WO2017150419A1 - 燃焼器、ガスタービン - Google Patents

燃焼器、ガスタービン Download PDF

Info

Publication number
WO2017150419A1
WO2017150419A1 PCT/JP2017/007375 JP2017007375W WO2017150419A1 WO 2017150419 A1 WO2017150419 A1 WO 2017150419A1 JP 2017007375 W JP2017007375 W JP 2017007375W WO 2017150419 A1 WO2017150419 A1 WO 2017150419A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustor
air
cylinder
upstream end
peripheral surface
Prior art date
Application number
PCT/JP2017/007375
Other languages
English (en)
French (fr)
Inventor
宮本 健司
智志 瀧口
西田 幸一
平田 義隆
沼田 祥平
啓太 柚木
恭大 穐山
智紀 宇留野
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to KR1020187024029A priority Critical patent/KR102193815B1/ko
Priority to CN201780012757.4A priority patent/CN108700297B/zh
Priority to US16/079,865 priority patent/US11215364B2/en
Priority to EP17759885.1A priority patent/EP3425280B1/en
Publication of WO2017150419A1 publication Critical patent/WO2017150419A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/16Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration with devices inside the flame tube or the combustion chamber to influence the air or gas flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/26Controlling the air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/283Attaching or cooling of fuel injecting means including supports for fuel injectors, stems, or lances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/44Combustion chambers comprising a single tubular flame tube within a tubular casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/35Combustors or associated equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/14Special features of gas burners
    • F23D2900/14004Special features of gas burners with radially extending gas distribution spokes

Definitions

  • the present invention relates to a combustor and a gas turbine. This application claims priority based on Japanese Patent Application No. 2016-036997 filed in Japan on February 29, 2016, the contents of which are incorporated herein by reference.
  • a gas turbine includes a compressor that generates high-pressure air, a combustor that generates high-temperature and high-pressure combustion gas by mixing high-pressure air and fuel, and burning the mixed gas, and a combustion gas. And a turbine that is driven to rotate.
  • a combustor described in Patent Document 1 As combustors, various types of combustors have been proposed and put to practical use.
  • a combustor described in Patent Document 1 below is known.
  • the combustor described in Patent Document 1 is a cylinder (support structure) through which combustion gas flows, a mixing pipe provided on the upstream side of the cylinder, a fuel injector, and a high-pressure air in the passenger compartment.
  • a tapered annular wall leading to The tapered annular wall is provided on the outer peripheral side of the cylindrical body, thereby forming an internal passage through which high-pressure air flows between the outer peripheral surface of the cylindrical body.
  • the flow velocity distribution of the high-pressure air in the internal passage may be non-uniform. If the flow velocity distribution of the high-pressure air is not uniform, a flow imbalance may occur in the downstream cylinder as well, resulting in an increase in the amount of NOx produced.
  • the present invention provides a combustor in which the amount of NOx produced is reduced by optimizing the flow velocity distribution of high-pressure air.
  • the combustor holds the fuel nozzle extending along the axial direction, and the first cylinder through which air flows toward the downstream side, and the downstream of the first cylinder.
  • An air introduction path that introduces air so as to be reversed at the upstream end of the first cylinder and toward the downstream side between the second cylinder connected to the side and the outer peripheral surface of the first cylinder
  • An outer cylinder having an inner circumferential surface that defines the outer circumferential surface, and an outer diaphragm surface that extends radially inward toward the upstream end side of the first cylindrical body is formed on the inner circumferential surface.
  • the outer throttle surface is formed on the inner peripheral surface of the outer cylinder, the flow velocity distribution of the air flowing along the outer throttle surface in the air introduction path can be made uniform.
  • the outer throttle surface extends radially inward toward the upstream end of the first cylinder, the air flow velocity on the outer peripheral side when air is reversed at the upstream end of the first cylinder. Can be made larger than the flow velocity of the air on the inner peripheral side. Thereby, the flow velocity distribution of air can be made uniform on the outlet side of the air introduction path.
  • the first cylinder is disposed on a portion of the outer peripheral surface that is opposed to the outer throttle surface in the radial direction.
  • An inner diaphragm surface may be formed that extends radially outward as it goes toward the upstream end of the body.
  • the inner diaphragm surface is formed in the portion facing the outer diaphragm surface, so when air is reversed at the upstream end of the first cylinder, in addition to the outer peripheral side of the upstream end, the air flow rate can be optimized on the inner peripheral side.
  • an angle formed by the axis and the outer throttle surface is ⁇ , and the axis and the inner
  • the angle formed by the diaphragm surface is ⁇ , the relationship ⁇ ⁇ may be established.
  • the angle ⁇ formed between the axis and the outer diaphragm surface on the inner circumferential surface of the outer cylinder is smaller than the angle ⁇ formed between the axis and the inner diaphragm surface on the outer circumferential surface of the first cylinder.
  • the air flowing along the outer throttle surface has more directional components toward the upstream side than the air flowing along the inner throttle surface. That is, when the air is reversed at the upstream end of the first cylinder, the air flow rate on the outer peripheral side can be made larger than the air flow rate on the inner peripheral side.
  • the upstream end of the outer throttle surface is located upstream of the upstream end of the inner throttle surface. May be located.
  • the upstream end of the outer throttle surface is located upstream of the upstream end of the inner throttle surface, the flow of air flowing along the outer throttle surface Compared to the flow of air flowing along the throttle surface, it becomes easier to reach the upstream side.
  • the air guided by the outer throttle surface contains a large amount of directional components that go inward in the radial direction of the axis, and therefore can be reversed more smoothly at the upstream end of the first cylinder.
  • a gas turbine includes a compressor that generates compressed air, the combustor according to any one of the first to fourth aspects, and the combustion gas generated by the combustor. And a turbine driven to rotate.
  • the amount of NOx generated can be reduced by optimizing the flow velocity distribution of high-pressure air.
  • a gas turbine 1 includes a compressor 2 that compresses outside air to generate compressed air, and a fuel mixed with the compressed air and burns to generate high-temperature and high-pressure combustion gas.
  • a combustor 3 to be generated and a turbine 4 that is rotationally driven by the combustion gas are provided.
  • the compressor 2 includes a compressor casing 5A and a compressor rotor 6A that rotates around the main axis Am in the compressor casing 5A.
  • a plurality of compressor vanes 7A arranged at intervals in the circumferential direction of the main axis Am are attached to the inner peripheral surface of the compressor casing 5A.
  • a plurality of compressor rotor blades 8A are attached on the outer peripheral surface of the compressor rotor 6A.
  • the plurality of compressor stationary blades 7A and the compressor rotor blades 8A are arranged in a staggered manner in the main axis Am direction.
  • a plurality of combustors 3 are attached at intervals in the circumferential direction of the main axis Am.
  • the plurality of combustors 3 are supplied with compressed air generated by the compressor 2 described above.
  • the compressed air and the fuel are mixed and burned to generate a high-temperature and high-pressure combustion gas.
  • the turbine 4 includes a turbine casing 5B and a turbine rotor 6B that rotates around the main axis Am in the turbine casing 5B.
  • a plurality of turbine vanes 7B arranged at intervals in the circumferential direction of the main axis Am are attached to the inner peripheral surface of the turbine casing 5B.
  • a plurality of turbine rotor blades 8B are mounted on the outer peripheral surface of the turbine rotor 6B.
  • the plurality of turbine stationary blades 7B and the turbine rotor blades 8B are arranged in a staggered manner in the main axis Am direction.
  • One end side (first end) of the turbine rotor 6B is connected to, for example, a generator (not shown) that generates electric power as the turbine rotor 6B rotates.
  • the other end side (second end) of the turbine rotor 6B is connected to the compressor rotor 6A in the main axis Am direction. That is, the turbine rotor 6B and the compressor rotor 6A can rotate integrally around the main axis Am.
  • FIG. 2 is a cross-sectional view of the combustor 3 as viewed from a direction intersecting its own central axis Ac (axis).
  • the combustor 3 is inserted into the turbine casing 5B through a combustor insertion port 9 formed in the turbine casing 5B.
  • the combustor 3 includes an outer cylinder 10 that guides compressed air in the turbine casing 5B into the combustor 3, and a swirler support cylinder that mixes and burns the compressed air and fuel to supply combustion gas.
  • the side on which the swirler support cylinder 11 is located along the central axis Ac of the combustor 3 is called an upstream side
  • the side on which the combustion cylinder 12 is located is called a downstream side.
  • the outer cylinder 10 is a substantially cylindrical member that supports a fuel nozzle 13 described later and is attached so as to close the combustor insertion port 9 from the outside.
  • the outer cylinder 10 according to the present embodiment includes an outer cylinder main body 10 ⁇ / b> A and a nozzle base 14.
  • 10 A of outer cylinder main bodies have comprised the disk shape centering on the center axis line Ac.
  • a fitting convex portion 15 that is fitted to the inner peripheral side of the combustor insertion port 9 is formed in the outer peripheral region on the downstream surface of the outer cylinder main body 10A.
  • a support opening 16 for supporting the nozzle base 14 is formed in a central region including the center point of the outer cylinder main body 10A.
  • the outer cylinder 10 may be called a top hat etc. as an example.
  • the outer peripheral surface of the fitting convex portion 15 has a diameter that is the same as or slightly smaller than the inner peripheral surface of the combustor insertion port 9. Thereby, the outer peripheral surface of the fitting convex part 15 fits with the inner peripheral surface of the combustor insertion port 9 without a gap.
  • the inner peripheral surface of the fitting convex portion 15 is opposed to the outer peripheral surface 11S of the swirler support tube 11 with a gap in the radial direction of the central axis Ac. This gap is used as an air introduction path C for introducing compressed air in the turbine casing 5B. More specifically, on the inner peripheral surface of the fitting convex portion 15, the outer diaphragm surface 17, the parallel surface 18, the reversing surface 19, in order from the downstream side toward the upstream end side of the swirler support cylinder 11, Is formed.
  • the outer diaphragm surface 17 extends at an angle ⁇ with respect to the central axis Ac in a cross-sectional view including the central axis Ac. More specifically, the outer diaphragm surface 17 extends toward the inner side in the radial direction of the central axis Ac as it goes from the downstream side to the upstream side along the inner peripheral surface of the fitting convex portion 15.
  • the upstream end of the outer throttle surface 17 is connected to the parallel surface 18.
  • the parallel surface 18 extends parallel to the central axis line Ac.
  • the upstream end of the parallel surface 18 is connected to the inversion surface 19.
  • the reverse surface 19 is a curved surface connected to the upstream end of the parallel surface 18. More specifically, the inversion surface 19 forms a 1 ⁇ 4 arc centered on the upstream end of the swirler support tube 11 in a cross-sectional view including the central axis Ac.
  • the upstream end of the reversing surface 19 (that is, the radially inner end of the central axis Ac) is connected to the inner peripheral surface of the support opening 16.
  • a top hat nozzle (hereinafter referred to as a peg 20) for injecting fuel into the air introduction path C is attached to the reversing surface 19.
  • the peg 20 has a rod shape extending in the direction of 45 ° from the inner peripheral surface of the reversing surface 19 toward the central axis Ac.
  • the peg 20 is connected to a fuel supply source. This fuel is mixed with the compressed air in the air introduction path C.
  • the nozzle base 14 is a member that supports the fuel nozzle 13.
  • the fuel nozzle 13 includes two types, a first nozzle 13P and a second nozzle 13M. More specifically, as shown in FIG. 2, the nozzle base 14 has an annular shape supported from the outer peripheral side by the support opening 16 of the outer cylinder main body 10A. The first nozzle 13 ⁇ / b> P is inserted into a region including the center point of the nozzle base 14.
  • the first nozzle 13P has a cylindrical shape extending along the central axis Ac, and the inside thereof is hollow from the upstream side to the downstream side.
  • a fuel supply source is connected to the upstream side of the first nozzle 13P, and the fuel supplied into the first nozzle 13P from the upstream side flows toward the downstream side, and then is provided at the downstream end. Injected from the one nozzle body 13 ⁇ / b> A toward the inside of the swirler support cylinder 11.
  • a first cone 13C is attached to the outer peripheral side of the first nozzle body 13A.
  • the first cone 13C is a funnel-shaped member that gradually increases in diameter from the upstream side to the downstream side of the central axis Ac.
  • a plurality of second nozzles 13M are attached to the outer peripheral side area of the nozzle base 14 (that is, the outer peripheral side area of the first nozzle 13P) at intervals in the circumferential direction of the central axis Ac. These second nozzles 13M extend parallel to each other along the central axis Ac.
  • the fuel supplied from the fuel supply source also flows inside the second nozzle 13M.
  • the fuel supplied from the upstream side is supplied into the swirler support cylinder 11 through an injection port (not shown) formed on the downstream side.
  • the swirler support tube 11 has a cylindrical shape extending along the central axis Ac.
  • the combustion cylinder 12 is connected to the downstream end of the swirler support cylinder 11 via a connecting member 21.
  • the swirler support cylinder 11 has an outer diameter smaller than the inner diameter of the combustion cylinder 12 and is inserted into the inner peripheral side of the combustion cylinder 12.
  • the connection member 21 is configured by an annular elastic member extending in the circumferential direction of the central axis Ac. In the state where the nozzle base 14 is attached to the combustor insertion port 9, the tip of the fuel nozzle 13 (first nozzle 13 ⁇ / b> P, second nozzle 13 ⁇ / b> M) is held inside the swirler support cylinder 11.
  • a bulging portion 22 bulging outward in the radial direction is provided at a portion including the upstream end portion of the swirler support tube 11.
  • the thickness dimension of the bulging part 22 (the dimension in the radial direction of the central axis Ac) is set to be larger than the thickness dimension of the swirler support cylinder 11 in the part other than the bulging part 22.
  • the end face on the upstream side of the bulging portion 22 has a semicircular arc-like cross section when viewed in cross section including the central axis Ac.
  • an inner diaphragm surface 23 is formed at a portion facing the outer diaphragm surface 17 from the radial direction.
  • the inner diaphragm surface 23 extends at an angle ⁇ with respect to the central axis Ac in a cross-sectional view including the central axis Ac. More specifically, the inner diaphragm surface 23 extends radially outward along the outer peripheral surface 11S of the swirler support tube 11 from the downstream side toward the upstream side.
  • the relationship of ⁇ ⁇ is established between the values.
  • the upstream end of the outer throttle surface 17 is located upstream of the upstream end of the inner throttle surface 23.
  • the air introduction path C is formed by the inner peripheral surface of the outer cylinder 10 and the outer peripheral surface 11S of the swirler support cylinder 11.
  • the radial dimension gradually decreases from the downstream side toward the upstream side. ing.
  • the compressor 2 is driven by an external power source.
  • external air is taken into the compressor 2 and is compressed sequentially while flowing between the compressor rotor blade 8A and the compressor stationary blade 7A, and high-pressure compressed air is generated.
  • Compressed air generated by the compressor 2 is taken into the combustor 3 through the turbine casing 5B.
  • the fuel supplied by the fuel nozzle 13 and the compressed air are mixed and then burned to generate high-temperature and high-pressure combustion gas.
  • Combustion gas generated in the combustor 3 is supplied to the subsequent turbine 4.
  • the combustion gas collides with the turbine rotor blade 8 ⁇ / b> B, thereby giving a rotational force to the turbine rotor 6 ⁇ / b> B.
  • the turbine rotor 6B rotates. Since the turbine rotor 6B is integrally connected to the compressor rotor 6A as described above, the compressor rotor 6A is also rotationally driven with the rotation of the turbine rotor 6B. That is, in a steady operation state, the generation of compressed air by the compressor 2 and the rotation of the turbine 4 form a continuous cycle.
  • the compressed air generated by the compressor 2 first flows into the turbine casing 5B.
  • the inside of the combustor 3 has a relatively low pressure compared to the inside of the turbine casing 5 ⁇ / b> B, the compressed air is naturally taken into the combustor 3.
  • the compressed air in the turbine casing 5B flows into the swirler support cylinder 11 through the air introduction path C described above.
  • the compressed air flows from the upstream side to the downstream side so as to surround the second nozzle 13M from the outside.
  • the fuel is injected from the downstream end of the second nozzle 13M as described above.
  • the premixed gas with which fuel and compressed air were mixed is produced
  • the compressed air is guided into the combustor 3 by an air introduction path C defined by the outer cylinder 10 and the swirler support cylinder 11.
  • the end portion of the air introduction path C opens toward the downstream side.
  • the compressed air flows into the air introduction path C from the turbine casing 5B through this opening, and then changes its direction through 180 ° reversal by the reversing surface 19 so that the compressed air flows from the upstream side inside the swirler support cylinder 11. Circulates downstream.
  • the outer periphery side of the reversing surface 19 that is, the side closer to the reversing surface 19 than the bulging portion 22
  • the flow rate of the compressed air is different on the side (the bulging portion 22 side). Due to such an imbalance in the flow velocity distribution, there is a possibility that the air flow rate is uneven on the downstream side of the air introduction path C, that is, on the upstream side of the swirler support cylinder 11. If such an air flow rate deviation occurs, the concentration distribution of the combustion gas may also become uneven. As a result, there is a possibility that the amount of NOx generated will be larger than specified.
  • the outer throttle surface 17 is formed on the inner peripheral surface of the outer cylinder 10, the flow velocity of air flowing along the outer throttle surface 17 in the air introduction path C.
  • the distribution can be made uniform.
  • the outer throttle surface 17 extends radially inward as it goes toward the upstream end of the swirler support cylinder 11, so that when the air is reversed at the upstream end of the swirler support cylinder 11, The flow velocity can be increased as compared with the flow velocity of the air on the inner peripheral side. Thereby, the flow velocity distribution of air can be made uniform on the outlet side of the air introduction path C.
  • the inner throttle surface 23 is formed on the outer peripheral surface of the swirler support cylinder 11 at a portion facing the outer throttle surface 17, so that air is at the upstream end of the swirler support cylinder 11.
  • the air flow velocity can be optimized not only on the outer peripheral side of the upstream end but also on the inner peripheral side.
  • the angle ⁇ formed by the central axis Ac and the outer diaphragm surface 17 on the inner peripheral surface of the outer cylinder 10 is the same as that on the outer peripheral surface of the swirler support cylinder 11. It is smaller than the angle ⁇ formed by the diaphragm surface 23.
  • the air flowing along the outer throttle surface 17 has more directional components toward the upstream side than the air flowing along the inner throttle surface 23.
  • the upstream end portion of the outer throttle surface 17 is positioned upstream of the upstream end portion of the inner throttle surface 23, and therefore flows along the outer throttle surface 17.
  • the flow of air can more easily reach the upstream side.
  • the air guided by the outer throttle surface 17 includes many directional components from the radially outer side to the inner side of the central axis Ac, the air can be more smoothly reversed at the upstream end of the swirler support cylinder 11.
  • the concentration distribution of the combustion gas becomes appropriate by optimizing the flow velocity distribution of the compressed air, so that the NOx generation amount can be reduced.
  • the present embodiment is different from the first embodiment in that the bulging portion 22 is not formed at the upstream end of the swirler support tube 11. That is, in this embodiment, the outer peripheral surface 11S of the swirler support cylinder 11 has the same outer diameter from the upstream side to the downstream side. In addition, the upstream end surface of the swirler support cylinder 11 has a semicircular arc-like cross-sectional shape as in the first embodiment.
  • connection parts may comprise the curved surface which continues. Specifically, it may be configured to bend gently as it goes from the outer diaphragm surface 17 toward the parallel surface 18 or from the inner diaphragm surface 23 toward the bulging portion 22. According to such a configuration, it is possible to further reduce the possibility of stagnation and separation of the flow as compared with the case where corners are formed, so the flow velocity distribution of the compressed air in the air introduction path C Can be further optimized.
  • the amount of NOx generated can be reduced by optimizing the flow velocity distribution of high-pressure air.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

この燃焼器(3)は、軸線(Ac)方向に沿って延びる燃料ノズルを保持するとともに、下流側に向かって空気が流通する第一筒体(11)と、第一筒体(11)の下流側に接続される第二筒体(12)と、第一筒体(11)の外周面との間で、第一筒体(11)の上流端で反転させて下流側に向かうように空気を導入する空気導入路(C)を画成する内周面を有する外筒(10)と、を備え、内周面に、第一筒体(11)の上流端側に向かうにしたがって径方向内側に向かって延びる外側絞り面(17)が形成されている。

Description

燃焼器、ガスタービン
 本発明は、燃焼器、及びガスタービンに関する。本願は、2016年2月29日に、日本に出願された特願2016-036997号に基づき優先権を主張し、その内容をここに援用する。
 一般的に、ガスタービンは、高圧空気を生成する圧縮機と、高圧空気と燃料とを混合させ、混合させたガスを燃焼させることによって高温高圧の燃焼ガスを生成する燃焼器と、燃焼ガスによって回転駆動されるタービンと、を備えている。
 燃焼器としては、これまでに種々の態様のものが提唱及び実用化されている。その一例として、下記特許文献1に記載された燃焼器が知られている。特許文献1に記載された燃焼器は、燃焼ガスが流通する筒体(支持構造)と、筒体の上流側に設けられた混合管と、燃料噴射器と、車室内の高圧空気を混合管に導くテーパ状環状壁と、を備えている。テーパ状環状壁は、筒体の外周側に設けられることで、前記筒体の外周面との間に、高圧空気が流通する内部通路を形成している。
 これにより、燃料噴射器から供給された燃料と、内部通路を流通する高圧空気とが、混合管内で混合された後、筒体内での燃焼を経て、燃焼ガスが生成される。
特開2014-173836号公報
 ところで、上記のテーパ状環状壁と筒体とによって形成された内部通路上では、まず車室内の高圧空気が下流側(燃焼ガスの流れる方向における下流側)から上流側に向かって導かれる。続いて、高圧空気は、テーパ状環状壁の内周面に沿って、その流れ方向が180°反転された後、混合管に導入される。
 このように、上記特許文献1に記載された燃焼器では、高圧空気の流れの反転を伴うことから、内部通路中における高圧空気の流速分布が不均一となる可能性がある。高圧空気の流速分布が均一でない場合、下流側の筒体内でも同様に流れの不均衡を生じ、結果としてNOxの生成量が増えてしまう場合がある。
 本発明は、高圧空気の流速分布を最適化することで、NOx生成量が低減された燃焼器を提供する。
 本発明の第一の態様によれば、燃焼器は、軸線方向に沿って延びる燃料ノズルを保持するとともに、下流側に向かって空気が流通する第一筒体と、前記第一筒体の下流側に接続される第二筒体と、前記第一筒体の外周面との間で、前記第一筒体の上流端で反転させて前記下流側に向かうように空気を導入する空気導入路を画成する内周面を有する外筒と、を備え、前記内周面に、前記第一筒体の上流端側に向かうにしたがって径方向内側に向かって延びる外側絞り面が形成されている。
 この構成によれば、外筒の内周面に外側絞り面が形成されていることから、空気導入路内を前記外側絞り面に沿って流通する空気の流速分布を均一にすることができる。特に、外側絞り面は、第一筒体の上流側端に向かうにしたがって径方向内側に向かって延びることから、空気が第一筒体の上流端で反転する際に、外周側における空気の流速を内周側の空気の流速に比べて大きくすることができる。これにより、空気導入路の出口側で、空気の流速分布を均一化することができる。
 本発明の第二の態様によれば、上記第一の態様に係る燃焼器において、前記外周面上であって、前記外側絞り面に対して径方向から対向する部分には、前記第一筒体の上流端側に向かうにしたがって径方向外側に向かって延びる内側絞り面が形成されていてもよい。
 この構成によれば、第一筒体の外周面上で、外側絞り面と対向する部分に内側絞り面が形成されていることから、空気が第一筒体の上流端で反転する際に、前記上流端の外周側に加えて内周側でも空気の流速を最適化することができる。
 本発明の第三の態様によれば、上記第二の態様に係る燃焼器において、前記軸線を含む断面視で、前記軸線と前記外側絞り面とがなす角度をαとし、前記軸線と前記内側絞り面とがなす角度をβとしたとき、α<βの関係が成立するように構成されてもよい。
 この構成によれば、外筒の内周面上において、軸線と外側絞り面とがなす角度αは、第一筒体の外周面上において、軸線と内側絞り面とがなす角度βよりも小さい。これにより、外側絞り面に沿って流通する空気では、内側絞り面に沿って流通する空気に比べて、上流側に向かう方向成分が多くなる。すなわち、空気が第一筒体の上流端で反転する際に、外周側における空気の流速を内周側の空気の流速に比べて大きくすることができる。
 本発明の第四の態様によれば、上記第二又は第三の態様に係る燃焼器において、前記外側絞り面の上流側端部は、前記内側絞り面の上流側端部よりも上流側に位置していてもよい。
 この構成によれば、外側絞り面の上流側端部が、内側絞り面の上流側端部よりも上流側に位置していることから、外側絞り面に沿って流通する空気の流れが、内側絞り面に沿って流通する空気の流れに比べて、より上流側に到達しやすくなる。外側絞り面によって案内された空気は、軸線の径方向内側に向かう方向成分を多く含むことから、第一筒体の上流端でさらに円滑に反転することができる。
 本発明の第五の態様によれば、ガスタービンは、圧縮空気を生成する圧縮機と、上記第一から第四のいずれか一態様に係る燃焼器と、前記燃焼器によって生成された燃焼ガスによって回転駆動されるタービンと、を備える。
 この構成によれば、NOx生成量が低減された燃焼器を備えるガスタービンを提供することができる。
 上記燃焼器によれば、高圧空気の流速分布を最適化することで、NOx生成量が低減することができる。
本発明の第一実施形態に係るガスタービンの構成を示す模式図である。 本発明の第一実施形態に係る燃焼器の断面図である。 本発明の第一実施形態に係る燃焼器の要部拡大断面図である。 本発明の第二実施形態に係る燃焼器の要部拡大断面図である。
[第一実施形態]
 本発明の第一実施形態について、図1から図3を参照して説明する。図1に示すように、本実施形態に係るガスタービン1は、外気を圧縮して圧縮空気を生成する圧縮機2と、この圧縮空気に燃料を混合して燃焼させ、高温高圧の燃焼ガスを生成する燃焼器3と、この燃焼ガスによって回転駆動されるタービン4と、を備えている。
 圧縮機2は、圧縮機車室5Aと、この圧縮機車室5A内で主軸線Am回りに回転する圧縮機ロータ6Aと、を備えている。圧縮機車室5Aの内周面上には、主軸線Amの周方向に間隔をあけて配列された複数の圧縮機静翼7Aが取り付けられている。圧縮機ロータ6Aの外周面上には、複数の圧縮機動翼8Aが取り付けられている。これら複数の圧縮機静翼7Aと圧縮機動翼8A同士は、主軸線Am方向に互い違いになるように配列されている。
 燃焼器3は、例えば主軸線Amの周方向に間隔をあけて複数が取り付けられている。これら複数の燃焼器3には、上記の圧縮機2で生成された圧縮空気が供給される。燃焼器3中で、この圧縮空気と燃料とが混合及び燃焼することで、高温高圧の燃焼ガスが生成される。
 タービン4は、タービン車室5Bと、このタービン車室5B内で主軸線Am回りに回転するタービンロータ6Bと、を備えている。タービン車室5Bの内周面上には、主軸線Amの周方向に間隔をあけて配列された複数のタービン静翼7Bが取り付けられている。タービンロータ6Bの外周面上には、複数のタービン動翼8Bが取り付けられている。これら複数のタービン静翼7Bとタービン動翼8B同士は、主軸線Am方向に互い違いになるように配列されている。
 タービンロータ6Bの一端側(第一端)は、例えば、タービンロータ6Bの回転に伴って発電する発電機(図示省略)と接続されている。一方で、タービンロータ6Bの他端側(第二端)は、上記の圧縮機ロータ6Aに対して主軸線Am方向に接続されている。すなわち、タービンロータ6Bと圧縮機ロータ6Aとは、主軸線Am回りに一体に回転可能となっている。
 続いて、燃焼器3の構成について図2、図3を参照して説明する。図2は、燃焼器3を自身の中心軸線Ac(軸線)に交差する方向から見た断面図である。図2に示すように、燃焼器3は、タービン車室5Bに形成された燃焼器挿入口9を通じて、タービン車室5B内に挿入されている。より詳細には、この燃焼器3は、タービン車室5B内の圧縮空気を燃焼器3内に導く外筒10と、圧縮空気と燃料とを混合及び燃焼させて燃焼ガスを供給するスワラ支持筒11(第一筒体)と、この燃焼ガスをタービンロータ6Bのタービン動翼8Bに送る燃焼筒12(第二筒体)と、備えている。なお、以下の説明では、燃焼器3の中心軸線Acに沿って、スワラ支持筒11が位置する側を上流側と呼び、燃焼筒12が位置する側を下流側と呼ぶ。
 外筒10は、後述する燃料ノズル13を支持するとともに、燃焼器挿入口9を外側から塞ぐように取り付けられた略筒状の部材である。本実施形態に係る外筒10は、外筒本体10Aと、ノズル台14と、を備えている。外筒本体10Aは、中心軸線Acを中心とする円盤状をなしている。外筒本体10Aの下流側の面上における外周側の領域には、燃焼器挿入口9の内周側に嵌合する嵌合凸部15が形成されている。さらに、外筒本体10Aの中心点を含む中央部の領域には、ノズル台14を支持する支持開口16が形成されている。なお、外筒10は、一例としてトップハット等と呼ばれることがある。
 嵌合凸部15の外周面は、燃焼器挿入口9の内周面と同一かわずかに小さな径寸法を有している。これにより、嵌合凸部15の外周面は、燃焼器挿入口9の内周面に対して隙間なく嵌合する。嵌合凸部15の内周面は、スワラ支持筒11の外周面11Sに対して中心軸線Acの径方向に隙間をあけて対向している。この隙間は、タービン車室5B内の圧縮空気を導入するための空気導入路Cとして用いられる。より詳細には、嵌合凸部15の内周面上には、下流側からスワラ支持筒11の上流端側に向かって順に、外側絞り面17と、平行面18と、反転面19と、が形成されている。
 図3に示すように、外側絞り面17は、中心軸線Acを含む断面視で、中心軸線Acに対して角度αだけ傾斜して延びている。より詳細には、外側絞り面17は、嵌合凸部15の内周面に沿って下流側から上流側に向かうにしたがって、中心軸線Acの径方向内側に向かって延びている。
 さらに、外側絞り面17の上流側端部は、平行面18に接続されている。平行面18は、中心軸線Acに対して平行に延びている。平行面18の上流側端部は、反転面19に接続されている。
 反転面19は、平行面18の上流側端部に接続された曲面である。より詳細には、反転面19は、中心軸線Acを含む断面視で、スワラ支持筒11の上流端を中心とする1/4円弧をなしている。反転面19の上流側端部(すなわち、中心軸線Acの径方向内側の端部)は、上記の支持開口16の内周面と接続されている。
 この反転面19には、空気導入路C内に燃料を噴射するトップハットノズル(以下、ペグ20と呼ぶ)が取り付けられている。具体的には、ペグ20は、反転面19の内周面上から、中心軸線Acに向かって45°の方向に延びる棒状をなしている。詳しくは図示しないが、このペグ20は、燃料供給源に接続されている。この燃料は、空気導入路C内で圧縮空気と混合される。
 図2に示すように、ノズル台14は、燃料ノズル13を支持する部材である。なお、本実施形態では、燃料ノズル13は、第1ノズル13P、及び第2ノズル13Mの2種類を含んでいる。より具体的には図2に示すように、ノズル台14は、外筒本体10Aの支持開口16によって外周側から支持される円環状をなしている。ノズル台14の中心点を含む領域には、第1ノズル13Pが挿通されている。
 第1ノズル13Pは、中心軸線Acに沿って延びる円柱状をなしており、上流側から下流側にかけてその内部は中空とされている。第1ノズル13Pの上流側には燃料供給源が接続されており、上流側から第1ノズル13P内に供給された燃料は、下流側に向かって流れた後、下流側先端に設けられた第1ノズル本体13Aからスワラ支持筒11の内部に向かって噴射される。なお、第1ノズル本体13Aの外周側には、第1コーン13Cが取り付けられている。第1コーン13Cは、中心軸線Acの上流側から下流側に向かって次第に拡径する漏斗状の部材である。
 さらに、ノズル台14における外周側の領域(すなわち、第1ノズル13Pよりも外周側の領域)には、中心軸線Acの周方向に間隔をあけて複数の第2ノズル13Mが取り付けられている。これら第2ノズル13Mは中心軸線Acに沿って互いに平行に延びている。第1ノズル13Pと同様に、第2ノズル13Mの内部にも燃料供給源から供給された燃料が流れる。上流側から供給された燃料は、下流側に形成された噴射口(不図示)を通じてスワラ支持筒11内部に供給される。
 スワラ支持筒11は、中心軸線Acに沿って延びる円筒状をなしている。スワラ支持筒11の下流側の端部には、上記の燃焼筒12が接続部材21を介して接続されている。スワラ支持筒11は、燃焼筒12の内径よりも小さな外径を有することで、燃焼筒12の内周側に挿通されている。接続部材21は、中心軸線Acの周方向に延びる円環状の弾性部材によって構成されている。上記のノズル台14が燃焼器挿入口9に取り付けられた状態において、燃料ノズル13(第1ノズル13P、第2ノズル13M)の先端部は、いずれもスワラ支持筒11の内側で保持される。
 さらに、図3に示すように、スワラ支持筒11の上流側端部を含む部分には、径方向外側に向かって膨らんだ膨出部22が設けられている。膨出部22の厚さ寸法(中心軸線Acの径方向における寸法)は、膨出部22以外の部分におけるスワラ支持筒11の厚さ寸法よりも大きく設定されている。膨出部22の上流側の端面は、中心軸線Acを含む断面視で半円弧状の断面をなしている。
 スワラ支持筒11の外周面11S上(膨出部22の外周面22S上)であって、上述の外側絞り面17に径方向から対向する部分には、内側絞り面23が形成されている。内側絞り面23は、中心軸線Acを含む断面視で、中心軸線Acに対して角度βだけ傾斜して延びている。より詳細には、内側絞り面23は、スワラ支持筒11の外周面11Sに沿って下流側から上流側に向かうにしたがって径方向外側に向かって延びている。
 さらに、本実施形態では、上記の外側絞り面17が中心軸線Ac(平行面18)に対してなす角度αの値と、内側絞り面23がスワラ支持筒11の外周面11Sとなす角度βの値との間には、α<βの関係が成立している。
 加えて、図3に示すように、外側絞り面17の上流側端部は、内側絞り面23の上流側端部よりも上流側に位置している。
 以上のようにして、外筒10の内周面とスワラ支持筒11の外周面11Sとによって空気導入路Cが形成される。空気導入路Cの下流側端部を含む部分(すなわち、外側絞り面17と内側絞り面23によって形成される流路)では、下流側から上流側に向かうにしたがって次第に径方向の寸法が縮小している。
 続いて、本実施形態に係るガスタービン1の動作について、図1を参照して説明する。
 ガスタービン1を運転するに当たっては、まず圧縮機2を外部の動力源によって駆動する。圧縮機2が駆動することで、外部の空気が圧縮機2内部に取り込まれ、圧縮機動翼8Aと圧縮機静翼7Aとの間を流通する間に順次圧縮されて高圧の圧縮空気が生成される。
 圧縮機2で生成された圧縮空気は、タービン車室5Bを経て燃焼器3内部に取り込まれる。詳しくは後述するが、燃焼器3では、上記の燃料ノズル13によって供給された燃料と圧縮空気とが混合された後、燃焼して、高温高圧の燃焼ガスが生成される。
 燃焼器3で生成された燃焼ガスは、後続のタービン4に供給される。タービン4内では、燃焼ガスがタービン動翼8Bに衝突することで、タービンロータ6Bに回転力を与える。これにより、タービンロータ6Bが回転する。タービンロータ6Bは上述のように圧縮機ロータ6Aに一体に接続されていることから、タービンロータ6Bの回転に伴って圧縮機ロータ6Aも回転駆動される。つまり、定常運転状態では、圧縮機2による圧縮空気の生成と、タービン4の回転とが連続的なサイクルを形成する。
 次に、燃焼器3における圧縮空気の挙動について、図2と図3を参照して説明する。図2に示すように、圧縮機2で生成された圧縮空気は、まずタービン車室5B内に流れ込む。ここで、燃焼器3内部は、タービン車室5B内に比べて相対的に低圧となっていることから、圧縮空気は自然に燃焼器3内に取り込まれる。
 より具体的には、タービン車室5B内の圧縮空気は、上述の空気導入路Cを通じてスワラ支持筒11内部に流れ込む。スワラ支持筒11内部では、圧縮空気は第2ノズル13Mを外側から囲むようにして上流側から下流側に流れる。ここで、第2ノズル13Mの下流側端部からは上述のように燃料が噴射されている。これにより、第2ノズル13Mの下流側の領域では、燃料と圧縮空気とが混合された予混合ガスが生成される。
 第1ノズル13Pの先端からは燃料のみが噴射される。この燃料に対して、不図示の着火装置によって着火することで、拡散燃焼によるパイロット火炎が形成される。パイロット火炎が、上記の予混合ガスに伝播することで、第2ノズル13Mの下流側では予混合火炎が形成されるとともに、上述の燃焼ガスが生成される。
 ところで、図3に示すように、圧縮空気は、外筒10とスワラ支持筒11とによって画成される空気導入路Cによって燃焼器3内部に導かれる。上述したように、空気導入路Cの端部は、下流側に向かって開口している。圧縮空気は、この開口からタービン車室5B内から空気導入路C内に流れ込んだ後、上記の反転面19による180°の反転を経て向きを変えて、スワラ支持筒11の内部で上流側から下流側に向かって流通する。
 ここで、空気導入路C内では、上記のような流れ方向の反転を伴うことから、反転面19の外周側(すなわち、膨出部22よりも反転面19に近接する側)と、内周側(膨出部22側)とでは、圧縮空気の流速が異なっている。このような流速分布の不均衡から、空気導入路Cの下流側、すなわち、スワラ支持筒11の上流側では、空気流量に偏りが生じる可能性がある。このような空気流量の偏りが生じてしまった場合、燃焼ガスの濃度分布にも偏りが生じることがある。これにより、NOxの生成量が規定よりも大きくなってしまう可能性もある。
 しかしながら、本実施形態に係る燃焼器3では、外筒10の内周面に外側絞り面17が形成されていることから、空気導入路C内を外側絞り面17に沿って流通する空気の流速分布を均一にすることができる。特に、外側絞り面17は、スワラ支持筒11の上流側端に向かうにしたがって径方向内側に向かって延びることから、空気がスワラ支持筒11の上流端で反転する際に、外周側における空気の流速を内周側の空気の流速に比べて大きくすることができる。これにより、空気導入路Cの出口側で、空気の流速分布を均一化することができる。
 さらに、上述の構成によれば、スワラ支持筒11の外周面上で、外側絞り面17と対向する部分に内側絞り面23が形成されていることから、空気がスワラ支持筒11の上流端で反転する際に、上流端の外周側に加えて内周側でも空気の流速を最適化することができる。
 加えて、上述の構成によれば、外筒10の内周面上において、中心軸線Acと外側絞り面17とがなす角度αは、スワラ支持筒11の外周面上において、中心軸線Acと内側絞り面23とがなす角度βよりも小さい。これにより、外側絞り面17に沿って流通する空気では、内側絞り面23に沿って流通する空気に比べて、上流側に向かう方向成分が多くなる。これにより、空気がスワラ支持筒11の上流端で反転する際に、外周側における空気の流速を内周側の空気の流速に比べて大きくすることができる。
 また、上述の構成によれば、外側絞り面17の上流側端部が、内側絞り面23の上流側端部よりも上流側に位置していることから、外側絞り面17に沿って流通する空気の流れが、内側絞り面23に沿って流通する空気の流れに比べて、より上流側に到達しやすくなる。外側絞り面17によって案内された空気は、中心軸線Acの径方向外側から内側に向かう方向成分を多く含むことから、スワラ支持筒11の上流端でさらに円滑に反転することができる。以上により、本実施形態に係る燃焼器3では、圧縮空気の流速分布が最適化されることで、燃焼ガスの濃度分布が適正となるため、NOx生成量を低減することができる。
[第二実施形態]
 次に、本発明の第二実施形態について、図4を参照して説明する。なお、上記第一実施形態と同様の構成については同一の符号を付した上で、詳細な説明を省略する。図4に示すように、本実施形態では、スワラ支持筒11の上流側端部に、膨出部22が形成されていない点で第一実施形態と異なっている。つまり、本実施形態では、スワラ支持筒11の外周面11Sは、上流側から下流側にかけて同一の外径寸法を有している。なお、スワラ支持筒11の上流側の端面は、上記第一実施形態と同様に、半円弧状の断面形状を有している。
 以上のような構成によっても、上記第一実施形態と同様の作用効果を得ることができる。特に、内側絞り面23が形成されていないことから、径方向内側から径方向外側に向かう流れ方向成分が減少する。一方で、外側絞り面17に沿って案内された流れ中では、径方向外側から内側に向かう成分(すなわち、反転面19に沿う成分)が増加することから、圧縮空気をより円滑に反転させることができる。これにより、空気導入路Cの出口側における圧縮空気の流速分布をさらに適正化することができる。
 以上、本発明の実施形態について、図面を参照して説明した。なお、本発明の要旨を逸脱しない限りにおいて、上記の構成に対して種々の変更を加えることが可能である。
 例えば、上記の各実施形態では、外側絞り面17と平行面18の接続部分、及び内側絞り面23と膨出部22の接続部分がいずれも角部を有している例について説明した。しかしながら、これら接続部分の構成は上記実施形態によっては限定されず、これら接続部分が連続する曲面をなしていてもよい。具体的には、外側絞り面17から平行面18に向かうにしたがって、又は内側絞り面23から膨出部22に向かうにしたがって、緩やかに湾曲するように構成されていてもよい。このような構成によれば、角部が形成されている場合に比して、流れの淀みや剥離が生じる可能性をさらに低減することができることから、空気導入路C内における圧縮空気の流速分布をさらに適正化することができる。
 さらに、上記の各実施形態では、外側絞り面17と反転面19との間に、平行面18が形成されている例について説明した。しかしながら、外側絞り面17の上流側端部に、反転面19が直接接続された構成を採ることも可能である。言い換えると、外筒10の内周面に、平行面18が形成されていない構成を採ってもよい。このような構成によっても、上述した作用効果を同様に得ることができる。
 この燃焼器によれば、高圧空気の流速分布を最適化することで、NOx生成量が低減することができる。
1…ガスタービン
2…圧縮機
3…燃焼器
4…タービン
5A…圧縮機車室
5B…タービン車室
6A…圧縮機ロータ
6B…タービンロータ
7A…圧縮機静翼
7B…タービン静翼
8A…圧縮機動翼
8B…タービン動翼
9…燃焼器挿入口
10…外筒
10A…外筒本体
11…スワラ支持筒(第一筒体)
11S…スワラ支持筒の外周面
12…燃焼筒(第二筒体)
13…燃料ノズル
13A…第1ノズル本体
13C…第1コーン
13M…第2ノズル
13P…第1ノズル
14…ノズル台
15…嵌合凸部
16…支持開口
17…外側絞り面
18…平行面
19…反転面
20…ペグ
21…接続部材
22…膨出部
22S…膨出部の外周面
23…内側絞り面
Ac…中心軸線
Am…主軸線
C…空気導入路

Claims (5)

  1.  軸線方向に沿って延びる燃料ノズルを保持するとともに、下流側に向かって空気が流通する第一筒体と、
     前記第一筒体の下流側に接続される第二筒体と、
     前記第一筒体の外周面との間で、前記第一筒体の上流端で反転させて前記下流側に向かうように空気を導入する空気導入路を画成する内周面を有する外筒と、を備え、
     前記内周面に、前記第一筒体の上流端側に向かうにしたがって径方向内側に向かって延びる外側絞り面が形成されている燃焼器。
  2.  前記外周面上であって、前記外側絞り面に対して径方向から対向する部分には、前記第一筒体の上流端側に向かうにしたがって径方向外側に向かって延びる内側絞り面が形成されている請求項1に記載の燃焼器。
  3.  前記軸線を含む断面視で、前記軸線と前記外側絞り面とがなす角度をαとし、
     前記軸線と前記内側絞り面とがなす角度をβとしたとき、α<βの関係が成立する請求項2に記載の燃焼器。
  4.  前記外側絞り面の上流側端部は、前記内側絞り面の上流側端部よりも上流側に位置している請求項2又は3に記載の燃焼器。
  5.  圧縮空気を生成する圧縮機と、
     請求項1から4のいずれか一項に記載の燃焼器と、
     前記燃焼器によって生成された燃焼ガスによって回転駆動されるタービンと、
    を備えるガスタービン。
PCT/JP2017/007375 2016-02-29 2017-02-27 燃焼器、ガスタービン WO2017150419A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187024029A KR102193815B1 (ko) 2016-02-29 2017-02-27 연소기, 가스 터빈
CN201780012757.4A CN108700297B (zh) 2016-02-29 2017-02-27 燃烧器、燃气涡轮
US16/079,865 US11215364B2 (en) 2016-02-29 2017-02-27 Combustor, gas turbine
EP17759885.1A EP3425280B1 (en) 2016-02-29 2017-02-27 Combustor and gas turbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016036997A JP6768306B2 (ja) 2016-02-29 2016-02-29 燃焼器、ガスタービン
JP2016-036997 2016-02-29

Publications (1)

Publication Number Publication Date
WO2017150419A1 true WO2017150419A1 (ja) 2017-09-08

Family

ID=59742998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007375 WO2017150419A1 (ja) 2016-02-29 2017-02-27 燃焼器、ガスタービン

Country Status (6)

Country Link
US (1) US11215364B2 (ja)
EP (1) EP3425280B1 (ja)
JP (1) JP6768306B2 (ja)
KR (1) KR102193815B1 (ja)
CN (1) CN108700297B (ja)
WO (1) WO2017150419A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6546334B1 (ja) * 2018-12-03 2019-07-17 三菱日立パワーシステムズ株式会社 ガスタービンの燃焼器及びこれを備えたガスタービン
KR102340397B1 (ko) * 2020-05-07 2021-12-15 두산중공업 주식회사 연소기 및 이를 포함하는 가스 터빈

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59229114A (ja) * 1983-06-08 1984-12-22 Hitachi Ltd ガスタ−ビン用燃焼器
JP2007232350A (ja) * 2006-02-27 2007-09-13 Mitsubishi Heavy Ind Ltd 燃焼器
JP2014173836A (ja) 2013-03-12 2014-09-22 General Electric Co <Ge> 燃焼器用の空気拡散器
JP2014178088A (ja) * 2013-03-15 2014-09-25 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器
JP2016056961A (ja) * 2014-09-05 2016-04-21 三菱日立パワーシステムズ株式会社 ガスタービン燃焼器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5575153A (en) * 1993-04-07 1996-11-19 Hitachi, Ltd. Stabilizer for gas turbine combustors and gas turbine combustor equipped with the stabilizer
JP3364169B2 (ja) 1999-06-09 2003-01-08 三菱重工業株式会社 ガスタービン及びその燃焼器
JP2001289441A (ja) 2000-04-10 2001-10-19 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器
JP2003028425A (ja) * 2001-07-17 2003-01-29 Mitsubishi Heavy Ind Ltd 予混合燃焼器のパイロットバーナー、予混合燃焼器、およびガスタービン
JP2007023247A (ja) 2005-07-13 2007-02-01 Motonobu Nishikino 耳付き粘着テープができる間欠粘着テープ
US7770395B2 (en) 2006-02-27 2010-08-10 Mitsubishi Heavy Industries, Ltd. Combustor
KR101318553B1 (ko) 2009-08-13 2013-10-16 미츠비시 쥬고교 가부시키가이샤 연소기
CN101629727B (zh) * 2009-08-28 2011-06-22 沈阳黎明航空发动机(集团)有限责任公司 一种低污染燃烧室的燃油喷嘴
JP2011102669A (ja) 2009-11-10 2011-05-26 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器及びガスタービン
US8910485B2 (en) * 2011-04-15 2014-12-16 General Electric Company Stoichiometric exhaust gas recirculation combustor with extraction port for cooling air
US9347669B2 (en) 2012-10-01 2016-05-24 Alstom Technology Ltd. Variable length combustor dome extension for improved operability
US10060630B2 (en) * 2012-10-01 2018-08-28 Ansaldo Energia Ip Uk Limited Flamesheet combustor contoured liner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59229114A (ja) * 1983-06-08 1984-12-22 Hitachi Ltd ガスタ−ビン用燃焼器
JP2007232350A (ja) * 2006-02-27 2007-09-13 Mitsubishi Heavy Ind Ltd 燃焼器
JP2014173836A (ja) 2013-03-12 2014-09-22 General Electric Co <Ge> 燃焼器用の空気拡散器
JP2014178088A (ja) * 2013-03-15 2014-09-25 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器
JP2016056961A (ja) * 2014-09-05 2016-04-21 三菱日立パワーシステムズ株式会社 ガスタービン燃焼器

Also Published As

Publication number Publication date
JP6768306B2 (ja) 2020-10-14
KR20180105680A (ko) 2018-09-28
JP2017155955A (ja) 2017-09-07
CN108700297A (zh) 2018-10-23
US11215364B2 (en) 2022-01-04
KR102193815B1 (ko) 2020-12-22
EP3425280B1 (en) 2021-02-17
EP3425280A4 (en) 2019-07-31
CN108700297B (zh) 2021-06-29
EP3425280A1 (en) 2019-01-09
US20190056111A1 (en) 2019-02-21

Similar Documents

Publication Publication Date Title
US10415479B2 (en) Fuel/air mixing system for fuel nozzle
WO2009084587A1 (ja) ガスタービンの燃焼器
JP2010223577A (ja) スワーラ、少なくとも1つのスワーラを備えたバーナにおける逆火の防止方法およびバーナ
JP2010223577A6 (ja) スワーラ、少なくとも1つのスワーラを備えたバーナにおける逆火の防止方法およびバーナ
JP2010223577A5 (ja)
JP2007155322A (ja) 燃料混合気の噴射装置と、このような装置を備えた燃焼室およびタービンエンジン
JP6134732B2 (ja) マルチゾーン燃焼器
US10570820B2 (en) Nozzle, combustion apparatus, and gas turbine
JP6723768B2 (ja) バーナアセンブリ、燃焼器、及びガスタービン
JP5657794B2 (ja) ガスタービン燃焼室
WO2020195085A1 (ja) 燃焼器及びガスタービン
WO2017150419A1 (ja) 燃焼器、ガスタービン
JP6692847B2 (ja) ガスタービン燃焼器及びこれを備えたガスタービン機関
US20160290652A1 (en) Swirler assembly
KR102512583B1 (ko) 가스 터빈의 연소기 및 이것을 구비한 가스 터빈
WO2017170485A1 (ja) 燃焼器、ガスタービン
KR102452772B1 (ko) 가스 터빈의 연료 노즐 및 연소기 및 가스 터빈
JP2018087681A (ja) 燃焼ダイナミクス緩和システム
KR102288561B1 (ko) 가스터빈 연소기, 가스터빈
JP2014095546A (ja) 燃料噴射器のための拡張機能
WO2023140180A1 (ja) 燃焼器及びガスタービン
JP5193088B2 (ja) 燃焼器及びガスタービン
JP2015135212A (ja) ガスタービンエンジン

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187024029

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187024029

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017759885

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017759885

Country of ref document: EP

Effective date: 20181001

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759885

Country of ref document: EP

Kind code of ref document: A1