circuit is less than the first preset threshold open.
  • FIG. 5a is a schematic structural view showing the first energy storage device of the first embodiment including the first switch control element of the first structure
  • FIG. 5b is a view showing that the energy storage device of the second embodiment includes the first structure.
  • the comparator 301 includes a first end 301A, a second end 301B, a third end 301C, a fourth end 301D, and a fifth end 301E.
  • the transistor switch includes a first end 302A, a second end 302B, and a third end 302C.
  • the resistor 303 includes a first end 303A and a second end 303B
  • the second resistor 304 includes a first end 304A and a second end 304B
  • the third resistor 305 includes a first end 305A and a second end 305B.
  • the second end 301B of the comparator 301 is simultaneously connected to the first end 305A of the third resistor 305 and the first end 302A of the transistor switch 302 as the first end 30A of the first switch control element 30 and the first rectifier circuit 20
  • the third end 20C of the transistor switch 302 is connected to the first end 401A of the first inductive coil 401 as the second end 30B of the first switch control element 30;
  • the third end 301C of the comparator 301 is
  • the first end 303A of the resistor 303 is connected as the first power terminal 30C of the first switch control element 30 to the first end 60A of the energy storage element 60;
  • the fourth end 301D of the comparator 301 is simultaneously connected to the second resistor 304.
  • the second end 304B and the second end 305B of the third resistor 305 are connected as the second power end of the first switch control element 30 to be connected to the second end 60B of the energy storage element 60; the first end 301A of the comparator 301 is simultaneously and first The second end 303B of the resistor 303 is coupled to the first end 304A of the second resistor 304; the fifth terminal 301E of the comparator 301 is coupled to the third terminal 302C of the transistor switch 302.
  • the transistor switch 302 can be a variety of components capable of implementing a switching function, such as an NMOS transistor.
  • the first switch control element of the first form mainly uses the comparator and the transistor switch to realize the on-off function, and the internal working principle thereof is as follows: the first end 301A of the comparator 301 (also called the negative end of the comparator) is used. And setting a reference voltage, wherein the reference voltage is set by inputting a voltage value of the energy storage element 60 and a resistance value of the first resistor 303 and the second resistor 304 to input a reference voltage of the first end 301A of the comparator 301 The value is the same as the first preset threshold mentioned above.
  • the second end 301B of the comparator 301 (also called the positive terminal of the comparator) is used for receiving Comparing the voltage (that is, the voltage value output by the first rectifier circuit 20), the comparison voltage is a forward voltage outputted by the first rectifier circuit 20, and when the comparison voltage is greater than or equal to the reference voltage, the comparator 301 outputs a high level. So that the transistor switch 302 is turned on, so that the electrical energy output by the first rectifying circuit 20 is stored to the first inductive coil 401. Conversely, when the comparison voltage is less than the reference voltage, the comparator 301 outputs a low level, thereby causing the transistor switch 302. The disconnection is maintained, and the first rectifier circuit 20 is disconnected from the first inductor coil 401.
  • the third resistor 305 can be set to be grounded to prevent the floating state from being caused and the comparator 301 to be falsely triggered.
  • FIG. 6a is a schematic structural view showing the first energy storage device of the first embodiment including the first switch control element of the second structure
  • FIG. 6b is the first of the second energy storage device of the second embodiment. Schematic diagram of the structure when switching control elements. As shown in FIG. 6a and FIG.
  • the comparator 301 includes a first end 301A, a second end 301B, a third end 301C, a fourth end 301D, and a fifth end 301E
  • the transistor switch 302 includes a first end 302A, a second end 302B, and a
  • the third resistor 302C includes a first end 303A and a second end 303B.
  • the second resistor 304 includes a first end 304A and a second end 304B.
  • the third resistor 305 includes a first end 305A and a second end 305B.
  • the four resistors 306 include a first end 306A and a second end 306B.
  • the first end 306A of the fourth resistor 306 is connected to the first end 302A of the transistor switch 302 as the first end 30A of the first switch control element 30 is connected to the third end 20C of the first rectifier circuit 20; the transistor switch 302
  • the second end 302B is connected to the first end 401A of the first inductive coil 401 as the second end 30B of the first switch control element 30;
  • the third end 301C of the comparator 301 is connected to the first end 303A of the first resistor 303 as
  • the first power terminal 30C of the first switch control element 30 is connected to the first end 60A of the energy storage element 60;
  • the fourth end 301D of the comparator 301 is simultaneously with the second end 304B of the second resistor 304 and the third resistor 305
  • the second end 305B is connected as the second power end of the first switch control element 30 to be connected to the second end 60B of the energy storage element 60;
  • the first end 301A of the comparator 301 is simultaneously connected
  • the transistor switch 302 can be a variety of components capable of implementing a switching function, such as an NMOS transistor. It can thus be seen that the second form of the first switching control element is also implemented using a comparator and a transistor switch, which differs from the first version in that a fourth resistor 306 is added.
  • the internal working principle is as follows: the first end 301A of the comparator 301 (also called the negative terminal of the comparator) is used to set a reference voltage, wherein the reference voltage is a reasonable setting of the output voltage value of the energy storage component 60 and the first resistor.
  • the resistance of 303 and the second resistor 304 is such that the value of the reference voltage of the first terminal 301A of the input comparator 301 is the same as the first preset threshold mentioned above.
  • the second terminal 301B of the comparator 301 (also referred to as the positive terminal of the comparator) is configured to receive a comparison voltage (ie, a voltage value output by the first rectifier circuit 20), and the comparison voltage is rectified by the first rectifier circuit 20 and output.
  • the forward voltage is divided by the third resistor 305 and the fourth resistor 306 and then input to the second terminal 301B of the comparator 301.
  • the comparator 301 When the comparison voltage is greater than or equal to the reference voltage, the comparator 301 outputs a high level. So that the transistor switch 302 is turned on, so that the electrical energy output by the first rectifying circuit 20 is stored to the first inductive coil 401.
  • the comparator 301 Conversely, when the comparison voltage is less than the reference voltage, the comparator 301 outputs a low level, thereby causing the transistor switch 302. The disconnection is maintained, and the first rectifier circuit 20 is disconnected from the first inductor coil 401.
  • the main function of the third resistor 305 and the fourth resistor 306 is to divide the voltage so as to adjust the voltage range of the second terminal 301B of the input comparator 301 to prevent the comparator 301 from being damaged due to the input voltage being too high.
  • the voltage division ratio between the third resistor 305 and the fourth resistor 306 ranges from 1:100 to 100:1. More preferably, the voltage dividing ratio between the third resistor 305 and the fourth resistor 306 ranges from 1:20 to 20:1.
  • the second switch control element 50 can also be flexibly implemented in various forms such as diodes, rectifier bridges, and the like.
  • the diode has two ends, which are a first end (positive end) and a second end (negative end), respectively, wherein the first end of the diode (ie, the second switch control element 50)
  • the first end 50A) and the second end (ie, the second end 50B' of the second switch control element 50) are respectively associated with the first end 402A' of the second inductive coil 402 and the first end 60A of the energy storage element 60.
  • the second inductive coil 402 When the value of the electric energy in the second inductive coil 402 is greater than or equal to the forward voltage of the diode (ie, the second preset threshold), the second inductive coil 402 is connected to the energy storage element 60, and vice versa, when in the second inductive coil 402 The energy value is less than the forward voltage of the diode (ie, the second preset threshold) At the time, the second inductive coil 402 energy storage element 60 is turned off.
  • the rectifier bridge has four ends, which are respectively a first end, a second end, a third end, and a fourth end, wherein the first end and the second end of the rectifier bridge are respectively Corresponding to the first end 402A' and the second end 402B of the second inductive coil 402, the third end and the fourth end of the rectifying bridge are respectively connected with the first end 60A and the second end 60B of the energy storage component 60.
  • the second inductive coil 402 energy storage element 60 When the value of the electric energy in the second inductive coil 402 is greater than or equal to the rectifier bridge conduction voltage (ie, the second predetermined threshold), the second inductive coil 402 energy storage element 60 is connected, and conversely, when the electric energy value in the second inductive coil 402 is When less than the turn-on voltage of the rectifier bridge (ie, the second predetermined threshold), the second inductive coil 402 energy storage element 60 is turned off.
  • FIG. 7 is another structural diagram of a friction generator-based energy storage device provided by the present invention.
  • the energy storage device includes: a first friction generator 10, a first rectifier circuit 20, and a first A switch control element 30', a first inductor coil 401' and a second inductor coil 402', a second switch control element 50', and an energy storage element 60 coupled to each other.
  • the first inductive coil 401' and the second inductive coil 402' are collectively referred to as a coupled inductive coil assembly 40', and the first inductive coil 401' and the second inductive coil 402' are both tapped coils with adjustable turns.
  • the first switch control component 30' is connected to the first rectifier circuit 20 and the first inductor coil 401', respectively, for controlling the first rectifier circuit 20 and the first inductor according to the monitored value of the power output of the first rectifier circuit 20 Connecting or disconnecting the coil 401', wherein when the first switching control element 30' controls the first rectifying circuit 20 to communicate with the first inductive coil 401', it is further determined according to the value of the electric energy output by the first rectifying circuit 20 The number of turns of the first inductive coil 401' that the rectifier circuit 20 communicates with.
  • a first inductive coil 401' is coupled to the first rectifying circuit 20 via a first switching control element 30' for storing electrical energy output by the first rectifying circuit 20 when it is in communication with the first rectifying circuit 20.
  • a second switch control component 50' is coupled to the second inductor coil 402' and the energy storage component 60, respectively, for controlling the second inductor coil 402' and the energy storage according to the monitored value of the electrical energy in the second inductor coil 402' The communication or disconnection of the component 60, wherein when the second switch control component 50' controls the second inductor 402' to communicate with the energy storage component 60, the energy storage component is further determined according to the value of the electrical energy in the second inductor 402' The number of turns of the 60-connected second inductive coil 402'.
  • An energy storage component 60 is coupled to the second inductive coil 402' via a second switch control component 50' for storing electrical energy in the second inductive coil 402' when it is in communication with the second inductive coil 402'.
  • the first inductive coil and the second inductive coil can be implemented by a hollow coupled inductor. Specifically, in order to facilitate adjustment of the number of turns of the first inductive coil and the second inductive coil, it may be set as a multi-tap inductive coil, or it may be set as a sliding tapped inductive coil. In addition, the first inductive coil and the second inductive coil may be respectively implemented by one inductive coil, or may be realized by one or more sets of inductive coils connected in parallel and/or in series with each other.
  • the first inductor coil and the second inductor coil are tap coils with adjustable turns, and therefore, can also be generated according to the first friction generator.
  • the size of the electrical energy is used to flexibly adjust the turns ratio between the first inductive coil and the second inductive coil to achieve an optimal impedance matching effect. Therefore, the energy storage device provided by the invention can replenish the electric energy consumed by the energy storage component in time, so that the energy storage device is always in a state of sufficient power.
  • FIG. 8a and 8b are structural views of a friction generator-based energy storage device according to a third embodiment of the present invention. Among them, FIG. 8a shows a modular structural diagram, and FIG. 8b shows a structural diagram represented by electronic components.
  • the energy storage device includes: a first friction generator 10, a first rectifier circuit 20, a first switch control element 30', a first inductor coil 401', a second inductor coil 402', a second switch control element 50', and a storage Energy component 60.
  • the first friction generator 10 includes two ends, a first end 10A and a second end 10B, respectively.
  • the first rectifier circuit 20 includes four ends, which are a first end 20A, a second end 20B, a third end 20C, and a fourth end 20D, respectively.
  • the first switch control element 30' includes three ends, which are a first end 30A', a second end 30B', and a first power end 30C'. In the actual case, the first switch control element 30' further includes a second power supply.
  • the power supply terminal can also be connected to other reference potential points, which is not limited here.
  • the first inductive coil 401' includes three ends, a first end 401A', a second end 401B', and a third end 401C'.
  • the second inductive coil 402' includes three ends, a first end 402A', a second end 402B', and a third end 402C'.
  • the second switch control element 50' includes three ends, respectively a first end 50A', The second end 50B' and the first power terminal 50C'.
  • the second switch control element 50' further includes a second power terminal (not shown), and the second power terminal is usually a ground terminal. It is used in conjunction with the first power supply terminal 50C' of the second switch control component 50'.
  • the second power supply terminal of the second switch control component 50' can also be connected to other reference potential points, which is not limited herein.
  • the energy storage element 60 includes two ends, a first end 60A and a second end 60B, respectively.
  • first end 10A and the second end 10B of the first friction generator 10 are respectively connected to the first end 20A and the second end 20B of the first rectifying circuit 20.
  • the third end 20C and the fourth end 20D of the first rectifying circuit 20 are respectively connected to the first end 30A' of the first switching control element 30' and the second end 401B' of the first inductive coil 401'.
  • the second end 30B' of the first switch control element 30' is simultaneously connected to the first end 401A' and the third end 401C' of the first inductive coil 401', and the first power end 30C' of the first switch control element 30' is simultaneously
  • the first power supply terminal 50C' of the second switch control element 50' and the first end 60A of the energy storage element 60 are connected.
  • the first end 50A' of the second switch control element 50' is simultaneously coupled to the first end 402A' and the third end 402C' of the second inductive coil 402', and the second end 50B' of the second switch control element 50' is stored
  • the first end 60A of the energy element 60 is connected.
  • the second end 402B' of the second inductive coil 402' is simultaneously coupled to the second end 401B' of the first inductive coil 401' and the second end 60B of the energy storage element 60.
  • the second power terminal (not shown) of the first switch control element 30' and the second power terminal (not shown) of the second switch control element 50' are both coupled to the second end 60B of the energy storage component 60. Connected.
  • the circuit connection relationship shown in FIG. 8a and FIG. 8b is only a schematic connection relationship, and a person skilled in the art can also make various flexible modifications to the connection manner of some of the components, which is not limited by the present invention.
  • the first switch control element 30' can obviously also be connected between the fourth end 20D of the first rectifier circuit 20 and the second end 401B' of the first inductor 401'; similarly, the second switch control element 50' may obviously also be connected between the second end 402B' of the second inductive coil 402' and the second end 60B of the energy storage element 60.
  • the first end 60A of the energy storage component 60 is coupled to the first power supply terminal 30C' of the first switch control component 30' and the first power supply terminal 50C' of the second switch control component 50', and to the energy storage component 60.
  • the second end 60B is connected to the second power terminal (not shown) of the first switch control element 30' and the second power terminal (not shown) of the second switch control element 50' for the purpose of
  • the switch control element 30' and the second switch control element 50' provide electrical energy, and those skilled in the art can also Other implementations are selected, for example, in a manner that the first switch control element 30' and the second switch control element 50' are implemented using passive devices that do not require electrical energy or are implemented by separate self-powered devices (eg, at the first The switch control element 30' and the interior of the second switch control element 50' are further provided with a friction generator).
  • the first end 60A of the energy storage element 60 and the first switch control element 30' may be omitted.
  • the energy storage device in this embodiment further includes a first switch control element 30' (ie, a first power terminal 30C' and a second power terminal of the first switch control element 30') and a second switch control
  • the battery element connected to the component 50' i.e., the first power terminal 50C' of the second switch control component 50' and the second power terminal, in this manner, the first end 60A of the energy storage component 60 can also be omitted.
  • the first power terminal 30C' of the first switch control element 30' and the first power terminal 50C' of the second switch control element 50', and the second end 60B of the energy storage element 60 and the first switch control element 30' A circuit connection between the two power terminals (not shown) and the second power terminal (not shown) of the second switch control element 50'.
  • first switch control element 30' and/or the second switch control element 50' may also be connected to the battery element and the energy storage element at the same time, so that at least one of the battery element and the energy storage element is selected for power supply according to actual conditions, for example It may be arranged to preferentially use the energy storage element 60 to supply power when the energy storage element 60 is powered; or, when the battery element has power, preferentially utilize the battery element to supply power or the like.
  • those skilled in the art can perform various modifications to the above circuit structure as long as the purpose of improving the power output through the coupled inductor coil group can be achieved.
  • the first end 60A and the second end 60B of the energy storage element 60 can both input electrical energy and provide electrical energy outward.
  • the energy storage element 60 There may also be a separate power output from the first power terminal 30C' and the second power terminal of the first switch control element 30' and the first power terminal 50C' of the second switch control element 50'. Corresponding to the second power terminal.
  • first inductive coil 401' and the second inductive coil 402' in FIG. 8a and FIG. 8b are both sliding tap coils, which correspond to different coil turns when the sliding taps are slid to different positions.
  • the third end 401C' of the first inductive coil 401' is in the actual case By sliding the tap end, the number of turns of the first inductive coil 401' and the amount of inductance can be adjusted by adjusting the position of the sliding tap of the end.
  • the first switch control element 30' further includes: a first sliding adjustment module (not shown) connected to the sliding tap at the third end 401C' of the first inductive coil 401', thus, the first switch The control element 30' can flexibly control the number of turns and the inductance of the first inductive coil 401' in communication with the first rectifier circuit 20 by controlling the first slip adjustment module.
  • the third end 402C' of the second inductive coil 402' is also a sliding tap end in the actual case, and the number of turns and the inductance of the second inductive coil 402' can be adjusted by adjusting the position of the sliding tap of the end. .
  • the second switch control element 50' further includes: a second slip adjustment module (not shown) connected to the sliding tap at the third end 402C' of the second inductive coil 402', thus, the second switch The control element 50' can flexibly control the number of turns and inductance of the second inductive coil 402' in communication with the energy storage element 60 by controlling the second slip adjustment module.
  • a second slip adjustment module (not shown) connected to the sliding tap at the third end 402C' of the second inductive coil 402', thus, the second switch The control element 50' can flexibly control the number of turns and inductance of the second inductive coil 402' in communication with the energy storage element 60 by controlling the second slip adjustment module.
  • the working principle of the energy storage device of the third embodiment will be described below in conjunction with the above-described circuit connection relationship: wherein the first friction generator 10 is used to convert mechanical energy acting thereon into electrical energy.
  • the first rectifier circuit 20 is for performing rectification processing on the electric energy output from the first friction generator 10.
  • the first switch control component 30' is configured to control the communication or disconnection of the first rectifier circuit 20 from the first inductor coil 401' according to the value of the power output by the first rectifier circuit 20, wherein when the first switch control component 30' When the first rectifier circuit 20 is controlled to communicate with the first inductive coil 401 ′, the number of turns of the first inductive coil 401 ′ that is in communication with the first rectifier circuit 20 is further determined according to the value of the electrical energy output by the first rectifier circuit 20 (ie, determining and The position of the first sliding adjustment module connected to the sliding tap of the third end 401C' of the first inductive coil 401').
  • the first inductive coil 401' is coupled to the first rectifying circuit 20 via the first switching control element 30' for storing the electrical energy output by the first rectifying circuit 20 when it is in communication with the first rectifying circuit 20.
  • the first inductive coil 401' and the second inductive coil 402' form a coupled inductive coil group, the electrical energy stored in the first inductive coil 401' is gradually transferred into the second inductive coil 402'.
  • a second switch control element 50' for controlling the communication or disconnection of the second inductive coil 402' from the energy storage element 60 according to the value of the electric energy output by the second inductive coil 402', wherein when the second switch control element 50' Controlling the second inductive coil 402' to communicate with the energy storage element 60, further determining the number of turns of the second inductive coil 402' in communication with the energy storage element 60 based on the value of the electrical energy in the second inductive coil 402' (ie, determining and The position of the second sliding adjustment module connected to the sliding tap at the third end 402C' of the second inductive coil 402').
  • An energy storage element 60 is coupled to the second inductive coil 402' via a second switch control element 50' for storing a second electrical source when it is in communication with the second inductive coil 402' The electrical energy in the coil 402' is sensed.
  • Steps 1 to 3 are substantially the same as those in the first embodiment, but in the embodiment, during the communication between the first rectifier circuit 20 and the first inductor 401', the first switch control element 30' is further based on the first rectifier circuit.
  • the output electrical energy value of 20 determines the number of turns of the first inductive coil 401' that is in communication with the first rectifying circuit 20.
  • the power interval greater than or equal to the first connectivity threshold is divided into a plurality of first subintervals, and the number of turns of the corresponding first inductive coil 401' is respectively set for each first subinterval, wherein each One sub-interval corresponds to the number of turns of the different first inductive coil 401'.
  • the number of turns of the corresponding first inductive coil 401' is determined according to the first subinterval to which the electric energy value currently output by the first rectifying circuit 20 belongs.
  • a switching threshold may be set in advance, when the first rectifying circuit 20 When the interval range to which the electric energy value belongs changes from one of the first subintervals (ie, the current subinterval) to another adjacent first subinterval (ie, the changed subinterval), the first rectifying circuit 20 needs to be The current electric energy value is compared with the interval threshold between the current sub-interval and the changed sub-interval, and the number of turns of the first inductive coil 401' is correspondingly switched only when the difference between the two is greater than a preset switching threshold. The number of turns corresponding to another adjacent subinterval.
  • a power interval greater than or equal to the first connected threshold of 100V is divided into two first subintervals by an interval threshold of 800V, which are respectively “100V to 800V” (ie, the range of the first subinterval is greater than or Equivalent to 100V and less than 800V) and "800V or more" (ie, the range of the first subinterval is greater than or equal to 800V), wherein the number of coils corresponding to the first subinterval of "100V to 800V" is N1, "800V or more The number of coil turns corresponding to the first sub-interval is N2, N1 and N2 are both natural numbers, and N1 is smaller than N2.
  • the electric energy value output by the first rectifying circuit 20 may be in the first sub-interval of “100V to 800V”, therefore, at this time, A switch control element 30' controls the first slip adjustment module to make the number of turns of the first inductive coil 401' N1, for example, by controlling the first slip adjustment module to make the third end 401C' of the first inductive coil 401'
  • the sliding tap is located in the middle of the coil so that only the lower half of the coil is operated.
  • the first switching control element 30' controls the first sliding adjustment module to make the number of turns of the first inductive coil 401' N2, for example, by controlling the first The slip adjustment module causes the sliding tap at the third end 401C' of the first inductive coil 401' to be at the top end position of the coil, thereby causing the entire coil to operate.
  • the above-mentioned switching threshold setting may be set in advance. For 50V, the number of turns of the coil is adjusted only when the fluctuation amplitude of the electric energy value outputted by the first rectifying circuit 20 is greater than the switching threshold. For example, when the electric energy value output by the first rectifying circuit 20 is in the first sub-interval of 100V to 800V, that is, the number of turns of the first inductive coil 401' is N1, the first inductive coil is only when the electric energy value fluctuates to 850V.
  • the number of turns of 401' is adjusted to N2; similarly, when the electric energy value output by the first rectifying circuit 20 is located in the first sub-interval of "800V or more", that is, the number of turns of the first inductive coil 401' is N2, only when the electric energy is The number of turns of the first inductor is adjusted to N1 when the value fluctuates to 750V. In this way, it is possible to avoid frequent switching of the number of turns of the coil due to small fluctuations in the value of the electric energy output from the first rectifying circuit 20.
  • Step 4 After the first inductive coil 401' receives the electric energy output by the first rectifying circuit 20 through the first end 401A' and the second end 401B', the electric energy is stored. Since the first inductive coil 401' and the second inductive coil 402' form a coupled inductive coil group, the electrical energy stored in the first inductive coil 401' is output to the second inductive coil 402' for storage. Preferably, as shown in FIG. 8b, the first inductive coil 401' and the second inductive coil 402' are coupled to each other by a different name end to improve the first inductive coil 401' and the second inductive coil 402. 'The electrical energy storage rate of the coupled inductor coil group.
  • Step 5 During the above steps 1 to 4, the second switch control element 50' is output to the first power terminal 50C' and the second power source through the first end 60A and the second end 60B passing through the energy storage element 60.
  • the power of the terminal is monitored in real time, and the value of the electric energy output by the second inductive coil 402' is monitored in real time.
  • the second switch control element 50' makes the second inductive coil 402' is in communication with the energy storage component 60, thereby storing electrical energy output by the second inductive coil 402' in the energy storage component 60; if the electrical energy value output by the second inductive coil 402' is less than the second communication threshold, the second switching control component 50' disconnects the second inductive coil 402' from the energy storage element 60.
  • the second connected threshold value preset in the second switch control element 50' is 100V
  • the second inductor coil 402' is connected to the energy storage element 60 through the second switch control element 50', so that the electrical energy output by the second inductor 402' is stored in the energy storage element 60; if the voltage value of the second inductor 402' is less than the preset value
  • the second conduction threshold 100V the second switching control element 50' disconnects the second inductive coil 402' from the energy storage element 60. Since the output voltage of the friction generator is high, normally, the voltage generated by each effective power generation process will be higher than 100V.
  • the second connection threshold when the second connection threshold is set to 100V, each effective power generation process can be made.
  • the generated electrical energy is stored.
  • the second connectivity threshold in order to avoid the problem of frequent switching caused by the fluctuation of the electric energy value outputted by the second inductive coil at 100 V, the second connected threshold may be a preset threshold range in addition to a specific point value.
  • the second connected threshold may also be slightly smaller than the first connected threshold.
  • the second switch control element 50' further determines a second inductive coil in communication with the energy storage element 60 according to the value of the electrical energy output by the second inductive coil 402'.
  • the number of 402's Specifically, when determining the number of turns of the second inductive coil 402', at least one of the following two implementation manners can be flexibly selected:
  • the first implementation manner is similar to the foregoing step 3.
  • the power interval greater than or equal to the second connectivity threshold is divided into a plurality of second subintervals, and the corresponding second inductive coil 402' is respectively disposed for each second subinterval.
  • the number of turns of the corresponding second inductive coil 402' is determined based on the second subinterval to which the value of the electrical energy in the second inductive coil 402' belongs.
  • a switching threshold may be set in advance, when the second inductive coil 402 When the range of the electric energy value belongs to change from one of the second subintervals (ie, the current subinterval) to another adjacent second subinterval (ie, the changed subinterval), the second inductive coil is required.
  • the current energy value of 402' is compared with the interval threshold between the current subinterval and the changed subinterval, and the second inductive coil 402' is only used when the difference between the two is greater than a preset switching threshold. Switch the number to another The number of turns corresponding to an adjacent subinterval.
  • the power interval greater than or equal to the second connected threshold 100V is divided into two second sub-intervals by one interval threshold value 800V, which are respectively “100V to 800V” (ie, the range of the second sub-interval is greater than or Equal to 100V and less than 800V) and "800V or more" (ie, the range of the second subinterval is greater than or equal to 800V), wherein the number of coils corresponding to the second subinterval of "100V to 800V" is N1', "800V The number of coil turns corresponding to the second sub-section of the above is N2', N1', N2' are both natural numbers, and N1' is smaller than N2'.
  • the electric energy value output by the second inductive coil 402' may be in the second subinterval of "100V to 800V". Therefore, at this time, The second switch control element 50' controls the second slip adjustment module to make the number of turns of the second inductor 402' N1'.
  • the third end 402C' of the second inductor 402' can be controlled by controlling the second slip adjustment module.
  • the sliding tap at the location is located in the middle of the coil so that only the lower half of the coil is operated.
  • the second switching control element 50' passes Controlling the second sliding adjustment module to make the number of turns of the second inductive coil 402' N2', for example, by controlling the second sliding adjustment module to cause the sliding tap at the third end 402C' of the second inductive coil 402' to be located at the coil
  • the top position makes the entire coil work.
  • the above-mentioned switching may be performed in advance.
  • the threshold is set to 50V, and the number of turns of the coil is adjusted only when the fluctuation range of the electric energy value outputted by the second inductive coil 402' is greater than the switching threshold. For example, when the value of the electric energy output by the second inductive coil 402' is in the second subinterval of "100V to 800V", that is, the number of turns of the second inductive coil 402' is N1', only when the electric energy value fluctuates to 850V.
  • the number of turns of the second inductive coil 402' is adjusted to N2'.
  • the value of the electric energy output by the second inductive coil 402' is in the second subinterval of "800V or more", that is, the number of turns of the second inductive coil 402' is N2.
  • the number of turns of the second inductive coil 402' is adjusted to N1' only when the electric energy value fluctuates to 750V. In this way, it is possible to avoid frequent switching of the number of turns of the coil due to small fluctuations in the value of the electric energy output from the second inductive coil 402'.
  • the interval threshold for dividing the second subinterval is used to divide the first subinterval
  • the interval thresholds are the same, both are 800V.
  • the interval threshold for dividing the second subinterval may also be slightly lower than the interval threshold for dividing the first subinterval, for example, set to 750V.
  • the interval threshold can be either a point value or a range.
  • the magnitude of the electrical energy value in the second inductive coil 402' is monitored, and the number of turns of the second inductive coil 402' is set according to a preset correspondence.
  • the correspondence between the number of turns of the first inductive coil 401 ′ corresponding to each first sub-interval and the number of turns of the corresponding second inductive coil 402 ′ may also be set in advance, according to The number of turns of the first inductive coil 401' that is connected to the rectifier circuit 20 determines the number of turns of the corresponding second inductive coil 402'.
  • the power interval greater than or equal to the first connected threshold of 100V is still divided into two first subintervals of “100V to 800V” and “800V or more” by the interval threshold value 800V, where “100V to 800V”
  • the number of turns of the first inductive coil 401' corresponding to the first subinterval is N1, and the number of turns of the corresponding second inductive coil 402' is N1'; the first subinterval corresponding to "800V or more" corresponds to the first
  • the number of turns of the inductor coil 401' is N2
  • the number of turns of the corresponding second inductor coil 402' is N2'.
  • the matching relationship between the number of turns of the first inductive coil 401' and the number of turns of the second inductive coil 402' is set in advance.
  • the second inductive coil 402' The number of turns must be N1'; when the number of turns of the first inductive coil 401' is N2, the number of turns of the second inductive coil 402' must be N2'.
  • the optimal matching relationship between the number of turns of the first inductive coil 401' and the number of turns of the second inductive coil 402' can be determined, thereby simplifying the crucible of the second inductive coil 402'.
  • the adjustment process of the number can improve the impedance matching effect.
  • the above two implementations may be used alone or in combination, and the present invention does not limit this.
  • the relevant parameters of the coupled inductor coil group can also be determined in the manner described above according to the impedance matching principle.
  • FIG. 9 is a structural diagram of an energy storage device based on a friction generator according to Embodiment 4 of the present invention.
  • the energy storage device includes: a first friction generator 10, a first rectifier circuit 20, a first switch control element 30', a first inductor coil 401', a second inductor coil 402', a second switch control element 50', and a storage Energy component 60.
  • the main difference between the fourth embodiment and the third embodiment is that the first inductor coil Both the 401' and the second inductive coil 402' are multi-tap coils, each of which corresponds to a different number of coil turns.
  • the first switch control element 30' further comprises: a plurality of switches, each switch being respectively connected to one of the first inductive coils 401', the first switch control element 30' being controlled by the on and off of the plurality of switches Controlling the first rectifier circuit 20 to communicate or disconnect with the first inductive coil 401', and controlling the number of turns of the first inductive coil 401' in communication with the first rectifier circuit 20; and/or, the second switch control element 50' Further comprising: a plurality of switches, each switch being respectively connected to one of the second inductive coils 402', the second switch control element 50' controlling the second inductive coil 402' and the energy storage by controlling the on and off of the plurality of switches The communication or disconnection of the component 60 and the control of the number of turns of the second inductive coil 402' in communication with the energy storage component 60.
  • the first friction generator 10 includes two ends, a first end 10A and a second end 10B, respectively.
  • the first rectifier circuit 20 includes four ends, which are a first end 20A, a second end 20B, a third end 20C, and a fourth end 20D, respectively.
  • the first switch control element 30' includes four ends, which are a first end 30A', a second end 30B', a first power end 30C' and a fourth end 30D'.
  • the first switch control element 30 ' There is also a second power terminal (not shown), and the second power terminal is generally grounded for use with the first power terminal 30C' of the first switch control element 30', of course, the first switch control
  • the second power terminal of the component 30' can also be connected to other reference potential points, which is not limited herein; wherein the first switch control component further includes two switches, respectively a first switch 301' and a third switch 302', A switch 301' includes a first end, a second end, and a third end, and the third switch 302' includes a first end, a second end, and a third end, the first end of the first switch 301' and the third switch 302' The first end is connected as the first end 30A' of the first switch control element 30', and the second end of the first switch 301' is used as the second end 30B' of the first switch control element 30', the first switch 301' The third end is connected to the third end of the third switch 302' as the first switch control element
  • the first inductive coil 401' includes three ends, which are a first end 401A', a second end 401B', and a third end 401C', wherein the first end 401A' is a first tap end, corresponding to the entire coil. The number of turns; the third end 401C' is the second tap end, corresponding to the number of turns of the lower half of the coil.
  • the second switch control element 50' includes four ends, which are a first end 50A', a second end 50B', a first power end 50C', and a fourth end 50D', in actual cases, The second switch control element 50' further includes a second power terminal (Fig.
  • the second switch control element 50' further includes two switches, respectively a second switch 501' and a fourth switch 502', and the second switch 501' includes the first a fourth end, a second end, and a third end, the fourth switch 502' includes a first end, a second end, and a third end, and the first end of the second switch 501' serves as the first end 50A of the second switch control element 50' ', the second end of the second switch 501' is connected to the second end of the fourth switch 502' as the second end 50B' of the second switch control element 50', the third end of the second switch 501' and the fourth switch The third end of the 502' is connected as the first power terminal 50C' of the second switch control element 50', and the
  • the second inductive coil 402' includes three ends, which are a first end 402A', a second end 402B', and a third end 402C', wherein the first end 402A' is a first tap end, corresponding to the entire coil.
  • the energy storage element 60 includes a first end 60A and a second end 60B.
  • first end 10A and the second end 10B of the first friction generator 10 are respectively connected to the first end 20A and the second end 20B of the first rectifying circuit 20.
  • the third end 20C of the first rectifier circuit 20 is simultaneously connected to the first end of the first switch 301 ′ and the first end of the third switch 302 ′, and the fourth end 20D of the first rectifier circuit 20 is simultaneously connected to the first inductor 401 .
  • the second end 401B' of the second inductor 402' is connected to the second end 402B' of the second inductive coil 402'.
  • the second end of the first switch 301' is coupled to the first end 401A' of the first inductive coil 401', and the second end of the third switch 302' is coupled to the third end 401C' of the first inductive coil 401'.
  • the first end of the second switch 501' is coupled to the first end 402A' of the second inductive coil 402', and the first end of the fourth switch 502' is coupled to the third end 402C' of the second inductive coil 402'.
  • the second end of the second switch 501' and the second end of the fourth switch 502' are simultaneously coupled to the first end 60A of the energy storage element 60.
  • the second end 60B of the energy storage element 60 is coupled to the second end 402B' of the second inductive coil 402'.
  • first switch 301' and the third switch 302' further include a fourth end (not shown), and the fourth end of the first switch 301' is connected to the fourth end of the third switch 302' As the second power supply terminal of the first switch control element 30' (not shown).
  • second switch 501' and the fourth switch 502' further include a fourth end (not shown), and the fourth end of the second switch 501' and the fourth end of the fourth switch 502' are connected as a second The second power terminal of the switch control element 50' (in the figure) Not shown).
  • the circuit connection relationship shown in FIG. 9 is only a schematic one of the connection relationships.
  • a person skilled in the art can also make various flexible modifications to the connection manner of some of the components, which is not limited by the present invention.
  • the first inductive coil 401' and the second inductive coil 402' may have a plurality of different numbers of taps, such as taps having three, four different turns, and correspondingly, the first switch control element 30' and the first
  • the two switch control elements 50' also each have a plurality of switches, such as three or four switches.
  • the first switch control element 30' and the second switch control element 50' may further include a power terminal, which may be connected to the energy storage component 60 or a separate battery component. .
  • the working principle of the energy storage device of the fourth embodiment will be described below in conjunction with the above circuit connection relationship: wherein the first friction generator 10 is used to convert mechanical energy acting thereon into electrical energy.
  • the first rectifier circuit 20 is for performing rectification processing on the electric energy output from the first friction generator 10.
  • the first switch control element 30' is configured to control the communication or disconnection of the first rectifier circuit 20 from the first inductor coil 401' according to the value of the power output from the first rectifier circuit 20. Specifically, when the first switching control element 30' controls the first rectifying circuit 20 to be disconnected from the first inductive coil 401', it is sufficient to control both the first switch 301' and the third switch 302' to be in an off state.
  • the first switch control element 30 ′ controls the first rectifier circuit 20 to communicate with the first inductor 401 ′
  • the first switch 301 ′ is further turned off according to the magnitude of the power value output by the first rectifier circuit 20 , and the third switch 302 is controlled. 'Closed; or, the first switch 301' is controlled to be closed and the third switch 302' is opened. It should be noted that, in general, only one of the first switch 301' and the third switch 302' is in a closed state, and the other is necessarily in an open state, and generally neither of them is closed at the same time.
  • the first inductive coil 401' is configured to store the electrical energy output by the first rectifying circuit 20 when it is in communication with the first rectifying circuit 20, wherein when the first switch 301' is closed, all of the coils of the first inductive coil 401' are Working state; when the third switch 302' is closed, the lower half of the first inductive coil 401' is in an active state.
  • the first inductive coil 401' and the second inductive coil 402' form a coupled inductive coil group, the electrical energy stored in the first inductive coil 401' is gradually transferred into the second inductive coil 402'.
  • the second switch control element 50' is configured to control the communication or disconnection of the second inductive coil 402' from the energy storage element 60 based on the value of the electrical energy output by the second inductive coil 402'. Specifically, when the second switching control element 50' controls the second inductive coil 402' to be disconnected from the energy storage element 60, by controlling the second switch 501' and the fourth switch 502' is all in the off state. When the second switch control component 50 ′ controls the second inductor coil 402 ′ to communicate with the energy storage component 60 , the second switch 501 ′ is further controlled to be turned off according to the magnitude of the power value output by the second inductor coil 402 ′, and the fourth switch 502 is configured.
  • the second switch 501' is controlled to be closed and the fourth switch 502' is opened.
  • the second switch 501' is closed, all of the coils of the second inductive coil 402' are in an active state; when the fourth switch 502' is closed, the lower half of the second inductive coil 402' is in an active state.
  • An energy storage component 60 is coupled to the second inductive coil 402' via a second switch control component 50' for storing electrical energy in the second inductive coil 402' when it is in communication with the second inductive coil 402'.
  • Step 1 When an external force acts on the first friction generator 10, the first friction generator 10 converts the mechanical energy acting thereon into electrical energy, and passes through the first end 10A and the second end of the first friction generator 10. 10B is output to the first rectifier circuit 20;
  • Step 2 After receiving the foregoing electrical energy through the first end 20A and the second end 20B, the first rectifying circuit 20 rectifies the electric energy, and outputs the same through the third end 20C and the fourth end 20D;
  • Step 3 During the foregoing steps 1 and 2, the first switch control component 30' monitors the value of the electric energy output by the first rectifying circuit 20 in real time, and when the monitored electric energy value output by the first rectifying circuit 20 is greater than or equal to When the first connected threshold is preset, one of the first switches of the first switch control element 30' is switched from the normally open state to the closed state (ie, the first switch 301' is switched from the normally open state to the closed state or the third state.
  • the switch 302' is switched from the normally open state to the closed state), so that the first rectifier circuit 20 is in communication with the first inductive coil 401', so that the electrical energy output by the first rectifier circuit 20 is stored in the first inductive coil 401';
  • the first switch 301 ′ and the third switch 302 ′ in the first switch control element 30 ′ are both kept in a normally open state, The circuit between the first rectifier circuit 20 and the first inductor coil 401' is maintained in an open state.
  • the first switch control element 30' is further determined according to the value of the electrical energy output by the first rectifier circuit 20 and the first integral
  • the number of turns of the first inductive coil 401' that is connected to the flow circuit 20 is determined in a similar manner to that of the third embodiment, and details are not described herein again.
  • the power interval greater than or equal to the first connectivity threshold of 100V is divided into two first subintervals by an interval threshold of 800V, which are respectively “100V to 800V” (ie, the first The range of the subinterval is greater than or equal to 100V and less than 800V) and "800V or more" (ie, the range of the first subinterval is greater than or equal to 800V), wherein the coil corresponding to the first subinterval of "100V to 800V"
  • the number N1, the second sub-interval of "800V or more" corresponds to the number of turns of the coil N2, N1, N2 are both natural numbers, and N1 is smaller than N2.
  • the electric energy value output by the first rectifying circuit 20 may be in the first sub-interval of “100V to 800V”, therefore, at this time, A switch control element 30' controls the first switch 301' to open and the third switch 302' to close so that the lower half of the first inductor 401' operates, ie, the third end 401C' of the first inductor 401'
  • the coil is operated with the second end 401B', and the corresponding number of turns of the coil is N1.
  • the value of the electric energy output by the first rectifying circuit 20 may be in the first subinterval of "800V or more". Therefore, at this time, the first switching control element 30 'Control first switch 301' is closed, third switch 302' is open, so that the first inductor 401' is fully coiled, that is, between the first end 401A' and the second end 401B' of the first inductor 401' The coil is turned on and works, and the corresponding number of turns of the coil is N2.
  • the switching threshold may be set by referring to the third embodiment. It is avoided to frequently switch the number of turns of the coil due to small fluctuations in the value of the electric energy output from the first rectifying circuit 20.
  • Step 4 After receiving the electric energy output by the first rectifying circuit 20, the first inductive coil 401' stores the electric energy. Since the first inductive coil 401' and the second inductive coil 402' form a coupled inductive coil group, the electrical energy stored in the first inductive coil 401' is output to the second inductive coil 402' for storage. Preferably, as shown in FIG. 9, the first inductive coil 401' and the second inductive coil 402' are coupled to each other by a different name end to improve the first inductive coil 401' and the second inductive coil 402. 'The electrical energy storage rate of the coupled inductor coil group.
  • Step 5 During the above steps 1 to 4, the second switch control element 50' monitors the value of the electric energy output by the second inductive coil 402' in real time, if the electric energy output by the second inductive coil 402' The value is greater than or equal to the preset second communication threshold, and the second switch control element 50 ′ causes the second inductor 402 ′ to communicate with the energy storage component 60 , thereby storing the electrical energy output by the second inductor 402 ′ in the energy storage component 60 . If the value of the electrical energy output by the second inductive coil 402' is less than the second communication threshold, the second switching control element 50' disconnects the second inductive coil 402' from the energy storage element 60.
  • the second switch control element 50' further determines a second inductance in communication with the energy storage element 60 according to the value of the electrical energy output by the second inductive coil 402'.
  • the number of turns of the coil 402' Specifically, when determining the number of turns of the second inductive coil 402', similar to the third embodiment, at least one of the following two implementation manners may be flexibly selected:
  • the first implementation manner is similar to the third step.
  • the power interval greater than or equal to the preset second connectivity threshold may be divided into multiple second subintervals, and the corresponding second inductive coils are respectively set for each second subinterval.
  • the number of turns of the corresponding second inductive coil 402' is determined based on the second subinterval to which the value of the electrical energy in the second inductive coil 402' belongs.
  • a switching threshold may be set in advance, when the electric energy of the second inductive coil 402'
  • the second inductive coil 402' needs to be The current electric energy value is compared with the interval threshold between the current sub-interval and the changed sub-interval, and the number of turns of the second inductive coil 402' is correspondingly switched only when the difference between the two is greater than a preset switching threshold. The number of turns corresponding to another adjacent subinterval.
  • the power interval greater than or equal to the second connectivity threshold 100V is divided into two second sub-intervals by one interval threshold value 800V, which are respectively “100V to 800V” (ie, the range of the second sub-interval is greater than Or equal to 100V and less than 800V) and "800V or more" (ie, the range of the second subinterval is greater than or equal to 800V), wherein the number of coils corresponding to the second subinterval of "100V to 800V" is N1', " The number of coil turns corresponding to the second sub-interval of 800 V or more is N2', N1' and N2' are both natural numbers, and N1' is smaller than N2'.
  • the electric energy value output by the second inductive coil 402' may be in the second subinterval of "100V to 800V". Therefore, at this time, The second switch control element 50' controls the second switch 501' to be turned off, and the fourth switch 502' is closed to make the second inductor 402'
  • the half-part coil operates, i.e., the coil between the third end 402C' of the second switch control element 50' and the second end 402B', at which point the corresponding number of turns of the coil is N1'.
  • the value of the electric energy output by the second inductive coil 402' may be in the second subinterval of "800V or more". Therefore, at this time, the second switching control element 50 'Control second switch 501' is closed, fourth switch 502' is open to operate all coils of second inductive coil 402', ie first end 402A' and second end 402B' of second switch control element 50' The coil between them is turned on and works, and the corresponding number of turns of the coil is N2'.
  • the switching threshold may be set by referring to the third embodiment. To avoid frequent switching of the number of turns of the coil due to small fluctuations in the value of the electrical energy output by the second inductive coil 402'.
  • the interval threshold for dividing the second subinterval is the same as the interval threshold for dividing the first subinterval, and both are 800V.
  • the interval threshold for dividing the second subinterval may also be slightly lower than the interval threshold for dividing the first subinterval, for example, set to 750V.
  • the interval threshold can be either a point value or a range.
  • the magnitude of the electrical energy value of the second inductive coil 402' is monitored, and the number of turns of the second inductive coil 402' is set according to a preset correspondence.
  • the correspondence between the number of turns of the first inductive coil 401 ′ corresponding to each first sub-interval and the number of turns of the corresponding second inductive coil 402 ′ may also be set in advance, according to The number of turns of the first inductive coil 401' that is connected to the rectifier circuit 20 determines the number of turns of the corresponding second inductive coil 402'.
  • the power interval greater than or equal to the first connectivity threshold of 100V is still divided into two first subintervals by the interval threshold value 800V, which are respectively “100V to 800V” (ie, the range of the first subinterval is Greater than or equal to 100V and less than 800V) and "800V or more" (ie, the range of the first subinterval is greater than or equal to 800V), wherein the first inductive coil 401' corresponding to the first subinterval of "100V to 800V"
  • the number of turns is N1, and the number of turns of the corresponding second inductive coil 402' is N1'; the number of turns of the first inductive coil 401' corresponding to the first subinterval of "800V or more" is N2, and the corresponding number The number of turns of the two inductor coils 402' is N2'.
  • the matching relationship between the number of turns of the first inductive coil 401' and the number of turns of the second inductive coil 402' is set in advance.
  • the second inductive coil 402' The number of turns must be N1';
  • the number of turns of the first inductive coil 401' is N2
  • the number of turns of the second inductive coil 402' is necessarily N2'.
  • the optimal matching relationship between the number of turns of the first inductive coil 401' and the number of turns of the second inductive coil 402' can be determined, thereby simplifying the crucible of the second inductive coil 402'.
  • the adjustment process of the number can improve the impedance matching effect.
  • the first switch 301' and the second switch 501' constitute a set of switches
  • the third switch 302' and the fourth switch 502' constitute another set of switches.
  • the second inductive coil 402' is necessarily turned on by closing the second switch 501'; when the third switch 302' is closed, it is inevitable by closing the fourth switch 502' Passing the second inductive coil 402'.
  • the above two implementations may be used alone or in combination, and the present invention does not limit this.
  • a separate control module can also be used to simultaneously monitor the energy values in the first rectifier circuit 20 and the second inductor coil 402', and simultaneously control the first switch 301' and the second switch 501', and the third switch 302. 'On-and-off with the fourth switch 502'.
  • steps 1 to 5 are a cyclic process, which realizes the function of supplementing the power supply element 60 with power supply, and compensates for the loss of the energy storage element 60 for providing power to the outside, thereby prolonging the entire energy storage. The service life of the device.
  • FIG. 10 is a structural diagram of a friction generator-based energy storage device according to Embodiment 5 of the present invention.
  • the energy storage device includes: a first friction generator 10 and a first rectifier circuit 20; The first switch control element 30', the first inductor coil 401', the second inductor coil 402', the second switch control element 50, the energy storage element 60, the second friction generator 70, and the second rectifier circuit 80.
  • the second friction generator 70 and the second rectifying module 80 are further added on the basis of the third embodiment, except that the rest of the fifth embodiment is the same as the third embodiment, Only the different parts of the fifth embodiment and the third embodiment will be described, and the same portions will not be described again herein.
  • the second friction generator 70 includes two ends, which are a first end 70A and a second end 70B, respectively.
  • the second rectifying module 80 includes four ends, which are a first end 80A, a second end 80B, a third end 80C, and a fourth end 80D, respectively.
  • the first end 70A and the second end 70B of the second friction generator 70 are respectively connected to the first end 80A and the second end 80B of the second rectifying module 80 for converting mechanical energy acting thereon into The electrical energy is output to the second rectifier module 80.
  • the end 80C and the fourth end 80D are respectively connected to the first end 60A and the second end 60B of the energy storage element 60 for rectifying the electric energy output by the second friction generator 70, thereby providing electric energy to the energy storage element 60. .
  • the second friction generator 70 and the second rectifier module 80 are provided to prevent the remaining electrical energy in the energy storage component 60 from being insufficient to drive the first switch control component 30' and/or the second switch control component. 50', causing the first switch control element 30' to fail to monitor the value of the electrical energy output by the first rectifier circuit 20 and/or the second switch control element 50' is unable to monitor the value of the electrical energy output by the second inductive coil 402', that is, It can be said that when the remaining electric energy in the energy storage element 60 is small, the mechanical energy acting thereon can be converted into electric energy by the second friction generator 70, and is rectified by the second rectifying module 80, and then stored.
  • the energy component 60 provides electrical energy to provide electrical energy to the first switch control component 30' and/or the second switch control component 50' to ensure proper operation of the entire energy storage device.
  • the first inductive coil 401' and the second inductive coil 402' are the same as the third embodiment, and are all sliding tap coils. When the sliding taps slide to different positions, respectively, corresponding to Different coil turns.
  • the first switch control element 30' further comprises: a first slip adjustment module connected to the sliding tap of the first inductive coil 401', the first switch control element 401' being controlled and controlled by controlling the first slip adjustment module The number of turns of the first inductive coil 401' that is connected to the rectifier circuit 20; and/or the second switch control element 50' further includes: a second sliding adjustment module connected to the sliding tap of the second inductive coil 402', the second switch The control element 50' controls the number of turns of the second inductive coil 402' in communication with the energy storage element 60 by controlling the second slip adjustment module.
  • the first switch control component, the first inductor coil, the second inductor coil, and the second switch control component in Embodiment 5 may also be the same as Embodiment 4, wherein the first inductor coil and the second inductor coil All are multi-tap coils, and each tap corresponds to a different number of coil turns.
  • the first switch control element further comprises: a plurality of switches, each switch being respectively connected to one of the first inductive coils, the first switch control element controlling the first inductive coil by controlling on and off of the plurality of switches Connecting or disconnecting the first rectifier circuit, and controlling the number of turns of the first inductor coil in communication with the first rectifier circuit; and/or, the second switch control component further includes: a plurality of switches, each of the switches and the second One tap of the inductor coil is connected, and the second switch control element is controlled The switching of the plurality of switches is performed to control the communication or disconnection of the second inductive coil from the energy storage element, and to control the number of turns of the second inductive coil in communication with the energy storage element.
  • the first switch control component sets the monitoring and switching functions in one body, that is, both the value of the electric energy output by the first rectifying circuit and the value of the electric energy output by the first rectifying circuit are monitored. Disconnect or close.
  • the first switch control component can also be implemented by a simple switch circuit. At this time, an additional switch controller can be additionally provided, and the switch controller is responsible for monitoring the power value output by the first rectifier circuit.
  • the switch controller may select a plurality of power supply modes such as power supply by the energy storage component and/or power supply by the battery component.
  • the second switch control element can also be realized by a simple switch circuit, wherein the switch controller is responsible for monitoring the value of the electric energy in the coupled inductor coil group, and controlling the on/off of the second switch control element according to the monitoring result.
  • two switch controllers may be provided to respectively control the first switch control element and the second switch control element, or a switch controller may be provided while controlling the first switch control element and the second switch control element.
  • the two switch controllers can also take the active/standby mode of operation, that is, priority by the master Simultaneously controlling the first switch control element and the second switch control element with a switch controller, and controlling the first switch control element and the second switch control element by the standby switch controller when the main switch controller is faulty or has no power, thereby Improve the durability of energy storage devices.
  • the on/off of the first switch control element may be completely dependent on the value of the electric energy output by the first rectifying circuit, that is, the electric energy value output by the first rectifying circuit is monitored in real time, as long as the first detected value
  • the electric energy value outputted by the rectifying circuit is smaller than the first connected threshold, and is closed when the electric energy value is greater than or equal to the first connected threshold.
  • the control logic inside the first switching control element is: the electric energy value outputted by the first rectifying circuit is smaller than the first Disconnected when a threshold is connected, and closed when the value of the electrical energy output by the first rectifier circuit is greater than or equal to the first communication threshold.
  • the first switch control element can also be realized by a normally open switch, that is, the first switch control element is in an off state by default, only when the monitored first rectifier circuit outputs an electric energy value greater than or equal to When the first connected threshold is described, the state is turned to the closed state. At this time, since the first switch control element is in the off state by default, the internal control logic is: when the electric energy value output by the first rectifier circuit is greater than or equal to the first Connected threshold The value is closed.
  • the first switch control element can also be implemented by a normally closed switch, that is, the first switch control element is in a closed state by default, only when the monitored first rectifier circuit outputs an electrical energy value that is less than the first connected threshold.
  • the internal control logic is: when the energy value in the output of the first rectifier circuit is less than the first connected threshold.
  • the energy storage component may be an energy storage capacitor, a graphene supercapacitor, a ceramic capacitor, or the like.
  • the present invention does not limit the specific form of the energy storage component, and any component capable of storing electrical energy is It can be applied to the present invention.
  • the first friction generator and the second friction generator can be realized in various forms, and the three-layer structure friction generator, the four-layer structure friction generator, and the five-layer intermediate room can be flexibly selected.
  • the thin-film structure friction generator or the five-layer inter-electrode structure friction generator, the specific form of the friction generator is not limited as long as the frictional electrification effect can be achieved.
  • the number of friction generators may be one or more; when multiple first friction generators are used, multiple first friction generators are connected in series and/or in parallel, and more
  • the first friction generators can be arranged not only in a tiling manner, but also in a stacked manner, and can be arranged in a combination of cascading and tiling, which is not limited herein, and those skilled in the art can Make a selection as needed.
  • the number and arrangement of the second friction generators can also be varied in many ways with reference to the above description of the first friction generator.
  • the first structure of the friction generator is a three-layer structure including: a first electrode, a first polymer insulating layer, and a second electrode, which are sequentially stacked. Specifically, the first electrode is disposed on the first side surface of the first polymer insulating layer; and the second side surface of the first polymer insulating layer is disposed opposite to the second electrode.
  • the first side surface of the first polymer insulating layer is relatively fixed to the first electrode, and the second side surface of the first polymer insulating layer Contact friction with the second electrode when pressed or bent and induces charge at the second electrode and the first electrode. Therefore, in the present example, the two faces of the first polymer insulating layer and the second electrode are disposed as friction interfaces of the friction generator, and the first electrode and the second electrode are respectively used as two friction generators. Output.
  • the method is to rub the metal with the polymer, mainly utilizing the characteristic that the metal easily loses electrons, and an induced electric field is formed between the friction interfaces, thereby generating a voltage and/or a current.
  • the second structure of the friction generator is a four-layer structure including: a first electrode, a first polymer insulating layer, a second polymer insulating layer, and a second electrode, which are sequentially stacked.
  • the first electrode is disposed on the first side surface of the first polymer insulating layer;
  • the second electrode is disposed on the first side surface of the second polymer insulating layer; wherein, the first polymer is polymerized
  • the second side surface of the insulating layer and the second side surface of the second high molecular polymer insulating layer are in contact with each other when pressed or bent and induce electric charges at the first electrode and the second electrode. Therefore, in the present example, the two faces of the first polymer insulating layer and the second polymer insulating layer are disposed oppositely as friction interfaces of the friction generator.
  • the first electrode and the second electrode respectively serve as two output ends of the friction generator.
  • the third structure of the friction generator is a five-layer structure with an intermediate film, including a first electrode, a first polymer insulating layer, an intermediate film layer, a second polymer insulating layer, and a first layer which are sequentially stacked.
  • Two electrodes are disposed on the first side surface of the first polymer insulating layer; the second electrode is disposed on the first side surface of the second polymer insulating layer, and the intermediate film layer is disposed at A second side surface of the high molecular polymer insulating layer and a second side surface of the second high molecular polymer insulating layer.
  • the intervening film layer is an intermediate polymer, which may be directly disposed between the first polymer polymer insulating layer and the second polymer polymer insulating layer, and the first polymer polymer insulating layer and the first The two polymer polymer insulation layers are not fixed. At this time, a friction interface is formed between the intervening film layer and the first polymer polymer insulation layer, and the intervening film layer and the second polymer polymer insulation layer are formed. Another friction interface.
  • the intervening film layer may be relatively fixed to one of the first polymer polymer insulating layer or the second polymer polymer insulating layer, and may be in contact with the other friction interface.
  • the intervening film layer The first side surface is fixed on the second side surface of the second polymer insulating layer, and the second side surface of the intermediate film layer and the second side surface of the first polymer insulating layer constitute a friction interface contact friction.
  • the intervening film layer and the second polymer insulating layer are relatively fixed, when the friction generator is pressed, the second side surface of the first polymer insulating layer and the intervening film layer are The two side surfaces contact the friction and induce a charge at the first electrode and the second electrode.
  • the fourth structure of the friction generator is a five-layer structure with an intervening electrode, comprising: a first electrode stacked in sequence, a first polymer insulating layer, an intervening electrode layer, a second polymer insulating layer and a second electrode; wherein the first electrode is disposed on the first side surface of the first polymer insulating layer; the second electrode is disposed on the first side surface of the second polymer insulating layer, and the intervening electrode layer is disposed Between the second side surface of the first polymer insulating layer and the second side surface of the second polymer insulating layer.
  • the intervening electrode layer is made of a material capable of fabricating an electrode.
  • the two surfaces of the interposed electrode layer and the first polymer polymer insulating layer are oppositely disposed to form a set of friction interfaces, and/or the two surfaces of the intervening electrode layer and the second polymer polymer insulating layer are oppositely disposed to form another The group friction interface; the first electrode and the second electrode are connected in series as one output end of the friction generator; the intervening electrode layer serves as the other output end of the friction generator.
  • the micro-nano structure described above can adopt the following two possible implementation manners: In the first way, the micro-nano structure is a very small concave-convex structure of micrometer or nanometer.
  • the uneven structure can increase frictional resistance and improve power generation efficiency.
  • the uneven structure can be formed directly at the time of film preparation, and the surface of the first polymer insulating layer can be formed into an irregular uneven structure by a grinding method.
  • the uneven structure may be a concave-convex structure of a semicircular shape, a striped shape, a cubic shape, a quadrangular pyramid shape, or a cylindrical shape.
  • the second way is that the micro-nano structure is a nano-scale pore structure, and the material used for the first polymer-polymer insulation layer is preferably polyvinylidene fluoride (PVDF). It has a thickness of 0.5 to 1.2 mm (preferably 1.0 mm) and is provided with a plurality of nanopores on the face of the second electrode.
  • PVDF polyvinylidene fluoride
  • each nanopore that is, the width and the depth
  • the preferred size of the nanopore is: a width of 10-100 nm and a depth of 4-50 ⁇ m.
  • the number of nanopores can be adjusted according to the required output current value and voltage value.
  • these nanopores are uniformly distributed with a pore spacing of 2-30 ⁇ m, and more preferably a uniform distribution of average pore spacing of 9 ⁇ m.
  • the friction generator may also be arched, for example, further arching at least one of the two opposing faces constituting the friction interface Forming a convex surface (ie, the intermediate portion of the at least one friction interface is arched away from or away from the other friction interface), thereby forming a gap between the two friction interfaces, so that the two friction interfaces are unstressed Can automatically bounce.
  • the energy storage device based on the friction generator designed a circuit suitable for the electric energy generated by the friction generator, supplies power to the energy storage component, reduces power loss, and increases energy. Storage utilization efficiency.
  • the use of a friction generator combined with a suitable circuit to supplement the energy consumed by the energy storage component prolongs the service life of the energy storage component, and also avoids the trouble of being unable to use or replace the battery due to the exhaustion of the battery.
  • the energy storage device based on the friction generator in the solution is not only light in weight, small in size, but also convenient for users to carry and use; and its structure and manufacturing process are simple, the cost is low, and it is suitable for large-scale industrial production.

Abstract

一种基于摩擦发电机的储能装置,其包括:第一摩擦发电机(10)、第一整流电路(20)、第一开关控制元件(30)、耦合式电感线圈组(40)、第二开关控制元件(50)和储能元件(60)。第一摩擦发电机(10)用于将机械能转换为电能;第一整流电路(20)用于对电能进行整流处理;第一开关控制元件(30)用于根据第一整流电路(20)输出的电能值,使第一整流电路(20)与耦合式电感线圈组(40)断开或连通;耦合式电感线圈组(40)用于存储第一整流电路(20)输出的电能;第二开关控制元件(50)用于根据耦合式电感线圈组(40)中的电能值,使耦合式电感线圈组(40)与储能元件(60)断开或连通;储能元件(60)用于存储耦合式电感线圈组(40)输出的电能。

Description

基于摩擦发电机的储能装置
相关申请的交叉参考
本申请要求于2016年3月9日提交中国专利局、申请号为201610134444.3、名称为“基于摩擦发电机的储能装置”的中国专利申请以及于2016年4月29日提交中国专利局、申请号为201610278895.4、名称为“基于摩擦发电机的储能装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电子电路领域,特别涉及一种基于摩擦发电机的储能装置。
背景技术
个人电子设备和传感器网络的迅速发展为用户带来了诸多便利。目前,大多数个人电子设备和传感器网络采用电池等储能元件进行供电,但是,在这种供电方式中,一旦储能元件的电量耗尽将无法正常工作。因此,如何为其提供一种便携的、可持续供电的能源成为一个至关重要的问题。
为了解决上述问题,一种采用摩擦发电机为电池等储能元件补充供电的技术应运而生。摩擦发电机通过对高分子材料的表面改性和微纳结构设计以及不同材料的精心配对,充分发挥和利用摩擦起电效应和静电耦合效应,将人类自身以及自然界中无处不在的运动、摩擦、压力、震动、气流、水流等机械能转换成电能加以储存和应用。
但是,由于摩擦发电机阻抗高、且输出的电能为电压极高的脉冲电,导致摩擦发电机的阻抗与储能元件的阻抗相差悬殊,所以电能存储时损耗较大。这样一来,摩擦发电机所产生的电能中很大一部分都被浪费了,并未得到有效利用。因此,如何避免电能在存储过程中的损耗,从而将摩擦发电机输出的电能高效地存储在储能元件中,以便及时补充储能元件消耗的电能成为目前亟待解决的难题。
发明内容
本发明提供了一种基于摩擦发电机的储能装置,用以解决现有技术中的摩擦发电机所产生的电能在存储过程中损耗较大,导致利用率不高的问题。
本发明提供了一种基于摩擦发电机的储能装置,包括:第一摩擦发电机、第一整流电路、第一开关控制元件、耦合式电感线圈组、第二开关控制元件以及储能元件,其中,第一摩擦发电机,用于将作用在其上的机械能转换为电能;第一整流电路,其与第一摩擦发电机相连,用于对第一摩擦发电机输出的电能进行整流处理;第一开关控制元件,其分别与第一整流电路和耦合式电感线圈组相连,用于监测第一整流电路输出的电能值,在监测到的第一整流电路输出的电能值小于第一预设阈值时断开,和/或,在监测到的第一整流电路输出的电能值大于或等于第一预设阈值时闭合;耦合式电感线圈组,其通过第一开关控制元件与第一整流电路相连,用于在第一开关控制元件闭合时存储第一整流电路输出的电能;第二开关控制元件,其分别与耦合式电感线圈组和储能元件相连,用于监测耦合式电感线圈组中的电能值,在监测到的耦合式电感线圈组中的电能值小于第二预设阈值时断开,和/或,在监测到的耦合式电感线圈组中的电能值大于或等于第二预设阈值时闭合;储能元件,其通过第二开关控制元件与耦合式电感线圈组相连,用于在第二开关控制元件闭合时存储耦合式电感线圈组输出的电能。
本发明还提供了一种基于摩擦发电机的储能装置,该装置包括:第一摩擦发电机、第一整流电路、第一开关控制元件、相互耦合的第一电感线圈和第二电感线圈、第二开关控制元件以及储能元件,其中,第一电感线圈和第二电感线圈为匝数可调的抽头线圈;第一摩擦发电机,用于将作用在其上的机械能转换为电能;第一整流电路,其与第一摩擦发电机相连,用于对第一摩擦发电机输出的电能进行整流处理;第一开关控制元件,其分别与第一整流电路和第一电感线圈相连,用于根据监测到的第一整流电路输出的电能值控制第一整流电路与第一电感线圈的连通或断开;第一电感线圈,用于在其与第一整流电路连通时存储第一整流电路输出的电能;第二开关控制元件,其分别与第二电感线圈和储能元件相连,用于根据监测到的第二电感线圈中 的电能值控制第二电感线圈与储能元件的连通或断开;储能元件,用于在其与第二电感线圈连通时存储第二电感线圈中的电能。
在本发明提供的基于摩擦发电机的储能装置中,第一摩擦发电机所产生的电能经过整流之后,通过相互耦合的第一电感线圈和第二电感线圈进行存储后再提供给储能元件,由于相互耦合的第一电感线圈和第二电感线圈自身的阻抗及耦合作用能够使第一摩擦发电机的阻抗与储能元件的阻抗相匹配,由于阻抗匹配时输出功率最大,使第一摩擦发电机输出的电能得到最大程度的利用,避免了电能在存储过程中的大量损耗。而且,在本发明中,第一电感线圈和第二电感线圈为匝数可调的抽头线圈,因此,还可以根据第一摩擦发电机所产生的电能的大小来灵活调整第一电感线圈和第二电感线圈之间的匝数比,从而达到最佳的阻抗匹配效果。因此,通过本发明提供的储能装置,能够及时补充储能元件消耗的电能,使储能装置一直处于电量充足的状态。
附图说明
图1示出了本发明提供的基于摩擦发电机的储能装置的一种结构图;
图2a以模块形式示出了本发明实施例一提供的一种基于摩擦发电机的储能装置的结构图;
图2b以电子元器件形式示出了本发明实施例一提供的一种基于摩擦发电机的储能装置的结构图;
图3示出了采用内阻法测量摩擦发电机阻抗时,不同阻值的电阻的功率与阻值关系的示意图;
图4示出了本发明实施例二提供的一种基于摩擦发电机的储能装置的结构图;
图5a示出了实施例一中的储能装置包含第一种结构的第一开关控制元件时的结构示意图;
图5b示出了实施例二中的储能装置包含第一种结构的第一开关控制元 件时的结构示意图;
图6a示出了实施例一中的储能装置包含第二种结构的第一开关控制元件时的结构示意图;
图6b示出了实施例二中的储能装置包含第二种结构的第一开关控制元件时的结构示意图。
图7示出了本发明提供的基于摩擦发电机的储能装置的另一种结构图;
图8a以模块形式示出了本发明实施例三提供的一种基于摩擦发电机的储能装置的结构图;
图8b以电子元器件形式示出了本发明实施例三提供的一种基于摩擦发电机的储能装置的结构图;
图9以电子元器件形式示出了本发明实施例四提供的一种基于摩擦发电机的储能装置的结构图;
图10示出了本发明实施例五提供的一种基于摩擦发电机的储能装置的结构图。
具体实施方式
为充分了解本发明之目的、特征及功效,借由下述具体的实施方式,对本发明做详细说明,但本发明并不仅仅限于此。
本发明提供了一种基于摩擦发电机的储能装置,可以解决现有技术中的摩擦发电机所产生的电能在存储过程中损耗较大,导致利用率不高的问题。
图1示出了本发明提供的基于摩擦发电机的储能装置的一种结构图,如图1所示,该储能装置包括:第一摩擦发电机10、第一整流电路20、第一开关控制元件30、耦合式电感线圈组40、第二开关控制元件50’以及储能元件60,其中,第一摩擦发电机10,用于将作用在其上的机械能转换为电能;第一整流电路20,其与第一摩擦发电机10相连,用于对第一摩擦发电机10输出的电能进行整流处理;第一开关控制元件30,其分别与第一整流电路 20和耦合式电感线圈组40相连,用于监测第一整流电路20输出的电能值,在监测到的第一整流电路20输出的电能值小于第一预设阈值时断开,和/或,在监测到的第一整流电路20输出的电能值大于或等于第一预设阈值时闭合;耦合式电感线圈组40,其通过第一开关控制元件30与第一整流电路20相连,用于在第一开关控制元件30闭合时存储第一整流电路20输出的电能;第二开关控制元件50,其分别与耦合式电感线圈组40和储能元件60相连,用于监测耦合式电感线圈组40中的电能值,在监测到的耦合式电感线圈组40中的电能值小于第二预设阈值时断开,和/或,在监测到的耦合式电感线圈组40中的电能值大于或等于第二预设阈值时闭合;储能元件60,其通过第二开关控制元件50与耦合式电感线圈组40相连,用于在第二开关控制元件50闭合时存储耦合式电感线圈组40输出的电能。
其中,耦合式电感线圈组可以通过多种形式实现,例如,可以由相互并联和/或相互串联的一组或多组电感线圈构成。可选地,耦合式电感线圈组包括第一电感线圈和第二电感线圈。其中,第一电感线圈通过第一开关控制元件与第一整流电路相连,用于存储第一整流电路输出的电能;其中,第一开关控制元件在监测到的第一整流电路输出的电能值小于第一预设阈值时断开,即控制第一整流电路与第一电感线圈断开,和/或在监测到的第一整流电路输出的电能值大于或等于第一预设阈值时闭合,即控制第一整流电路与第一电感线圈连通;第二电感线圈与第一电感线圈相互耦合,用于存储第一电感线圈输出的电能;第二电感线圈通过第二开关控制元件与储能元件相连,其中,第二开关控制元件在监测到的第二电感线圈中的电能值小于第二预设阈值时断开,即控制第二电感线圈与储能元件断开,和/或在监测到的第二电感线圈中的电能值大于或等于第二预设阈值时闭合,即控制第二电感线圈与储能元件连通。
由此可见,在本发明提供的基于摩擦发电机的储能装置中,第一摩擦发电机产生的电能经过整流之后,通过耦合式电感线圈组进行存储后再提供给储能元件,由于耦合式电感线圈组自身的阻抗及耦合作用能够使第一摩擦发电机的阻抗与储能元件的阻抗相匹配,由于阻抗匹配时输出功率最大,使第一摩擦发电机输出的电能得到最大程度的利用,避免了电能在存储过程中的 大量损耗。因此,通过本发明提供的储能装置,能够及时补充储能元件消耗的电能,使储能装置一直处于电量充足的状态。
下面结合几个具体实施例对本发明中的基于摩擦发电机的储能装置进行详细介绍:
实施例一、
图2a和图2b示出了本发明实施例一提供的一种基于摩擦发电机的储能装置的结构图。其中,图2a示出了模块化的结构图,图2b示出了以电子元器件表示的结构图。该储能装置包括:第一摩擦发电机10、第一整流电路20、第一开关控制元件30、第一电感线圈401、第二电感线圈402、第二开关控制元件50和储能元件60。
下面详细介绍上述各个部分之间的电路连接关系:
如图2a和图2b所示,第一摩擦发电机10至少具有两个端,分别为第一端10A和第二端10B。第一整流电路20具有四个端,分别为第一端20A、第二端20B、第三端20C和第四端20D。第一开关控制元件30具有三个端,分别为第一端30A、第二端30B、第一电源端30C和第二电源端(图中未示出),在实际情况中,第一开关控制元件30的第二电源端通常为接地端,与第一开关控制元件30的第一电源端30C配合使用,当然,第一开关控制元件30的第二电源端也可接其它参考电位点,此处不做限定。第一电感线圈401具有两个端,分别为第一端401A和第二端401B。第二电感线圈402具有两个端,分别为第一端402A’和第二端402B。第二开关控制元件50具有三个端,分别为第一端50A、第二端50B’、第一电源端50C和第二电源端(图中未示出),在实际情况中,第一开关控制元件50的第二电源端通常为接地端,与第一开关控制元件50的第一电源端50C配合使用,当然,第一开关控制元件50的第二电源端也可接其它参考电位点,此处不做限定。储能元件60具有两个端,分别为第一端60A和第二端60B。
具体地,第一摩擦发电机10的第一端10A和第二端10B分别与第一整流电路20的第一端20A和第二端20B对应相连。第一整流电路20的第三端20C和第四端20D分别与第一开关控制元件30的第一端30A和第一电感线圈401的第二端401B对应相连。第一开关控制元件30的第二端30B与 第一电感线圈401的第一端401A相连,第一开关控制元件30的第一电源端30C同时与第二开关控制元件50的第一电源端50C和储能元件60的第一端60A相连。第二开关控制元件50的第一端50A和第二端50B’分别与第二电感线圈402的第一端402A’和储能元件60的第一端60A对应相连。第二电感线圈402的第二端402B同时与第一电感线圈401的第二端401B和储能元件60的第二端60B相连。第一开关控制元件30的第二电源端(图中未示出)和第二开关控制元件50的第二电源端(图中未示出)都与储能元件60的第二端60B相连。
图2a和图2b所示的电路连接关系仅为示意性的一种连接关系,本领域技术人员还可以对其中的部分元器件的连接方式进行各种灵活改动,本发明对此不作限定。例如,第一开关控制元件30显然也可以连接在第一整流电路20的第四端20D与第一电感线圈401的第二端401B之间;与之类似地,第二开关控制元件50显然也可以连接在第二电感线圈402的第二端402B与储能元件60的第二端60B之间。
另外,储能元件60的第一端60A与第一开关控制元件30的第一电源端30C和第二开关控制元件50的第一电源端50C相连,以及储能元件60的第二端60B与第一开关控制元件30的第二电源端(图中未示出)和第二开关控制元件50的第二电源端(图中未示出)相连的目的在于向第一开关控制元件30以及第二开关控制元件50提供电能,本领域技术人员还可以灵活选择其它实现方式,例如,一种方式,第一开关控制元件30以及第二开关控制元件50采用无源器件实现,在该种方式下,可以省去储能元件60的第一端60A与第一开关控制元件30的电源端30C和第二开关控制元件50的电源端50C之间,以及储能元件60的第二端60B与第一开关控制元件30的第二电源端(图中未示出)和第二开关控制元件50的第二电源端(图中未示出)之间的电路连接。另一种方式,本实施例中的储能装置进一步包括与第一开关控制元件30(即与第一开关控制元件30的第一电源端30C和第二电源端)和第二开关控制元件50(即与第二开关控制元件50的第一电源端50C和第二电源端)相连的电池元件,在该种方式下,也可以省去储能元件60的第一端60A与第一开关控制元件30的电源端30C和第二开关控 制元件50的电源端50C之间,以及储能元件60的第二端60B与第一开关控制元件30的第二电源端(图中未示出)和第二开关控制元件50的第二电源端(图中未示出)之间的电路连接。另外,第一开关控制元件30和/或第二开关控制元件50还可以同时与电池元件和储能元件相连,以便根据实际情况选择电池元件和储能元件中的至少一个进行供电,例如,可以设置为当储能元件60有电时,优先利用储能元件60供电;或者,当电池元件有电时,优先利用电池元件供电等。总之,本领域技术人员可以对上述电路结构进行各种变形,只要能够实现通过耦合式电感线圈组提高电能输出的目的即可。
而且,在图2a和图2b所示的电路中,储能元件60的第一端60A和第二端60B既可以输入电能也可以向外提供电能,在其它的实施例中,储能元件60还可以具备单独的电能输出端,由该电能输出端与第一开关控制元件30的第一电源端30C和第二电源端,以及第二开关控制元件50的第一电源端50C和第二电源端相连。
下面结合上述的电路连接关系,介绍实施例一的储能装置的工作原理:其中,第一摩擦发电机10用于将作用在其上的机械能转换为电能。第一整流电路20用于对第一摩擦发电机10输出的电能进行整流处理。第一开关控制元件30,用于根据第一整流电路20输出的电能值,控制第一整流电路20与第一电感线圈401之间的断开或连通;第一电感线圈401和第二电感线圈402形成耦合式电感线圈组,用于存储第一整流电路20输出的电能;第二开关控制元件50,用于根据第二电感线圈402输出的电能值,控制第二电感线圈402与储能元件60的断开或连通;储能元件60,用于存储由第一电感线圈401和第二电感线圈402形成的耦合式电感线圈组输出的电能。
实施例一的储能装置的工作过程具体包含下述几个步骤:
步骤一:当外力作用在第一摩擦发电机10上时,第一摩擦发电机10将作用在其上的机械能转换为电能,并通过第一摩擦发电机10的第一端10A和第二端10B输出至第一整流电路20;
步骤二:第一整流电路20通过其第一端20A和第二端20B接收到上述电能后,对该电能进行整流处理,并通过其第三端20C和第四端20D输出至第一开关控制元件30的第一端30A和第一电感线圈401的第二端401B;
步骤三:在上述步骤一和步骤二进行的过程中,第一开关控制元件30利用经过储能元件60的第一端60A和第二端60B输出至其第一电源端30C和第二电源端的电能,实时监测第一整流电路20输出的电能值,当监测到的第一整流电路20输出的电能值小于第一预设阈值时,第一开关控制元件30中的开关保持在常开状态,以使第一整流电路20与第一电感线圈401之间的电路维持在断开状态;当监测到的第一整流电路20输出的电能值大于或者等于第一预设阈值时,第一开关控制元件30中的开关从常开状态切换为闭合状态,以使第一整流电路20与第一电感线圈401连通,进而使第一整流电路20输出的电能存储在第一电感线圈401中。
例如,以电压参数为例,假如第一开关控制元件30中的第二预设电压阈值(即第一预设阈值)为100V,若第一整流电路20输出的电压值大于或者等于第二预设电压阈值100V,则第一整流电路20通过第一开关控制元件30与第一电感线圈401连通,进而使第一整流电路20输出的电能存储在第一电感线圈401中,若第一整流电路20输出的电压值小于第二预设电压阈值100V,则第一开关控制元件30使第一整流电路20与第一电感线圈401断开。
步骤四:第一电感线圈401通过其第一端401A和第二端401B接收到第一整流电路20输出的电能后,对上述电能进行存储。由于第一电感线圈401与第二电感线圈402形成耦合式电感线圈组,故第一电感线圈401中存储的电能会输出至第二电感线圈402中进行存储。优选地,如图2b所示,第一电感线圈401和第二电感线圈402之间通过异名端相互连接的方式进行耦合,以提高由第一电感线圈401和第二电感线圈402构成的耦合式电感线圈组的电能存储率。
步骤五:在上述步骤一至步骤四进行的过程中,第二开关控制元件50利用经过储能元件60的第一端60A和第二端60B输出至其第一电源端50C和第二电源端的电能,实时监测第二电感线圈402输出的电能值,若第二电感线圈402输出的电能值大于或者等于第二预设阈值,第二开关控制元件50使第二电感线圈402与储能元件60连通,进而使第二电感线圈402输出的电能存储在储能元件60中;若第二电感线圈402输出的电能值小于第二 预设阈值,第二开关控制元件50使第二电感线圈402与储能元件60断开。
以电压参数为例,假如第二开关控制元件50中的第二预设电压阈值(即第二预设阈值)为100V,若第二电感线圈402输出的电压值大于或者等于第一预设电压阈值100V,则第二电感线圈402通过第二开关控制元件50与储能元件60连通,使第二电感线圈402输出的电能存储在储能元件60中;若第二电感线圈402输出的电压值小于第一预设电压阈值100V,第二开关控制元件50使第二电感线圈402与储能元件60断开。由于摩擦发电机输出的电压较高,通常情况下,每次有效的发电过程所产生的电压值都会高于100V,因此,将第二预设阈值设置为100V时,可以使每次有效的发电过程产生的电能都得以存储。当然,本领域技术人员也可以根据需要对第二预设阈值的具体数值进行灵活调整,而且,该第二预设阈值也可以通过电流的形式表示。
应当理解的是,上述步骤一至步骤五是一个循环往复的过程,这样就实现了为储能元件60补充供电的功能,弥补了储能元件60为外界提供电能的损耗,从而延长了整个储能装置的使用寿命。
另外,根据阻抗匹配原则,当信号源内阻与负载阻抗匹配时输出功率最大。因此,在实施例一中,利用由第一电感线圈401和第二电感线圈402形成的耦合式电感线圈组来使第一摩擦发电机10与储能元件60的阻抗相互匹配,进而使第一摩擦发电机10的输出功率达到最大。
具体地,根据阻抗匹配原则,通过下述方式确定耦合式电感线圈组的相关参数:
首先,根据内阻法测量第一摩擦发电机的阻抗(即内部阻抗)。具体地,先将第一摩擦发电机与不同阻值的电阻相连,测试电阻的分压值,然后结合公式P=U2/R绘制出不同阻值的电阻的功率与阻值关系图,其中,P为功率,U为电压,R为电阻,如图3所示。根据第一摩擦发电机的阻抗与其连接的电阻的阻抗相等时输出功率最大的原则,找到功率密度最大点后,读取对应的阻值,该阻值即为第一摩擦发电机的阻抗。本领域技术人员还可以灵活采取其它多种方式来确定第一摩擦发电机的阻抗,本发明对具体的确定方式不作限定。此外,在测得不同电阻的分压值后,也可以通过公式I=U/R,先求 得I,然后根据公式P=I2R绘制出不同阻值的电阻的功率与阻值关系图,其中,P为功率,I为电流,R为电阻,如图3所示。
然后,确定储能元件的阻抗。具体地,可以根据实际应用中使用的储能元件的参数情况来确定储能元件的阻抗,也可以通过其它各种方式来确定储能元件的阻抗。
最后,根据第一摩擦发电机的阻抗以及储能元件的阻抗来确定耦合式电感线圈组的参数。具体地,可以将上述第一摩擦发电机的阻抗理解为初级阻抗,将上述储能元件的阻抗理解为次级阻抗,根据已知公式可知,初级阻抗与次级阻抗的阻抗比的关系为:初级阻抗=(n×n)次级阻抗,其中,n为第一电感线圈和第二电感线圈之间的匝数比。由此确定出第一电感线圈和第二电感线圈之间的匝数比为n:1。又根据公式L=N2/Rg=μ0AcN2/lg,即可确定第一电感线圈的电感量L1=N2/Rg=μ0Acn2/lg,以及第二电感线圈的电感量L2=N2/Rg=1/Rg=μ0Ac/lg。其中,N为线圈匝数,Rg为磁阻,μ0为磁导率常数,Ac为磁芯截面积,lg为间隙长度。上式中,磁导率常数μ0、磁芯截面积Ac、间隙长度lg为已知量,与选用的磁芯的材质、磁芯几何尺寸有关。
由此可见,在本实施例中,通过为耦合式电感线圈组选择合适的参数,使第一摩擦发电机的阻抗与储能元件的阻抗相互匹配,从而使第一摩擦发电机的输出功率达到最大值,有效减少了因阻抗不匹配所导致的电能浪费,进而能够高效地为储能元件补充电能。
另外,实施例一中设置有第一开关控制元件,通过第一开关控制元件能够监测第一整流电路输出的电能值,并仅在第一整流电路输出的电能值高于第一预设阈值时向第一电感线圈存储电能。通过该种方式,当第一摩擦发电机在无意间受到微小振动而发电时,由于产生的电能很小、不足以接通第一开关控制元件,因此避免了反复多次充电的情况发生,对于延长储能装置内部电子器件的使用寿命大有裨益。另外,本领域技术人员也可以对实施例一进行各种改动和变形。例如,在实施例一的基础上,进一步将第一开关控制元件设置为无源器件或能够通过摩擦发电机自供电的器件,从而达到既无需额外消耗储能元件的电能,又能够监测第一整流电路输出的电能值的目的。
实施例二、
图4示出了本发明实施例二提供的一种基于摩擦发电机的储能装置的结构图,如图4所示,该储能装置包括:第一摩擦发电机10、第一整流电路20、第一开关控制元件30、第一电感线圈401、第二电感线圈402、第二开关控制元件50、储能元件60、第二摩擦发电机70以及第二整流电路80。由此可见,实施例二在实施例一的基础上,进一步增加了第二摩擦发电机70和第二整流模块80,除此之外,实施例二的其余部分与实施例一均相同,下面仅对实施例二与实施例一的不同部分进行描述,对于相同部分此处不再赘述。
其中,第二摩擦发电机70至少具有两个端,分别为第一端70A和第二端70B。第二整流模块80具有四个端,分别为第一端80A、第二端80B、第三端80C和第四端80D。具体地,第二摩擦发电机70的第一端70A和第二端70B分别与第二整流模块80的第一端80A和第二端80B对应相连,用于将作用在其上的机械能转换为电能输出至第二整流模块80。第二整流模块80的第三端80C和第四端80D分别与储能元件60的第一端60A和第二端60B对应相连,用于对第二摩擦发电机70输出的电能进行整流处理,从而为储能元件60提供电能。
在实施例二中,之所以设置第二摩擦发电机70和第二整流模块80是为了避免储能元件60中剩余的电能不足以驱动第一开关控制元件30和/或第二开关控制元件50,导致第一开关控制元件30无法监测第一整流电路20输出的电能值和/或第二开关控制元件50无法监测第二电感线圈402输出的电能值的情况发生,也就是说,当储能元件60中剩余的电能很少时,可以通过第二摩擦发电机70将作用在其上的机械能转换为电能,并通过第二整流模块80对其进行整流处理后,为储能元件60提供电能,进而为第一开关控制元件30和/或第二开关控制元件50提供电能,以保证整个储能装置的正常工作。
另外,本领域技术人员还可以对上述各个实施例进行各种灵活改动和变形。例如,在上述实施例中,第一开关控制元件集监测和通断功能于一身,即:既要监测第一整流电路输出的电能值,又要根据监测到的第一整流电路输出的电能值进行断开或闭合。在本发明其它的实施例中,第一开关控制元 件也可以通过单纯的开关电路实现,此时,可以额外再设置一个开关控制器,由开关控制器负责监测第一整流电路输出的电能值,并根据监测到的第一整流电路输出的电能值控制第一开关控制元件的通断,开关控制器可以选择由储能元件供电和/或由电池元件供电等多种供电方式。与之类似地,第二开关控制元件也可以通过单纯的开关电路实现,由开关控制器负责监测耦合式电感线圈组中的电能值,并根据监测结果控制第二开关控制元件的通断,此时,可以设置两开关控制器,分别控制第一开关控制元件和第二开关控制元件,也可以设置一个开关控制器,同时控制第一开关控制元件和第二开关控制元件。当仅设置一个开关控制器时,仅需为一个开关控制器供电,从而可以节约电能消耗;当设置两个开关控制器时,两个开关控制器还可以采取主备工作方式,即优先由主用开关控制器同时控制第一开关控制元件和第二开关控制元件,并在主用开关控制器故障或无电时转由备用开关控制器控制第一开关控制元件和第二开关控制元件,从而提高储能装置的耐用性。
另外,在上述各个实施例中,第一开关控制元件的通断可以完全取决于第一整流电路输出的电能值,即:实时监测第一整流电路输出的电能值,只要监测到的第一整流电路输出的电能值小于第一预设阈值则断开,大于或等于第一预设阈值则闭合,此时,第一开关控制元件内部的控制逻辑为:在第一整流电路输出的电能值小于第一预设阈值时断开,以及在第一整流电路输出的电能值大于或等于第一预设阈值时闭合。除此之外,第一开关控制元件还可以通过常开式开关来实现,即:第一开关控制元件默认处于断开状态,只有当监测到的第一整流电路输出的电能值大于或等于所述第一预设阈值时才转为闭合状态,此时,由于第一开关控制元件默认为断开状态,因此,其内部的控制逻辑为:当第一整流电路输出的电能值大于或等于第一预设阈值时闭合。与之类似地,第一开关控制元件还可以通过常闭式开关来实现,即:第一开关控制元件默认处于闭合状态,只有当监测到的第一整流电路输出的电能值小于第一预设阈值时才转为断开状态,此时,由于第一开关控制元件默认为闭合状态,因此,其内部的控制逻辑为:当第一整流电路输出中的电能值小于第一预设阈值时断开。总之,本领域技术人员可以对第一开关控制元件的具体实现细节进行灵活调整,类似地,第二开关控制元件也可以相应地通过多种方式实现,此处不再赘述。
为了便于实施本发明,下面给出第一开关控制元件的两种可能的具体结构:
图5a示出了实施例一中的储能装置包含第一种结构的第一开关控制元件时的结构示意图,图5b示出了实施例二中的储能装置包含第一种结构的第一开关控制元件时的结构示意图。如图5a和图5b所示,在第一开关控制元件30的第一种结构中,进一步包括:比较器301、晶体管开关302、第一电阻303、第二电阻304和第三电阻305,其中,比较器301包括第一端301A、第二端301B、第三端301C、第四端301D和第五端301E,晶体管开关包括第一端302A、第二端302B和第三端302C,第一电阻303包括第一端303A和第二端303B,第二电阻304包括第一端304A和第二端304B,第三电阻305包括第一端305A和第二端305B。
具体地,比较器301的第二端301B同时与第三电阻305的第一端305A和晶体管开关302的第一端302A相连作为第一开关控制元件30的第一端30A与第一整流电路20的第三端20C相连;晶体管开关302的第二端302B作为第一开关控制元件30的第二端30B与第一电感线圈401的第一端401A相连;比较器301的第三端301C与第一电阻303的第一端303A相连作为第一开关控制元件30的第一电源端30C与储能元件60的第一端60A相连;比较器301的第四端301D同时与第二电阻304的第二端304B和第三电阻305的第二端305B相连作为第一开关控制元件30的第二电源端与储能元件60的第二端60B相连;比较器301的第一端301A同时与第一电阻303的第二端303B和第二电阻304的第一端304A相连;比较器301的第五端301E与晶体管开关302的第三端302C相连。
其中,晶体管开关302可以是NMOS晶体管等各类能够实现开关功能的元器件。由此可见,第一种形式的第一开关控制元件主要利用比较器和晶体管开关实现通断功能,其内部工作原理如下:比较器301的第一端301A(也叫比较器的负端)用于设置基准电压,其中,该基准电压是通过合理设置储能元件60的输出电压值以及第一电阻303和第二电阻304的阻值,使输入比较器301的第一端301A的基准电压的数值与上文提到的第一预设阈值相同。另外,比较器301的第二端301B(也叫比较器的正端)用于接收 比较电压(即第一整流电路20输出的电压值),该比较电压是由第一整流电路20整流后输出的正向电压,当比较电压大于或者等于基准电压时,比较器301输出高电平,从而使晶体管开关302导通,进而使第一整流电路20输出的电能存储至第一电感线圈401,反之,当比较电压小于基准电压时,比较器301输出低电平,从而使晶体管开关302保持断开,进而使第一整流电路20与第一电感线圈401断开。其中,第三电阻305可以设置为接地,以防止出现悬空状态而使比较器301误触发。
图6a示出了实施例一中的储能装置包含第二种结构的第一开关控制元件时的结构示意图,图6b示出了实施例二中的储能装置包含第二种结构的第一开关控制元件时的结构示意图。如图6a和图6b所示,在第一开关控制元件30的第二种结构中,进一步包括:比较器301、晶体管开关302、第一电阻303、第二电阻304、第三电阻305和第四电阻306,其中,比较器301包括第一端301A、第二端301B、第三端301C、第四端301D和第五端301E,晶体管开关302包括第一端302A、第二端302B和第三端302C,第一电阻303包括第一端303A和第二端303B,第二电阻304包括第一端304A和第二端304B,第三电阻305包括第一端305A和第二端305B,第四电阻306包括第一端306A和第二端306B。
具体地,第四电阻306的第一端306A与晶体管开关302的第一端302A相连作为第一开关控制元件30的第一端30A与第一整流电路20的第三端20C相连;晶体管开关302的第二端302B作为第一开关控制元件30的第二端30B与第一电感线圈401的第一端401A相连;比较器301的第三端301C与第一电阻303的第一端303A相连作为第一开关控制元件30的第一电源端30C与储能元件60的第一端60A相连;比较器301的第四端301D同时与第二电阻304的第二端304B和第三电阻305的第二端305B相连作为第一开关控制元件30的第二电源端与储能元件60的第二端60B相连;比较器301的第一端301A同时与第一电阻303的第二端303B和第二电阻304的第一端304A相连;比较器301的第二端301B同时与第三电阻305的第一端305A和第四电阻306的第二端306B相连;比较器301的第五端301E与晶体管开关302的第三端302C相连。
其中,晶体管开关302可以是NMOS晶体管等各类能够实现开关功能的元器件。由此可见,第二种形式的第一开关控制元件也是利用比较器和晶体管开关来实现的,其与第一种形式的区别在于增加了第四电阻306。其内部工作原理如下:比较器301的第一端301A(也叫比较器的负端)用于设置基准电压,其中,该基准电压是通过合理设置储能元件60的输出电压值以及第一电阻303和第二电阻304的阻值,使输入比较器301的第一端301A的基准电压的数值与上文提到的第一预设阈值相同。另外,比较器301的第二端301B(也叫比较器的正端)用于接收比较电压(即第一整流电路20输出的电压值),该比较电压是由第一整流电路20整流后输出的正向电压,且该正向电压经第三电阻305和第四电阻306分压后输入比较器301的第二端301B,当比较电压大于或者等于基准电压时,比较器301输出高电平,从而使晶体管开关302导通,进而使第一整流电路20输出的电能存储至第一电感线圈401,反之,当比较电压小于基准电压时,比较器301输出低电平,从而使晶体管开关302保持断开,进而使第一整流电路20与第一电感线圈401断开。其中,第三电阻305和第四电阻306的主要作用在于分压,以便调节输入比较器301的第二端301B的电压范围,防止因输入电压过高而使比较器301损坏。
可选地,第三电阻305与第四电阻306之间的分压比的数值范围为1:100-100:1。更优选地,第三电阻305与第四电阻306之间的分压比的数值范围为1:20-20:1。
另外,在上述的各个实施例中,第二开关控制元件50还可以灵活通过二极管、整流桥等各种形式实现。
若第二开关控制元件50采用二极管实现时,二极管具有两端,分别为第一端(正端)和第二端(负端),其中,二极管的第一端(即第二开关控制元件50的第一端50A)和第二端(即第二开关控制元件50的第二端50B’)分别与第二电感线圈402的第一端402A’和储能元件60的第一端60A对应相连,当第二电感线圈402中的电能值大于或者等于二极管正向导通电压(即第二预设阈值)时,第二电感线圈402储能元件60连通,反之,当第二电感线圈402中的电能值小于二极管的正向导通电压(即第二预设阈值) 时,第二电感线圈402储能元件60断开。
若第二开关控制元件50采用整流桥实现时,整流桥具有四端,分别为第一端、第二端、第三端和第四端,其中,整流桥的第一端和第二端分别与第二电感线圈402的第一端402A’和第二端402B对应相连,整流桥的第三端和第四端分别与储能元件60的第一端60A和第二端60B对应相连,当第二电感线圈402中的电能值大于或者等于整流桥导通电压(即第二预设阈值)时,第二电感线圈402储能元件60连通,反之,当第二电感线圈402中的电能值小于整流桥的导通电压(即第二预设阈值)时,第二电感线圈402储能元件60断开。
图7示出了本发明提供的基于摩擦发电机的储能装置的另一种结构图,如图7所示,该储能装置包括:第一摩擦发电机10、第一整流电路20、第一开关控制元件30’、相互耦合的第一电感线圈401’和第二电感线圈402’、第二开关控制元件50’以及储能元件60。其中,第一电感线圈401’和第二电感线圈402’统称为耦合式电感线圈组40’,且第一电感线圈401’和第二电感线圈402’均为匝数可调的抽头线圈。
第一开关控制元件30’,其分别与第一整流电路20和第一电感线圈401’相连,用于根据监测到的第一整流电路20输出的电能值控制第一整流电路20与第一电感线圈401’的连通或断开,其中,当第一开关控制元件30’控制第一整流电路20与第一电感线圈401’连通时,进一步根据第一整流电路20输出的电能值确定与第一整流电路20连通的第一电感线圈401’的匝数。第一电感线圈401’,其通过第一开关控制元件30’与第一整流电路20相连,用于在其与第一整流电路20连通时存储第一整流电路20输出的电能。第二开关控制元件50’,其分别与第二电感线圈402’和储能元件60相连,用于根据监测到的第二电感线圈402’中的电能值控制第二电感线圈402’与储能元件60的连通或断开,其中,当第二开关控制元件50’控制第二电感线圈402’与储能元件60连通时,进一步根据第二电感线圈402’中的电能值确定与储能元件60连通的第二电感线圈402’的匝数。储能元件60,其通过第二开关控制元件50’与第二电感线圈402’相连,用于在其与第二电感线圈402’连通时存储第二电感线圈402’中的电能。
其中,第一电感线圈和第二电感线圈可以通过空心式耦合电感来实现。具体地,为了便于调节第一电感线圈和第二电感线圈的匝数,可以将其设置为多抽头的电感线圈,也可以将其设置为滑动抽头的电感线圈。另外,第一电感线圈和第二电感线圈可以分别通过一个电感线圈来实现,也可以分别通过相互并联和/或相互串联的一组或多组电感线圈来实现。
由此可见,在本发明提供的基于摩擦发电机的储能装置中,第一电感线圈和第二电感线圈为匝数可调的抽头线圈,因此,还可以根据第一摩擦发电机所产生的电能的大小来灵活调整第一电感线圈和第二电感线圈之间的匝数比,从而达到最佳的阻抗匹配效果。因此,通过本发明提供的储能装置,能够及时补充储能元件消耗的电能,使储能装置一直处于电量充足的状态。
下面结合几个具体实施例对本发明中的基于摩擦发电机的储能装置进行详细介绍:
实施例三、
图8a和图8b示出了本发明实施例三提供的一种基于摩擦发电机的储能装置的结构图。其中,图8a示出了模块化的结构图,图8b示出了以电子元器件表示的结构图。该储能装置包括:第一摩擦发电机10、第一整流电路20、第一开关控制元件30’、第一电感线圈401’、第二电感线圈402’、第二开关控制元件50’和储能元件60。
下面详细介绍上述每个部分之间的电路连接关系:
如图8a和图8b所示,第一摩擦发电机10包括两个端,分别为第一端10A和第二端10B。第一整流电路20包括四个端,分别为第一端20A、第二端20B、第三端20C和第四端20D。第一开关控制元件30’包括三个端,分别为第一端30A’、第二端30B’和第一电源端30C’,在实际情况中,第一开关控制元件30’还包括第二电源端(图中未示出),且其第二电源端通常为接地端,与第一开关控制元件30’的第一电源端30C’配合使用,当然,第一开关控制元件30’的第二电源端也可接其它参考电位点,此处不做限定。第一电感线圈401’包括三个端,分别为第一端401A’、第二端401B’和第三端401C’。第二电感线圈402’包括三个端,分别为第一端402A’、第二端402B’和第三端402C’。第二开关控制元件50’包括三个端,分别为第一端50A’、 第二端50B’和第一电源端50C’,在实际情况中,第二开关控制元件50’还包括第二电源端(图中未示出),且其第二电源端通常为接地端,与第二开关控制元件50’的第一电源端50C’配合使用,当然,第二开关控制元件50’的第二电源端也可接其它参考电位点,此处不做限定。储能元件60包括两个端,分别为第一端60A和第二端60B。
具体地,第一摩擦发电机10的第一端10A和第二端10B分别与第一整流电路20的第一端20A和第二端20B对应相连。第一整流电路20的第三端20C和第四端20D分别与第一开关控制元件30’的第一端30A’和第一电感线圈401’的第二端401B’对应相连。第一开关控制元件30’的第二端30B’同时与第一电感线圈401’的第一端401A’和第三端401C’相连,第一开关控制元件30’的第一电源端30C’同时与第二开关控制元件50’的第一电源端50C’和储能元件60的第一端60A相连。第二开关控制元件50’的第一端50A’同时与第二电感线圈402’的第一端402A’和第三端402C’相连,第二开关控制元件50’的第二端50B’与储能元件60的第一端60A相连。第二电感线圈402’的第二端402B’同时与第一电感线圈401’的第二端401B’和储能元件60的第二端60B相连。第一开关控制元件30’的第二电源端(图中未示出)和第二开关控制元件50’的第二电源端(图中未示出)都与储能元件60的第二端60B相连。
图8a和图8b所示的电路连接关系仅为示意性的一种连接关系,本领域技术人员还可以对其中的部分元器件的连接方式进行各种灵活改动,本发明对此不作限定。例如,第一开关控制元件30’显然也可以连接在第一整流电路20的第四端20D与第一电感线圈401’的第二端401B’之间;与之类似地,第二开关控制元件50’显然也可以连接在第二电感线圈402’的第二端402B’与储能元件60的第二端60B之间。
另外,储能元件60的第一端60A与第一开关控制元件30’的第一电源端30C’和第二开关控制元件50’的第一电源端50C’相连,以及储能元件60的第二端60B与第一开关控制元件30’的第二电源端(图中未示出)和第二开关控制元件50’的第二电源端(图中未示出)相连的目的在于向第一开关控制元件30’以及第二开关控制元件50’提供电能,本领域技术人员还可以灵 活选择其它实现方式,例如,一种方式,第一开关控制元件30’以及第二开关控制元件50’采用不需要电能驱动的无源器件实现或通过单独的自供电器件实现(例如在第一开关控制元件30’以及第二开关控制元件50’的内部进一步设置摩擦发电机),在该种方式下,可以省去储能元件60的第一端60A与第一开关控制元件30’的第一电源端30C’和第二开关控制元件50’的第一电源端50C’,以及储能元件60的第二端60B与第一开关控制元件30’的第二电源端(图中未示出)和第二开关控制元件50’的第二电源端(图中未示出)之间的电路连接。另一种方式,本实施例中的储能装置进一步包括与第一开关控制元件30’(即第一开关控制元件30’的第一电源端30C’和第二电源端)和第二开关控制元件50’(即第二开关控制元件50’的第一电源端50C’和第二电源端)相连的电池元件,在该种方式下,也可以省去储能元件60的第一端60A与第一开关控制元件30’的第一电源端30C’和第二开关控制元件50’的第一电源端50C’,以及储能元件60的第二端60B与第一开关控制元件30’的第二电源端(图中未示出)和第二开关控制元件50’的第二电源端(图中未示出)之间的电路连接。
另外,第一开关控制元件30’和/或第二开关控制元件50’还可以同时与电池元件和储能元件相连,以便根据实际情况选择电池元件和储能元件中的至少一个进行供电,例如,可以设置为当储能元件60有电时,优先利用储能元件60供电;或者,当电池元件有电时,优先利用电池元件供电等。总之,本领域技术人员可以对上述电路结构进行各种变形,只要能够实现通过耦合式电感线圈组提高电能输出的目的即可。
而且,在图8a和图8b所示的电路中,储能元件60的第一端60A和第二端60B既可以输入电能也可以向外提供电能,在其它的实施例中,储能元件60还可以具备单独的电能输出端,由该电能输出端与第一开关控制元件30’的第一电源端30C’和第二电源端,以及第二开关控制元件50’的第一电源端50C’和第二电源端对应相连。
另外,需要强调的是,图8a以及图8b中的第一电感线圈401’和第二电感线圈402’均为滑动抽头线圈,当滑动抽头滑动到不同位置时,分别对应于不同的线圈匝数。例如,第一电感线圈401’的第三端401C’在实际情况中为 滑动抽头端,通过调整该端的滑动抽头的位置能够调整第一电感线圈401’的线圈匝数以及电感量。相应地,第一开关控制元件30’进一步包括:与第一电感线圈401’的第三端401C’处的滑动抽头相连的第一滑动调节模块(图中未示出),因此,第一开关控制元件30’通过控制第一滑动调节模块能够灵活控制与第一整流电路20连通的第一电感线圈401’的匝数和电感量。与之类似地,第二电感线圈402’的第三端402C’在实际情况中也为滑动抽头端,通过调整该端的滑动抽头的位置能够调整第二电感线圈402’的线圈匝数以及电感量。相应地,第二开关控制元件50’进一步包括:与第二电感线圈402’的第三端402C’处的滑动抽头相连的第二滑动调节模块(图中未示出),因此,第二开关控制元件50’通过控制第二滑动调节模块能够灵活控制与储能元件60连通的第二电感线圈402’的匝数和电感量。
下面结合上述的电路连接关系,介绍实施例三的储能装置的工作原理:其中,第一摩擦发电机10用于将作用在其上的机械能转换为电能。第一整流电路20用于对第一摩擦发电机10输出的电能进行整流处理。第一开关控制元件30’,用于根据第一整流电路20输出的电能值,控制第一整流电路20与第一电感线圈401’的连通或断开,其中,当第一开关控制元件30’控制第一整流电路20与第一电感线圈401’连通时,进一步根据第一整流电路20输出的电能值确定与第一整流电路20连通的第一电感线圈401’的匝数(也就是确定与第一电感线圈401’的第三端401C’处的滑动抽头相连的第一滑动调节模块的位置)。第一电感线圈401’通过第一开关控制元件30’与第一整流电路20相连,用于在其与第一整流电路20连通时存储第一整流电路20输出的电能。另外,由于第一电感线圈401’和第二电感线圈402’形成耦合式电感线圈组,因此,第一电感线圈401’中存储的电能会逐渐转移到第二电感线圈402’中。第二开关控制元件50’,用于根据第二电感线圈402’输出的电能值,控制第二电感线圈402’与储能元件60的连通或断开,其中,当第二开关控制元件50’控制第二电感线圈402’与储能元件60连通时,进一步根据第二电感线圈402’中的电能值确定与储能元件60连通的第二电感线圈402’的匝数(也就是确定与第二电感线圈402’的第三端402C’处的滑动抽头相连的第二滑动调节模块的位置)。储能元件60,其通过第二开关控制元件50’与第二电感线圈402’相连,用于在其与第二电感线圈402’连通时存储第二电 感线圈402’中的电能。
实施例三的储能装置的工作过程具体包含下述几个步骤:
步骤一至步骤三与实施例一的基本相同,但在本实施例中,在第一整流电路20与第一电感线圈401’连通的过程中,第一开关控制元件30’进一步根据第一整流电路20输出的电能值确定与第一整流电路20连通的第一电感线圈401’的匝数。为此,预先将大于或等于第一连通阈值的电能区间划分为多个第一子区间,为每个第一子区间分别设置对应的第一电感线圈401’的匝数,其中,每个第一子区间分别对应不同的第一电感线圈401’的匝数。相应地,根据第一整流电路20当前输出的电能值所属的第一子区间来确定对应的第一电感线圈401’的匝数。另外,为了避免因第一整流电路20的电能值上下波动所导致的在多个第一子区间对应的匝数之间频繁切换的问题,可以预先设置一个切换阈值,当第一整流电路20的电能值所属的区间范围从其中的一个第一子区间(即:当前子区间)变化到相邻的另一第一子区间(即:变化后子区间)时,需要将第一整流电路20的当前电能值与当前子区间和变化后子区间之间的区间阈值进行比较,只有当二者之间的差值大于预设的切换阈值时,才将第一电感线圈401’的匝数相应切换为另一相邻子区间所对应的匝数。
为了便于说明,假设通过一个区间阈值800V将大于或等于第一连通阈值100V的电能区间划分为两个第一子区间,分别是“100V至800V”(即该第一子区间的范围为大于或等于100V且小于800V)以及“800V以上”(即该第一子区间的范围为大于或等于800V),其中,“100V至800V”的第一子区间对应的线圈匝数为N1,“800V以上”的第一子区间对应的线圈匝数为N2,N1、N2均为自然数,且N1小于N2。在具体实施时,当第一整流电路20与第一电感线圈401’刚刚连通时,第一整流电路20输出的电能值可能处于“100V至800V”的第一子区间,因此,此时,第一开关控制元件30’通过控制第一滑动调节模块使第一电感线圈401’的匝数为N1,例如,可以通过控制第一滑动调节模块使第一电感线圈401’的第三端401C’处的滑动抽头位于线圈的中间位置,从而仅使线圈的下半部分工作。当第一整流电路20与第一电感线圈401’连通一段时间后,第一整流电路20输出的电能值可能处 于“800V以上”的第一子区间,因此,此时,第一开关控制元件30’通过控制第一滑动调节模块使第一电感线圈401’的匝数为N2,例如,可以通过控制第一滑动调节模块使第一电感线圈401’的第三端401C’处的滑动抽头位于线圈的顶端位置,从而使整个线圈全部工作。
在上述过程中,为了避免由于第一整流电路20输出的电能值在800V上下波动所导致的频繁切换第一电感线圈401’的匝数的情况发生,可以预先将上文提到的切换阈值设置为50V,只有当第一整流电路20输出的电能值的波动幅度大于该切换阈值时,才调整其线圈匝数。例如,当第一整流电路20输出的电能值位于100V至800V的第一子区间,即第一电感线圈401’的匝数为N1时,只有当电能值波动到850V时才将第一电感线圈401’的匝数调整为N2;同理,当第一整流电路20输出的电能值位于“800V以上”的第一子区间,即第一电感线圈401’的匝数为N2时,只有当电能值波动到750V时才将第一电感线圈的匝数调整为N1。通过这样的方式,能够避免因第一整流电路20输出的电能值的小幅度波动而频繁切换线圈匝数。
步骤四:第一电感线圈401’通过其第一端401A’和第二端401B’接收到第一整流电路20输出的电能后,对上述电能进行存储。由于第一电感线圈401’与第二电感线圈402’形成耦合式电感线圈组,故第一电感线圈401’中存储的电能会输出至第二电感线圈402’中进行存储。优选地,如图8b所示,第一电感线圈401’和第二电感线圈402’之间通过异名端相互连接的方式进行耦合,以提高由第一电感线圈401’和第二电感线圈402’构成的耦合式电感线圈组的电能存储率。
步骤五:在上述步骤一至步骤四进行的过程中,第二开关控制元件50’利用经过储能元件60的第一端60A和第二端60B输出至其第一电源端50C’和第二电源端的电能,实时监测第二电感线圈402’输出的电能值,若第二电感线圈402’输出的电能值大于或等于预设的第二连通阈值,第二开关控制元件50’使第二电感线圈402’与储能元件60连通,进而使第二电感线圈402’输出的电能存储在储能元件60中;若第二电感线圈402’输出的电能值小于第二连通阈值,第二开关控制元件50’使第二电感线圈402’与储能元件60断开。
以电压参数为例,假如第二开关控制元件50’中预设的第二连通阈值为100V,若第二电感线圈402’输出的电压值大于或等于第二连通阈值100V,则第二电感线圈402’通过第二开关控制元件50’与储能元件60连通,使第二电感线圈402’输出的电能存储在储能元件60中;若第二电感线圈402’输出的电压值小于预设的第二连通阈值100V,第二开关控制元件50’使第二电感线圈402’与储能元件60断开。由于摩擦发电机输出的电压较高,通常情况下,每次有效的发电过程所产生的电压值都会高于100V,因此,将第二连通阈值设置为100V时,可以使每次有效的发电过程产生的电能都得以存储。当然,本领域技术人员也可以根据需要对第二连通阈值的具体数值进行灵活调整,而且,该第二连通阈值也可以通过电流的形式表示。另外,为了避免因第二电感线圈输出的电能值在100V上下波动所导致的频繁通断的问题,第二连通阈值除了可以是具体的点值之外,还可以是预设的一段阈值范围。而且,考虑到耦合式电感线圈内部的传输损耗,第二连通阈值也可以略小于第一连通阈值。
另外,在第二电感线圈402’与储能元件60连通的过程中,第二开关控制元件50’进一步根据第二电感线圈402’输出的电能值确定与储能元件60连通的第二电感线圈402’的匝数。具体地,在确定第二电感线圈402’的匝数时,可以灵活选取以下两种实现方式中的至少一种:
第一种实现方式与上述步骤三类似,预先将大于或等于第二连通阈值的电能区间划分为多个第二子区间,为每个第二子区间分别设置对应的第二电感线圈402’的匝数,其中,每个第二子区间分别对应不同的第二电感线圈402’的匝数。相应地,根据第二电感线圈402’中的电能值所属的第二子区间来确定对应的第二电感线圈402’的匝数。另外,为了避免因第二电感线圈402’的电能值上下波动所导致的在多个第二子区间对应的匝数之间频繁切换的问题,可以预先设置一个切换阈值,当第二电感线圈402’的电能值所属的区间范围从其中的一个第二子区间(即:当前子区间)变化到相邻的另一第二子区间(即:变化后子区间)时,需要将第二电感线圈402’的当前电能值与当前子区间和变化后子区间之间的区间阈值进行比较,只有当二者之间的差值大于预设的切换阈值时,才将第二电感线圈402’的匝数相应切换为另 一相邻子区间所对应的匝数。
为了便于说明,假设通过一个区间阈值800V将大于或等于第二连通阈值100V的电能区间划分为两个第二子区间,分别是“100V至800V”(即该第二子区间的范围为大于或等于100V且小于800V)以及“800V以上”(即该第二子区间的范围为大于或等于800V),其中,“100V至800V”的第二子区间对应的线圈匝数为N1’,“800V以上”的第二子区间对应的线圈匝数为N2’,N1’、N2’均为自然数,且N1’小于N2’。在具体实施时,当第二电感线圈402’与储能元件60刚刚连通时,第二电感线圈402’输出的电能值可能处于“100V至800V”的第二子区间,因此,此时,第二开关控制元件50’通过控制第二滑动调节模块使第二电感线圈402’的匝数为N1’,例如,可以通过控制第二滑动调节模块使第二电感线圈402’的第三端402C’处的滑动抽头位于线圈的中间位置,从而仅使线圈的下半部分工作。当第二电感线圈402’与储能元件60连通一段时间后,第二电感线圈输出的电能值可能处于“800V以上”的第二子区间,因此,此时,第二开关控制元件50’通过控制第二滑动调节模块使第二电感线圈402’的匝数为N2’,例如,可以通过控制第二滑动调节模块使第二电感线圈402’的第三端402C’处的滑动抽头位于线圈的顶端位置,从而使整个线圈全部工作。
在上述过程中,为了避免由于第二电感线圈402’输出的电能值在800V上下波动所导致的频繁切换第二电感线圈402’的匝数的情况发生,也可以预先将上文提到的切换阈值设置为50V,只有当第二电感线圈402’输出的电能值的波动幅度大于该切换阈值时,才调整其线圈匝数。例如,当第二电感线圈402’输出的电能值位于“100V至800V”的第二子区间,即第二电感线圈402’的匝数为N1’时,只有当电能值波动到850V时才将第二电感线圈402’的匝数调整为N2’;同理,当第二电感线圈402’输出的电能值位于“800V以上”的第二子区间,即第二电感线圈402’匝数为N2’时,只有当电能值波动到750V时才将第二电感线圈402’的匝数调整为N1’。通过这样的方式,能够避免因第二电感线圈402’输出的电能值的小幅度波动而频繁切换线圈匝数。
在上述示例中,用于划分第二子区间的区间阈值与用于划分第一子区间 的区间阈值相同,均为800V。在实际情况中,考虑到耦合式电感线圈组内部的传输损耗,用于划分第二子区间的区间阈值也可以略低于用于划分第一子区间的区间阈值,例如,设置为750V。而且,该区间阈值既可以是一个点值,也可以是一段范围。
由此可见,在上述的第一种实现方式中,通过监测第二电感线圈402’中的电能值的大小,并根据预设的对应关系设置第二电感线圈402’的匝数。在第二种实现方式中,还可以预先设置每个第一子区间对应的第一电感线圈401’的匝数与相应的第二电感线圈402’的匝数之间的对应关系,根据与第一整流电路20连通的第一电感线圈401’的匝数确定对应的第二电感线圈402’的匝数。例如,假设在步骤三中依然通过区间阈值800V将大于或等于第一连通阈值100V的电能区间划分为“100V至800V”以及“800V以上”两个第一子区间,其中,“100V至800V”的第一子区间所对应的第一电感线圈401’的匝数为N1,且对应的第二电感线圈402’的匝数为N1’;“800V以上”的第一子区间所对应的第一电感线圈401’的匝数为N2,且对应的第二电感线圈402’的匝数为N2’。也就是说,预先设置了第一电感线圈401’的匝数与第二电感线圈402’的匝数的匹配关系,当第一电感线圈401’的匝数为N1时,第二电感线圈402’的匝数必然为N1’;当第一电感线圈401’的匝数为N2时,第二电感线圈402’的匝数必然为N2’。根据预设的计算和实验能够确定出第一电感线圈401’的匝数与第二电感线圈402’的匝数之间的最佳匹配关系,由此既能够简化第二电感线圈402’的匝数的调节过程,又能够提高阻抗匹配效果。当然,上述的两种实现方式既可以单独使用,也可以结合使用,本发明对此不作限定。
与实施例一类似,也可以根据阻抗匹配原则,通过上面描述的方式确定耦合式电感线圈组的相关参数。
实施例四、
图9示出了本发明实施例四提供的一种基于摩擦发电机的储能装置的结构图。该储能装置包括:第一摩擦发电机10、第一整流电路20、第一开关控制元件30’、第一电感线圈401’、第二电感线圈402’、第二开关控制元件50’和储能元件60。实施例四与实施例三的主要区别在于:第一电感线圈 401’和第二电感线圈402’均为多抽头线圈,每个抽头分别对应于不同的线圈匝数。相应地,第一开关控制元件30’进一步包括:多个开关,每个开关分别与第一电感线圈401’中的一个抽头相连,第一开关控制元件30’通过控制多个开关的通断来控制第一整流电路20与第一电感线圈401’的连通或断开,以及控制与第一整流电路20连通的第一电感线圈401’的匝数;和/或,第二开关控制元件50’进一步包括:多个开关,每个开关分别与第二电感线圈402’中的一个抽头相连,第二开关控制元件50’通过控制多个开关的通断来控制第二电感线圈402’与储能元件60的连通或断开,以及控制与储能元件60连通的第二电感线圈402’的匝数。
下面介绍实施例四中的电路连接关系:
如图9所示,第一摩擦发电机10包括两个端,分别为第一端10A和第二端10B。第一整流电路20包括四个端,分别为第一端20A、第二端20B、第三端20C和第四端20D。第一开关控制元件30’包括四个端,分别为第一端30A’、第二端30B’、第一电源端30C’和第四端30D’,在实际情况中,第一开关控制元件30’还包括第二电源端(图中未示出),且其第二电源端通常为接地端,与第一开关控制元件30’的第一电源端30C’配合使用,当然,第一开关控制元件30’的第二电源端也可接其它参考电位点,此处不做限定;其中,第一开关控制元件进一步包括两个开关,分别为第一开关301’和第三开关302’,第一开关301’包括第一端、第二端和第三端,第三开关302’包括第一端、第二端和第三端,第一开关301’的第一端与第三开关302’的第一端相连作为第一开关控制元件30’的第一端30A’,第一开关301’的第二端作为第一开关控制元件30’的第二端30B’,第一开关301’的第三端和第三开关302’的第三端相连作为第一开关控制元件30’的第一电源端30C’,第三开关302’的第二端作为第一开关控制元件30’的第四端30D’。第一电感线圈401’包括三个端,分别为第一端401A’、第二端401B’和第三端401C’,其中,第一端401A’为第一抽头端,对应于整个线圈的全部匝数;第三端401C’为第二抽头端,对应于线圈的下半部分的匝数。与之类似地,第二开关控制元件50’包括四个端,分别为第一端50A’、第二端50B’、第一电源端50C’和第四端50D’,在实际情况中,第二开关控制元件50’还包括第二电源端(图 中未示出),且其第二电源端通常为接地端,与第二开关控制元件50’的第一电源端50C’配合使用,当然,第二开关控制元件50’的第二电源端也可接其它参考电位点,此处不做限定;其中,第二开关控制元件50’进一步包括两个开关,分别为第二开关501’和第四开关502’,第二开关501’包括第一端、第二端和第三端,第四开关502’包括第一端、第二端和第三端,第二开关501’的第一端作为第二开关控制元件50’的第一端50A’,第二开关501’的第二端与第四开关502’的第二端相连作为第二开关控制元件50’的第二端50B’,第二开关501’的第三端和第四开关502’的第三端相连作为第二开关控制元件50’的第一电源端50C’,第四开关502’的第一端作为第二开关控制元件50’的第四端50D’。第二电感线圈402’包括三个端,分别为第一端402A’、第二端402B’和第三端402C’,其中,第一端402A’为第一抽头端,对应于整个线圈的全部匝数;第三端402C’为第二抽头端,对应于线圈的下半部分的匝数。储能元件60包括第一端60A和第二端60B。
具体地,第一摩擦发电机10的第一端10A和第二端10B分别与第一整流电路20的第一端20A和第二端20B对应相连。第一整流电路20的第三端20C同时与第一开关301’的第一端和第三开关302’的第一端相连,第一整流电路20的第四端20D同时与第一电感线圈401’的第二端401B’和第二电感线圈402’的第二端402B’相连。第一开关301’的第二端与第一电感线圈401’的第一端401A’相连,第三开关302’的第二端与第一电感线圈401’的第三端401C’相连。第二开关501’的第一端与第二电感线圈402’的第一端402A’相连,第四开关502’的第一端与第二电感线圈402’的第三端402C’相连。第二开关501’的第二端和第四开关502’的第二端同时与储能元件60的第一端60A相连。储能元件60的第二端60B与第二电感线圈402’的第二端402B’相连。
应当注意的是,第一开关301’和第三开关302’还进一步包括第四端(图中未示出),第一开关301’的第四端和第三开关302’的第四端相连作为第一开关控制元件30’的第二电源端(图中未示出)。同样,第二开关501’和第四开关502’也进一步包括第四端(图中未示出),第二开关501’的第四端和第四开关502’的第四端相连作为第二开关控制元件50’的第二电源端(图中 未示出)。
图9所示的电路连接关系仅为示意性的一种连接关系,本领域技术人员还可以对其中的部分元器件的连接方式进行各种灵活改动,本发明对此不作限定。例如,第一电感线圈401’和第二电感线圈402’可以具有多个不同匝数的抽头,如具有三个、四个不同匝数的抽头,相应地,第一开关控制元件30’和第二开关控制元件50’也分别具有多个开关,如三个、四个开关。另外,与实施例三类似,第一开关控制元件30’和第二开关控制元件50’还可以分别包括一个电源端,该电源端既可以与储能元件60相连,也可以连接单独的电池元件。
下面结合上述的电路连接关系,介绍实施例四的储能装置的工作原理:其中,第一摩擦发电机10用于将作用在其上的机械能转换为电能。第一整流电路20用于对第一摩擦发电机10输出的电能进行整流处理。第一开关控制元件30’,用于根据第一整流电路20输出的电能值,控制第一整流电路20与第一电感线圈401’的连通或断开。具体地,当第一开关控制元件30’控制第一整流电路20与第一电感线圈401’断开时,通过控制第一开关301’和第三开关302’均处于断开状态即可。当第一开关控制元件30’控制第一整流电路20与第一电感线圈401’连通时,进一步根据第一整流电路20输出的电能值的大小控制第一开关301’断开、第三开关302’闭合;或者,控制第一开关301’闭合、第三开关302’断开。应该注意的是,一般情况下,第一开关301’和第三开关302’中只要有一个处于闭合状态,另一个必然处于断开状态,一般不会发生二者同时闭合的情况。第一电感线圈401’用于在其与第一整流电路20连通时存储第一整流电路20输出的电能,其中,当第一开关301’闭合时,第一电感线圈401’的全部线圈均处于工作状态;当第三开关302’闭合时,第一电感线圈401’的下半部分线圈处于工作状态。另外,由于第一电感线圈401’和第二电感线圈402’形成耦合式电感线圈组,因此,第一电感线圈401’中存储的电能会逐渐转移到第二电感线圈402’中。第二开关控制元件50’,用于根据第二电感线圈402’输出的电能值,控制第二电感线圈402’与储能元件60的连通或断开。具体地,当第二开关控制元件50’控制第二电感线圈402’与储能元件60断开时,通过控制第二开关501’和第四开关 502’均处于断开状态即可。当第二开关控制元件50’控制第二电感线圈402’与储能元件60连通时,进一步根据第二电感线圈402’输出的电能值的大小控制第二开关501’断开、第四开关502’闭合;或者,控制第二开关501’闭合、第四开关502’断开。其中,当第二开关501’闭合时,第二电感线圈402’的全部线圈均处于工作状态;当第四开关502’闭合时,第二电感线圈402’的下半部分线圈处于工作状态。应该注意的是,一般情况下,第二开关501’和第四开关502’中只要有一个处于闭合状态,另一个必然处于断开状态,一般不会发生二者同时闭合的情况。储能元件60,其通过第二开关控制元件50’与第二电感线圈402’相连,用于在其与第二电感线圈402’连通时存储第二电感线圈402’中的电能。
实施例四的储能装置的工作过程具体包含下述几个步骤:
步骤一:当外力作用在第一摩擦发电机10上时,第一摩擦发电机10将作用在其上的机械能转换为电能,并通过第一摩擦发电机10的第一端10A和第二端10B输出至第一整流电路20;
步骤二:第一整流电路20通过其第一端20A和第二端20B接收到上述电能后,对该电能进行整流处理,并通过其第三端20C和第四端20D进行输出;
步骤三:在上述步骤一和步骤二进行的过程中,第一开关控制元件30’实时监测第一整流电路20输出的电能值,当监测到的第一整流电路20输出的电能值大于或等于预设的第一连通阈值时,第一开关控制元件30’中的其中之一第一开关从常开状态切换为闭合状态(即第一开关301’从常开状态切换为闭合状态或第三开关302’从常开状态切换为闭合状态),以使第一整流电路20与第一电感线圈401’连通,进而使第一整流电路20输出的电能存储在第一电感线圈401’中;当监测到的第一整流电路20输出的电能值小于预设的第一连通阈值时,第一开关控制元件30’中的第一开关301’和第三开关302’均保持在常开状态,以使第一整流电路20与第一电感线圈401’之间的电路维持在断开状态。
具体地,在第一整流电路20与第一电感线圈401’连通的过程中,第一开关控制元件30’进一步根据第一整流电路20输出的电能值确定与第一整 流电路20连通的第一电感线圈401’的匝数,具体的确定方式与实施例三类似,此处不再赘述。为了便于理解,与实施例三类似,依然假设通过一个区间阈值800V将大于或等于第一连通阈值100V的电能区间划分为两个第一子区间,分别是“100V至800V”(即该第一子区间的范围为大于或等于100V且小于800V)以及“800V以上”(即该第一子区间的范围为大于或等于800V),其中,“100V至800V”的第一子区间对应的线圈匝数为N1,“800V以上”的第二子区间对应的线圈匝数为N2,N1、N2均为自然数,且N1小于N2。在具体实施时,当第一整流电路20与第一电感线圈401’刚刚连通时,第一整流电路20输出的电能值可能处于“100V至800V”的第一子区间,因此,此时,第一开关控制元件30’控制第一开关301’断开、第三开关302’闭合,以使第一电感线圈401’的下半部分线圈工作,即第一电感线圈401’的第三端401C’与第二端401B’之间的线圈工作,此时对应的线圈匝数为N1。当第一整流电路20与第一电感线圈401’连通一段时间后,第一整流电路20输出的电能值可能处于“800V以上”的第一子区间,因此,此时,第一开关控制元件30’控制第一开关301’闭合、第三开关302’断开,以使第一电感线圈401’全部线圈工作,即第一电感线圈401’的第一端401A’与第二端401B’之间的线圈接通并工作,此时对应的线圈匝数为N2。在上述过程中,为了避免由于第一整流电路20输出的电能值在800V上下波动所导致的频繁切换第一电感线圈401’的匝数的情况发生,也可以参照实施例三设置切换阈值,以避免因第一整流电路20输出的电能值的小幅度波动而频繁切换线圈匝数。
步骤四:第一电感线圈401’接收到第一整流电路20输出的电能后,对上述电能进行存储。由于第一电感线圈401’与第二电感线圈402’形成耦合式电感线圈组,故第一电感线圈401’中存储的电能会输出至第二电感线圈402’中进行存储。优选地,如图9所示,第一电感线圈401’和第二电感线圈402’之间通过异名端相互连接的方式进行耦合,以提高由第一电感线圈401’和第二电感线圈402’构成的耦合式电感线圈组的电能存储率。
步骤五:在上述步骤一至步骤四进行的过程中,第二开关控制元件50’实时监测第二电感线圈402’输出的电能值,若第二电感线圈402’输出的电能 值大于或等于预设的第二连通阈值,第二开关控制元件50’使第二电感线圈402’与储能元件60连通,进而使第二电感线圈402’输出的电能存储在储能元件60中;若第二电感线圈402’输出的电能值小于第二连通阈值,第二开关控制元件50’使第二电感线圈402’与储能元件60断开。
具体地,在第二电感线圈402’与储能元件60连通的过程中,第二开关控制元件50’进一步根据第二电感线圈402’输出的电能值确定与储能元件60连通的第二电感线圈402’的匝数。具体地,在确定第二电感线圈402’的匝数时,与实施例三类似,也可以灵活选取以下两种实现方式中的至少一种:
第一种实现方式与步骤三类似,可以预先将大于或等于预设的第二连通阈值的电能区间划分为多个第二子区间,为每个第二子区间分别设置对应的第二电感线圈402’的匝数,其中,每个第二子区间分别对应不同的第二电感线圈402’的匝数。相应地,根据第二电感线圈402’中的电能值所属的第二子区间来确定对应的第二电感线圈402’的匝数。另外,为了避免因第二电感线圈402’的电能值上下波动所导致的在多个子区间对应的匝数之间频繁切换的问题,可以预先设置一个切换阈值,当第二电感线圈402’的电能值所属的区间范围从其中的一个第二子区间(即:当前子区间)变化到相邻的另一第二子区间(即:变化后子区间)时,需要将第二电感线圈402’的当前电能值与当前子区间和变化后子区间之间的区间阈值进行比较,只有当二者之间的差值大于预设的切换阈值时,才将第二电感线圈402’的匝数相应切换为另一相邻子区间所对应的匝数。
具体到图9中,通过一个区间阈值800V将大于或等于第二连通阈值100V的电能区间划分为两个第二子区间,分别是“100V至800V”(即该第二子区间的范围为大于或等于100V且小于800V)以及“800V以上”(即该第二子区间的范围为大于或等于800V),其中,“100V至800V”的第二子区间对应的线圈匝数为N1’,“800V以上”的第二子区间对应的线圈匝数为N2’,N1’、N2’均为自然数,且N1’小于N2’。在具体实施时,当第二电感线圈402’与储能元件60刚刚连通时,第二电感线圈402’输出的电能值可能处于“100V至800V”的第二子区间,因此,此时,第二开关控制元件50’控制第二开关501’断开、第四开关502’闭合,以使第二电感线圈402’的下 半部分线圈工作,即第二开关控制元件50’的第三端402C’与第二端402B’之间的线圈工作,此时对应的线圈匝数为N1’。当第二电感线圈402’与储能元件60连通一段时间后,第二电感线圈402’输出的电能值可能处于“800V以上”的第二子区间,因此,此时,第二开关控制元件50’控制第二开关501’闭合、第四开关502’断开,以使第二电感线圈402’的全部线圈工作,即第二开关控制元件50’的第一端402A’与第二端402B’之间的线圈接通并工作,此时对应的线圈匝数为N2’。在上述过程中,为了避免由于第二电感线圈402’输出的电能值在800V上下波动所导致的频繁切换第二电感线圈402’的匝数的情况发生,也可以参照实施例三设置切换阈值,以避免因第二电感线圈402’输出的电能值的小幅度波动而频繁切换线圈匝数。
在上述示例中,用于划分第二子区间的区间阈值与用于划分第一子区间的区间阈值相同,均为800V。在实际情况中,考虑到耦合式电感线圈内部的传输损耗,用于划分第二子区间的区间阈值也可以略低于用于划分第一子区间的区间阈值,例如,设置为750V。而且,该区间阈值既可以是一个点值,也可以是一段范围。
由此可见,在上述的第一种实现方式中,通过监测第二电感线圈402’的电能值的大小,并根据预设的对应关系设置第二电感线圈402’的匝数。在第二种实现方式中,还可以预先设置每个第一子区间对应的第一电感线圈401’的匝数与相应的第二电感线圈402’的匝数之间的对应关系,根据与第一整流电路20连通的第一电感线圈401’的匝数确定对应的第二电感线圈402’的匝数。例如,假设在步骤三中依然通过区间阈值800V将大于或等于第一连通阈值100V的电能区间划分为两个第一子区间,分别是“100V至800V”(即该第一子区间的范围为大于或等于100V且小于800V)以及“800V以上”(即该第一子区间的范围为大于或等于800V),其中,“100V至800V”的第一子区间所对应的第一电感线圈401’的匝数为N1,且对应的第二电感线圈402’的匝数为N1’;“800V以上”的第一子区间所对应的第一电感线圈401’的匝数为N2,且对应的第二电感线圈402’的匝数为N2’。也就是说,预先设置了第一电感线圈401’的匝数与第二电感线圈402’的匝数的匹配关系,当第一电感线圈401’的匝数为N1时,第二电感线圈402’的匝数必然为N1’; 当第一电感线圈401’的匝数为N2时,第二电感线圈402’的匝数必然为N2’。根据预设的计算和实验能够确定出第一电感线圈401’的匝数与第二电感线圈402’的匝数之间的最佳匹配关系,由此既能够简化第二电感线圈402’的匝数的调节过程,又能够提高阻抗匹配效果。也就是说,在第二种实现方式中,第一开关301’与第二开关501’构成一组开关,第三开关302’与第四开关502’构成另一组开关。当第一开关301’闭合时,必然通过闭合第二开关501’的方式来接通第二电感线圈402’;当第三开关302’闭合时,必然通过闭合第四开关502’的方式来接通第二电感线圈402’。当然,上述的两种实现方式既可以单独使用,也可以结合使用,本发明对此不作限定。另外,也可以利用一个单独的控制模块来同时监测第一整流电路20和第二电感线圈402’中的电能值,并同时控制第一开关301’与第二开关501’,以及第三开关302’与第四开关502’的通断。
应当理解的是,上述步骤一至步骤五是一个循环往复的过程,这样就实现了为储能元件60补充供电的功能,弥补了储能元件60为外界提供电能的损耗,从而延长了整个储能装置的使用寿命。
实施例五、
图10示出了本发明实施例五提供的一种基于摩擦发电机的储能装置的结构图,如图10所示,该储能装置包括:第一摩擦发电机10、第一整流电路20、第一开关控制元件30’、第一电感线圈401’、第二电感线圈402’、第二开关控制元件50、储能元件60、第二摩擦发电机70以及第二整流电路80。由此可见,实施例五在实施例三的基础上,进一步增加了第二摩擦发电机70和第二整流模块80,除此之外,实施例五的其余部分与实施例三均相同,下面仅对实施例五与实施例三的不同部分进行描述,对于相同部分此处不再赘述。
其中,第二摩擦发电机70包括两个端,分别为第一端70A和第二端70B。第二整流模块80包括四个端,分别为第一端80A、第二端80B、第三端80C和第四端80D。具体地,第二摩擦发电机70的第一端70A和第二端70B分别与第二整流模块80的第一端80A和第二端80B对应相连,用于将作用在其上的机械能转换为电能输出至第二整流模块80。第二整流模块80的第三 端80C和第四端80D分别与储能元件60的第一端60A和第二端60B对应相连,用于对第二摩擦发电机70输出的电能进行整流处理,从而为储能元件60提供电能。
在实施例五中,之所以设置第二摩擦发电机70和第二整流模块80是为了避免储能元件60中剩余的电能不足以驱动第一开关控制元件30’和/或第二开关控制元件50’,导致第一开关控制元件30’无法监测第一整流电路20输出的电能值和/或第二开关控制元件50’无法监测第二电感线圈402’输出的电能值的情况发生,也就是说,当储能元件60中剩余的电能很少时,可以通过第二摩擦发电机70将作用在其上的机械能转换为电能,并通过第二整流模块80对其进行整流处理后,为储能元件60提供电能,进而为第一开关控制元件30’和/或第二开关控制元件50’提供电能,以保证整个储能装置的正常工作。
另外,在图10所示的实施例五中,第一电感线圈401’和第二电感线圈402’与实施例三相同,均为滑动抽头线圈,当滑动抽头滑动到不同位置时,分别对应于不同的线圈匝数。相应地,第一开关控制元件30’进一步包括:与第一电感线圈401’的滑动抽头相连的第一滑动调节模块,第一开关控制元件401’通过控制第一滑动调节模块来控制与第一整流电路20连通的第一电感线圈401’的匝数;和/或,第二开关控制元件50’进一步包括:与第二电感线圈402’的滑动抽头相连的第二滑动调节模块,第二开关控制元件50’通过控制第二滑动调节模块来控制与储能元件60连通的第二电感线圈402’的匝数。
在具体实现时,实施例五中的第一开关控制元件、第一电感线圈、第二电感线圈和第二开关控制元件也可以与实施例四相同,其中,第一电感线圈和第二电感线圈均为多抽头线圈,每个抽头分别对应于不同的线圈匝数。相应地,第一开关控制元件进一步包括:多个开关,每个开关分别与第一电感线圈中的一个抽头相连,第一开关控制元件通过控制多个开关的通断来控制第一电感线圈与第一整流电路的连通或断开,以及控制与第一整流电路连通的第一电感线圈的匝数;和/或,第二开关控制元件进一步包括:多个开关,每个开关分别与第二电感线圈中的一个抽头相连,第二开关控制元件通过控 制多个开关的通断来控制第二电感线圈与储能元件的连通或断开,以及控制与储能元件连通的第二电感线圈的匝数。
另外,本领域技术人员还可以对上述每个实施例进行各种灵活改动和变形。例如,在上述实施例中,第一开关控制元件集监测和通断功能于一身,即:既要监测第一整流电路输出的电能值,又要根据监测到的第一整流电路输出的电能值进行断开或闭合。在本发明其它的实施例中,第一开关控制元件也可以通过单纯的开关电路实现,此时,可以额外再设置一个开关控制器,由开关控制器负责监测第一整流电路输出的电能值,并根据监测到的第一整流电路输出的电能值控制第一开关控制元件的通断,开关控制器可以选择由储能元件供电和/或由电池元件供电等多种供电方式。与之类似地,第二开关控制元件也可以通过单纯的开关电路实现,由开关控制器负责监测耦合式电感线圈组中的电能值,并根据监测结果控制第二开关控制元件的通断,此时,可以设置两开关控制器,分别控制第一开关控制元件和第二开关控制元件,也可以设置一个开关控制器,同时控制第一开关控制元件和第二开关控制元件。当仅设置一个开关控制器时,仅需为一个开关控制器供电,从而可以节约电能消耗;当设置两个开关控制器时,两个开关控制器还可以采取主备工作方式,即优先由主用开关控制器同时控制第一开关控制元件和第二开关控制元件,并在主用开关控制器故障或无电时转由备用开关控制器控制第一开关控制元件和第二开关控制元件,从而提高储能装置的耐用性。
另外,在上述每个实施例中,第一开关控制元件的通断可以完全取决于第一整流电路输出的电能值,即:实时监测第一整流电路输出的电能值,只要监测到的第一整流电路输出的电能值小于第一连通阈值则断开,大于或等于第一连通阈值则闭合,此时,第一开关控制元件内部的控制逻辑为:在第一整流电路输出的电能值小于第一连通阈值时断开,以及在第一整流电路输出的电能值大于或等于第一连通阈值时闭合。除此之外,第一开关控制元件还可以通过常开式开关来实现,即:第一开关控制元件默认处于断开状态,只有当监测到的第一整流电路输出的电能值大于或等于所述第一连通阈值时才转为闭合状态,此时,由于第一开关控制元件默认为断开状态,因此,其内部的控制逻辑为:当第一整流电路输出的电能值大于或等于第一连通阈 值时闭合。与之类似地,第一开关控制元件还可以通过常闭式开关来实现,即:第一开关控制元件默认处于闭合状态,只有当监测到的第一整流电路输出的电能值小于第一连通阈值时才转为断开状态,此时,由于第一开关控制元件默认为闭合状态,因此,其内部的控制逻辑为:当第一整流电路输出中的电能值小于第一连通阈值时断开。总之,本领域技术人员可以对第一开关控制元件的具体实现细节进行灵活调整,类似地,第二开关控制元件也可以相应地通过多种方式实现,此处不再赘述。
在上述的每个实施例中,储能元件可以是电解电容器、石墨烯超级电容器、陶瓷电容器等各类储能元件,本发明对储能元件的具体形式不作限定,凡是能够存储电能的元件均可应用于本发明。
另外,在上述的每个实施例中,第一摩擦发电机和第二摩擦发电机均可以通过多种形式实现,可以灵活选择三层结构摩擦发电机、四层结构摩擦发电机、五层居间薄膜结构摩擦发电机或五层居间电极结构摩擦发电机,本发明对摩擦发电机的具体形式不作限定,只要能够实现摩擦起电的效果即可。
其中,摩擦发电机的数量可以为一个,也可以为多个;当采用多个第一摩擦发电机时,多个第一摩擦发电机之间采用串联和/或并联的方式进行连接,且多个第一摩擦发电机之间不仅可以采用平铺的方式设置,还可以采用层叠的方式进行设置,更可以采用层叠与平铺相结合的方式设置,此处不做限定,本领域技术人员可以根据需要进行选择。与之类似地,第二摩擦发电机的数量及设置方式也可以参照上述关于第一摩擦发电机的描述进行多种选择。
为了便于理解,下面通过几个示例简单介绍几种可供选择的摩擦发电机的具体结构:
示例一、
摩擦发电机的第一种结构为三层结构,其包括:依次层叠设置的第一电极,第一高分子聚合物绝缘层,以及第二电极。具体地,第一电极设置在第一高分子聚合物绝缘层的第一侧表面上;且第一高分子聚合物绝缘层的第二侧表面与第二电极相对设置。在上述结构中,第一高分子聚合物绝缘层的第一侧表面与第一电极之间相对固定,第一高分子聚合物绝缘层的第二侧表面 与第二电极之间在受到按压或发生弯曲时接触摩擦并在第二电极和第一电极处感应出电荷。因此,在本示例中,第一高分子聚合物绝缘层和第二电极相对设置的两个面作为摩擦发电机的摩擦界面,上述的第一电极和第二电极分别作为摩擦发电机的两个输出端。
其中,该方式通过金属与聚合物进行摩擦,主要利用了金属容易失去电子的特性,使摩擦界面之间形成感应电场,从而产生电压和/或电流。
示例二、
摩擦发电机的第二种结构为四层结构,其包括:依次层叠设置的第一电极,第一高分子聚合物绝缘层,第二高分子聚合物绝缘层以及第二电极。具体地,第一电极设置在第一高分子聚合物绝缘层的第一侧表面上;第二电极设置在第二高分子聚合物绝缘层的第一侧表面上;其中,第一高分子聚合物绝缘层的第二侧表面与第二高分子聚合物绝缘层的第二侧表面在受到按压或发生弯曲时接触摩擦并在第一电极和第二电极处感应出电荷。因此,在本示例中,第一高分子聚合物绝缘层和第二高分子聚合物绝缘层相对设置的两个面作为摩擦发电机的摩擦界面。其中,第一电极和第二电极分别作为摩擦发电机的两个输出端。
示例三、
摩擦发电机的第三种结构为带有居间薄膜的五层结构,包括依次层叠设置的第一电极、第一高分子聚合物绝缘层、居间薄膜层、第二高分子聚合物绝缘层以及第二电极。具体地,第一电极设置在第一高分子聚合物绝缘层的第一侧表面上;第二电极设置在第二高分子聚合物绝缘层的第一侧表面上,且居间薄膜层设置在第一高分子聚合物绝缘层的第二侧表面和第二高分子聚合物绝缘层的第二侧表面之间。在本示例中,居间薄膜层为居间聚合物,其可以直接设置在第一高分子聚合物绝缘层与第二高分子聚合物绝缘层之间,且与第一高分子聚合物绝缘层和第二高分子聚合物绝缘层之间都不固定,这时,居间薄膜层与第一高分子聚合物绝缘层之间形成一个摩擦界面,居间薄膜层与第二高分子聚合物绝缘层之间形成另一个摩擦界面。或者,居间薄膜层也可以与第一高分子聚合物绝缘层或第二高分子聚合物绝缘层中的一个相对固定,而与另一个构成摩擦界面接触摩擦。例如,居间薄膜层的 第一侧表面固定在第二高分子聚合物绝缘层的第二侧表面上,且居间薄膜层的第二侧表面与第一高分子聚合物绝缘层的第二侧表面构成摩擦界面接触摩擦。此时,由于居间薄膜层与第二高分子聚合物绝缘层相对固定,因此,当该摩擦发电机受到挤压时,第一高分子聚合物绝缘层的第二侧表面与居间薄膜层的第二侧表面接触摩擦并在第一电极和第二电极处感应出电荷。
示例四、
摩擦发电机的第四种结构为带有居间电极的五层结构,包括:依次层叠设置的第一电极,第一高分子聚合物绝缘层,居间电极层,第二高分子聚合物绝缘层和第二电极;其中,第一电极设置在第一高分子聚合物绝缘层的第一侧表面上;第二电极设置在第二高分子聚合物绝缘层的第一侧表面上,居间电极层设置在第一高分子聚合物绝缘层的第二侧表面与第二高分子聚合物绝缘层的第二侧表面之间。在这种方式中,通过居间电极层与第一高分子聚合物绝缘层和第二高分子聚合物绝缘层之间的摩擦产生静电荷,由此将在居间电极层与第一电极和第二电极之间产生电势差。在本示例中,居间电极层是由能够制作电极的材料制作的。其中,居间电极层与第一高分子聚合物绝缘层相对设置的两个面构成一组摩擦界面,和/或居间电极层与第二高分子聚合物绝缘层相对设置的两个面构成另一组摩擦界面;第一电极和第二电极串联为摩擦发电机的一个输出端;居间电极层作为摩擦发电机的另一个输出端。
进一步地,为了提高摩擦发电机的发电能力,在上述四种示例中,还可以在构成摩擦界面的两个相对面中的至少一个面上设置微纳结构。因此,当摩擦发电机受到挤压时,两个摩擦界面的相对表面能够更好地接触摩擦,并感应出较多的电荷。上述的微纳结构具体可以采取如下两种可能的实现方式:第一种方式为,该微纳结构是微米级或纳米级的非常小的凹凸结构。该凹凸结构能够增加摩擦阻力,提高发电效率。凹凸结构能够在薄膜制备时直接形成,也能够用打磨的方法使第一高分子聚合物绝缘层的表面形成不规则的凹凸结构。具体地,该凹凸结构可以是半圆形、条纹状、立方体型、四棱锥型、或圆柱形等形状的凹凸结构。第二种方式为,该微纳结构是纳米级孔状结构,此时第一高分子聚合物绝缘层所用材料优选为聚偏氟乙烯(PVDF), 其厚度为0.5-1.2mm(优选1.0mm),且其相对第二电极的面上设有多个纳米孔。其中,每个纳米孔的尺寸,即宽度和深度,可以根据应用的需要进行选择,优选的纳米孔的尺寸为:宽度为10-100nm以及深度为4-50μm。纳米孔的数量可以根据需要的输出电流值和电压值进行调整,优选的这些纳米孔是孔间距为2-30μm的均匀分布,更优选的平均孔间距为9μm的均匀分布。
另外,根据摩擦发电机的工作原理,在摩擦发电机工作的过程中,两个摩擦界面需要不断的接触摩擦和分离,而一直处于接触状态或者分离状态时,发电机则不能具有很好的输出性能。因此,为了能够制作出性能优异的发电机,在上述的四种示例中,摩擦发电机还可以为拱形,例如:进一步地使构成摩擦界面的两个相对面中的至少一个面向外拱起形成凸面(即:至少一个摩擦界面的中间部分朝向远离或接近另一摩擦界面的方向拱起),由此在两个摩擦界面之间形成间隙,使两个摩擦界面在不受力的情况下能够自动弹起。除此之外,还可以在两个摩擦界面之间设置弹簧和/或垫片,从而进一步使得两个摩擦界面能够在不受力的情况下自动弹起,其中,弹簧和/或垫片既可以设置在两个摩擦界面的边角等位置,也可以设置在两个摩擦界面的中心位置。
综上所述,本发明提供的基于摩擦发电机的储能装置,针对摩擦发电机产生的电能的特点,设计出与其相适应的电路,为储能元件供电,减少了电能损耗,增加了能量存储利用效率。其中,由于采用摩擦发电机并结合相适应的电路为储能元件补充消耗的电能,延长了储能元件的使用寿命,同时也避免了因电池耗尽而无法使用或更换电池的麻烦。本方案中的基于摩擦发电机的储能装置,不仅质量轻,体积小,便于用户携带和使用;而且其结构及制作工艺简单,成本低廉,适合大规模工业化生产。
本领域技术人员可以理解,虽然上述说明中,为便于理解,对方法的步骤采用了顺序性描述,但是应当指出,对于上述步骤的顺序并不作严格限制。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读取存储介质中,如:ROM/RAM、磁碟、光盘等。
还可以理解的是,附图或实施例中所示的装置结构仅仅是示意性的,表 示逻辑结构。其中作为分离部件显示的模块可能是或者可能不是物理上分开的,作为模块显示的部件可能是或者可能不是物理模块。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (37)

  1. 一种基于摩擦发电机的储能装置,其特征在于,包括:第一摩擦发电机、第一整流电路、第一开关控制元件、耦合式电感线圈组、第二开关控制元件以及储能元件,其中,
    所述第一摩擦发电机,用于将作用在其上的机械能转换为电能;
    所述第一整流电路,其与所述第一摩擦发电机相连,用于对所述第一摩擦发电机输出的电能进行整流处理;
    所述第一开关控制元件,其分别与所述第一整流电路和所述耦合式电感线圈组相连,用于监测所述第一整流电路输出的电能值,在监测到的所述第一整流电路输出的电能值小于第一预设阈值时断开,和/或,在监测到的所述第一整流电路输出的电能值大于或等于所述第一预设阈值时闭合;
    所述耦合式电感线圈组,其通过所述第一开关控制元件与所述第一整流电路相连,用于在所述第一开关控制元件闭合时存储所述第一整流电路输出的电能;
    所述第二开关控制元件,其分别与所述耦合式电感线圈组和所述储能元件相连,用于监测所述耦合式电感线圈组中的电能值,在监测到的所述耦合式电感线圈组中的电能值小于第二预设阈值时断开,和/或,在监测到的所述耦合式电感线圈组中的电能值大于或等于所述第二预设阈值时闭合;
    所述储能元件,其通过所述第二开关控制元件与所述耦合式电感线圈组相连,用于在所述第二开关控制元件闭合时存储所述耦合式电感线圈组输出的电能。
  2. 根据权利要求1所述的储能装置,其特征在于,所述耦合式电感线圈组包括第一电感线圈和第二电感线圈。
  3. 根据权利要求2所述的储能装置,其特征在于,所述第一电感线圈通过所述第一开关控制元件与所述第一整流电路相连,用于存储所述第一整流电路输出的电能;其中,所述第一开关控制元件在监测到的所述第一整流电路输出的电能值小于所述第一预设阈值时断开,和/或,在监测到的所述第一整流电路输出的电能值大于或等于所述第一预设阈值时闭合。
  4. 根据权利要求2或3所述的储能装置,其特征在于,所述第二电感线圈与所述第一电感线圈相互耦合,用于存储所述第一电感线圈输出的电能;所述第二电感线圈通过所述第二开关控制元件与所述储能元件相连,其中,所述第二开关控制元件在监测到的所述第二电感线圈中的电能值小于所述第二预设阈值时断开,和/或,在监测到的所述第二电感线圈中的电能值大于或等于所述第二预设阈值时闭合。
  5. 根据权利要求2-4任一项所述的储能装置,其特征在于,所述第一摩擦发电机包括第一端和第二端,所述第一整流电路包括第一端、第二端、第三端和第四端,所述第一开关控制元件包括第一端和第二端,所述第一电感线圈包括第一端和第二端,所述第二电感线圈包括第一端和第二端,所述第二开关控制元件包括第一端和第二端,所述储能元件包括第一端和第二端,其中,
    所述第一摩擦发电机的第一端和第二端分别与所述第一整流电路的第一端和第二端对应相连;
    所述第一整流电路的第四端与所述第一电感线圈的第二端相连;
    所述第一开关控制元件的第一端与所述第一整流电路的第三端相连,所述第一开关控制元件的第二端与所述第一电感线圈的第一端相连;
    所述第二开关控制元件的第一端与所述第二电感线圈的第一端相连,所述第二开关控制元件的第二端与所述储能元件的第一端相连;
    所述第二电感线圈的第二端同时与所述第一电感线圈的第二端以及所述储能元件的第二端相连。
  6. 根据权利要求5所述的储能装置,其特征在于,所述第一开关控制元件进一步包括:与所述储能元件的第一端和第二端分别相连的第一电源端和第二电源端;和/或,所述第二开关控制元件进一步包括:与所述储能元件的第一端和第二端分别相连的第一电源端和第二电源端。
  7. 根据权利要求6所述的储能装置,其特征在于,所述第一开关控制元件进一步包括:比较器、晶体管开关、第一电阻、第二电阻和第三电阻,其中,所述比较器包括第一端、第二端、第三端、第四端和第五端,所述晶 体管开关包括第一端、第二端和第三端,所述第一电阻包括第一端和第二端,所述第二电阻包括第一端和第二端,所述第三电阻包括第一端和第二端,其中,
    所述比较器的第二端同时与所述第三电阻的第一端和所述晶体管开关的第一端相连作为所述第一开关控制元件的第一端与所述第一整流电路的第三端相连;
    所述晶体管开关的第二端作为所述第一开关控制元件的第二端与所述第一电感线圈的第一端相连;
    所述比较器的第三端与所述第一电阻的第一端相连作为所述第一开关控制元件的第一电源端与所述储能元件的第一端相连;
    所述比较器的第四端同时与所述第二电阻的第二端和所述第三电阻的第二端相连作为所述第一开关控制元件的第二电源端与所述储能元件的第二端相连;
    所述比较器的第一端同时与所述第一电阻的第二端和所述第二电阻的第一端相连;所述比较器的第五端与所述晶体管开关的第三端相连。
  8. 根据权利要求6所述的储能装置,其特征在于,所述第一开关控制元件进一步包括:比较器、晶体管开关、第一电阻、第二电阻、第三电阻和第四电阻,其中,所述比较器包括第一端、第二端、第三端、第四端和第五端,所述晶体管开关包括第一端、第二端和第三端,所述第一电阻包括第一端和第二端,所述第二电阻包括第一端和第二端,所述第三电阻包括第一端和第二端,所述第四电阻包括第一端和第二端,其中,
    所述第四电阻的第一端与所述晶体管开关的第一端相连作为所述第一开关控制元件的第一端与所述第一整流电路的第三端相连;
    所述晶体管开关的第二端作为所述第一开关控制元件的第二端与所述第一电感线圈的第一端相连;
    所述比较器的第三端与所述第一电阻的第一端相连作为所述第一开关控制元件的第一电源端与所述储能元件的第一端相连;
    所述比较器的第四端同时与所述第二电阻的第二端和所述第三电阻的 第二端相连作为所述第一开关控制元件的第二电源端与所述储能元件的第二端相连;
    所述比较器的第一端同时与所述第一电阻的第二端和所述第二电阻的第一端相连;所述比较器的第二端同时与所述第三电阻的第一端和所述第四电阻的第二端相连;所述比较器的第五端与所述晶体管开关的第三端相连。
  9. 根据权利要求8所述的储能装置,其特征在于,所述第三电阻和所述第四电阻为分压电阻,且所述第三电阻与所述第四电阻之间的分压比的数值范围为1:100-100:1。
  10. 根据权利要求9所述的储能装置,其特征在于,所述第三电阻与所述第四电阻之间的分压比的数值范围为1:20-20:1。
  11. 根据权利要求1-10任一项所述的储能装置,其特征在于,进一步包括:第二摩擦发电机和第二整流电路,其中,
    所述第二摩擦发电机,其与所述第二整流电路相连,用于将作用在其上的机械能转换为电能;
    所述第二整流电路,其与所述储能元件相连,用于对所述第二摩擦发电机输出的电能进行整流处理,并将所述电能输出至所述储能元件,为所述储能元件补充电能。
  12. 根据权利要求11所述的储能装置,其特征在于,所述第二摩擦发电机包括第一端和第二端,所述第二整流电路包括第一端、第二端、第三端和第四端,其中,
    所述第二摩擦发电机的第一端和第二端分别与所述第二整流电路的第一端和第二端对应相连;
    所述第二整流电路的第三端和第四端分别与所述储能元件的第一端和第二端对应相连。
  13. 根据权利要求1所述的储能装置,其特征在于,还进一步包括:电池元件,其中,所述电池元件与所述第一开关控制元件和/或所述第二开关控制元件相连,用于为所述第一开关控制元件提供监测所述第一整流电路输出的电能值所需的电能,和/或,为所述第二开关控制元件提供监测所述耦 合式电感线圈组中的电能值所需的电能。
  14. 根据权利要求2-13任一项所述的储能装置,其特征在于,所述第一电感线圈与所述第二电感线圈通过异名端相连的方式进行耦合。
  15. 根据权利要求1-14任一项所述的储能装置,其特征在于,所述第一摩擦发电机和所述第二摩擦发电机为三层结构、四层结构、五层居间薄膜结构或五层居间电极结构摩擦发电机,所述摩擦发电机至少包含构成摩擦界面的两个相对面,所述摩擦发电机具有至少两个输出端;其中,
    所述三层结构摩擦发电机包括:依次层叠设置的第一电极,第一高分子聚合物绝缘层,以及第二电极,其中,所述第一高分子聚合物绝缘层与所述第二电极相对的两个面构成所述摩擦界面;
    所述四层结构摩擦发电机包括:依次层叠设置的第一电极,第一高分子聚合物绝缘层,第二高分子聚合物绝缘层以及第二电极,其中,所述第一高分子聚合物绝缘层与所述第二高分子聚合物绝缘层相对的两个面构成所述摩擦界面;
    所述五层居间薄膜结构摩擦发电机包括:依次层叠设置的第一电极、第一高分子聚合物绝缘层、居间薄膜层、第二高分子聚合物绝缘层以及第二电极,其中,所述第一高分子聚合物绝缘层与所述居间薄膜层相对的两个面和/或所述第二高分子聚合物绝缘层与所述居间薄膜层相对的两个面构成所述摩擦界面;
    所述五层居间电极结构摩擦发电机包括:依次层叠设置的第一电极、第一高分子聚合物绝缘层、居间电极层、第二高分子聚合物绝缘层以及第二电极,其中,所述第一高分子聚合物绝缘层与所述居间电极层相对的两个面和/或所述第二高分子聚合物绝缘层与所述居间电极层相对的两个面构成所述摩擦界面。
  16. 根据权利要求15所述的储能装置,其特征在于,构成所述摩擦界面的两个相对面中的至少一个面上设置有微纳结构。
  17. 根据权利要求15或16所述的储能装置,其特征在于,构成所述摩擦界面的两个相对面中的至少一个面向外拱起形成凸面,使两个所述摩擦 界面之间形成间隙。
  18. 根据权利要求1-17任一项所述的储能装置,其特征在于,所述第一摩擦发电机和第二摩擦发电机分别为多个并联和/或串联连接的摩擦发电机,其中,所述多个并联和/或串联连接的摩擦发电机通过平铺方式和/或层叠方式设置。
  19. 一种基于摩擦发电机的储能装置,其特征在于,包括:第一摩擦发电机、第一整流电路、第一开关控制元件、相互耦合的第一电感线圈和第二电感线圈、第二开关控制元件以及储能元件,其中,所述第一电感线圈和所述第二电感线圈为匝数可调的抽头线圈;
    所述第一摩擦发电机,用于将作用在其上的机械能转换为电能;
    所述第一整流电路,其与所述第一摩擦发电机相连,用于对所述第一摩擦发电机输出的电能进行整流处理;
    所述第一开关控制元件,其分别与所述第一整流电路和所述第一电感线圈相连,用于根据监测到的所述第一整流电路输出的电能值控制所述第一整流电路与所述第一电感线圈的连通或断开;
    所述第一电感线圈,用于在其与所述第一整流电路连通时存储所述第一整流电路输出的电能;
    所述第二开关控制元件,其分别与所述第二电感线圈和所述储能元件相连,用于根据监测到的所述第二电感线圈中的电能值控制所述第二电感线圈与所述储能元件的连通或断开;
    所述储能元件,用于在其与所述第二电感线圈连通时存储所述第二电感线圈中的电能。
  20. 根据权利要求19所述的储能装置,其特征在于,所述根据监测到的所述第一整流电路输出的电能值控制所述第一电感线圈与所述第一整流电路的连通或断开的实现方式包括:当所述第一整流电路输出的电能值大于或等于预设的第一连通阈值时,控制所述第一整流电路与所述第一电感线圈连通;当所述第一整流电路输出的电能值小于所述第一连通阈值时,控制所述第一整流电路与所述第一电感线圈断开。
  21. 根据权利要求19所述的储能装置,其特征在于,所述根据监测到的所述第二电感线圈中的电能值控制所述第二电感线圈与所述储能元件的连通或断开的实现方式包括:当所述第二电感线圈中的电能值大于或等于预设的第二连通阈值时,控制所述第二电感线圈与所述储能元件连通;当所述第二电感线圈中的电能值小于所述第二连通阈值时,控制所述第二电感线圈与所述储能元件断开。
  22. 根据权利要求19-21任一项所述的储能装置,其特征在于,当所述第一开关控制元件控制所述第一电感线圈与所述第一整流电路连通时,进一步根据所述第一整流电路输出的电能值确定与所述第一整流电路连通的第一电感线圈的匝数。
  23. 根据权利要求19-22任一项所述的储能装置,其特征在于,当所述第二开关控制元件控制所述第二电感线圈与所述储能元件连通时,进一步根据所述第二电感线圈中的电能值确定与所述储能元件连通的第二电感线圈的匝数。
  24. 根据权利要求22或23所述的储能装置,其特征在于,所述进一步根据所述第一整流电路输出的电能值确定与所述第一整流电路连通的第一电感线圈的匝数的实现方式包括:
    预先将大于或等于所述第一连通阈值的电能区间划分为多个第一子区间,为每个第一子区间分别设置对应的第一电感线圈匝数,其中,每个第一子区间分别对应不同的第一电感线圈匝数;
    根据所述第一整流电路当前输出的电能值所属的第一子区间来确定对应的第一电感线圈匝数。
  25. 根据权利要求23或24所述的储能装置,其特征在于,所述进一步根据所述第二电感线圈中的电能值确定与所述储能元件连通的第二电感线圈的匝数的实现方式包括:
    预先将大于或等于第二连通阈值的电能区间划分为多个第二子区间,为每个第二子区间分别设置对应的第二电感线圈匝数,其中,每个第二子区间分别对应不同的第二电感线圈匝数;
    根据所述第二电感线圈中的电能值所属的子区间来确定对应的第二电感线圈匝数。
  26. 根据权利要求23-25任一所述的储能装置,其特征在于,所述进一步根据所述第二电感线圈中的电能值确定与所述储能元件连通的第二电感线圈的匝数的实现方式进一步包括:预先设置每个第一子区间对应的第一电感线圈匝数与相应的第二电感线圈匝数之间的对应关系,根据与所述第一整流电路连通的第一电感线圈的匝数确定对应的第二电感线圈匝数。
  27. 根据权利要求19-26任一项所述的储能装置,其特征在于,所述第一电感线圈和所述第二电感线圈为多抽头线圈,每个抽头分别对应于不同的线圈匝数;
    所述第一开关控制元件进一步包括:多个开关,每个开关分别与所述第一电感线圈中的一个抽头相连,所述第一开关控制元件通过控制多个所述开关的通断来控制所述第一整流电路与所述第一电感线圈的连通或断开,以及控制与所述第一整流电路连通的第一电感线圈的匝数;
    和/或,所述第二开关控制元件进一步包括:多个开关,每个开关分别与所述第二电感线圈中的一个抽头相连,所述第二开关控制元件通过控制多个所述开关的通断来控制所述第二电感线圈与所述储能元件的连通或断开,以及控制与所述储能元件连通的第二电感线圈的匝数。
  28. 根据权利要求27所述的储能装置,其特征在于,所述第一开关控制元件包括第一开关和第三开关,所述第二开关控制元件包括第二开关和第四开关;
    所述第一摩擦发电机的第一端和第二端分别与所述第一整流电路的第一端和第二端对应相连;
    所述第一整流电路的第三端同时与所述第一开关的第一端和所述第三开关的第一端相连,所述第一整流电路的第四端与所述第一电感线圈的第二端相连;
    所述第一开关的第二端与所述第一电感线圈的第一端相连;所述第三开关的第二端与所述第一电感线圈的第三端相连;
    所述第二开关的第一端与所述第二电感线圈的第一端相连;所述第四开关的第一端与所述第二电感线圈的第三端相连;
    所述储能元件的第一端同时与所述第一开关的第三端、所述第三开关的第三端、所述第二开关的第二端和第三端以及所述第四开关的第二端和第三端相连;
    所述储能元件的第二端同时与所述第一电感线圈的第二端和所述第二电感线圈的第二端相连。
  29. 根据权利要求19-26任一项所述的储能装置,其特征在于,所述第一电感线圈和所述第二电感线圈为滑动抽头线圈,当滑动抽头滑动到不同位置时,分别对应于不同的线圈匝数;
    所述第一开关控制元件进一步包括:与所述第一电感线圈的滑动抽头相连的第一滑动调节模块,所述第一开关控制元件通过控制所述第一滑动调节模块来控制与所述第一整流电路连通的第一电感线圈的匝数;
    和/或,所述第二开关控制元件进一步包括:与所述第二电感线圈的滑动抽头相连的第二滑动调节模块,所述第二开关控制元件通过控制所述第二滑动调节模块来控制与所述储能元件连通的第二电感线圈的匝数。
  30. 根据权利要求29所述的储能装置,其特征在于,所述第一摩擦发电机的第一端和第二端分别与所述第一整流电路的第一端和第二端对应相连;
    所述第一整流电路的第三端和第四端分别与所述第一开关控制元件的第一端和所述第一电感线圈的第二端对应相连;
    所述第一开关控制元件的第二端同时与所述第一电感线圈的第一端和第三端相连;
    所述第二开关控制元件的第一端同时与所述第二电感线圈的第一端和第三端相连,所述第二开关控制元件的第二端同时与所述第一开关控制元件的第一电源端、所述第二开关控制元件的第一电源端和所述储能元件的第一端相连;
    所述第二电感线圈的第二端同时与所述第一电感线圈的第二端以及所 述储能元件的第二端相连。
  31. 根据权利要求19-30任一项所述的储能装置,其特征在于,进一步包括:第二摩擦发电机和第二整流电路,其中,
    所述第二摩擦发电机,其与所述第二整流电路相连,用于将作用在其上的机械能转换为电能;
    所述第二整流电路,其与所述储能元件相连,用于对所述第二摩擦发电机输出的电能进行整流处理,并将所述电能输出至所述储能元件,为所述储能元件补充电能。
  32. 根据权利要求31所述的储能装置,其特征在于,所述第二摩擦发电机的第一端和第二端分别与所述第二整流电路的第一端和第二端对应相连;
    所述第二整流电路的第三端和第四端分别与所述储能元件的第一端和第二端对应相连。
  33. 根据权利要求19-32任一项所述的储能装置,其特征在于,所述第一电感线圈与所述第二电感线圈通过异名端相连的方式进行耦合。
  34. 根据权利要求19-33任一项所述的储能装置,其特征在于,所述第一摩擦发电机和所述第二摩擦发电机为三层结构、四层结构、五层居间薄膜结构或五层居间电极结构摩擦发电机,所述摩擦发电机至少包含构成摩擦界面的两个相对面,所述摩擦发电机具有至少两个输出端;其中,
    所述三层结构摩擦发电机包括:依次层叠设置的第一电极,第一高分子聚合物绝缘层,以及第二电极,其中,所述第一高分子聚合物绝缘层与所述第二电极相对的两个面构成所述摩擦界面;
    所述四层结构摩擦发电机包括:依次层叠设置的第一电极,第一高分子聚合物绝缘层,第二高分子聚合物绝缘层以及第二电极,其中,所述第一高分子聚合物绝缘层与所述第二高分子聚合物绝缘层相对的两个面构成所述摩擦界面;
    所述五层居间薄膜结构摩擦发电机包括:依次层叠设置的第一电极、第一高分子聚合物绝缘层、居间薄膜层、第二高分子聚合物绝缘层以及第二 电极,其中,所述第一高分子聚合物绝缘层与所述居间薄膜层相对的两个面和/或所述第二高分子聚合物绝缘层与所述居间薄膜层相对的两个面构成所述摩擦界面;
    所述五层居间电极结构摩擦发电机包括:依次层叠设置的第一电极、第一高分子聚合物绝缘层、居间电极层、第二高分子聚合物绝缘层以及第二电极,其中,所述第一高分子聚合物绝缘层与所述居间电极层相对的两个面和/或所述第二高分子聚合物绝缘层与所述居间电极层相对的两个面构成所述摩擦界面。
  35. 根据权利要求34所述的储能装置,其特征在于,构成所述摩擦界面的两个相对面中的至少一个面上设置有微纳结构。
  36. 根据权利要求34或35所述的储能装置,其特征在于,构成所述摩擦界面的两个相对面中的至少一个面向外拱起形成凸面,使两个所述摩擦界面之间形成间隙。
  37. 根据权利要求19-36任一项所述的储能装置,其特征在于,所述第一摩擦发电机和所述第二摩擦发电机分别为多个并联和/或串联连接的摩擦发电机,其中,所述多个并联和/或串联连接的摩擦发电机通过平铺方式和/或层叠方式设置。
PCT/CN2016/103797 2016-03-09 2016-10-28 基于摩擦发电机的储能装置 WO2017152630A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610134444.3 2016-03-09
CN201610134444.3A CN105990908B (zh) 2016-03-09 2016-03-09 基于摩擦发电机的储能装置
CN201610278895.4 2016-04-29
CN201610278895.4A CN107332354B (zh) 2016-04-29 2016-04-29 基于摩擦发电机的储能装置

Publications (1)

Publication Number Publication Date
WO2017152630A1 true WO2017152630A1 (zh) 2017-09-14

Family

ID=59789929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103797 WO2017152630A1 (zh) 2016-03-09 2016-10-28 基于摩擦发电机的储能装置

Country Status (1)

Country Link
WO (1) WO2017152630A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111998731A (zh) * 2020-06-19 2020-11-27 江苏大学 一种基于超弹性体材料摩擦生电的箭靶环数检测装置
FR3138557A1 (fr) 2022-07-28 2024-02-02 Psa Automobiles Sa Dispositif de récupération de l’énergie acoustique ambiante

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013146129A (ja) * 2012-01-13 2013-07-25 Iyo Matsuyama Hitech Kk 蓄発電システム
CN104660069A (zh) * 2013-11-18 2015-05-27 东林科技股份有限公司 电源转换装置及其转换方法
CN104811085A (zh) * 2014-08-01 2015-07-29 纳米新能源(唐山)有限责任公司 基于摩擦发电机的能量收集转换装置
CN105245118A (zh) * 2015-10-27 2016-01-13 北京贞正物联网技术有限公司 摩擦纳米发电机能量收集系统
CN205051595U (zh) * 2015-10-27 2016-02-24 北京贞正物联网技术有限公司 一种用于摩擦纳米发电机能量收集装置
CN205066911U (zh) * 2015-08-12 2016-03-02 北京微能高芯科技有限公司 一种基于压电摩擦及光能发电的自供电体重秤
CN205565902U (zh) * 2016-02-04 2016-09-07 纳智源科技(唐山)有限责任公司 基于摩擦发电机的储能装置及用电系统
CN205565903U (zh) * 2016-03-09 2016-09-07 纳智源科技(唐山)有限责任公司 基于摩擦发电机的储能装置
CN105990908A (zh) * 2016-03-09 2016-10-05 纳智源科技(唐山)有限责任公司 基于摩擦发电机的储能装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013146129A (ja) * 2012-01-13 2013-07-25 Iyo Matsuyama Hitech Kk 蓄発電システム
CN104660069A (zh) * 2013-11-18 2015-05-27 东林科技股份有限公司 电源转换装置及其转换方法
CN104811085A (zh) * 2014-08-01 2015-07-29 纳米新能源(唐山)有限责任公司 基于摩擦发电机的能量收集转换装置
CN205066911U (zh) * 2015-08-12 2016-03-02 北京微能高芯科技有限公司 一种基于压电摩擦及光能发电的自供电体重秤
CN105245118A (zh) * 2015-10-27 2016-01-13 北京贞正物联网技术有限公司 摩擦纳米发电机能量收集系统
CN205051595U (zh) * 2015-10-27 2016-02-24 北京贞正物联网技术有限公司 一种用于摩擦纳米发电机能量收集装置
CN205565902U (zh) * 2016-02-04 2016-09-07 纳智源科技(唐山)有限责任公司 基于摩擦发电机的储能装置及用电系统
CN205565903U (zh) * 2016-03-09 2016-09-07 纳智源科技(唐山)有限责任公司 基于摩擦发电机的储能装置
CN105990908A (zh) * 2016-03-09 2016-10-05 纳智源科技(唐山)有限责任公司 基于摩擦发电机的储能装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111998731A (zh) * 2020-06-19 2020-11-27 江苏大学 一种基于超弹性体材料摩擦生电的箭靶环数检测装置
CN111998731B (zh) * 2020-06-19 2023-08-18 江苏大学 一种基于超弹性体材料摩擦生电的箭靶环数检测装置
FR3138557A1 (fr) 2022-07-28 2024-02-02 Psa Automobiles Sa Dispositif de récupération de l’énergie acoustique ambiante

Similar Documents

Publication Publication Date Title
KR101398708B1 (ko) 강유전 특성이 커플링된 정전기 에너지 발전 소자
CN105990908B (zh) 基于摩擦发电机的储能装置
US7977923B2 (en) Circuits for electroactive polymer generators
WO2017152630A1 (zh) 基于摩擦发电机的储能装置
Kempitiya et al. Analysis and optimization of asynchronously controlled electrostatic energy harvesters
US9203291B2 (en) Method and apparatus for mechanical energy harvesting using combined magnetic and microfluidic energy generation
TW201232992A (en) Potential equilibrium circuit for battery set
JP2011507478A (ja) 可変キャパシタを備えた電力変換器
CN103427467A (zh) 风力带动旋转式压电发电充电器
Zhang et al. A self-sustained energy storage system with an electrostatic automatic switch and a buck converter for triboelectric nanogenerators
CN206834817U (zh) 一种充电电路及其可穿戴电子产品
CN205565903U (zh) 基于摩擦发电机的储能装置
CN107332354A (zh) 基于摩擦发电机的储能装置
TW201338343A (zh) 無線充電系統及其無線充電系統控制之方法
JP5979353B2 (ja) 発電装置、電子機器、移動手段及び電池
CN102460901A (zh) 用于电感式能量传递的电路布置
Verma et al. System architecture for conditioning the asymmetric and high crest output of triboelectric generators
CN108306549A (zh) 一种磁致伸缩能量采集器
EP3076415A1 (en) Electrical energy storage device comprising supercapacitors and pseudocapacitors
CN102843047A (zh) 一种利用微处理器控制电容器串并联转换的变压器
Kamardan et al. Development of Piezoelectric Harvesting System as An Alternative Renewable Energy for Automated Street Light in Malaysia
EP3654513A1 (en) Conditioning system for a triboelectric nanogenerator or an electrostatic kinetic energy harvester
EP2609317A1 (en) Micromechanical pyroelectric generator
JP5317884B2 (ja) 圧電式電源変換器
CN201298844Y (zh) 宽带电调连接可变均衡电路结构

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893275

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16893275

Country of ref document: EP

Kind code of ref document: A1