WO2017150628A1 - Microscopic three-dimensional structure forming method, and microscopic three-dimensional structure - Google Patents

Microscopic three-dimensional structure forming method, and microscopic three-dimensional structure Download PDF

Info

Publication number
WO2017150628A1
WO2017150628A1 PCT/JP2017/008171 JP2017008171W WO2017150628A1 WO 2017150628 A1 WO2017150628 A1 WO 2017150628A1 JP 2017008171 W JP2017008171 W JP 2017008171W WO 2017150628 A1 WO2017150628 A1 WO 2017150628A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine
dimensional structure
less
depth
forming
Prior art date
Application number
PCT/JP2017/008171
Other languages
French (fr)
Japanese (ja)
Inventor
田中 宏幸
淳也 来見田
ソマワン クンプアン
史朗 原
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2018503380A priority Critical patent/JP6856225B2/en
Publication of WO2017150628A1 publication Critical patent/WO2017150628A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • the present invention relates to a method for forming a fine three-dimensional structure and a fine three-dimensional structure.
  • FIG. 15A shows a resist 401 formed on the silicon substrate W with a skirt.
  • the resist is also etched to some extent with the silicon substrate.
  • lithography for forming a fine three-dimensional structure requires a resist with a uniform film thickness so that etching proceeds in the vertical direction, and exposure with high resolution is required.
  • FIG. 16 shows a schematic diagram of light intensity in an exposure spot of maskless exposure and a schematic diagram of a film thickness after development of a pattern subjected to maskless exposure.
  • maskless exposure light from a light source is condensed and exposed by a reduction projection lens, so that the light intensity at the exposure spot is strong at the center and weak at the periphery. For this reason, in the maskless exposure, the resist formed after development has a bottom.
  • Maskless exposure is considered to be unsuitable for forming a fine three-dimensional structure because exposure with high resolution cannot be performed and etching in the vertical direction is difficult. Note that maskless exposure is mainly used for printed circuit boards that have a wide pattern width of about 100 ⁇ m and do not require high resolution, and is rarely used for fine pattern formation.
  • Patent Document 2 proposes an etching method called a Bosch process as a deep digging technique for manufacturing a device having a large three-dimensional structure with a resolution of MEMS or the like of about 10 ⁇ m.
  • FIG. 17 shows a process diagram of the Bosch process.
  • isotropic etching is performed on the silicon substrate W having the resist 401 on the surface (FIG. 17A), and a protective film 403 is deposited on the side and bottom surfaces of the recess 402 formed by etching (FIG. 17).
  • 17 (b)) a process in which the three steps of removing the protective film on the bottom surface of the depression by anisotropic etching (FIG. 17C) are repeated as one cycle.
  • the cycle time cannot be shorter than 8 seconds, and a scallop is formed during the etching of 4 seconds including the exhaust, so the scallop is inevitable. Occurs. Further, in the formation of holes by the Bosch process, it is required to reduce the number of cycles necessary for forming holes in order to shorten the processing time, and isotropic etching is set so as to perform large etching. Therefore, in a normal Bosch process, a hole having a scallop depth of 500 nm or more formed on the side surface is formed.
  • a flattening process such as dry etching for flattening the scallop is required.
  • oxide film formation, neutral particle beam etching, and the like are used, but the size of the hole changes in any method.
  • the normal Bosch process has a large mask undercut of 500 nm or more. That is, in the etching by the Bosch process, the mask undercut is large, and the size of the hole is changed by the flattening process. Therefore, it is difficult to form a hole having a desired designed size.
  • An object of the present invention is to form a fine three-dimensional structure having smooth side surfaces dug in the vertical direction at a low cost and promptly and faithfully to the design.
  • a method for forming a fine three-dimensional structure comprising: 2.
  • the maskless exposure is a multiple exposure.
  • the coefficient of variation (W10 to W90) of W10, W50, and W90 is 5%. 1. It is characterized by the following. Or 2.
  • a scallop period P on the side surface of the fine recess is 100 nm or less.
  • the depth D of the scallop on the side surface of the fine recess is 30 nm or less. ⁇ 4.
  • the substrate has a diameter of 0.5 inch. ⁇ 5.
  • 1. Cycle time is 0.5 second or more and 6 seconds or less ⁇ 6.
  • the coefficient of variation (W10 to W90) is 3.5% or less.
  • the scallop depth D is 12 nm or less. ⁇ 8.
  • the film thickness at the edge of the resist is thinner than the film thickness at the center. ⁇ 12.
  • the width of the mask undercut at the upper end portion of the fine convex portion is 30 nm or less.
  • the fine three-dimensional structure described in 1. 15. 9.
  • the diameter of the substrate is 0.5 inch. ⁇ 14.
  • the coefficient of variation (W10 to W90) is 3.5% or less.
  • the depth D of the scallop is 12 nm or less. Or 16.
  • the method for forming a fine three-dimensional structure of the present invention draws a resist pattern by maskless exposure, an expensive mask is unnecessary. Since maskless exposure can be easily drawn using a computer, according to the method for forming a fine three-dimensional structure of the present invention, a fine three-dimensional structure can be manufactured in a small lot, and a variety of products can be produced in small quantities. Suitable for maid production and on-demand production. In addition, by performing multiple exposure, a smooth pattern can be drawn in the horizontal direction.
  • the fine three-dimensional structure forming method of the present invention performs etching by a so-called Bosch process.
  • Bosch process the resist is less likely to be etched by about 10 times compared to normal etching.
  • the resist pattern drawn by maskless exposure is thinner near the boundary than the center of the pattern.
  • the Bosch process the initial shape of the maskless exposed resist can be reduced during the etching process. Almost no change including the part. Therefore, even if the resist has a non-uniform film thickness, etching can be performed in the vertical direction along the drawn resist pattern, and fine concave portions whose width hardly changes in the depth direction can be formed. Further, by finely repeating isotropic etching in the Bosch process, it is possible to form a fine recess having a small scallop depth and a smooth side surface.
  • the fine three-dimensional structure forming method of the present invention can form fine concave portions having smooth side surfaces without performing an additional planarization step. Further, the width of the fine recesses actually obtained has a very small error from the design dimension, and a fine three-dimensional structure that is almost faithful to the pattern drawn by maskless exposure can be formed.
  • the processing gas in the Bosch process can be replaced at high speed by using a half-inch silicon substrate, reducing the volume of the chamber for generating plasma, and using an exhaust device having sufficient exhaust capacity with respect to the chamber capacity. . Therefore, the Bosch process can be repeated while sufficiently replacing the processing gas with a cycle time of 6 seconds or less that could not be achieved conventionally.
  • a cycle time of 6 seconds or less it is possible to form a fine recess having a more vertical and smooth side surface.
  • the cycle time is short, even if the Bosch process is repeated several hundred cycles, the processing time of the fine three-dimensional structure is short and the productivity is excellent.
  • the fine three-dimensional structure of the present invention is superior in the verticality and smoothness of the side surface as compared with a fine three-dimensional structure having a fine recess having a depth of 20 ⁇ m or less that has been reported conventionally. Since the unevenness on the side surface is small with respect to the wavelength of light and the perpendicularity of each surface is excellent, there is little attenuation when light is reflected, and it can be suitably used as an optical waveguide. Since an error from the design dimension is small and a desired shape can be formed, it can be suitably used as a diffraction grating or a hologram. Further, since the liquid can flow smoothly, it is also suitable as a microchannel or a microreactor. Furthermore, the fine three-dimensional structure of the present invention having a small side scallop depth is suitable as a mold for nanoimprinting because it has little catch when transferring and peeling the structure.
  • the schematic diagram of DLP exposure which is maskless exposure.
  • Sectional drawing which shows the structural example of a plasma etching apparatus.
  • the bird's-eye view image by the scanning electron microscope of the resist pattern drawn in Experiment 1 whose curve width is 4 micrometers.
  • the bird's-eye view image by the scanning electron microscope of the micro three-dimensional structure which was created in Experiment 1, and the curve width is 4 micrometers.
  • FIG. 3 is a cross-sectional image obtained by a scanning electron microscope having a fine three-dimensional structure having a line and space of 2 ⁇ m created in Experiment 1.
  • FIG. A cross-sectional image of a resist pattern drawn in Experiment 2 with a line and space of 4 ⁇ m by a scanning electron microscope.
  • FIG. The figure explaining the progress of the etching when the resist which pulled the skirt is used as a mask.
  • the present invention is completely different in industrial application, that is, maskless exposure with poor resolution, which is mainly used for patterning printed circuit boards, and Bosch process in which scallops are formed on the side surfaces used for etching during MEMS manufacturing.
  • This is a method for forming a fine three-dimensional structure by combining techniques used for applications.
  • a resist pattern drawn by maskless exposure is formed on a silicon substrate.
  • the resolution of maskless exposure is preferably small, preferably 0.5 ⁇ m or less, and more preferably 0.25 ⁇ m or less.
  • the width of the resist pattern can be, for example, 0.25 ⁇ m or more and 10 ⁇ m or less.
  • the shape of the resist pattern is not particularly limited, and for example, any of dots, lines, surfaces, or a combination thereof can be drawn.
  • As the substrate not only silicon but also germanium, gallium arsenide, gallium arsenide phosphorus, silicon carbide, gallium nitride, sapphire, diamond, or the like can be used.
  • FIG. 1 shows a schematic diagram of DLP exposure (Digital Light Processing) as an example of maskless exposure.
  • the DLP exposure is a method in which light from the light source 201 is reflected by the DMD 202 and the light reflected by the DMD is exposed on the silicon substrate W through the reduction projection lens 203.
  • a fine pattern is formed by irradiating light condensed by a reduction projection lens onto a photoresist film, so that a light irradiation range is narrow and scanning scanning for moving the irradiation range is necessary. Further, the shape of the exposure spot projected on the silicon substrate is substantially square. Therefore, a smooth pattern can be drawn in a direction parallel to the scanning direction, but only a pattern having a jagged step can be drawn in the scanning direction and the oblique direction.
  • the step can be set to 0.1 ⁇ m by exposing the pixel in five.
  • the resolution of light is 0.3 ⁇ m (for example, i-line is 0.365 ⁇ m)
  • a step of 0.1 ⁇ m unit which is equal to or less than the wavelength of light, is drawn dull, so the step disappears and is smooth. Pattern.
  • FIG. 2 shows a schematic diagram of the light intensity when the maskless exposure exposure spot is shifted and multiple exposure is performed four times.
  • the light intensity in one exposure spot is shown as the same for simplification. Therefore, when multiple exposure is performed, the difference in light intensity between the center portion and the boundary portion of the pattern becomes larger. That is, the resist pattern drawn by maskless exposure is in a state where the pattern central portion is thick, the pattern boundary portion is thin, and the skirt is drawn regardless of the presence or absence of multiple exposure.
  • DLP exposure Since DLP exposure is performed while scanning scanning, it takes more time to expose the entire surface of the silicon substrate than mask exposure. For example, it takes about 100 hours to perform DLP exposure on a wafer having a diameter of 300 mm. is required. Furthermore, if multiple exposures are performed with 5 divisions in the vertical and horizontal directions, 2500 hours (100 ⁇ 5 ⁇ 5) are required.
  • the problem that it takes a long time to expose a single wafer, which is a drawback of DLP exposure, can be solved by reducing the size of the wafer. For example, by using a half-inch size (diameter: 12.5 mm) wafer, the wafer area can be reduced to about 1/700 compared to a 300 mm diameter wafer. Therefore, the five-division multiple exposure that required 2500 hours can be completed within 2 hours, which is 1/1000 or less. Further, by increasing the speed of the DMD and the scanning mechanical mechanism, five-division multiple exposure can be performed in about 40 minutes.
  • the isotropic etching step (2A) and the removal step (2C) are also referred to as an etching step.
  • FIG. 3 shows a configuration example of a plasma etching apparatus that performs the Bosch process.
  • the plasma etching apparatus 300 includes a cylindrical chamber 301 that generates plasma and performs plasma processing, a gas supply mechanism 302 that supplies a processing gas to the chamber, a coil 303 disposed outside the chamber, and a coil A coil power supply mechanism 304 for supplying high-frequency power, a base 305 for placing the silicon substrate W, a base power supply mechanism 306 for supplying high-frequency power to the base, and an exhaust for exhausting the gas in the chamber Device 307.
  • an etching gas such as SF 6 , CF 4 , C 3 F 8 , SiF 4 , or NF 3 and a protective film forming gas such as C 4 F 8 or C 5 F 8 are used.
  • the protective film is slightly etched in the etching process, but is repaired by depositing the protective film in the plasma deposition process (2B).
  • a resist pattern having a non-uniform film thickness is formed by maskless exposure.
  • the initial resist shape is It is maintained including the skirt and the thin part does not disappear. Since etching can be performed while maintaining the drawn resist pattern, it is possible to form a fine recess that faithfully reflects the resist pattern in the horizontal plane.
  • FIG. 4 the schematic diagram of the cross section of the depth direction of the fine recessed part formed with the fine three-dimensional structure formation method of this invention is shown.
  • the shape of the fine recesses in the horizontal plane is not particularly limited, and the horizontal recesses other than the convex portions such as circular holes, square holes, straight and curved ridges, cylinders, quadrangular columns, ridges, etc. Almost the entire surface can be a fine recess.
  • the fine recess 110 is formed in the silicon substrate W and has an opening 111, a bottom surface 112, and a side surface 113, and a scallop 114 having a period P and a depth D is formed on the side surface 113.
  • the height position of the opening of the fine recess is equal to the surface of the silicon substrate before processing.
  • the silicon substrate has a resist pattern 120 on the surface, and this resist pattern is drawn by maskless exposure. Therefore, the film thickness is not uniform, thick at the center, and thin at the boundary. In FIG. 4, the scallop 114 is exaggerated from the actual one.
  • the processing gas hardly enters the inside of the fine recess and the etching rate tends to decrease.
  • the width of the fine recesses is preferably 3 ⁇ m or more, more preferably 4 ⁇ m or more, and further preferably 5 ⁇ m or more.
  • the depth of the fine recess is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, and even more preferably 12 ⁇ m or less.
  • the divided variation coefficient (W10 to W90) can be 5% or less. By setting the coefficient of variation to 5% or less, for example, when an optical waveguide is used, the reflecting surfaces facing each other are excellent in parallelism, and a long distance can be transmitted while repeating total reflection at the interface.
  • the coefficient of variation (W10 to W90) is preferably 3.5% or less, more preferably 3% or less, further preferably 2.7% or less, and most preferably 2% or less. preferable.
  • the width of the fine concave portion is based on a line connecting the portions where the scallop is dug most in the horizontal direction.
  • variety of a fine recessed part the 1st side surface of the fine recessed part in a depth direction cross section and the nearest 8 micrometers or more away from the 1st side surface
  • the distances from the second side surface at the 10% depth position, 50% depth position, and 90% depth position are W10, W50, and W90, respectively.
  • the depth D of the scallop formed on the side surface of the fine recess can be reduced by reducing the depth of the recess formed in the one isotropic etching step (2A).
  • the depth of the depression formed in one isotropic etching step (2A) varies depending on various conditions such as the frequency and power of the high-frequency power, the pressure and flow rate of the processing gas, and the time of the etching step, in particular, It is easy to adjust by the time of the isotropic etching step (2A) in which no bias power is applied to the base.
  • the depth of the recess formed in one isotropic etching step (2A) corresponds to the scallop period P.
  • the scallop period P which is the depth of the depression formed in one isotropic etching step (2A), is preferably 100 nm or less, more preferably 60 nm or less, still more preferably 40 nm or less, and most preferably 20 nm or less. . In order to obtain a smoother side, the scallop period P is preferably smaller. However, since the time taken to form the fine recesses is longer, the scallop period P is preferably 1 nm or more, and preferably 3 nm or more. Is more preferable, and more preferably 5 nm or more.
  • the scallop depth D is preferably 30 nm or less, more preferably 20 nm or less, further preferably 12 nm or less, and most preferably 5 nm or less.
  • the scallop period P is set to 40 nm or less, the scallop protrusion is flattened while the Bosch process is repeated, and the unevenness cannot be visually recognized in the electron microscope image, and the scallop may actually disappear.
  • the width of the mask undercut which is the distance between the upper end of the side surface of the fine recess and the end of the resist, can be made equal to the scallop depth D.
  • the side surface shape is exaggerated for the sake of explanation.
  • the top of the side surface of the fine recess is H0
  • the depth of the fine recess is h0
  • the intermediate height point of the side surface is H1
  • the straight line l passing through H0 and H1 and the bottom surface The point of intersection is O
  • the point of intersection between the perpendicular line passing through O and the side is H2
  • the height of H2 is h2
  • the angle between the straight line 1 and the bottom surface is a taper angle ⁇ , and the distance between H2 and H3 in the direction parallel to the bottom surface is a tailing length L.
  • H1, H2, and H3 are located on the line which connects the part where the scallop was dug most in the horizontal direction.
  • a fine recess having a taper angle ⁇ of 85 degrees or more and 89.99 degrees or less can be formed. Furthermore, by setting the depth of the recess formed in one isotropic etching step (2A) to 100 nm or less, it is possible to form a fine recess having a skirt length L of 2 ⁇ m or less. That is, according to the method for forming fine recesses of the present invention, it is possible to form fine recesses that are dug in the vertical direction and whose side surfaces rise sharply from the bottom.
  • the fine concave portion obtained by the fine concave portion forming method of the present invention is dug in the vertical direction and has a short tail at the bottom portion.
  • Variations in W50, W90, and W95 are small, and variation coefficients (W10 to W95) of W10, W50, W90, and W95 are smaller than variation coefficients (W10 to W90) of W10, W50, and W90.
  • the coefficient of variation (W10 to W95) is preferably 3.5% or less, more preferably 3.2% or less, further preferably 2.5% or less, and 1.8% or less. Most preferably it is.
  • each above-mentioned value can be calculated
  • the scallop cannot be confirmed, and the scallop period P and the depth D may not be obtained.
  • the scallop period P can be calculated from the depth of the formed fine recess and the number of cycles of the Bosch process.
  • the period P and depth D of the scallop can be measured by observing with an atomic force microscope (AFM) instead of the electron microscope.
  • AFM atomic force microscope
  • the volume of the chamber can be reduced to 500 mL or less.
  • an exhaust device having a chamber capacity (V) of 500 mL or less and an exhaust capacity (100 V / second or more) 100 times or more of the chamber volume per second, the processing gas can be replaced at high speed, and the cycle time Can be shortened.
  • the exhaust capacity of the exhaust device is preferably 150 times or more, more preferably 200 times or more of the chamber volume per second.
  • the coefficient of variation (W10 to W90) is 3.3% or less
  • the time for the etching step is preferably 3.5 seconds or less, more preferably 2 seconds or less, and even more preferably 1 second or less. What is necessary is just to adjust suitably the ratio of the time of an isotropic etching process (2A) in the etching process, and the time of a removal process (2C) in the range of 90:10 or more and 10:90 or less. Further, the ratio of the time of the isotropic etching step (2A) and the time of the removal step (2C) may be constant throughout the Bosch process or may be changed. Further, the time of the plasma deposition step (2B) is preferably 3.5 seconds or less, more preferably 2 seconds or less, and further preferably 1 second or less.
  • the cycle time which is the time required for the isotropic etching step (2A), plasma deposition step (2B) and removal step (2C), is preferably 6 seconds or less, more preferably 4 seconds or less, and 2 seconds or less. Is more preferable. Since the gas cannot be sufficiently replaced and the processing gas is mixed, the cycle time is preferably 0.5 seconds or more.
  • the Bosch process can be performed 300 cycles in just 10 minutes (600 seconds).
  • the depth of the recess formed in one isotropic etching step (2A) is 33.3 nm, the depth is 10 ⁇ m in 10 minutes, and the scallop depth D is 12 nm or less. It is possible to form a fine concave portion.
  • the number of cycles of the Bosch process in the fine three-dimensional structure method of the present invention is not particularly limited. However, in order to form a fine concave portion having a smooth side surface with a small scallop depth D, it is preferable to form a fine concave portion having a desired depth by a Bosch process of 200 cycles or more.
  • the number of cycles is more preferably 300 cycles or more, further preferably 500 cycles or more, and most preferably 1000 cycles or more.
  • the depth of the recess formed in one isotropic etching step (2A) is 100 nm or less.
  • the inner diameter of the chamber of the plasma generating portion can be set to 20 mm or more and 60 mm or less.
  • the space for generating plasma it is possible to reduce the size and power consumption of equipment required for plasma generation. For example, 50 W, which requires permission for installation of equipment according to the Japanese Radio Law.
  • the output can be lower than.
  • the so-called skin layer near the inner wall of the chamber where plasma is generated is a region where plasma is not generated by the skin effect when high-frequency power is supplied to the coil.
  • the skin layer is thinner in the radial direction as the frequency of the high-frequency power is higher, and is thicker as the frequency of the high-frequency power is lower. Therefore, when the frequency of the high frequency power is small, the skin layer becomes too thick, and a region where plasma is generated is not sufficiently secured.
  • plasma can be generated even in a narrow region by setting the frequency of the high-frequency power to 40 MHz or more.
  • the generated plasma can be stably maintained by setting the magnitude of the high-frequency power to 2 W or more.
  • the frequency of the high-frequency power By setting the frequency of the high-frequency power to 40 MHz or more, which is larger than the general 13.56 MHz, even if the high-frequency power is as small as 2 W, sufficient energy for separating the plasma can be given. Furthermore, since the etching rate is reduced when the high-frequency power is reduced, the depth of the groove formed in one isotropic etching step (2A) is reduced, which is suitable for forming fine concave portions having smooth side surfaces.
  • the fine three-dimensional structure formation method of the present invention using maskless exposure and the Bosch process, a fine three-dimensional structure having a vertical and smooth side surface and faithful to the drawn resist pattern can be formed.
  • the fine three-dimensional structure formation method of this invention can perform additional processes, such as protective layer formation processes, such as an oxide film, a nitride film, and metal plating, a dicing process, as needed.
  • the fine three-dimensional structure 100 has a fine concave portion 110 formed on a silicon substrate W and made of a portion from which silicon is removed, and a period P is 100 nm or less and a depth D is formed on a side surface of the fine concave portion.
  • a scallop (not shown) having a thickness of 30 nm or less is formed.
  • the fine recess is formed by etching the silicon substrate in the vertical direction. The portion where the silicon substrate remains without being etched constitutes the fine protrusion 130.
  • the fine concave portion and the fine convex portion are adjacent to each other, and the fine convex portion and the silicon substrate are made of the same continuous material and have no interface.
  • the shape of the fine three-dimensional structure is not particularly limited, and examples thereof include a cylinder, a quadrangular column, a circular hole, a square hole, a linear or curved ridge, a groove, or a combination thereof.
  • the fine recess has a depth of 20 ⁇ m or less and a width of 3 ⁇ m or more.
  • the depth of the fine concave portion that is, the height of the fine convex portion is more preferably 15 ⁇ m or less, and further preferably 12 ⁇ m or less.
  • the depth of the fine concave portion (height of the fine convex portion) is preferably 500 nm or more, more preferably 1 ⁇ m or more, and further preferably 2 ⁇ m or more.
  • the width of the fine recess is preferably 4 ⁇ m or more, and more preferably 5 ⁇ m or more.
  • the fine concave portion is dug almost vertically, and the fine convex portion stands upright substantially perpendicular to the silicon substrate.
  • the variation coefficient (W10 to W90) is 5% or less. is there.
  • the coefficient of variation (W10 to W90) is preferably 3.5% or less, more preferably 3% or less, further preferably 2.7% or less, and most preferably 2% or less. preferable.
  • the coefficient of variation (W10 to W95) of W10, W50, W90, and W95 is preferably 3.5% or less, and is preferably 3.2% or less. More preferably, it is more preferably 2.5% or less, and most preferably 1.8% or less.
  • the scallop period P on the side surface of the fine recess is 100 nm or less, preferably 60 nm or less, more preferably 40 nm or less, still more preferably 30 nm or less, and most preferably 20 nm or less.
  • the scallop depth D is 30 nm or less, preferably 20 nm or less, more preferably 15 nm or less, still more preferably 12 nm or less, and most preferably 5 nm or less.
  • the taper angle ⁇ of the fine recess is preferably 86 degrees or more, more preferably 88 degrees or more, further preferably 89 degrees or more, and most preferably 89.5 degrees or more. .
  • the skirt length L is preferably 2 ⁇ m or less, more preferably 1.5 ⁇ m or less, further preferably 1 ⁇ m or less, and most preferably 0.6 ⁇ m or less.
  • each above-mentioned value can be calculated
  • the scallop cannot be confirmed from the electron microscope image, and the scallop period P and depth D may not be obtained.
  • the scallop period P can be calculated from the depth of the formed fine recess and the number of cycles of the Bosch process.
  • the period P and depth D of the scallop can be measured by observing with an atomic force microscope (AFM) instead of the electron microscope.
  • AFM atomic force microscope
  • the cycle time of the Bosch process when forming the fine recesses can be reduced to 6 seconds or less.
  • the digging can be carried out little by little, so that the scallop depth D becomes smaller and the side surface can be further smoothed.
  • the scallop period P can be 40 nm or less, and the depth D can be 12 nm or less.
  • the coefficient of variation (W10 to W90) can be 3.4% or less
  • the coefficient of variation (W10 to W95) can be 3.1% or less
  • the taper angle is 88.6 degrees or more
  • the tailing length is 0.8 ⁇ m or less. .
  • the fine three-dimensional structure of the present invention is not limited to the above-described embodiment.
  • the top of the fine protrusions may be covered with a maskless exposed resist.
  • the film thickness at the center is larger than the film thickness at the boundary, and the width of the mask undercut is 30 nm or less.
  • it can also be set as the fine three-dimensional structure which has the fine recessed part from which depth differs, and the fine convex part from which height differs by performing the fine three-dimensional structure formation method of this invention in multiple times.
  • the fine three-dimensional structure of the present invention has smoother side surfaces, superior verticality of each surface, and is faithful to the drawn resist pattern as compared with the conventional one.
  • the use of the fine three-dimensional structure of the present invention is not particularly limited.
  • the scallop period P and the depth D are sufficiently smaller than the wavelength of light, and the perpendicularity of the fine three-dimensional structure is excellent, the attenuation when light is reflected at the interface is small. Can be suitably used.
  • a desired shape can be formed faithfully to the resist pattern, it is suitable as an optical element such as a diffraction grating or a hologram.
  • the side surface is smooth and the resistance when the liquid flows is small, it can be used as a microchannel or a microreactor. At this time, since there are few unevenness
  • Experiment 1 A negative photoresist was spin-coated on a half-inch silicon wafer so that the film thickness after drying was 1 ⁇ m, and dried. After exposure once with a DLP exposure apparatus, development was performed to draw a resist pattern. The shape of the exposure spot is 0.5 ⁇ m square. Using a plasma etching apparatus having a chamber capacity of 500 ml and an exhaust speed of 80 L / sec, 300 cycles of a Bosch process with a cycle time of 2 seconds were performed for 1 second each for the etching process and the plasma deposition process (2B) under the following conditions.
  • FIGS. 9 to 11 show an overhead image of a fine three-dimensional structure, a cross-sectional image of a part having a line and space of 4 ⁇ m, and a cross-sectional image of a part having a line and space of 2 ⁇ m, respectively.
  • the resist pattern had a skirt due to non-uniformity of light irradiation in maskless exposure. Further, the resist pattern has a jagged step in the scanning direction and the oblique direction. When this resist pattern is etched as a mask, a fine three-dimensional structure in which the jagged step is directly reflected can be formed.
  • a fine recess having a depth of 12.0 ⁇ m could be formed at a line and space of 4 ⁇ m. Even when the cross-sectional image was magnified 500,000, scallops could not be confirmed. For this reason, the depth D of the scallop formed on the side surface is 12 nm or less.
  • the scallop period P calculated from the depth of the fine recesses and the number of cycles is 40.0 nm.
  • the fine recesses W10, W50, and W90 were 5.00 ⁇ m, 4.77 ⁇ m, and 4.69 ⁇ m, respectively, and the variation coefficient (W10 to W90) was 3.34%.
  • W95 was 4.69 ⁇ m, and the coefficient of variation (W10 to W95) was 3.06%.
  • the taper angle was 88.6 degrees and the skirt length was 0.59 ⁇ m.
  • Table 1 shows the measured values. The portion where the line and space was 4 ⁇ m could be etched in a substantially vertical direction and stood up sharply from the bottom. Moreover, the scallop was not confirmed and the side surface was smooth.
  • a fine recess having a depth of 11.0 ⁇ m could be formed in the portion where the line and space was 2 ⁇ m. Even when the cross-sectional image was magnified 500,000, scallops could not be confirmed. For this reason, the depth D of the scallop formed on the side surface is 12 nm or less.
  • the calculated scallop period P is 36.7 nm.
  • the fine recesses W10, W50, and W90 were 3.09 ⁇ m, 2.85 ⁇ m, and 2.61 ⁇ m, respectively, and the coefficient of variation (W10 to W90) was 8.06%.
  • W95 was 2.61 ⁇ m, and the coefficient of variation (W10 to W95) was 8.24%.
  • the taper angle was 88.5 degrees and the skirt length was 0.40 ⁇ m.
  • Table 1 shows the measured values.
  • the etching rate was gradually decreased because the width of the space was narrow and the processing gas did not easily enter the inside. For this reason, the coefficient of variation (W10 to W90) was larger than that of the line and space portion of 4 ⁇ m.
  • the taper angle at the line and space portions of 4 ⁇ m and 2 ⁇ m hardly changed. This is because the difference between W10 and W50 (W10 ⁇ W50) in the portions where the line and space is 4 ⁇ m and 2 ⁇ m is almost the same as 0.23 ⁇ m and 0.24 ⁇ m, respectively.
  • the difference between W50 and W90 (W50-W90) in the part where the line and space is 4 ⁇ m and 2 ⁇ m is significantly different from 0.08 ⁇ m and 0.24 ⁇ m.
  • the line and space is 2 ⁇ m, the fine concave portion becomes deeper. The etching rate continued to decrease gradually.
  • Experiment 2 A fine three-dimensional structure was formed in the same manner as in Experiment 1 except that multiple exposure (5 divisions each in vertical and horizontal directions) was performed with a DLP exposure apparatus and a resist pattern was drawn. Multiple exposure was performed by shifting an exposure spot of 0.5 ⁇ m square by 0.1 ⁇ m vertically and horizontally. Note that the total exposure energy integration amount of the multiple exposure is equal to the exposure energy of the first embodiment.
  • FIG. 12 shows a cross-sectional image of a resist pattern having a line and space of 4 ⁇ m.
  • an overhead image of a fine three-dimensional structure and a cross-sectional image of a portion having a line and space of 4 ⁇ m are shown in FIGS. 13 and 14, respectively.
  • the resist pattern When the maskless exposure was subjected to multiple exposure, the resist pattern had a tail. In addition, since the jagged steps of the resist pattern were reduced by the multiple exposure, it was possible to form a very smooth fine three-dimensional structure in the horizontal plane as compared with the fine three-dimensional structure of Experiment 1.
  • a fine recess having a depth of 10.2 ⁇ m could be formed at a line and space of 4 ⁇ m. Even when the cross-sectional image was magnified 500,000, scallops could not be confirmed. For this reason, the depth D of the scallop formed on the side surface is 12 nm or less.
  • the calculated scallop period P is 34.0 nm.
  • the fine recesses W10, W50, and W90 were 4.83 ⁇ m, 4.64 ⁇ m, and 4.59 ⁇ m, respectively, and the variation coefficients (W10 to W90) were 2.70%.
  • W95 was 4.59 ⁇ m, and the coefficient of variation (W10 to W95) was 2.45%.
  • the taper angle was 89.1 degrees and the skirt length was 0.76 ⁇ m. Table 1 shows the measured values.
  • Experiment 3 a fine three-dimensional structure was formed in the same manner as in Experiment 2 except that etching gas and protective film forming gas were simultaneously flowed and etching was performed under the following conditions.
  • Etching conditions are as follows. Etching time: 600 seconds Pressure: 10 Pa High frequency power frequency: 100 Hz Size of high frequency power: 25W Bias power: 2W Etching: SF 6, 4ml / min Plasma deposition: C 4 F 8, 4ml / min

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Micromachines (AREA)
  • Drying Of Semiconductors (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

The present invention addresses the problem of forming, rapidly and faithfully to a design, a microscopic three-dimensional structure carved in a vertical direction and having smooth side surfaces at low cost. As a solution, a microscopic three-dimensional structure forming method is provided, comprising: the step (1) of forming a resist pattern drawn on a substrate by mask-less exposure; an isotropic etching step (2A) of forming a recess in the substrate by isotropic etching; a plasma deposition step (2B) of depositing a protective film on the resist pattern and the inner walls of the recess; a removal step (2C) of removing the protective film on the bottom surface of the recess by anisotropic etching; and the step (2) of sequentially reiterating the isotropic etching step (2A), the plasma deposition step (2B) and the removal step (2C), thereby forming a microscopic depression in the substrate.

Description

微細立体構造形成方法、及び微細立体構造Fine three-dimensional structure forming method and fine three-dimensional structure
 本発明は、微細立体構造形成方法と微細立体構造に関する。 The present invention relates to a method for forming a fine three-dimensional structure and a fine three-dimensional structure.
 半導体の三次元実装や、光導波路、マイクロ流路、マイクロリアクター、ナノインプリント用モールド等として、マイクロメートルオーダーの微細な立体構造を正確に形成することが求められており、半導体の精密加工プロセスであるリソグラフィとエッチングとを用いた微細立体構造の形成方法が検討されている。 It is required to accurately form fine three-dimensional structures on the order of micrometers for three-dimensional mounting of semiconductors, optical waveguides, microchannels, microreactors, nanoimprint molds, etc. A method for forming a fine three-dimensional structure using lithography and etching has been studied.
 微細立体構造を形成するためのリソグラフィには、膜厚が均一なレジストが得られる解像度の高い露光が要求される。露光の解像度が低いと、現像後に形成されるレジストパターンの境界付近がぼけてレジストが薄くなり、いわゆるレジストが裾を引いた状態となる。図15(a)に、シリコン基板W上に形成された裾を引いたレジスト401を示す。エッチング工程では、レジストもシリコン基板とともに多少エッチングされるため、このレジストをマスクとしてエッチングを行うと、エッチングが進行するにつれてレジストの裾部分が徐々に消失し、シリコン基板のレジストが消失した部分に対するエッチングが始まり(図15(b))、最終的にシリコン基板は台形状にエッチングされてしまう(図15(c))。そのため、微細立体構造を形成するためのリソグラフィには、垂直方向にエッチングが進行するように、膜厚が均一なレジストが必要であり、解像度の高い露光が要求される。 In lithography for forming a fine three-dimensional structure, exposure with high resolution is required to obtain a resist having a uniform film thickness. When the exposure resolution is low, the vicinity of the boundary of the resist pattern formed after development is blurred and the resist becomes thin, so that the so-called resist has a skirt. FIG. 15A shows a resist 401 formed on the silicon substrate W with a skirt. In the etching process, the resist is also etched to some extent with the silicon substrate. When etching is performed using this resist as a mask, the bottom of the resist gradually disappears as the etching progresses, and etching is performed on the portion of the silicon substrate where the resist has disappeared. Begins (FIG. 15B), and the silicon substrate is finally etched into a trapezoidal shape (FIG. 15C). Therefore, lithography for forming a fine three-dimensional structure requires a resist with a uniform film thickness so that etching proceeds in the vertical direction, and exposure with high resolution is required.
 通常、露光にはマスクが用いられるが、マスクは、非常に高価でマスクの製造自体に時間がかかる。そのため、マスクレス露光というコンピュータ画像データをそのまま焼き付けるマスクを用いない露光方法が提案されている(特許文献1参照)。図16に、マスクレス露光の露光スポット内の光強度の模式図と、マスクレス露光したパターンの現像後の膜厚の模式図を示す。マスクレス露光は、光源からの光を縮小投影レンズで集光して露光するため、露光スポットにおける光強度は中心部で強く周辺部で弱い。そのため、マスクレス露光では、現像後に形成されるレジストが裾を引いてしまう。マスクレス露光は、解像度の高い露光ができず、垂直方向にエッチングを行うことが難しいため、微細立体構造の形成には不向きであると考えられている。なお、マスクレス露光は、主に、パターン幅が100μm程度と広く、高い解像度が要求されないプリント基板に用いられており、微細なパターン形成にはほとんど用いられていない。 Usually, a mask is used for exposure, but the mask is very expensive and takes a long time to manufacture the mask itself. Therefore, an exposure method that does not use a mask for printing computer image data as it is called maskless exposure has been proposed (see Patent Document 1). FIG. 16 shows a schematic diagram of light intensity in an exposure spot of maskless exposure and a schematic diagram of a film thickness after development of a pattern subjected to maskless exposure. In maskless exposure, light from a light source is condensed and exposed by a reduction projection lens, so that the light intensity at the exposure spot is strong at the center and weak at the periphery. For this reason, in the maskless exposure, the resist formed after development has a bottom. Maskless exposure is considered to be unsuitable for forming a fine three-dimensional structure because exposure with high resolution cannot be performed and etching in the vertical direction is difficult. Note that maskless exposure is mainly used for printed circuit boards that have a wide pattern width of about 100 μm and do not require high resolution, and is rarely used for fine pattern formation.
 また、エッチングにより微細立体構造を形成するためには、現像したレジストパターンに忠実に、垂直方向に滑らかにエッチングする必要がある。
 上記したように、解像度の高い露光を行い、膜厚が均一なレジストをマスクとしてエッチングを行っても、レジストは少しずつサイドエッチングされてしまう。エッチングに時間をかけて深掘りを行うと、エッチングの進行とともにサイドエッチングによりレジスト幅が狭くなるため、基板はやや斜め方向にエッチングされ、垂直方向に正確にエッチングすることはできない。
Further, in order to form a fine three-dimensional structure by etching, it is necessary to perform etching smoothly in the vertical direction faithfully to the developed resist pattern.
As described above, even when exposure with high resolution is performed and etching is performed using a resist having a uniform film thickness as a mask, the resist is side-etched little by little. When deep etching is carried out over time, the resist width is narrowed by side etching as the etching progresses, so that the substrate is etched in a slightly oblique direction and cannot be accurately etched in the vertical direction.
 ここで、MEMS等の解像度が10μm程度と大きな立体構造を有するデバイスを製造するための深掘り技術として、特許文献2にボッシュプロセスと呼ばれるエッチング方法が提案されている。
 図17に、ボッシュプロセスの工程図を示す。ボッシュプロセスは、表面にレジスト401を有するシリコン基板Wに等方性エッチングを行う工程(図17(a))、エッチングにより形成した窪み402の側面と底面とに保護膜403を堆積させる工程(図17(b))、異方性エッチングにより窪みの底面の保護膜を除去する工程(図17(c))の3工程を1サイクルとしたプロセスを繰り返す方法である。ボッシュプロセスは、等方性エッチングの際に、保護膜で保護されている窪みの側面はエッチングされず、保護膜が除去されている窪みの底面を起点として等方性エッチングが進行する。窪みの底面に対する等方性エッチングを繰り返すことにより、縦方向にのみエッチングが進行し、垂直方向に100μm以上の深さを有する穴を形成することができる(図17(d))。
Here, Patent Document 2 proposes an etching method called a Bosch process as a deep digging technique for manufacturing a device having a large three-dimensional structure with a resolution of MEMS or the like of about 10 μm.
FIG. 17 shows a process diagram of the Bosch process. In the Bosch process, isotropic etching is performed on the silicon substrate W having the resist 401 on the surface (FIG. 17A), and a protective film 403 is deposited on the side and bottom surfaces of the recess 402 formed by etching (FIG. 17). 17 (b)), a process in which the three steps of removing the protective film on the bottom surface of the depression by anisotropic etching (FIG. 17C) are repeated as one cycle. In the Bosch process, during the isotropic etching, the side surface of the depression protected by the protective film is not etched, and the isotropic etching proceeds from the bottom of the depression from which the protective film is removed. By repeating isotropic etching on the bottom surface of the depression, etching proceeds only in the vertical direction, and a hole having a depth of 100 μm or more can be formed in the vertical direction (FIG. 17D).
 しかし、ボッシュプロセスは、等方性エッチング工程において、すべての方向に対して一様な速度でエッチングが進行するため、基板は球形に削れる。そのため、穴の側面にスキャロップ(Scallop:ホタテ貝文様)404と呼ばれるエッチングの繰り返し周期に同期した凹凸が形成されてしまい、側面が滑らかな穴を製造することができない。ボッシュプロセスの1サイクルにかかる時間(以下、サイクルタイムともいう。)を短くすれば、スキャロップを小さくできるが、エッチングガスと保護膜形成ガスの排気時間に、それぞれ最低4秒程度を要するため、サイクルタイムは8秒以上となる。一方のガスが完全に排気される前に他方のガスを導入すれば、サイクルタイムを短くすることができるが、穴の側面に十分な保護膜が形成されず、等方性エッチング工程で側面がエッチングされてしまい、垂直方向に穴を形成することができない。 However, in the Bosch process, since the etching proceeds at a uniform speed in all directions in the isotropic etching process, the substrate is cut into a spherical shape. Therefore, irregularities synchronized with the repetition cycle of etching called scallop (Scallop 404) are formed on the side surface of the hole, and a hole with a smooth side surface cannot be manufactured. If the time required for one cycle of the Bosch process (hereinafter also referred to as cycle time) is shortened, the scallop can be reduced. However, since the exhaust time of the etching gas and the protective film forming gas requires at least about 4 seconds each, The time is 8 seconds or more. If the other gas is introduced before one gas is completely exhausted, the cycle time can be shortened. However, a sufficient protective film is not formed on the side surface of the hole, and the side surface is removed in the isotropic etching process. It is etched and a hole cannot be formed in the vertical direction.
 すなわち、ガスを十分に置換する正常なボッシュプロセスでは、サイクルタイムを8秒より短くすることはできず、排気も含めた4秒のエッチングの間に、スキャロップが形成されるため、スキャロップが必然的に発生する。また、ボッシュプロセスによる穴の形成は、加工時間を短くするために穴の形成に必要なサイクル数を少なくすることが求められ、等方性エッチングは大きくエッチングするように設定される。そのため、通常のボッシュプロセスでは、側面に形成されるスキャロップ深さが500nm以上である穴が形成されてしまう。 That is, in a normal Bosch process that sufficiently replaces the gas, the cycle time cannot be shorter than 8 seconds, and a scallop is formed during the etching of 4 seconds including the exhaust, so the scallop is inevitable. Occurs. Further, in the formation of holes by the Bosch process, it is required to reduce the number of cycles necessary for forming holes in order to shorten the processing time, and isotropic etching is set so as to perform large etching. Therefore, in a normal Bosch process, a hole having a scallop depth of 500 nm or more formed on the side surface is formed.
 ボッシュプロセスを用いて側面が滑らかな穴を得るためには、特許文献3に提案されているように、スキャロップを平坦化するドライエッチング等の平坦化処理が必要である。平坦化処理には、酸化膜形成、中性粒子ビームエッチング等も利用されているが、いずれの方法も穴の大きさが変化してしまう。さらに、通常のボッシュプロセスは、マスクアンダーカットが500nm以上と大きい。すなわち、ボッシュプロセスによるエッチングは、マスクアンダーカットが大きく、平坦化処理により穴の大きさが変化してしまうため、設計した所望の大きさの穴を形成することは困難であった。 In order to obtain a hole with a smooth side surface using the Bosch process, as proposed in Patent Document 3, a flattening process such as dry etching for flattening the scallop is required. For the planarization process, oxide film formation, neutral particle beam etching, and the like are used, but the size of the hole changes in any method. Furthermore, the normal Bosch process has a large mask undercut of 500 nm or more. That is, in the etching by the Bosch process, the mask undercut is large, and the size of the hole is changed by the flattening process. Therefore, it is difficult to form a hole having a desired designed size.
 先に述べたように、通常のエッチングでは、垂直方向に深掘りすることができず、側面が斜めである台形状になってしまう。また、ボッシュプロセスは、垂直方向に深掘りすることはできるが、スキャロップが形成されるため、滑らかな側面を得ることができず、さらに設計に忠実な大きさの穴を形成することが困難である。
 すなわち、エッチングにより、垂直方向に掘られた滑らかな側面を有する微細立体構造を、設計に忠実に形成することは非常に困難であった。
As described above, in normal etching, deep digging in the vertical direction cannot be performed, and a trapezoidal shape whose side surfaces are oblique is formed. In addition, the Bosch process can dig deeply in the vertical direction, but since a scallop is formed, it cannot obtain a smooth side surface, and it is difficult to form a hole of a size faithful to the design. is there.
That is, it has been very difficult to form a fine three-dimensional structure having smooth side surfaces dug in the vertical direction by etching, faithfully to the design.
特開2005-123234号公報JP 2005-123234 A 国際公開第94/14187号International Publication No. 94/14187 特開2007-311584号公報JP 2007-311584 A
 本発明は、垂直方向に掘られた滑らかな側面を有する微細立体構造を、安価で迅速に、かつ設計に忠実に形成することを課題とする。 An object of the present invention is to form a fine three-dimensional structure having smooth side surfaces dug in the vertical direction at a low cost and promptly and faithfully to the design.
1.基板上にマスクレス露光により描画されたレジストパターンを形成する工程(1)と、
 等方性エッチングにより前記基板に窪みを形成する等方性エッチング工程(2A)と、
 前記窪みの内壁と前記レジストパターンとに保護膜を堆積するプラズマデポジション工程(2B)と、
 異方性エッチングにより、前記窪みの底面の保護膜を除去する除去工程(2C)と、
 等方性エッチング工程(2A)とプラズマデポジション工程(2B)と除去工程(2C)とを順に繰り返すことで前記基板に微細凹部を形成する工程(2)と、
 を有することを特徴とする微細立体構造形成方法。
2.前記マスクレス露光が、多重露光であることを特徴とする1.に記載の微細立体構造形成方法。
3.前記微細凹部の10%深さ位置、50%深さ位置、90%深さ位置における幅をそれぞれW10、W50、W90としたとき、W10、W50、W90の変動係数(W10~W90)が5%以下であることを特徴とする1.または2.に記載の微細立体構造形成方法。
4.前記微細凹部側面のスキャロップの周期Pが100nm以下であることを特徴とする1.~3.のいずれかに記載の微細立体構造形成方法。
5.前記微細凹部側面のスキャロップの深さDが30nm以下であることを特徴とする1.~4.のいずれかに記載の微細立体構造形成方法。
6.前記基板の直径が、0.5インチであることを特徴とする1.~5.のいずれかに記載の微細立体構造形成方法。
7.サイクルタイムが0.5秒以上6秒以下であることを特徴とする1.~6.のいずれかに記載の微細立体構造形成方法。
8.前記変動係数(W10~W90)が3.5%以下であることを特徴とする6.または7.に記載の微細立体構造。
9.前記スキャロップの深さDが12nm以下であることを特徴とする6.~8.のいずれかに記載の微細立体構造。
10.基板上に深さ20μm以下、幅3μm以上の微細凹部を有し、
 前記微細凹部の10%深さ位置、50%深さ位置、90%深さ位置における幅をそれぞれW10、W50、W90としたとき、W10、W50、W90の変動係数(W10~W90)が5%以下であることを特徴とする微細立体構造。
11.前記微細凹部側面のスキャロップの周期Pが100nm以下であることを特徴とする10.に記載の微細立体構造。
12.前記スキャロップの深さDが30nm以下であることを特徴とする10.または11.に記載の微細立体構造。
13.前記微細凹部に隣接する微細凸部と、
 前記微細凸部の頂部を覆うレジストを有し、
 前記レジストの端部での膜厚が、中央部での膜厚よりも薄いことを特徴とする10.~12.のいずれかに記載の微細立体構造。
14.前記微細凸部上端部におけるマスクアンダーカットの幅が30nm以下であることを特徴とする13.に記載の微細立体構造。
15.前記基板の直径が0.5インチであることを特徴とする10.~14.のいずれかに記載の微細立体構造。
16.前記変動係数(W10~W90)が3.5%以下であることを特徴とする15.に記載の微細立体構造。
17.前記スキャロップの深さDが12nm以下であることを特徴とする15.または16.に記載の微細立体構造。
1. Forming a resist pattern drawn by maskless exposure on a substrate (1);
An isotropic etching step (2A) for forming a depression in the substrate by isotropic etching;
A plasma deposition step (2B) of depositing a protective film on the inner wall of the recess and the resist pattern;
A removal step (2C) for removing the protective film on the bottom surface of the depression by anisotropic etching;
A step (2) of forming a fine recess in the substrate by sequentially repeating an isotropic etching step (2A), a plasma deposition step (2B), and a removal step (2C);
A method for forming a fine three-dimensional structure, comprising:
2. The maskless exposure is a multiple exposure. The method for forming a fine three-dimensional structure according to 1.
3. When the widths at the 10% depth position, 50% depth position, and 90% depth position of the fine recess are W10, W50, and W90, respectively, the coefficient of variation (W10 to W90) of W10, W50, and W90 is 5%. 1. It is characterized by the following. Or 2. The method for forming a fine three-dimensional structure according to 1.
4). 1. A scallop period P on the side surface of the fine recess is 100 nm or less. ~ 3. The method for forming a fine three-dimensional structure according to any one of the above.
5. The depth D of the scallop on the side surface of the fine recess is 30 nm or less. ~ 4. The method for forming a fine three-dimensional structure according to any one of the above.
6). The substrate has a diameter of 0.5 inch. ~ 5. The method for forming a fine three-dimensional structure according to any one of the above.
7). 1. Cycle time is 0.5 second or more and 6 seconds or less ~ 6. The method for forming a fine three-dimensional structure according to any one of the above.
8). 5. The coefficient of variation (W10 to W90) is 3.5% or less. Or 7. The fine three-dimensional structure described in 1.
9. 5. The scallop depth D is 12 nm or less. ~ 8. The fine three-dimensional structure according to any one of the above.
10. A fine recess having a depth of 20 μm or less and a width of 3 μm or more on the substrate;
When the widths at the 10% depth position, 50% depth position, and 90% depth position of the fine recess are W10, W50, and W90, respectively, the coefficient of variation (W10 to W90) of W10, W50, and W90 is 5%. A fine three-dimensional structure characterized by:
11. 9. The scallop period P on the side surface of the fine recess is 100 nm or less. The fine three-dimensional structure described in 1.
12 9. The scallop depth D is 30 nm or less. Or 11. The fine three-dimensional structure described in 1.
13. A fine convex portion adjacent to the fine concave portion;
Having a resist covering the top of the fine protrusions;
9. The film thickness at the edge of the resist is thinner than the film thickness at the center. ~ 12. The fine three-dimensional structure according to any one of the above.
14 12. The width of the mask undercut at the upper end portion of the fine convex portion is 30 nm or less. The fine three-dimensional structure described in 1.
15. 9. The diameter of the substrate is 0.5 inch. ~ 14. The fine three-dimensional structure according to any one of the above.
16. 15. The coefficient of variation (W10 to W90) is 3.5% or less. The fine three-dimensional structure described in 1.
17. 15. The depth D of the scallop is 12 nm or less. Or 16. The fine three-dimensional structure described in 1.
 本発明の微細立体構造形成方法は、マスクレス露光でレジストパターンを描画するため、高価なマスクが不要である。マスクレス露光は、コンピュータを用いて容易に描画することができるため、本発明の微細立体構造形成方法によれば、微細立体構造を小ロットで製造することができ、多品種少量生産や、オーダーメイド生産、オンデマンド生産に好適である。また、多重露光を行うことにより、水平方向で滑らかなパターンを描画することができる。 Since the method for forming a fine three-dimensional structure of the present invention draws a resist pattern by maskless exposure, an expensive mask is unnecessary. Since maskless exposure can be easily drawn using a computer, according to the method for forming a fine three-dimensional structure of the present invention, a fine three-dimensional structure can be manufactured in a small lot, and a variety of products can be produced in small quantities. Suitable for maid production and on-demand production. In addition, by performing multiple exposure, a smooth pattern can be drawn in the horizontal direction.
 本発明の微細立体構造形成方法は、いわゆるボッシュプロセスによるエッチングを行う。ボッシュプロセスでは、通常のエッチングと比較して、レジストが約10倍もエッチングされにくい。マスクレス露光により描画されるレジストパターンは、パターン中央部と比べて境界付近の厚さが薄いが、ボッシュプロセスを用いることにより、マスクレス露光されたレジストの初期形状は、エッチング工程中に裾引き部分も含めてほとんど変化しない。そのため、膜厚が不均一なレジストであっても、描画したレジストパターンに沿って垂直方向にエッチングを行うことができ、深さ方向で幅がほとんど変化しない微細凹部を形成することができる。また、ボッシュプロセスにおける等方性エッチングを細かく繰り返し行うことにより、スキャロップの深さが小さく、かつ滑らかな側面を有する微細凹部を形成することができる。 The fine three-dimensional structure forming method of the present invention performs etching by a so-called Bosch process. In the Bosch process, the resist is less likely to be etched by about 10 times compared to normal etching. The resist pattern drawn by maskless exposure is thinner near the boundary than the center of the pattern. However, by using the Bosch process, the initial shape of the maskless exposed resist can be reduced during the etching process. Almost no change including the part. Therefore, even if the resist has a non-uniform film thickness, etching can be performed in the vertical direction along the drawn resist pattern, and fine concave portions whose width hardly changes in the depth direction can be formed. Further, by finely repeating isotropic etching in the Bosch process, it is possible to form a fine recess having a small scallop depth and a smooth side surface.
 本発明の微細立体構造形成方法は、追加の平坦化工程を行うことなく平滑な側面を有する微細凹部を形成することができる。また、実際に得られる微細凹部の幅は、設計寸法からの誤差が非常に小さく、マスクレス露光で描画したパターンにほぼ忠実な微細立体構造を形成することができる。 The fine three-dimensional structure forming method of the present invention can form fine concave portions having smooth side surfaces without performing an additional planarization step. Further, the width of the fine recesses actually obtained has a very small error from the design dimension, and a fine three-dimensional structure that is almost faithful to the pattern drawn by maskless exposure can be formed.
 ハーフインチサイズのシリコン基板を用い、プラズマを生成するチャンバの容量を小さくし、チャンバ容量に対して十分な排気能力を有する排気装置を用いることにより、ボッシュプロセスにおける処理ガスを高速に入れ替えることができる。そのため、従来達成できなかった6秒以下のサイクルタイムで処理ガスの置換を十分に行いながら、ボッシュプロセスを繰り返すことができる。サイクルタイムが6秒以下のボッシュプロセスを行うことにより、より垂直、かつ、より滑らかな側面を有する微細凹部を形成することができる。また、サイクルタイムが短いため、ボッシュプロセスを数百サイクル繰り返しても、微細立体構造の加工時間が短く、生産性に優れている。 The processing gas in the Bosch process can be replaced at high speed by using a half-inch silicon substrate, reducing the volume of the chamber for generating plasma, and using an exhaust device having sufficient exhaust capacity with respect to the chamber capacity. . Therefore, the Bosch process can be repeated while sufficiently replacing the processing gas with a cycle time of 6 seconds or less that could not be achieved conventionally. By performing the Bosch process with a cycle time of 6 seconds or less, it is possible to form a fine recess having a more vertical and smooth side surface. In addition, since the cycle time is short, even if the Bosch process is repeated several hundred cycles, the processing time of the fine three-dimensional structure is short and the productivity is excellent.
 本発明の微細立体構造は、従来報告されている深さが20μm以下の微細凹部を備える微細立体構造と比較して、側面の垂直性、平滑性に優れている。側面の凹凸が光の波長に対して小さく、各面の垂直性も優れているため、光が反射する際の減衰が少なく、光導波路として好適に利用することができる。設計寸法との誤差が小さく、所望の形状を形成することができるため、回折格子やホログラムとしても好適に利用することができる。
 また、液体をスムーズに流すことができるため、マイクロ流路やマイクロリアクターとしても好適である。さらに、側面のスキャロップ深さが小さい本発明の微細立体構造は、構造を転写して剥がす際に、引っ掛かりが少ないため、ナノインプリント用モールドとして好適である。
The fine three-dimensional structure of the present invention is superior in the verticality and smoothness of the side surface as compared with a fine three-dimensional structure having a fine recess having a depth of 20 μm or less that has been reported conventionally. Since the unevenness on the side surface is small with respect to the wavelength of light and the perpendicularity of each surface is excellent, there is little attenuation when light is reflected, and it can be suitably used as an optical waveguide. Since an error from the design dimension is small and a desired shape can be formed, it can be suitably used as a diffraction grating or a hologram.
Further, since the liquid can flow smoothly, it is also suitable as a microchannel or a microreactor. Furthermore, the fine three-dimensional structure of the present invention having a small side scallop depth is suitable as a mold for nanoimprinting because it has little catch when transferring and peeling the structure.
マスクレス露光であるDLP露光の模式図。The schematic diagram of DLP exposure which is maskless exposure. マスクレス露光の露光スポットをずらして4回多重露光した際の光強度の模式図。The schematic diagram of the light intensity at the time of performing the multiple exposure four times by shifting the exposure spot of maskless exposure. プラズマエッチング装置の構成例を示す断面図。Sectional drawing which shows the structural example of a plasma etching apparatus. 本発明の微細立体構造形成方法で形成される微細凹部の深さ方向断面の模式図。The schematic diagram of the depth direction cross section of the fine recessed part formed with the fine three-dimensional structure formation method of this invention. 本発明の微細立体構造形成方法で形成される微細凹部の形状を説明する図。The figure explaining the shape of the fine recessed part formed with the fine three-dimensional structure formation method of this invention. 本発明の微細立体構造の一実施態様の深さ方向断面の模式図。The schematic diagram of the cross section of the depth direction of one embodiment of the fine three-dimensional structure of this invention. 実験1で描画したラインアンドスペースが4μmであるレジストパターンの走査型電子顕微鏡による断面画像。A cross-sectional image of a resist pattern drawn in Experiment 1 with a line and space of 4 μm by a scanning electron microscope. 実験1で描画した曲線幅が4μmであるレジストパターンの走査型電子顕微鏡による俯瞰画像。The bird's-eye view image by the scanning electron microscope of the resist pattern drawn in Experiment 1 whose curve width is 4 micrometers. 実験1で作成した曲線幅が4μmである微細立体構造の走査型電子顕微鏡による俯瞰画像。The bird's-eye view image by the scanning electron microscope of the micro three-dimensional structure which was created in Experiment 1, and the curve width is 4 micrometers. 実験1で作成したラインアンドスペースが4μmである微細立体構造の走査型電子顕微鏡による断面画像。A cross-sectional image obtained by a scanning electron microscope having a fine three-dimensional structure having a line and space of 4 μm created in Experiment 1. 実験1で作成したラインアンドスペースが2μmである微細立体構造の走査型電子顕微鏡による断面画像。FIG. 3 is a cross-sectional image obtained by a scanning electron microscope having a fine three-dimensional structure having a line and space of 2 μm created in Experiment 1. FIG. 実験2で描画したラインアンドスペースが4μmであるレジストパターンの走査型電子顕微鏡による断面画像。A cross-sectional image of a resist pattern drawn in Experiment 2 with a line and space of 4 μm by a scanning electron microscope. 実験2で作成した曲線幅が4μmである微細立体構造の走査型電子顕微鏡による俯瞰画像。The bird's-eye view image by the scanning electron microscope of the fine three-dimensional structure whose curve width created in Experiment 2 is 4 micrometers. 実験2で作成したラインアンドスペースが4μmである微細立体構造の走査型電子顕微鏡による断面画像。A cross-sectional image obtained by a scanning electron microscope having a fine three-dimensional structure having a line and space of 4 μm created in Experiment 2. FIG. 裾を引いたレジストをマスクとした時のエッチングの進行状況を説明する図。The figure explaining the progress of the etching when the resist which pulled the skirt is used as a mask. マスクレス露光の露光スポット内の光強度の模式図。The schematic diagram of the light intensity in the exposure spot of maskless exposure. ボッシュプロセスの工程を説明する図。The figure explaining the process of a Bosch process.
W   シリコン基板
100 微細立体構造
110 微細凹部
111 開口部
112 底面
113 側面
114 スキャロップ
120 レジストパターン
130 微細凸部
 
201 光源
202 DMD
203 縮小投影レンズ
 
300 プラズマエッチング装置
301 チャンバ
302 ガス供給機構
303 コイル
304 コイル電力供給機構
305 基台
306 基台電力供給機構
307 排気装置
 
401 レジスト
402 窪み
403 保護膜
404 スキャロップ
W Silicon substrate 100 Fine three-dimensional structure 110 Fine concave portion 111 Opening portion 112 Bottom surface 113 Side surface 114 Scallop 120 Resist pattern 130 Fine convex portion
201 Light source 202 DMD
203 Reduction projection lens
300 Plasma Etching Device 301 Chamber 302 Gas Supply Mechanism 303 Coil 304 Coil Power Supply Mechanism 305 Base 306 Base Power Supply Mechanism 307 Exhaust Device
401 resist 402 dent 403 protective film 404 scallop
 本発明は、主にプリント基板のパターニングに用いられている解像度の悪いマスクレス露光と、MEMS製造時のエッチングに用いられている側面にスキャロップが形成されてしまうボッシュプロセスという、産業応用上全く異なる用途に用いられる技術を組み合わせた微細立体構造の形成方法である。 The present invention is completely different in industrial application, that is, maskless exposure with poor resolution, which is mainly used for patterning printed circuit boards, and Bosch process in which scallops are formed on the side surfaces used for etching during MEMS manufacturing. This is a method for forming a fine three-dimensional structure by combining techniques used for applications.
 以下、本発明を工程に沿って説明する。
(1)マスクレス露光
 まず、シリコン基板上にマスクレス露光により描画されたレジストパターンを形成する。マスクレス露光の解像度は、小さいほうが好ましく、0.5μm以下であることが好ましく、0.25μm以下であることがより好ましい。レジストパターンの幅は、例えば、0.25μm以上10μm以下とすることができる。レジストパターンの形状は、特に制限されず、例えば、点、線、面のいずれか、またはこれらの組み合わせを描画することができる。なお、基板としては、シリコンのみならず、ゲルマニウム、ヒ化ガリウム、ガリウムヒ素リン、炭化ケイ素、窒化ガリウム、サファイア、ダイアモンド等を用いることもできる。
Hereinafter, the present invention will be described along the steps.
(1) Maskless exposure First, a resist pattern drawn by maskless exposure is formed on a silicon substrate. The resolution of maskless exposure is preferably small, preferably 0.5 μm or less, and more preferably 0.25 μm or less. The width of the resist pattern can be, for example, 0.25 μm or more and 10 μm or less. The shape of the resist pattern is not particularly limited, and for example, any of dots, lines, surfaces, or a combination thereof can be drawn. As the substrate, not only silicon but also germanium, gallium arsenide, gallium arsenide phosphorus, silicon carbide, gallium nitride, sapphire, diamond, or the like can be used.
 マスクレス露光として、光源からの光を、約10μm角のマイクロミラーを縦横に数百~数千枚並べたデジタルマイクロミラーデバイス(Digital Micromirror Device:以下、DMDという。)を用いてパターンデータに従って反射する方法を用いることができる。図1にマスクレス露光の一例であるDLP露光(Digital Light Processing)の模式図を示す。
 DLP露光は、光源201からの光をDMD202で反射し、DMDで反射した光を縮小投影レンズ203に通してシリコン基板W上に露光する方法である。DLP露光は、縮小投影レンズで集光した光をフォトレジスト膜に照射して微細パターンを形成するため、光の照射範囲が狭く、照射範囲を移動させるスキャニング走査が必要である。また、シリコン基板上に投影される露光スポットの形状は、略正方形である。そのため、走査方向と平行な方向には、滑らかなパターンを描くことができるが、走査方向と斜めの方向には、ギザギザの段差を有するパターンしか描くことができない。
As maskless exposure, light from a light source is reflected according to pattern data using a digital micromirror device (hereinafter referred to as DMD) in which hundreds to thousands of micromirrors of about 10 μm square are arranged vertically and horizontally. Can be used. FIG. 1 shows a schematic diagram of DLP exposure (Digital Light Processing) as an example of maskless exposure.
The DLP exposure is a method in which light from the light source 201 is reflected by the DMD 202 and the light reflected by the DMD is exposed on the silicon substrate W through the reduction projection lens 203. In DLP exposure, a fine pattern is formed by irradiating light condensed by a reduction projection lens onto a photoresist film, so that a light irradiation range is narrow and scanning scanning for moving the irradiation range is necessary. Further, the shape of the exposure spot projected on the silicon substrate is substantially square. Therefore, a smooth pattern can be drawn in a direction parallel to the scanning direction, but only a pattern having a jagged step can be drawn in the scanning direction and the oblique direction.
 多重露光を行うことにより、シリコン基板表面と平行な面内におけるギザギザの段差を低減することができる。例えば、露光スポットが0.5μm四方の場合、画素を5分割して露光することにより、段差を0.1μmとすることができる。光の解像度が0.3μm(例えば、i線は0.365μmである。)であると、光の波長以下である0.1μm単位の段差は鈍って描画されるため、段差が消失して滑らかなパターンとなる。 By performing multiple exposure, jagged steps in a plane parallel to the silicon substrate surface can be reduced. For example, when the exposure spot is 0.5 μm square, the step can be set to 0.1 μm by exposing the pixel in five. When the resolution of light is 0.3 μm (for example, i-line is 0.365 μm), a step of 0.1 μm unit, which is equal to or less than the wavelength of light, is drawn dull, so the step disappears and is smooth. Pattern.
 ここで、上記したように、DLP露光は、縮小投影レンズで集光した光を照射する。そのため、露光スポットにおける光強度は、中心部で強く周辺部で弱く、一様でない。また、多重露光を行うと、パターン中央部の光照射回数は複数回であるのに対し、パターン境界部の光照射回数は一回のみとなる。図2に、マスクレス露光の露光スポットをずらして4回多重露光した際の光強度の模式図を示す。なお、図2では、簡略化のために、一つの露光スポット内の光強度を同一として示す。そのため、多重露光を行うと、パターンの中心部と境界部とでの光強度の差はより大きくなってしまう。すなわち、マスクレス露光で描画したレジストパターンは、多重露光の有無に関わらず、パターン中央部が厚く、パターン境界部が薄い、裾を引いた状態となる。 Here, as described above, in the DLP exposure, the light condensed by the reduction projection lens is irradiated. Therefore, the light intensity at the exposure spot is not uniform, being strong at the center and weak at the periphery. When multiple exposure is performed, the number of times of light irradiation at the center of the pattern is a plurality of times, whereas the number of times of light irradiation at the pattern boundary is only once. FIG. 2 shows a schematic diagram of the light intensity when the maskless exposure exposure spot is shifted and multiple exposure is performed four times. In FIG. 2, the light intensity in one exposure spot is shown as the same for simplification. Therefore, when multiple exposure is performed, the difference in light intensity between the center portion and the boundary portion of the pattern becomes larger. That is, the resist pattern drawn by maskless exposure is in a state where the pattern central portion is thick, the pattern boundary portion is thin, and the skirt is drawn regardless of the presence or absence of multiple exposure.
 DLP露光は、スキャニング走査しながら露光を行うため、シリコン基板の全面に露光を行うのにマスク露光と比較して時間がかかり、例えば、直径300mmのウェハをDLP露光するには約100時間もの時間が必要である。さらに、仮に縦、横それぞれ5分割の多重露光を行うと、2500時間(100×5×5)もの時間が必要である。
 DLP露光の欠点である1枚のウェハの露光に莫大な時間がかかる問題については、ウェハのサイズを小さくすることで解決できる。たとえば、ハーフインチサイズ(直径:12.5mm)のウェハを用いることにより、直径300mmのウェハと比較してウェハ面積を約1700分の1とすることができる。そのため、2500時間必要であった5分割多重露光を、1000分の1以下の2時間以内に完了することができる。さらに、DMD、および走査の機械メカニズムの高速化を図ることにより、40分程度で5分割多重露光を行うことができる。
Since DLP exposure is performed while scanning scanning, it takes more time to expose the entire surface of the silicon substrate than mask exposure. For example, it takes about 100 hours to perform DLP exposure on a wafer having a diameter of 300 mm. is required. Furthermore, if multiple exposures are performed with 5 divisions in the vertical and horizontal directions, 2500 hours (100 × 5 × 5) are required.
The problem that it takes a long time to expose a single wafer, which is a drawback of DLP exposure, can be solved by reducing the size of the wafer. For example, by using a half-inch size (diameter: 12.5 mm) wafer, the wafer area can be reduced to about 1/700 compared to a 300 mm diameter wafer. Therefore, the five-division multiple exposure that required 2500 hours can be completed within 2 hours, which is 1/1000 or less. Further, by increasing the speed of the DMD and the scanning mechanical mechanism, five-division multiple exposure can be performed in about 40 minutes.
(2)ボッシュプロセス
 次に、等方性エッチングによりシリコン基板に窪みを形成する等方性エッチング工程(2A)と、窪みの内壁とレジストパターン層とに保護膜を堆積するプラズマデポジション工程(2B)と、異方性エッチングにより窪みの底面の保護膜を除去する除去工程(2C)を繰り返す、いわゆるボッシュプロセスにより、シリコン基板に微細凹部を形成する。(以下、等方性エッチング工程(2A)と除去工程(2C)とを合わせてエッチング工程ともいう。)
(2) Bosch Process Next, an isotropic etching step (2A) for forming a recess in the silicon substrate by isotropic etching, and a plasma deposition step (2B) for depositing a protective film on the inner wall of the recess and the resist pattern layer. And a removal step (2C) of removing the protective film on the bottom surface of the depression by anisotropic etching, a fine recess is formed in the silicon substrate by a so-called Bosch process. (Hereinafter, the isotropic etching step (2A) and the removal step (2C) are also referred to as an etching step.)
 図3に、ボッシュプロセスを行うプラズマエッチング装置の構成例を示す。プラズマエッチング装置300は、プラズマを生成し、プラズマ処理を行う円筒状のチャンバ301と、チャンバに処理ガスを供給するガス供給機構302と、チャンバの外方に配設されたコイル303と、コイルに高周波電力を供給するコイル電力供給機構304と、シリコン基板Wを載置するための基台305と、基台に高周波電力を供給する基台電力供給機構306と、チャンバ内の気体を排気する排気装置307とを有する。 FIG. 3 shows a configuration example of a plasma etching apparatus that performs the Bosch process. The plasma etching apparatus 300 includes a cylindrical chamber 301 that generates plasma and performs plasma processing, a gas supply mechanism 302 that supplies a processing gas to the chamber, a coil 303 disposed outside the chamber, and a coil A coil power supply mechanism 304 for supplying high-frequency power, a base 305 for placing the silicon substrate W, a base power supply mechanism 306 for supplying high-frequency power to the base, and an exhaust for exhausting the gas in the chamber Device 307.
 処理ガスとしては、SF、CF、C、SiF、NF等のエッチングガスと、C、C等の保護膜形成ガスとを用いる。基台電力供給機構306により、基台305へのバイアス電力のOn/Offを切り替えることで、異方性エッチングである除去工程(2C)と等方性エッチング工程(2A)とを切り替えることができる。 As the processing gas, an etching gas such as SF 6 , CF 4 , C 3 F 8 , SiF 4 , or NF 3 and a protective film forming gas such as C 4 F 8 or C 5 F 8 are used. By switching on / off of the bias power to the base 305 by the base power supply mechanism 306, the removal process (2C) which is anisotropic etching and the isotropic etching process (2A) can be switched. .
 本発明の微細立体構造形成方法は、プラズマデポジション工程(2B)において、窪みの内壁だけでなくレジストパターン上にも保護膜を堆積する。レジストパターン上に保護膜が堆積するため、レジストは、通常のエッチングと比較して、非常にエッチングされにくい。レジストのエッチング耐性が、レジスト:エッチング対象材料=1:10程度の比率であっても、レジストパターン上に保護膜が堆積することにより、その比率は1:100程度まで向上する。 In the fine three-dimensional structure forming method of the present invention, a protective film is deposited not only on the inner wall of the recess but also on the resist pattern in the plasma deposition step (2B). Since a protective film is deposited on the resist pattern, the resist is very difficult to etch as compared with normal etching. Even if the etching resistance of the resist is a ratio of resist: etching target material = 1: 10, the ratio is improved to about 1: 100 by depositing a protective film on the resist pattern.
 保護膜は、エッチング工程において多少エッチングされるが、プラズマデポジション工程(2B)で保護膜が堆積することにより補修される。本発明の微細立体構造形成方法は、マスクレス露光により膜厚が不均一なレジストパターンが形成されるが、レジストパターンはボッシュプロセスの全工程を通じて保護膜で保護されているため、レジスト初期形状が裾引き部分も含めて維持され、膜厚が薄い部分も消失しない。描画したレジストパターンを維持したままエッチングを進めることができるため、水平方向面内においてレジストパターンを忠実に反映した微細凹部を形成することができる。 The protective film is slightly etched in the etching process, but is repaired by depositing the protective film in the plasma deposition process (2B). In the fine three-dimensional structure forming method of the present invention, a resist pattern having a non-uniform film thickness is formed by maskless exposure. However, since the resist pattern is protected by a protective film throughout the entire Bosch process, the initial resist shape is It is maintained including the skirt and the thin part does not disappear. Since etching can be performed while maintaining the drawn resist pattern, it is possible to form a fine recess that faithfully reflects the resist pattern in the horizontal plane.
 図4に、本発明の微細立体構造形成方法で形成される微細凹部の深さ方向断面の模式図を示す。水平方向面内における微細凹部の形状は特に制限されず、円孔、四角孔、直線状、曲線状の凹条等や、円柱、四角柱、凸条等の凸部を除く水平方向面内のほぼ全面を微細凹部とすることもできる。
 微細凹部110は、シリコン基板Wに形成されており、開口部111と底面112と側面113とを有し、側面113には、周期P、深さDを有するスキャロップ114が形成されている。微細凹部の開口部の高さ位置は、加工前のシリコン基板表面に等しい。また、シリコン基板は、表面にレジストパターン120を有し、このレジストパターンはマスクレス露光により描画されたため、膜厚が均一でなく、中央部で厚く、境界部で薄い。なお、図4では、現実のものよりスキャロップ114を誇張して表現している。
In FIG. 4, the schematic diagram of the cross section of the depth direction of the fine recessed part formed with the fine three-dimensional structure formation method of this invention is shown. The shape of the fine recesses in the horizontal plane is not particularly limited, and the horizontal recesses other than the convex portions such as circular holes, square holes, straight and curved ridges, cylinders, quadrangular columns, ridges, etc. Almost the entire surface can be a fine recess.
The fine recess 110 is formed in the silicon substrate W and has an opening 111, a bottom surface 112, and a side surface 113, and a scallop 114 having a period P and a depth D is formed on the side surface 113. The height position of the opening of the fine recess is equal to the surface of the silicon substrate before processing. In addition, the silicon substrate has a resist pattern 120 on the surface, and this resist pattern is drawn by maskless exposure. Therefore, the film thickness is not uniform, thick at the center, and thin at the boundary. In FIG. 4, the scallop 114 is exaggerated from the actual one.
 ボッシュプロセスでは、微細凹部の幅が狭くなる、または、微細凹部が深くなると、微細凹部の内部に処理ガスが侵入しにくくなりエッチングレートが小さくなる傾向がある。微細凹部の幅3μm以上、深さ20μm以下とすることにより、エッチングレートの減少を抑えることができる。微細凹部の幅は、3μm以上が好ましく、4μm以上がより好ましく、5μm以上がさらに好ましい。同様に、微細凹部の深さは、20μm以下が好ましく、15μm以下がより好ましく、12μm以下がさらに好ましい。 In the Bosch process, when the width of the fine recess becomes narrower or the depth of the fine recess becomes deeper, the processing gas hardly enters the inside of the fine recess and the etching rate tends to decrease. By making the width of the fine recesses 3 μm or more and the depth 20 μm or less, it is possible to suppress a decrease in the etching rate. The width of the fine recess is preferably 3 μm or more, more preferably 4 μm or more, and further preferably 5 μm or more. Similarly, the depth of the fine recess is preferably 20 μm or less, more preferably 15 μm or less, and even more preferably 12 μm or less.
 ボッシュプロセスにおけるエッチングレートの減少を抑えることにより、微細凹部を垂直方向に掘り進めることができる。具体的には、微細凹部の10%深さ位置、50%深さ位置、90%深さ位置における幅をそれぞれW10、W50、W90とした時に、W10、W50、W90の標準偏差を平均値で除した変動係数(W10~W90)を5%以下とすることができる。変動係数を5%以下とすることにより、例えば、光導波路としたときに対向する反射面同士の平行性に優れ、界面での全反射を繰り返しながら長い距離を伝送することができる。変動係数(W10~W90)は、3.5%以下であることが好ましく、3%以下であることがより好ましく、2.7%以下であることがさらに好ましく、2%以下であることが最も好ましい。ここで、微細凹部の幅は、水平方向でスキャロップが最も掘り進められた部分を接続する線を基準とする。なお、微細凹部の水平方向面内における形状が、直線状でない場合は、微細凹部の幅として、深さ方向断面における微細凹部の第一の側面と、第一の側面から8μm以上離れた最も近い第二の側面との、10%深さ位置、50%深さ位置、90%深さ位置における距離をそれぞれW10、W50、W90とする。 微細 By suppressing the decrease in the etching rate in the Bosch process, it is possible to dig fine recesses in the vertical direction. Specifically, when the widths of the fine recesses at the 10% depth position, 50% depth position, and 90% depth position are W10, W50, and W90, respectively, the standard deviations of W10, W50, and W90 are average values. The divided variation coefficient (W10 to W90) can be 5% or less. By setting the coefficient of variation to 5% or less, for example, when an optical waveguide is used, the reflecting surfaces facing each other are excellent in parallelism, and a long distance can be transmitted while repeating total reflection at the interface. The coefficient of variation (W10 to W90) is preferably 3.5% or less, more preferably 3% or less, further preferably 2.7% or less, and most preferably 2% or less. preferable. Here, the width of the fine concave portion is based on a line connecting the portions where the scallop is dug most in the horizontal direction. In addition, when the shape in the horizontal direction surface of a fine recessed part is not linear, as the width | variety of a fine recessed part, the 1st side surface of the fine recessed part in a depth direction cross section and the nearest 8 micrometers or more away from the 1st side surface The distances from the second side surface at the 10% depth position, 50% depth position, and 90% depth position are W10, W50, and W90, respectively.
 さらに、一度の等方性エッチング工程(2A)で形成される窪みの深さを浅くすることにより、微細凹部の側面に形成されるスキャロップの深さDを低くすることができる。一度の等方性エッチング工程(2A)で形成される窪みの深さは、高周波電力の周波数や電力、処理ガスの圧力や流量等、様々な条件で変化するが、エッチング工程の時間、特に、基台にバイアス電力を印加しない等方性エッチング工程(2A)の時間により調整することが容易である。浅い窪みの形成を繰り返すことにより、スキャロップの深さDが浅く、滑らかな側面を有する微細凹部を形成することができる。なお、一度の等方性エッチング工程(2A)で形成する窪みの深さは、スキャロップの周期Pに相当する。 Furthermore, the depth D of the scallop formed on the side surface of the fine recess can be reduced by reducing the depth of the recess formed in the one isotropic etching step (2A). The depth of the depression formed in one isotropic etching step (2A) varies depending on various conditions such as the frequency and power of the high-frequency power, the pressure and flow rate of the processing gas, and the time of the etching step, in particular, It is easy to adjust by the time of the isotropic etching step (2A) in which no bias power is applied to the base. By repeating the formation of the shallow depression, the scallop depth D is shallow, and a fine recess having a smooth side surface can be formed. The depth of the recess formed in one isotropic etching step (2A) corresponds to the scallop period P.
 一度の等方性エッチング工程(2A)で形成する窪みの深さであるスキャロップの周期Pは、100nm以下であることが好ましく、60nm以下がより好ましく、40nm以下がさらに好ましく、20nm以下が最も好ましい。より滑らかな側面を得るために、スキャロップの周期Pは、小さいほうが好ましいが、微細凹部の形成にかかる時間が長くなるため、スキャロップの周期Pは1nm以上であることが好ましく、3nm以上であることがより好ましく、5nm以上であることがさらに好ましい。 The scallop period P, which is the depth of the depression formed in one isotropic etching step (2A), is preferably 100 nm or less, more preferably 60 nm or less, still more preferably 40 nm or less, and most preferably 20 nm or less. . In order to obtain a smoother side, the scallop period P is preferably smaller. However, since the time taken to form the fine recesses is longer, the scallop period P is preferably 1 nm or more, and preferably 3 nm or more. Is more preferable, and more preferably 5 nm or more.
 スキャロップの深さDは、30nm以下が好ましく、20nm以下がより好ましく、12nm以下がさらに好ましく、5nm以下が最も好ましい。なお、スキャロップの周期Pを40nm以下とすると、ボッシュプロセスを繰り返すうちに、スキャロップの突出部が平坦化され、電子顕微鏡画像で凹凸が視認できず、事実上スキャロップが消失してしまう場合もある。
 また、スキャロップ深さDを小さくすることにより、微細凹部の側面上端部とレジストの端部との距離であるマスクアンダーカットの幅をスキャロップの深さDと同等の大きさにすることができる。
The scallop depth D is preferably 30 nm or less, more preferably 20 nm or less, further preferably 12 nm or less, and most preferably 5 nm or less. When the scallop period P is set to 40 nm or less, the scallop protrusion is flattened while the Bosch process is repeated, and the unevenness cannot be visually recognized in the electron microscope image, and the scallop may actually disappear.
Further, by reducing the scallop depth D, the width of the mask undercut, which is the distance between the upper end of the side surface of the fine recess and the end of the resist, can be made equal to the scallop depth D.
 さらに、本発明の微細凹部の形状を、図5を用いて詳細に説明する。なお、図5は、説明のために、側面形状を誇張して表現している。微細凹部の側面上端をH0、微細凹部の深さをh0、側面の中間高さ地点をH1、H1の高さをh1(=h0/2)、H0とH1とを通る直線lと底面との交点をO、Oを通る垂線と側面との交点をH2、H2の高さをh2、微細凹部側面において高さがh3(=h2/e、ただし、eは自然対数の底)となる地点をH3とする。そして、直線lと底面とのなす角をテーパー角θ、底面と平行方向におけるH2とH3との距離を裾引き長Lとする。なお、H1、H2、H3は、水平方向でスキャロップが最も掘り進められた部分を接続する線上に位置する。 Further, the shape of the fine recess of the present invention will be described in detail with reference to FIG. In FIG. 5, the side surface shape is exaggerated for the sake of explanation. The top of the side surface of the fine recess is H0, the depth of the fine recess is h0, the intermediate height point of the side surface is H1, the height of H1 is h1 (= h0 / 2), and the straight line l passing through H0 and H1 and the bottom surface The point of intersection is O, the point of intersection between the perpendicular line passing through O and the side is H2, the height of H2 is h2, and the height of the side of the fine recess is h3 (= h2 / e, where e is the base of natural logarithm) Let it be H3. The angle between the straight line 1 and the bottom surface is a taper angle θ, and the distance between H2 and H3 in the direction parallel to the bottom surface is a tailing length L. In addition, H1, H2, and H3 are located on the line which connects the part where the scallop was dug most in the horizontal direction.
 本発明の微細立体構造形成方法により、テーパー角θが85度以上89.99度以下である微細凹部を形成することができる。さらに、一度の等方性エッチング工程(2A)で形成される窪みの深さを100nm以下とすることにより、裾引き長Lが2μm以下である微細凹部を形成することができる。すなわち、本発明の微細凹部形成方法により、垂直方向に掘られ、また、底部から側面が急峻に立ち上がる微細凹部を形成することができる。ここで、微細凹部の95%深さ位置における幅をW95とすると、本発明の微細凹部形成方法で得られた微細凹部は、垂直方向に掘られ底部での裾引き長が短いため、W10、W50、W90、W95のバラツキが小さく、W10、W50、W90、W95の変動係数(W10~W95)は、W10、W50、W90の変動係数(W10~W90)よりも小さくなる。変動係数(W10~W95)は、3.5%以下であることが好ましく、3.2%以下であることがより好ましく、2.5%以下であることがさらに好ましく、1.8%以下であることが最も好ましい。
 なお、上記した各値は、SEM、TEM、STEM等の電子顕微鏡画像を、付属または市販の画像解析ソフトを用いて解析することにより求めることができる。ただし、上記したように、スキャロップが確認できず、スキャロップの周期Pと深さDとが求められない場合もある。この場合、スキャロップの周期Pは、形成された微細凹部の深さとボッシュプロセスのサイクル数とから算出することができる。また、電子顕微鏡の代わりに原子間力顕微鏡(AFM)で観察することにより、スキャロップの周期Pと深さDが測定できる場合がある。
According to the method for forming a fine three-dimensional structure of the present invention, a fine recess having a taper angle θ of 85 degrees or more and 89.99 degrees or less can be formed. Furthermore, by setting the depth of the recess formed in one isotropic etching step (2A) to 100 nm or less, it is possible to form a fine recess having a skirt length L of 2 μm or less. That is, according to the method for forming fine recesses of the present invention, it is possible to form fine recesses that are dug in the vertical direction and whose side surfaces rise sharply from the bottom. Here, when the width of the fine concave portion at the 95% depth position is W95, the fine concave portion obtained by the fine concave portion forming method of the present invention is dug in the vertical direction and has a short tail at the bottom portion. Variations in W50, W90, and W95 are small, and variation coefficients (W10 to W95) of W10, W50, W90, and W95 are smaller than variation coefficients (W10 to W90) of W10, W50, and W90. The coefficient of variation (W10 to W95) is preferably 3.5% or less, more preferably 3.2% or less, further preferably 2.5% or less, and 1.8% or less. Most preferably it is.
In addition, each above-mentioned value can be calculated | required by analyzing electron microscope images, such as SEM, TEM, and STEM, using attached or commercially available image analysis software. However, as described above, the scallop cannot be confirmed, and the scallop period P and the depth D may not be obtained. In this case, the scallop period P can be calculated from the depth of the formed fine recess and the number of cycles of the Bosch process. In some cases, the period P and depth D of the scallop can be measured by observing with an atomic force microscope (AFM) instead of the electron microscope.
 ここで、ハーフインチサイズ(直径:12.5mm)のウェハを用いることにより、チャンバの容積を500mL以下と小さくすることができる。チャンバの容積(V)を500mL以下とし、毎秒チャンバ容積の100倍以上の排気能力(100V/秒以上)を有する排気装置を用いることにより、処理ガスの入れ替えを高速で行うことができ、サイクルタイムを短くすることができる。排気装置の排気能力は、毎秒チャンバ容積の150倍以上であることが好ましく、200倍以上であることがより好ましい。
 処理ガスの入れ替えを高速で行い、エッチング工程とデポジション工程(2B)とを、短時間で切り替え、より少しずつ掘り進めることにより、さらに滑らかな側面を有する微細凹部を形成することができる。具体的には、スキャロップの周期Pが40nm以下となるように掘り進めることにより、スキャロップの深さDを12nm以下、変動係数(W10~W90)を3.3%以下、変動係数(W10~W95)を3.1%以下、テーパー角88.6度以上、裾引き長0.8μm以下とすることができる
Here, by using a half-inch size (diameter: 12.5 mm) wafer, the volume of the chamber can be reduced to 500 mL or less. By using an exhaust device having a chamber capacity (V) of 500 mL or less and an exhaust capacity (100 V / second or more) 100 times or more of the chamber volume per second, the processing gas can be replaced at high speed, and the cycle time Can be shortened. The exhaust capacity of the exhaust device is preferably 150 times or more, more preferably 200 times or more of the chamber volume per second.
By replacing the processing gas at high speed, switching between the etching step and the deposition step (2B) in a short time and digging up little by little, a fine concave portion having a smoother side surface can be formed. Specifically, by digging so that the scallop period P is 40 nm or less, the scallop depth D is 12 nm or less, the coefficient of variation (W10 to W90) is 3.3% or less, and the coefficient of variation (W10 to W95). ) Of 3.1% or less, taper angle of 88.6 degrees or more, and skirt length of 0.8 μm or less.
 エッチング工程の時間は、3.5秒以下であることが好ましく、2秒以下であることがより好ましく、1秒以下であることがさらに好ましい。エッチング工程中における等方性エッチング工程(2A)の時間と除去工程(2C)の時間の割合は、90:10以上10:90以下の範囲で適宜調整すればよい。また、等方性エッチング工程(2A)の時間と除去工程(2C)の時間の割合は、ボッシュプロセスを通じて一定でもよく、変化させてもよい。また、プラズマデポジション工程(2B)の時間は、3.5秒以下であることが好ましく、2秒以下であることがより好ましく、1秒以下であることがさらに好ましい。さらに、等方性エッチング工程(2A)とプラズマデポジション工程(2B)と除去工程(2C)に必要な時間であるサイクルタイムは、6秒以下が好ましく、4秒以下がより好ましく、2秒以下がさらに好ましい。ガスの置換が十分に行えず、処理ガスが混合してしまうため、サイクルタイムは0.5秒以上であることが好ましい。 The time for the etching step is preferably 3.5 seconds or less, more preferably 2 seconds or less, and even more preferably 1 second or less. What is necessary is just to adjust suitably the ratio of the time of an isotropic etching process (2A) in the etching process, and the time of a removal process (2C) in the range of 90:10 or more and 10:90 or less. Further, the ratio of the time of the isotropic etching step (2A) and the time of the removal step (2C) may be constant throughout the Bosch process or may be changed. Further, the time of the plasma deposition step (2B) is preferably 3.5 seconds or less, more preferably 2 seconds or less, and further preferably 1 second or less. Furthermore, the cycle time, which is the time required for the isotropic etching step (2A), plasma deposition step (2B) and removal step (2C), is preferably 6 seconds or less, more preferably 4 seconds or less, and 2 seconds or less. Is more preferable. Since the gas cannot be sufficiently replaced and the processing gas is mixed, the cycle time is preferably 0.5 seconds or more.
 例えば、ハーフインチサイズのウェハを用い、処理ガスを高速で入れ替えてサイクルタイムを2秒とすることにより、僅か10分(600秒)で、ボッシュプロセスを300サイクル行うことができる。この際、一度の等方性エッチング工程(2A)で形成される窪みの深さを33.3nmと調整することにより、10分で10μmの深さを有し、スキャロップの深さDが12nm以下である微細凹部を形成することができる。 For example, using a half-inch wafer and changing the processing gas at high speed to set the cycle time to 2 seconds, the Bosch process can be performed 300 cycles in just 10 minutes (600 seconds). At this time, by adjusting the depth of the recess formed in one isotropic etching step (2A) to 33.3 nm, the depth is 10 μm in 10 minutes, and the scallop depth D is 12 nm or less. It is possible to form a fine concave portion.
 本発明の微細立体構造方法におけるボッシュプロセスのサイクル数は特に制限されない。ただし、スキャロップの深さDが小さい滑らかな側面を有する微細凹部を形成するには、所望の深さを有する微細凹部を200サイクル以上のボッシュプロセスで形成することが好ましい。サイクル数は、300サイクル以上がより好ましく、500サイクル以上がさらに好ましく、1000サイクル以上が最も好ましい。ただし、一度の等方性エッチング工程(2A)で形成される窪みの深さは100nm以下とする。 The number of cycles of the Bosch process in the fine three-dimensional structure method of the present invention is not particularly limited. However, in order to form a fine concave portion having a smooth side surface with a small scallop depth D, it is preferable to form a fine concave portion having a desired depth by a Bosch process of 200 cycles or more. The number of cycles is more preferably 300 cycles or more, further preferably 500 cycles or more, and most preferably 1000 cycles or more. However, the depth of the recess formed in one isotropic etching step (2A) is 100 nm or less.
 ここで、ハーフインチサイズ(直径:12.5mm)のウェハを用いることにより、プラズマを生成する部分のチャンバの内径を20mm以上60mm以下とすることができる。プラズマを生成する空間を小さくすることにより、プラズマの生成に必要な機器の小型化、省電力化を達成することができ、例えば、日本国電波法により設備の設置に許可が必要とされる50Wを下回る出力とすることができる。 Here, by using a half-inch wafer (diameter: 12.5 mm), the inner diameter of the chamber of the plasma generating portion can be set to 20 mm or more and 60 mm or less. By reducing the space for generating plasma, it is possible to reduce the size and power consumption of equipment required for plasma generation. For example, 50 W, which requires permission for installation of equipment according to the Japanese Radio Law. The output can be lower than.
 プラズマが生成する空間のチャンバ内壁寄りのいわゆる表皮層は、コイルに高周波電力を供給した際に表皮効果によってプラズマが生成されない領域となる。表皮層は、高周波電力の周波数が高くなるほど径方向の厚さが薄くなり、高周波電力の周波数が低くなるほどその厚さが厚くなる。そのため、高周波電力の周波数が小さいと、表皮層が厚くなり過ぎて、プラズマが生成される領域が十分に確保されない。しかし、高周波電力の周波数を40MHz以上とすることにより、狭い領域でもプラズマを生成することができる。また、高周波電力の大きさを2W以上とすることにより、生成したプラズマを安定して維持することができる。高周波電力の周波数を一般的な13.56MHzより大きな40MHz以上とすることにより、高周波電力が2Wと小さくても、プラズマを乖離するための十分なエネルギーを与えることができる。さらに、高周波電力が小さくなると、エッチングレートが小さくなるため、一度の等方性エッチング工程(2A)で形成する溝の深さが浅くなり、滑らかな側面を有する微細凹部の形成に適している。 The so-called skin layer near the inner wall of the chamber where plasma is generated is a region where plasma is not generated by the skin effect when high-frequency power is supplied to the coil. The skin layer is thinner in the radial direction as the frequency of the high-frequency power is higher, and is thicker as the frequency of the high-frequency power is lower. Therefore, when the frequency of the high frequency power is small, the skin layer becomes too thick, and a region where plasma is generated is not sufficiently secured. However, plasma can be generated even in a narrow region by setting the frequency of the high-frequency power to 40 MHz or more. Moreover, the generated plasma can be stably maintained by setting the magnitude of the high-frequency power to 2 W or more. By setting the frequency of the high-frequency power to 40 MHz or more, which is larger than the general 13.56 MHz, even if the high-frequency power is as small as 2 W, sufficient energy for separating the plasma can be given. Furthermore, since the etching rate is reduced when the high-frequency power is reduced, the depth of the groove formed in one isotropic etching step (2A) is reduced, which is suitable for forming fine concave portions having smooth side surfaces.
 上記したように、マスクレス露光とボッシュプロセスとを用いる本発明の微細立体構造形成方法により、垂直で滑らかな側面を有し、描画したレジストパターンに忠実な微細立体構造を形成することができる。なお、本発明の微細立体構造形成方法は、必要に応じて、酸化膜、窒化膜、金属めっき等の保護層形成工程、ダイシング工程等の追加工程を行うことができる。 As described above, according to the fine three-dimensional structure forming method of the present invention using maskless exposure and the Bosch process, a fine three-dimensional structure having a vertical and smooth side surface and faithful to the drawn resist pattern can be formed. In addition, the fine three-dimensional structure formation method of this invention can perform additional processes, such as protective layer formation processes, such as an oxide film, a nitride film, and metal plating, a dicing process, as needed.
「微細立体構造」
 本発明の微細立体構造の一実施態様の深さ方向断面の模式図を図6に示す。一実施態様である微細立体構造100は、シリコン基板W上に形成され、シリコンが取り除かれた部分からなる微細凹部110を有し、微細凹部の側面には、周期Pが100nm以下、深さDが30nm以下であるスキャロップ(図示せず)が形成されている。
 本発明の微細立体構造において、微細凹部は、シリコン基板が垂直方向にエッチングされることにより形成される。シリコン基板がエッチングされずに残存している部分が微細凸部130を構成する。そのため、微細凹部と微細凸部とは隣接し、微細凸部とシリコン基板とは連続する同一素材からなり界面を有さない。微細立体構造の形状は特に制限されず、円柱、四角柱、円孔、四角孔、直線状、または曲線状の凸条、凹条等のいずれか、またはこれらの組み合わせが挙げられる。
`` Fine three-dimensional structure ''
The schematic diagram of the cross section in the depth direction of one embodiment of the fine three-dimensional structure of the present invention is shown in FIG. The fine three-dimensional structure 100 according to an embodiment has a fine concave portion 110 formed on a silicon substrate W and made of a portion from which silicon is removed, and a period P is 100 nm or less and a depth D is formed on a side surface of the fine concave portion. A scallop (not shown) having a thickness of 30 nm or less is formed.
In the fine three-dimensional structure of the present invention, the fine recess is formed by etching the silicon substrate in the vertical direction. The portion where the silicon substrate remains without being etched constitutes the fine protrusion 130. Therefore, the fine concave portion and the fine convex portion are adjacent to each other, and the fine convex portion and the silicon substrate are made of the same continuous material and have no interface. The shape of the fine three-dimensional structure is not particularly limited, and examples thereof include a cylinder, a quadrangular column, a circular hole, a square hole, a linear or curved ridge, a groove, or a combination thereof.
 微細凹部は、深さ20μm以下、幅3μm以上である。微細凹部の深さ、すなわち、微細凸部の高さは、15μm以下がより好ましく、12μm以下がさらに好ましい。微細凹部の深さ(微細凸部の高さ)は、500nm以上が好ましく、1μm以上がより好ましく、2μm以上がさらに好ましい。また、微細凹部の幅は、4μm以上が好ましく、5μm以上がより好ましい。
 微細凹部は、ほぼ垂直に掘り進められており、微細凸部は、シリコン基板に対してほぼ垂直に直立している。具体的には、微細凹部の10%深さ位置、50%深さ位置、90%深さ位置における幅をそれぞれW10、W50、W90とした時に、変動係数(W10~W90)が5%以下である。変動係数(W10~W90)は、3.5%以下であることが好ましく、3%以下であることがより好ましく、2.7%以下であることがさらに好ましく、2%以下であることが最も好ましい。また、95%深さ位置における幅をW95とした時に、W10、W50、W90、W95の変動係数(W10~W95)は、3.5%以下であることが好ましく、3.2%以下であることがより好ましく、2.5%以下であることがさらに好ましく、1.8%以下であることが最も好ましい。
The fine recess has a depth of 20 μm or less and a width of 3 μm or more. The depth of the fine concave portion, that is, the height of the fine convex portion is more preferably 15 μm or less, and further preferably 12 μm or less. The depth of the fine concave portion (height of the fine convex portion) is preferably 500 nm or more, more preferably 1 μm or more, and further preferably 2 μm or more. Further, the width of the fine recess is preferably 4 μm or more, and more preferably 5 μm or more.
The fine concave portion is dug almost vertically, and the fine convex portion stands upright substantially perpendicular to the silicon substrate. Specifically, when the widths at the 10% depth position, 50% depth position, and 90% depth position of the fine recess are W10, W50, and W90, respectively, the variation coefficient (W10 to W90) is 5% or less. is there. The coefficient of variation (W10 to W90) is preferably 3.5% or less, more preferably 3% or less, further preferably 2.7% or less, and most preferably 2% or less. preferable. When the width at the 95% depth position is W95, the coefficient of variation (W10 to W95) of W10, W50, W90, and W95 is preferably 3.5% or less, and is preferably 3.2% or less. More preferably, it is more preferably 2.5% or less, and most preferably 1.8% or less.
 微細凹部側面のスキャロップの周期Pは、100nm以下であり、60nm以下が好ましく、40nm以下がより好ましく、30nm以下がさらに好ましく、20nm以下が最も好ましい。また、スキャロップの深さDは、30nm以下であり、20nm以下が好ましく、15nm以下がより好ましく、12nm以下がさらに好ましく、5nm以下が最も好ましい。
 さらに、微細凹部のテーパー角θは、86度以上であることが好ましく、88度以上であることがより好ましく、89度以上であることがさらに好ましく、89.5度以上であることが最も好ましい。裾引き長Lは、2μm以下であることが好ましく、1.5μm以下であることがより好ましく、1μm以下であることがさらに好ましく、0.6μm以下であることが最も好ましい。
 なお、上記した各値は、SEM、TEM、STEM等の電子顕微鏡画像を、付属または市販の画像解析ソフトを用いて解析することにより求めることができる。ただし、電子顕微鏡画像からスキャロップが確認できず、スキャロップの周期Pと深さDとが求められない場合もある。この場合、スキャロップの周期Pは、形成された微細凹部の深さとボッシュプロセスのサイクル数とから算出することができる。また、電子顕微鏡の代わりに原子間力顕微鏡(AFM)で観察することにより、スキャロップの周期Pと深さDが測定できる場合がある。
The scallop period P on the side surface of the fine recess is 100 nm or less, preferably 60 nm or less, more preferably 40 nm or less, still more preferably 30 nm or less, and most preferably 20 nm or less. The scallop depth D is 30 nm or less, preferably 20 nm or less, more preferably 15 nm or less, still more preferably 12 nm or less, and most preferably 5 nm or less.
Furthermore, the taper angle θ of the fine recess is preferably 86 degrees or more, more preferably 88 degrees or more, further preferably 89 degrees or more, and most preferably 89.5 degrees or more. . The skirt length L is preferably 2 μm or less, more preferably 1.5 μm or less, further preferably 1 μm or less, and most preferably 0.6 μm or less.
In addition, each above-mentioned value can be calculated | required by analyzing electron microscope images, such as SEM, TEM, and STEM, using attached or commercially available image analysis software. However, the scallop cannot be confirmed from the electron microscope image, and the scallop period P and depth D may not be obtained. In this case, the scallop period P can be calculated from the depth of the formed fine recess and the number of cycles of the Bosch process. In some cases, the period P and depth D of the scallop can be measured by observing with an atomic force microscope (AFM) instead of the electron microscope.
 シリコン基板として、ハーフインチサイズ(直径:12.5mm)のウェハを用いることにより、微細凹部を形成する際のボッシュプロセスのサイクルタイムを6秒以下とすることができる。サイクルタイムを短くすることにより、より少しずつ掘り進めることができるため、スキャロップの深さDがより小さくなり、側面をさらに平滑にすることができる。スキャロップの周期Pを40nm以下、深さDを12nm以下とすることができる。また、変動係数(W10~W90)を3.4%以下、変動係数(W10~W95)を3.1%以下、テーパー角88.6度以上、裾引き長0.8μm以下とすることができる。 By using a half-inch (diameter: 12.5 mm) wafer as the silicon substrate, the cycle time of the Bosch process when forming the fine recesses can be reduced to 6 seconds or less. By shortening the cycle time, the digging can be carried out little by little, so that the scallop depth D becomes smaller and the side surface can be further smoothed. The scallop period P can be 40 nm or less, and the depth D can be 12 nm or less. Further, the coefficient of variation (W10 to W90) can be 3.4% or less, the coefficient of variation (W10 to W95) can be 3.1% or less, the taper angle is 88.6 degrees or more, and the tailing length is 0.8 μm or less. .
 なお、本発明の微細立体構造は、上記した一実施態様に限定されない。例えば、微細凸部の頂部はマスクレス露光されたレジストに覆われていてもよい。この際、レジストは、中央部の膜厚が境界部の膜厚より厚く、マスクアンダーカットの幅は30nm以下である。また、本発明の微細立体構造形成方法を複数回行うことにより、深さの異なる微細凹部、高さの異なる微細凸部を有する微細立体構造とすることもできる。 The fine three-dimensional structure of the present invention is not limited to the above-described embodiment. For example, the top of the fine protrusions may be covered with a maskless exposed resist. At this time, in the resist, the film thickness at the center is larger than the film thickness at the boundary, and the width of the mask undercut is 30 nm or less. Moreover, it can also be set as the fine three-dimensional structure which has the fine recessed part from which depth differs, and the fine convex part from which height differs by performing the fine three-dimensional structure formation method of this invention in multiple times.
 本発明の微細立体構造は、従来のものと比較して、側面が滑らかで、各面の垂直性に優れ、描画したレジストパターンに忠実である。本発明の微細立体構造の用途は特に制限されない。例えば、スキャロップの周期Pと深さDとが、光の波長よりも十分に小さく、かつ、微細立体構造の垂直性に優れており、界面で光が反射する際の減衰が小さいため、光導波路として好適に利用することができる。また、レジストパターンに忠実に所望の形状を形成することができるため、回折格子、ホログラム等の光学素子として適している。さらに、側面が平滑で液体が流れる際の抵抗が少ないため、マイクロ流路、マイクロリアクターとして利用することもできる。この際、側面の凹凸が少なく固形物が引っかかりにくいため、細胞や微生物等を流す用途に特に好適である。その他に、インプリント用モールド、MEMS、NEMS(Nano Electro Mechanical Systems)等としても利用することができる。 The fine three-dimensional structure of the present invention has smoother side surfaces, superior verticality of each surface, and is faithful to the drawn resist pattern as compared with the conventional one. The use of the fine three-dimensional structure of the present invention is not particularly limited. For example, since the scallop period P and the depth D are sufficiently smaller than the wavelength of light, and the perpendicularity of the fine three-dimensional structure is excellent, the attenuation when light is reflected at the interface is small. Can be suitably used. Further, since a desired shape can be formed faithfully to the resist pattern, it is suitable as an optical element such as a diffraction grating or a hologram. Furthermore, since the side surface is smooth and the resistance when the liquid flows is small, it can be used as a microchannel or a microreactor. At this time, since there are few unevenness | corrugations of a side surface and it is hard to catch a solid substance, it is especially suitable for the use which flows a cell, microorganisms, etc. In addition, it can also be used as an imprint mold, MEMS, NEMS (Nano Electro Mechanical Systems), and the like.
実験1
 ハーフインチサイズのシリコンウェハにネガ型フォトレジストを、乾燥後の膜厚が1μmとなるようにスピンコートし、乾燥させた。
 DLP露光装置にて1回露光を行ったのち、現像してレジストパターンを描画した。露光スポットの形状は、0.5μm四方である。
 チャンバ容量500ml、排気速度80L/秒であるプラズマエッチング装置を用いて、下記条件でエッチング工程とプラズマデポジション工程(2B)をそれぞれ1秒ずつ、サイクルタイム2秒のボッシュプロセスを300サイクル行った。エッチング工程は、等方性エッチング工程(2A)0.6秒、除去工程(2C)0.4秒であり、ボッシュプロセスの合計時間は600秒(=2秒×300サイクル)である。
  圧力        :10Pa
  高周波電力の周波数 :100Hz
  高周波電力の大きさ :25W
  バイアス電力    :2W
  エッチング     :SF、8ml/min
  プラズマデポジション:C、8ml/min
 その後、アッシャー装置を用いてレジストパターンを除去し、微細立体構造を形成した。
Experiment 1
A negative photoresist was spin-coated on a half-inch silicon wafer so that the film thickness after drying was 1 μm, and dried.
After exposure once with a DLP exposure apparatus, development was performed to draw a resist pattern. The shape of the exposure spot is 0.5 μm square.
Using a plasma etching apparatus having a chamber capacity of 500 ml and an exhaust speed of 80 L / sec, 300 cycles of a Bosch process with a cycle time of 2 seconds were performed for 1 second each for the etching process and the plasma deposition process (2B) under the following conditions. The etching process is an isotropic etching process (2A) of 0.6 seconds and a removal process (2C) of 0.4 seconds, and the total time of the Bosch process is 600 seconds (= 2 seconds × 300 cycles).
Pressure: 10Pa
High frequency power frequency: 100 Hz
Size of high frequency power: 25W
Bias power: 2W
Etching: SF 6, 8ml / min
Plasma deposition: C 4 F 8 , 8 ml / min
Thereafter, the resist pattern was removed using an asher device to form a fine three-dimensional structure.
 描画したレジストパターンと作成した微細立体構造を、走査型電子顕微鏡にて観察した。ラインアンドスペースが4μmであるレジストパターンの断面画像と俯瞰画像を、それぞれ図7、8に示す。また、微細立体構造の俯瞰画像、ラインアンドスペースが4μmである部分の断面画像、ラインアンドスペースが2μmである部分の断面画像を、それぞれ図9~11に示す。 The drawn resist pattern and the created fine three-dimensional structure were observed with a scanning electron microscope. A cross-sectional image and a bird's-eye view image of a resist pattern having a line and space of 4 μm are shown in FIGS. 9 to 11 show an overhead image of a fine three-dimensional structure, a cross-sectional image of a part having a line and space of 4 μm, and a cross-sectional image of a part having a line and space of 2 μm, respectively.
 レジストパターンは、マスクレス露光の光照射の不均一性に由来して、裾を引いていた。また、レジストパターンは、走査方向と斜めの方向に対してギザギザの段差を有しており、このレジストパターンをマスクとしてエッチングしたところ、ギザギザの段差がそのまま反映された微細立体構造が形成できた。 The resist pattern had a skirt due to non-uniformity of light irradiation in maskless exposure. Further, the resist pattern has a jagged step in the scanning direction and the oblique direction. When this resist pattern is etched as a mask, a fine three-dimensional structure in which the jagged step is directly reflected can be formed.
 ラインアンドスペースが4μmの部分では、深さ12.0μmの微細凹部が形成できた。断面画像を50万倍に拡大しても、スキャロップは確認できなかった。このことから、側面に形成されているスキャロップの深さDは12nm以下である。また、微細凹部の深さとサイクル数から算出したスキャロップ周期Pは40.0nmである。
 微細凹部のW10、W50、W90は、それぞれ5.00μm、4.77μm、4.69μmであり、変動係数(W10~W90)は3.34%であった。また、W95は、4.69μmであり、変動係数(W10~W95)は3.06%であった。テーパー角は88.6度、裾引き長は0.59μmであった。各測定値を表1に示す。
 ラインアンドスペースが4μmの部分は、ほぼ垂直方向にエッチングを進めることができ、底部から急峻に立ち上がっていた。また、スキャロップは確認できず、側面は滑らかであった。
A fine recess having a depth of 12.0 μm could be formed at a line and space of 4 μm. Even when the cross-sectional image was magnified 500,000, scallops could not be confirmed. For this reason, the depth D of the scallop formed on the side surface is 12 nm or less. The scallop period P calculated from the depth of the fine recesses and the number of cycles is 40.0 nm.
The fine recesses W10, W50, and W90 were 5.00 μm, 4.77 μm, and 4.69 μm, respectively, and the variation coefficient (W10 to W90) was 3.34%. W95 was 4.69 μm, and the coefficient of variation (W10 to W95) was 3.06%. The taper angle was 88.6 degrees and the skirt length was 0.59 μm. Table 1 shows the measured values.
The portion where the line and space was 4 μm could be etched in a substantially vertical direction and stood up sharply from the bottom. Moreover, the scallop was not confirmed and the side surface was smooth.
 ラインアンドスペースが2μmの部分では、深さ11.0μmの微細凹部が形成できた。断面画像を50万倍に拡大しても、スキャロップは確認できなかった。このことから、側面に形成されているスキャロップの深さDは12nm以下である。また、計算上のスキャロップ周期Pは36.7nmである。
 微細凹部のW10、W50、W90はそれぞれ3.09μm、2.85μm、2.61μmであり、変動係数(W10~W90)は8.06%であった。また、W95は、2.61μmであり、変動係数(W10~W95)は8.24%であった。テーパー角は88.5度、裾引き長は0.40μmであった。各測定値を表1に示す。
 ラインアンドスペースが2μmの部分は、スペースの幅が狭く内部に処理ガスが侵入しにくいため、エッチングレートが徐々に低下した。そのため、変動係数(W10~W90)が、ラインアンドスペースが4μmの部分と比較して大きくなった。ラインアンドスペースが4μmと2μmの部分におけるテーパー角の大きさはほとんど変わらなかった。これは、ラインアンドスペースが4μmと2μmの部分におけるW10とW50との差(W10-W50)が、それぞれ0.23μm、0.24μmとほぼ同じであったためである。ただし、ラインアンドスペースが4μmと2μmの部分におけるW50とW90との差(W50-W90)は、0.08μm、0.24μmと大きく異なり、ラインアンドスペースが2μmでは、微細凹部が深くなるにつれて、エッチングレートが漸減し続けた。
A fine recess having a depth of 11.0 μm could be formed in the portion where the line and space was 2 μm. Even when the cross-sectional image was magnified 500,000, scallops could not be confirmed. For this reason, the depth D of the scallop formed on the side surface is 12 nm or less. The calculated scallop period P is 36.7 nm.
The fine recesses W10, W50, and W90 were 3.09 μm, 2.85 μm, and 2.61 μm, respectively, and the coefficient of variation (W10 to W90) was 8.06%. W95 was 2.61 μm, and the coefficient of variation (W10 to W95) was 8.24%. The taper angle was 88.5 degrees and the skirt length was 0.40 μm. Table 1 shows the measured values.
In the part where the line and space is 2 μm, the etching rate was gradually decreased because the width of the space was narrow and the processing gas did not easily enter the inside. For this reason, the coefficient of variation (W10 to W90) was larger than that of the line and space portion of 4 μm. The taper angle at the line and space portions of 4 μm and 2 μm hardly changed. This is because the difference between W10 and W50 (W10−W50) in the portions where the line and space is 4 μm and 2 μm is almost the same as 0.23 μm and 0.24 μm, respectively. However, the difference between W50 and W90 (W50-W90) in the part where the line and space is 4 μm and 2 μm is significantly different from 0.08 μm and 0.24 μm. When the line and space is 2 μm, the fine concave portion becomes deeper. The etching rate continued to decrease gradually.
実験2
 DLP露光装置にて多重露光(縦、横にそれぞれ5分割)を行い、レジストパターンを描画した以外は、実験1と同様にして微細立体構造を形成した。多重露光は、0.5μm四方の露光スポットを、縦、横に、それぞれ0.1μmずつずらしながら行った。なお、多重露光のトータルの露光エネルギー積算量は、実施例1の露光エネルギーと等しい。
Experiment 2
A fine three-dimensional structure was formed in the same manner as in Experiment 1 except that multiple exposure (5 divisions each in vertical and horizontal directions) was performed with a DLP exposure apparatus and a resist pattern was drawn. Multiple exposure was performed by shifting an exposure spot of 0.5 μm square by 0.1 μm vertically and horizontally. Note that the total exposure energy integration amount of the multiple exposure is equal to the exposure energy of the first embodiment.
 描画したレジストパターンと作成した微細立体構造を、走査型電子顕微鏡にて観察した。ラインアンドスペースが4μmであるレジストパターンの断面画像を図12に示す。また、微細立体構造の俯瞰画像とラインアンドスペースが4μmである部分の断面画像を、それぞれ図13、14に示す。 The drawn resist pattern and the created fine three-dimensional structure were observed with a scanning electron microscope. FIG. 12 shows a cross-sectional image of a resist pattern having a line and space of 4 μm. In addition, an overhead image of a fine three-dimensional structure and a cross-sectional image of a portion having a line and space of 4 μm are shown in FIGS. 13 and 14, respectively.
 マスクレス露光を多重露光したところ、レジストパターンは、裾を引いていた。
 また、多重露光により、レジストパターンのギザギザの段差が低減したため、実験1の微細立体構造と比較して、水平方向面内で非常に滑らかな微細立体構造を形成することができた。
When the maskless exposure was subjected to multiple exposure, the resist pattern had a tail.
In addition, since the jagged steps of the resist pattern were reduced by the multiple exposure, it was possible to form a very smooth fine three-dimensional structure in the horizontal plane as compared with the fine three-dimensional structure of Experiment 1.
 ラインアンドスペースが4μmの部分では、深さ10.2μmの微細凹部が形成できた。断面画像を50万倍に拡大しても、スキャロップは確認できなかった。このことから、側面に形成されているスキャロップの深さDは12nm以下である。また、計算上のスキャロップ周期Pは34.0nmである。
 微細凹部のW10、W50、W90は、それぞれ4.83μm、4.64μm、4.59μmであり、変動係数(W10~W90)は2.70%であった。また、W95は4.59μmであり、変動係数(W10~W95)は2.45%であった。テーパー角は89.1度、裾引き長は0.76μmであった。各測定値を表1に示す。
 マスクレス露光で描画したレジストパターンを用いても、ラインアンドスペースが4μmの部分では、ほぼ垂直方向にエッチングを進めることができ、底部も急峻に立ち上がっていた。また、スキャロップは確認できず、側面は滑らかであった。
A fine recess having a depth of 10.2 μm could be formed at a line and space of 4 μm. Even when the cross-sectional image was magnified 500,000, scallops could not be confirmed. For this reason, the depth D of the scallop formed on the side surface is 12 nm or less. The calculated scallop period P is 34.0 nm.
The fine recesses W10, W50, and W90 were 4.83 μm, 4.64 μm, and 4.59 μm, respectively, and the variation coefficients (W10 to W90) were 2.70%. W95 was 4.59 μm, and the coefficient of variation (W10 to W95) was 2.45%. The taper angle was 89.1 degrees and the skirt length was 0.76 μm. Table 1 shows the measured values.
Even when a resist pattern drawn by maskless exposure was used, etching was able to proceed in a substantially vertical direction in a portion where the line and space was 4 μm, and the bottom portion also stood up sharply. Moreover, the scallop was not confirmed and the side surface was smooth.
実験3
 ボッシュプロセスに代えて、エッチングガスと保護膜形成ガスとを同時に流し、下記条件でエッチングを行った以外は、実験2と同様にして微細立体構造を形成した。エッチング条件は以下のとおりである。
  エッチング時間   :600秒
  圧力        :10Pa
  高周波電力の周波数 :100Hz
  高周波電力の大きさ :25W
  バイアス電力    :2W
  エッチング     :SF、4ml/min
  プラズマデポジション:C、4ml/min
Experiment 3
Instead of the Bosch process, a fine three-dimensional structure was formed in the same manner as in Experiment 2 except that etching gas and protective film forming gas were simultaneously flowed and etching was performed under the following conditions. Etching conditions are as follows.
Etching time: 600 seconds Pressure: 10 Pa
High frequency power frequency: 100 Hz
Size of high frequency power: 25W
Bias power: 2W
Etching: SF 6, 4ml / min
Plasma deposition: C 4 F 8, 4ml / min
 作成した微細立体構造のラインアンドスペースが4μmである部分を、走査型電子顕微鏡にて観察したところ、深さ5.12μmの微細凹部が形成できた。なお、実験3は、ボッシュプロセスを用いていないため、スキャロップは形成されない。
 微細凹部のW10、W50、W90は、それぞれ5.23μm、5.56μm、5.23μmであり、変動係数(W10~W90)は3.57%であった。また、W95は4.26μmであり、変動係数(W10~W95)は、11.08%であった。テーパー角は94.3度、裾引き長は0.48μmであった。各測定値を表1に示す。
 実験3では、エッチングとデポジションとの条件設定が悪く、テーパー角が94.3度と垂直方向にエッチングできず、微細凹部の80%深さ位置付近において、幅5.80μmと最も広かった。
When the portion of the created fine three-dimensional structure having a line and space of 4 μm was observed with a scanning electron microscope, a fine recess having a depth of 5.12 μm could be formed. In Experiment 3, since the Bosch process is not used, a scallop is not formed.
W10, W50, and W90 of the fine recesses were 5.23 μm, 5.56 μm, and 5.23 μm, respectively, and the variation coefficient (W10 to W90) was 3.57%. W95 was 4.26 μm, and the coefficient of variation (W10 to W95) was 11.08%. The taper angle was 94.3 degrees and the skirt length was 0.48 μm. Table 1 shows the measured values.
In Experiment 3, the conditions for etching and deposition were poor, the taper angle was 94.3 degrees, and etching could not be performed in the vertical direction, and the width was the widest at 5.80 μm near the 80% depth position of the fine recess.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (17)

  1.  基板上にマスクレス露光により描画されたレジストパターンを形成する工程(1)と、
     等方性エッチングにより前記基板に窪みを形成する等方性エッチング工程(2A)と、
     前記窪みの内壁と前記レジストパターンとに保護膜を堆積するプラズマデポジション工程(2B)と、
     異方性エッチングにより、前記窪みの底面の保護膜を除去する除去工程(2C)と、
     等方性エッチング工程(2A)とプラズマデポジション工程(2B)と除去工程(2C)とを順に繰り返すことで前記基板に微細凹部を形成する工程(2)と、
     を有することを特徴とする微細立体構造形成方法。
    Forming a resist pattern drawn by maskless exposure on a substrate (1);
    An isotropic etching step (2A) for forming a depression in the substrate by isotropic etching;
    A plasma deposition step (2B) of depositing a protective film on the inner wall of the recess and the resist pattern;
    A removal step (2C) for removing the protective film on the bottom surface of the depression by anisotropic etching;
    A step (2) of forming a fine recess in the substrate by sequentially repeating an isotropic etching step (2A), a plasma deposition step (2B), and a removal step (2C);
    A method for forming a fine three-dimensional structure, comprising:
  2.  前記マスクレス露光が、多重露光であることを特徴とする請求項1に記載の微細立体構造形成方法。 2. The method for forming a fine three-dimensional structure according to claim 1, wherein the maskless exposure is multiple exposure.
  3.  前記微細凹部の10%深さ位置、50%深さ位置、90%深さ位置における幅をそれぞれW10、W50、W90としたとき、W10、W50、W90の変動係数(W10~W90)が5%以下であることを特徴とする請求項1または2に記載の微細立体構造形成方法。 When the widths at the 10% depth position, 50% depth position, and 90% depth position of the fine recess are W10, W50, and W90, respectively, the coefficient of variation (W10 to W90) of W10, W50, and W90 is 5%. The method for forming a fine three-dimensional structure according to claim 1 or 2, wherein:
  4.  前記微細凹部側面のスキャロップの周期Pが100nm以下であることを特徴とする請求項1~3のいずれかに記載の微細立体構造形成方法。 The method for forming a fine three-dimensional structure according to any one of claims 1 to 3, wherein a scallop period P on the side surface of the fine concave portion is 100 nm or less.
  5.  前記微細凹部側面のスキャロップの深さDが30nm以下であることを特徴とする請求項1~4のいずれかに記載の微細立体構造形成方法。 The method for forming a fine three-dimensional structure according to any one of claims 1 to 4, wherein a scallop depth D on the side surface of the fine concave portion is 30 nm or less.
  6.  前記基板の直径が、0.5インチであることを特徴とする請求項1~5のいずれかに記載の微細立体構造形成方法。 6. The method for forming a fine three-dimensional structure according to claim 1, wherein the diameter of the substrate is 0.5 inch.
  7.  サイクルタイムが0.5秒以上6秒以下であることを特徴とする請求項1~6のいずれかに記載の微細立体構造形成方法。 The method for forming a fine three-dimensional structure according to any one of claims 1 to 6, wherein the cycle time is 0.5 seconds or more and 6 seconds or less.
  8.  前記変動係数(W10~W90)が3.5%以下であることを特徴とする請求項6または7に記載の微細立体構造。 The fine three-dimensional structure according to claim 6 or 7, wherein the coefficient of variation (W10 to W90) is 3.5% or less.
  9.  前記スキャロップの深さDが12nm以下であることを特徴とする請求項6~8のいずれかに記載の微細立体構造。 The fine three-dimensional structure according to any one of claims 6 to 8, wherein a depth D of the scallop is 12 nm or less.
  10.  基板上に深さ20μm以下、幅3μm以上の微細凹部を有し、
     前記微細凹部の10%深さ位置、50%深さ位置、90%深さ位置における幅をそれぞれW10、W50、W90としたとき、W10、W50、W90の変動係数(W10~W90)が5%以下であることを特徴とする微細立体構造。
    A fine recess having a depth of 20 μm or less and a width of 3 μm or more on the substrate;
    When the widths at the 10% depth position, 50% depth position, and 90% depth position of the fine recess are W10, W50, and W90, respectively, the coefficient of variation (W10 to W90) of W10, W50, and W90 is 5%. A fine three-dimensional structure characterized by:
  11.  前記微細凹部側面のスキャロップの周期Pが100nm以下であることを特徴とする請求項10に記載の微細立体構造。 The fine three-dimensional structure according to claim 10, wherein a scallop period P on the side surface of the fine concave portion is 100 nm or less.
  12.  前記スキャロップの深さDが30nm以下であることを特徴とする請求項10または11に記載の微細立体構造。 The fine three-dimensional structure according to claim 10 or 11, wherein a depth D of the scallop is 30 nm or less.
  13.  前記微細凹部に隣接する微細凸部と、
     前記微細凸部の頂部を覆うレジストを有し、
     前記レジストの端部での膜厚が、中央部での膜厚よりも薄いことを特徴とする請求項10~12のいずれかに記載の微細立体構造。
    A fine convex portion adjacent to the fine concave portion;
    Having a resist covering the top of the fine protrusions;
    The fine three-dimensional structure according to any one of claims 10 to 12, wherein a film thickness at an end portion of the resist is thinner than a film thickness at a central portion.
  14.  前記微細凸部上端部におけるマスクアンダーカットの幅が30nm以下であることを特徴とする請求項13に記載の微細立体構造。 The fine three-dimensional structure according to claim 13, wherein the width of the mask undercut at the upper end of the fine convex portion is 30 nm or less.
  15.  前記基板の直径が0.5インチであることを特徴とする請求項10~14のいずれかに記載の微細立体構造。 The fine three-dimensional structure according to any one of claims 10 to 14, wherein a diameter of the substrate is 0.5 inches.
  16.  前記変動係数(W10~W90)が3.5%以下であることを特徴とする請求項15に記載の微細立体構造。 The fine three-dimensional structure according to claim 15, wherein the coefficient of variation (W10 to W90) is 3.5% or less.
  17.  前記スキャロップの深さDが12nm以下であることを特徴とする請求項15または16に記載の微細立体構造。 The fine three-dimensional structure according to claim 15 or 16, wherein a depth D of the scallop is 12 nm or less.
PCT/JP2017/008171 2016-03-02 2017-03-01 Microscopic three-dimensional structure forming method, and microscopic three-dimensional structure WO2017150628A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018503380A JP6856225B2 (en) 2016-03-02 2017-03-01 Fine three-dimensional structure formation method and fine three-dimensional structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-039590 2016-03-02
JP2016039590 2016-03-02

Publications (1)

Publication Number Publication Date
WO2017150628A1 true WO2017150628A1 (en) 2017-09-08

Family

ID=59742987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008171 WO2017150628A1 (en) 2016-03-02 2017-03-01 Microscopic three-dimensional structure forming method, and microscopic three-dimensional structure

Country Status (3)

Country Link
JP (1) JP6856225B2 (en)
TW (1) TWI646598B (en)
WO (1) WO2017150628A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109786237A (en) * 2017-11-12 2019-05-21 台湾积体电路制造股份有限公司 The method for manufacturing semiconductor structure
JP2019186478A (en) * 2018-04-16 2019-10-24 株式会社デンソー Semiconductor device and manufacturing method of the same
WO2020090930A1 (en) * 2018-10-31 2020-05-07 浜松ホトニクス株式会社 Method for manufacturing semiconductor substrate, method for manufacturing damascene wiring structure, semiconductor substrate, and damascene wiring structure
CN112366040A (en) * 2020-11-10 2021-02-12 安徽熙泰智能科技有限公司 Method for preparing high-precision silver electrode by side wall protection process
JP2022169215A (en) * 2021-04-27 2022-11-09 株式会社アルバック Etching method
US11987493B2 (en) 2018-10-31 2024-05-21 Hamamatsu Photonics K.K. Damascene interconnect structure, actuator device, and method of manufacturing damascene interconnect structure
US12020942B2 (en) 2021-04-27 2024-06-25 Ulvac, Inc. Etching method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000347040A (en) * 1999-06-01 2000-12-15 Victor Co Of Japan Ltd Apparatus for producing fine pattern and its production
JP2009278033A (en) * 2008-05-19 2009-11-26 Oki Semiconductor Co Ltd Dry etching method
JP2012018956A (en) * 2010-07-06 2012-01-26 Canon Inc Method for manufacturing wiring board
JP2014033077A (en) * 2012-08-03 2014-02-20 Canon Inc Through-hole formation method
JP2015511766A (en) * 2012-02-29 2015-04-20 オックスフォード インストルメンツ ナノテクノロジー ツールス リミテッド Method and apparatus for depositing material on a substrate and / or etching away material from a substrate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6924235B2 (en) * 2002-08-16 2005-08-02 Unaxis Usa Inc. Sidewall smoothing in high aspect ratio/deep etching using a discrete gas switching method
JP4250052B2 (en) * 2003-10-14 2009-04-08 財団法人国際科学振興財団 Pattern drawing method and pattern drawing apparatus
TWI266367B (en) * 2003-11-14 2006-11-11 Ind Tech Res Inst Method for smoothing the sidewall ripples of an etching structure
JP2006216630A (en) * 2005-02-02 2006-08-17 Konica Minolta Holdings Inc Method for manufacturing silicon substrate, silicon substrate having groove structure, optical element molding die, and optical element made of silicon
US8546264B2 (en) * 2005-06-02 2013-10-01 The Regents Of The University Of California Etching radical controlled gas chopped deep reactive ion etching
JP2011049360A (en) * 2009-08-27 2011-03-10 Tokyo Electron Ltd Plasma etching method
US9006015B2 (en) * 2013-01-24 2015-04-14 Taiwan Semiconductor Manfacturing Company, Ltd. Dual layer microelectromechanical systems device and method of manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000347040A (en) * 1999-06-01 2000-12-15 Victor Co Of Japan Ltd Apparatus for producing fine pattern and its production
JP2009278033A (en) * 2008-05-19 2009-11-26 Oki Semiconductor Co Ltd Dry etching method
JP2012018956A (en) * 2010-07-06 2012-01-26 Canon Inc Method for manufacturing wiring board
JP2015511766A (en) * 2012-02-29 2015-04-20 オックスフォード インストルメンツ ナノテクノロジー ツールス リミテッド Method and apparatus for depositing material on a substrate and / or etching away material from a substrate
JP2014033077A (en) * 2012-08-03 2014-02-20 Canon Inc Through-hole formation method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109786237B (en) * 2017-11-12 2020-12-11 台湾积体电路制造股份有限公司 Method for fabricating semiconductor structure
CN109786237A (en) * 2017-11-12 2019-05-21 台湾积体电路制造股份有限公司 The method for manufacturing semiconductor structure
JP7073876B2 (en) 2018-04-16 2022-05-24 株式会社デンソー Semiconductor devices and their manufacturing methods
JP2019186478A (en) * 2018-04-16 2019-10-24 株式会社デンソー Semiconductor device and manufacturing method of the same
WO2020090930A1 (en) * 2018-10-31 2020-05-07 浜松ホトニクス株式会社 Method for manufacturing semiconductor substrate, method for manufacturing damascene wiring structure, semiconductor substrate, and damascene wiring structure
JPWO2020090930A1 (en) * 2018-10-31 2021-09-30 浜松ホトニクス株式会社 Manufacturing method of semiconductor substrate, manufacturing method of damascene wiring structure, semiconductor substrate, and damascene wiring structure
US11987493B2 (en) 2018-10-31 2024-05-21 Hamamatsu Photonics K.K. Damascene interconnect structure, actuator device, and method of manufacturing damascene interconnect structure
JP7506604B2 (en) 2018-10-31 2024-06-26 浜松ホトニクス株式会社 Method for manufacturing semiconductor substrate, method for manufacturing damascene wiring structure, semiconductor substrate, and damascene wiring structure
CN112366040A (en) * 2020-11-10 2021-02-12 安徽熙泰智能科技有限公司 Method for preparing high-precision silver electrode by side wall protection process
CN112366040B (en) * 2020-11-10 2022-06-07 安徽熙泰智能科技有限公司 Method for preparing high-precision silver electrode by side wall protection process
JP2022169215A (en) * 2021-04-27 2022-11-09 株式会社アルバック Etching method
JP7320554B2 (en) 2021-04-27 2023-08-03 株式会社アルバック Etching method
US12020942B2 (en) 2021-04-27 2024-06-25 Ulvac, Inc. Etching method

Also Published As

Publication number Publication date
JP6856225B2 (en) 2021-04-07
TW201826375A (en) 2018-07-16
TWI646598B (en) 2019-01-01
JPWO2017150628A1 (en) 2019-01-10

Similar Documents

Publication Publication Date Title
WO2017150628A1 (en) Microscopic three-dimensional structure forming method, and microscopic three-dimensional structure
Morton et al. Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (> 50: 1) silicon pillar arrays by nanoimprint and etching
US7179396B2 (en) Positive tone bi-layer imprint lithography method
JP6924828B2 (en) Structural microlithography
US7947608B2 (en) Positive tone bi-layer method
JP5264237B2 (en) Nanostructure and method for producing nanostructure
EP2144117A1 (en) Process and system for fabrication of patterns on a surface
JP2009182075A (en) Manufacturing method of structure by imprint
JP6167609B2 (en) Nanoimprint template, pattern formation method using nanoimprint template, and method for producing nanoimprint template
CN102446703A (en) Dual patterning method
CN107799402A (en) The forming method of secondary figure
TW201539541A (en) Plasma etching method and manufacturing method of patterning substrate
JP7379775B2 (en) Height modulated diffraction master plate and its manufacturing method
JP4861044B2 (en) Substrate processing method and method for manufacturing member having pattern region
JP2006216630A (en) Method for manufacturing silicon substrate, silicon substrate having groove structure, optical element molding die, and optical element made of silicon
JP6479058B2 (en) SUBSTRATE WITH THIN FILM LAYER FOR PATTERN FORMING MASK AND METHOD FOR PRODUCING PATTERNED SUBSTRATE
JP2008203812A (en) Moth-eye structure and manufacturing method of moth-eye structure
Rad et al. Atomic force microscopy investigation of surface roughness generated between SiO2 micro-pits in CHF3/Ar plasma
JP2006334987A (en) Method for manufacturing molding die and molded article obtained by this die
WO2021188226A1 (en) Planarization of spin-on films
JP6163840B2 (en) Manufacturing method of fine pattern formed body
JP5915027B2 (en) Pattern forming structure and fine pattern forming method
Cui et al. Indirect Nanofabrication
JP4465887B2 (en) Manufacturing method of mold
JP6171453B2 (en) Manufacturing method of nanoimprint mold

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018503380

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17760092

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17760092

Country of ref document: EP

Kind code of ref document: A1