WO2017150538A1 - 内燃機関の排ガス浄化装置 - Google Patents

内燃機関の排ガス浄化装置 Download PDF

Info

Publication number
WO2017150538A1
WO2017150538A1 PCT/JP2017/007817 JP2017007817W WO2017150538A1 WO 2017150538 A1 WO2017150538 A1 WO 2017150538A1 JP 2017007817 W JP2017007817 W JP 2017007817W WO 2017150538 A1 WO2017150538 A1 WO 2017150538A1
Authority
WO
WIPO (PCT)
Prior art keywords
casing
catalyst
exhaust gas
pipe
post
Prior art date
Application number
PCT/JP2017/007817
Other languages
English (en)
French (fr)
Inventor
幸博 川島
直 水上
泰順 鈴木
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to CN201780014409.0A priority Critical patent/CN108699939B/zh
Publication of WO2017150538A1 publication Critical patent/WO2017150538A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/36Arrangements for supply of additional fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present disclosure relates to an exhaust gas purification device for an internal combustion engine including an aftertreatment unit.
  • an exhaust gas purification device including an aftertreatment unit provided in the middle of an exhaust pipe and having a plurality of catalysts for purifying harmful substances in exhaust gas is known.
  • the post-treatment unit is accommodated in a casing in order to keep the temperature of the catalyst at a high temperature.
  • urea water as a reducing agent is added upstream of the NOx catalyst.
  • SCR selective Catalytic Reduction
  • urea water flows inside the pipe member extending toward the NOx catalyst while being mixed with the exhaust gas and evaporated, and is supplied to the NOx catalyst.
  • urea water adheres and stays inside the pipe member in a liquid phase state, there is a possibility that the staying portion may be corroded.
  • the present disclosure has been created in view of such circumstances, and the object thereof is to easily replace a portion where urea water is retained in an aftertreatment unit that is accommodated in a casing and includes a selective reduction type NOx catalyst.
  • An object of the present invention is to provide an exhaust gas purification device for an internal combustion engine.
  • An exhaust gas purification apparatus for an internal combustion engine includes an exhaust pipe, an aftertreatment unit provided in the middle of the exhaust pipe and having a plurality of catalysts for purifying exhaust gas, and a casing that houses the aftertreatment unit.
  • the post-processing unit includes a selective reduction type NOx catalyst, a pipe member that extends from an upstream side of the selective reduction type NOx catalyst toward the selective reduction type NOx catalyst, and through which exhaust gas passes, and the pipe member And an addition valve for adding urea water to a position upstream of the selective reduction type NOx catalyst in the inside, wherein the pipe member is located at a position between the addition valve and the selective reduction type NOx catalyst.
  • a portion in which the urea water added from the reservoir stays, the portion is removable, and an opening through which the portion can pass is provided in the casing, so that the opening can be opened and closed in the casing. Jar lid is provided.
  • An exhaust gas purification apparatus for an internal combustion engine houses an exhaust pipe, an aftertreatment unit provided in the middle of the exhaust pipe and having a plurality of catalysts for purifying the exhaust gas, and the aftertreatment unit.
  • a connecting pipe that is disposed at a position between the first catalyst casing and the second catalyst casing and connects the downstream end of the first catalyst casing and the upstream end of the second catalyst casing.
  • a connecting pipe having a folded portion extending from the rear to the front along the exhaust flow direction, folded back in a U shape and extending rearward, and upstream of the folded portion
  • a urea water addition valve disposed so as to add urea water from the rear to the front from the back to the folded portion, and the folded portion has a detachable front surface, and is provided on the front surface of the casing. Is formed with an opening through which the front surface portion can pass at a position facing the front surface portion of the folded portion, and a cover that covers the opening portion so as to be openable and closable.
  • an excellent effect that the portion where the urea water stays can be easily replaced in the post-processing unit that is housed in the casing and includes the selective reduction type NOx catalyst. Demonstrate.
  • FIG. 1 is a schematic configuration diagram illustrating an exhaust gas purification apparatus according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic configuration diagram illustrating an exhaust gas purification apparatus for an internal combustion engine according to an embodiment of the present disclosure.
  • an exhaust gas purification apparatus 100 is an aftertreatment unit having an exhaust pipe 2 through which exhaust gas from an internal combustion engine 1 passes and a plurality of catalysts 10 provided in the middle of the exhaust pipe 2 for purifying exhaust gas. 3 and a casing 4 that houses the post-processing unit 3.
  • the internal combustion engine 1 is a multi-cylinder compression ignition internal combustion engine mounted on a vehicle (not shown), that is, a diesel engine.
  • the internal combustion engine 1 is provided with an exhaust manifold 12 that collects exhaust gas discharged from each cylinder 11.
  • the exhaust pipe 2 is a pipe that is connected to the exhaust manifold 12 and discharges the exhaust gas from the exhaust manifold 12 in the downstream direction (direction indicated by the arrow G) and releases it to the atmosphere.
  • the exhaust pipe 2 includes an upstream exhaust pipe 21 positioned upstream of the post-processing unit 3 and a downstream exhaust pipe 22 positioned downstream of the post-processing unit 3.
  • the upstream exhaust pipe 21 has a flange 21a at its downstream end
  • the downstream exhaust pipe 22 has a flange 22a at its upstream end.
  • the front-rear and left-right directions of the post-processing unit 3 are shown in FIG. Note that the front-rear and left-right directions of the illustrated post-processing unit 3 are irrelevant to the front-rear and left-right directions of the vehicle, and are merely determined for convenience of explanation.
  • the internal combustion engine 1 is placed vertically on the vehicle, and the left direction of the post-processing unit 3 coincides with the front direction of the vehicle.
  • the aftertreatment unit 3 includes an exhaust gas inlet pipe 31, an exhaust gas outlet pipe 32, a first catalyst casing 33 in which at least one catalyst 10 is provided, a second catalyst casing 34 in which an NOx catalyst 10c is provided, A connecting pipe 35 connecting the catalyst casing 33 and the second catalyst casing 34 and an addition valve 36 for adding urea water are provided. Further, the post-processing unit 3 has a substantially symmetrical structure.
  • the exhaust gas inlet pipe 31 is arranged at the front end and the left side of the post-processing unit 3 and extends from the front to the rear, and the front end is connected to the downstream end of the upstream exhaust pipe 21. Further, the exhaust gas outlet pipe 32 is disposed at the front end and the right side of the post-processing unit 3, extends from the front to the rear, and the front end is connected to the upstream end of the downstream exhaust pipe 22.
  • a flange 31a is provided at the upstream end of the exhaust gas inlet pipe 31, and the flange 21a of the upstream exhaust pipe 21 is connected to the flange 31a.
  • a flange 32a is provided at the downstream end of the exhaust gas outlet pipe 32, and the flange 22a of the downstream exhaust pipe 22 is connected to the flange 32a.
  • the flanges connected to each other are detachably fixed by fastening means such as bolts (not shown).
  • the first catalyst casing 33 is formed in a tubular shape, extends rearward from the exhaust gas inlet pipe 31, and has a first side hole 33b on the right side surface of the downstream end 33a located at the rear end. Further, the first catalyst casing 33 is formed with a first enlarged-diameter portion 33c having a diameter larger than that of the exhaust gas inlet pipe 31 located on the upstream side and the connecting pipe 35 located on the downstream side.
  • the first catalyst casing 33 has an oxidation catalyst (DOC: Diesel Oxidation Catalyst) 10a and a particulate filter (hereinafter referred to as “the catalyst”) from the upstream side through the first heat insulating buffer member (mat) 37 at the position of the first enlarged diameter portion 33c. (Referred to as “DPF”) 10b.
  • DOC Diesel Oxidation Catalyst
  • the catalyst a particulate filter
  • the oxidation catalyst 10a oxidizes and purifies unburned components (hydrocarbon HC and carbon monoxide CO) in the exhaust gas.
  • the oxidation catalyst 10a has a function of heating and raising the temperature of exhaust gas with heat generated during oxidation of HC and CO.
  • the oxidation catalyst 10a oxidizes NO in the exhaust gas to NO 2, also has a function of increasing the NO 2 concentration in the exhaust gas.
  • the DPF 10b collects and removes particulate matter (PM) contained in the exhaust gas.
  • a so-called wall flow type DPF 10b is used in which openings at both ends of a honeycomb-shaped heat-resistant substrate are alternately closed in a checkered pattern.
  • any type of filter that physically captures PM can be used, such as a mesh-shaped foam shape.
  • the DPF 10b is a so-called continuous regeneration type DPF with a catalyst in which a noble metal (catalyst) such as Pt is supported on the inner wall thereof.
  • a noble metal such as Pt
  • HC in the exhaust gas supplied to the DPF 10b is oxidized and burned by the catalytic action, and at this time, PM accumulated in the DPF 10b is simultaneously burned and removed.
  • DPF10b since DPF10b has a catalyst, DPF10b shall also be included in the catalyst 10 said to this indication here.
  • the second catalyst casing 34 is formed in a tubular shape, extends rearward from the exhaust gas outlet pipe 32, and has a second side hole 34b on the left side surface of the upstream end 34a located at the rear end. Further, the second catalyst casing 34 is formed with a second diameter-expanded portion 34c having a diameter larger than that of the exhaust gas inlet pipe 31 located on the upstream side and the exhaust gas outlet pipe 32 located on the downstream side.
  • the NOx catalyst 10c and the ammonia oxidation catalyst 10d are installed from the upstream side through the second heat insulating buffer member (mat) 38 at the position of the second enlarged diameter portion 34c.
  • the NOx catalyst 10c is a catalyst for purifying nitrogen oxides NOx in the exhaust gas.
  • the NOx catalyst 10c is composed of a selective reduction type NOx catalyst (SCR: Selective Catalytic Reduction), and can continuously reduce NOx by ammonia (NH 3 ) generated by hydrolysis from urea water.
  • SCR selective reduction type NOx catalyst
  • the ammonia oxidation catalyst 10d is a catalyst that generates N 2 by oxidizing excess ammonia (NH 3 ) that has not been consumed in the reduction of NOx by the NOx catalyst 10c.
  • the first catalyst casing 33 and the second catalyst casing 34 are arranged on the left and right in parallel with each other. Further, the first side hole 33b and the second side hole 34d are disposed at positions facing each other.
  • the connecting pipe 35 is disposed at a position between the first catalyst casing 33 and the second catalyst casing 34 in the left-right direction, and connects the downstream end X1 of the first catalyst casing 33 and the upstream end Y1 of the second catalyst casing 34. To do. Further, the connecting pipe 35 has a folded portion U that extends from the rear to the front along the exhaust flow direction, is folded back into a U shape, and extends rearward.
  • the connecting pipe 35 extends from the first side hole 33b toward the second side hole 34b (the right side in the figure) and bends forward, and the second side hole 34b extends to the first side hole 33b.
  • a second portion 35b extending toward the side (the left side in the figure) and bent forward.
  • the first portion 35a corresponds to a portion from the first side hole 33b to X2 in the drawing
  • the second portion 35b corresponds to a portion from the second side hole 34b to Y2 in the drawing. .
  • the connecting pipe 35 has a third portion 35c that extends forward from the downstream end X2 of the first portion 35a, is folded back at the folded portion U and extends rearward, and is connected to the upstream end Y2 of the second portion 35b. . That is, the connection pipe 35 is formed in such a manner that it is folded in a U-shape, so that the pipe length of the connection pipe 35 becomes longer than linearly connecting the first side hole 33b and the second side hole 34d.
  • the casing 4 is made of a box-type casing using a heat-resistant material such as stainless steel, and covers the entire post-processing unit 3 in a substantially airtight manner.
  • a heat insulating material 41 such as glass wool is laid on almost the entire inner peripheral surface of the casing 4 in order to keep the post-processing unit 3 warm.
  • the front surface 42 of the casing 4 is formed with an inlet hole 42a through which the exhaust gas inlet pipe 31 of the post-processing unit 3 is inserted and an outlet hole 42b through which the exhaust gas outlet pipe 32 is inserted at the left and right positions.
  • a mounting portion 43 a for attaching the addition valve 36 is formed at a portion located behind the bent portion L of the first portion 35 a.
  • the attachment portion 43a is formed to be recessed forward, and an outer insertion hole 43b extending in the front-rear direction is formed at the front end thereof.
  • an inner insertion hole 35d is formed on the rear end surface of the bent portion L coaxially with the outer insertion hole 43b.
  • the addition valve 36 is inserted from the outside (rear) of the casing 4 into both the outer insertion hole 43b and the inner insertion hole 35d, and is fixed to the casing 4 by a boss portion 43c provided in the attachment portion 43a.
  • the addition valve 36 is arranged so as to add urea water from the rear to the front from the upstream side of the folded portion U toward the folded portion U.
  • the upstream side of the folded portion U means the inside of the bent portion L of the first portion 35a.
  • the added urea water tends to stay in the liquid phase state on the inner surface of the front surface portion Uf of the folded portion U. Since the portion where the urea water stays may corrode due to the urea water, in this embodiment, the front surface portion Uf is made detachable so that it can be replaced.
  • the front surface portion Uf is divided from the connecting pipe 35 along a dividing surface S that extends vertically and horizontally.
  • the portion of the connecting pipe 35 excluding the front surface portion Uf is referred to as a connecting pipe main body B.
  • the front surface portion Uf has an elliptical or oval shape when viewed from the front.
  • the position of the dividing surface S is arbitrary, but the front surface portion Uf is set so as to include a portion where the urea water stays in a liquid phase state, and thus a portion that may corrode due to the urea water.
  • the folded portion U bends about 90 ° as it goes from the upstream side to the downstream side, and the dividing surface S is set at a position on the pipe center C of the folded portion U.
  • a flange 39a and a flange 39b are respectively provided at the rear end portion of the front surface portion Uf and the front end portion of the remaining connecting pipe main body B, and the flanges 39a and 39b are detachably fixed by fastening means such as bolts 39c.
  • an opening 44 through which the front end portion Uf can pass is provided at a position facing the front surface portion Uf of the folded portion U.
  • the area of the opening 44 is arbitrary, but it is preferable that the opening 44 be sized so that the replacement work of the front surface portion Uf can be easily performed.
  • the shape of the opening 44 is arbitrary, and for example, it may be a circle or a square, but may be a rectangle that is long in the left-right direction according to the shape of the front surface portion Uf.
  • the front surface 42 of the casing 4 is provided with a lid 5 that covers the opening 44 so as to be openable and closable from the front.
  • the lid 5 is detachably fixed to the front surface 42 of the casing 4 by fastening means such as a plurality of bolts 45 around the opening 44.
  • a heat insulating material 41 such as glass wool is also laid on the inner surface of the lid 5.
  • tubular members located in the upstream of the NOx catalyst 10c are included in the tube member of the post-processing unit 3 in the present disclosure. That is, the second catalyst casing 34, the connecting pipe 35, the first catalyst casing 33, and the exhaust gas inlet pipe 31 that are located upstream of the NOx catalyst 10c are included in the pipe member of the present disclosure.
  • the tube member in this embodiment is the connecting tube 35 among them.
  • the exhaust gas of the internal combustion engine 1 passes through the upstream exhaust pipe 21 from the exhaust manifold 12 and flows into the first catalyst casing 33 through the exhaust gas inlet pipe 31.
  • the exhaust gas flowing into the first catalyst casing 33 passes through the oxidation catalyst 10a, whereby unburned components (hydrocarbon HC and carbon monoxide CO) in the exhaust gas are oxidized and purified.
  • the exhaust gas that has passed through the oxidation catalyst 10a flows into the DPF 10b, and particulate matter (PM) contained in the exhaust gas is collected and removed by the DPF 10b.
  • PM particulate matter
  • the exhaust gas that has passed through the DPF 10b flows from the first side hole 33b located at the rear end of the first catalyst casing 33 to the first portion 35a of the connecting pipe 35, and moves forward 90 ° along the bent shape of the first portion 35a. The direction is changed to flow to the third portion 35c.
  • the exhaust gas that has flowed to the third portion 35c turns 180 ° backward at the turn-up portion U, flows to the rear second portion 35b, turns 90 ° along the bent shape of the second portion, and then turns to the second side. It flows into the second catalyst casing 34 through the hole 34b.
  • the addition valve 36 disposed in the bent portion L of the first portion 35a adds urea water from the rear to the front toward the folded portion U of the third portion 35c.
  • the exhaust gas mixed with urea water turns 180 ° backward at the folded portion U, flows to the rear second portion 35b, turns 90 ° along the bent shape of the second portion 35b, and moves to the second side. It flows into the second catalyst casing 34 through the hole 34b.
  • the urea water added from the addition valve 36 is hydrolyzed to produce ammonia while being mixed with the exhaust gas and evaporating.
  • the exhaust gas containing at least one of urea water and ammonia passes through the NOx catalyst 10c.
  • the NOx catalyst 10c reduces NOx with ammonia generated by hydrolysis of urea water.
  • the surplus ammonia that has not been consumed in the reduction of NOx by the NOx catalyst 10c comes into contact with the ammonia oxidation catalyst 10d and is oxidized, and release to the atmosphere is suppressed.
  • the exhaust gas that has passed through the ammonia oxidation catalyst 10d is discharged to the downstream exhaust pipe 22 through the exhaust gas outlet pipe 32 and is released from the downstream exhaust pipe 22 to the atmosphere.
  • the oxidation catalyst 10a, the DPF 10b, the NOx catalyst 10c, and the ammonia oxidation catalyst 10d exhibit the exhaust gas purification action effectively when the catalyst temperature (catalyst bed temperature) is in the active temperature range. Therefore, it is effective to keep the temperature of each catalyst 10 as high as possible.
  • the post-processing unit 3 is accommodated in the casing 4 in which the heat insulating material 41 is laid on the inner peripheral surface, thereby suppressing the post-processing unit 3 from being cooled by outside air or traveling wind,
  • the temperature of the catalyst 10 can be kept high.
  • the connecting pipe 35 is formed in a U shape. For this reason, rather than forming the connecting pipe 35 linearly, the pipe length of the connecting pipe 35 can be made longer, and the post-processing unit 3 can be made compact.
  • the urea water added from the addition valve 36 passes through the long and folded connecting pipe 35, so that the urea water is sufficiently stirred and mixed with the exhaust gas and evaporated. Hydrolysis of is promoted. As a result, ammonia is efficiently generated, which is advantageous for improving the NOx purification rate in the NOx catalyst 10c.
  • the urea water tends to adhere and stay on the inner surface of the front surface portion Uf in a liquid phase state.
  • the urea water tends to adhere and stay on the inner surface due to a centrifugal force when the urea water changes its direction by 180 °.
  • the front surface portion Uf may corrode from the inner surface due to the retained urea water.
  • the front portion Uf that may corrode due to retention of urea water is made detachable from the connecting pipe 35.
  • the front surface 42 of the casing 4 is provided with an opening 44 through which the removed front surface portion Uf can pass and a cover 5 that covers the opening 44 so as to be opened and closed.
  • the opening 44 of the casing 4 is located at the position facing the front surface portion Uf, the replacement work can be performed more easily.
  • the exhaust gas purifying apparatus for an internal combustion engine according to the present disclosure is useful in that the portion where the urea water stays can be easily replaced in the aftertreatment unit that is housed in the casing and includes the selective reduction type NOx catalyst. .

Abstract

内燃機関1の排ガス浄化装置100に関し、排気管2と、後処理ユニット3と、後処理ユニットを収容するケーシング4と、を備え、後処理ユニット3は、選択還元型NOx触媒10cと、その上流側から選択還元型NOx触媒10cに向かって延びる管部材31,33,34,35と、尿素水を添加する添加弁36と、を備え、添加弁36と選択還元型NOx触媒10cの間に位置する尿素水が滞留する部位Ufが着脱可能とされ、ケーシング4に開口部44と、開口部44を覆う蓋5が設けられる。

Description

内燃機関の排ガス浄化装置
 本開示は、後処理ユニットを備えた内燃機関の排ガス浄化装置に関する。
 一般的に、内燃機関を搭載した車両においては、排気管の途中に設けられ、排ガス中の有害物質を浄化するための複数の触媒を有する後処理ユニットを備えた排ガス浄化装置が知られている。
日本国特開2003-184544号公報 日本国特開2008-208727号公報
 上記の排ガス浄化装置においては、触媒の温度を高温に保持するために、後処理ユニットをケーシングに収容することが考えられる。
 一方、後処理ユニットが選択還元型NOx触媒(SCR:Selective Catalytic Reduction)を有する場合、NOx触媒の上流側に還元剤としての尿素水が添加される。添加された尿素水は、排ガスと混合して蒸発しつつ、NOx触媒に向かって延びる管部材の内部を流れ、NOx触媒に供給される。しかし、尿素水が液相状態で管部材の内部に付着して滞留すると、その滞留する部位を腐食させる虞がある。
 そこで、本開示は、かかる事情に鑑みて創案され、その目的は、ケーシングに収容され、選択還元型NOx触媒を備えた後処理ユニットにて、尿素水が滞留する部位を容易に交換することが可能な内燃機関の排ガス浄化装置を提供することにある。
 本開示に係る内燃機関の排ガス浄化装置は、排気管と、前記排気管の途中に設けられ、排ガスを浄化するための複数の触媒を有する後処理ユニットと、前記後処理ユニットを収容するケーシングと、を備え、前記後処理ユニットは、選択還元型NOx触媒と、前記選択還元型NOx触媒の上流側から前記選択還元型NOx触媒に向かって延び、排ガスが通過される管部材と、前記管部材内における前記選択還元型NOx触媒の上流側の位置に尿素水を添加する添加弁と、を備え、前記管部材が、前記添加弁と前記選択還元型NOx触媒の間の位置に、前記添加弁から添加された尿素水が滞留する部位を有し、前記部位は着脱可能であり、前記ケーシングに前記部位が通過可能な開口部が設けられ、前記ケーシングに前記開口部を開閉可能に覆う蓋が設けられる。
 また、本開示に係る内燃機関の排ガス浄化装置は、排気管と、前記排気管の途中に設けられ、排ガスを浄化するための複数の触媒を有する後処理ユニットと、前記後処理ユニットを収容するケーシングと、を備え、前記後処理ユニットは、少なくとも一つの触媒を内設する管状の第1触媒ケーシングと、前記第1触媒ケーシングに並列して配置され、選択還元型NOx触媒を内設する管状の第2触媒ケーシングと、前記第1触媒ケーシングと前記第2触媒ケーシングとの間の位置に配置され、前記第1触媒ケーシングの下流端と前記第2触媒ケーシングの上流端とを連結する連結管であって、排気流れ方向に沿って後方から前方に向かって延び、U字状に折り返されて後方に延びる折り返し部分を有する連結管と、前記折り返し部分の上流側から前記折り返し部分に向かって、後方から前方に尿素水を添加するように配置された尿素水添加弁と、を備え、前記折り返し部分は、着脱可能な前面部を有し、前記ケーシングの前面には、前記折り返し部分の前面部に対向する位置に前記前面部が通過可能な開口部が形成されると共に、その開口部を開閉可能に覆う蓋が設けられる。
 本開示に係る内燃機関の排ガス浄化装置では、ケーシングに収容され、選択還元型NOx触媒を備えた後処理ユニットにて、尿素水が滞留する部位を容易に交換することができるという優れた効果を発揮する。
図1は、本開示の一実施形態に係る排ガス浄化装置を示す概略構成図である。
 以下、添付図面に基づいて、本開示の一実施形態を説明する。図1は、本開示の一実施形態に係る内燃機関の排ガス浄化装置を示す概略構成図である。
 図1に示すように、排ガス浄化装置100は、内燃機関1の排ガスを通過させる排気管2と、排気管2の途中に設けられ、排ガスを浄化するための複数の触媒10を有する後処理ユニット3と、後処理ユニット3を収容するケーシング4と、を含む。
 内燃機関1は、図示しない車両に搭載された多気筒の圧縮着火式内燃機関、すなわちディーゼルエンジンである。内燃機関1には、各気筒11から排出される排ガスを集合させる排気マニホールド12が設けられる。
 排気管2は、排気マニホールド12に接続され、排気マニホールド12からの排ガスを下流方向(矢印Gで示す方向)に流して大気に放出する管である。
 より詳しくは、この排気管2は、後処理ユニット3の上流側に位置する上流側排気管21と、後処理ユニット3の下流側に位置する下流側排気管22とからなる。上流側排気管21は、その下流側端部にフランジ21aを有し、下流側排気管22は、その上流側端部にフランジ22aを有する。
 次に、後処理ユニット3について説明する。後処理ユニット3の前後左右方向を図1に示す。なお、図示する後処理ユニット3の前後左右方向は、車両の前後左右方向とは無関係であり、説明の便宜上定められたものに過ぎない。本実施形態では、内燃機関1が車両に縦置きされており、後処理ユニット3の左方向が車両の前方向に一致する。
 後処理ユニット3は、排ガス入口管31と、排ガス出口管32と、少なくとも一つの触媒10を内設する第1触媒ケーシング33と、NOx触媒10cを内設する第2触媒ケーシング34と、第1触媒ケーシング33と第2触媒ケーシング34とを連結する連結管35と、尿素水を添加する添加弁36を備える。また、後処理ユニット3は、概ね左右対称の構造を有する。
 排ガス入口管31は、後処理ユニット3の前端部且つ左側に配置され、前方から後方に延び、その前端は、上流側排気管21の下流端に接続される。また、排ガス出口管32は、後処理ユニット3の前端部且つ右側に配置され、前方から後方に延び、その前端は、下流側排気管22の上流端に接続される。
 より詳しくは、排ガス入口管31の上流側端部には、フランジ31aが設けられ、このフランジ31aに上流側排気管21のフランジ21aが接続される。また同様に、排ガス出口管32の下流側端部には、フランジ32aが設けられ、このフランジ32aに下流側排気管22のフランジ22aが接続される。互いに接続されるフランジ同士は、ボルト(不図示)等の締結手段で取り外し可能に固定される。
 第1触媒ケーシング33は、管状に形成され、排ガス入口管31から後方に向けて延在すると共に、後端部に位置する下流側端部33aの右側面に第1側孔33bを有する。また、第1触媒ケーシング33には、上流側に位置する排ガス入口管31および下流側に位置する連結管35よりも拡径された第1拡径部33cが形成される。
 第1触媒ケーシング33は、第1拡径部33cの位置にて、第1断熱緩衝部材(マット)37を介して、上流側から酸化触媒(DOC:Diesel Oxidation Catalyst)10aおよびパティキュレートフィルタ(以下「DPF」という)10bを内設する。
 酸化触媒10aは、排ガス中の未燃成分(炭化水素HCおよび一酸化炭素CO)を酸化して浄化する。酸化触媒10aは、HC,COの酸化時に生じた熱で排ガスを加熱、昇温する機能を有する。また酸化触媒10aは、排ガス中のNOをNOに酸化し、排ガス中のNO濃度を高める機能をも有する。
 DPF10bは、排ガス中に含まれる粒子状物質(PM:Particulate Matter)を捕集して除去するものである。DPF10bは、本実施形態では、ハニカム形状の耐熱性基材の両端開口を互い違いに市松状に閉塞した所謂ウォールフロータイプのものが用いられている。しかしながら、網の目構造のフォーム形状のもの等、PMを物理的に捕集するあらゆるタイプのフィルタを用いることができる。
 DPF10bは、その内壁にPt等の貴金属(触媒)を担持させた所謂連続再生式の触媒付きDPFからなる。この場合、エンジンの通常運転中、DPF10bに供給された排ガス中のHCが触媒作用で酸化、燃焼し、このとき同時にDPF10b内部に堆積しているPMが燃焼除去される。なお、DPF10bが触媒を有するため、ここではDPF10bも本開示にいう触媒10に含ませるものとする。
 第2触媒ケーシング34は、管状に形成され、排ガス出口管32から後方に向けて延在すると共に、後端部に位置する上流側端部34aの左側面に第2側孔34bを有する。また、第2触媒ケーシング34には、上流側に位置する排ガス入口管31および下流側に位置する排ガス出口管32よりも拡径された第2拡径部34cが形成される。
 第2触媒ケーシング34は、第2拡径部34cの位置にて、第2断熱緩衝部材(マット)38を介して、上流側からNOx触媒10cおよびアンモニア酸化触媒10dを内設する。
 NOx触媒10cは、排ガス中の窒素酸化物NOxを浄化するための触媒である。NOx触媒10cは、選択還元型NOx触媒(SCR:Selective Catalytic Reduction)からなり、尿素水から加水分解されて生成されたアンモニア(NH)によって、NOxを連続的に還元し得る。
 アンモニア酸化触媒10dは、NOx触媒10cでNOxの還元に消費されなかった余剰のアンモニア(NH)を酸化して、Nを生成する触媒である。
 本実施形態においては、第1触媒ケーシング33と第2触媒ケーシング34とは、互いに並列して左右に配置される。また、第1側孔33bと第2側孔34dとは、互いに対向する位置に配置される。
 連結管35は、左右方向における第1触媒ケーシング33と第2触媒ケーシング34との間の位置に配置され、第1触媒ケーシング33の下流端X1と第2触媒ケーシング34の上流端Y1とを連結する。また、連結管35は、排気流れ方向に沿って後方から前方に向かって延び、U字状に折り返されて後方に延びる折り返し部分Uを有する。
 より詳しくは、連結管35は、第1側孔33bから第2側孔34b側(図示右側)に向かって延び、前方に折れ曲がる第1部分35aと、第2側孔34bから第1側孔33b側(図示左側)に向かって延び、前方に折れ曲がる第2部分35bとを有する。具体的には、第1部分35aは、図中の第1側孔33bからX2までの部分に該当し、第2部分35bは、図中の第2側孔34bからY2までの部分に該当する。
 また、連結管35は、第1部分35aの下流端X2から前方に延びると共に、折り返し部分Uで折り返されて後方に延び、第2部分35bの上流端Y2に接続される第3部分35cを有する。すなわち、連結管35がこのようにU字状に折り返されて形成されることで、第1側孔33bと第2側孔34dを直線的に結ぶよりも、連結管35の管長が長くなる。
 ケーシング4は、ステンレス等の耐熱材料を用いた箱型ケーシングからなり、後処理ユニット3全体を略気密に覆う。ケーシング4の内周面上ほぼ全体には、後処理ユニット3の保温のため、グラスウール等の断熱材41が敷設される。
 ケーシング4の前面42には、左右の位置に、後処理ユニット3の排ガス入口管31が挿通される入口孔42aと、排ガス出口管32が挿通される出口孔42bとが形成される。
 他方、ケーシング4の後面43には、第1部分35aの折れ曲がり部分Lの後方に位置する部分に、添加弁36を取り付ける取付部43aが形成される。取付部43aは、前方に凹んで形成され、その前端には、前後方向に延びる外側挿通孔43bが形成される。また、折れ曲がり部分Lの後端面には、外側挿通孔43bと同軸に内側挿通孔35dが形成されている。添加弁36は、ケーシング4の外部(後方)から外側挿通孔43bと内側挿通孔35dの両方に挿通され、取付部43aに設けられたボス部43cによって、ケーシング4に固定される。
 添加弁36は、折り返し部分Uの上流側から折り返し部分Uに向かって、後方から前方に尿素水を添加するように配置される。ここでいう折り返し部分Uの上流側とは、第1部分35aの折れ曲がり部分L内を意味する。
 詳しくは後述するが、折り返し部分Uの前面部Ufの内表面には、添加された尿素水が液相状態で滞留する傾向にある。尿素水が滞留する部位は、その尿素水に起因して腐食する虞があるため、本実施形態においては、この前面部Ufを着脱可能にして交換できるようにする。
 具体的には、前面部Ufは、上下且つ左右方向に延びる分割面Sに沿って連結管35から分割される。便宜上、前面部Ufを除く連結管35の部分を連結管本体Bという。前面部Ufは、前方から見て楕円ないし長円形状を成す。この分割面Sの位置は任意であるが、前面部Ufは、尿素水が液相状態で滞留する部位、ひいてはその尿素水に起因して腐食する虞がある部位を含むように設定される。本実施形態においては、上流側から下流側に向かうにつれ折り返し部分Uが約90°曲がり、且つ、折り返し部分Uの管路中心C上の位置に、分割面Sが設定される。
 前面部Ufの後端部と、残りの連結管本体Bの前端部には、それぞれフランジ39a,フランジ39bが設けられ、互いのフランジ39a,39bがボルト39c等の締結手段で取り外し可能に固定される。フランジ39a,39bが固定された状態では、前面部Ufと連結管本体Bが気密に接続される。
 反対に、フランジ39a,39bによる固定が解除されると、前面部Ufは、連結管本体Bから取り外し可能となる。
 ケーシング4の前面42の中央部には、折り返し部分Uの前面部Ufに対向する位置に、前端部Ufが通過可能な開口部44が設けられる。
 開口部44の面積は任意であるが、前面部Ufの交換作業が容易に行える大きさにすることが好ましい。また、開口部44の形状は任意であり、例えば円形や正方形とすることが考えられるが、前面部Ufの形状に合わせて、左右方向に長い長方形としても良い。
 ケーシング4の前面42には、この開口部44を前方から開閉可能に覆う蓋5が設けられる。この蓋5は、開口部44の周囲において、複数のボルト45等の締結手段によって、ケーシング4の前面42に取り外し可能に固定される。なお、後処理ユニット3の保温のため、蓋5の内表面にも、グラスウール等の断熱材41が敷設される。
 なお、本開示における後処理ユニット3の管部材には、NOx触媒10cの上流側に位置する全ての管状部材が含まれる。すなわち、NOx触媒10cの上流側に位置する第2触媒ケーシング34と、連結管35と、第1触媒ケーシング33と、排ガス入口管31とが、本開示の管部材に含まれる。本実施形態における管部材は、このうちの連結管35である。
 次に、図1に基づいて、本実施形態に係る排ガス浄化装置100の作用効果を説明する。
 内燃機関1の排ガスは、排気マニホールド12から上流側排気管21を通過し、排ガス入口管31を通じて、第1触媒ケーシング33内へ流入する。
 第1触媒ケーシング33内へ流入した排ガスは、酸化触媒10aを通過し、これにより、排ガス中の未燃成分(炭化水素HCおよび一酸化炭素CO)が酸化して浄化される。
 次に、酸化触媒10aを通過した排ガスは、DPF10bに流入し、DPF10bによって排ガス中に含まれる粒子状物質(PM)が捕集除去される。
 DPF10bを通過した排ガスは、第1触媒ケーシング33の後端部に位置する第1側孔33bから連結管35の第1部分35aに流れ、第1部分35aの折れ曲がり形状に沿って前方へ90°方向転換して、第3部分35cへ流れる。
 第3部分35cへ流れた排ガスは、折り返し部分Uにて後方へ180°方向転換し、後方の第2部分35bへ流れ、第2部分の折れ曲がり形状に沿って90°方向転換し、第2側孔34bを通じて第2触媒ケーシング34内へ流入する。
 ここで、第1部分35aの折れ曲がり部分Lに配置された添加弁36は、第3部分35cの折り返し部分Uに向かって、後方から前方に尿素水を添加する。尿素水が混合された排ガスは、折り返し部分Uにて後方へ180°方向転換し、後方の第2部分35bへ流れ、第2部分35bの折れ曲がり形状に沿って90°方向転換し、第2側孔34bを通じて第2触媒ケーシング34内へ流入する。この過程で、添加弁36から添加された尿素水は、排ガスと混合して蒸発しつつ、加水分解されてアンモニアを生成する。
 次に、第2触媒ケーシング34内において、尿素水とアンモニアの少なくとも一方を含む排ガスは、NOx触媒10cを通過する。このとき、NOx触媒10cは、尿素水が加水分解されて生成されたアンモニアによって、NOxを還元する。
 NOx触媒10cでNOxの還元に消費されなかった余剰のアンモニアは、アンモニア酸化触媒10dと接触して酸化され、大気への放出が抑制される。
 アンモニア酸化触媒10dを通過した排ガスは、排ガス出口管32を通じて下流側排気管22へ排出されて、下流側排気管22から大気に放出される。
 上記の作用のうち、酸化触媒10a、DPF10b、NOx触媒10c、およびアンモニア酸化触媒10dに関しては、その触媒温度(触媒床温)が活性温度域にあるときに、排ガス浄化作用を有効に発揮する。よって、各触媒10の温度をできるだけ高温に保持するのが有効である。
 本実施形態においては、内周面に断熱材41を敷設したケーシング4内に、後処理ユニット3を収容することで、後処理ユニット3が外気や走行風で冷却されるのを抑制し、各触媒10の温度を高温に保持することができる。
 本実施形態の後処理ユニット3においては、連結管35がU字状に折り返されて形成されている。このため、連結管35を直線的に形成するよりも、連結管35の管長を長くし、且つ、後処理ユニット3をコンパクトに構成することができる。
 また、添加弁36から添加された尿素水が、この長く且つ折り返されて形成された連結管35を通過することで、尿素水が排ガスとの間で十分に攪拌混合されて蒸発され、尿素水の加水分解が促進される。この結果、アンモニアが効率よく生成されて、NOx触媒10cにおけるNOx浄化率の向上に有利となる。
 一方、尿素水を含む排ガスが折り返し部分Uを通過するとき、尿素水が前面部Ufの内表面に液相状態で付着して滞留する傾向にある。特に、この折り返し部分Uでは、尿素水が180°方向転換する際に遠心力を受け、内表面に尿素水が付着、滞留する傾向にある。この結果、前面部Ufは、滞留した尿素水に起因して、内表面から腐食していく虞がある。
 なお、近年のNOx規制強化に対応するためには、NOx触媒の大型化と尿素水添加量の増加が必要となるので、滞留部位がより著しく腐食する可能性がある。
 そこで、本実施形態に係る排ガス浄化装置100においては、尿素水の滞留に起因して腐食する虞がある前面部Ufを、連結管35から着脱可能とする。更に、ケーシング4の前面42には、その取り外された前面部Ufが通過可能な開口部44を設けると共に、その開口部44を開閉可能に覆う蓋5を設ける。
 これにより、後処理ユニット3がケーシング4内に収容された状態のまま、腐食した前面部Ufを容易に交換することが可能になる。
 この交換作業の際には、先ず、ケーシング4の前面42のボルト45を緩めて、蓋5を取り外し、ケーシング4の開口部44から手や工具等を差し込んで、前面部Ufのボルト39cを緩めて、フランジ39a,39bによる固定を解除し、前面部Ufを連結管35から取り外す。そして、交換用の前面部Ufを取り外し手順と逆の手順で取り付ける。このように、本実施形態においては、後処理ユニット3がケーシング4に収容されたままの状態でも、交換作業を容易に行うことができる。
 また、本実施形態においては、ケーシング4の開口部44が前面部Ufに対向する位置にあるので、交換作業をより簡単に行うことが可能になる。
 なお、本開示は、上述の実施形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。
 本出願は、2016年3月3日付で出願された日本国特許出願(特願2016-041294)に基づくものであり、その内容はここに参照として取り込まれる。
 本開示の内燃機関の排ガス浄化装置は、ケーシングに収容され、選択還元型NOx触媒を備えた後処理ユニットにて、尿素水が滞留する部位を容易に交換することができるという点において有用である。
1 内燃機関
2 排気管
3 後処理ユニット
4 ケーシング
5 蓋
10c 選択還元型NOx触媒
31 排ガス入口管
32 排ガス出口管
33 第1触媒ケーシング
34 第2触媒ケーシング
35 連結管
36 添加弁
44 開口部
100 排ガス浄化装置

Claims (2)

  1.  排気管と、
     前記排気管の途中に設けられ、排ガスを浄化するための複数の触媒を有する後処理ユニットと、
     前記後処理ユニットを収容するケーシングと、を備え、
     前記後処理ユニットは、
      選択還元型NOx触媒と、
      前記選択還元型NOx触媒の上流側から前記選択還元型NOx触媒に向かって延び、排ガスが通過される管部材と、
      前記管部材内における前記選択還元型NOx触媒の上流側の位置に尿素水を添加する添加弁と、を備え、
     前記管部材が、前記添加弁と前記選択還元型NOx触媒の間の位置に、前記添加弁から添加された尿素水が滞留する部位を有し、
     前記部位は着脱可能であり、前記ケーシングに前記部位が通過可能な開口部が設けられ、前記ケーシングに前記開口部を開閉可能に覆う蓋が設けられる
     内燃機関の排ガス浄化装置。
  2.  排気管と、
     前記排気管の途中に設けられ、排ガスを浄化するための複数の触媒を有する後処理ユニットと、
     前記後処理ユニットを収容するケーシングと、を備え、
     前記後処理ユニットは、
      少なくとも一つの触媒を内設する管状の第1触媒ケーシングと、
      前記第1触媒ケーシングに並列して配置され、選択還元型NOx触媒を内設する管状の第2触媒ケーシングと、
      前記第1触媒ケーシングと前記第2触媒ケーシングとの間の位置に配置され、前記第1触媒ケーシングの下流端と前記第2触媒ケーシングの上流端とを連結する連結管であって、排気流れ方向に沿って後方から前方に向かって延び、U字状に折り返されて後方に延びる折り返し部分を有する連結管と、
      前記折り返し部分の上流側から前記折り返し部分に向かって、後方から前方に尿素水を添加するように配置された尿素水添加弁と、を備え、
     前記折り返し部分は、着脱可能な前面部を有し、
     前記ケーシングの前面には、前記折り返し部分の前面部に対向する位置に前記前面部が通過可能な開口部が形成されると共に、その開口部を開閉可能に覆う蓋が設けられる
     内燃機関の排ガス浄化装置。
PCT/JP2017/007817 2016-03-03 2017-02-28 内燃機関の排ガス浄化装置 WO2017150538A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780014409.0A CN108699939B (zh) 2016-03-03 2017-02-28 内燃机的排气净化装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016041294A JP6728782B2 (ja) 2016-03-03 2016-03-03 内燃機関の排ガス浄化装置
JP2016-041294 2016-03-03

Publications (1)

Publication Number Publication Date
WO2017150538A1 true WO2017150538A1 (ja) 2017-09-08

Family

ID=59742932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007817 WO2017150538A1 (ja) 2016-03-03 2017-02-28 内燃機関の排ガス浄化装置

Country Status (3)

Country Link
JP (1) JP6728782B2 (ja)
CN (1) CN108699939B (ja)
WO (1) WO2017150538A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7232631B2 (ja) * 2018-10-03 2023-03-03 株式会社三五 排気浄化装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215118A (ja) * 2009-03-17 2010-09-30 Yanmar Co Ltd 作業車両搭載用のエンジン装置
JP2014109239A (ja) * 2012-12-03 2014-06-12 Volvo Lastvagnar Aktiebolag 内燃機関の排気浄化装置
JP2014194204A (ja) * 2013-03-29 2014-10-09 Yanmar Co Ltd 排気ガス浄化装置
JP2015009939A (ja) * 2013-06-28 2015-01-19 株式会社タダノ ラフテレーンクレーン
JP2015172335A (ja) * 2014-03-11 2015-10-01 三菱自動車工業株式会社 内燃機関の排気浄化装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5602495B2 (ja) * 2010-05-25 2014-10-08 いすゞ自動車株式会社 排気ガス浄化装置
US8561395B2 (en) * 2011-03-03 2013-10-22 Tenneco Automotive Operating Company Inc. Poka-yoke mounting system for an exhaust treatment device
GB201207201D0 (en) * 2012-04-24 2012-06-06 Perkins Engines Co Ltd Emissions cleaning module for a diesel engine
CN204457948U (zh) * 2014-12-24 2015-07-08 潍柴动力股份有限公司 排气后处理总成装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215118A (ja) * 2009-03-17 2010-09-30 Yanmar Co Ltd 作業車両搭載用のエンジン装置
JP2014109239A (ja) * 2012-12-03 2014-06-12 Volvo Lastvagnar Aktiebolag 内燃機関の排気浄化装置
JP2014194204A (ja) * 2013-03-29 2014-10-09 Yanmar Co Ltd 排気ガス浄化装置
JP2015009939A (ja) * 2013-06-28 2015-01-19 株式会社タダノ ラフテレーンクレーン
JP2015172335A (ja) * 2014-03-11 2015-10-01 三菱自動車工業株式会社 内燃機関の排気浄化装置

Also Published As

Publication number Publication date
CN108699939A (zh) 2018-10-23
JP6728782B2 (ja) 2020-07-22
CN108699939B (zh) 2020-11-20
JP2017155694A (ja) 2017-09-07

Similar Documents

Publication Publication Date Title
JP4496226B2 (ja) 内燃機関の排気ガス浄化装置
JP5602495B2 (ja) 排気ガス浄化装置
JP5173308B2 (ja) 排気浄化装置
JP4881213B2 (ja) 排気浄化装置
JP2008208727A (ja) 排気浄化装置
JP5273933B2 (ja) 建設車両
WO2011045847A1 (ja) エンジンの排気浄化装置
JP2009091982A (ja) 排気浄化装置
JP5258426B2 (ja) エンジンの排気浄化装置
JP2007009718A (ja) 排気浄化装置
JP2011099333A (ja) 排気浄化装置
JP4224983B2 (ja) 内燃機関の排気ガス浄化装置
JP2009091983A (ja) 排気浄化装置
WO2017150538A1 (ja) 内燃機関の排ガス浄化装置
WO2013084653A1 (ja) 排気浄化装置及び排気浄化装置の耐腐食性向上方法
JP2019132145A (ja) 排気ガス浄化装置
JP4091009B2 (ja) エンジンの排気浄化装置
JP2012092746A (ja) 排気浄化装置
WO2017150513A1 (ja) 内燃機関の排ガス浄化装置
WO2017150582A1 (ja) 内燃機関の排ガス浄化装置
JP2020041528A (ja) 排気ガス浄化システム
JP2009115022A (ja) 排気浄化装置
JP5188477B2 (ja) 排気浄化装置
JP5224269B2 (ja) 排気浄化装置
WO2013084652A1 (ja) 排気浄化装置及び排気浄化装置の耐腐食性向上方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17760004

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17760004

Country of ref document: EP

Kind code of ref document: A1