WO2017150141A1 - Power supply control system, power supply control method, and power supply control program - Google Patents

Power supply control system, power supply control method, and power supply control program Download PDF

Info

Publication number
WO2017150141A1
WO2017150141A1 PCT/JP2017/004884 JP2017004884W WO2017150141A1 WO 2017150141 A1 WO2017150141 A1 WO 2017150141A1 JP 2017004884 W JP2017004884 W JP 2017004884W WO 2017150141 A1 WO2017150141 A1 WO 2017150141A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
output
supply circuit
supply control
batteries
Prior art date
Application number
PCT/JP2017/004884
Other languages
French (fr)
Japanese (ja)
Inventor
孝典 佐野
神谷 岳
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Publication of WO2017150141A1 publication Critical patent/WO2017150141A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/28Supervision thereof, e.g. detecting power-supply failure by out of limits supervision
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power supply control system, a power supply control method, and a power supply control program, and more particularly to a power supply control system, a power supply control method, and a power supply control program that supply battery power to a load in addition to power based on a system power supply.
  • Patent Document 1 An example of this type of system is disclosed in Patent Document 1.
  • the control unit controls the charging operation from the power distribution system to the battery and the discharging operation from the battery to the power distribution system. Further, the system controller controls the control unit to operate the entire system in the PV priority mode or the power storage priority mode.
  • the PV priority mode is a mode in which power generated by a distributed power source connected to the distribution system is supplied with priority to a consumer's load, and the storage mode is power stored in a battery. In this mode, the load is given priority to the load.
  • the inverter / converter of the power supply system has a capacity that is considered excessive during normal operation assuming peak power, the scale of the inverter / converter increases. Moreover, since voltage conversion by an inverter / converter is required at the time of discharging from the battery to the power distribution system, power loss due to voltage conversion occurs.
  • a main object of the present invention is to provide a power supply control system, a power supply control method, and a power supply control program capable of suppressing the scale of a circuit for voltage conversion and reducing power loss due to voltage conversion. is there.
  • a power supply control system (10: reference numerals corresponding to the embodiments; the same applies hereinafter) includes a power supply circuit (PWC1) that supplies power based on a system power supply (12) to a load (24), each of which is a power supply circuit.
  • PWC1 power supply circuit
  • the output of the power supply circuit fluctuates as the load increases, and when the output deviates from the predetermined range, a battery in a rest state is selected for discharging.
  • the power shortage due to the increased load is compensated by the selected battery.
  • the output of the power supply circuit falls within the predetermined range.
  • another battery in the dormant state is selected for discharging.
  • the load is also driven by another selected battery.
  • the power that is insufficient with only the power supply circuit is compensated step by step by a plurality of batteries, and this eliminates the need for a circuit to cope with an instantaneous load increase, thereby reducing the scale of the power supply circuit.
  • the plurality of batteries are all connected in parallel to the power supply circuit on the output side of the power supply circuit, power loss can be reduced.
  • the power supply circuit includes a plurality of converters (16a to 16f) each generating electric power, and further includes adjustment means (S5) for adjusting start / stop of the plurality of converters so that appropriate power is supplied to the load. Provided. As a result, the load can be driven appropriately.
  • a stop means (S7) for stopping the discharge of some or all of the plurality of batteries in relation to the processing of the adjusting means is further provided.
  • the load sharing can be adjusted adaptively.
  • each of the plurality of batteries is an electricity storage type battery, and when the output detected by the output detection means falls within a predetermined range, a battery whose remaining capacity is below a reference is selected based on the output of the power supply circuit. Charging means (S21, S23) for further charging. The battery is charged using the downtime and can be prepared for the next discharge.
  • the detection target by the output detection means is the output voltage of the power supply circuit
  • the predetermined range is a range in which the output voltage exceeds the first threshold (TH1).
  • each of the plurality of batteries has a characteristic that the distribution range of the remaining battery level corresponding to the closed circuit voltage within a range of ⁇ 10% centered on the first threshold exceeds 50% of the entire distribution range. This eliminates the need for a large-scale step-up / step-down and can increase the effectiveness of the battery.
  • the detection target by the output detection means is the output current of the power supply circuit
  • the predetermined range is a range where the output current is below the second threshold (TH2).
  • a power supply control method includes a power supply circuit (PWC1) that supplies power based on a system power supply (12) to a load (24), and a plurality of batteries each connected in parallel with the power supply circuit on the output side of the power supply circuit
  • PWC1 power supply circuit
  • a power control method executed by the processor (26) of the power control system (10) including (18a to 18d) wherein an output detection step (S1, S1 ') for repeatedly detecting the output of the power supply circuit, an output detection step A selection step (S31, S39) for selecting a hibernating battery for discharging when the output detected by the sensor is out of the predetermined range, and the output detected by the output detection step is within the predetermined range.
  • a restriction step (S9) is provided for restricting the process of the selection step when it falls.
  • a power supply control program includes a power supply circuit (PWC1) that supplies power based on a system power supply (12) to a load (24), and a plurality of batteries each connected in parallel with the power supply circuit on the output side of the power supply circuit (
  • the output detection step (S1, S1 ') that repeatedly detects the output of the power supply circuit in the processor (26) of the power supply control system (10) with 18a to 18d), the output detected by the output detection step is out of the predetermined range. If the output detected in the selection step (S31, S39) and the output detection step falls within a predetermined range, the selection step processing is limited. This is a power supply control program for executing the limiting step (S9).
  • the scale of the circuit for voltage conversion can be suppressed, and the power loss caused by voltage conversion can be reduced.
  • (A) is a graph showing the relationship between the SOC and the closed circuit voltage of the assembled battery under an environmental temperature of ⁇ 10 ° C.
  • (B) is the closed circuit voltage of the SOC and the assembled battery under an environmental temperature of 0 ° C. It is a graph which shows the relationship.
  • (A) is a graph which shows the relationship between SOC and the closed circuit voltage of an assembled battery under the environmental temperature of 10 degreeC
  • (B) is SOC and closed circuit voltage of an assembled battery under the environmental temperature of 23 degreeC. It is a graph which shows the relationship.
  • (A) is a graph which shows the relationship between SOC and the closed circuit voltage of an assembled battery under the environmental temperature of 30 degreeC
  • (B) is SOC and closed circuit voltage of an assembled battery under the environmental temperature of 40 degreeC. It is a graph which shows the relationship.
  • FIG. 10 is a flowchart showing yet another portion of the operation of the system control circuit shown in FIG. 1. It is a graph which shows the relationship between the output current (current supplied to load) and the output voltage of the power supply circuit in the power supply control system of another Example. It is a flowchart which shows a part of operation
  • a power supply control system 10 of this embodiment includes an AC / DC converter 14 that converts an AC voltage supplied from a system power supply 12 into a DC voltage.
  • the AC / DC converter 14 converts the AC voltage supplied from the system power supply 12 into a DC voltage of 380V, and the power supply circuit PWC1 steps down the DC voltage of 380V to a DC voltage of 12.3V.
  • the plus terminals and minus terminals of the DC / DC converters 16a to 16f constituting the power supply circuit PWC1 are connected to the plus terminal and the minus terminal of the load 24, respectively.
  • Each of the DC / DC converters 16a to 16f is started / stopped in accordance with the fluctuation of the load 24, and the load 24 is driven by the started DC / DC converter.
  • the output voltage of the power supply circuit PWC1 changes as shown in FIG. 2 with respect to the current supplied to the load 24, and changes as shown in FIG. 3 with respect to the power supplied to the load 24. Note that these graphs show the output when any one of the assembled batteries 18a to 18d described later is in a resting state (a state where neither charging nor discharging is performed) and the assembled battery transitions to a discharging state. It represents the change in voltage.
  • the output voltage of the power supply circuit PWC1 shows 12.3V.
  • the output voltage of the power supply circuit PWC1 rapidly decreases.
  • the threshold value TH1 12.1V
  • any one of the assembled batteries 18a to 18d starts discharging, and thereby the output voltage of the power supply circuit PWC1 returns to 12.3V.
  • the output voltage of the power supply circuit PWC1 shows 12.3V.
  • the threshold value TH1 12.1V
  • any one of the assembled batteries 18a to 18d starts discharging, and thereby the output voltage of the power supply circuit PWC1 returns to 12.3V.
  • Each of the assembled batteries 18a to 18d is a storage type assembled battery including four cells.
  • the positive electrode and the negative electrode of each cell are made of lithium iron phosphate (LFP) and graphite (Gr), respectively.
  • the AC ratio of each cell is “1.75”, the ACR (resistance) of each cell is 2 m ⁇ (at least 10 m ⁇ or less), and the capacity of each cell is 6 Ah. is there.
  • a region where the SOC gradient of the positive electrode is 2 [mV / SOC%] or less is 90% or more of the cell effective SOC
  • a region where the SOC gradient of the negative electrode is 2.5 [mV / SOC%] or less. It is 40% or more of the cell effective SOC.
  • Each of the assembled batteries 18a to 18d exhibits the characteristics shown in FIG. 4A when the environmental temperature is ⁇ 10 ° C., and exhibits the characteristics shown in FIG. 4B when the environmental temperature is 0 ° C. 5A when the temperature is 10 ° C., the characteristics shown in FIG. 5B when the environmental temperature is 23 ° C., and the characteristics shown in FIG. 6A when the environmental temperature is 30 ° C.
  • the characteristics shown in FIG. 6B are shown when the environmental temperature is 40 ° C.
  • the horizontal axis represents SOC (State of Charge; remaining). Capacity), and the vertical axis represents the closed circuit voltage (CCV).
  • Curves C6a to C6f show the characteristics when the discharge current is 6A
  • curves C30a to C30f show the characteristics when the discharge current is 30A
  • curves C60a to C60f show the characteristics when the discharge current is 60A
  • Curves C120a to C120f show characteristics when the discharge current is 120A.
  • the range between the two dotted lines extending along the horizontal axis is a range of 12.1 V ⁇ 10%.
  • each of the assembled batteries 18a to 18d has an SOC distribution range corresponding to a closed circuit voltage that falls within the range of 12.1 V ⁇ 10% under an environmental temperature of at least 0 ° C. It can be seen that the characteristics exhibit more than 50% of the entire distribution range. By using the assembled batteries 18a to 18d exhibiting such characteristics, a large-scale voltage step-up / step-down is unnecessary, and power loss can be reduced.
  • the plus terminal of the assembled battery 18a is connected to the plus terminals of the DC / DC converters 16a to 16f via the charging circuit 20a and the discharging circuit 22a, and the minus terminal of the assembled battery 18a is directly connected to the DC / DC converter 16a.
  • the plus terminal of the assembled battery 18b is connected to the plus terminals of the DC / DC converters 16a to 16f via the charging circuit 20b and the discharging circuit 22b, and the minus terminal of the assembled battery 18b is directly connected to the DC / DC converter 16a.
  • the plus terminal of the assembled battery 18c is connected to the plus terminals of the DC / DC converters 16a to 16f via the charging circuit 20c and the discharging circuit 22c, and the minus terminal of the assembled battery 18c is directly connected to the DC / DC converter 16a.
  • the plus terminal of the assembled battery 18d is connected to the plus terminals of the DC / DC converters 16a to 16f via the charging circuit 20d and the discharging circuit 22d, and the minus terminal of the assembled battery 18d is directly connected to the DC / DC converter 16a.
  • the discharge circuit 22a is provided with an FET 22t1
  • the discharge circuit 22b is provided with an FET 22t2
  • the discharge circuit 22c is provided with an FET 22t3
  • the discharge circuit 22d is provided with an FET 22t4.
  • Each of the FETs 22t1 to 22t4 functions as a switch that transitions between an on state and an off state.
  • the parallel connection between the assembled battery 18a and the power supply circuit PWC1 is established when the FET 22t1 is turned on, and is released when the FET 22t1 is turned off.
  • the parallel connection between the assembled battery 18b and the power supply circuit PWC1 is established when the FET 22t2 is turned on, and is released when the FET 22t2 is turned off.
  • the parallel connection between the assembled battery 18c and the power supply circuit PWC1 is established when the FET 22t3 is turned on, and is released when the FET 22t3 is turned off.
  • the parallel connection between the assembled battery 18d and the power supply circuit PWC1 is established when the FET 22t4 is turned on, and is released when the FET 22t4 is turned off.
  • the system control circuit (processor) 26 executes charge / discharge control of the assembled batteries 18a to 18d according to the flowcharts shown in FIGS.
  • a control program corresponding to these flowcharts is stored in a memory (not shown).
  • step S1 the output voltage of power supply circuit PWC1, the current and power supplied to load 24 are detected, and the ambient temperature is detected using thermistor 28.
  • step S3 the state of the assembled batteries 18a to 18d (specifically, output current, voltage, SOC, presence / absence of charge, presence / absence of discharge) is detected.
  • step S5 referring to the detection results of steps S1 and S3 (particularly, the electric power supplied to the load 24 and the presence or absence of SOC and discharge of the assembled batteries 18a to 18d), the electric power is optimally or appropriately efficiently loaded 24
  • the setting of the power supply circuit PWC1 starts / stopping of each of the DC / DC converters 16a to 16f or the load sharing ratio
  • step S7 part or all of the starting charging circuit (the assembled battery being discharged) is stopped in accordance with the setting of the power supply circuit PWC1 adjusted in step S5.
  • a threshold value TH1 12.1V
  • step S13 it is determined whether or not at least one of the assembled batteries 18a to 18d is being charged (whether at least one of the charging circuits 20a to 20d is in an on state) in step S15. Determine.
  • step S11 If at least one of the assembled batteries 18a to 18d is being discharged, YES is determined in step S11, and the process returns to step S1. If none of the assembled batteries 18a to 18d is discharged and all of the assembled batteries 18a to 18d are fully charged, YES is determined in step S13, and the process returns to step S1.
  • step S11 to In S15 If none of the assembled batteries 18a to 18d is discharged, at least one of the assembled batteries 18a to 18d is not fully charged, and none of the assembled batteries 18a to 18d is charged, steps S11 to In S15, NO is determined and the process proceeds to step S21.
  • step S21 an assembled battery to be charged is determined with reference to the SOC of the assembled battery that is not fully charged.
  • the battery pack to be determined is a battery pack whose SOC is lower than the standard.
  • step S23 the charging circuit corresponding to the determined assembled battery is turned on. Power supply circuit PWC1 drives load 24 and charges the assembled battery determined in step S15. When the process of step S23 is completed, the process returns to step S1.
  • Step S11 If none of the assembled batteries 18a to 18d is discharged, at least one of the assembled batteries 18a to 18d is not fully charged, and at least one of the assembled batteries 18a to 18d is charged, step S11, In S13, NO is determined, and YES is determined in Step S15, and the process proceeds to Step S17.
  • step S17 it is determined whether or not the assembled battery to be charged is fully charged. If the determination result is NO, the process returns to step S1 as it is. If the determination result is YES, charging corresponding to the assembled battery being charged is performed. The circuit is turned off in step S19. As a result, the charging operation is stopped. When the process of step S19 is completed, the process returns to step S1.
  • step S9 execution of the processes after the step S25 is restricted.
  • step S9 When the output voltage of the power supply circuit PWC1 becomes equal to or lower than the threshold TH1, the process proceeds from step S9 to step S25, and it is determined whether or not at least one of the assembled batteries 18a to 18d is being charged. If the determination result is NO, the process proceeds directly to step S29, and if the determination result is YES, the charging circuit corresponding to the assembled battery being charged is turned off in step S27, and then the process proceeds to step S29.
  • step S29 it is determined whether or not at least one of the assembled batteries 18a to 18d is being discharged. If the determination result is NO, the process proceeds to step S31, while if the determination result is YES, the process proceeds to step S37.
  • step S31 an assembled battery to be discharged is detected with reference to the SOCs of the assembled batteries 18a to 18d, and a discharge circuit corresponding to the detected assembled battery is selected.
  • the FET of the selected discharge circuit is repeatedly turned on / off so that the output voltage from the assembled battery is maintained at 12.3 V. As a result, a current is output from the assembled battery.
  • the load 24 is driven by the activated DC / DC converter and the assembled battery that has started discharging.
  • step S33 it is determined whether or not the output of the battery pack being discharged is excessive based on the allowable upper limit current of the battery pack.
  • step S35 it is determined whether or not the SOC of the battery pack being discharged is insufficient.
  • step S37 it is determined whether or not all of the assembled batteries 18a to 18d are being discharged.
  • step S39 the discharge circuit corresponding to the assembled battery to be discharged is selected with reference to the SOC of the suspended assembled battery (the assembled battery in which neither charging nor discharging is performed). When the selection is completed, the process returns to step S1.
  • step S35 or S37 determines whether or not all of the DC / DC converters 16a to 16f are being activated. If a determination result is NO, it will return to Step S1, and if a determination result is YES, it will progress to Step S43. In step S43, all of the DC / DC converters 16a to 16f are stopped, and in the subsequent step S45, all of the discharge circuits 22a to 22d are stopped. The charge / discharge control ends after the process of step S45.
  • the assembled batteries 18a to 18d perform a discharging operation substantially in accordance with the description of the table TBL1 shown in FIG. According to FIG. 7, the optimum rate [C] of the discharge current from the assembled batteries 18a to 18d and the appropriate output [W] of the assembled battery for which parallel connection is established are assigned to each of the plurality of environmental temperatures.
  • the optimum rate corresponding to the environmental temperature “ ⁇ 10 ° C.” indicates “1”
  • the optimum rate corresponding to the environmental temperature “0 ° C.” indicates “3”
  • the optimum rate to be shown is “5”.
  • the optimum rate corresponding to the environmental temperature “23 ° C.” indicates “10”
  • the optimum rate corresponding to the environmental temperature “30 ° C.” indicates “10”
  • the optimum rate corresponding to the environmental temperature “40 ° C.” is “10” indicates.
  • the appropriate output indicates “216 W”, and the battery rate that is set at “3” and the parallel connection is established.
  • the appropriate output indicates “432 W”
  • the optimum rate is “3” and the number of battery packs that are connected in parallel is three
  • the appropriate output indicates “648 W” and the optimum rate is “
  • the proper output indicates“ 864 W ”.
  • the appropriate output indicates “360 W”, and the number of battery packs that is established at the optimum rate “5” and established in parallel connection.
  • the appropriate output indicates “720 W”
  • the appropriate output indicates “1080 W” and the optimum rate is “
  • the proper output indicates“ 1440 W ”.
  • the appropriate output indicates “720 W”, and the number of battery packs in which the optimum rate is “10” and parallel connection is established.
  • the appropriate output indicates “1440 W”
  • the appropriate output indicates “2160 W” and the optimum rate is “
  • the appropriate output indicates“ 2880 W ”.
  • the power supply circuit PWC1 supplies power based on the system power supply 12 to the load 24.
  • Each of the assembled batteries 18a to 18d is connected in parallel with the power supply circuit PWC1 on the output side of the power supply circuit PWC1.
  • the output voltage of the power supply circuit PWC1 is repeatedly detected by the system control circuit 26 (S1). If the detected output voltage is equal to or lower than the threshold value TH1, the system control circuit 26 selects a suspended battery pack among the battery packs 18a to 18d for discharging (S31, S39). If the detected output voltage exceeds the threshold value TH1, the system control circuit 26 restricts the process for selecting the assembled battery in the dormant state (S9).
  • the output voltage of the power supply circuit PWC1 decreases as the load 24 increases.
  • the battery pack in the resting state is selected for discharging.
  • the power shortage due to the increase in the load 24 is compensated by the selected battery pack.
  • the output voltage of the power supply circuit PWC1 exceeds the threshold value TH1.
  • another assembled battery that is in a dormant state is selected for discharging.
  • the load 24 is also driven by another selected assembled battery.
  • each of the assembled batteries 18a to 18d has a low internal resistance and maintains a necessary voltage range in a wide temperature / load region, but is connected in parallel with the power supply circuit PWC1 on the output side of the power supply circuit PWC1. As a result, the boosting operation is minimized and the power loss can be reduced.
  • the power control system 10 is the same as that according to the first embodiment except that the system control circuit 26 executes steps S1 ′ and S9 ′ shown in FIG. 13 instead of steps S1 and S9 shown in FIG. Since it is the same as that of the system 10, the redundant description regarding the same configuration is omitted.
  • step S1 ′ the output current of power supply circuit PWC1, the current and power supplied to load 24 are detected, and the ambient temperature is detected using thermistor 28.
  • the output voltage of the power supply circuit PWC1 shows 12.3V.
  • the output voltage of the power supply circuit PWC1 rapidly decreases.
  • each of the assembled batteries 18a to 18d has a low internal resistance and maintains a necessary voltage range in a wide temperature / load region, but is connected in parallel with the power supply circuit PWC1 on the output side of the power supply circuit PWC1. As a result, the boosting operation is minimized and the power loss can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

In the present invention, a power supply circuit PWC1 supplies power based on a system power supply 12 to a load 24. Further, battery packs 18a-18d are connected in parallel, at an output side of the power supply circuit PWC1, to the power supply circuit PWC1. An output voltage of the power supply circuit PWC1 is repeatedly detected by a system control circuit 26. When the detected output voltage is equal to or lower than a threshold, the system control circuit 26 selects a battery pack in an inactive state from among the battery packs 18a-18d in order to perform electric discharge. When the detected output voltage is higher than the threshold, the system control circuit 26 restricts the processing for selecting a battery pack in an inactive state.

Description

電源制御システム、電源制御方法および電源制御プログラムPower supply control system, power supply control method, and power supply control program
 この発明は、電源制御システム、電源制御方法および電源制御プログラムに関し、特に系統電源に基づく電力に加えて電池電力を負荷に供給する、電源制御システム、電源制御方法および電源制御プログラムに関する。 The present invention relates to a power supply control system, a power supply control method, and a power supply control program, and more particularly to a power supply control system, a power supply control method, and a power supply control program that supply battery power to a load in addition to power based on a system power supply.
 この種のシステムの一例が、特許文献1に開示されている。この背景技術によれば、制御部は、配電系統から電池への充電動作を制御するとともに、電池から配電系統への放電動作を制御する。また、システムコントローラは、制御部を制御することで、システム全体をPV優先モードまたは蓄電優先モードで動作させる。ここで、PV優先モードは、配電系統に連系する分散型電源で発電された電力を需要家の負荷へ優先して供給させるモードであり、蓄電モードは、電池に蓄積された電力を需要家の負荷へ優先して供給させるモードである。 An example of this type of system is disclosed in Patent Document 1. According to this background art, the control unit controls the charging operation from the power distribution system to the battery and the discharging operation from the battery to the power distribution system. Further, the system controller controls the control unit to operate the entire system in the PV priority mode or the power storage priority mode. Here, the PV priority mode is a mode in which power generated by a distributed power source connected to the distribution system is supplied with priority to a consumer's load, and the storage mode is power stored in a battery. In this mode, the load is given priority to the load.
国際公開第2013/011758号公報International Publication No. 2013/011758
 一般的には、電源システムのインバータ/コンバータは、ピーク電力を想定して通常動作時に過剰と思われるだけの容量を備えるため、インバータ/コンバータの規模が増大してしまう。また、電池から配電系統への放電の際にインバータ/コンバータによる電圧変換が必要となるため、電圧変換に起因する電力ロスが生じてしまう。 Generally, since the inverter / converter of the power supply system has a capacity that is considered excessive during normal operation assuming peak power, the scale of the inverter / converter increases. Moreover, since voltage conversion by an inverter / converter is required at the time of discharging from the battery to the power distribution system, power loss due to voltage conversion occurs.
 それゆえに、この発明の主たる目的は、電圧変換のための回路の規模を抑制でき、かつ電圧変換に起因する電力ロスを低減できる、電源制御システム、電源制御方法および電源制御プログラムを提供することである。 Therefore, a main object of the present invention is to provide a power supply control system, a power supply control method, and a power supply control program capable of suppressing the scale of a circuit for voltage conversion and reducing power loss due to voltage conversion. is there.
 この発明に係る電源制御システム(10:実施例で相当する参照符号。以下同じ)は、系統電源(12)に基づく電力を負荷(24)に供給する電源回路(PWC1)、各々が電源回路の出力側で電源回路と並列接続される複数の電池(18a~18d)、電源回路の出力を繰り返し検出する出力検出手段(S1, S1’)、出力検出手段によって検出された出力が既定範囲から外れた場合に複数の電池の中から休止状態の電池を選択する選択手段(S31, S39)、選択手段によって選択された電池を放電させる放電手段(S33, S35)、および出力検出手段によって検出された出力が既定範囲に収まる場合に選択手段の処理を制限する制限手段(S9)を備える。 A power supply control system according to the present invention (10: reference numerals corresponding to the embodiments; the same applies hereinafter) includes a power supply circuit (PWC1) that supplies power based on a system power supply (12) to a load (24), each of which is a power supply circuit. Multiple batteries (18a to 18d) connected in parallel with the power supply circuit on the output side, output detection means (S1, S1 ') that repeatedly detect the output of the power supply circuit, and the output detected by the output detection means is out of the predetermined range In this case, the selection means (S31, S39) for selecting a battery in a dormant state from a plurality of batteries, the discharge means (S33, S35) for discharging the battery selected by the selection means, and the output detection means are detected. Limiting means (S9) is provided for limiting the processing of the selection means when the output falls within the predetermined range.
 電源回路の出力は負荷の増大に伴って変動するところ、出力が既定範囲から外れると休止状態にある電池が放電のために選択される。負荷の増大に起因して不足する電力は、選択された電池によって補われる。これによって、電源回路の出力が既定範囲に収まる。電源回路の出力が再び既定範囲から外れると、休止状態にある別の電池が放電のために選択される。負荷は、選択された別の電池によっても駆動される。 The output of the power supply circuit fluctuates as the load increases, and when the output deviates from the predetermined range, a battery in a rest state is selected for discharging. The power shortage due to the increased load is compensated by the selected battery. As a result, the output of the power supply circuit falls within the predetermined range. When the output of the power supply circuit goes out of the predetermined range again, another battery in the dormant state is selected for discharging. The load is also driven by another selected battery.
 電源回路だけでは不足する電力は複数の電池によって段階的に補われ、これによって瞬時的な負荷の増大に対応するため回路が不要となり、電源回路の規模を抑制することができる。また、複数の電池はいずれも電源回路の出力側で電源回路と並列接続されるため、電力ロスを低減することができる。 The power that is insufficient with only the power supply circuit is compensated step by step by a plurality of batteries, and this eliminates the need for a circuit to cope with an instantaneous load increase, thereby reducing the scale of the power supply circuit. In addition, since the plurality of batteries are all connected in parallel to the power supply circuit on the output side of the power supply circuit, power loss can be reduced.
 好ましくは、電源回路は各々が電力を発生する複数のコンバータ(16a~16f)を含み、適正電力が負荷に供給されるように複数のコンバータの起動/停止を調整する調整手段(S5)がさらに備えられる。これによって、負荷を適切に駆動することができる。 Preferably, the power supply circuit includes a plurality of converters (16a to 16f) each generating electric power, and further includes adjustment means (S5) for adjusting start / stop of the plurality of converters so that appropriate power is supplied to the load. Provided. As a result, the load can be driven appropriately.
 さらに好ましくは、調整手段の処理に関連して複数の電池の一部または全部の放電を停止させる停止手段(S7)がさらに備えられる。これによって、負荷の分担を適応的に調整することができる。 More preferably, a stop means (S7) for stopping the discharge of some or all of the plurality of batteries in relation to the processing of the adjusting means is further provided. Thereby, the load sharing can be adjusted adaptively.
 好ましくは、複数の電池はいずれも蓄電式の電池であり、出力検出手段によって検出された出力が既定範囲に収まる場合に複数の電池のうち残容量が基準を下回る電池を電源回路の出力に基づいて充電する充電手段(S21, S23)がさらに備えられる。電池は休止時間を利用して充電され、次回の放電に備えることができる。 Preferably, each of the plurality of batteries is an electricity storage type battery, and when the output detected by the output detection means falls within a predetermined range, a battery whose remaining capacity is below a reference is selected based on the output of the power supply circuit. Charging means (S21, S23) for further charging. The battery is charged using the downtime and can be prepared for the next discharge.
 好ましくは、出力検出手段による検出対象は電源回路の出力電圧であり、既定範囲は出力電圧が第1閾値(TH1)を上回る範囲である。これによって、出力電圧に注目した電源制御が可能となる。 Preferably, the detection target by the output detection means is the output voltage of the power supply circuit, and the predetermined range is a range in which the output voltage exceeds the first threshold (TH1). As a result, power control focusing on the output voltage is possible.
 さらに好ましくは、複数の電池の各々は、第1閾値を中心とする±10%の範囲に収まる閉路電圧に対応する電池残量の分布範囲が全分布範囲の50%を上回る特性を示す。これによって、大規模な昇降圧が不要となり、電池の実効性を高めることができる。 More preferably, each of the plurality of batteries has a characteristic that the distribution range of the remaining battery level corresponding to the closed circuit voltage within a range of ± 10% centered on the first threshold exceeds 50% of the entire distribution range. This eliminates the need for a large-scale step-up / step-down and can increase the effectiveness of the battery.
 好ましくは、出力検出手段による検出対象は電源回路の出力電流であり、既定範囲は出力電流が第2閾値(TH2)を下回る範囲である。 Preferably, the detection target by the output detection means is the output current of the power supply circuit, and the predetermined range is a range where the output current is below the second threshold (TH2).
 この発明に係る電源制御方法は、系統電源(12)に基づく電力を負荷(24)に供給する電源回路(PWC1)、および各々が電源回路の出力側で電源回路と並列接続される複数の電池(18a~18d)を備える電源制御システム(10)のプロセッサ(26)によって実行される電源制御方法であって、電源回路の出力を繰り返し検出する出力検出ステップ(S1, S1’)、出力検出ステップによって検出された出力が既定範囲から外れた場合に複数の電池のうち休止状態の電池を放電のために選択する選択ステップ(S31, S39)、および出力検出ステップによって検出された出力が既定範囲に収まる場合に選択ステップの処理を制限する制限ステップ(S9)を備える。 A power supply control method according to the present invention includes a power supply circuit (PWC1) that supplies power based on a system power supply (12) to a load (24), and a plurality of batteries each connected in parallel with the power supply circuit on the output side of the power supply circuit A power control method executed by the processor (26) of the power control system (10) including (18a to 18d), wherein an output detection step (S1, S1 ') for repeatedly detecting the output of the power supply circuit, an output detection step A selection step (S31, S39) for selecting a hibernating battery for discharging when the output detected by the sensor is out of the predetermined range, and the output detected by the output detection step is within the predetermined range. A restriction step (S9) is provided for restricting the process of the selection step when it falls.
 この発明に従う電源制御プログラムは、系統電源(12)に基づく電力を負荷(24)に供給する電源回路(PWC1)、および各々が電源回路の出力側で電源回路と並列接続される複数の電池(18a~18d)を備える電源制御システム(10)のプロセッサ(26)に、電源回路の出力を繰り返し検出する出力検出ステップ(S1, S1’)、出力検出ステップによって検出された出力が既定範囲から外れた場合に複数の電池のうち休止状態の電池を放電のために選択する選択ステップ(S31, S39)、および出力検出ステップによって検出された出力が既定範囲に収まる場合に選択ステップの処理を制限する制限ステップ(S9)を実行させるための、電源制御プログラムである。 A power supply control program according to the present invention includes a power supply circuit (PWC1) that supplies power based on a system power supply (12) to a load (24), and a plurality of batteries each connected in parallel with the power supply circuit on the output side of the power supply circuit ( The output detection step (S1, S1 ') that repeatedly detects the output of the power supply circuit in the processor (26) of the power supply control system (10) with 18a to 18d), the output detected by the output detection step is out of the predetermined range. If the output detected in the selection step (S31, S39) and the output detection step falls within a predetermined range, the selection step processing is limited. This is a power supply control program for executing the limiting step (S9).
 この発明によれば、電圧変換のための回路の規模を抑制できるとともに、電圧変換に起因する電力ロスを低減できる。 According to this invention, the scale of the circuit for voltage conversion can be suppressed, and the power loss caused by voltage conversion can be reduced.
 この発明の上述の目的,その他の目的,特徴および利点は、図面を参照して行う以下の実施例の詳細な説明から一層明らかとなろう。 The above object, other objects, features, and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.
この実施例の電源制御システムの構成を示すブロック図である。It is a block diagram which shows the structure of the power supply control system of this Example. 電源回路の出力電圧と負荷に供給される電流との関係を示すグラフである。It is a graph which shows the relationship between the output voltage of a power supply circuit, and the electric current supplied to load. 電源回路の出力電圧と負荷に供給される電力との関係を示すグラフである。It is a graph which shows the relationship between the output voltage of a power supply circuit, and the electric power supplied to load. (A)は-10℃の環境温度の下でのSOCと組電池の閉路電圧との関係を示すグラフであり、(B)は0℃の環境温度の下でのSOCと組電池の閉路電圧との関係を示すグラフである。(A) is a graph showing the relationship between the SOC and the closed circuit voltage of the assembled battery under an environmental temperature of −10 ° C., and (B) is the closed circuit voltage of the SOC and the assembled battery under an environmental temperature of 0 ° C. It is a graph which shows the relationship. (A)は10℃の環境温度の下でのSOCと組電池の閉路電圧との関係を示すグラフであり、(B)は23℃の環境温度の下でのSOCと組電池の閉路電圧との関係を示すグラフである。(A) is a graph which shows the relationship between SOC and the closed circuit voltage of an assembled battery under the environmental temperature of 10 degreeC, (B) is SOC and closed circuit voltage of an assembled battery under the environmental temperature of 23 degreeC. It is a graph which shows the relationship. (A)は30℃の環境温度の下でのSOCと組電池の閉路電圧との関係を示すグラフであり、(B)は40℃の環境温度の下でのSOCと組電池の閉路電圧との関係を示すグラフである。(A) is a graph which shows the relationship between SOC and the closed circuit voltage of an assembled battery under the environmental temperature of 30 degreeC, (B) is SOC and closed circuit voltage of an assembled battery under the environmental temperature of 40 degreeC. It is a graph which shows the relationship. 図1に示すシステム制御回路によって参照されるテーブルの一例を示す図解図である。It is an illustration figure which shows an example of the table referred by the system control circuit shown in FIG. 図1に示すシステム制御回路の動作の一部を示すフロー図である。It is a flowchart which shows a part of operation | movement of the system control circuit shown in FIG. 図1に示すシステム制御回路の動作の他の一部を示すフロー図である。It is a flowchart which shows a part of other operation | movement of the system control circuit shown in FIG. 図1に示すシステム制御回路の動作のその他の一部を示すフロー図である。It is a flowchart which shows a part of other operation | movement of the system control circuit shown in FIG. 図1に示すシステム制御回路の動作のさらにその他の一部を示すフロー図である。FIG. 10 is a flowchart showing yet another portion of the operation of the system control circuit shown in FIG. 1. 他の実施例の電源制御システムにおける電源回路の出力電流(負荷に供給される電流)と出力電圧との関係を示すグラフである。It is a graph which shows the relationship between the output current (current supplied to load) and the output voltage of the power supply circuit in the power supply control system of another Example. 他の実施例の電源制御システムに適用されるシステム制御回路の動作の一部を示すフロー図である。It is a flowchart which shows a part of operation | movement of the system control circuit applied to the power supply control system of another Example.
[実施例1]
 図1を参照して、この実施例の電源制御システム10は、系統電源12から供給された交流電圧を直流電圧に変換するAC/DCコンバータ14を含む。AC/DCコンバータ14の後段には、最大3kWの直流電力を各々が出力する6個のDC/DCコンバータ16a~16fからなる電源回路PWC1が設けられる。AC/DCコンバータ14は系統電源12から供給された交流電圧を380Vの直流電圧に変換し、電源回路PWC1は380Vの直流電圧を12.3Vの直流電圧に降圧させる。
[Example 1]
Referring to FIG. 1, a power supply control system 10 of this embodiment includes an AC / DC converter 14 that converts an AC voltage supplied from a system power supply 12 into a DC voltage. A power supply circuit PWC1 including six DC / DC converters 16a to 16f, each of which outputs a maximum of 3 kW of DC power, is provided at the subsequent stage of the AC / DC converter 14. The AC / DC converter 14 converts the AC voltage supplied from the system power supply 12 into a DC voltage of 380V, and the power supply circuit PWC1 steps down the DC voltage of 380V to a DC voltage of 12.3V.
 電源回路PWC1を構成するDC/DCコンバータ16a~16fの各々のプラス端子およびマイナス端子は、負荷24のプラス端子およびマイナス端子にそれぞれ接続される。また、DC/DCコンバータ16a~16fの各々は負荷24の変動に合わせて起動/停止され、負荷24は起動したDC/DCコンバータによって駆動される。 The plus terminals and minus terminals of the DC / DC converters 16a to 16f constituting the power supply circuit PWC1 are connected to the plus terminal and the minus terminal of the load 24, respectively. Each of the DC / DC converters 16a to 16f is started / stopped in accordance with the fluctuation of the load 24, and the load 24 is driven by the started DC / DC converter.
 電源回路PWC1の出力電圧は、負荷24に供給される電流に対して図2に示すように変化し、負荷24に供給される電力に対して図3に示すように変化する。なお、これらのグラフは、後述する組電池18a~18dの全てが休止している状態(充電および放電のいずれも行っていない状態)からいずれか1つの組電池が放電状態に遷移したときの出力電圧の変化を表す。 The output voltage of the power supply circuit PWC1 changes as shown in FIG. 2 with respect to the current supplied to the load 24, and changes as shown in FIG. 3 with respect to the power supplied to the load 24. Note that these graphs show the output when any one of the assembled batteries 18a to 18d described later is in a resting state (a state where neither charging nor discharging is performed) and the assembled battery transitions to a discharging state. It represents the change in voltage.
 図2によれば、負荷24に供給される電流が244Aを下回る範囲では、電源回路PWC1の出力電圧は12.3Vを示す。しかし、負荷24が増大して電流が244Aに達すると、電源回路PWC1の出力電圧は急激に低下する。出力電圧が閾値TH1(=12.1V)まで低下すると、組電池18a~18dのいずれか1つが放電を開始し、これによって電源回路PWC1の出力電圧が12.3Vに復帰する。 According to FIG. 2, in the range where the current supplied to the load 24 is less than 244A, the output voltage of the power supply circuit PWC1 shows 12.3V. However, when the load 24 increases and the current reaches 244A, the output voltage of the power supply circuit PWC1 rapidly decreases. When the output voltage decreases to the threshold value TH1 (= 12.1V), any one of the assembled batteries 18a to 18d starts discharging, and thereby the output voltage of the power supply circuit PWC1 returns to 12.3V.
 また、図3によれば、負荷24に供給される電力が3kW(=12.3V*244A)を下回る範囲では、電源回路PWC1の出力電圧は12.3Vを示す。しかし、負荷24が増大して電力が3kWに達すると、出力電圧は急激に低下する。出力電圧が閾値TH1(=12.1V)まで低下すると、組電池18a~18dのいずれか1つが放電を開始し、これによって電源回路PWC1の出力電圧が12.3Vに復帰する。 Further, according to FIG. 3, in the range where the power supplied to the load 24 is less than 3 kW (= 12.3V * 244A), the output voltage of the power supply circuit PWC1 shows 12.3V. However, when the load 24 increases and the power reaches 3 kW, the output voltage rapidly decreases. When the output voltage decreases to the threshold value TH1 (= 12.1V), any one of the assembled batteries 18a to 18d starts discharging, and thereby the output voltage of the power supply circuit PWC1 returns to 12.3V.
 参考までに、2つ目の組電池は、負荷24に供給される電流が364Aに達した時点つまり負荷24に供給される電力が4.48kW(=12.3V*364A)に達した時点で放電を開始する。また、3つ目の組電池は、負荷24に供給される電流が484Aに達した時点つまり負荷24に供給される電力が5.95kW(=12.3V*484A)に達した時点で放電を開始する。 For reference, when the current supplied to the load 24 reaches 364 A, that is, when the power supplied to the load 24 reaches 4.48 kW (= 12.3 V * 364 A), Start discharging. The third assembled battery discharges when the current supplied to the load 24 reaches 484 A, that is, when the power supplied to the load 24 reaches 5.95 kW (= 12.3 V * 484 A). Start.
 組電池18a~18dの各々は、4つのセルからなる蓄電式の組電池である。各セルの正極および負極はそれぞれ、リン酸鉄リチウム(LFP)およびグラファイト(Gr)を材料とする。また、各セルのAC比(正極と負極の対向充電容量比)は“1.75”であり、各セルのACR(抵抗)は2mΩ(少なくとも10mΩ以下)であり、各セルの容量は6Ahである。各セルは、正極のSOC勾配が2[mV/SOC%]以下の領域がセル実効SOCの90%以上であり、かつ、負極のSOC勾配が2.5[mV/SOC%]以下の領域がセル実効SOCの40%以上である。 Each of the assembled batteries 18a to 18d is a storage type assembled battery including four cells. The positive electrode and the negative electrode of each cell are made of lithium iron phosphate (LFP) and graphite (Gr), respectively. The AC ratio of each cell (the ratio between the positive and negative charge capacities) is “1.75”, the ACR (resistance) of each cell is 2 mΩ (at least 10 mΩ or less), and the capacity of each cell is 6 Ah. is there. In each cell, a region where the SOC gradient of the positive electrode is 2 [mV / SOC%] or less is 90% or more of the cell effective SOC, and a region where the SOC gradient of the negative electrode is 2.5 [mV / SOC%] or less. It is 40% or more of the cell effective SOC.
 組電池18a~18dの各々は、環境温度が-10℃のときに図4(A)に示す特性を示し、環境温度が0℃のときに図4(B)に示す特性を示し、環境温度が10℃のときに図5(A)に示す特性を示し、環境温度が23℃のときに図5(B)に示す特性を示し、環境温度が30℃のときに図6(A)に示す特性を示し、環境温度が40℃のときに図6(B)に示す特性を示す。 Each of the assembled batteries 18a to 18d exhibits the characteristics shown in FIG. 4A when the environmental temperature is −10 ° C., and exhibits the characteristics shown in FIG. 4B when the environmental temperature is 0 ° C. 5A when the temperature is 10 ° C., the characteristics shown in FIG. 5B when the environmental temperature is 23 ° C., and the characteristics shown in FIG. 6A when the environmental temperature is 30 ° C. The characteristics shown in FIG. 6B are shown when the environmental temperature is 40 ° C.
 図4(A),図4(B),図5(A),図5(B),図6(A),図6(B)のいずれにおいても、横軸はSOC(State of Charge;残容量)を示し、縦軸は閉路電圧(CCV)を示す。また、曲線C6a~C6fは放電電流が6Aのときの特性を示し、曲線C30a~C30fは放電電流が30Aのときの特性を示し、曲線C60a~C60fは放電電流が60Aのときの特性を示し、曲線C120a~C120fは放電電流が120Aのときの特性を示す。さらに、横軸に沿って延びる2本の点線によって挟まれる範囲は、12.1V±10%の範囲である。 4A, FIG. 4B, FIG. 5A, FIG. 5B, FIG. 6A, and FIG. 6B, the horizontal axis represents SOC (State of Charge; remaining). Capacity), and the vertical axis represents the closed circuit voltage (CCV). Curves C6a to C6f show the characteristics when the discharge current is 6A, curves C30a to C30f show the characteristics when the discharge current is 30A, curves C60a to C60f show the characteristics when the discharge current is 60A, Curves C120a to C120f show characteristics when the discharge current is 120A. Further, the range between the two dotted lines extending along the horizontal axis is a range of 12.1 V ± 10%.
 これより、少なくとも0℃以上の環境温度下(さらに後述する5C以上の領域)では、組電池18a~18dの各々は、12.1V±10%の範囲に収まる閉路電圧に対応するSOCの分布範囲が全分布範囲の50%を上回る特性を示すことが分かる。このような特性を示す組電池18a~18dを使用することで、電池電圧の大規模な昇降圧が不要となり、電力ロスを低減することができる。 As a result, each of the assembled batteries 18a to 18d has an SOC distribution range corresponding to a closed circuit voltage that falls within the range of 12.1 V ± 10% under an environmental temperature of at least 0 ° C. It can be seen that the characteristics exhibit more than 50% of the entire distribution range. By using the assembled batteries 18a to 18d exhibiting such characteristics, a large-scale voltage step-up / step-down is unnecessary, and power loss can be reduced.
 組電池18aのプラス端子は、充電回路20aおよび放電回路22aの各々を介してDC/DCコンバータ16a~16fのプラス端子と接続され、組電池18aのマイナス端子は、直接的にDC/DCコンバータ16a~16fのマイナス端子と接続される。組電池18bのプラス端子は、充電回路20bおよび放電回路22bの各々を介してDC/DCコンバータ16a~16fのプラス端子と接続され、組電池18bのマイナス端子は、直接的にDC/DCコンバータ16a~16fのマイナス端子と接続される。 The plus terminal of the assembled battery 18a is connected to the plus terminals of the DC / DC converters 16a to 16f via the charging circuit 20a and the discharging circuit 22a, and the minus terminal of the assembled battery 18a is directly connected to the DC / DC converter 16a. To the negative terminal of 16 f. The plus terminal of the assembled battery 18b is connected to the plus terminals of the DC / DC converters 16a to 16f via the charging circuit 20b and the discharging circuit 22b, and the minus terminal of the assembled battery 18b is directly connected to the DC / DC converter 16a. To the negative terminal of 16 f.
 組電池18cのプラス端子は、充電回路20cおよび放電回路22cの各々を介してDC/DCコンバータ16a~16fのプラス端子と接続され、組電池18cのマイナス端子は、直接的にDC/DCコンバータ16a~16fのマイナス端子と接続される。組電池18dのプラス端子は、充電回路20dおよび放電回路22dの各々を介してDC/DCコンバータ16a~16fのプラス端子と接続され、組電池18dのマイナス端子は、直接的にDC/DCコンバータ16a~16fのマイナス端子と接続される。 The plus terminal of the assembled battery 18c is connected to the plus terminals of the DC / DC converters 16a to 16f via the charging circuit 20c and the discharging circuit 22c, and the minus terminal of the assembled battery 18c is directly connected to the DC / DC converter 16a. To the negative terminal of 16 f. The plus terminal of the assembled battery 18d is connected to the plus terminals of the DC / DC converters 16a to 16f via the charging circuit 20d and the discharging circuit 22d, and the minus terminal of the assembled battery 18d is directly connected to the DC / DC converter 16a. To the negative terminal of 16 f.
 放電回路22aにはFET22t1が設けられ、放電回路22bにはFET22t2が設けられ、放電回路22cにはFET22t3が設けられ、放電回路22dにはFET22t4が設けられる。FET22t1~FET22t4はいずれも、オン状態およびオフ状態の間で遷移するスイッチとして機能する。 The discharge circuit 22a is provided with an FET 22t1, the discharge circuit 22b is provided with an FET 22t2, the discharge circuit 22c is provided with an FET 22t3, and the discharge circuit 22d is provided with an FET 22t4. Each of the FETs 22t1 to 22t4 functions as a switch that transitions between an on state and an off state.
 組電池18aと電源回路PWC1との並列接続は、FET22t1がオンされたときに確立される一方、FET22t1がオフされたときに解除される。組電池18bと電源回路PWC1との並列接続は、FET22t2がオンされたときに確立される一方、FET22t2がオフされたときに解除される。 The parallel connection between the assembled battery 18a and the power supply circuit PWC1 is established when the FET 22t1 is turned on, and is released when the FET 22t1 is turned off. The parallel connection between the assembled battery 18b and the power supply circuit PWC1 is established when the FET 22t2 is turned on, and is released when the FET 22t2 is turned off.
 組電池18cと電源回路PWC1との並列接続は、FET22t3がオンされたときに確立される一方、FET22t3がオフされたときに解除される。組電池18dと電源回路PWC1との並列接続は、FET22t4がオンされたときに確立される一方、FET22t4がオフされたときに解除される。 The parallel connection between the assembled battery 18c and the power supply circuit PWC1 is established when the FET 22t3 is turned on, and is released when the FET 22t3 is turned off. The parallel connection between the assembled battery 18d and the power supply circuit PWC1 is established when the FET 22t4 is turned on, and is released when the FET 22t4 is turned off.
 システム制御回路(プロセッサ)26は、図8~図10に示すフロー図に従って組電池18a~18dの充放電制御を実行する。なお、これらのフロー図に対応する制御プログラムは、図示しないメモリに記憶される。 The system control circuit (processor) 26 executes charge / discharge control of the assembled batteries 18a to 18d according to the flowcharts shown in FIGS. A control program corresponding to these flowcharts is stored in a memory (not shown).
 図8を参照して、ステップS1では、電源回路PWC1の出力電圧,負荷24に供給される電流および電力を検出し、さらにサーミスタ28を用いて環境温度を検出する。ステップS3では、組電池18a~18dの状態(具体的には、出力電流,電圧,SOC,充電の有無,放電の有無)を検出する。 Referring to FIG. 8, in step S1, the output voltage of power supply circuit PWC1, the current and power supplied to load 24 are detected, and the ambient temperature is detected using thermistor 28. In step S3, the state of the assembled batteries 18a to 18d (specifically, output current, voltage, SOC, presence / absence of charge, presence / absence of discharge) is detected.
 ステップS5では、ステップS1およびS3の検出結果(特に、負荷24に供給される電力と、組電池18a~18dのSOCおよび放電の有無)を参照して、電力が最適効率ないし適正効率で負荷24に供給されるように電源回路PWC1の設定(DC/DCコンバータ16a~16fの各々の起動/停止または負荷分担率)を調整する。ステップS7では、起動中の充電回路(放電中の組電池)の一部または全部を、ステップS5で調整された電源回路PWC1の設定に合わせて停止する。 In step S5, referring to the detection results of steps S1 and S3 (particularly, the electric power supplied to the load 24 and the presence or absence of SOC and discharge of the assembled batteries 18a to 18d), the electric power is optimally or appropriately efficiently loaded 24 The setting of the power supply circuit PWC1 (starting / stopping of each of the DC / DC converters 16a to 16f or the load sharing ratio) is adjusted. In step S7, part or all of the starting charging circuit (the assembled battery being discharged) is stopped in accordance with the setting of the power supply circuit PWC1 adjusted in step S5.
 ステップS9では電源回路PWC1の出力電圧が閾値TH1(=12.1V)を上回るか否か(電源回路PWC1の出力が既定範囲に収まるか否か)を判別し、判別結果がYESであればステップS11に進む一方、判別結果がNOであればステップS25に進む。 In step S9, it is determined whether or not the output voltage of the power supply circuit PWC1 exceeds a threshold value TH1 (= 12.1V) (whether or not the output of the power supply circuit PWC1 falls within a predetermined range). On the other hand, if the determination result is NO, the process proceeds to step S25.
 ステップS11では、組電池18a~18dの少なくとも1つが放電中であるか否か(=後述するステップS35の処理が実行されたか否か)を判別し、組電池18a~18dの全てが満充電状態であるか否かをステップS13で判別し、組電池18a~18dの少なくとも1つが充電中であるか否か(充電回路20a~20dの少なくとも1つがオン状態であるか否か)をステップS15で判別する。 In step S11, it is determined whether or not at least one of the assembled batteries 18a to 18d is being discharged (= whether or not the process of step S35 described later has been executed), and all of the assembled batteries 18a to 18d are fully charged. In step S13, it is determined whether or not at least one of the assembled batteries 18a to 18d is being charged (whether at least one of the charging circuits 20a to 20d is in an on state) in step S15. Determine.
 組電池18a~18dの少なくとも1つが放電中であれば、ステップS11でYESと判別してステップS1に戻る。組電池18a~18dのいずれもが放電を行っておらず、組電池18a~18dの全てが満充電状態であれば、ステップS13でYESと判別してステップS1に戻る。 If at least one of the assembled batteries 18a to 18d is being discharged, YES is determined in step S11, and the process returns to step S1. If none of the assembled batteries 18a to 18d is discharged and all of the assembled batteries 18a to 18d are fully charged, YES is determined in step S13, and the process returns to step S1.
 組電池18a~18dのいずれもが放電を行っておらず、組電池18a~18dの少なくとも1つが満充電状態でなく、組電池18a~18dのいずれもが充電を行っていなければ、ステップS11~S15でNOと判別してステップS21に進む。 If none of the assembled batteries 18a to 18d is discharged, at least one of the assembled batteries 18a to 18d is not fully charged, and none of the assembled batteries 18a to 18d is charged, steps S11 to In S15, NO is determined and the process proceeds to step S21.
 ステップS21では、満充電状態でない組電池のSOCを参照して、充電すべき組電池を決定する。決定される組電池は、SOCが基準を下回る組電池である。ステップS23では、決定された組電池に対応する充電回路をオンする。電源回路PWC1は、負荷24を駆動するとともに、ステップS15で決定された組電池を充電する。ステップS23の処理が完了すると、ステップS1に戻る。 In step S21, an assembled battery to be charged is determined with reference to the SOC of the assembled battery that is not fully charged. The battery pack to be determined is a battery pack whose SOC is lower than the standard. In step S23, the charging circuit corresponding to the determined assembled battery is turned on. Power supply circuit PWC1 drives load 24 and charges the assembled battery determined in step S15. When the process of step S23 is completed, the process returns to step S1.
 組電池18a~18dのいずれもが放電を行っておらず、組電池18a~18dの少なくとも1つが満充電状態でなく、組電池18a~18dの少なくとも1つが充電を行っていれば、ステップS11,S13でNOと判別するとともに、ステップS15でYESと判別して、ステップS17に進む。 If none of the assembled batteries 18a to 18d is discharged, at least one of the assembled batteries 18a to 18d is not fully charged, and at least one of the assembled batteries 18a to 18d is charged, step S11, In S13, NO is determined, and YES is determined in Step S15, and the process proceeds to Step S17.
 ステップS17では充電対象の組電池が満充電になったか否かを判別し、判別結果がNOであればそのままステップS1に戻る一方、判別結果がYESであれば充電中の組電池に対応する充電回路をステップS19でオフする。これによって、充電動作が停止される。ステップS19の処理が完了すると、ステップS1に戻る。 In step S17, it is determined whether or not the assembled battery to be charged is fully charged. If the determination result is NO, the process returns to step S1 as it is. If the determination result is YES, charging corresponding to the assembled battery being charged is performed. The circuit is turned off in step S19. As a result, the charging operation is stopped. When the process of step S19 is completed, the process returns to step S1.
 したがって、ステップS9でYESと判別されたときは、ステップS25以降の処理の実行が制限される。 Therefore, if YES is determined in the step S9, execution of the processes after the step S25 is restricted.
 電源回路PWC1の出力電圧が閾値TH1以下となると、ステップS9からステップS25に進み、組電池18a~18dの少なくとも1つが充電中であるか否かを判別する。判別結果がNOであればそのままステップS29に進み、判別結果がYESであれば充電中の組電池に対応する充電回路をステップS27でオフしてからステップS29に進む。 When the output voltage of the power supply circuit PWC1 becomes equal to or lower than the threshold TH1, the process proceeds from step S9 to step S25, and it is determined whether or not at least one of the assembled batteries 18a to 18d is being charged. If the determination result is NO, the process proceeds directly to step S29, and if the determination result is YES, the charging circuit corresponding to the assembled battery being charged is turned off in step S27, and then the process proceeds to step S29.
 ステップS29では、組電池18a~18dの少なくとも1つが放電中であるか否かを判別する。判別結果がNOであればステップS31に進む一方、判別結果がYESであればステップS37に進む。 In step S29, it is determined whether or not at least one of the assembled batteries 18a to 18d is being discharged. If the determination result is NO, the process proceeds to step S31, while if the determination result is YES, the process proceeds to step S37.
 ステップS31では、組電池18a~18dのSOCを参照して放電すべき組電池を検出し、検出した組電池に対応する放電回路を選択する。選択された放電回路のFETは、組電池からの出力電圧が12.3Vを維持するように繰り返しオン/オフされ、この結果、組電池から電流が出力される。負荷24は、起動中のDC/DCコンバータと放電を開始した組電池とによって駆動される。ステップS31の処理が完了すると、ステップS1に戻る。 In step S31, an assembled battery to be discharged is detected with reference to the SOCs of the assembled batteries 18a to 18d, and a discharge circuit corresponding to the detected assembled battery is selected. The FET of the selected discharge circuit is repeatedly turned on / off so that the output voltage from the assembled battery is maintained at 12.3 V. As a result, a current is output from the assembled battery. The load 24 is driven by the activated DC / DC converter and the assembled battery that has started discharging. When the process of step S31 is completed, the process returns to step S1.
 ステップS33では放電中の組電池の出力が過剰であるか否かを組電池の許容上限電流を元に判別し、ステップS35では放電中の組電池のSOCが不足しているか否かを判別し、ステップS37では組電池18a~18dの全てが放電中であるか否かを判別する。これらの判別処理は放電中の組電池が過負荷であるか否かを判別する処理であり、ステップS3の検出結果を参照して実行される。 In step S33, it is determined whether or not the output of the battery pack being discharged is excessive based on the allowable upper limit current of the battery pack. In step S35, it is determined whether or not the SOC of the battery pack being discharged is insufficient. In step S37, it is determined whether or not all of the assembled batteries 18a to 18d are being discharged. These determination processes are processes for determining whether or not the assembled battery being discharged is overloaded, and are executed with reference to the detection result in step S3.
 ステップS33~S37の判別結果がいずれもNOであるか、或いはステップS33の判別結果がYESでかつステップS37の判別結果がNOであれば、ステップS39に進む。ステップS39では、休止中の組電池(充電および放電のいずれも行っていない組電池)のSOCを参照して、放電すべき組電池に対応する放電回路を選択する。選択が完了すると、ステップS1に戻る。 If the determination results in steps S33 to S37 are all NO, or if the determination result in step S33 is YES and the determination result in step S37 is NO, the process proceeds to step S39. In step S39, the discharge circuit corresponding to the assembled battery to be discharged is selected with reference to the SOC of the suspended assembled battery (the assembled battery in which neither charging nor discharging is performed). When the selection is completed, the process returns to step S1.
 これに対して、ステップS35またはS37の判別結果がYESであれば、ステップS41に進み、DC/DCコンバータ16a~16fの全てが起動中であるか否かを判別する。判別結果がNOであればステップS1に戻り、判別結果がYESであればステップS43に進む。ステップS43ではDC/DCコンバータ16a~16fの全てを停止し、続くステップS45では放電回路22a~22dの全てを停止する。充放電制御は、ステップS45の処理の後に終了する。 On the other hand, if the determination result in step S35 or S37 is YES, the process proceeds to step S41 to determine whether or not all of the DC / DC converters 16a to 16f are being activated. If a determination result is NO, it will return to Step S1, and if a determination result is YES, it will progress to Step S43. In step S43, all of the DC / DC converters 16a to 16f are stopped, and in the subsequent step S45, all of the discharge circuits 22a to 22d are stopped. The charge / discharge control ends after the process of step S45.
 このような制御が実行された結果、組電池18a~18dは、概ね図7に示すテーブルTBL1の記載に沿って放電動作を行う。図7によれば、組電池18a~18dからの放電電流の最適レート[C]と並列接続が確立された組電池の適正出力[W]とが、複数の環境温度の各々に割り当てられる。 As a result of such control being performed, the assembled batteries 18a to 18d perform a discharging operation substantially in accordance with the description of the table TBL1 shown in FIG. According to FIG. 7, the optimum rate [C] of the discharge current from the assembled batteries 18a to 18d and the appropriate output [W] of the assembled battery for which parallel connection is established are assigned to each of the plurality of environmental temperatures.
 具体的には、環境温度“-10℃”に対応する最適レートは“1”を示し、環境温度“0℃”に対応する最適レートは“3”を示し、環境温度“10℃”に対応する最適レートは“5” を示す。また、環境温度“23℃”に対応する最適レートは“10” を示し、環境温度“30℃”に対応する最適レートは“10” を示し、環境温度“40℃”に対応する最適レートは“10” を示す。 Specifically, the optimum rate corresponding to the environmental temperature “−10 ° C.” indicates “1”, the optimum rate corresponding to the environmental temperature “0 ° C.” indicates “3”, and corresponds to the environmental temperature “10 ° C.”. The optimum rate to be shown is “5”. The optimum rate corresponding to the environmental temperature “23 ° C.” indicates “10”, the optimum rate corresponding to the environmental temperature “30 ° C.” indicates “10”, and the optimum rate corresponding to the environmental temperature “40 ° C.” is “10” indicates.
 最適レートが“1”でかつ並列接続が確立された組電池の数が1つの場合、適正出力は“72W(=1C*6Ah*12V)”を示し、最適レートが“1”でかつ並列接続が確立された組電池の数が2つの場合、適正出力は“144W”を示し、最適レートが“1”でかつ並列接続が確立された組電池の数が3つの場合、適正出力は“216W”を示し、最適レートが“1”でかつ並列接続が確立された組電池の数が4つの場合、適正出力は“288W”を示す。 When the optimum rate is “1” and the number of battery packs for which parallel connection is established is 1, the appropriate output indicates “72 W (= 1C * 6Ah * 12V)”, the optimum rate is “1”, and the parallel connection When the number of battery packs that are established is two, the proper output indicates “144 W”, and when the optimum rate is “1” and the number of battery packs that are connected in parallel is three, the proper output is “216 W”. ", The optimum rate is" 1 ", and the number of battery packs in which the parallel connection is established is four, the appropriate output indicates" 288W ".
 最適レートが“3”でかつ並列接続が確立された組電池の数が1つの場合、適正出力は“216W”を示し、最適レートが“3”でかつ並列接続が確立された組電池の数が2つの場合、適正出力は“432W”を示し、最適レートが“3”でかつ並列接続が確立された組電池の数が3つの場合、適正出力は“648W”を示し、最適レートが“3”でかつ並列接続が確立された組電池の数が3つの場合、適正出力は“864W”を示す。 When the optimum rate is “3” and the number of battery packs that are connected in parallel is 1, the appropriate output indicates “216 W”, and the battery rate that is set at “3” and the parallel connection is established. When the number of battery packs is two, the appropriate output indicates “432 W”, and when the optimum rate is “3” and the number of battery packs that are connected in parallel is three, the appropriate output indicates “648 W” and the optimum rate is “ When the number of battery packs that are 3 ”and the parallel connection is established is 3, the proper output indicates“ 864 W ”.
 最適レートが“5”でかつ並列接続が確立された組電池の数が1つの場合、適正出力は“360W”を示し、最適レートが“5”でかつ並列接続が確立された組電池の数が2つの場合、適正出力は“720W”を示し、最適レートが“5”でかつ並列接続が確立された組電池の数が3つの場合、適正出力は“1080W”を示し、最適レートが“5”でかつ並列接続が確立された組電池の数が3つの場合、適正出力は“1440W”を示す。 When the optimum rate is “5” and the number of battery packs that are established in parallel connection is 1, the appropriate output indicates “360 W”, and the number of battery packs that is established at the optimum rate “5” and established in parallel connection. When the number of battery packs is two, the appropriate output indicates “720 W”, and when the optimum rate is “5” and the number of battery packs that are connected in parallel is three, the appropriate output indicates “1080 W” and the optimum rate is “ When the number of battery packs that are 5 ”and the parallel connection is established is 3, the proper output indicates“ 1440 W ”.
 最適レートが“10”でかつ並列接続が確立された組電池の数が1つの場合、適正出力は“720W”を示し、最適レートが“10”でかつ並列接続が確立された組電池の数が2つの場合、適正出力は“1440W”を示し、最適レートが“10”でかつ並列接続が確立された組電池の数が3つの場合、適正出力は“2160W”を示し、最適レートが“10”でかつ並列接続が確立された組電池の数が4つの場合、適正出力は“2880W”を示す。 When the optimum rate is “10” and the number of battery packs in which parallel connection is established is 1, the appropriate output indicates “720 W”, and the number of battery packs in which the optimum rate is “10” and parallel connection is established. When the number of battery packs is two, the appropriate output indicates “1440 W”, and when the optimum rate is “10” and the number of assembled batteries established in parallel connection is three, the appropriate output indicates “2160 W” and the optimum rate is “ When the number of battery packs that are 10 ”and the parallel connection is established is four, the appropriate output indicates“ 2880 W ”.
 以上の説明から分かるように、電源回路PWC1は、系統電源12に基づく電力を負荷24に供給する。また、組電池18a~18dの各々は、電源回路PWC1の出力側で電源回路PWC1と並列接続される。電源回路PWC1の出力電圧はシステム制御回路26によって繰り返し検出される(S1)。検出された出力電圧が閾値TH1以下であれば、システム制御回路26は、組電池18a~18dのうち休止状態の組電池を放電のために選択する(S31, S39)。検出された出力電圧が閾値TH1を上回れば、システム制御回路26は、休止状態の組電池を選択する処理を制限する(S9)。 As can be seen from the above description, the power supply circuit PWC1 supplies power based on the system power supply 12 to the load 24. Each of the assembled batteries 18a to 18d is connected in parallel with the power supply circuit PWC1 on the output side of the power supply circuit PWC1. The output voltage of the power supply circuit PWC1 is repeatedly detected by the system control circuit 26 (S1). If the detected output voltage is equal to or lower than the threshold value TH1, the system control circuit 26 selects a suspended battery pack among the battery packs 18a to 18d for discharging (S31, S39). If the detected output voltage exceeds the threshold value TH1, the system control circuit 26 restricts the process for selecting the assembled battery in the dormant state (S9).
 電源回路PWC1の出力電圧は負荷24の増大に伴って低下するところ、出力電圧が閾値TH1以下になると休止状態にある組電池が放電のために選択される。負荷24の増大に起因して不足する電力は、選択された組電池によって補われる。これによって、電源回路PWC1の出力電圧が閾値TH1を上回る。電源回路PWC1の出力電圧が再び閾値TH1以下になると、休止状態にある別の組電池が放電のために選択される。負荷24は、選択された別の組電池によっても駆動される。 The output voltage of the power supply circuit PWC1 decreases as the load 24 increases. When the output voltage falls below the threshold value TH1, the battery pack in the resting state is selected for discharging. The power shortage due to the increase in the load 24 is compensated by the selected battery pack. As a result, the output voltage of the power supply circuit PWC1 exceeds the threshold value TH1. When the output voltage of the power supply circuit PWC1 becomes equal to or lower than the threshold value TH1, another assembled battery that is in a dormant state is selected for discharging. The load 24 is also driven by another selected assembled battery.
 電源回路PWC1だけでは不足する電力は組電池18a~18dによって段階的に補われ、これによって電源回路PWC1の規模を抑制することができる。また、組電池18a~18dはいずれも低い内部抵抗を有し、かつ広い温度・負荷領域で必要な電圧範囲を維持するところ、電源回路PWC1の出力側で電源回路PWC1と並列接続される。これによって、昇圧動作が最小化され、電力ロスを低減することができる。
[実施例2]
Electricity that is insufficient with the power supply circuit PWC1 alone is compensated in stages by the assembled batteries 18a to 18d, and thereby the scale of the power supply circuit PWC1 can be suppressed. Further, each of the assembled batteries 18a to 18d has a low internal resistance and maintains a necessary voltage range in a wide temperature / load region, but is connected in parallel with the power supply circuit PWC1 on the output side of the power supply circuit PWC1. As a result, the boosting operation is minimized and the power loss can be reduced.
[Example 2]
 他の実施例の電源制御システム10は、システム制御回路26が図8に示すステップS1およびS9に代えて図13に示すステップS1´およびS9´を実行する点を除き、実施例1の電源制御システム10と同様であるため、同様の構成に関する重複した説明は省略する。 The power control system 10 according to another embodiment is the same as that according to the first embodiment except that the system control circuit 26 executes steps S1 ′ and S9 ′ shown in FIG. 13 instead of steps S1 and S9 shown in FIG. Since it is the same as that of the system 10, the redundant description regarding the same configuration is omitted.
 図13を参照して、ステップS1´では、電源回路PWC1の出力電流,負荷24に供給される電流および電力を検出し、さらにサーミスタ28を用いて環境温度を検出する。また、ステップS9´では、電源回路PWC1の出力電流が閾値TH2(=235A)を下回るか否か(電源回路PWC1の出力が既定範囲に収まるか否か)を判別し、判別結果がYESであればステップS11に進む一方、判別結果がNOであればステップS25に進む。 Referring to FIG. 13, in step S1 ′, the output current of power supply circuit PWC1, the current and power supplied to load 24 are detected, and the ambient temperature is detected using thermistor 28. In step S9 ′, it is determined whether or not the output current of the power supply circuit PWC1 is lower than the threshold value TH2 (= 235 A) (whether the output of the power supply circuit PWC1 is within a predetermined range), and the determination result is YES. If the determination result is NO, the process proceeds to step S25.
 上述のように、負荷24に供給される電流が244Aを下回る範囲では、電源回路PWC1の出力電圧は12.3Vを示す。しかし、負荷24が増大して電流が244Aに達すると、電源回路PWC1の出力電圧は急激に低下する。 As described above, in the range where the current supplied to the load 24 is less than 244A, the output voltage of the power supply circuit PWC1 shows 12.3V. However, when the load 24 increases and the current reaches 244A, the output voltage of the power supply circuit PWC1 rapidly decreases.
 これを踏まえて、この実施例では、電源回路PWC1の出力電流が閾値TH2(=235A)まで増大したときに、組電池18a~18dのいずれか1つの放電を開始するようにしている(図12参照)。これによって、電源回路PWC1の出力電圧が12.3Vに復帰する。 Based on this, in this embodiment, when the output current of the power supply circuit PWC1 increases to the threshold value TH2 (= 235 A), the discharge of any one of the assembled batteries 18a to 18d is started (FIG. 12). reference). As a result, the output voltage of the power supply circuit PWC1 returns to 12.3V.
 この実施例においても、電源回路PWC1だけでは不足する電力が組電池18a~18dによって段階的に補われ、これによって電源回路PWC1の規模を抑制することができる。また、組電池18a~18dはいずれも低い内部抵抗を有し、かつ広い温度・負荷領域で必要な電圧範囲を維持するところ、電源回路PWC1の出力側で電源回路PWC1と並列接続される。これによって、昇圧動作が最小化され、電力ロスを低減することができる。 Also in this embodiment, electric power that is insufficient with only the power supply circuit PWC1 is compensated in stages by the assembled batteries 18a to 18d, whereby the scale of the power supply circuit PWC1 can be suppressed. Further, each of the assembled batteries 18a to 18d has a low internal resistance and maintains a necessary voltage range in a wide temperature / load region, but is connected in parallel with the power supply circuit PWC1 on the output side of the power supply circuit PWC1. As a result, the boosting operation is minimized and the power loss can be reduced.
 10 …電源制御システム
 12 …系統電源
 16a~16f …DC/DCコンバータ
 18a~18d …組電池
 20a~20d …充電回路
 22a~22d …放電回路
 22t1~22t4 …FET
 24 …負荷
 26 …システム制御回路
 PWC1 …電源回路
DESCRIPTION OF SYMBOLS 10 ... Power supply control system 12 ... System power supply 16a-16f ... DC / DC converter 18a-18d ... Battery assembly 20a-20d ... Charging circuit 22a-22d ... Discharge circuit 22t1-22t4 ... FET
24 ... Load 26 ... System control circuit PWC1 ... Power supply circuit

Claims (9)

  1.  系統電源に基づく電力を負荷に供給する電源回路、
     各々が前記電源回路の出力側で前記電源回路と並列接続される複数の電池、
     前記電源回路の出力を繰り返し検出する出力検出手段、
     前記出力検出手段によって検出された出力が既定範囲から外れた場合に前記複数の電池のうち休止状態の電池を放電のために選択する選択手段、および
     前記出力検出手段によって検出された出力が前記既定範囲に収まる場合に前記選択手段の処理を制限する制限手段を備える、電源制御システム。
    A power supply circuit for supplying power based on the system power supply to the load,
    A plurality of batteries each connected in parallel with the power supply circuit on the output side of the power supply circuit;
    Output detection means for repeatedly detecting the output of the power supply circuit;
    Selecting means for selecting a resting battery for discharging among the plurality of batteries when the output detected by the output detecting means is out of a predetermined range; and the output detected by the output detecting means is the predetermined A power supply control system comprising a restricting means for restricting the processing of the selecting means when it falls within a range.
  2.  前記電源回路は各々が電力を発生する複数のコンバータを含み、
     適正電力が前記負荷に供給されるように前記複数のコンバータの起動/停止を調整する調整手段をさらに備える、請求項1記載の電源制御システム。
    The power supply circuit includes a plurality of converters each generating power,
    The power supply control system according to claim 1, further comprising adjustment means for adjusting start / stop of the plurality of converters so that appropriate power is supplied to the load.
  3.  前記調整手段の処理に関連して前記複数の電池の一部または全部の放電を停止させる停止手段をさらに備える、請求項2記載の電源制御システム。 The power supply control system according to claim 2, further comprising a stopping unit that stops a part or all of the plurality of batteries in relation to the processing of the adjusting unit.
  4.  前記複数の電池はいずれも蓄電式の電池であり、
     前記出力検出手段によって検出された出力が前記既定範囲に収まる場合に前記複数の電池のうち残容量が基準を下回る電池を前記電源回路の出力に基づいて充電する充電手段をさらに備える、請求項1ないし3のいずれかに記載の電源制御システム。
    Each of the plurality of batteries is a storage battery,
    2. The charging device according to claim 1, further comprising: a charging unit configured to charge a battery having a remaining capacity lower than a reference among the plurality of batteries based on an output of the power supply circuit when the output detected by the output detection unit falls within the predetermined range. 4. The power supply control system according to any one of items 3 to 3.
  5.  前記出力検出手段による検出対象は前記電源回路の出力電圧であり、
     前記既定範囲は前記出力電圧が第1閾値を上回る範囲である、請求項1ないし4のいずれかに記載の電源制御システム。
    The detection target by the output detection means is the output voltage of the power supply circuit,
    5. The power supply control system according to claim 1, wherein the predetermined range is a range in which the output voltage exceeds a first threshold value.
  6.  前記複数の電池の各々は、前記第1閾値を中心とする±10%の範囲に収まる閉路電圧に対応する電池残量の分布範囲が全分布範囲の50%を上回る特性を示す、請求項5記載の電源制御システム。 Each of the plurality of batteries exhibits a characteristic that a distribution range of remaining battery power corresponding to a closed circuit voltage that falls within a range of ± 10% centered on the first threshold exceeds 50% of the total distribution range. The power supply control system described.
  7.  前記出力検出手段による検出対象は前記電源回路の出力電流であり、
     前記既定範囲は前記出力電流が第2閾値を下回る範囲である、請求項1ないし4のいずれかに記載の電源制御システム。
    The detection target by the output detection means is the output current of the power supply circuit,
    5. The power supply control system according to claim 1, wherein the predetermined range is a range in which the output current is less than a second threshold value.
  8.  系統電源に基づく電力を負荷に供給する電源回路、および
     各々が前記電源回路の出力側で前記電源回路と並列接続される複数の電池を備える電源制御システムのプロセッサによって実行される電源制御方法であって、
     前記電源回路の出力を繰り返し検出する出力検出ステップ、
     前記出力検出ステップによって検出された出力が既定範囲から外れた場合に前記複数の電池のうち休止状態の電池を放電のために選択する選択ステップ、および
     前記出力検出ステップによって検出された出力が前記既定範囲に収まる場合に前記選択ステップの処理を制限する制限ステップを備える、電源制御方法。
    A power supply control method executed by a power supply control system processor including a power supply circuit that supplies power based on a system power supply to a load, and a plurality of batteries each connected in parallel with the power supply circuit on the output side of the power supply circuit And
    An output detection step for repeatedly detecting the output of the power supply circuit;
    A selection step of selecting a resting battery for discharging among the plurality of batteries when the output detected by the output detection step is out of a predetermined range; and the output detected by the output detection step is the default A power supply control method comprising a limiting step of limiting processing of the selection step when it falls within a range.
  9.  系統電源に基づく電力を負荷に供給する電源回路、および
     各々が前記電源回路の出力側で前記電源回路と並列接続される複数の電池を備える電源制御システムのプロセッサに、
     前記電源回路の出力を繰り返し検出する出力検出ステップ、
     前記出力検出ステップによって検出された出力が既定範囲から外れた場合に前記複数の電池のうち休止状態の電池を放電のために選択する選択ステップ、および
     前記出力検出ステップによって検出された出力が前記既定範囲に収まる場合に前記選択ステップの処理を制限する制限ステップを実行させるための、電源制御プログラム。
    A power supply circuit that supplies power based on a system power supply to a load, and a processor of a power supply control system that includes a plurality of batteries each connected in parallel with the power supply circuit on the output side of the power supply circuit,
    An output detection step for repeatedly detecting the output of the power supply circuit;
    A selection step of selecting a resting battery for discharging among the plurality of batteries when the output detected by the output detection step is out of a predetermined range; and the output detected by the output detection step is the default A power supply control program for executing a restriction step for restricting the processing of the selection step when it falls within a range.
PCT/JP2017/004884 2016-02-29 2017-02-10 Power supply control system, power supply control method, and power supply control program WO2017150141A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016037195 2016-02-29
JP2016-037195 2016-02-29

Publications (1)

Publication Number Publication Date
WO2017150141A1 true WO2017150141A1 (en) 2017-09-08

Family

ID=59744020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004884 WO2017150141A1 (en) 2016-02-29 2017-02-10 Power supply control system, power supply control method, and power supply control program

Country Status (1)

Country Link
WO (1) WO2017150141A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002051483A (en) * 2000-08-03 2002-02-15 Densei Lambda Kk Power supply unit
JP2003079069A (en) * 2001-08-30 2003-03-14 Hitachi Ltd Backup power supply and power supply device
WO2015015570A1 (en) * 2013-07-30 2015-02-05 富士電機株式会社 Power-supply system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002051483A (en) * 2000-08-03 2002-02-15 Densei Lambda Kk Power supply unit
JP2003079069A (en) * 2001-08-30 2003-03-14 Hitachi Ltd Backup power supply and power supply device
WO2015015570A1 (en) * 2013-07-30 2015-02-05 富士電機株式会社 Power-supply system

Similar Documents

Publication Publication Date Title
TWI594540B (en) Power storage system and power source system
US8508190B2 (en) Assembled battery system and assembled battery protection device
US8581557B2 (en) Direct-current power source apparatus
JP4967162B2 (en) Secondary battery pack
US20120319657A1 (en) Battery management system
US20120176095A1 (en) Electric power management system
JP2014117103A (en) Charging controller, battery system, and charging control method
US9413037B2 (en) Cell capacity adjusting device
JP7228949B2 (en) power converter
US20130134784A1 (en) Ping-Pong Type Battery Management system
US20160297309A1 (en) Vehicle power management device
WO2017179178A1 (en) Power management system
US11121554B2 (en) Electrical power control apparatus, electrical power control method and electrical power control system
WO2011132302A1 (en) Charging control method and discharging control method for electricity storage device
JP4859855B2 (en) Power failure compensation device
JP6677186B2 (en) DC power supply system
WO2019163008A1 (en) Dc feeding system
JP2013146159A (en) Charge control system and charge control method of battery pack
WO2017150141A1 (en) Power supply control system, power supply control method, and power supply control program
JP6781550B2 (en) Power storage system and its control method
JPWO2015141003A1 (en) Secondary battery charging system and secondary battery charging method
WO2013179454A1 (en) Charging/discharging control device
JP6795082B2 (en) DC power supply system
JP6591683B2 (en) Charging voltage supply device and supply method
JP2002315224A (en) Fuel battery power source system and method for charging secondary cell in the fuel battery power source system

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759612

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17759612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP