WO2017150486A1 - Optical system, imaging device provided with same, and projection device - Google Patents

Optical system, imaging device provided with same, and projection device Download PDF

Info

Publication number
WO2017150486A1
WO2017150486A1 PCT/JP2017/007616 JP2017007616W WO2017150486A1 WO 2017150486 A1 WO2017150486 A1 WO 2017150486A1 JP 2017007616 W JP2017007616 W JP 2017007616W WO 2017150486 A1 WO2017150486 A1 WO 2017150486A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
optical
optical element
transmission
reflection surface
Prior art date
Application number
PCT/JP2017/007616
Other languages
French (fr)
Japanese (ja)
Inventor
中野 正嗣
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2017150486A1 publication Critical patent/WO2017150486A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/04Hand wheels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor

Definitions

  • the present invention relates to an optical system having a refracting surface and a reflecting surface, and, for example, an imaging device such as a digital still camera, a digital video camera, a mobile phone camera, a surveillance camera, a wearable camera, a medical camera, or a projection device are preferred.
  • an imaging device such as a digital still camera, a digital video camera, a mobile phone camera, a surveillance camera, a wearable camera, a medical camera, or a projection device are preferred.
  • Patent Document 1 describes an imaging device provided with a spherical lens.
  • a spherical lens With this spherical lens, on-axis aberrations such as spherical aberration and axial chromatic aberration can be favorably corrected while suppressing occurrence of off-axis aberrations such as coma aberration, astigmatism and lateral chromatic aberration. It becomes possible to realize a high resolution optical system over the angle of view.
  • Patent Document 2 describes a catadioptric optical system in which a plurality of refracting surfaces, a reflection-type aperture stop, and a reflecting surface are integrated via a medium, thereby correcting aberrations well. It is possible to realize a compact optical system that can Further, Patent Document 3 describes an optical system having a lens with a convex surface facing the object side, and a catadioptric lens having a concave internal reflection surface, thereby realizing a wide angle of view. be able to.
  • the imaging surface by the spherical lens described in Patent Document 1 is spherical
  • the imaging element or display element of a spherical shape or one end is spherical.
  • the light guide means etc. whose other end is a plane are needed. Therefore, the entire apparatus becomes complicated and enlarged, and the cost increases.
  • the aperture stop and the image plane are in close proximity, and unnecessary light not blocked by the aperture stop may reach the image plane. Is difficult. Further, in the optical system described in Patent Document 3, it is difficult to correct the aberration well while reducing the F value, so it is difficult to achieve both size reduction and high resolution.
  • an object of the present invention is to provide an optical system capable of realizing high resolution over a small size and a wide angle of view in an imaging device and a projection device.
  • An optical system as one aspect of the present invention for achieving the above object is an optical system including a first group, an aperture stop, and a second group in order from the enlargement side, and the first group is an enlargement.
  • the second group includes a transmissive reflective surface and a concave reflective surface, and the light from the enlarged side which has passed through the aperture stop is the transmissive reflective surface.
  • the light is reflected sequentially by the reflecting surface and the transmitting / reflecting surface, and the radius of curvature of the refracting surface is Rl (mm), and the distance between the refracting surface and the aperture stop is Ll (mm). It is characterized in that the condition of 0.7 ⁇
  • FIG. 1 is a functional block diagram of an on-vehicle camera system according to an embodiment of the present invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS The principal part schematic of the vehicle which concerns on embodiment of this invention. 6 is a flowchart showing an operation example of the on-vehicle camera system according to the embodiment of the present invention.
  • FIG. 1 is a schematic view of an essential part in an YZ cross section including an optical axis A of an imaging device 1000 provided with an optical system 100 according to a first embodiment of the present invention.
  • the imaging apparatus 1000 includes an optical system 100 as an imaging optical system, an imaging element 110 including an imaging surface (light receiving surface) disposed at a position of an image surface (reduction surface) IMG of the optical system 100, a cable 120, and a processing unit 130. Equipped with
  • the optical system 100 condenses a light flux from an unshown object present on the left side of FIG. 1 and forms an image of the object on the imaging surface IMG of the image sensor 110.
  • the image sensor 110 photoelectrically converts the image of the subject formed by the optical system 100 and outputs an electrical signal.
  • the processing unit 130 processes the electrical signal from the imaging element 110 transmitted via the cable 120, and acquires image data of the subject.
  • a solid-state imaging device such as a CCD sensor or a CMOS sensor can be employed.
  • FIG. 2 is a schematic view of an essential part in the YZ cross section including the optical axis A of the optical system 100.
  • the optical system 100 includes an aperture stop STO for limiting the light beam width, a first group G1 disposed on the object side (enlargement side) of the aperture stop STO, and an image side (reduction) of the aperture stop STO. And a second group G2 disposed on the side).
  • the first group G1 includes a first optical element L1 including a refracting surface (incident surface) 11 having a convex shape toward the object side, a second optical element L2, and an aperture stop STO for limiting the luminous flux width.
  • the second group G2 has a first optical element L1, a second optical element L2, a third optical element L3 including a concave-shaped reflecting surface 32, and a fourth optical element CG.
  • a part of the first optical element L1 and the second optical element L2 are shared by the first group G1 and the second group G2.
  • the first optical element L1 is a lens having three optical surfaces through which an effective light beam contributing to image formation passes, and more specifically, three of the first surface 11, the second surface 12, and the third surface 13 It has a transparent surface.
  • the first surface 11 and the second surface 12 are the first group G1
  • the second surface 12 and the third surface 13 are the second group G2.
  • the second optical element L2 is a meniscus lens having a convex surface on the object side, and has a first surface 21 which is a refracting surface and a second surface 22 which is a reflecting surface.
  • the second surface 22 of the second optical element L2 is an internal reflection surface formed of a metal film, a dielectric multilayer film, or the like.
  • the aperture stop STO is formed of a light shielding member provided with an opening and disposed on the second surface 22 of the second optical element L2.
  • the third optical element L3 includes three optical surfaces: a first surface 31, which is a transmission / reflection surface, a second surface 32, which is concave toward the incident light, and a third surface 33, which is an emission surface. It is a refractive lens.
  • the first surface 31 is a transmission / reflection surface
  • the second surface 32 is an internal reflection surface formed of a metal film, a dielectric multilayer film or the like
  • the third surface 33 is a transmission surface .
  • the fourth optical element CG is an optical filter such as an IR cut filter. However, if necessary, a lens or the like may be adopted as the fourth optical element CG.
  • the transmission / reflection surface 31 of the third optical element L3 and the third surface 13 of the first optical element L1 closest to the transmission / reflection surface 31 in the optical path have the same shape.
  • the third surface 13 of the first optical element L1 and the transmission / reflection surface 31 of the third optical element L3 face each other via air.
  • the optical axis A is an axis passing through the center (face vertex) of each optical surface having a power in the optical system 100. That is, the surface apexes of the refractive surface and the reflective surface of the optical system 100 exist on the optical axis A.
  • the first surface 11 of the first optical element L1 does not intersect with the optical axis A, it cuts out part of the surface where the surface apex exists on the optical axis A (the optical axis A coincides with the central axis) Shape.
  • the refracting surface 11 of the first group G1 has a shape (point-symmetrical shape) in which the distance to the aperture stop STO and the radius of curvature are substantially equal.
  • the refractive surface 11 has a radius of curvature of Rl (mm) and the distance between the refractive surface 11 and the aperture stop STO is Ll (mm)
  • it has a shape satisfying the following conditional expression (1) is there.
  • “spacing” indicates “spacing on the optical axis A". 0.7 ⁇
  • conditional expression (1) By satisfying conditional expression (1), off-axis aberrations can be favorably corrected even with a simple and compact configuration. Outside the range of the conditional expression (1), the amount of off-axis aberration generated increases, and good optical characteristics can not be obtained. This is explained below.
  • off-axis aberrations such as coma, astigmatism, curvature of field, distortion and lateral chromatic aberration, and on-axis aberrations such as spherical aberration and on-axis chromatic aberration are used. Correction is required.
  • off-axis a large off-axis aberration occurs at the peripheral angle of view (off-axis), so the optical performance on the optical axis (on-axis) becomes the highest. Therefore, the optical performance at the peripheral angle of view decreases.
  • the refracting surface having a point-symmetrical shape has substantially the same shape from the optical axis to the peripheral angle of view, it is possible to suppress the occurrence of off-axis aberration and to suppress the decrease in optical performance at the peripheral angle of view. Therefore, by adopting a point-symmetrical refracting surface, the aberration to be corrected can be limited to spherical aberration, axial chromatic aberration, Petzval image surface, etc., so that various aberrations can be made excellent even with a simple configuration. It becomes possible to correct.
  • the point-symmetrical refracting surface 11 satisfying the conditional expression (1), it is possible to realize a high-resolution and compact optical system over a wide angle of view while reducing the aperture value.
  • the image forming surface of the first group G1 is curved due to the point-symmetrical refracting surface 11, the image of the planar shape is formed by providing the concave reflecting surface 32 in the second group G2. It becomes possible to form a face IMG. Therefore, in the imaging apparatus 1000, there is no need to provide a spherical imaging element and light guiding means, so that the overall size of the apparatus can be reduced.
  • a plurality of refracting surfaces which satisfy the conditional expression (1) may be provided. Also in such a case, the effect of the present invention can be obtained by configuring at least one of the plurality of refractive surfaces in the first group G1 to satisfy the conditional expression (1).
  • the refractive surface further away from the aperture stop STO, or the refractive surface having a large difference in refractive index with the adjacent medium, ie, the most object side It is desirable to make the refracting surface point-symmetrical.
  • light from an object is incident on the first group G1 from the first surface 11 of the first optical element L1, passes through the first optical element L1 and the second optical element L2 in order, and is apertured. It enters into the aperture stop STO. At this time, since a part of the light is blocked by the light blocking portion of the aperture stop STO, the beam width is limited.
  • the light reflected by the aperture of the aperture stop STO, that is, the second surface 22 of the second optical element L2 passes again through the first surface 21 of the second optical element L2 and the second surface of the first optical element L1, The light is transmitted through the third surface 13 of the first optical element L1.
  • the first surface 31 is a transmission / reflection surface, and the light reflected by the second surface 32 is further reflected by the first surface 31, thereby separating from the aperture stop STO
  • the image plane IMG can be formed at any position. As a result, unnecessary light that is not blocked by the light blocking portion of the aperture stop STO can be prevented from reaching the image plane IMG, so that a wide angle of view of the imaging device 1000 can be realized.
  • an air layer is provided between the third surface 13 of the first optical element L1 and the first surface 31 of the third optical element L3, and the second surface 32 of the third optical element L3 is provided.
  • the light reflected by the light source is configured to satisfy the total reflection condition at the first surface 31 of the third optical element L3. According to this configuration, it is possible to suppress the loss of light quantity when light is reflected by the first surface 31 as compared with the case where the transmission / reflection film is provided on the first surface 31 of the third optical element L3.
  • the field angle (horizontal field angle) in the ZX cross section (first cross section) is ⁇ 27 (deg)
  • the field angle (vertical field angle) in the YZ cross section (second cross section) is 15 to 53. (Deg) That is, while the horizontal angle of view is set symmetrically on both sides of the optical axis A, the vertical angle of view is set only on one side (+ side) with respect to the optical axis A.
  • the light incident on each optical surface of the optical system 100 causes the image pickup surface of the image pickup device 110 to be the optical system 100 from the side opposite to the image pickup device 110 with respect to the optical axis A. It can be configured to receive only the light beam incident on. Thereby, the imaging element 110 can be prevented from interfering with each optical element and each optical path.
  • the aperture stop STO and the entrance pupil be configured to be close to each other.
  • the distance between the aperture stop STO and the entrance pupil is Lp (mm) and the focal length of the entire system is f (mm)
  • the focal length is positive when the optical system has positive power, and negative when the optical system has negative power.
  • conditional expression (2) it is possible to provide a concentric configuration in which light rays of each angle of view are incident at an angle close to perpendicular to the point-symmetrical refracting surface.
  • the surface makes it easy to correct the aberration.
  • the value exceeds the upper limit value of the conditional expression (8) it deviates from the concentric configuration, and the effect due to the refracting surface of the point symmetric shape can not be sufficiently obtained.
  • the shape of the reflective surface 32 By making the shape of the reflective surface 32 a shape satisfying the conditional expression (3), it is possible to correct the curvature of field well while avoiding the interference between the image plane IMG and the optical path. If the upper limit value of the conditional expression (3) is exceeded, the curvature of field may be increased. If the lower limit value of the conditional expression (3) is not reached, there is a possibility that the image plane IMG may interfere with the light path.
  • the second group G2 has a plurality of reflecting surfaces, it is desirable that the reflecting surface with the largest power satisfy the conditional expression (3).
  • the cemented surface (the second surface 12 and the first surface 21) of the first optical element L1 and the second optical element L2 has a convex shape toward the object side.
  • the Abbe number for the d line of the first optical element L1 disposed on the object side is ⁇ A
  • the Abbe number for the d line of the second optical element L2 disposed on the image side is BB. It is preferable to satisfy the following conditional expression (4).
  • conditional expression (4) it is possible to satisfactorily correct axial chromatic aberration generated on the refracting surface 11 of the first optical element L1 by generating axial chromatic aberration of the opposite sign.
  • conditional expression (5) it is possible to satisfactorily correct the spherical aberration generated on the refracting surface 11 of the first optical element L1 by generating the spherical aberration of the opposite sign.
  • each of the first surface 11 of the first optical element L1, the second surface 22 of the second optical element L2, and the second surface 32 of the third optical element L3 is aspheric.
  • the first surface 11 of the first optical element L1 an aspheric surface
  • correction of coma aberration generated in the astigmatic components of the second surface 32 of the third optical element L3 and other optical surfaces is corrected. It is carried out.
  • the second surface 32 of the third optical element L3 an aspheric surface, correction of astigmatism generated by the spherical component of this surface and other astigmatism components of the optical surface is performed.
  • each of the aspheric optical surfaces in the present embodiment has a rotationally symmetric shape about the optical axis A, and is expressed by the following aspheric expression.
  • z is the sag amount (mm) in the optical axis direction of the aspheric shape
  • c is the curvature on the optical axis A (1 / mm)
  • k is the conical coefficient
  • h is the radial distance from the optical axis A ( mm)
  • A, B, C,... are aspheric coefficients of the fourth order term, the sixth order term, the eighth order term,.
  • the first term indicates the sag amount of the base spherical surface
  • the second and subsequent terms indicate the amount of sag of the aspheric surface component provided on the base spherical surface.
  • Table 1 shows surface data of each optical surface in the optical system 100.
  • r is the radius of curvature (mm)
  • d is the surface distance (mm)
  • nd is the refractive index for d line
  • ⁇ d is Abbe for d line Represents a number.
  • the surface separation is positive when going to the image side along the optical path, and negative when going to the object side.
  • Table 2 shows eccentricity data of the surface vertex of each optical surface.
  • each of x, y and z represents coordinates based on the surface vertex of the optical surface of surface number 1, and ⁇ is around the x axis Represents rotation about the y axis, and ⁇ represents rotation about the z axis.
  • Table 3 shows various data of the imaging apparatus 1000.
  • Fno represents the aperture value (F value) of the optical system 100.
  • FIG. 3 is an aberration diagram of the optical system 100 according to the present embodiment.
  • FIG. 3 shows transverse aberration with respect to light of each wavelength of 656 nm, 587 nm, 486 nm and 435 nm at vertical angle of view of 53 °, 34 ° and 15 °.
  • various aberrations are well corrected in the visible wavelength range (400 to 700 nm).
  • FIG. 4 is a schematic view of an essential part in the YZ cross section including the optical axis A of the optical system 200 according to the second embodiment of the present invention.
  • the first group G1 includes a first optical element L1 and a second optical element L2 in order from the object side.
  • the first optical element L1 is a meniscus lens having a convex surface facing the object side, and has a first surface 11 and a second surface 12.
  • the second optical element L2 is a plano-convex lens, and has a first surface 21 and a second surface 22.
  • the second group G2 includes the third optical element L3, the fourth optical element L4, the fifth optical element L5, and the sixth optical element CG.
  • the third optical element L3 is a plano-convex lens, and has a first surface 31 and a second surface 32.
  • the fourth optical element L4 has a concave first surface 41 and a planar second surface 42 toward the object side.
  • the fifth optical element L5 is a reflection that includes three optical surfaces: a first surface 51 that is a transmission / reflection surface, a second surface 52 that is concave toward the image side, and a third surface 53 that is an exit surface. It is a refractive lens.
  • the first surface 51 is a transmission / reflection surface
  • the second surface 52 is an internal reflection surface formed of a metal film, a dielectric multilayer film or the like
  • the third surface 53 is a transmission surface .
  • the sixth optical element CG is an optical filter such as an IR cut filter.
  • Each of the second surface 32 and the first surface 41 of the fourth optical element L4 is bonded to each other.
  • the aperture stop STO is formed of a light shielding member provided with an opening, which is disposed on the joint surface of the second optical element L2 and the third optical element L3.
  • the transmission / reflection surface 51 of the second group G2 according to the present embodiment is formed of a metal film, a dielectric multilayer film, or the like ( It consists of a half mirror, a beam splitter, etc.). As a result, it is not necessary to consider the total reflection condition of the transmission / reflection surface, so it is easy to secure the angle of view and the brightness.
  • the first surface 11 of the first optical element L1 and the second surface 52 of the fifth optical element L5 are aspheric surfaces. Further, the fourth surface 42 of the fourth optical element L4 and the first surface 51 of the fifth optical element L5 have the same radius of curvature, and face each other via air.
  • the light transmitted through the first surface 51 of the fifth optical element L5 is reflected by the second surface 52 of the fifth optical element L5, and is further reflected by the first surface 51 of the fifth optical element L5.
  • the light is transmitted through the third surface 53 of the element L5 to form a planar image plane IMG.
  • the first surface 51 is made to be a transmission / reflection surface, and the light reflected by the second surface 52 is further reflected by the first surface 51, thereby separating from the aperture stop STO.
  • the image plane IMG can be formed at any position.
  • FIG. 5 is an aberration diagram of the optical system 200 according to the present example, and as in FIG. 3, light of each wavelength of 656 nm, 587 nm, 486 nm, 435 nm at vertical angle of view 53 °, 34 °, 15 ° Shows the transverse aberration of. As apparent from FIG. 5, various aberrations are well corrected in the visible wavelength range (400 to 700 nm).
  • the concave-shaped reflective surface in the second group G2 is an internal reflective surface configured by providing a reflective film on the optical element, but the present invention is not limited to this.
  • another optical element such as a mirror having a surface reflection surface may be provided.
  • an air gap is provided between the transmission / reflection surface in the second group G2 and the optical surface closest to the transmission / reflection surface in the optical path, but the invention is not limited thereto.
  • the rate may be filled with one or more media.
  • a transmission / reflection film is provided on the transmission / reflection surface of the second group of catadioptric lenses, the transmission / reflection surface of the second group G2 and the optical surface closest to the transmission / reflection surface on the optical path are joined. It is also good.
  • the optical system is applied as an imaging optical system to an imaging apparatus.
  • the optical system may be applied as a projection optical system to a projection apparatus.
  • the display surface of a display element such as a liquid crystal panel (spatial modulator) is disposed at the position of the reduction plane IMG.
  • the reduction side is the object side
  • the enlargement side is the image side
  • the first group G1 is the second group G2
  • the second group G2 is the first group G1
  • the entrance surface of each optical element is the exit surface
  • the exit surface is the entrance surface.
  • conditional expression (2) the entrance pupil (magnification side pupil) of the aperture stop in the imaging optical system corresponds to the exit pupil (reduction side pupil) of the aperture stop in the projection optical system.
  • FIG. 6 is a configuration diagram of the on-vehicle camera 10 according to the present embodiment and the on-vehicle camera system (drive support device) 600 including the on-vehicle camera 10.
  • the on-vehicle camera system 600 is a device installed in a vehicle such as a car and supporting driving of the vehicle based on the image information of the surroundings of the vehicle acquired by the on-vehicle camera 10.
  • FIG. 7 is a schematic view of a vehicle 700 equipped with an on-board camera system 600. Although FIG. 7 shows the case where the imaging range 50 of the on-vehicle camera 10 is set to the front of the vehicle 700, the imaging range 50 may be set to the rear of the vehicle 700.
  • the on-vehicle camera system 600 includes an on-vehicle camera 10, a vehicle information acquisition device 20, a control device (ECU: electronic control unit) 30, and an alarm device 40.
  • the on-vehicle camera 10 further includes an imaging unit 1, an image processing unit 2, a parallax calculation unit 3, a distance calculation unit 4, and a collision determination unit 5.
  • the imaging unit 1 includes the optical system according to any one of the above-described embodiments and an imaging surface phase difference sensor.
  • the imaging surface phase difference sensor and the image processing unit 2 according to the present embodiment correspond to, for example, the imaging element 110 and the processing unit 130 provided in the imaging apparatus 1000 according to the first embodiment shown in FIG.
  • FIG. 8 is a flowchart showing an operation example of the on-vehicle camera system 600 according to the present embodiment. Hereinafter, the operation of the on-vehicle camera system 600 will be described along the flowchart.
  • step S1 an object (subject) around the vehicle is imaged using the imaging unit 1, and a plurality of image data (parallax image data) are acquired.
  • step S2 vehicle information is acquired from the vehicle information acquisition device 20.
  • the vehicle information is information including the vehicle speed of the vehicle, the yaw rate, the steering angle, and the like.
  • step S 3 the image processing unit 2 performs image processing on a plurality of image data acquired by the imaging unit 1. Specifically, image feature analysis is performed to analyze feature amounts such as the amount and direction of edges in image data, and density values. Here, the image feature analysis may be performed on each of the plurality of image data, or may be performed on only a part of the plurality of image data.
  • step S ⁇ b> 4 parallax (image shift) information between a plurality of image data acquired by the imaging unit 1 is calculated by the parallax calculation unit 3.
  • a known method such as an SSDA method or an area correlation method can be used as a method of calculating disparity information, and thus the description thereof will be omitted in this embodiment.
  • Steps S2, S3 and S4 may be processed in the order described above, or may be processed in parallel with each other.
  • the distance calculation unit 4 calculates distance information to the object captured by the imaging unit 1.
  • the distance information can be calculated based on the parallax information calculated by the parallax calculation unit 3 and the internal parameter and the external parameter of the imaging unit 1.
  • the distance information is information on the relative position to the object such as the distance to the object, the defocus amount, the image shift amount, etc., and the distance value of the object in the image is directly Or may indirectly represent information corresponding to the distance value.
  • step S6 the collision determination unit 5 determines whether the distance information calculated by the distance calculation unit 4 is included in the range of the preset distance set in advance. Thus, it is possible to determine whether an obstacle is present within the set distance around the vehicle and to determine the possibility of collision between the vehicle and the obstacle.
  • the collision determination unit 5 determines that there is a collision possibility if there is an obstacle within the set distance (step S7), and determines that there is no collision possibility if there is no obstacle within the set distance (step S8) ).
  • step S7 when the collision determination unit 5 determines that there is a collision possibility (step S7), the collision determination unit 5 notifies the control device 30 or the alarm device 40 of the determination result. At this time, the control device 30 controls the vehicle based on the determination result of the collision determination unit 5, and the alarm device 40 issues an alarm based on the determination result of the collision determination unit 5.
  • control device 30 performs control such as applying a brake to the vehicle, returning an accelerator, or generating a control signal for causing each wheel to generate a braking force to suppress an output of an engine or a motor.
  • the alarm device 40 sounds an alarm such as a sound to a user (driver) of the vehicle, displays alarm information on a screen of a car navigation system or the like, gives a vibration to a seat belt or steering wheel, etc. I do.
  • the vehicle-mounted camera system 600 which concerns on this embodiment, an obstacle can be detected effectively by said process, and it becomes possible to avoid the collision with a vehicle and an obstacle.
  • the optical system according to each of the above-described embodiments to the on-vehicle camera system 600, the entire on-vehicle camera 10 can be miniaturized to increase the degree of freedom of arrangement while detecting obstacles with high accuracy over wide angles of view. It becomes possible to perform collision determination.
  • the configuration in which the on-vehicle camera 10 includes only one imaging unit 1 having an imaging surface phase difference sensor has been described, but the present invention is not limited thereto.
  • a stereo camera including two imaging units as the on-vehicle camera 10 May be adopted.
  • image data is simultaneously acquired by each of the two synchronized imaging units, and the same processing as described above is performed by using the two image data. be able to.
  • the difference between the imaging times of the two imaging units is known, it is not necessary to synchronize the two imaging units.
  • various embodiments can be considered for the calculation of distance information.
  • a pupil division type imaging device having a plurality of pixel units regularly arranged in a two-dimensional array is adopted as an imaging device of the imaging unit 1
  • one pixel unit is composed of a micro lens and a plurality of photoelectric conversion units, receives a pair of light beams passing through different areas in the pupil of the optical system, and makes a pair of image data It can be output from each photoelectric conversion unit.
  • the image shift amount of each area is calculated by correlation calculation between the pair of image data, and the distance calculation unit 4 calculates image shift map data representing the distribution of the image shift amount.
  • the distance calculation unit 4 may further convert the image shift amount into a defocus amount, and generate defocus map data representing the distribution of the defocus amount (distribution on the two-dimensional plane of the captured image).
  • the distance calculation unit 4 may acquire distance map data of the distance to the object to be converted from the defocus amount.
  • the vertical angle of view of the optical system according to each embodiment is set to only one side with respect to the optical axis A. Therefore, when the optical system according to each embodiment is applied to the on-vehicle camera 10 and the on-vehicle camera 10 is installed in a vehicle, the optical axis A of the optical system should be arranged so as not to be parallel to the horizontal direction. Is desirable. For example, when the optical system 100 according to the first embodiment shown in FIG. 2 is adopted, the optical axis A is inclined upward with respect to the horizontal direction (Z direction), and the center of the vertical angle of view is arranged to approach the horizontal direction. do it.
  • the optical axis A may be arranged to be inclined downward with respect to the horizontal direction. Thereby, the imaging range of the vehicle-mounted camera 10 can be set appropriately.
  • the optical performance on the axis is the highest, while the optical performance at the peripheral angle of view decreases, so that the light from the target object of interest is the axis in the optical system. It is more preferable to arrange so as to pass near the upper side. For example, when it is necessary to pay attention to a sign or an obstacle on a road by the on-vehicle camera 10, the optical performance at an angle of view below the ground (ground side) relative to the upper side (air side) with respect to the horizontal direction is enhanced. Is preferred.
  • the optical system 100 according to the first embodiment is adopted, the optical system 100 is temporarily turned upside down as described above, and then the optical axis A is inclined downward with respect to the horizontal direction. It may be disposed so that the angle of view of the lens faces downward.
  • the on-vehicle camera system 600 is applied for driving assistance (collision damage reduction), but the invention is not limited thereto.
  • the on-vehicle camera system 600 may be used for cruise control (including all vehicle speed tracking function) and automatic driving. It may apply.
  • the on-vehicle camera system 600 can be applied not only to a vehicle such as a host vehicle but also to a mobile object (mobile device) such as a ship, an aircraft, or an industrial robot.
  • the present invention can be applied not only to the on-vehicle camera 10 and the moving body according to the present embodiment, but also to devices that widely use object recognition, such as the Intelligent Transportation System (ITS).
  • ITS Intelligent Transportation System

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lenses (AREA)
  • Studio Devices (AREA)

Abstract

An optical system 100 provided with a first group G1, an opening aperture STO, and a second group G2 in the stated order from the magnification side, wherein: the first group G1 includes a refraction surface 11 that is convex toward the magnification side; the second group G2 includes a transmissive reflection surface 31 and a concave reflection surface 32; light from the magnification side that has been transmitted through the opening aperture STO is transmitted through the transmissive reflection surface 31 and then is reflected by the reflection surface 32 and the transmissive reflection surface 31 in the stated order; and the condition of 0.7 ≤ |Rl|/Ll ≤ 1.5 is satisfied, where Rl is the radius of curvature of the refraction surface 11 (mm) and Ll is the distance between the refraction surface 11 and the opening aperture STO (mm).

Description

光学系、それを備える撮像装置及び投影装置OPTICAL SYSTEM, IMAGING DEVICE AND PROJECTION DEVICE PROVIDED WITH SAME
 本発明は、屈折面及び反射面を有する光学系に関し、例えば、デジタルスチルカメラやデジタルビデオカメラ、携帯電話用カメラ、監視カメラ、ウェアラブルカメラ、医療用カメラ等の撮像装置や、プロジェクタ等の投影装置に好適なものである。 The present invention relates to an optical system having a refracting surface and a reflecting surface, and, for example, an imaging device such as a digital still camera, a digital video camera, a mobile phone camera, a surveillance camera, a wearable camera, a medical camera, or a projection device Are preferred.
 近年、撮像装置や投影装置に用いられる光学系として、広画角にわたって高解像度でかつ小型なものが求められている。 In recent years, as an optical system used for an imaging device or a projection device, a high resolution and small size is required over a wide angle of view.
 特許文献1には、球状レンズを備える撮像装置が記載されている。この球状レンズによれば、コマ収差、非点収差、倍率色収差などの軸外収差の発生を抑制しつつ、球面収差や軸上色収差などの軸上収差を良好に補正することができるため、広画角にわたり高解像度な光学系の実現が可能になる。 Patent Document 1 describes an imaging device provided with a spherical lens. With this spherical lens, on-axis aberrations such as spherical aberration and axial chromatic aberration can be favorably corrected while suppressing occurrence of off-axis aberrations such as coma aberration, astigmatism and lateral chromatic aberration. It becomes possible to realize a high resolution optical system over the angle of view.
 特許文献2には、複数の屈折面と、反射型の開口絞りと、反射面と、が媒質を介して一体化された反射屈折光学系が記載されており、これにより収差を良好に補正することができる小型な光学系の実現が可能になる。また、特許文献3には、物体側に凸面を向けたレンズと、凹形状の内部反射面を有する反射屈折レンズと、を有する光学系が記載されており、これにより広画角化を実現することができる。 Patent Document 2 describes a catadioptric optical system in which a plurality of refracting surfaces, a reflection-type aperture stop, and a reflecting surface are integrated via a medium, thereby correcting aberrations well. It is possible to realize a compact optical system that can Further, Patent Document 3 describes an optical system having a lens with a convex surface facing the object side, and a catadioptric lens having a concave internal reflection surface, thereby realizing a wide angle of view. be able to.
特開2013-210549号公報JP, 2013-210549, A 特開2004-361777号公報JP 2004-361777 A 特開2009-300994号公報JP, 2009-300994, A
 しかしながら、特許文献1に記載の球状レンズによる結像面は球面状となってしまうため、この球状レンズを撮像装置や投影装置に設ける場合、球面形状の撮像素子や表示素子、あるいは一端が球面でかつ他端が平面である導光手段などが必要となる。そのため、装置全体が複雑化及び大型化し、高コスト化してしまう。 However, since the imaging surface by the spherical lens described in Patent Document 1 is spherical, when this spherical lens is provided in an imaging apparatus or a projection apparatus, the imaging element or display element of a spherical shape or one end is spherical. And the light guide means etc. whose other end is a plane are needed. Therefore, the entire apparatus becomes complicated and enlarged, and the cost increases.
 特許文献2に記載の光学系においては、開口絞りと像面とが近接しており、開口絞りで遮光されなかった不要光が像面に到達してしまう可能性があるため、広画角化が困難である。また、特許文献3に記載の光学系では、F値を小さくしつつ収差を良好に補正することが困難であるため、小型化と高解像度との両立が難しくなる。 In the optical system described in Patent Document 2, the aperture stop and the image plane are in close proximity, and unnecessary light not blocked by the aperture stop may reach the image plane. Is difficult. Further, in the optical system described in Patent Document 3, it is difficult to correct the aberration well while reducing the F value, so it is difficult to achieve both size reduction and high resolution.
 そこで本発明は、撮像装置や投影装置において、小型化及び広画角にわたる高解像度化を実現可能な光学系を提供することを目的とする。 Therefore, an object of the present invention is to provide an optical system capable of realizing high resolution over a small size and a wide angle of view in an imaging device and a projection device.
 上記目的を達成するための、本発明の一側面としての光学系は、拡大側から順に、第1群、開口絞り、及び第2群を備える光学系であって、前記第1群は、拡大側に向かって凸形状の屈折面を含み、前記第2群は、透過反射面と、凹形状の反射面と、を含み、前記開口絞りを通過した拡大側からの光は、前記透過反射面を透過した後、前記反射面及び前記透過反射面で順に反射されており、前記屈折面の曲率半径をRl(mm)、前記屈折面と前記開口絞りとの間隔をLl(mm)、とするとき、0.7≦|Rl|/Ll≦1.5なる条件を満足することを特徴とする。 An optical system as one aspect of the present invention for achieving the above object is an optical system including a first group, an aperture stop, and a second group in order from the enlargement side, and the first group is an enlargement. The second group includes a transmissive reflective surface and a concave reflective surface, and the light from the enlarged side which has passed through the aperture stop is the transmissive reflective surface. The light is reflected sequentially by the reflecting surface and the transmitting / reflecting surface, and the radius of curvature of the refracting surface is Rl (mm), and the distance between the refracting surface and the aperture stop is Ll (mm). It is characterized in that the condition of 0.7 ≦ | Rl | /Ll≦1.5 is satisfied.
本発明の実施例1に係る撮像装置の要部概略図。BRIEF DESCRIPTION OF THE DRAWINGS The principal part schematic of the imaging device which concerns on Example 1 of this invention. 本発明の実施例1に係る光学系の要部概略図。BRIEF DESCRIPTION OF THE DRAWINGS The principal part schematic of the optical system which concerns on Example 1 of this invention. 本発明の実施例1に係る光学系の収差図。FIG. 2 is an aberration diagram of an optical system according to Example 1 of the present invention. 本発明の実施例2に係る光学系の要部概略図。The principal part schematic of the optical system which concerns on Example 2 of this invention. 本発明の実施例2に係る光学系の収差図。FIG. 7 shows aberration of an optical system according to Example 2 of the present invention. 本発明の実施形態に係る車載カメラシステムの機能ブロック図。FIG. 1 is a functional block diagram of an on-vehicle camera system according to an embodiment of the present invention. 本発明の実施形態に係る車両の要部概略図。BRIEF DESCRIPTION OF THE DRAWINGS The principal part schematic of the vehicle which concerns on embodiment of this invention. 本発明の実施形態に係る車載カメラシステムの動作例を示すフローチャート。6 is a flowchart showing an operation example of the on-vehicle camera system according to the embodiment of the present invention.
 以下、本発明の好ましい実施形態について図面を参照しながら説明する。なお、各図面は、便宜的に実際とは異なる縮尺で描かれている場合がある。また、各図面において、同一の部材については同一の参照番号を付し、重複する説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. Note that each drawing may be drawn at a scale different from the actual scale for convenience. Moreover, in each drawing, the same reference numeral is given to the same member, and the overlapping description is omitted.
 [実施例1]
  図1は、本発明の実施例1に係る光学系100を備える撮像装置1000の、光軸Aを含むYZ断面における要部概略図である。撮像装置1000は、撮像光学系としての光学系100、光学系100の像面(縮小面)IMGの位置に配置される撮像面(受光面)を含む撮像素子110、ケーブル120、及び処理部130を備える。
Example 1
FIG. 1 is a schematic view of an essential part in an YZ cross section including an optical axis A of an imaging device 1000 provided with an optical system 100 according to a first embodiment of the present invention. The imaging apparatus 1000 includes an optical system 100 as an imaging optical system, an imaging element 110 including an imaging surface (light receiving surface) disposed at a position of an image surface (reduction surface) IMG of the optical system 100, a cable 120, and a processing unit 130. Equipped with
 撮像装置1000において、光学系100は図1の左側に存在する不図示の被写体からの光束を集光し、撮像素子110の撮像面IMGに被写体を結像する。撮像素子110は、光学系100により形成された被写体の像を光電変換し、電気信号を出力する。処理部130は、ケーブル120を介して伝送される撮像素子110からの電気信号を処理し、被写体の画像データを取得する。撮像素子110としては、CCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)を採用することができる。 In the image pickup apparatus 1000, the optical system 100 condenses a light flux from an unshown object present on the left side of FIG. 1 and forms an image of the object on the imaging surface IMG of the image sensor 110. The image sensor 110 photoelectrically converts the image of the subject formed by the optical system 100 and outputs an electrical signal. The processing unit 130 processes the electrical signal from the imaging element 110 transmitted via the cable 120, and acquires image data of the subject. As the imaging device 110, a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor can be employed.
 図2は、光学系100の光軸Aを含むYZ断面における要部概略図である。本実施例に係る光学系100は、光束幅を制限する開口絞りSTOと、開口絞りSTOよりも物体側(拡大側)に配置された第1群G1と、開口絞りSTOよりも像側(縮小側)に配置された第2群G2と、を備える。 FIG. 2 is a schematic view of an essential part in the YZ cross section including the optical axis A of the optical system 100. FIG. The optical system 100 according to the present embodiment includes an aperture stop STO for limiting the light beam width, a first group G1 disposed on the object side (enlargement side) of the aperture stop STO, and an image side (reduction) of the aperture stop STO. And a second group G2 disposed on the side).
 第1群G1は、物体側に向かって凸形状の屈折面(入射面)11を含む第1光学素子L1と、第2光学素子L2と、光束幅を制限する開口絞りSTOと、を有する。また、第2群G2は、第1光学素子L1と、第2光学素子L2と、凹形状の反射面32を含む第3光学素子L3と、第4光学素子CGと、を有する。このように、本実施例では、第1光学素子L1の一部及び第2光学素子L2を第1群G1と第2群G2とで共有している。 The first group G1 includes a first optical element L1 including a refracting surface (incident surface) 11 having a convex shape toward the object side, a second optical element L2, and an aperture stop STO for limiting the luminous flux width. Further, the second group G2 has a first optical element L1, a second optical element L2, a third optical element L3 including a concave-shaped reflecting surface 32, and a fourth optical element CG. Thus, in the present embodiment, a part of the first optical element L1 and the second optical element L2 are shared by the first group G1 and the second group G2.
 第1光学素子L1は、結像に寄与する有効光束が通過する光学面を3つ有するレンズであり、具体的には、第1面11、第2面12、及び第3面13の3つの透過面を有する。第1光学素子L1において、第1面11及び第2面12は第1群G1であり、第2面12及び第3面13は第2群G2である。第2光学素子L2は、物体側に凸面を向けたメニスカスレンズであり、屈折面である第1面21と反射面である第2面22とを有する。第2光学素子L2の第2面22は、金属膜や誘電体多層膜などによって形成される内部反射面である。また、開口絞りSTOは、第2光学素子L2の第2面22の上に配置される、開口部が設けられた遮光部材から成る。 The first optical element L1 is a lens having three optical surfaces through which an effective light beam contributing to image formation passes, and more specifically, three of the first surface 11, the second surface 12, and the third surface 13 It has a transparent surface. In the first optical element L1, the first surface 11 and the second surface 12 are the first group G1, and the second surface 12 and the third surface 13 are the second group G2. The second optical element L2 is a meniscus lens having a convex surface on the object side, and has a first surface 21 which is a refracting surface and a second surface 22 which is a reflecting surface. The second surface 22 of the second optical element L2 is an internal reflection surface formed of a metal film, a dielectric multilayer film, or the like. The aperture stop STO is formed of a light shielding member provided with an opening and disposed on the second surface 22 of the second optical element L2.
 第3光学素子L3は、透過反射面である第1面31と、入射光に向かって凹形状の第2面32と、出射面である第3面33と、の3つの光学面を含む反射屈折レンズである。第3光学素子L3において、第1面31は透過反射面であり、第2面32は金属膜や誘電体多層膜などによって形成される内部反射面であり、第3面33は透過面である。第4光学素子CGは、IRカットフィルタ等の光学フィルタである。ただし、必要に応じて、第4光学素子CGとしてレンズ等を採用してもよい。 The third optical element L3 includes three optical surfaces: a first surface 31, which is a transmission / reflection surface, a second surface 32, which is concave toward the incident light, and a third surface 33, which is an emission surface. It is a refractive lens. In the third optical element L3, the first surface 31 is a transmission / reflection surface, the second surface 32 is an internal reflection surface formed of a metal film, a dielectric multilayer film or the like, and the third surface 33 is a transmission surface . The fourth optical element CG is an optical filter such as an IR cut filter. However, if necessary, a lens or the like may be adopted as the fourth optical element CG.
 なお、第3光学素子L3の透過反射面31と、光路上で透過反射面31に最も近接した第1光学素子L1の第3面13と、は互いに同一形状である。このように、透過反射面と光路上で該透過反射面31に最も近接した光学面とを互いに曲率半径が同じ形状とすることで、開口絞りSTOからの光が透過反射面を効率的に透過することができるようになる。本実施例では、第1光学素子L1の第3面13と第3光学素子L3の透過反射面31とは、空気を介して互いに対向している。 The transmission / reflection surface 31 of the third optical element L3 and the third surface 13 of the first optical element L1 closest to the transmission / reflection surface 31 in the optical path have the same shape. As described above, by making the radius of curvature of the transmission / reflection surface and the optical surface closest to the transmission / reflection surface 31 on the light path the same, the light from the aperture stop STO is efficiently transmitted through the transmission / reflection surface. You will be able to In the present embodiment, the third surface 13 of the first optical element L1 and the transmission / reflection surface 31 of the third optical element L3 face each other via air.
 本実施例において、光軸Aは、光学系100におけるパワーを有する各光学面の中心(面頂点)を通る軸である。すなわち、光学系100が有する屈折面及び反射面の夫々の面頂点は、光軸A上に存在している。なお、第1光学素子L1の第1面11は、光軸Aと交わらないが、光軸A上に面頂点が存在する(光軸Aと中心軸とが一致する)面の一部を切り出した形状である。 In the present embodiment, the optical axis A is an axis passing through the center (face vertex) of each optical surface having a power in the optical system 100. That is, the surface apexes of the refractive surface and the reflective surface of the optical system 100 exist on the optical axis A. Although the first surface 11 of the first optical element L1 does not intersect with the optical axis A, it cuts out part of the surface where the surface apex exists on the optical axis A (the optical axis A coincides with the central axis) Shape.
 ここで、本実施例に係る第1群G1が有する屈折面11は、開口絞りSTOまでの距離と曲率半径とが略等しい形状(点対称形状)である。具体的に、屈折面11は、その曲率半径をRl(mm)、屈折面11と開口絞りSTOとの間隔をLl(mm)、とするとき、以下の条件式(1)を満足する形状である。ただし、特に断りがない限り、「間隔」は「光軸A上での間隔」を示すものとする。
0.7≦|Rl|/Ll≦1.5   (1)
Here, the refracting surface 11 of the first group G1 according to this embodiment has a shape (point-symmetrical shape) in which the distance to the aperture stop STO and the radius of curvature are substantially equal. Specifically, when the refractive surface 11 has a radius of curvature of Rl (mm) and the distance between the refractive surface 11 and the aperture stop STO is Ll (mm), it has a shape satisfying the following conditional expression (1) is there. However, unless otherwise noted, "spacing" indicates "spacing on the optical axis A".
0.7 ≦ | Rl | /Ll≦1.5 (1)
 条件式(1)を満足することにより、簡易かつ小型な構成であっても、軸外収差を良好に補正することができる。条件式(1)の範囲を外れると、軸外収差の発生量が増加してしまい、良好な光学特性が得られなくなる。このことについて、以下に説明する。 By satisfying conditional expression (1), off-axis aberrations can be favorably corrected even with a simple and compact configuration. Outside the range of the conditional expression (1), the amount of off-axis aberration generated increases, and good optical characteristics can not be obtained. This is explained below.
 一般的に、光学系を設計する際は、コマ収差、非点収差、像面湾曲、歪曲収差、及び倍率色収差などの軸外収差と、球面収差や軸上色収差などの軸上収差と、を補正することが求められる。しかし、通常の軸対称形状の屈折面を用いた場合、周辺画角(軸外)では軸外収差が大きく発生するため、光軸上(軸上)での光学性能が最も高くなり、それに対して周辺画角での光学性能は低下してしまう。 In general, when designing an optical system, off-axis aberrations such as coma, astigmatism, curvature of field, distortion and lateral chromatic aberration, and on-axis aberrations such as spherical aberration and on-axis chromatic aberration are used. Correction is required. However, when a normal axisymmetric refracting surface is used, a large off-axis aberration occurs at the peripheral angle of view (off-axis), so the optical performance on the optical axis (on-axis) becomes the highest. Therefore, the optical performance at the peripheral angle of view decreases.
 一方、点対称形状の屈折面は、光軸上から周辺画角にかけて略同等の形状を有するため、軸外収差の発生を抑え、周辺画角における光学性能の低下を抑制することができる。よって、点対称形状の屈折面を採用することで、補正すべき収差を球面収差、軸上色収差、ペッツバール像面などに限定することができるため、簡易な構成であっても諸収差を良好に補正することが可能になる。 On the other hand, since the refracting surface having a point-symmetrical shape has substantially the same shape from the optical axis to the peripheral angle of view, it is possible to suppress the occurrence of off-axis aberration and to suppress the decrease in optical performance at the peripheral angle of view. Therefore, by adopting a point-symmetrical refracting surface, the aberration to be corrected can be limited to spherical aberration, axial chromatic aberration, Petzval image surface, etc., so that various aberrations can be made excellent even with a simple configuration. It becomes possible to correct.
 このように、条件式(1)を満足する点対称形状の屈折面11を採用することで、絞り値を小さくしつつ、広画角にわたって高解像度でかつ小型な光学系を実現することができる。このとき、点対称形状の屈折面11に起因して、第1群G1の結像面は湾曲してしまうが、第2群G2に凹形状の反射面32を設けることで、平面形状の像面IMGを形成することが可能になる。よって、撮像装置1000において、球面形状の撮像素子や導光手段を設ける必要が無くなるため、装置全体の小型化を実現することができる。 Thus, by adopting the point-symmetrical refracting surface 11 satisfying the conditional expression (1), it is possible to realize a high-resolution and compact optical system over a wide angle of view while reducing the aperture value. . At this time, although the image forming surface of the first group G1 is curved due to the point-symmetrical refracting surface 11, the image of the planar shape is formed by providing the concave reflecting surface 32 in the second group G2. It becomes possible to form a face IMG. Therefore, in the imaging apparatus 1000, there is no need to provide a spherical imaging element and light guiding means, so that the overall size of the apparatus can be reduced.
 なお、第1群G1において、条件式(1)を満足する屈折面を複数設けてもよい。その場合にも、第1群G1における複数の屈折面のうち、少なくとも1つが条件式(1)を満たすように構成することで、本発明の効果を得ることができる。ただし、軸外収差を良好に補正するためには、本実施例のように、より開口絞りSTOから離れた屈折面、あるいは隣接する媒質との屈折率差が大きい屈折面、すなわち最も物体側の屈折面を点対称形状とすることが望ましい。 In the first group G1, a plurality of refracting surfaces which satisfy the conditional expression (1) may be provided. Also in such a case, the effect of the present invention can be obtained by configuring at least one of the plurality of refractive surfaces in the first group G1 to satisfy the conditional expression (1). However, in order to correct off-axis aberration well, as in the present embodiment, the refractive surface further away from the aperture stop STO, or the refractive surface having a large difference in refractive index with the adjacent medium, ie, the most object side It is desirable to make the refracting surface point-symmetrical.
 さらに、以下の条件式(1´)を満足することがより好ましい。本実施例では、|Rl|/Ll=1.012であるため、条件式(1)及び(1´)を満足する。
0.8≦|Rl|/Ll≦1.3   (1´)
Furthermore, it is more preferable to satisfy the following conditional expression (1 '). In the present embodiment, since | R1 | /L1=1.012, the conditional expressions (1) and (1 ') are satisfied.
0.8 ≦ | Rl | /Ll≦1.3 (1 ′)
 図2において、不図示の物体からの光は、第1光学素子L1の第1面11より第1群G1に入射し、第1光学素子L1及び第2光学素子L2を順に通過して、開口絞りSTOに入射する。このとき、光の一部は開口絞りSTOの遮光部により遮光されるため、光束幅が制限されることになる。開口絞りSTOの開口部、すなわち第2光学素子L2の第2面22で反射された光は、第2光学素子L2の第1面21及び第1光学素子L1の第2面を再び通過し、第1光学素子L1の第3面13を透過する。 In FIG. 2, light from an object (not shown) is incident on the first group G1 from the first surface 11 of the first optical element L1, passes through the first optical element L1 and the second optical element L2 in order, and is apertured. It enters into the aperture stop STO. At this time, since a part of the light is blocked by the light blocking portion of the aperture stop STO, the beam width is limited. The light reflected by the aperture of the aperture stop STO, that is, the second surface 22 of the second optical element L2 passes again through the first surface 21 of the second optical element L2 and the second surface of the first optical element L1, The light is transmitted through the third surface 13 of the first optical element L1.
 そして、第3光学素子L3の第1面31を透過した光は、第3光学素子L3の第2面32で反射され、再び第3光学素子L3の第1面31に到達する。このとき、臨界角より大きい入射角で入射する光は、第3光学素子L3の第1面31において全反射し、第3光学素子L3の第3面33を透過し、平面形状の像面IMGを形成する。 Then, the light transmitted through the first surface 31 of the third optical element L3 is reflected by the second surface 32 of the third optical element L3 and reaches the first surface 31 of the third optical element L3 again. At this time, light incident at an incident angle larger than the critical angle is totally reflected on the first surface 31 of the third optical element L 3, passes through the third surface 33 of the third optical element L 3, and an image plane IMG having a planar shape Form
 このように、第3光学素子L3において、第1面31を透過反射面とし、第2面32で反射された光を第1面31でさらに反射させる構成を採ることにより、開口絞りSTOから離れた位置に像面IMGを形成することができる。これにより、開口絞りSTOの遮光部で遮光されなかった不要光が像面IMGに到達することを抑制することができるため、撮像装置1000の広画角化を実現することが可能になる。 As described above, in the third optical element L 3, the first surface 31 is a transmission / reflection surface, and the light reflected by the second surface 32 is further reflected by the first surface 31, thereby separating from the aperture stop STO The image plane IMG can be formed at any position. As a result, unnecessary light that is not blocked by the light blocking portion of the aperture stop STO can be prevented from reaching the image plane IMG, so that a wide angle of view of the imaging device 1000 can be realized.
 上述したように、本実施例では、第1光学素子L1の第3面13と第3光学素子L3の第1面31との間に空気層を設け、第3光学素子L3の第2面32で反射された光が第3光学素子L3の第1面31で全反射条件を満たすように構成している。この構成によれば、第3光学素子L3の第1面31に透過反射膜を設ける場合と比較して、第1面31で光が反射される際の光量の損失を抑制することができる。 As described above, in the present embodiment, an air layer is provided between the third surface 13 of the first optical element L1 and the first surface 31 of the third optical element L3, and the second surface 32 of the third optical element L3 is provided. The light reflected by the light source is configured to satisfy the total reflection condition at the first surface 31 of the third optical element L3. According to this configuration, it is possible to suppress the loss of light quantity when light is reflected by the first surface 31 as compared with the case where the transmission / reflection film is provided on the first surface 31 of the third optical element L3.
 本実施例において、ZX断面(第1断面)内での画角(水平画角)は±27(deg)、YZ断面(第2断面)内での画角(垂直画角)は15~53(deg)、である。すなわち、水平画角は光軸Aの両側に対称に設定されているのに対して、垂直画角は光軸Aに対して片側(+側)にのみ設定されている。 In the present embodiment, the field angle (horizontal field angle) in the ZX cross section (first cross section) is ± 27 (deg), and the field angle (vertical field angle) in the YZ cross section (second cross section) is 15 to 53. (Deg), That is, while the horizontal angle of view is set symmetrically on both sides of the optical axis A, the vertical angle of view is set only on one side (+ side) with respect to the optical axis A.
 このように、YZ断面内において、光学系100の各光学面に光束を斜入射させることで、撮像素子110の撮像面が、光軸Aに対して撮像素子110とは反対側から光学系100に入射する光束のみを受光するように構成することができる。これにより、撮像素子110が各光学素子や各光路と干渉しないようにすることができる。 As described above, in the YZ cross section, the light incident on each optical surface of the optical system 100 causes the image pickup surface of the image pickup device 110 to be the optical system 100 from the side opposite to the image pickup device 110 with respect to the optical axis A. It can be configured to receive only the light beam incident on. Thereby, the imaging element 110 can be prevented from interfering with each optical element and each optical path.
 なお、光学系100においては、開口絞りSTOと入射瞳(拡大側瞳)とが互いに近接するように構成することが望ましい。具体的には、開口絞りSTOと入射瞳との間隔をLp(mm)、全系の焦点距離をf(mm)、とするとき、以下の条件式(2)を満足することが好ましい。ただし、焦点距離は、光学系が正のパワーを有するときは正、負のパワーを有するときは負、となるものとする。
-0.2≦Lp/f≦0.2   (2)
In the optical system 100, it is desirable that the aperture stop STO and the entrance pupil (enlargement side pupil) be configured to be close to each other. Specifically, when the distance between the aperture stop STO and the entrance pupil is Lp (mm) and the focal length of the entire system is f (mm), it is preferable to satisfy the following conditional expression (2). However, the focal length is positive when the optical system has positive power, and negative when the optical system has negative power.
−0.2 ≦ Lp / f ≦ 0.2 (2)
 条件式(2)を満足することにより、点対称形状の屈折面に対して各画角の光線が垂直に近い角度で入射する、コンセントリックな構成とすることができるため、点対称形状の屈折面により収差を補正し易くすることが可能になる。条件式(8)の上限値を上回ると、コンセントリックな構成から離れてしまい、点対称形状の屈折面による効果が十分に得られなくなる。本実施例では、Lp/f=-0.005であるため、条件式(2)を満足する。 By satisfying conditional expression (2), it is possible to provide a concentric configuration in which light rays of each angle of view are incident at an angle close to perpendicular to the point-symmetrical refracting surface. The surface makes it easy to correct the aberration. When the value exceeds the upper limit value of the conditional expression (8), it deviates from the concentric configuration, and the effect due to the refracting surface of the point symmetric shape can not be sufficiently obtained. In the present embodiment, since Lp / f = −0.005, the conditional expression (2) is satisfied.
 さらに、第2群G2が有する反射面32について、曲率半径をRm(mm)、開口絞りSTOとの間隔をLm(mm)、とするとき、以下の条件式(3)を満足することが望ましい。
2≦|Rm|/Lm≦7   (3)
Further, it is preferable that the following conditional expression (3) is satisfied, where Rm (mm) is the radius of curvature and Lm (mm) is the distance between the aperture stop STO and the reflecting surface 32 of the second group G2. .
2 ≦ | Rm | / Lm ≦ 7 (3)
 反射面32の形状を、条件式(3)を満たす形状とすることで、像面IMGと光路との干渉を回避しつつ、像面湾曲を良好に補正することができる。条件式(3)の上限値を上回ると、像面湾曲量が増加してしまう可能性が生じる。また、条件式(3)の下限値を下回ると、像面IMGが光路と干渉してしまう可能性が生じる。なお、第2群G2が反射面を複数有する場合は、パワーが最も大きい反射面が条件式(3)を満たすことが望ましい。 By making the shape of the reflective surface 32 a shape satisfying the conditional expression (3), it is possible to correct the curvature of field well while avoiding the interference between the image plane IMG and the optical path. If the upper limit value of the conditional expression (3) is exceeded, the curvature of field may be increased. If the lower limit value of the conditional expression (3) is not reached, there is a possibility that the image plane IMG may interfere with the light path. When the second group G2 has a plurality of reflecting surfaces, it is desirable that the reflecting surface with the largest power satisfy the conditional expression (3).
 さらに、以下の条件式(3´)を満足することがより好ましい。本実施例では、|Rm|/Lm=2.765であるため、条件式(3)及び(3´)を満足する。
2.5≦|Rm|/Lm≦5.7   (3´)
Furthermore, it is more preferable to satisfy the following conditional expression (3 '). In the present embodiment, since | Rm | /Lm=2.765, the conditional expressions (3) and (3 ′) are satisfied.
2.5 ≦ | Rm | /Lm≦5.7 (3 ′)
 また、点対称形状の屈折面11に起因する軸上収差を良好に補正するためには、屈折面11よりも像側に、物体側に向かって凸形状の光学面を設けることが望ましい。そこで、本実施例では、第1光学素子L1と第2光学素子L2との接合面(第2面12及び第1面21)を、物体側に向かって凸形状としている。さらに、この構成においては、物体側に配置される第1光学素子L1のd線に対するアッベ数をνA、像側に配置される第2光学素子L2のd線に対するアッベ数をνB、とするとき、以下の条件式(4)を満足することが好ましい。
νA<νB   (4)
Further, in order to satisfactorily correct the on-axis aberration caused by the point-symmetrical refractive surface 11, it is desirable to provide a convex optical surface on the image side of the refractive surface 11 toward the object side. Therefore, in the present embodiment, the cemented surface (the second surface 12 and the first surface 21) of the first optical element L1 and the second optical element L2 has a convex shape toward the object side. Furthermore, in this configuration, the Abbe number for the d line of the first optical element L1 disposed on the object side is νA, and the Abbe number for the d line of the second optical element L2 disposed on the image side is BB. It is preferable to satisfy the following conditional expression (4).
A A <B B (4)
 条件式(4)を満足することで、第1光学素子L1の屈折面11で発生する軸上色収差を、それと逆符号の軸上色収差を発生させることで良好に補正することができる。本実施例では、νA=43.7、νB=57.7であるため、条件式(4)を満足する。 By satisfying conditional expression (4), it is possible to satisfactorily correct axial chromatic aberration generated on the refracting surface 11 of the first optical element L1 by generating axial chromatic aberration of the opposite sign. In the present embodiment, since AA = 43.7 and BB = 57.7, the conditional expression (4) is satisfied.
 さらに、物体側に配置される第1光学素子L1のd線に対する屈折率をNA、像側に配置される第2光学素子L2のd線に対する屈折率をNB、とするとき、以下の条件式(5)を満足することが好ましい。
NA>NB   (5)
Further, when the refractive index to the d-line of the first optical element L1 disposed on the object side is NA, and the refractive index to the d-line of the second optical element L2 disposed on the image side is NB, the following conditional expression It is preferable to satisfy (5).
NA> NB (5)
 条件式(5)を満足することで、第1光学素子L1の屈折面11で発生する球面収差を、それと逆符号の球面収差を発生させることで良好に補正することができる。本実施例では、NA=1.606、NB=1.573であるため、条件式(5)を満足する。 By satisfying the conditional expression (5), it is possible to satisfactorily correct the spherical aberration generated on the refracting surface 11 of the first optical element L1 by generating the spherical aberration of the opposite sign. In the present embodiment, since NA = 1.606 and NB = 1.573, the conditional expression (5) is satisfied.
 なお、光学系100において、第1光学素子L1の第1面11、第2光学素子L2の第2面22、及び第3光学素子L3の第2面32の夫々は、非球面である。本実施例では、第1光学素子L1の第1面11を非球面とすることで、第3光学素子L3の第2面32やその他の光学面の非点対称成分で発生するコマ収差の補正を行っている。また、第3光学素子L3の第2面32を非球面とすることで、この面の球面成分やその他の光学面の非点対称成分で発生する非点収差の補正を行っている。 In the optical system 100, each of the first surface 11 of the first optical element L1, the second surface 22 of the second optical element L2, and the second surface 32 of the third optical element L3 is aspheric. In the present embodiment, by making the first surface 11 of the first optical element L1 an aspheric surface, correction of coma aberration generated in the astigmatic components of the second surface 32 of the third optical element L3 and other optical surfaces is corrected. It is carried out. Further, by making the second surface 32 of the third optical element L3 an aspheric surface, correction of astigmatism generated by the spherical component of this surface and other astigmatism components of the optical surface is performed.
 ただし、本実施例における非球面形状の光学面の夫々は、光軸Aを中心とした回転対称形状であり、以下の非球面式で表現される。 However, each of the aspheric optical surfaces in the present embodiment has a rotationally symmetric shape about the optical axis A, and is expressed by the following aspheric expression.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、zは非球面形状の光軸方向のサグ量(mm)、cは光軸A上における曲率(1/mm)、kは円錐係数、hは光軸Aからの半径方向の間隔(mm)、A,B,C,・・・の夫々は4次項,6次項,8次項,・・・の非球面係数、である。なお、この非球面式において、第1項はベース球面のサグ量を示しており、このベース球面の曲率半径はR=1/cである。また、第2項以降の項は、ベース球面上に付与される非球面成分のサグ量を示している。 Here, z is the sag amount (mm) in the optical axis direction of the aspheric shape, c is the curvature on the optical axis A (1 / mm), k is the conical coefficient, h is the radial distance from the optical axis A ( mm), A, B, C,... are aspheric coefficients of the fourth order term, the sixth order term, the eighth order term,. In the aspheric formula, the first term indicates the sag amount of the base spherical surface, and the radius of curvature of the base spherical surface is R = 1 / c. The second and subsequent terms indicate the amount of sag of the aspheric surface component provided on the base spherical surface.
 本実施例に対応する数値実施例1の各データを表1~3に示す。表1は光学系100における各光学面の面データであり、表1において、rは曲率半径(mm)、dは面間隔(mm)、ndはd線に対する屈折率、νdはd線に対するアッベ数、を表す。ただし、面間隔は、光路に沿って像側に向かうときに正、物体側に向かうときに負、としている。表2は各光学面の面頂点の偏心データであり、表2において、x、y、zの夫々は、面番号1の光学面の面頂点を基準とした座標を表し、αはx軸周りの回転、βはy軸周りの回転、γはz軸周りの回転、を表す。表3は撮像装置1000の各種データであり、表3において、Fnoは光学系100の絞り値(F値)を表す。 Respective data of Numerical value example 1 corresponding to the present example are shown in Tables 1 to 3. Table 1 shows surface data of each optical surface in the optical system 100. In Table 1, r is the radius of curvature (mm), d is the surface distance (mm), nd is the refractive index for d line, and ν d is Abbe for d line Represents a number. However, the surface separation is positive when going to the image side along the optical path, and negative when going to the object side. Table 2 shows eccentricity data of the surface vertex of each optical surface. In Table 2, each of x, y and z represents coordinates based on the surface vertex of the optical surface of surface number 1, and α is around the x axis Represents rotation about the y axis, and γ represents rotation about the z axis. Table 3 shows various data of the imaging apparatus 1000. In Table 3, Fno represents the aperture value (F value) of the optical system 100.
 [数値実施例1] Numerical Embodiment 1
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 図3は、本実施例に係る光学系100の収差図である。図3では、垂直画角53°、34°、15°における、656nm、587nm、486nm、435nm、の各波長の光に関する横収差を示している。図3から明らかなように、可視波長域(400~700nm)において諸収差が良好に補正されている。 FIG. 3 is an aberration diagram of the optical system 100 according to the present embodiment. FIG. 3 shows transverse aberration with respect to light of each wavelength of 656 nm, 587 nm, 486 nm and 435 nm at vertical angle of view of 53 °, 34 ° and 15 °. As apparent from FIG. 3, various aberrations are well corrected in the visible wavelength range (400 to 700 nm).
 以上、本実施例に係る光学系100によれば、簡素でかつ小型な構成でありながら、広画角にわたる高解像度化を実現することができる。具体的には、全長が36.59mmと小型な構成でありながら、F値がFno=2.3と明るく、広画角において諸収差を良好に補正することが可能になる。 As described above, according to the optical system 100 according to the present embodiment, high resolution over a wide angle of view can be realized while having a simple and compact configuration. Specifically, although the overall length is as small as 36.59 mm, the F value is as bright as Fno = 2.3, and various aberrations can be favorably corrected in a wide angle of view.
 [実施例2]
図4は、本発明の実施例2に係る光学系200の、光軸Aを含むYZ断面における要部概略図である。
Example 2
FIG. 4 is a schematic view of an essential part in the YZ cross section including the optical axis A of the optical system 200 according to the second embodiment of the present invention.
 光学系200において、第1群G1は、物体側から順に、第1光学素子L1及び第2光学素子L2を有する。第1光学素子L1は、物体側に凸面を向けたメニスカスレンズであり、第1面11及び第2面12を有する。第2光学素子L2は、平凸レンズであり、第1面21及び第2面22を有する。 In the optical system 200, the first group G1 includes a first optical element L1 and a second optical element L2 in order from the object side. The first optical element L1 is a meniscus lens having a convex surface facing the object side, and has a first surface 11 and a second surface 12. The second optical element L2 is a plano-convex lens, and has a first surface 21 and a second surface 22.
 また、光学系200において、第2群G2は、第3光学素子L3、第4光学素子L4、第5光学素子L5、及び第6光学素子CGを有する。第3光学素子L3は平凸レンズであり、第1面31及び第2面32を有する。第4光学素子L4は、物体側に向かって凹形状の第1面41と平面形状の第2面42とを有する。 In the optical system 200, the second group G2 includes the third optical element L3, the fourth optical element L4, the fifth optical element L5, and the sixth optical element CG. The third optical element L3 is a plano-convex lens, and has a first surface 31 and a second surface 32. The fourth optical element L4 has a concave first surface 41 and a planar second surface 42 toward the object side.
 第5光学素子L5は、透過反射面である第1面51と、像側に向かって凹形状の第2面52と、出射面である第3面53と、の3つの光学面を含む反射屈折レンズである。第5光学素子L5において、第1面51は透過反射面であり、第2面52は金属膜や誘電体多層膜などによって形成される内部反射面であり、第3面53は透過面である。第6光学素子CGは、IRカットフィルタ等の光学フィルタである。 The fifth optical element L5 is a reflection that includes three optical surfaces: a first surface 51 that is a transmission / reflection surface, a second surface 52 that is concave toward the image side, and a third surface 53 that is an exit surface. It is a refractive lens. In the fifth optical element L5, the first surface 51 is a transmission / reflection surface, the second surface 52 is an internal reflection surface formed of a metal film, a dielectric multilayer film or the like, and the third surface 53 is a transmission surface . The sixth optical element CG is an optical filter such as an IR cut filter.
 第1光学素子L1の第2面12及び第2光学素子L2の第1面21、第2光学素子L2の第2面22及び第3光学素子L3の第1面31、第3光学素子L3の第2面32及び第4光学素子L4の第1面41、の夫々は互いに接合されている。開口絞りSTOは、第2光学素子L2及び第3光学素子L3の接合面に配置される、開口部が設けられた遮光部材から成る。 The second surface 12 of the first optical element L1 and the first surface 21 of the second optical element L2, the second surface 22 of the second optical element L2, and the first surface 31 of the third optical element L3, and the third optical element L3 Each of the second surface 32 and the first surface 41 of the fourth optical element L4 is bonded to each other. The aperture stop STO is formed of a light shielding member provided with an opening, which is disposed on the joint surface of the second optical element L2 and the third optical element L3.
 本実施例に係る第2群G2の透過反射面51は、実施例1に係る第2群G2の透過反射面31とは異なり、金属膜や誘電体多層膜などによって形成される透過反射膜(ハーフミラーやビームスプリッタなど)で構成されている。これにより、透過反射面の全反射条件を考慮する必要が無くなるため、画角や明るさを確保し易くすることができる。 Unlike the transmission / reflection surface 31 of the second group G2 according to the first embodiment, the transmission / reflection surface 51 of the second group G2 according to the present embodiment is formed of a metal film, a dielectric multilayer film, or the like ( It consists of a half mirror, a beam splitter, etc.). As a result, it is not necessary to consider the total reflection condition of the transmission / reflection surface, so it is easy to secure the angle of view and the brightness.
 なお、第1光学素子L1の第1面11及び第5光学素子L5の第2面52は、非球面である。また、第4光学素子L4の第4面42と第5光学素子L5の第1面51とは、互いに曲率半径が同じ形状であり、空気を介して互いに対向している。 The first surface 11 of the first optical element L1 and the second surface 52 of the fifth optical element L5 are aspheric surfaces. Further, the fourth surface 42 of the fourth optical element L4 and the first surface 51 of the fifth optical element L5 have the same radius of curvature, and face each other via air.
 図4において、不図示の物体からの光は、第1光学素子L1の第1面11より第1群G1に入射し、第1光学素子L1及び第2光学素子L2を順に通過して、開口絞りSTOに入射する。このとき、光の一部は開口絞りSTOの遮光部により遮光されるため、光束幅が制限されることになる。開口絞りSTOの開口部、すなわち第3光学素子L3の第1面31を通過した光は、第3光学素子の第2面32、第4光学素子L4の第1面41及び第2面42を順に透過する。 In FIG. 4, light from an object (not shown) enters the first group G1 from the first surface 11 of the first optical element L1, passes through the first optical element L1 and the second optical element L2 in order, and the aperture is opened. It enters into the aperture stop STO. At this time, since a part of the light is blocked by the light blocking portion of the aperture stop STO, the beam width is limited. The light that has passed through the aperture of the aperture stop STO, that is, the first surface 31 of the third optical element L3, passes through the second surface 32 of the third optical element and the first surface 41 and the second surface 42 of the fourth optical element L4. Transmit in order.
 そして、第5光学素子L5の第1面51を透過した光は、第5光学素子L5の第2面52で反射され、第5光学素子L5の第1面51でさらに反射され、第5光学素子L5の第3面53を透過し、平面形状の像面IMGを形成する。このように、第5光学素子L5において、第1面51を透過反射面とし、第2面52で反射された光を第1面51でさらに反射させる構成を採ることにより、開口絞りSTOから離れた位置に像面IMGを形成することができる。 Then, the light transmitted through the first surface 51 of the fifth optical element L5 is reflected by the second surface 52 of the fifth optical element L5, and is further reflected by the first surface 51 of the fifth optical element L5. The light is transmitted through the third surface 53 of the element L5 to form a planar image plane IMG. As described above, in the fifth optical element L5, the first surface 51 is made to be a transmission / reflection surface, and the light reflected by the second surface 52 is further reflected by the first surface 51, thereby separating from the aperture stop STO. The image plane IMG can be formed at any position.
 なお、本実施例では、|Rl|/Ll=1.116であるため条件式(1)及び(1´)を満足し、Lp/f=0.044であるため条件式(2)を満足し、|Rm|/Lm=5.635であるため条件式(3)及び(3´)を満足する。また、本実施例では、物体側に向かって凸形状の接合面を有する第1光学素子L1及び第2光学素子L2について、νA=19.3、νB=44.3であるため条件式(4)を満足し、NA=2.003、NB=1.613であるため条件式(5)を満足する。 In the present embodiment, since | Rl | /Ll=1.116, the conditional expressions (1) and (1 ′) are satisfied, and since Lp / f = 0.044, the conditional expression (2) is satisfied. Since | Rm | /Lm=5.635, conditional expressions (3) and (3 ') are satisfied. Further, in the present embodiment, for the first optical element L1 and the second optical element L2 having a cemented surface convex toward the object side, since νA = 19.3 and BB = 44.3, the conditional expression (4 The conditional expression (5) is satisfied because NA = 2.003 and NB = 1.613.
 実施例1と同様に、本実施例に対応する数値実施例2の各データを表4~6に示す。 Similar to the first embodiment, data of the second numerical embodiment corresponding to the present embodiment are shown in Tables 4 to 6.
 [数値実施例2] Numerical Embodiment 2
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 図5は、本実施例に係る光学系200の収差図であり、図3と同様に、垂直画角53°、34°、15°における、656nm、587nm、486nm、435nm、の各波長の光に関する横収差を示している。図5から明らかなように、可視波長域(400~700nm)において諸収差が良好に補正されている。 FIG. 5 is an aberration diagram of the optical system 200 according to the present example, and as in FIG. 3, light of each wavelength of 656 nm, 587 nm, 486 nm, 435 nm at vertical angle of view 53 °, 34 °, 15 ° Shows the transverse aberration of. As apparent from FIG. 5, various aberrations are well corrected in the visible wavelength range (400 to 700 nm).
 以上、本実施例に係る光学系200によれば、簡素でかつ小型な構成でありながら、広画角にわたる高解像度化を実現することができる。具体的には、全長が45.20mmと小型な構成でありながら、F値がFno=2.3と明るく、広画角において諸収差を良好に補正することが可能になる。 As described above, according to the optical system 200 according to the present embodiment, high resolution over a wide angle of view can be realized while having a simple and compact configuration. Specifically, although the overall length is as small as 45.20 mm, the F value is as bright as Fno = 2.3, and various aberrations can be favorably corrected in a wide angle of view.
 [変形例]
  以上、本発明の好ましい実施形態及び実施例について説明したが、本発明はこれらの実施形態及び実施例に限定されず、その要旨の範囲内で種々の組合せ、変形及び変更が可能である。
[Modification]
Although the preferred embodiments and examples of the present invention have been described above, the present invention is not limited to these embodiments and examples, and various combinations, modifications, and changes are possible within the scope of the present invention.
 実施例1及び2の夫々において、第2群G2における凹形状の反射面は、光学素子に反射膜を設けることで構成された内部反射面であるが、これに限られるものではない。例えば、内部反射面の代わりに、表面反射面を有する別の光学素子(ミラーなど)を設けてもよい。 In each of the first and second embodiments, the concave-shaped reflective surface in the second group G2 is an internal reflective surface configured by providing a reflective film on the optical element, but the present invention is not limited to this. For example, instead of the internal reflection surface, another optical element (such as a mirror) having a surface reflection surface may be provided.
 また、各実施例では、第2群G2における透過反射面と、光路上で透過反射面に最も近接した光学面と、の間に空隙を設けているが、これに限られず、その空隙を屈折率が1以上の媒質で満たしてもよい。また、第2群の反射屈折レンズにおける透過反射面に透過反射膜を設ける場合は、第2群G2における透過反射面と、光路上で透過反射面に最も近接した光学面と、を接合してもよい。 In each embodiment, an air gap is provided between the transmission / reflection surface in the second group G2 and the optical surface closest to the transmission / reflection surface in the optical path, but the invention is not limited thereto. The rate may be filled with one or more media. In the case where a transmission / reflection film is provided on the transmission / reflection surface of the second group of catadioptric lenses, the transmission / reflection surface of the second group G2 and the optical surface closest to the transmission / reflection surface on the optical path are joined. It is also good.
 なお、各実施例では、光学系を撮像光学系として撮像装置に適用した場合について説明したが、例えば、光学系を投影光学系として投影装置に適用してもよい。この場合、縮小面IMGの位置に液晶パネル(空間変調器)等の表示素子の表示面が配置される。ただし、光学系が投影装置に適用される場合は、物体側と像側とが反転して光路が逆向きになる。よって、縮小側が物体側、拡大側が像側、第1群G1が第2群G2、第2群G2が第1群G1、となり、各光学素子の入射面が出射面、出射面が入射面となる。 In each embodiment, the optical system is applied as an imaging optical system to an imaging apparatus. However, for example, the optical system may be applied as a projection optical system to a projection apparatus. In this case, the display surface of a display element such as a liquid crystal panel (spatial modulator) is disposed at the position of the reduction plane IMG. However, when the optical system is applied to a projection apparatus, the object side and the image side are reversed and the light path is reversed. Therefore, the reduction side is the object side, the enlargement side is the image side, the first group G1 is the second group G2, the second group G2 is the first group G1, the entrance surface of each optical element is the exit surface, and the exit surface is the entrance surface. Become.
 すなわち、物体側に配置された表示素子の表示面(縮小面)に表示される画像を、光学系により像側に配置されたスクリーン等の投影面(拡大面)に投影(結像)させる構成を採ることができる。この場合にも、光学系を撮像装置に適用した場合と同様に、各実施例における各条件式を満足することが望ましい。なお、条件式(2)について、撮像光学系における開口絞りの入射瞳(拡大側瞳)は、投影光学系における開口絞りの射出瞳(縮小側瞳)に対応する。 That is, a configuration in which an image displayed on the display surface (reduction surface) of the display element disposed on the object side is projected (imaged) on a projection surface (enlarged surface) such as a screen disposed on the image side by the optical system. Can be taken. Also in this case, as in the case where the optical system is applied to an imaging device, it is desirable to satisfy each conditional expression in each embodiment. In conditional expression (2), the entrance pupil (magnification side pupil) of the aperture stop in the imaging optical system corresponds to the exit pupil (reduction side pupil) of the aperture stop in the projection optical system.
 [車載カメラシステム]
  図6は、本実施形態に係る車載カメラ10及びそれを備える車載カメラシステム(運転支援装置)600の構成図である。車載カメラシステム600は、自動車等の車両に設置され、車載カメラ10により取得した車両の周囲の画像情報に基づいて、車両の運転を支援するための装置である。図7は、車載カメラシステム600を備える車両700の概略図である。図7においては、車載カメラ10の撮像範囲50を車両700の前方に設定した場合を示しているが、撮像範囲50を車両700の後方に設定してもよい。
[Vehicle camera system]
FIG. 6 is a configuration diagram of the on-vehicle camera 10 according to the present embodiment and the on-vehicle camera system (drive support device) 600 including the on-vehicle camera 10. The on-vehicle camera system 600 is a device installed in a vehicle such as a car and supporting driving of the vehicle based on the image information of the surroundings of the vehicle acquired by the on-vehicle camera 10. FIG. 7 is a schematic view of a vehicle 700 equipped with an on-board camera system 600. Although FIG. 7 shows the case where the imaging range 50 of the on-vehicle camera 10 is set to the front of the vehicle 700, the imaging range 50 may be set to the rear of the vehicle 700.
 図6に示すように、車載カメラシステム600は、車載カメラ10と、車両情報取得装置20と、制御装置(ECU:エレクトロニックコントロールユニット)30と、警報装置40と、を備える。また、車載カメラ10は、撮像部1と、画像処理部2と、視差算出部3と、距離算出部4と、衝突判定部5と、を備えている。撮像部1は、上述した何れかの実施例に係る光学系と、撮像面位相差センサと、を有する。なお、本実施形態に係る撮像面位相差センサ及び画像処理部2は、例えば、図1に示した実施例1に係る撮像装置1000が備える撮像素子110及び処理部130に対応する。 As shown in FIG. 6, the on-vehicle camera system 600 includes an on-vehicle camera 10, a vehicle information acquisition device 20, a control device (ECU: electronic control unit) 30, and an alarm device 40. The on-vehicle camera 10 further includes an imaging unit 1, an image processing unit 2, a parallax calculation unit 3, a distance calculation unit 4, and a collision determination unit 5. The imaging unit 1 includes the optical system according to any one of the above-described embodiments and an imaging surface phase difference sensor. The imaging surface phase difference sensor and the image processing unit 2 according to the present embodiment correspond to, for example, the imaging element 110 and the processing unit 130 provided in the imaging apparatus 1000 according to the first embodiment shown in FIG.
 図8は、本実施形態に係る車載カメラシステム600の動作例を示すフローチャートである。以下、このフローチャートに沿って、車載カメラシステム600の動作を説明する。 FIG. 8 is a flowchart showing an operation example of the on-vehicle camera system 600 according to the present embodiment. Hereinafter, the operation of the on-vehicle camera system 600 will be described along the flowchart.
 まず、ステップS1では、撮像部1を用いて車両の周囲の対象物(被写体)を撮像し、複数の画像データ(視差画像データ)を取得する。 First, in step S1, an object (subject) around the vehicle is imaged using the imaging unit 1, and a plurality of image data (parallax image data) are acquired.
 また、ステップS2では、車両情報取得装置20から車両情報の取得を行う。車両情報とは、車両の車速、ヨーレート、舵角などを含む情報である。 In step S2, vehicle information is acquired from the vehicle information acquisition device 20. The vehicle information is information including the vehicle speed of the vehicle, the yaw rate, the steering angle, and the like.
 ステップS3では、撮像部1により取得された複数の画像データに対して、画像処理部2により画像処理を行う。具体的には、画像データにおけるエッジの量や方向、濃度値などの特徴量を解析する画像特徴解析を行う。ここで、画像特徴解析は、複数の画像データの夫々に対して行ってもよいし、複数の画像データのうち一部の画像データのみに対して行ってもよい。 In step S 3, the image processing unit 2 performs image processing on a plurality of image data acquired by the imaging unit 1. Specifically, image feature analysis is performed to analyze feature amounts such as the amount and direction of edges in image data, and density values. Here, the image feature analysis may be performed on each of the plurality of image data, or may be performed on only a part of the plurality of image data.
 ステップS4では、撮像部1により取得された複数の画像データ間の視差(像ズレ)情報を、視差算出部3によって算出する。視差情報の算出方法としては、SSDA法や面積相関法などの既知の方法を用いることができるため、本実施形態では説明を省略する。なお、ステップS2,S3,S4は、上記の順番に処理を行ってもよいし、互いに並列して処理を行ってもよい。 In step S <b> 4, parallax (image shift) information between a plurality of image data acquired by the imaging unit 1 is calculated by the parallax calculation unit 3. A known method such as an SSDA method or an area correlation method can be used as a method of calculating disparity information, and thus the description thereof will be omitted in this embodiment. Steps S2, S3 and S4 may be processed in the order described above, or may be processed in parallel with each other.
 ステップS5では、撮像部1により撮像した対象物までの距離情報を、距離算出部4によって算出する。距離情報は、視差算出部3により算出された視差情報と、撮像部1の内部パラメータ及び外部パラメータと、に基づいて算出することができる。なお、ここでの距離情報とは、対象物までの距離、デフォーカス量、像ズレ量、などの対象物との相対位置に関する情報のことであり、画像内における対象物の距離値を直接的に表すものでも、距離値に対応する情報を間接的に表すものでもよい。 In step S <b> 5, the distance calculation unit 4 calculates distance information to the object captured by the imaging unit 1. The distance information can be calculated based on the parallax information calculated by the parallax calculation unit 3 and the internal parameter and the external parameter of the imaging unit 1. Here, the distance information is information on the relative position to the object such as the distance to the object, the defocus amount, the image shift amount, etc., and the distance value of the object in the image is directly Or may indirectly represent information corresponding to the distance value.
 そして、ステップS6では、距離算出部4により算出された距離情報が予め設定された設定距離の範囲内に含まれるか否かの判定を、衝突判定部5によって行う。これにより、車両の周囲の設定距離内に障害物が存在するか否かを判定し、車両と障害物との衝突可能性を判定することができる。衝突判定部5は、設定距離内に障害物が存在する場合は衝突可能性ありと判定し(ステップS7)、設定距離内に障害物が存在しない場合は衝突可能性なしと判定する(ステップS8)。 Then, in step S6, the collision determination unit 5 determines whether the distance information calculated by the distance calculation unit 4 is included in the range of the preset distance set in advance. Thus, it is possible to determine whether an obstacle is present within the set distance around the vehicle and to determine the possibility of collision between the vehicle and the obstacle. The collision determination unit 5 determines that there is a collision possibility if there is an obstacle within the set distance (step S7), and determines that there is no collision possibility if there is no obstacle within the set distance (step S8) ).
 次に、衝突判定部5は、衝突可能性ありと判定した場合(ステップS7)、その判定結果を制御装置30や警報装置40に対して通知する。このとき、制御装置30は、衝突判定部5での判定結果に基づいて車両を制御し、警報装置40は、衝突判定部5での判定結果に基づいて警報を発する。 Next, when the collision determination unit 5 determines that there is a collision possibility (step S7), the collision determination unit 5 notifies the control device 30 or the alarm device 40 of the determination result. At this time, the control device 30 controls the vehicle based on the determination result of the collision determination unit 5, and the alarm device 40 issues an alarm based on the determination result of the collision determination unit 5.
 例えば、制御装置30は、車両に対して、ブレーキをかける、アクセルを戻す、各輪に制動力を発生させる制御信号を生成してエンジンやモータの出力を抑制する、などの制御を行う。また、警報装置40は、車両のユーザ(運転者)に対して、音等の警報を鳴らす、カーナビゲーションシステムなどの画面に警報情報を表示する、シートベルトやステアリングに振動を与える、などの警告を行う。 For example, the control device 30 performs control such as applying a brake to the vehicle, returning an accelerator, or generating a control signal for causing each wheel to generate a braking force to suppress an output of an engine or a motor. Further, the alarm device 40 sounds an alarm such as a sound to a user (driver) of the vehicle, displays alarm information on a screen of a car navigation system or the like, gives a vibration to a seat belt or steering wheel, etc. I do.
 以上、本実施形態に係る車載カメラシステム600によれば、上記の処理により、効果的に障害物の検知を行うことができ、車両と障害物との衝突を回避することが可能になる。特に、上述した各実施例に係る光学系を車載カメラシステム600に適用することで、車載カメラ10の全体を小型化して配置自由度を高めつつ、広画角にわたって高精度な障害物の検知及び衝突判定を行うことが可能になる。 As mentioned above, according to the vehicle-mounted camera system 600 which concerns on this embodiment, an obstacle can be detected effectively by said process, and it becomes possible to avoid the collision with a vehicle and an obstacle. In particular, by applying the optical system according to each of the above-described embodiments to the on-vehicle camera system 600, the entire on-vehicle camera 10 can be miniaturized to increase the degree of freedom of arrangement while detecting obstacles with high accuracy over wide angles of view. It becomes possible to perform collision determination.
 ここで、本実施形態では、車載カメラ10が撮像面位相差センサを有する撮像部1を1つのみ備える構成について説明したが、これに限られず、車載カメラ10として撮像部を2つ備えるステレオカメラを採用してもよい。この場合、撮像面位相差センサを用いなくても、同期させた2つの撮像部の夫々によって画像データを同時に取得し、その2つの画像データを用いることで、上述したものと同様の処理を行うことができる。ただし、2つの撮像部による撮像時間の差異が既知であれば、2つの撮像部を同期させなくてもよい。 Here, in the present embodiment, the configuration in which the on-vehicle camera 10 includes only one imaging unit 1 having an imaging surface phase difference sensor has been described, but the present invention is not limited thereto. A stereo camera including two imaging units as the on-vehicle camera 10 May be adopted. In this case, even without using the imaging surface phase difference sensor, image data is simultaneously acquired by each of the two synchronized imaging units, and the same processing as described above is performed by using the two image data. be able to. However, if the difference between the imaging times of the two imaging units is known, it is not necessary to synchronize the two imaging units.
 なお、距離情報の算出については、様々な実施形態が考えられる。一例として、撮像部1が有する撮像素子として、二次元アレイ状に規則的に配列された複数の画素部を有する瞳分割型の撮像素子を採用した場合について説明する。瞳分割型の撮像素子において、1つの画素部は、マイクロレンズと複数の光電変換部とから構成され、光学系の瞳における異なる領域を通過する一対の光束を受光し、対をなす画像データを各光電変換部から出力することができる。 In addition, various embodiments can be considered for the calculation of distance information. As an example, a case where a pupil division type imaging device having a plurality of pixel units regularly arranged in a two-dimensional array is adopted as an imaging device of the imaging unit 1 will be described. In the pupil division type imaging device, one pixel unit is composed of a micro lens and a plurality of photoelectric conversion units, receives a pair of light beams passing through different areas in the pupil of the optical system, and makes a pair of image data It can be output from each photoelectric conversion unit.
 そして、対をなす画像データ間の相関演算によって各領域の像ずれ量が算出され、距離算出部4により像ずれ量の分布を表す像ずれマップデータが算出される。あるいは、距離算出部4は、その像ずれ量をさらにデフォーカス量に換算し、デフォーカス量の分布(撮像画像の2次元平面上の分布)を表すデフォーカスマップデータを生成してもよい。また、距離算出部4は、デフォーカス量から変換される対象物までの距離の距離マップデータを取得してもよい。 Then, the image shift amount of each area is calculated by correlation calculation between the pair of image data, and the distance calculation unit 4 calculates image shift map data representing the distribution of the image shift amount. Alternatively, the distance calculation unit 4 may further convert the image shift amount into a defocus amount, and generate defocus map data representing the distribution of the defocus amount (distribution on the two-dimensional plane of the captured image). In addition, the distance calculation unit 4 may acquire distance map data of the distance to the object to be converted from the defocus amount.
 上述したように、各実施例に係る光学系の垂直画角は、光軸Aに対して片側にのみ設定されている。よって、各実施例に係る光学系を車載カメラ10に適用し、その車載カメラ10を車両に設置する場合は、光学系の光軸Aが水平方向に対して非平行となるように配置することが望ましい。例えば、図2に示した実施例1に係る光学系100を採用する場合、光軸Aを水平方向(Z方向)に対して上側に傾け、垂直画角の中心が水平方向に近づくように配置すればよい。あるいは、光学系100をX軸周りに180°回転(上下反転)させてから、光軸Aが水平方向に対して下側に傾くように配置してもよい。これにより、車載カメラ10の撮像範囲を適切に設定することができる。 As described above, the vertical angle of view of the optical system according to each embodiment is set to only one side with respect to the optical axis A. Therefore, when the optical system according to each embodiment is applied to the on-vehicle camera 10 and the on-vehicle camera 10 is installed in a vehicle, the optical axis A of the optical system should be arranged so as not to be parallel to the horizontal direction. Is desirable. For example, when the optical system 100 according to the first embodiment shown in FIG. 2 is adopted, the optical axis A is inclined upward with respect to the horizontal direction (Z direction), and the center of the vertical angle of view is arranged to approach the horizontal direction. do it. Alternatively, after the optical system 100 is rotated 180 degrees (vertically reversed) around the X axis, the optical axis A may be arranged to be inclined downward with respect to the horizontal direction. Thereby, the imaging range of the vehicle-mounted camera 10 can be set appropriately.
 ただし、上述したように、光学系においては、軸上での光学性能が最も高く、それに対して周辺画角での光学性能は低下するため、注目する撮像対象物からの光が光学系における軸上付近を通過するように配置することがより好ましい。例えば、車載カメラ10によって道路上の標識や障害物などに注目する必要がある場合は、水平方向に対して上側(空側)よりも下側(地面側)の画角での光学性能を高めることが好ましい。このとき、実施例1に係る光学系100を採用する場合、上述したように光学系100を一旦上下反転させてから、光軸Aを水平方向に対して下側に傾け、光軸Aの近傍の画角が下側を向くように配置すればよい。 However, as described above, in the optical system, the optical performance on the axis is the highest, while the optical performance at the peripheral angle of view decreases, so that the light from the target object of interest is the axis in the optical system. It is more preferable to arrange so as to pass near the upper side. For example, when it is necessary to pay attention to a sign or an obstacle on a road by the on-vehicle camera 10, the optical performance at an angle of view below the ground (ground side) relative to the upper side (air side) with respect to the horizontal direction is enhanced. Is preferred. At this time, when the optical system 100 according to the first embodiment is adopted, the optical system 100 is temporarily turned upside down as described above, and then the optical axis A is inclined downward with respect to the horizontal direction. It may be disposed so that the angle of view of the lens faces downward.
 なお、本実施形態では、車載カメラシステム600を運転支援(衝突被害軽減)に適用したが、これに限られず、車載カメラシステム600をクルーズコントロール(全車速追従機能付を含む)や自動運転などに適用してもよい。また、車載カメラシステム600は、自車両等の車両に限らず、例えば、船舶、航空機あるいは産業用ロボットなどの移動体(移動装置)に適用することができる。また、本実施形態に係る車載カメラ10、移動体に限らず、高度道路交通システム(ITS)等、広く物体認識を利用する機器に適用することができる。 In the present embodiment, the on-vehicle camera system 600 is applied for driving assistance (collision damage reduction), but the invention is not limited thereto. For example, the on-vehicle camera system 600 may be used for cruise control (including all vehicle speed tracking function) and automatic driving. It may apply. In addition, the on-vehicle camera system 600 can be applied not only to a vehicle such as a host vehicle but also to a mobile object (mobile device) such as a ship, an aircraft, or an industrial robot. Further, the present invention can be applied not only to the on-vehicle camera 10 and the moving body according to the present embodiment, but also to devices that widely use object recognition, such as the Intelligent Transportation System (ITS).
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。 The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Accordingly, the following claims are attached to disclose the scope of the present invention.
 本願は2016年3月4日提出の日本国特許出願特願2016-042684を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。 The present application claims priority based on Japanese Patent Application No. 2016-042684 filed Mar. 4, 2016, the entire contents of which are incorporated herein by reference.
 11 屈折面
 31 透過反射面
 32 反射面
 100 光学系
 G1 第1群
 G2 第2群
 STO 開口絞り
 IMG 像面
11 refracting surface 31 transmitting / reflecting surface 32 reflecting surface 100 optical system G1 first group G2 second group STO aperture stop IMG image plane

Claims (19)

  1.  拡大側から順に、第1群、開口絞り、及び第2群を備える光学系であって、
     前記第1群は、拡大側に向かって凸形状の屈折面を含み、
     前記第2群は、透過反射面と、凹形状の反射面と、を含み、
     前記開口絞りを通過した拡大側からの光は、前記透過反射面を透過した後、前記反射面及び前記透過反射面で順に反射されており、
     前記屈折面の曲率半径をRl(mm)、前記屈折面と前記開口絞りとの間隔をLl(mm)、とするとき、
     0.7≦|Rl|/Ll≦1.5
    なる条件を満足することを特徴とする光学系。
    An optical system comprising a first group, an aperture stop, and a second group in this order from the enlargement side,
    The first group includes a refracting surface having a convex shape toward the enlargement side,
    The second group includes a transmission / reflection surface and a concave reflection surface,
    The light from the enlargement side, which has passed through the aperture stop, is transmitted through the transmission / reflection surface, and then reflected in order by the reflection surface and the transmission / reflection surface,
    Assuming that the radius of curvature of the refracting surface is Rl (mm) and the distance between the refracting surface and the aperture stop is Ll (mm),
    0.7 ≦ | Rl | /Ll≦1.5
    An optical system characterized by satisfying the following conditions.
  2.  前記開口絞りと拡大側瞳との間隔をLp(mm)、全系の焦点距離をf(mm)、とするとき、
     -0.2≦Lp/f≦0.2
    なる条件を満足することを特徴とする請求項1に記載の光学系。
    When the distance between the aperture stop and the enlargement side pupil is Lp (mm) and the focal length of the whole system is f (mm),
    −0.2 ≦ Lp / f ≦ 0.2
    The optical system according to claim 1, wherein the following condition is satisfied.
  3.  前記反射面の曲率半径をRm(mm)、前記開口絞りと前記反射面との間隔をLm(mm)、とするとき、
     2≦|Rm|/Lm≦7
    なる条件を満足することを特徴とする請求項1又は2に記載の光学系。
    Assuming that the radius of curvature of the reflecting surface is Rm (mm), and the distance between the aperture stop and the reflecting surface is Lm (mm),
    2 ≦ | Rm | / Lm ≦ 7
    The optical system according to claim 1 or 2, wherein the following condition is satisfied.
  4.  前記第1群は、拡大側から順に配置された第1光学素子及び第2光学素子を有し、該第1光学素子及び第2光学素子は、互いに接合されていることを特徴とする請求項1乃至3の何れか1項に記載の光学系。 The first group has a first optical element and a second optical element arranged in order from the enlargement side, and the first optical element and the second optical element are bonded to each other. The optical system according to any one of 1 to 3.
  5.  前記第1光学素子及び第2光学素子の接合面は、拡大側に向かって凸形状であることを特徴とする請求項4に記載の光学系。 5. The optical system according to claim 4, wherein a cemented surface of the first optical element and the second optical element is convex toward the enlargement side.
  6.  前記第1光学素子のd線に対するアッベ数をνA、前記第2光学素子のd線に対するアッベ数をνB、とするとき、
     νA<νB
    なる条件を満足することを特徴とする請求項5に記載の光学系。
    Assuming that the Abbe number for the d line of the first optical element is dA and the Abbe number for the d line of the second optical element is BB,
    AA <νB
    The optical system according to claim 5, wherein the following condition is satisfied.
  7.  前記第1光学素子のd線に対する屈折率をNA、前記第2光学素子のd線に対する屈折率をNB、とするとき、
     NA>NB
    なる条件を満足することを特徴とする請求項5又は6に記載の光学系。
    When the refractive index for the d-line of the first optical element is NA, and the refractive index for the d-line of the second optical element is NB,
    NA> NB
    The optical system according to claim 5 or 6, wherein the following condition is satisfied.
  8.  前記反射面で反射された光は、前記透過反射面で全反射することを特徴とする請求項1乃至7の何れか1項に記載の光学系。 The optical system according to any one of claims 1 to 7, wherein the light reflected by the reflection surface is totally reflected by the transmission / reflection surface.
  9.  前記透過反射面は、透過反射膜を含むことを特徴とする請求項1乃至7の何れか1項に記載の光学系。 The optical system according to any one of claims 1 to 7, wherein the transmission and reflection surface includes a transmission and reflection film.
  10.  前記透過反射面と、光路上で前記透過反射面に最も近接した光学面と、は空気を介して互いに対向していることを特徴とする請求項1乃至9の何れか1項に記載の光学系。 10. The optical system according to any one of claims 1 to 9, wherein the transmission / reflection surface and the optical surface closest to the transmission / reflection surface on the optical path are opposed to each other via air. system.
  11.  前記透過反射面の曲率半径と、光路上で前記透過反射面に最も近接した光学面の曲率半径と、は互いに同じであることを特徴とする請求項1乃至10の何れか1項に記載の光学系。 The radius of curvature of the transmission / reflection surface and the radius of curvature of the optical surface closest to the transmission / reflection surface in the optical path are the same as one another. Optical system.
  12.  前記開口絞りの開口部は、反射面であることを特徴とする請求項1乃至11の何れか1項に記載の光学系。 The optical system according to any one of claims 1 to 11, wherein the aperture of the aperture stop is a reflective surface.
  13.  物体を撮像する撮像素子と、該撮像素子の撮像面に前記物体を結像する光学系と、を備え、該光学系は請求項1乃至12の何れか1項に記載の光学系であることを特徴とする撮像装置。 An imaging device for imaging an object, and an optical system for imaging the object on an imaging surface of the imaging device, the optical system being the optical system according to any one of claims 1 to 12. An imaging device characterized by
  14.  前記撮像面は、平面であることを特徴とする請求項13に記載の撮像装置。 The imaging device according to claim 13, wherein the imaging surface is a flat surface.
  15.  物体の画像データを取得する撮像装置と、該画像データに基づいて前記物体までの距離情報を取得する距離算出部と、を備え、前記撮像装置は請求項13又は14に記載の撮像装置であることを特徴とする車載カメラシステム。 An imaging device for acquiring image data of an object, and a distance calculation unit for acquiring distance information to the object based on the image data, wherein the imaging device is the imaging device according to claim 13 or 14 An in-vehicle camera system characterized by
  16.  前記距離情報に基づいて自車両と前記物体との衝突可能性を判定する衝突判定部を備えることを特徴とする請求項15に記載の車載カメラシステム。 The on-vehicle camera system according to claim 15, further comprising: a collision determination unit that determines a collision possibility between the host vehicle and the object based on the distance information.
  17.  前記自車両と前記物体との衝突可能性が有ると判定された場合に、前記自車両の各輪に制動力を発生させる制御信号を出力する制御装置を備えることを特徴とする請求項16に記載の車載カメラシステム。 17. The control device according to claim 16, further comprising: a control device that outputs a control signal that causes each wheel of the host vehicle to generate a braking force when it is determined that there is a collision possibility between the host vehicle and the object. In-vehicle camera system as described.
  18.  前記自車両と前記物体との衝突可能性が有ると判定された場合に、前記自車両の運転者に対して警報を発する警報装置を備えることを特徴とする請求項16又は17に記載の車載カメラシステム。 18. The on-vehicle according to claim 16, further comprising: an alarm device that issues an alarm to a driver of the host vehicle when it is determined that there is a collision possibility between the host vehicle and the object. Camera system.
  19.  画像を表示する表示素子と、該表示素子の表示面を結像する光学系と、を備え、該光学系は請求項1乃至12の何れか1項に記載の光学系であることを特徴とする投影装置。 A display device for displaying an image, and an optical system for forming an image on a display surface of the display device, the optical system being an optical system according to any one of claims 1 to 12. Projection device.
PCT/JP2017/007616 2016-03-04 2017-02-28 Optical system, imaging device provided with same, and projection device WO2017150486A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-042684 2016-03-04
JP2016042684A JP2017156712A (en) 2016-03-04 2016-03-04 Optical system, and imaging device and projection device including the same

Publications (1)

Publication Number Publication Date
WO2017150486A1 true WO2017150486A1 (en) 2017-09-08

Family

ID=59744036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007616 WO2017150486A1 (en) 2016-03-04 2017-02-28 Optical system, imaging device provided with same, and projection device

Country Status (2)

Country Link
JP (1) JP2017156712A (en)
WO (1) WO2017150486A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11131838B2 (en) * 2016-03-04 2021-09-28 Canon Kabushiki Kaisha Optical system, and imaging apparatus and projecting apparatus having the same
WO2024004271A1 (en) * 2022-06-28 2024-01-04 パナソニックIpマネジメント株式会社 Optical system, stereo optical system, stereo imaging device, imaging device, and image projection device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7183608B2 (en) 2018-07-27 2022-12-06 セイコーエプソン株式会社 Lens and projection type image display device
CN110780434B (en) 2018-07-27 2022-04-05 精工爱普生株式会社 Projection optical system and projection type image display apparatus
JP7124521B2 (en) 2018-07-30 2022-08-24 セイコーエプソン株式会社 Projection optical system and projection image display device
JP7127634B2 (en) 2019-12-19 2022-08-30 セイコーエプソン株式会社 Projection optics and projectors
JP7342681B2 (en) 2019-12-19 2023-09-12 セイコーエプソン株式会社 Lens unit, projection optical system, and projector
JP2021117279A (en) 2020-01-23 2021-08-10 セイコーエプソン株式会社 Projection optical system and projector
JP7459523B2 (en) 2020-01-23 2024-04-02 セイコーエプソン株式会社 Projection optics and projector
JP7380246B2 (en) 2020-01-23 2023-11-15 セイコーエプソン株式会社 Projection optical system and projector
JP2021117276A (en) 2020-01-23 2021-08-10 セイコーエプソン株式会社 Projection optical system and projector
JP7120259B2 (en) 2020-01-24 2022-08-17 セイコーエプソン株式会社 Projection optical system and projector
JP7424072B2 (en) 2020-01-24 2024-01-30 セイコーエプソン株式会社 Projection optical system and projector
JP7363518B2 (en) 2020-01-24 2023-10-18 セイコーエプソン株式会社 Projection optics and projector
JP2022040640A (en) 2020-08-31 2022-03-11 セイコーエプソン株式会社 Optical system, projector, and imaging apparatus
JP2022040642A (en) 2020-08-31 2022-03-11 セイコーエプソン株式会社 Lens, optical system, projector, and imaging apparatus
JP2022040639A (en) 2020-08-31 2022-03-11 セイコーエプソン株式会社 Optical system, projector, and imaging apparatus
JP2022048543A (en) 2020-09-15 2022-03-28 セイコーエプソン株式会社 Optical device, projector, and imaging apparatus

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10161019A (en) * 1996-11-27 1998-06-19 Olympus Optical Co Ltd Image formation optical system
JPH10221603A (en) * 1997-02-05 1998-08-21 Canon Inc Image formation optical system
JP2000019408A (en) * 1998-06-29 2000-01-21 Olympus Optical Co Ltd Image-formation optical system
JP2000227555A (en) * 1998-07-16 2000-08-15 Olympus Optical Co Ltd Image forming optical system
JP2001201689A (en) * 2000-01-17 2001-07-27 Olympus Optical Co Ltd Image forming optical system
JP2003015041A (en) * 2001-07-03 2003-01-15 Dainippon Printing Co Ltd Optical system and device using the same
JP2003075722A (en) * 2001-09-04 2003-03-12 Canon Inc Image pickup optical system and image input device
JP2009098600A (en) * 2007-09-27 2009-05-07 Olympus Corp Optical system and endoscope using the same
JP2009145541A (en) * 2007-12-13 2009-07-02 Panasonic Corp Camera device
JP2011095026A (en) * 2009-10-28 2011-05-12 Kyocera Corp Object distance estimation apparatus
JP2014174390A (en) * 2013-03-11 2014-09-22 Olympus Medical Systems Corp Imaging optical system, stereographic image capturing device, and endoscope

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10161019A (en) * 1996-11-27 1998-06-19 Olympus Optical Co Ltd Image formation optical system
JPH10221603A (en) * 1997-02-05 1998-08-21 Canon Inc Image formation optical system
JP2000019408A (en) * 1998-06-29 2000-01-21 Olympus Optical Co Ltd Image-formation optical system
JP2000227555A (en) * 1998-07-16 2000-08-15 Olympus Optical Co Ltd Image forming optical system
JP2001201689A (en) * 2000-01-17 2001-07-27 Olympus Optical Co Ltd Image forming optical system
JP2003015041A (en) * 2001-07-03 2003-01-15 Dainippon Printing Co Ltd Optical system and device using the same
JP2003075722A (en) * 2001-09-04 2003-03-12 Canon Inc Image pickup optical system and image input device
JP2009098600A (en) * 2007-09-27 2009-05-07 Olympus Corp Optical system and endoscope using the same
JP2009145541A (en) * 2007-12-13 2009-07-02 Panasonic Corp Camera device
JP2011095026A (en) * 2009-10-28 2011-05-12 Kyocera Corp Object distance estimation apparatus
JP2014174390A (en) * 2013-03-11 2014-09-22 Olympus Medical Systems Corp Imaging optical system, stereographic image capturing device, and endoscope

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11131838B2 (en) * 2016-03-04 2021-09-28 Canon Kabushiki Kaisha Optical system, and imaging apparatus and projecting apparatus having the same
WO2024004271A1 (en) * 2022-06-28 2024-01-04 パナソニックIpマネジメント株式会社 Optical system, stereo optical system, stereo imaging device, imaging device, and image projection device

Also Published As

Publication number Publication date
JP2017156712A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
WO2017150486A1 (en) Optical system, imaging device provided with same, and projection device
JP6746328B2 (en) Optical system, imaging apparatus and projection apparatus including the same
WO2017150493A1 (en) Imaging device and projection device
JP7005207B2 (en) Optical system, imaging device and projection device equipped with it
JP7086572B2 (en) Optical systems, imaging devices, ranging devices, in-vehicle systems, and mobile devices
JP2023016888A (en) Optical system, image capturing device, in-vehicle system, and mobile device
GB2622997A (en) Imaging system
JP2019101181A (en) Imaging device
JP2019028127A (en) Optical system, and imaging apparatus and projection apparatus including the same
WO2017150492A1 (en) Optical system, and imaging apparatus and projection apparatus provided with same
GB2622735A (en) Optical system, imaging device, and imaging system
JP6983584B2 (en) Imaging device, range measuring device equipped with it, and in-vehicle camera system
JP2018189747A (en) Optical system, and imaging apparatus and projection device including the same
JP2021081663A (en) Optical system and imaging apparatus with the same
JP7379112B2 (en) Optical system and imaging device equipped with the same
US12019226B2 (en) Optical system and imaging apparatus including optical system
US20230296881A1 (en) Optical system including cemented lenses, imaging apparatus including the same, and moving apparatus including the same
US20240176095A1 (en) Optical system, imaging apparatus including the same, in-vehicle system, and moving apparatus
JP2019045819A (en) Optical system, imaging device including the same, and projection device including the same
US20190033566A1 (en) Optical system including refractive surface and reflective surface, and imaging apparatus and projection apparatus including the same
JP2022114765A (en) Optical system, image capturing device, in-vehicle system, and mobile device
JP2020003736A (en) Imaging apparatus, and moving apparatus and distance measuring apparatus comprising the same
JP2021081662A (en) Optical system and imaging apparatus with the same
JP2019090995A (en) Optical system, imaging device, distance measuring device, and on-vehicle camera system
CN113448064A (en) Optical system, image pickup apparatus, in-vehicle system, and mobile apparatus

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759952

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17759952

Country of ref document: EP

Kind code of ref document: A1