WO2017150353A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2017150353A1
WO2017150353A1 PCT/JP2017/006964 JP2017006964W WO2017150353A1 WO 2017150353 A1 WO2017150353 A1 WO 2017150353A1 JP 2017006964 W JP2017006964 W JP 2017006964W WO 2017150353 A1 WO2017150353 A1 WO 2017150353A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
heat exchanger
air
phosphonic acid
heat
Prior art date
Application number
PCT/JP2017/006964
Other languages
French (fr)
Japanese (ja)
Inventor
卓哉 布施
稲垣 孝治
裕太 才賀
侑樹 小中出
上仁 柴田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017012804A external-priority patent/JP2017161215A/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2017150353A1 publication Critical patent/WO2017150353A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal

Definitions

  • This disclosure relates to a heat exchanger that exchanges heat between air having a predetermined humidity and a low-temperature fluid.
  • the heat exchanger is indispensable when transferring heat between two fluids, and high performance has been studied. For example, a case where the air is cooled by exchanging heat between the outside air and the evaporative refrigerant as two fluids, such as an outdoor unit, can be considered. In this case, the air has a predetermined humidity, and water inevitably condenses and freezes on the heat transfer wall. As a result, “frost” grows on the heat transfer surface.
  • frost grows, there is a risk of blocking the air flow path of the heat exchanger. Therefore, generally, when a predetermined frost growth is detected, a so-called “defrosting operation” for removing frost is often performed. This defrosting operation not only takes extra energy for melting the frost, but also the air conditioning does not function during that period. For this reason, it is required to earn as much time as possible before shifting to the defrosting operation mode.
  • Patent Document 1 proposes a technique in which a super-water-repellent treatment is performed on a heat transfer surface of a heat exchanger, and moisture contained in the air is condensed on the water-repellent surface and then slides down before freezing. Thereby, suppression of frost growth is anticipated.
  • This indication aims at providing the heat exchanger which can fully suppress frost growth in view of the above-mentioned point.
  • the heat exchanger is configured to exchange heat between air having a predetermined humidity and a fluid having a temperature lower than that of air, and is disposed so as to be in contact with at least air.
  • the heat transfer unit includes at least a first layer and a second layer located between the first layer and air.
  • the second layer is composed of a plurality of molecules having hydrophilicity or hydrophobicity, and includes phosphonic acid at the first end of the plurality of molecules facing the first layer, and oxygen in the phosphonic acid is combined with the first layer. Shares chemical bonds.
  • the surface of the second layer can be covered with the second layer made of phosphonic acid-based molecules, and even when condensed water is generated on the surface of the heat transfer section, frost growth is effectively suppressed. can do.
  • phosphonic acid is provided at the end of the plurality of molecules facing the first layer, and oxygen in the phosphonic acid shares a chemical bond with the first layer.
  • a 1st layer and a 2nd layer can be couple
  • the heat exchanger is a heat exchanger for absorbing heat, and is an evaporator that cools air for air conditioning in a refrigeration cycle of a vehicle air conditioner, for example.
  • the heat exchanger 10 includes a heat exchange unit 11 and a pair of header tanks 12 connected to the heat exchange unit 11.
  • the heat exchanging portion 11 includes a plurality of tubes 13 having a flat cross section and corrugated fins 14 interposed between the tubes 13.
  • the tube 13 and the fin 14 are made of aluminum.
  • the tube 13 is a tube member through which a refrigerant as a heat medium flows, and both ends of each tube 13 are connected to communicate with the inside of the pair of header tanks 12, respectively.
  • the refrigerant is a fluid having a temperature lower than that of air.
  • the fin 14 is a heat transfer member that is formed in a wave shape from a thin strip material and forms a heat transfer surface. The fin 14 is joined to the tube 13.
  • the refrigerant that has been depressurized in the refrigeration cycle to low temperature and low pressure flows through the plurality of tubes 13. Further, air passes through the outside of the tube 13 and around the fins 14 (outside of the heat exchange unit 11), and the air is cooled by the low-temperature refrigerant.
  • the heat transfer unit 20 is a part of the heat exchanger 10 that is configured to exchange heat between air and the refrigerant, and is disposed so as to be in contact with at least air.
  • the outer surface in contact with air corresponds to the heat transfer unit 20
  • both sides of the plate surface in contact with air correspond to the heat transfer unit 20.
  • the heat transfer section 20 has two layers of a first layer 21 and a second layer 22.
  • the first layer 21 is made of a material having a higher thermal conductivity among the two layers of the heat transfer section 20.
  • the 1st layer 21 is a substrate which constitutes tube 13 and fin 14, and is constituted from aluminum in this embodiment.
  • the second layer 22 is formed on the air side surface of the first layer 21. That is, the second layer 22 is located on the air side with respect to the first layer 21.
  • the 2nd layer 22 is positioned as a film formed in the surface of the 1st layer 21 which is a substrate.
  • the second layer 22 is configured to share chemical bonds with the first layer 21.
  • the second layer 22 may be located between the first layer 21 and the air.
  • the second layer 22 is made of a material having a higher affinity for water among the two layers of the heat transfer section 20. Specifically, the second layer 22 is configured as a rod-shaped molecule having a linear structure.
  • the rod-like molecule of the present embodiment is a hydrophilic molecule and includes a polymer composed of repeating unit structures represented by the following chemical formula 1 or chemical formula 2.
  • the second layer 22 of the present embodiment contains polyethylene glycol (PEG) as a polymer.
  • the second layer 22 is a phosphonic acid-based hydrophilic molecule and has phosphonic acid on one end side located on the first layer 21 side. Phosphorus in the phosphonic acid shares a chemical bond with one end of the polymer contained in the second layer 22.
  • the second layer 22 includes a carboxylate group and an alkali metal ion as a counter cation on the other end located on the air side. Specifically, the air side of the second layer 22 is sodium carboxylate (COONa). One end of the second layer 22 may be the first end, and the other end may be the second end.
  • Aluminum constituting the first layer 21 as a base material shares a chemical bond with oxygen in the phosphonic acid of the second layer 22. Thereby, the 1st layer 21 and the 2nd layer 22 are combined firmly, and the coverage of the 1st layer 21 by the 2nd layer 22 can be increased.
  • a boehmite treatment is performed as a pretreatment to boehmite the surface of a substrate made of an aluminum plate.
  • the boehmite treatment can be performed, for example, by boiling an aluminum base material in ion exchange water for 10 minutes.
  • hydroxyl groups are generated on the surface of the aluminum substrate.
  • a baking process is performed in which the aluminum base material having phosphonic acid hydrophilic molecules introduced on the surface thereof is heated. Specifically, the aluminum base material into which the phosphonic acid-based hydrophilic molecule is introduced is heated at 140 ° C. for 6 hours. As a result, the dehydration reaction proceeds, the oxygen contained in the phosphonic acid hydrophilic molecule phosphonic acid and the aluminum contained in the aluminum substrate are covalently bonded, and the phosphonic acid hydrophilic molecule is firmly attached to the surface of the aluminum substrate. Join.
  • the aluminum substrate to which the phosphonic acid-based hydrophilic molecule is bonded is immersed in alcohol, ultrasonic waves are applied for 10 minutes, ethanol washing is performed, and drying is further performed.
  • a sodium chloride step is performed in which sodium is introduced into the carboxylate group located on the air side of the phosphonic acid hydrophilic molecule. Specifically, an aluminum base material to which phosphonic acid-based hydrophilic molecules are bonded is immersed in a saturated aqueous NaHCO3 solution at room temperature for 20 minutes. Thereby, the hydrogen of the carboxylate group is replaced with sodium, and sodium chloride can be performed.
  • FIG. 5A shows a case where condensed water is generated on the surface of the heat exchange unit 11 that does not include the heat transfer unit 20 of this embodiment
  • FIG. 5B condenses on the surface of the heat exchange unit 11 that includes the heat transfer unit 20.
  • the case where water is generated is shown.
  • the surface of the heat exchange unit 11 that does not include the heat transfer unit 20 (hereinafter referred to as the cooling surface 30) is formed of only the first layer 21 without the second layer 22 of the heat transfer unit 20 formed. .
  • the condensed water adheres as water droplets W1 on the cooling surface 30.
  • the water droplet W1 has a large contact angle, and air stagnation is formed on the cooling surface 30, so that water vapor easily collects in the water droplet W1. For this reason, there exists a possibility that the growth of the frost pillar based on the water droplet W1 may be accelerated
  • the air side in the heat transfer section 20 is hydrophilized, so that condensed water adheres as a thin film W2.
  • the water thin film W2 has a small contact angle and inhibits air flow from being inhibited. Thereby, it becomes difficult to cause air stagnation by the thin film W2, and water vapor hardly collects in the thin film W2. For this reason, the growth of frost based on the thin film W2 of water is suppressed.
  • the surface of the heat transfer section 20 is covered by covering the surface of the first layer 21 as the base material with the second layer 22 made of phosphonic acid-based hydrophilic molecules. Even when condensed water is generated, the growth of frost can be effectively suppressed.
  • phosphonic acid is provided at the end of the second layer 22 on the first layer 21 side, and oxygen in the phosphonic acid is chemically bonded to aluminum in the first layer 21. Share. Thereby, the 1st layer 21 and the 2nd layer 22 can be combined firmly, and the coverage of the 1st layer 21 by the 2nd layer 22 can be made high.
  • a rust prevention layer 21 a is formed on the first layer 21 on the side facing the second layer 22.
  • the rust preventive layer 21 a shares a chemical bond with oxygen in the phosphonic acid in the second layer 22.
  • the rust prevention layer 21a is formed on the surface of the first layer 21 constituting the base material, and the second layer 22 constituting the coating layer is formed on the surface of the rust prevention layer 21a.
  • the rust prevention layer 21 a has a function of suppressing corrosion that occurs in the first layer 21.
  • the rust prevention layer 21a includes a transition element.
  • the transition element is an element between the Group 3 element and the Group 12 element of the periodic table.
  • the anticorrosive layer 21 a containing the transition element has a higher bonding strength with the second layer 22 than the first layer 21.
  • the rust prevention layer 21a may be composed of only a transition element, or may contain a substance other than the transition element.
  • the transition element contained in the rust prevention layer 21a may be one kind or plural kinds.
  • the effect of suppressing corrosion of the first layer 21 is higher when there are a plurality of types of transition elements contained in the rust prevention layer 21a.
  • the transition element contained in the rust prevention layer 21a exists in an oxide state.
  • the first layer 21 is aluminum
  • Zr, Ti, V, Cr, Ni, Zn, and Mo as transition elements constituting the rust prevention layer 21a
  • the first layer 21 is used.
  • V is contained in the rust prevention layer 21a, the effect of suppressing the corrosion of the first layer 21 made of aluminum is high.
  • the manufacturing method of the second embodiment is mainly different from the first embodiment in the first step (pretreatment).
  • a transition element-containing layer containing a transition element is formed on the surface of the aluminum substrate.
  • the aluminum base material constitutes the first layer 21 of the heat transfer section 20, and the transition element-containing layer constitutes the rust prevention layer 21 a of the heat transfer section 20.
  • the transition element-containing layer can be formed, for example, by immersing the aluminum base material in a solution containing a transition element. Next, a hydroxyl group is introduced into the surface of the transition element-containing layer by performing plasma treatment or chemical treatment on the surface of the transition element-containing layer.
  • the second step hydrophilic molecule introduction step
  • the third step baking step
  • the fourth step sodium chloride
  • Steps are performed in order.
  • the bonding strength between the rust preventive layer 21 a formed on the first layer 21 and the second layer 22 by forming the rust preventive layer 21 a on the surface of the first layer 21. Can be improved. Thereby, detachment
  • the transition element contained in the rust prevention layer 21a moves to the surface of the first layer 21 and The surface is covered with a rust prevention layer 21a.
  • the 1st layer 21 corrodes by contact with water, it can control that this corrosion spreads, and the further secession of the 2nd layer 22 resulting from corrosion of the 1st layer 21 can be controlled.
  • the film molecular structure of the second layer 22 aligned with the surface of the heat transfer section 20 is maintained, and the hydrophilicity of the second layer 22 can be maintained over a long period of time.
  • the first layer 21 is made of aluminum, but is not limited thereto, and may be made of other materials such as copper and SUS.
  • the first layer 21 is made of copper or SUS, by providing a binder layer between the first layer 21 and the second layer 22, these layers can be firmly bonded to each other.
  • the binder layer can be made of, for example, SiO2.
  • the second layer 22 is configured as a phosphonic acid-based hydrophilic molecule.
  • the present invention is not limited thereto, and the second layer 22 may be configured as a phosphonic acid-based hydrophobic molecule.
  • the second layer 22 is a phosphonic acid-based hydrophobic molecule, even if condensed water is generated on the surface of the heat transfer section 20, the condensed water is quickly removed. As a result, it is possible to prevent the condensed water from freezing and growing frost on the surface of the heat transfer section 20.
  • phosphonic acid is provided on one end side of the phosphonic acid-based hydrophobic molecule located on the first layer 21 side, and oxygen in the phosphonic acid and aluminum in the first layer 21 share a chemical bond. Good.

Abstract

Provided is a heat exchanger configured such that heat is exchanged between air having a specified humidity and a fluid having a temperature lower than the air, and comprises a heat-transferring part (20) disposed so as to contact at least the air. The heat-transferring part has at least a first layer (21) and a second layer (22) positioned between the first layer and the air. The second layer is formed from multiple molecules that are hydrophilic or lypophilic and comprises phosphonic acid at a first terminal of the multiple molecules facing the first layer. The oxygen in the phosphonic acid has a chemical bond that is covalent with the first layer. Frost growth can be sufficiently controlled with this heat exchanger.

Description

熱交換器Heat exchanger 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2016年3月3日に出願された日本特許出願2016-040789および、2017年1月27日に出願された日本特許出願2017-012804を基にしている。 The present application includes Japanese Patent Application 2016-040789 filed on March 3, 2016 and Japanese Patent Application 2017- filed on January 27, 2017, the disclosures of which are incorporated herein by reference. Based on 0128804.
 本開示は、所定の湿度を有する空気と、低温流体とを熱交換させる熱交換器に関する。 This disclosure relates to a heat exchanger that exchanges heat between air having a predetermined humidity and a low-temperature fluid.
 熱交換器は、2流体間の熱授受を執り行う際に必要不可欠であり、高性能化が検討されてきている。例えば、室外機等のように、2流体として外気/蒸発冷媒間にて熱交換し、空気が冷却される場合が考えられる。この場合、空気は所定の湿度を有しており、必然的に水が伝熱壁に凝縮・凍結していく。この結果、伝熱面において「霜」が成長していく。 The heat exchanger is indispensable when transferring heat between two fluids, and high performance has been studied. For example, a case where the air is cooled by exchanging heat between the outside air and the evaporative refrigerant as two fluids, such as an outdoor unit, can be considered. In this case, the air has a predetermined humidity, and water inevitably condenses and freezes on the heat transfer wall. As a result, “frost” grows on the heat transfer surface.
 霜が成長した場合、熱交換器の空気の流路を閉塞する恐れがある。したがって、一般に、所定の霜成長を検出した場合、霜を除去する所謂「除霜運転」がなされる場合が多い。この除霜運転は、霜の融解に余分なエネルギーがかかるのみならず、その期間には空調が機能しないことになる。このため、除霜運転モードに移行するまでの時間を、極力長く稼ぐことが要求されている。 If frost grows, there is a risk of blocking the air flow path of the heat exchanger. Therefore, generally, when a predetermined frost growth is detected, a so-called “defrosting operation” for removing frost is often performed. This defrosting operation not only takes extra energy for melting the frost, but also the air conditioning does not function during that period. For this reason, it is required to earn as much time as possible before shifting to the defrosting operation mode.
 これに対し、伝熱面において、霜の成長を抑制するための技術が開発されてきている。例えば、特許文献1では、熱交換器の伝熱面に超撥水処理を施し、空気に含まれる水分が撥水面で凝縮した後、凍結する前に滑落させる技術が提案されている。これにより、霜成長の抑制が期待される。 On the other hand, techniques for suppressing the growth of frost on the heat transfer surface have been developed. For example, Patent Document 1 proposes a technique in which a super-water-repellent treatment is performed on a heat transfer surface of a heat exchanger, and moisture contained in the air is condensed on the water-repellent surface and then slides down before freezing. Thereby, suppression of frost growth is anticipated.
国際公開第2012/147288号International Publication No. 2012/147288
 しかしながら、本発明者らの検討によると、上記従来の技術では、コンタミネーション成分が水中に入る等して水分が滑落前に凍結する蓋然性がある。このため、霜成長が十分に抑制できないおそれがある。 However, according to the study by the present inventors, there is a probability that the contamination is frozen before sliding off due to contamination components entering the water. For this reason, there exists a possibility that frost growth cannot fully be suppressed.
 本開示は上記点に鑑み、霜成長を十分に抑制し得る熱交換器を提供することを目的とする。 This indication aims at providing the heat exchanger which can fully suppress frost growth in view of the above-mentioned point.
 本開示の一態様によると、熱交換器は、所定の湿度を有する空気と、空気よりも低い温度の流体との間における熱交換を行うように構成され、少なくとも空気と接するように配設された伝熱部を備える。伝熱部は、少なくとも第1層と、第1層と空気との間に位置する第2層とを有する。第2層は、親水性または疎水性を有する複数の分子から構成されるとともに、第1層に対向する複数の分子の第1端にホスホン酸を備え、ホスホン酸中の酸素が第1層と化学的結合を共有している。 According to one aspect of the present disclosure, the heat exchanger is configured to exchange heat between air having a predetermined humidity and a fluid having a temperature lower than that of air, and is disposed so as to be in contact with at least air. With a heat transfer section. The heat transfer unit includes at least a first layer and a second layer located between the first layer and air. The second layer is composed of a plurality of molecules having hydrophilicity or hydrophobicity, and includes phosphonic acid at the first end of the plurality of molecules facing the first layer, and oxygen in the phosphonic acid is combined with the first layer. Shares chemical bonds.
 これにより、第2層の表面をホスホン酸系分子からなる第2層で被覆することができ、伝熱部の表面で凝縮水が発生した場合においても、霜が成長することを効果的に抑制することができる。 As a result, the surface of the second layer can be covered with the second layer made of phosphonic acid-based molecules, and even when condensed water is generated on the surface of the heat transfer section, frost growth is effectively suppressed. can do.
 また、複数の分子における第1層に対向する端部にホスホン酸が設けられ、ホスホン酸中の酸素が第1層と化学的結合を共有している。これにより、第1層と第2層を強固に結合することができ、第2層による第1層の被覆率を高くすることができる。 Also, phosphonic acid is provided at the end of the plurality of molecules facing the first layer, and oxygen in the phosphonic acid shares a chemical bond with the first layer. Thereby, a 1st layer and a 2nd layer can be couple | bonded firmly and the coverage of the 1st layer by a 2nd layer can be made high.
本開示の第1実施形態に係る熱交換器の斜視図である。It is a perspective view of the heat exchanger concerning a 1st embodiment of this indication. 第1実施形態に係る伝熱部の構成を示す模式図である。It is a schematic diagram which shows the structure of the heat-transfer part which concerns on 1st Embodiment. 第1実施形態に係る伝熱部の製造工程を示す図である。It is a figure which shows the manufacturing process of the heat-transfer part which concerns on 1st Embodiment. 第1実施形態に係る伝熱部の製造工程を示す図である。It is a figure which shows the manufacturing process of the heat-transfer part which concerns on 1st Embodiment. 冷却面に水滴が付着したことにより空気の澱みが発生する様子を示した図である。It is the figure which showed a mode that the stagnation of air generate | occur | produces because a water droplet adhered to the cooling surface. 伝熱部の空気側に水の薄膜が形成された様子を示した図である。It is the figure which showed a mode that the thin film of water was formed in the air side of a heat-transfer part. 第2実施形態に係る伝熱部の構成を示す模式図である。It is a schematic diagram which shows the structure of the heat-transfer part which concerns on 2nd Embodiment.
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。 Hereinafter, a plurality of modes for carrying out the present disclosure will be described with reference to the drawings. In each embodiment, parts corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. When only a part of the configuration is described in each mode, the other modes described above can be applied to the other parts of the configuration. Not only combinations of parts that clearly show that combinations are possible in each embodiment, but also combinations of the embodiments even if they are not explicitly stated unless there is a problem with the combination. Is also possible.
 (第1実施形態)
 以下、本開示の第1実施形態について図を参照して説明する。熱交換器は、吸熱用の熱交換器であって、例えば車両用空調装置の冷凍サイクルにおいて空調用の空気を冷却する蒸発器となっている。
(First embodiment)
Hereinafter, a first embodiment of the present disclosure will be described with reference to the drawings. The heat exchanger is a heat exchanger for absorbing heat, and is an evaporator that cools air for air conditioning in a refrigeration cycle of a vehicle air conditioner, for example.
 図1に示すように、熱交換器10は、熱交換部11と、この熱交換部11に接続される一対のヘッダタンク12と、を備えている。熱交換部11は、複数積層される断面扁平状のチューブ13と、各チューブ13の間に介在される波形のフィン14と、を有している。チューブ13およびフィン14は、アルミニウムから構成されている。 As shown in FIG. 1, the heat exchanger 10 includes a heat exchange unit 11 and a pair of header tanks 12 connected to the heat exchange unit 11. The heat exchanging portion 11 includes a plurality of tubes 13 having a flat cross section and corrugated fins 14 interposed between the tubes 13. The tube 13 and the fin 14 are made of aluminum.
 チューブ13は、内部を熱媒体としての冷媒が流通する管部材であり、各チューブ13の両先端部は、一対のヘッダタンク12内部にそれぞれ連通するように接続されている。冷媒は、空気よりも低い温度の流体である。また、フィン14は、薄肉の帯板材から波状に形成されて伝熱面を形成する伝熱部材である。フィン14は、チューブ13に接合されている。 The tube 13 is a tube member through which a refrigerant as a heat medium flows, and both ends of each tube 13 are connected to communicate with the inside of the pair of header tanks 12, respectively. The refrigerant is a fluid having a temperature lower than that of air. The fin 14 is a heat transfer member that is formed in a wave shape from a thin strip material and forms a heat transfer surface. The fin 14 is joined to the tube 13.
 このような構成において、冷凍サイクル内で減圧されて低温低圧となった冷媒が、複数のチューブ13内を流通する。また、チューブ13の外側及びフィン14の周り(熱交換部11の外側)を空気が通過し、当該空気が低温冷媒によって冷却されるようになっている。 In such a configuration, the refrigerant that has been depressurized in the refrigeration cycle to low temperature and low pressure flows through the plurality of tubes 13. Further, air passes through the outside of the tube 13 and around the fins 14 (outside of the heat exchange unit 11), and the air is cooled by the low-temperature refrigerant.
 次に、冷媒と空気とを隔てる伝熱部20の具体的な構成を図2に基づいて説明する。伝熱部20は、熱交換器10のうち、空気と冷媒との間において熱交換を行うように構成され、少なくとも空気と接するように配設された部分である。チューブ13であれば空気に接する外表面が伝熱部20に対応し、フィン14であれば空気に接する板面の両側が伝熱部20に対応する。 Next, a specific configuration of the heat transfer section 20 that separates the refrigerant from the air will be described with reference to FIG. The heat transfer unit 20 is a part of the heat exchanger 10 that is configured to exchange heat between air and the refrigerant, and is disposed so as to be in contact with at least air. In the case of the tube 13, the outer surface in contact with air corresponds to the heat transfer unit 20, and in the case of the fin 14, both sides of the plate surface in contact with air correspond to the heat transfer unit 20.
 図2に示すように、伝熱部20は、第1層21および第2層22の2層を有して構成されている。第1層21は、伝熱部20の2層の材料のうち、熱伝導率がより大きい材料で構成されている。第1層21は、チューブ13やフィン14を構成する基材であり、本実施形態ではアルミニウムから構成されている。 As shown in FIG. 2, the heat transfer section 20 has two layers of a first layer 21 and a second layer 22. The first layer 21 is made of a material having a higher thermal conductivity among the two layers of the heat transfer section 20. The 1st layer 21 is a substrate which constitutes tube 13 and fin 14, and is constituted from aluminum in this embodiment.
 第2層22は、第1層21における空気側の面に形成されている。つまり、第2層22は、第1層21よりも空気側に位置している。第2層22は、基材である第1層21の表面に形成された被膜として位置付けられる。第2層22は、第1層21と化学的結合を共有するよう構成されている。第2層22は、第1層21と空気との間に位置しても良い。 The second layer 22 is formed on the air side surface of the first layer 21. That is, the second layer 22 is located on the air side with respect to the first layer 21. The 2nd layer 22 is positioned as a film formed in the surface of the 1st layer 21 which is a substrate. The second layer 22 is configured to share chemical bonds with the first layer 21. The second layer 22 may be located between the first layer 21 and the air.
 第2層22は、伝熱部20の2層の材料のうち、水に対する親和性がより大きい材料で構成されている。具体的には、第2層22は、直鎖型構造の棒状分子として構成されている。 The second layer 22 is made of a material having a higher affinity for water among the two layers of the heat transfer section 20. Specifically, the second layer 22 is configured as a rod-shaped molecule having a linear structure.
 本実施形態の棒状分子は、親水性分子であり、以下の化学式1または化学式2で示される単位構造の繰り返しで構成される重合体が含まれている。 The rod-like molecule of the present embodiment is a hydrophilic molecule and includes a polymer composed of repeating unit structures represented by the following chemical formula 1 or chemical formula 2.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 化学式1及び化学式2において、nは1以上の整数であり、例えばn=1~20000である。本実施形態の第2層22は、重合体としてポリエチレングリコール(PEG)を含んでいる。
Figure JPOXMLDOC01-appb-C000004
In Chemical Formula 1 and Chemical Formula 2, n is an integer of 1 or more, for example, n = 1 to 20000. The second layer 22 of the present embodiment contains polyethylene glycol (PEG) as a polymer.
 第2層22は、ホスホン酸系親水性分子であり、第1層21側に位置する一端側にホスホン酸を備えている。ホスホン酸中のリンが、第2層22に含まれる重合体の一端側と化学的結合を共有している。また、第2層22は、空気側に位置する他端側にカルボキシレート基とそのカウンタカチオンとしてのアルカリ金属イオンとを備えている。具体的には、第2層22の空気側はカルボン酸ナトリウム(COONa)となっている。第2層22の一端は第1端でも良く、他端は第2端でも良い。 The second layer 22 is a phosphonic acid-based hydrophilic molecule and has phosphonic acid on one end side located on the first layer 21 side. Phosphorus in the phosphonic acid shares a chemical bond with one end of the polymer contained in the second layer 22. The second layer 22 includes a carboxylate group and an alkali metal ion as a counter cation on the other end located on the air side. Specifically, the air side of the second layer 22 is sodium carboxylate (COONa). One end of the second layer 22 may be the first end, and the other end may be the second end.
 基材である第1層21を構成するアルミニウムは、第2層22のホスホン酸中の酸素と化学的結合を共有している。これにより、第1層21と第2層22とが強固に結合され、第2層22による第1層21の被覆率を増大させることができる。 Aluminum constituting the first layer 21 as a base material shares a chemical bond with oxygen in the phosphonic acid of the second layer 22. Thereby, the 1st layer 21 and the 2nd layer 22 are combined firmly, and the coverage of the 1st layer 21 by the 2nd layer 22 can be increased.
 次に、本実施形態の伝熱部20の製造方法を図3、図4を用いて説明する。 Next, a method for manufacturing the heat transfer section 20 of the present embodiment will be described with reference to FIGS.
 〔第1工程:前処理〕
 図3に示すように、前処理として、アルミニウム製板材からなる基材の表面をベーマイト化するベーマイト処理を行う。ベーマイト処理は、例えばアルミニウム基材をイオン交換水中で10分間煮沸することによって行うことができる。ベーマイト処理によって、アルミニウム基材の表面に水酸基が生成される。
[First step: Pretreatment]
As shown in FIG. 3, a boehmite treatment is performed as a pretreatment to boehmite the surface of a substrate made of an aluminum plate. The boehmite treatment can be performed, for example, by boiling an aluminum base material in ion exchange water for 10 minutes. By the boehmite treatment, hydroxyl groups are generated on the surface of the aluminum substrate.
 〔第2工程:親水性分子導入工程〕
 次に、ベーマイト処理したアルミニウム基材の表面に上述したホスホン酸系親水性分子を導入する。具体的には、ホスホン酸系親水性分子を含有するエタノール溶液にアルミニウム基材を室温で24時間浸漬させる。これにより、ホスホン酸系親水性分子がアルミニウム基材の表面に形成された水酸基と水素結合し、アルミニウム基材の表面にホスホン酸系親水性分子が導入される。
[Second step: hydrophilic molecule introduction step]
Next, the above-described phosphonic acid-based hydrophilic molecule is introduced into the surface of the boehmite-treated aluminum substrate. Specifically, the aluminum substrate is immersed in an ethanol solution containing a phosphonic acid-based hydrophilic molecule for 24 hours at room temperature. As a result, the phosphonic acid-based hydrophilic molecule is hydrogen-bonded to the hydroxyl group formed on the surface of the aluminum substrate, and the phosphonic acid-based hydrophilic molecule is introduced to the surface of the aluminum substrate.
 〔第3工程:ベーキング工程〕
 次に、図4に示すように、表面にホスホン酸系親水性分子が導入されたアルミニウム基材を加熱するベーキング工程を行う。具体的には、ホスホン酸系親水性分子が導入されたアルミニウム基材を140℃で6時間加熱する。これにより、脱水反応が進み、ホスホン酸系親水性分子のホスホン酸に含まれる酸素とアルミニウム基材に含まれるアルミニウムとが共有結合し、アルミニウム基材の表面にホスホン酸系親水性分子が強固に結合する。
[Third step: Baking step]
Next, as shown in FIG. 4, a baking process is performed in which the aluminum base material having phosphonic acid hydrophilic molecules introduced on the surface thereof is heated. Specifically, the aluminum base material into which the phosphonic acid-based hydrophilic molecule is introduced is heated at 140 ° C. for 6 hours. As a result, the dehydration reaction proceeds, the oxygen contained in the phosphonic acid hydrophilic molecule phosphonic acid and the aluminum contained in the aluminum substrate are covalently bonded, and the phosphonic acid hydrophilic molecule is firmly attached to the surface of the aluminum substrate. Join.
 その後、ホスホン酸系親水性分子が結合したアルミニウム基材をアルコールに浸漬して超音波を10分間印加してエタノール洗浄を行い、さらに乾燥させる。 Thereafter, the aluminum substrate to which the phosphonic acid-based hydrophilic molecule is bonded is immersed in alcohol, ultrasonic waves are applied for 10 minutes, ethanol washing is performed, and drying is further performed.
 〔第4工程:ナトリウム塩化工程〕
 次に、ホスホン酸系親水性分子の空気側に位置するカルボキシレート基にナトリウムを導入するナトリウム塩化工程を行う。具体的には、ホスホン酸系親水性分子が結合したアルミニウム基材をNaHCO3飽和水溶液に室温で20分間浸漬させる。これにより、カルボキシレート基の水素がナトリウムに置換され、ナトリウム塩化を行うことができる。
[Fourth step: Sodium chloride step]
Next, a sodium chloride step is performed in which sodium is introduced into the carboxylate group located on the air side of the phosphonic acid hydrophilic molecule. Specifically, an aluminum base material to which phosphonic acid-based hydrophilic molecules are bonded is immersed in a saturated aqueous NaHCO3 solution at room temperature for 20 minutes. Thereby, the hydrogen of the carboxylate group is replaced with sodium, and sodium chloride can be performed.
 その後、純水洗浄およびアセトン洗浄を行い、さらに乾燥させる。これにより、本実施形態の第1層21および第2層22を備える伝熱部20を得ることができる。 After that, pure water washing and acetone washing are performed and further dried. Thereby, the heat-transfer part 20 provided with the 1st layer 21 and the 2nd layer 22 of this embodiment can be obtained.
 次に、熱交換部11の表面に凝縮水が付着した場合について図5を用いて説明する。所定の湿度を有する空気が熱交換部11で冷却され、空気の温度が空気中に含まれる水蒸気の露点温度を下回ると、水蒸気は凝縮水となって熱交換部11の表面に付着する。 Next, the case where condensed water adheres to the surface of the heat exchange unit 11 will be described with reference to FIG. When air having a predetermined humidity is cooled by the heat exchange unit 11 and the temperature of the air falls below the dew point temperature of the water vapor contained in the air, the water vapor becomes condensed water and adheres to the surface of the heat exchange unit 11.
 図5Aは本実施形態の伝熱部20を備えていない熱交換部11の表面で凝縮水が発生した場合を示し、図5Bは伝熱部20を備えている熱交換部11の表面で凝縮水が発生した場合を示している。伝熱部20を備えていない熱交換部11の表面(以下、冷却面30という)は、伝熱部20の第2層22が形成されておらず、第1層21のみから構成されている。 FIG. 5A shows a case where condensed water is generated on the surface of the heat exchange unit 11 that does not include the heat transfer unit 20 of this embodiment, and FIG. 5B condenses on the surface of the heat exchange unit 11 that includes the heat transfer unit 20. The case where water is generated is shown. The surface of the heat exchange unit 11 that does not include the heat transfer unit 20 (hereinafter referred to as the cooling surface 30) is formed of only the first layer 21 without the second layer 22 of the heat transfer unit 20 formed. .
 図5Aに示すように、熱交換器10が伝熱部20を備えていない構成では、冷却面30において凝縮水が水滴W1となって付着する。水滴W1は接触角が大きく、冷却面30に空気の澱みができて水蒸気が水滴W1に集まりやすくなる。このため、水滴W1を基点とした霜柱の成長が促進されるおそれがある。 As shown in FIG. 5A, in the configuration in which the heat exchanger 10 does not include the heat transfer unit 20, the condensed water adheres as water droplets W1 on the cooling surface 30. The water droplet W1 has a large contact angle, and air stagnation is formed on the cooling surface 30, so that water vapor easily collects in the water droplet W1. For this reason, there exists a possibility that the growth of the frost pillar based on the water droplet W1 may be accelerated | stimulated.
 これに対し、図5Bに示すように、熱交換器10が伝熱部20を備えた構成では、伝熱部20における空気側が親水化しているため、凝縮水が薄膜W2となって付着する。水の薄膜W2は接触角が小さく、空気の流れを阻害することが抑制される。これにより、薄膜W2による空気の澱みができにくくなり、水蒸気が薄膜W2に集まりにくくなる。このため、水の薄膜W2を基点とした霜の成長が抑制される。 On the other hand, as shown in FIG. 5B, in the configuration in which the heat exchanger 10 includes the heat transfer section 20, the air side in the heat transfer section 20 is hydrophilized, so that condensed water adheres as a thin film W2. The water thin film W2 has a small contact angle and inhibits air flow from being inhibited. Thereby, it becomes difficult to cause air stagnation by the thin film W2, and water vapor hardly collects in the thin film W2. For this reason, the growth of frost based on the thin film W2 of water is suppressed.
 以上説明した本実施形態の伝熱部20によれば、基材としての第1層21の表面をホスホン酸系親水性分子からなる第2層22で被覆することで、伝熱部20の表面で凝縮水が発生した場合においても、霜が成長することを効果的に抑制することができる。 According to the heat transfer section 20 of the present embodiment described above, the surface of the heat transfer section 20 is covered by covering the surface of the first layer 21 as the base material with the second layer 22 made of phosphonic acid-based hydrophilic molecules. Even when condensed water is generated, the growth of frost can be effectively suppressed.
 また、本実施形態の伝熱部20によれば、第2層22における第1層21側の端部にホスホン酸が設けられ、ホスホン酸中の酸素が第1層21のアルミニウムと化学的結合を共有している。これにより、第1層21と第2層22を強固に結合することができ、第2層22による第1層21の被覆率を高くすることができる。 Further, according to the heat transfer section 20 of the present embodiment, phosphonic acid is provided at the end of the second layer 22 on the first layer 21 side, and oxygen in the phosphonic acid is chemically bonded to aluminum in the first layer 21. Share. Thereby, the 1st layer 21 and the 2nd layer 22 can be combined firmly, and the coverage of the 1st layer 21 by the 2nd layer 22 can be made high.
(第2実施形態)
 次に、本開示の第2実施形態について説明する。以下、上記第1実施形態と同様の部分については説明を省略し、異なる部分についてのみ説明する。
(Second Embodiment)
Next, a second embodiment of the present disclosure will be described. Hereinafter, description of the same parts as those in the first embodiment will be omitted, and only different parts will be described.
 図6に示すように、本第2実施形態の伝熱部20では、第1層21における第2層22に対向する側に防錆層21aが形成されている。防錆層21aは、第2層22におけるホスホン酸中の酸素と化学的結合を共有している。 As shown in FIG. 6, in the heat transfer section 20 of the second embodiment, a rust prevention layer 21 a is formed on the first layer 21 on the side facing the second layer 22. The rust preventive layer 21 a shares a chemical bond with oxygen in the phosphonic acid in the second layer 22.
 つまり、基材を構成する第1層21の表面に防錆層21aが形成され、防錆層21aの表面に被覆層を構成する第2層22が形成されている。防錆層21aは、第1層21に発生する腐食を抑制する機能を備えている。 That is, the rust prevention layer 21a is formed on the surface of the first layer 21 constituting the base material, and the second layer 22 constituting the coating layer is formed on the surface of the rust prevention layer 21a. The rust prevention layer 21 a has a function of suppressing corrosion that occurs in the first layer 21.
 防錆層21aは、遷移元素を含んで構成されている。本開示では、遷移元素は、周期表の第3族元素から第12族元素の間の元素としている。遷移元素を含んだ防錆層21aは、第1層21よりも第2層22との結合力が高い。 The rust prevention layer 21a includes a transition element. In the present disclosure, the transition element is an element between the Group 3 element and the Group 12 element of the periodic table. The anticorrosive layer 21 a containing the transition element has a higher bonding strength with the second layer 22 than the first layer 21.
 防錆層21aは、遷移元素のみから構成されていてもよく、遷移元素以外の物質が含まれていてもよい。防錆層21aに含まれる遷移元素は、1種類でも複数種類でもよい。防錆層21aに含まれる遷移元素は複数種類である方が、第1層21の腐食を抑制する効果が高い。防錆層21aに含まれる遷移元素は、酸化物の状態で存在している。 The rust prevention layer 21a may be composed of only a transition element, or may contain a substance other than the transition element. The transition element contained in the rust prevention layer 21a may be one kind or plural kinds. The effect of suppressing corrosion of the first layer 21 is higher when there are a plurality of types of transition elements contained in the rust prevention layer 21a. The transition element contained in the rust prevention layer 21a exists in an oxide state.
 第1層21がアルミニウムである場合は、防錆層21aを構成する遷移元素としてZr、Ti、V、Cr、Ni、Zn、Moのうち1種類あるいは複数種類を用いることで、第1層21の腐食を効果的に抑制できる。特に防錆層21aにVを含んでいる場合は、アルミニウムからなる第1層21の腐食を抑制する効果が高い。 When the first layer 21 is aluminum, by using one or more kinds of Zr, Ti, V, Cr, Ni, Zn, and Mo as transition elements constituting the rust prevention layer 21a, the first layer 21 is used. Can effectively suppress corrosion. In particular, when V is contained in the rust prevention layer 21a, the effect of suppressing the corrosion of the first layer 21 made of aluminum is high.
 ここで、本第2実施形態の伝熱部20の製造方法を説明する。本第2実施形態の製造方法は、上記第1実施形態に対して主に第1工程(前処理)が異なっている。 Here, a method for manufacturing the heat transfer section 20 of the second embodiment will be described. The manufacturing method of the second embodiment is mainly different from the first embodiment in the first step (pretreatment).
 本第2実施形態では、第1工程(前処理)において、アルミニウム基材の表面に遷移元素を含んだ遷移元素含有層を形成する。アルミニウム基材が伝熱部20の第1層21を構成し、遷移元素含有層が伝熱部20の防錆層21aを構成する。 In the second embodiment, in the first step (pretreatment), a transition element-containing layer containing a transition element is formed on the surface of the aluminum substrate. The aluminum base material constitutes the first layer 21 of the heat transfer section 20, and the transition element-containing layer constitutes the rust prevention layer 21 a of the heat transfer section 20.
 遷移元素含有層の形成は、例えばアルミニウム基材を遷移元素を含んだ溶液に浸漬することで行うことができる。次に、遷移元素含有層の表面にプラズマ処理あるいは薬液処理等を行うことで、遷移元素含有層の表面に水酸基を導入する。 The transition element-containing layer can be formed, for example, by immersing the aluminum base material in a solution containing a transition element. Next, a hydroxyl group is introduced into the surface of the transition element-containing layer by performing plasma treatment or chemical treatment on the surface of the transition element-containing layer.
 次に、遷移元素含有層が形成されたアルミニウム基材に対し、上記第1実施形態と同様の第2工程(親水性分子導入工程)、第3工程(ベーキング工程)、第4工程(ナトリウム塩化工程)を順に行う。以上の第1工程から第4工程を行うことで、本第2実施形態の第1層21、防錆層21aおよび第2層22を備える伝熱部20を得ることができる。 Next, the second step (hydrophilic molecule introduction step), the third step (baking step), the fourth step (sodium chloride) similar to the first embodiment are performed on the aluminum base material on which the transition element-containing layer is formed. Steps) are performed in order. By performing the first to fourth steps described above, the heat transfer section 20 including the first layer 21, the rust prevention layer 21a, and the second layer 22 of the second embodiment can be obtained.
 以上説明した本第2実施形態によれば、第1層21の表面に防錆層21aが形成することで、第1層21に形成された防錆層21aと第2層22との結合力を向上させることができる。これにより、伝熱部20における第2層22の離脱を抑制することができ、第2層22による親水性を長期間に渡って維持させることができる。 According to the second embodiment described above, the bonding strength between the rust preventive layer 21 a formed on the first layer 21 and the second layer 22 by forming the rust preventive layer 21 a on the surface of the first layer 21. Can be improved. Thereby, detachment | leave of the 2nd layer 22 in the heat-transfer part 20 can be suppressed, and the hydrophilic property by the 2nd layer 22 can be maintained over a long period of time.
 また、伝熱部20から第2層22が離脱して第1層21が露出したとしても、防錆層21aに含まれる遷移元素が第1層21の表面に移動し、第1層21の表面が防錆層21aで覆われる。これにより、水の接触によって第1層21が腐食し、この腐食が広がることを抑制でき、第1層21の腐食に起因する第2層22のさらなる離脱を抑制できる。この結果、伝熱部20の表面に整列している第2層22の膜分子構造が維持され、第2層22による親水性を長期間に渡って維持させることができる。 Even if the second layer 22 is detached from the heat transfer section 20 and the first layer 21 is exposed, the transition element contained in the rust prevention layer 21a moves to the surface of the first layer 21 and The surface is covered with a rust prevention layer 21a. Thereby, the 1st layer 21 corrodes by contact with water, it can control that this corrosion spreads, and the further secession of the 2nd layer 22 resulting from corrosion of the 1st layer 21 can be controlled. As a result, the film molecular structure of the second layer 22 aligned with the surface of the heat transfer section 20 is maintained, and the hydrophilicity of the second layer 22 can be maintained over a long period of time.
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。また、上記各実施形態に開示された手段は、実施可能な範囲で適宜組み合わせてもよい。 The present disclosure is not limited to the above-described embodiment, and various modifications can be made as follows without departing from the spirit of the present disclosure. Further, the means disclosed in each of the above embodiments may be appropriately combined within a practicable range.
 上記実施形態では、第1層21をアルミニウムによって構成したが、これに限らず、銅やSUS等の他の材料によって構成してもよい。第1層21を銅やSUSによって構成する場合には、第1層21と第2層22の間にバインダ層を設けることで、これらの層同士を強固に結合することができる。バインダ層は、例えばSiO2によって構成することができる。 In the above embodiment, the first layer 21 is made of aluminum, but is not limited thereto, and may be made of other materials such as copper and SUS. When the first layer 21 is made of copper or SUS, by providing a binder layer between the first layer 21 and the second layer 22, these layers can be firmly bonded to each other. The binder layer can be made of, for example, SiO2.
 上記実施形態では、第2層22をホスホン酸系親水性分子として構成したが、これに限らず、第2層22をホスホン酸系疎水性分子として構成してもよい。第2層22をホスホン酸系疎水性分子とする場合には、伝熱部20の表面で凝縮水が発生しても、凝縮水が速やかに取り除かれる。この結果、伝熱部20の表面で凝縮水が凍結して霜が成長することを抑制できる。この場合、ホスホン酸系疎水性分子における第1層21側に位置する一端側にホスホン酸が設けられ、ホスホン酸中の酸素と第1層21のアルミニウムとが化学的結合を共有していればよい。 In the above embodiment, the second layer 22 is configured as a phosphonic acid-based hydrophilic molecule. However, the present invention is not limited thereto, and the second layer 22 may be configured as a phosphonic acid-based hydrophobic molecule. When the second layer 22 is a phosphonic acid-based hydrophobic molecule, even if condensed water is generated on the surface of the heat transfer section 20, the condensed water is quickly removed. As a result, it is possible to prevent the condensed water from freezing and growing frost on the surface of the heat transfer section 20. In this case, phosphonic acid is provided on one end side of the phosphonic acid-based hydrophobic molecule located on the first layer 21 side, and oxygen in the phosphonic acid and aluminum in the first layer 21 share a chemical bond. Good.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (8)

  1.  所定の湿度を有する空気と、前記空気よりも低い温度の流体との間における熱交換を行うように構成され、少なくとも前記空気と接するように配設された伝熱部(20)を備えており、
     前記伝熱部は、少なくとも第1層(21)と、前記第1層と前記空気との間に位置する第2層(22)とを有し、
     前記第2層は、親水性または疎水性を有する複数の分子から構成されるとともに、前記第1層に対向する前記複数の分子の第1端にホスホン酸を備え、前記ホスホン酸中の酸素が前記第1層と化学的結合を共有している熱交換器。
    It is configured to perform heat exchange between air having a predetermined humidity and a fluid having a temperature lower than that of the air, and includes a heat transfer section (20) disposed so as to be in contact with at least the air. ,
    The heat transfer part has at least a first layer (21) and a second layer (22) positioned between the first layer and the air,
    The second layer is composed of a plurality of molecules having hydrophilicity or hydrophobicity, and has a phosphonic acid at a first end of the plurality of molecules facing the first layer, and oxygen in the phosphonic acid A heat exchanger sharing a chemical bond with the first layer.
  2.  前記第2層は親水性分子からなる請求項1に記載の熱交換器。 The heat exchanger according to claim 1, wherein the second layer is made of hydrophilic molecules.
  3.  前記第1層は、アルミニウム、銅、及びSUSのうちのいずれかの材料で構成されている請求項1または2に記載の熱交換器。 The heat exchanger according to claim 1 or 2, wherein the first layer is made of any material of aluminum, copper, and SUS.
  4.  前記第1層はアルミニウムから構成され、前記第1層のアルミニウムと前記第2層に含まれるホスホン酸中の酸素とが化学的結合を共有している請求項3に記載の熱交換器。 The heat exchanger according to claim 3, wherein the first layer is made of aluminum, and the aluminum in the first layer and oxygen in the phosphonic acid contained in the second layer share a chemical bond.
  5.  前記第2層は、少なくとも下記化学式1または化学式2で示される単位構造の繰り返しで構成される重合体が含まれており、前記第2層に含まれるホスホン酸中のリンが前記重合体の一端と化学的結合を共有している請求項1ないし4のいずれか1つに記載の熱交換器。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    The second layer includes a polymer composed of at least a repeating unit structure represented by the following chemical formula 1 or chemical formula 2, and phosphorus in the phosphonic acid contained in the second layer is one end of the polymer. The heat exchanger according to claim 1, which shares a chemical bond with the heat exchanger.
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
  6.  前記複数の分子のそれぞれは、前記第1端と反対の第2端にカルボキシレート基と、そのカウンタカチオンとしてのアルカリ金属イオンとを備える請求項1ないし5のいずれか1つに記載の熱交換器。 The heat exchange according to any one of claims 1 to 5, wherein each of the plurality of molecules includes a carboxylate group and an alkali metal ion as a counter cation at a second end opposite to the first end. vessel.
  7.  前記第1層における前記第2層に対向する面は、遷移元素を含んだ防錆層(21a)を有し、
     前記第2層における前記ホスホン酸中の酸素が前記防錆層と化学的結合を共有している請求項1ないし6のいずれか1つに記載の熱交換器。
    The surface of the first layer facing the second layer has a rust prevention layer (21a) containing a transition element,
    The heat exchanger according to any one of claims 1 to 6, wherein oxygen in the phosphonic acid in the second layer shares a chemical bond with the antirust layer.
  8.  前記第1層はアルミニウムから構成され、前記防錆層は前記遷移元素としてZr、Ti、V、Cr、Ni、Zn、Moのうち1種類あるいは複数種類を含む請求項7に記載の熱交換器。 The heat exchanger according to claim 7, wherein the first layer is made of aluminum, and the antirust layer includes one or more of Zr, Ti, V, Cr, Ni, Zn, and Mo as the transition element. .
PCT/JP2017/006964 2016-03-03 2017-02-24 Heat exchanger WO2017150353A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016040789 2016-03-03
JP2016-040789 2016-03-03
JP2017012804A JP2017161215A (en) 2016-03-03 2017-01-27 Heat exchanger
JP2017-012804 2017-01-27

Publications (1)

Publication Number Publication Date
WO2017150353A1 true WO2017150353A1 (en) 2017-09-08

Family

ID=59742875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006964 WO2017150353A1 (en) 2016-03-03 2017-02-24 Heat exchanger

Country Status (1)

Country Link
WO (1) WO2017150353A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4113051A1 (en) * 2021-07-01 2023-01-04 Commissariat à l'énergie atomique et aux énergies alternatives Heat exchanger for an absorption machine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0881650A (en) * 1994-09-16 1996-03-26 Mitsubishi Alum Co Ltd Coating composition for fin, fin material and method for producing fin and heat exchanger incorporated with fin
JPH08189794A (en) * 1995-01-13 1996-07-23 Matsushita Electric Ind Co Ltd Production for heat exchanger
JP2003249669A (en) * 2002-02-25 2003-09-05 Kawamura Inst Of Chem Res Organic photoelectric transducer
JP2006513264A (en) * 2002-12-23 2006-04-20 ビーエーエスエフ アクチェンゲゼルシャフト Hydrophobic-hydrophilic compounds for metal surface treatment
JP2007211164A (en) * 2006-02-10 2007-08-23 Fujifilm Corp Organic-inorganic composite composition and optical component
JP2008156748A (en) * 2006-12-01 2008-07-10 Kobe Steel Ltd Aluminum alloy material with high corrosion resistance, and plate-fin heat exchanger and plate heat exchanger
JP2012087213A (en) * 2010-10-19 2012-05-10 Nippon Parkerizing Co Ltd Hydrophilic film for metal material, hydrophilization-treating agent, and hydrophilization-treating method
JP2015117874A (en) * 2013-12-18 2015-06-25 日本軽金属株式会社 Fin and tube type heat exchanger and method of manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0881650A (en) * 1994-09-16 1996-03-26 Mitsubishi Alum Co Ltd Coating composition for fin, fin material and method for producing fin and heat exchanger incorporated with fin
JPH08189794A (en) * 1995-01-13 1996-07-23 Matsushita Electric Ind Co Ltd Production for heat exchanger
JP2003249669A (en) * 2002-02-25 2003-09-05 Kawamura Inst Of Chem Res Organic photoelectric transducer
JP2006513264A (en) * 2002-12-23 2006-04-20 ビーエーエスエフ アクチェンゲゼルシャフト Hydrophobic-hydrophilic compounds for metal surface treatment
JP2007211164A (en) * 2006-02-10 2007-08-23 Fujifilm Corp Organic-inorganic composite composition and optical component
JP2008156748A (en) * 2006-12-01 2008-07-10 Kobe Steel Ltd Aluminum alloy material with high corrosion resistance, and plate-fin heat exchanger and plate heat exchanger
JP2012087213A (en) * 2010-10-19 2012-05-10 Nippon Parkerizing Co Ltd Hydrophilic film for metal material, hydrophilization-treating agent, and hydrophilization-treating method
JP2015117874A (en) * 2013-12-18 2015-06-25 日本軽金属株式会社 Fin and tube type heat exchanger and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4113051A1 (en) * 2021-07-01 2023-01-04 Commissariat à l'énergie atomique et aux énergies alternatives Heat exchanger for an absorption machine
FR3124854A1 (en) * 2021-07-01 2023-01-06 Commissariat A L'energie Atomique Et Aux Energies Alternatives Heat exchanger of an absorption machine

Similar Documents

Publication Publication Date Title
JPWO2009017039A1 (en) Heat exchanger, method for manufacturing the same, and refrigeration cycle apparatus
JPS5942615Y2 (en) Evaporator
EP2962057B1 (en) Aluminum heat exchanger with corrosion resistant coating
JP2008538602A (en) Apparatus and method for preventing icing, and manufactured article that prevents icing
JP2012228670A (en) Water-repellent substrate, heat exchanger using water-repellent substrate, and method for producing water-repellent substrate
US6994154B2 (en) Aluminum heat exchanger
JPS62272099A (en) Heat exchanger made of aluminum and manufacture thereof
WO2017150353A1 (en) Heat exchanger
US11333453B2 (en) Vehicle heat exchanger and vehicle front structure having the same
JP2017161215A (en) Heat exchanger
WO2018168332A1 (en) Heat exchanger
JP2002071295A (en) Evaporator
JP2017150756A (en) Heat exchanger and manufacturing method of fin
JPS6139589B2 (en)
JP2006275353A (en) Heat exchanger and its manufacturing method
JP2003001746A (en) Copper member having hydrophilicity and water repellency, method for manufacturing the same, and heat transfer pipe
JP2019158247A (en) Heat exchanger
JPS6013429B2 (en) Method for imparting hydrophilicity to the condensation surface of aluminum heat exchangers
JP3841944B2 (en) Plate fin type element cooler
WO2015098698A1 (en) Adsorption heat exchanger and manufacturing method for adsorption fin used in adsorption heat exchanger
KR101510304B1 (en) Hybrid heat conductable pin with hydrophilic and hydrophobic characteristics and method thereof
JP2007040592A (en) Adsorber
JP4513675B2 (en) Brazing method of aluminum material and flux used therefor
JPS6013428B2 (en) Method for imparting hydrophilicity to the condensation surface of aluminum heat exchangers
WO2022107630A1 (en) Vapor chamber

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759819

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17759819

Country of ref document: EP

Kind code of ref document: A1