WO2017150079A1 - Direct current circuit breaker - Google Patents

Direct current circuit breaker Download PDF

Info

Publication number
WO2017150079A1
WO2017150079A1 PCT/JP2017/004200 JP2017004200W WO2017150079A1 WO 2017150079 A1 WO2017150079 A1 WO 2017150079A1 JP 2017004200 W JP2017004200 W JP 2017004200W WO 2017150079 A1 WO2017150079 A1 WO 2017150079A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit breaker
voltage
semiconductor switch
contact
main
Prior art date
Application number
PCT/JP2017/004200
Other languages
French (fr)
Japanese (ja)
Inventor
康一 安岡
希 竹内
祥紀 坪井
早川 達也
Original Assignee
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学 filed Critical 国立大学法人東京工業大学
Priority to JP2018502965A priority Critical patent/JPWO2017150079A1/en
Publication of WO2017150079A1 publication Critical patent/WO2017150079A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H33/596Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle for interrupting dc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle

Definitions

  • the present invention relates to a DC circuit breaker.
  • DC transmission is not so popular in theory, although it is more efficient than AC transmission. At present, except for railways, direct current power transmission is used only for photovoltaic power generation facilities and other relatively small systems.
  • ⁇ Blocking is one of the factors that hinder the spread of DC power transmission.
  • an electrical contact on a path through which a large current flows is opened (turned off), an arc discharge occurs between the contacts.
  • alternating current since there is a zero point, the arc discharge is extinguished within a few cycles.
  • direct current since a high voltage is continuously applied between the contacts, arc discharge continues, it is difficult to interrupt the current, and a direct current circuit breaker is required.
  • a DC circuit breaker As a DC circuit breaker, a structure in which a main circuit breaker (electrical contact) and a semiconductor element are connected in parallel has been proposed (see Patent Document 1, Non-Patent Documents 1 and 2). Such a DC circuit breaker is also referred to as a hybrid DC circuit breaker.
  • FIG. 1A shows a state where the main circuit breaker 900 is on and a current flows between the fixed contact 902 and the movable contact 904.
  • the movable contact 904 is separated from the fixed contact 902 based on the opening command, and the resistance between the contacts increases. Even if the movable contact 904 and the fixed contact 902 are in a non-contact state, the current i continues to flow in the gap between them, and the voltage (voltage drop) Vc between the contacts increases.
  • the hybrid DC circuit breaker uses a high voltage of about 10 to 20 V (referred to as arc voltage Va) generated during arc discharge to conduct a semiconductor switch in parallel with the main circuit breaker 900 and includes a semiconductor switch. Dissipates energy while diverting current to the secondary path. Eventually, as shown in FIG. 1D, the arc is extinguished and the metal particles 914 are diffused. Thereafter, as shown in FIG. 1E, the interruption is completed, and the insulation is restored.
  • the metal particles 914 forming the contacts 902 and 904 are scattered by arc discharge, so the contact is inevitably consumed. For this reason, it has been difficult to use the DC circuit breaker for a long time with no maintenance.
  • a shield 922 may be necessary to prevent the scattered metal particles 914 from adhering to the vacuum vessel 920 or the like. The shield 922 prevents the main circuit breaker 900 from being downsized.
  • the present invention has been made in such a situation, and one of exemplary purposes of an aspect thereof is to provide a DC circuit breaker capable of reducing contact wear.
  • a certain aspect of the present invention is a DC circuit breaker.
  • the DC circuit breaker includes a main circuit breaker provided on the main path and a semiconductor switch provided on a sub-path parallel to the main path.
  • the DC circuit breaker is configured to commutate to the semiconductor switch before arc discharge starts when the main circuit breaker contacts are opened.
  • a certain aspect of the present invention also relates to a DC circuit breaker.
  • the DC circuit breaker includes a main circuit breaker provided on the main path and a semiconductor switch provided on a sub path parallel to the main path.
  • the DC circuit breaker is configured such that when the contact of the main circuit breaker is opened, the semiconductor switch is turned on before the contact voltage Vc generated between both ends of the main circuit breaker reaches the boiling voltage Vb.
  • commutation is possible without causing arc discharge between the contacts of the main circuit breaker (referred to as arcless commutation), and contact consumption can be reduced.
  • the DC circuit breaker may be configured such that the semiconductor switch is turned on before the contact voltage Vc generated across the main circuit breaker reaches the melting voltage Vm. As a result, commutation from the previous stage of bridge formation to the semiconductor switch can be started, and the contact voltage Vc can be suppressed to a lower voltage level.
  • the semiconductor switch may include a plurality of SiC MOSFETs connected in parallel.
  • SiC MOSFET has small ON resistance R ON as compared to the IGBT, also by paralleling the amount of current flowing through each transistor is reduced. For this reason, the drain-source voltage required to pass a certain current i can be reduced.
  • the semiconductor switch may be in close contact with the casing of the main circuit breaker, or may be incorporated in the same module.
  • the parasitic impedance inductance L, L S or DC resistance
  • the parasitic impedance can reduce the voltage drop due, therefore a smaller contact voltage, it is possible to turn on the semiconductor switch.
  • the DC circuit breaker of a certain aspect may further include a snubber capacitor provided in parallel with the main path including the main circuit breaker and the sub path. Since the snubber capacitor can suppress the jump of the inter-contact voltage Vc, it is difficult to transfer from the melting bridge to the arc discharge.
  • the main circuit breaker may include a plurality of electrical contacts connected in series.
  • the terminal voltage across the main circuit breaker in other words, the voltage across the semiconductor switch, is the sum of the voltages across the plurality of electrical contacts. Therefore, the semiconductor switch can be made conductive with the voltage between both ends of each electrical contact being low.
  • a pair of semiconductor switches connected in reverse series may be provided in the sub route. Thereby, it can be used to cut off a bidirectional DC system or an AC system.
  • contact wear can be reduced.
  • FIGS. 1A to 1E are diagrams for explaining the operation of a conventional hybrid DC circuit breaker. It is an equivalent circuit diagram of the DC circuit breaker according to the embodiment. It is an equivalent circuit diagram of the DC circuit breaker considering the parasitic element.
  • FIG. 4A is a diagram for explaining arc commutation by a conventional hybrid DC circuit breaker
  • FIG. 4B is a waveform diagram for explaining arcless commutation by the DC circuit breaker according to the embodiment.
  • FIGS. 5A to 5E are circuit diagrams of DC circuit breakers according to first to fifth embodiments. It is sectional drawing of the DC circuit breaker which concerns on 4th Example.
  • FIG. 7A is an operation waveform diagram of the DC circuit breaker of FIG. 6 having two contacts, and FIG.
  • 7B is an operation waveform diagram of the DC circuit breaker having one contact. It is a table which shows the softening / melting / boiling voltage of various contact materials.
  • 9A and 9B are a plan view and a cross-sectional view of an electrode structure using C (carbon) as an electrode material. It is an operation
  • the state in which the member A is connected to the member B means that the member A and the member B are electrically connected to each other in addition to the case where the member A and the member B are physically directly connected. It includes cases where the connection is indirectly made through other members that do not substantially affect the general connection state, or that do not impair the functions and effects achieved by their combination.
  • the state in which the member C is provided between the member A and the member B refers to the case where the member A and the member C or the member B and the member C are directly connected, as well as their electric It includes cases where the connection is indirectly made through other members that do not substantially affect the general connection state, or that do not impair the functions and effects achieved by their combination.
  • FIG. 2 is an equivalent circuit diagram of the DC circuit breaker according to the embodiment.
  • the DC circuit breaker 2 includes a main circuit breaker 4, a semiconductor switch 8, and a surge absorber 12.
  • the main circuit breaker 4 is an electrical contact disposed on the main path 6 of the DC system to be interrupted.
  • the semiconductor switch 8 is provided on a sub route 10 parallel to the main route 6 including the main circuit breaker 4.
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • V ON voltage between the drain source as described below, in other words on-resistance R ON having a small, in other words, for the same drain-source voltage V DS, it is preferable to select a device that can safely more current, from this viewpoint, it is preferable to use a MOSFET of SiC (silicon carbide).
  • a voltage smaller than the threshold voltage is input between the gate and source of the semiconductor switch 8 while the contact of the main circuit breaker 4 is closed (on), and the threshold is linked with the opening (off) command.
  • a voltage greater than the voltage is input.
  • a voltage larger than the threshold voltage may be constantly applied between the gate and source of the semiconductor switch 8.
  • the surge absorber 12 is also referred to as an arrester and is connected in parallel to the main route 6 and the sub route 10.
  • the surge absorber 12 is provided to dissipate the current that flows after the main circuit breaker 4 is opened (turned off), and the arrangement location is not particularly limited.
  • the basic configuration of the DC circuit breaker 2 is similar to the conventional hybrid DC circuit breaker on the equivalent circuit, but is greatly different in that it does not appear in the equivalent circuit. Hereinafter, differences will be described.
  • the conventional DC circuit breaker has a high contact voltage Vc of about 10 to 20 V (hereinafter referred to as arc voltage Va) between both ends of the main circuit breaker due to arc discharge when the contact of the main circuit breaker is opened. ) Occurs.
  • the high arc voltage Va is applied between the drain and source of the semiconductor switch to make the semiconductor switch conductive.
  • this is referred to as arc commutation.
  • the DC circuit breaker 2 is configured such that when the contact of the main circuit breaker 4 is opened, the semiconductor switch 8 is turned on before the arc discharge starts and commutation starts. ing.
  • this is referred to as arcless commutation.
  • the DC circuit breaker 2 is configured so that the contact voltage Vc (drain-source voltage) reaches the boiling voltage Vb when the contact of the main circuit breaker 4 is opened. 8 is configured to be turned on.
  • the drain-source voltage V DS in a state where the high level voltage is applied to the gate, the drain-source voltage V DS is turned exceeds the phrase on voltage V ON.
  • the ON voltage V ON in this specification is a convenient numerical value that represents a drain-source voltage necessary for flowing a certain current i, and does not exist as a device parameter.
  • the on-resistance RON itself is also a function of the current i.
  • a melting bridge 910 is formed between the contacts before the arc discharge occurs.
  • the melting bridge 910 is generated when the inter-contact voltage Vc reaches the melting voltage Vm. Therefore, more preferably, the DC circuit breaker 2 according to the embodiment is switched before the bridge formation starts, in other words, before the inter-terminal voltage Vc reaches the melting voltage Vm, when the contact of the main circuit breaker 4 is opened.
  • the flow may be started.
  • the condition in this case is expressed by equation (3).
  • V ON ⁇ Vc ( V DS ) ⁇ Vm ⁇ Vb (3)
  • the melting voltage Vm varies depending on the material of the contact. Typically, if the melting voltage Vm is 0.5 to 1 V, the ON voltage V ON of the semiconductor switch 8 may be designed in the order of 0.5 to 1 V. As an example, the boiling voltage Vb of Au (silver) is 0.77 V, the melting voltage Vm is 0.37 V, and the softening voltage is 0.11 V.
  • the softening voltage is a voltage generated when the contact pressing force is weakened when the contact is opened and the contact resistance between the contacts is increased, and corresponds to 50 to 85 ⁇ s in FIG.
  • FIG. 3 is an equivalent circuit diagram of the DC circuit breaker 2 in consideration of parasitic elements.
  • the main path 6 includes an inductor L in series with the main circuit breaker 4, and the sub path 10 includes an inductor L S in series with the semiconductor switch 8.
  • the arcless commutation condition is given by equation (1). (L + L S) ⁇ di / dt + R ON ⁇ i ⁇ Vb ... (1) Therefore, the parasitic inductance L, if the parasitic impedances such as L S can not be ignored, so as to satisfy the equation (1) may be designed to DC circuit breaker 2. If there is a parasitic DC resistance, it should be taken into account.
  • FIG. 4A is a diagram for explaining arc commutation by a conventional hybrid DC circuit breaker
  • FIG. 4B is a waveform diagram for explaining arcless commutation by the DC circuit breaker 2 according to the embodiment. is there.
  • a conventional DC circuit breaker is constituted by an IGBT.
  • the contact closed state is before time 0 ⁇ s, and a contact current ic of 140 A flows.
  • the contact opens at time 0 ⁇ s.
  • the inter-contact voltage Vc increases with time.
  • the inter-terminal voltage Vc reaches the melting voltage Vm (0.37 V) to form a bridge, and the inter-terminal voltage Vc boils at 90 to 105 ⁇ s.
  • the voltage Vb (0.77 V) is exceeded, transition to arc discharge occurs.
  • the semiconductor switch 8 is composed of a MOSFET, and the on-voltage V ON is as small as 0.1V to 0.2V.
  • the contact voltage Vc slightly increases to about 0.1 V to 0.2 V
  • the current i DS flows through the semiconductor switch 8 and commutation starts.
  • the contact current i C decreases, so that an increase in the contact voltage Vc is suppressed.
  • the contact voltage Vc continues to maintain the range of 0.5 to 1 V during the commutation period, does not reach the boiling voltage Vb, and no arc discharge occurs.
  • the above is the operation of the DC circuit breaker 2 according to the embodiment.
  • the DC circuit breaker 2 since it is possible to commutate to the semiconductor switch without generating arc discharge, it is possible to reduce contact consumption and extend the life.
  • the DC circuit breaker 2 has the further advantage that the distance between the contacts of the main circuit breaker 4 can be shortened because arc discharge does not occur. Thereby, the direct-current circuit breaker 2 can be reduced in size. Further, since the moving distance of the movable contact is short, piezo driving is possible, and in this case, the device can be further downsized.
  • the metal particles released into the gas or vacuum accompanying the discharge can be significantly reduced, contamination can be prevented.
  • the shield 922 shown in FIG. 1 (e) can be eliminated, and in this case, the size and cost of the DC breaker 2 can be reduced.
  • FIG. 5A is a circuit diagram of the DC circuit breaker 2a according to the first embodiment.
  • the semiconductor switch 8a may include a plurality of transistors (for example, MOSFETs) M1 and M2 connected in parallel.
  • the number of transistors is not particularly limited, and may be selected so as to satisfy the conditions of arcless commutation.
  • arcless commutation is achieved by connecting four MOSFETs in parallel as shown in FIG.
  • An arcless commutation was also confirmed in the parallel connection of two MOSFETs.
  • the body diode freewheeling diode
  • FIG.5 (b) is sectional drawing of the direct-current circuit breaker 2b which concerns on 2nd Example.
  • the main circuit breaker 4b is a general electric contact, and includes a fixed contact 902, a movable contact 904, a bellows 906, and the like.
  • a commercially available power module including the semiconductor switch 8b is in close contact with the casing (housing) of the main circuit breaker 4. As a result, the wiring length can be shortened, and the inductance and parasitic resistance can be reduced.
  • a plurality of power modules may be attached to the casing of the main circuit breaker 4b.
  • the main circuit breaker 4 can be reduced in size as compared with the prior art, the main circuit breaker 4 and the semiconductor switch 8 may be incorporated in the same package or the same module. As a result, the inductance can be further reduced.
  • FIG. 5C is a circuit diagram of the DC circuit breaker 2c according to the third embodiment.
  • the DC circuit breaker 2 c further includes a snubber capacitor 14 provided in parallel with the main path 6 and the sub path 10.
  • FIG. 5D is a circuit diagram of the DC circuit breaker 2d according to the fourth embodiment.
  • the main circuit breaker 4d includes a plurality of electrical contacts 4_1 to 4_2 connected in series.
  • the contact voltage Vc of the entire main circuit breaker 4d is the sum of the contact voltages Vc1 to Vc2 of the individual electrical contacts. Therefore, the semiconductor switch 8 can be turned on while the voltage Vc1 and Vc2 between both ends of each of the electrical contacts 4_1 to 4_2 is low, and arc discharge hardly occurs at the electrical contacts 4_1 and 4_2.
  • the number of electrical contacts is not particularly limited.
  • FIG. 6 is a cross-sectional view of the DC circuit breaker 2d according to the fourth embodiment.
  • An equivalent circuit diagram of the DC circuit breaker 2d is shown in FIG.
  • the DC circuit breaker 2d includes two fixed electrodes 20_1 and 20_2 and two movable electrodes 22_1 and 22_2.
  • a pair of the fixed electrode 20_1 and the movable electrode 22_1 corresponds to the electrical contact 4_1 in FIG. 5D, and is disposed to face each other with a gap 24 therebetween.
  • the pair of the fixed electrode 20_2 and the movable electrode 22_2 corresponds to the electrical contact 4_2 in FIG. 5D, and is disposed to face each other with a gap 24 therebetween.
  • the two movable electrodes 22_1 and 22_2 may be integrally formed.
  • the two movable electrodes 22_1 and 22_2 are attached to the piezo actuator 26.
  • the distance of the gap 24 is changed, and the fixed electrode 20 and the movable electrode 22 facing each other can be attached and detached.
  • FIG. 7A is an operation waveform diagram of the DC circuit breaker 2d of FIG. 6 having two contacts
  • FIG. 7B is an operation waveform diagram of the DC circuit breaker having one contact
  • FIG. 8 is a table showing the softening / melting / boiling voltage of various contact materials.
  • the boiling voltage of copper is 0.8V.
  • FIG. 7B in the case of a single contact, arc discharge occurs when the contact voltage is less than 1V, and the contact voltage reaches 20V (in FIG. 7B).
  • the number of contacts is increased to 2, as shown in FIG. 7A, it can be seen that even if the contact voltage exceeds 1.5V, it does not boil and arc discharge does not occur.
  • arc discharge can be suppressed by increasing the number of contacts.
  • the fifth approach is to increase the boiling voltage Vb.
  • it is effective to select a high melting point material for the contact of the main circuit breaker 4, and Ag (silver), Ni (nickel), W (Tungsten) or alloys thereof are useful.
  • Ag is 961 ° C.
  • Ni is 1455 ° C.
  • W is 3382 ° C.
  • Their melting voltage Vm is 0.38 to 0.64 V for Ag, 0.55 to 1.1 V for Ni, and 0.6 to 1.0 V for Ag—W alloy (PP Koren, IEEE Parts, Hybrids & Packaging, vol. PHP-11, no.1 pp.4-10 (1975)).
  • 9A and 9B are a plan view and a cross-sectional view of an electrode structure using C (carbon) as an electrode material.
  • C carbon
  • a carbon film 32 (thickness: 200 ⁇ m) is fixed in close contact using a screw 34.
  • the softening / melting / boiling voltage cannot be defined, but has a sublimation temperature of 3642 ° C.
  • FIG. 10 is an operation waveform diagram of arcless commutation by a DC circuit breaker having the electrode structure of FIG. As shown in FIG. 10, the commutation is completed after the contact voltage rises to about 7.5V. When the Si-MOSFET was not turned on, arc discharge occurred at a contact voltage of about 9.0 V, and the voltage rose to 30 V. By using carbon as an electrode, a contact voltage higher than that of tungsten can be obtained.
  • a contact voltage of about 2V is generated, which is larger than the other waveform diagrams. This is because the normal contact resistance is 1 m ⁇ or less, whereas the electrode structure of FIG. 9 has a contact resistance of 13 m ⁇ (2 V / 150 A).
  • the poor adhesion between the plate 30 and the carbon film 32 is one of the factors.
  • a carbon film or a graphene film may be formed on the surface of the electrode plate 30 by a plasma CVD method, or a carbon film or a graphene film may be formed by a hot press molding method.
  • the adhesion between the electrode plate 30 and the carbon film 32 can be increased, the contact resistance can be reduced, and the contact voltage before contact opening can be reduced.
  • the MOSFET which is the semiconductor switch 8 is turned off and the energy is absorbed by the surge absorber (arrester, varistor), the MOSFET must withstand the circuit voltage.
  • the rated voltage of the MOSFET for large current is 1200 V, 3300 V, etc., and the circuit voltage is required to be lower than the rated voltage of the MOSFET.
  • a plurality of MOSFETs may be connected in series.
  • FIG. 5E is a circuit diagram of the DC circuit breaker 2e according to the fifth embodiment.
  • the sub path 10 is provided with a pair of semiconductor switches 8_1 and 8_2 connected in reverse series.
  • This DC circuit breaker 2e can also be used for bidirectional DC system or AC system interruption.
  • the present invention can be used for power transmission.

Abstract

This direct current circuit breaker 2 comprises a main circuit breaker 4 and a semiconductor switch 8. The main circuit breaker 4 is provided on a main path 6, and the semiconductor switch 8 is provided on an alternative path 10 parallel to the main path 6. This direct current circuit breaker 2 is configured in such a manner that, at opening time of the contact poles from the main circuit breaker 4, the semiconductor switch 8 is turned ON before the inter-contact voltage Vc arising between the two ends of the main circuit breaker 4 reaches a boiling voltage Vb.

Description

直流遮断器DC circuit breaker
 本発明は、直流遮断器に関する。 The present invention relates to a DC circuit breaker.
 直流送電は、理論上、交流送電よりも高効率であるにもかかわらず、それほど普及していない。現状では、鉄道を除けば、太陽光発電設備、そのほか比較的小規模な系統に限って直流送電は採用されている。 DC transmission is not so popular in theory, although it is more efficient than AC transmission. At present, except for railways, direct current power transmission is used only for photovoltaic power generation facilities and other relatively small systems.
 直流送電の普及を妨げる要因のひとつとして遮断が挙げられる。大電流が流れている経路上の電気接点を開極(オフ)すると、接点間にアーク放電が発生する。交流の場合、ゼロ点が存在するため、アーク放電は数サイクル内に消弧する。一方、直流の場合、接点間に高電圧が印加され続けるため、アーク放電が持続し、電流を遮断することが難しく、直流遮断器が必要とされる。 遮断 Blocking is one of the factors that hinder the spread of DC power transmission. When an electrical contact on a path through which a large current flows is opened (turned off), an arc discharge occurs between the contacts. In the case of alternating current, since there is a zero point, the arc discharge is extinguished within a few cycles. On the other hand, in the case of direct current, since a high voltage is continuously applied between the contacts, arc discharge continues, it is difficult to interrupt the current, and a direct current circuit breaker is required.
 直流遮断器として、主遮断器(電気接点)と半導体素子を並列接続した構成が提案されている(特許文献1,非特許文献1,2参照)。このような直流遮断器は、ハイブリッド直流遮断器とも称される。 As a DC circuit breaker, a structure in which a main circuit breaker (electrical contact) and a semiconductor element are connected in parallel has been proposed (see Patent Document 1, Non-Patent Documents 1 and 2). Such a DC circuit breaker is also referred to as a hybrid DC circuit breaker.
特開2013-196895号公報JP 2013-196895 A
 図1(a)~(e)は、従来のハイブリッド直流遮断器の動作を説明する図である。図1(a)は、主遮断器900がオンであり、固定接点902と可動接点904の間に電流が流れている状態を示す。何らかの事故や故障が発生すると、開極指令にもとづいて、可動接点904が固定接点902から引き離され、接点間の抵抗が増大する。可動接点904と固定接点902が非接触状態であってもそれらの間のギャップに電流iが流れ続け、接点間電圧(電圧降下)Vcが増大する。 1 (a) to 1 (e) are diagrams for explaining the operation of a conventional hybrid DC circuit breaker. FIG. 1A shows a state where the main circuit breaker 900 is on and a current flows between the fixed contact 902 and the movable contact 904. When any accident or failure occurs, the movable contact 904 is separated from the fixed contact 902 based on the opening command, and the resistance between the contacts increases. Even if the movable contact 904 and the fixed contact 902 are in a non-contact state, the current i continues to flow in the gap between them, and the voltage (voltage drop) Vc between the contacts increases.
 図1(b)に示すように主遮断器900の接点開極にともない増大する接点間電圧Vcが溶融電圧Vmとなると、溶融ブリッジ910が発生する。さらに接点間電圧Vcが沸騰電圧Vbを超えると、図1(c)に示すようにアーク放電912に転移する。アーク放電に転移すると、接点間の電位差は10~20V程度まで高まる。ハイブリッド直流遮断器では、アーク放電の最中に発生する10~20V程度の高電圧(アーク電圧Vaと称する)を利用して、主遮断器900と並列な半導体スイッチを導通させ、半導体スイッチを含む副経路に電流を迂回させながらエネルギーを消散させる。やがて図1(d)に示すようにアークが消弧し、金属粒子914が拡散する。その後に図1(e)に示すように遮断が完了し、絶縁が回復する。 As shown in FIG. 1B, when the contact voltage Vc, which increases with the contact opening of the main circuit breaker 900, becomes the melting voltage Vm, a melting bridge 910 is generated. Further, when the inter-contact voltage Vc exceeds the boiling voltage Vb, as shown in FIG. When transitioning to arc discharge, the potential difference between the contacts increases to about 10-20V. The hybrid DC circuit breaker uses a high voltage of about 10 to 20 V (referred to as arc voltage Va) generated during arc discharge to conduct a semiconductor switch in parallel with the main circuit breaker 900 and includes a semiconductor switch. Dissipates energy while diverting current to the secondary path. Eventually, as shown in FIG. 1D, the arc is extinguished and the metal particles 914 are diffused. Thereafter, as shown in FIG. 1E, the interruption is completed, and the insulation is restored.
 ここで図1(d)に示すように、アーク放電によって、接点902,904を形成する金属粒子914が飛散するため、接点の消耗が避けられない。そのために、直流遮断器のノーメンテナンスで長期間使用することは難しかった。また飛散した金属粒子914が真空容器920などに付着するのを防ぐために、シールド922が必要となる場合がある。シールド922は主遮断器900の小型化を妨げる。 Here, as shown in FIG. 1 (d), the metal particles 914 forming the contacts 902 and 904 are scattered by arc discharge, so the contact is inevitably consumed. For this reason, it has been difficult to use the DC circuit breaker for a long time with no maintenance. In addition, a shield 922 may be necessary to prevent the scattered metal particles 914 from adhering to the vacuum vessel 920 or the like. The shield 922 prevents the main circuit breaker 900 from being downsized.
 本発明は係る状況においてなされたものであり、そのある態様の例示的な目的のひとつは、接点の消耗を低減可能な直流遮断器の提供にある。 The present invention has been made in such a situation, and one of exemplary purposes of an aspect thereof is to provide a DC circuit breaker capable of reducing contact wear.
 本発明のある態様は、直流遮断器である。この直流遮断器は、主経路上に設けられた主遮断器と、主経路に対して並列な副経路上に設けられた半導体スイッチと、を備える。直流遮断器は、主遮断器の接点開極時において、アーク放電が開始する前に半導体スイッチに転流するように構成されている。 A certain aspect of the present invention is a DC circuit breaker. The DC circuit breaker includes a main circuit breaker provided on the main path and a semiconductor switch provided on a sub-path parallel to the main path. The DC circuit breaker is configured to commutate to the semiconductor switch before arc discharge starts when the main circuit breaker contacts are opened.
 本発明のある態様も直流遮断器に関する。直流遮断器は、主経路上に設けられた主遮断器と、主経路に対して並列な副経路上に設けられた半導体スイッチと、を備える。直流遮断器は、主遮断器の接点開極時において、主遮断器の両端間に生ずる接点電圧Vcが沸騰電圧Vbに達する前に半導体スイッチがオンするように構成されている。 A certain aspect of the present invention also relates to a DC circuit breaker. The DC circuit breaker includes a main circuit breaker provided on the main path and a semiconductor switch provided on a sub path parallel to the main path. The DC circuit breaker is configured such that when the contact of the main circuit breaker is opened, the semiconductor switch is turned on before the contact voltage Vc generated between both ends of the main circuit breaker reaches the boiling voltage Vb.
 これらの態様によれば、転流および消弧完了まで、主遮断器の接点間にアーク放電を発生させずに転流が可能(アークレス転流という)となり、接点の消耗を低減できる。 According to these aspects, until commutation and arc extinction are completed, commutation is possible without causing arc discharge between the contacts of the main circuit breaker (referred to as arcless commutation), and contact consumption can be reduced.
 直流遮断器は、主遮断器の両端間に生ずる接点電圧Vcが溶融電圧Vmに到達するより前に、半導体スイッチがオンするように構成されてもよい。
 これによりブリッジ形成の前段階から半導体スイッチへの転流を開始することができ、接点電圧Vcをさらに低い電圧レベルに抑制できる。
The DC circuit breaker may be configured such that the semiconductor switch is turned on before the contact voltage Vc generated across the main circuit breaker reaches the melting voltage Vm.
As a result, commutation from the previous stage of bridge formation to the semiconductor switch can be started, and the contact voltage Vc can be suppressed to a lower voltage level.
 半導体スイッチは、並列に接続された複数のSiC MOSFETを含んでもよい。
 SiC MOSFETは、IGBTに比べてオン抵抗RONが小さく、また複数を並列接続することにより、各トランジスタに流れる電流量が小さくなる。そのため、ある電流iを流すために必要なドレインソース間電圧を小さくできる。
The semiconductor switch may include a plurality of SiC MOSFETs connected in parallel.
SiC MOSFET has small ON resistance R ON as compared to the IGBT, also by paralleling the amount of current flowing through each transistor is reduced. For this reason, the drain-source voltage required to pass a certain current i can be reduced.
 主遮断器を含む主経路の直流インダクタンスをL,副経路の直流インダクタンスをL、半導体スイッチのオン抵抗をRON、半導体スイッチに流れる電流をiとするとき、式(1)が成り立つよう構成されてもよい。
 (L+L)・di/dt+RON・i<Vb   …(1)
 インダクタンスを考慮して設計することにより、確実なアークレス転流が可能となる。
When the DC inductance of the main path including the main circuit breaker is L, the DC inductance of the sub path is L S , the on-resistance of the semiconductor switch is R ON , and the current flowing through the semiconductor switch is i, the configuration is such that Expression (1) holds May be.
(L + L S) · di / dt + R ON · i <Vb ... (1)
By designing in consideration of the inductance, reliable arcless commutation is possible.
 半導体スイッチは、主遮断器のケーシングに密着してもよいし、あるいは同一モジュール内に内蔵されてもよい。これにより、寄生インピーダンス(インダクタンスL,Lあるいは直流抵抗)による電圧降下を小さくでき、したがってより小さい接点間電圧で、半導体スイッチをオンすることが可能となる。 The semiconductor switch may be in close contact with the casing of the main circuit breaker, or may be incorporated in the same module. Thus, the parasitic impedance (inductance L, L S or DC resistance) can reduce the voltage drop due, therefore a smaller contact voltage, it is possible to turn on the semiconductor switch.
 ある態様の直流遮断器は、主遮断器を含む主経路ならびに副経路に対して並列に設けられたスナバコンデンサをさらに備えてもよい。スナバコンデンサにより接点間電圧Vcの跳ね上がりを抑制できるため、溶融ブリッジからアーク放電へ転移しにくくできる。 The DC circuit breaker of a certain aspect may further include a snubber capacitor provided in parallel with the main path including the main circuit breaker and the sub path. Since the snubber capacitor can suppress the jump of the inter-contact voltage Vc, it is difficult to transfer from the melting bridge to the arc discharge.
 主遮断器は直列接続された複数の電気接点を含んでもよい。これにより、主遮断器の両端間の端子電圧、言い換えれば半導体スイッチの両端間の電圧は、複数の電気接点の両端間電圧の総和となる。したがって、個々の電気接点の両端間電圧が低い状態で、半導体スイッチを導通させることができる。 The main circuit breaker may include a plurality of electrical contacts connected in series. As a result, the terminal voltage across the main circuit breaker, in other words, the voltage across the semiconductor switch, is the sum of the voltages across the plurality of electrical contacts. Therefore, the semiconductor switch can be made conductive with the voltage between both ends of each electrical contact being low.
 副経路には、逆直列接続された一対の半導体スイッチが設けられてもよい。これにより双方向の直流系統、あるいは交流系統の遮断にも利用可能である。 A pair of semiconductor switches connected in reverse series may be provided in the sub route. Thereby, it can be used to cut off a bidirectional DC system or an AC system.
 なお、以上の構成要素を任意に組み合わせたもの、あるいは本発明の表現を、方法、装置などの間で変換したものもまた、本発明の態様として有効である。 It should be noted that a combination of the above-described components arbitrarily or a conversion of the expression of the present invention between a method, an apparatus, etc. is also effective as an aspect of the present invention.
 本発明のある態様によれば、接点の消耗を低減できる。 According to an aspect of the present invention, contact wear can be reduced.
図1(a)~(e)は、従来のハイブリッド直流遮断器の動作を説明する図である。FIGS. 1A to 1E are diagrams for explaining the operation of a conventional hybrid DC circuit breaker. 実施の形態に係る直流遮断器の等価回路図である。It is an equivalent circuit diagram of the DC circuit breaker according to the embodiment. 寄生素子を考慮した直流遮断器の等価回路図である。It is an equivalent circuit diagram of the DC circuit breaker considering the parasitic element. 図4(a)は、従来のハイブリッド直流遮断器によるアーク転流を説明する図であり、図4(b)は、実施の形態に係る直流遮断器によるアークレス転流を説明する波形図である。FIG. 4A is a diagram for explaining arc commutation by a conventional hybrid DC circuit breaker, and FIG. 4B is a waveform diagram for explaining arcless commutation by the DC circuit breaker according to the embodiment. . 図5(a)~(e)は、第1~第5実施例に係る直流遮断器の回路図である。FIGS. 5A to 5E are circuit diagrams of DC circuit breakers according to first to fifth embodiments. 第4実施例に係る直流遮断器の断面図である。It is sectional drawing of the DC circuit breaker which concerns on 4th Example. 図7(a)は、2つの接点を有する図6の直流遮断器の動作波形図であり、図7(b)は、1つの接点を有する直流遮断器の動作波形図である。FIG. 7A is an operation waveform diagram of the DC circuit breaker of FIG. 6 having two contacts, and FIG. 7B is an operation waveform diagram of the DC circuit breaker having one contact. さまざまな接点材料の軟化・溶融・沸騰電圧を示すテーブルである。It is a table which shows the softening / melting / boiling voltage of various contact materials. 図9(a)、(b)は、電極材料としてC(炭素)を用いた電極構造の平面図および断面図である。9A and 9B are a plan view and a cross-sectional view of an electrode structure using C (carbon) as an electrode material. 図8の電極構造を備える直流遮断器によるアークレス転流の動作波形図である。It is an operation | movement waveform diagram of the arcless commutation by a DC circuit breaker provided with the electrode structure of FIG.
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, the present invention will be described based on preferred embodiments with reference to the drawings. The same or equivalent components, members, and processes shown in the drawings are denoted by the same reference numerals, and repeated descriptions are omitted as appropriate. The embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.
 本明細書において、「部材Aが、部材Bと接続された状態」とは、部材Aと部材Bが物理的に直接的に接続される場合のほか、部材Aと部材Bが、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。 In this specification, “the state in which the member A is connected to the member B” means that the member A and the member B are electrically connected to each other in addition to the case where the member A and the member B are physically directly connected. It includes cases where the connection is indirectly made through other members that do not substantially affect the general connection state, or that do not impair the functions and effects achieved by their combination.
 同様に、「部材Cが、部材Aと部材Bの間に設けられた状態」とは、部材Aと部材C、あるいは部材Bと部材Cが直接的に接続される場合のほか、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。 Similarly, “the state in which the member C is provided between the member A and the member B” refers to the case where the member A and the member C or the member B and the member C are directly connected, as well as their electric It includes cases where the connection is indirectly made through other members that do not substantially affect the general connection state, or that do not impair the functions and effects achieved by their combination.
 図2は、実施の形態に係る直流遮断器の等価回路図である。直流遮断器2は、主遮断器4、半導体スイッチ8、サージアブソーバ12を備える。主遮断器4は、遮断対象となる直流系統の主経路6上に配置される電気接点である。半導体スイッチ8は、主遮断器4を含む主経路6に対して並列な副経路10上に設けられる。半導体スイッチ8は、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)やIGBT(Insulated Gate Bipolar Transistor)を用いることができるが、後述のようにドレインソース間のオン電圧VONの小さな、言い換えればオン抵抗RONの小さな、言い換えれば、同じドレインソース間電圧VDSに対して、より多くの電流を流せるデバイスを選択することが好ましく、この観点から、SiC(炭化珪素)のMOSFETを用いることが好ましい。 FIG. 2 is an equivalent circuit diagram of the DC circuit breaker according to the embodiment. The DC circuit breaker 2 includes a main circuit breaker 4, a semiconductor switch 8, and a surge absorber 12. The main circuit breaker 4 is an electrical contact disposed on the main path 6 of the DC system to be interrupted. The semiconductor switch 8 is provided on a sub route 10 parallel to the main route 6 including the main circuit breaker 4. The semiconductor switch 8, MOSFET (Metal Oxide Semiconductor Field Effect Transistor) or an IGBT may be used (Insulated Gate Bipolar Transistor), a small on-voltage V ON between the drain source as described below, in other words on-resistance R ON having a small, in other words, for the same drain-source voltage V DS, it is preferable to select a device that can safely more current, from this viewpoint, it is preferable to use a MOSFET of SiC (silicon carbide).
 半導体スイッチ8のゲートソース間には、主遮断器4の接点閉極(オン)中には、しきい値電圧より小さい電圧が入力され、開極(オフ)指令と連動して、しきい値電圧より大きい電圧が入力される。あるいは半導体スイッチ8のゲートソース間に、常時、しきい値電圧より大きな電圧を印加しておいてもよい。 A voltage smaller than the threshold voltage is input between the gate and source of the semiconductor switch 8 while the contact of the main circuit breaker 4 is closed (on), and the threshold is linked with the opening (off) command. A voltage greater than the voltage is input. Alternatively, a voltage larger than the threshold voltage may be constantly applied between the gate and source of the semiconductor switch 8.
 サージアブソーバ12はアレスタとも称され、主経路6および副経路10に対して並列に接続される。なおサージアブソーバ12は、主遮断器4を開極(オフ)した後に流れる電流を消散するために設けられており、その配置箇所は特に限定されない。 The surge absorber 12 is also referred to as an arrester and is connected in parallel to the main route 6 and the sub route 10. The surge absorber 12 is provided to dissipate the current that flows after the main circuit breaker 4 is opened (turned off), and the arrangement location is not particularly limited.
 このように直流遮断器2の基本構成は等価回路上においては従来のハイブリッド直流遮断器と似ているが、等価回路に現れない点で大きく異なっている。以下、相違点について説明する。 Thus, the basic configuration of the DC circuit breaker 2 is similar to the conventional hybrid DC circuit breaker on the equivalent circuit, but is greatly different in that it does not appear in the equivalent circuit. Hereinafter, differences will be described.
 上述したように従来の直流遮断器は、主遮断器の接点開極時に、アーク放電にともない主遮断器の両端間には、10~20V程度の高い接点間電圧Vc(以下、アーク電圧Vaという)が発生する。この高いアーク電圧Vaが半導体スイッチのドレインソース間に印加されることにより半導体スイッチを導通させる。以下、これをアーク転流と称することとする。 As described above, the conventional DC circuit breaker has a high contact voltage Vc of about 10 to 20 V (hereinafter referred to as arc voltage Va) between both ends of the main circuit breaker due to arc discharge when the contact of the main circuit breaker is opened. ) Occurs. The high arc voltage Va is applied between the drain and source of the semiconductor switch to make the semiconductor switch conductive. Hereinafter, this is referred to as arc commutation.
 これに対して、実施の形態に係る直流遮断器2は、主遮断器4の接点開極時において、アーク放電が開始する前に半導体スイッチ8がオンし、転流が開始するように構成されている。以下ではこれをアークレス転流と称することとする。 On the other hand, the DC circuit breaker 2 according to the embodiment is configured such that when the contact of the main circuit breaker 4 is opened, the semiconductor switch 8 is turned on before the arc discharge starts and commutation starts. ing. Hereinafter, this is referred to as arcless commutation.
 図1(c)に示すアーク放電912は、主遮断器4の接点間電圧Vcがあるしきい値電圧(沸騰電圧)Vbを超えると発生する。したがって別の観点から言えば、実施の形態に係る直流遮断器2は、主遮断器4の接点開極時において、接点間電圧Vc(ドレインソース間電圧)が沸騰電圧Vbに達する前に半導体スイッチ8がオンするように構成されている。 1C is generated when the voltage Vc between the contacts of the main circuit breaker 4 exceeds a certain threshold voltage (boiling voltage) Vb. Therefore, from another viewpoint, the DC circuit breaker 2 according to the embodiment is configured so that the contact voltage Vc (drain-source voltage) reaches the boiling voltage Vb when the contact of the main circuit breaker 4 is opened. 8 is configured to be turned on.
 ここで半導体スイッチは、ゲートにハイレベル電圧が印加された状態において、ドレインソース間電圧VDSがとあるオン電圧VONを超えるとオンする。なお、本明細書におけるオン電圧VONは、ある電流iを流すために必要なドレインソース間電圧を表す便宜的な数値で有り、デバイスパラメータとして存在するわけではない。オン電圧VONは、流れる電流iに依存しており、VON=RON×iと表すことができる。なお、オン抵抗RON自体も、電流iの関数である。 Here semiconductor switch, in a state where the high level voltage is applied to the gate, the drain-source voltage V DS is turned exceeds the phrase on voltage V ON. Note that the ON voltage V ON in this specification is a convenient numerical value that represents a drain-source voltage necessary for flowing a certain current i, and does not exist as a device parameter. The ON voltage V ON depends on the flowing current i, and can be expressed as V ON = R ON × i. Note that the on-resistance RON itself is also a function of the current i.
 寄生素子の影響を無視すれば、半導体スイッチ8のドレインソース間電圧VDSは端子間電圧Vcと等しい。したがってアークレス転流となる条件は、式(2)で表される。
 VON<Vc(≒VDS)<Vb   …(2)
Neglecting the influence of the parasitic elements, the drain-source voltage V DS of the semiconductor switch 8 is equal to the inter-terminal voltage Vc. Therefore, the condition for arcless commutation is expressed by equation (2).
V ON <Vc (≈V DS ) <Vb (2)
 図1(b)に示したように、アーク放電が発生する前には、接点間には溶融ブリッジ910が形成される。この溶融ブリッジ910は、接点間電圧Vcが溶融電圧Vmに到達すると発生する。したがってより好ましくは、実施の形態に係る直流遮断器2は、主遮断器4の接点開極時において、ブリッジ形成が始まる前に、言い換えれば端子間電圧Vcが溶融電圧Vmに達する前に、転流を開始させてもよい。この場合の条件は、式(3)で表される。
 VON<Vc(=VDS)<Vm<Vb   …(3)
As shown in FIG. 1B, a melting bridge 910 is formed between the contacts before the arc discharge occurs. The melting bridge 910 is generated when the inter-contact voltage Vc reaches the melting voltage Vm. Therefore, more preferably, the DC circuit breaker 2 according to the embodiment is switched before the bridge formation starts, in other words, before the inter-terminal voltage Vc reaches the melting voltage Vm, when the contact of the main circuit breaker 4 is opened. The flow may be started. The condition in this case is expressed by equation (3).
V ON <Vc (= V DS ) <Vm <Vb (3)
 溶融電圧Vmは、接点の材料によってさまざまであるが、典型的に0.5~1Vとすれば、半導体スイッチ8のオン電圧VONは0.5~1Vのオーダーで設計すればよい。一例としてAu(銀)の沸騰電圧Vbは0.77V、溶融電圧Vmは0.37V、軟化電圧は0.11Vである。軟化電圧は、接点開極時に接点を押さえつける力が弱まるとともに接点間の接触抵抗が増加して発生する電圧であり、後述の図4(a)の50~85μsがそれに対応する。 The melting voltage Vm varies depending on the material of the contact. Typically, if the melting voltage Vm is 0.5 to 1 V, the ON voltage V ON of the semiconductor switch 8 may be designed in the order of 0.5 to 1 V. As an example, the boiling voltage Vb of Au (silver) is 0.77 V, the melting voltage Vm is 0.37 V, and the softening voltage is 0.11 V. The softening voltage is a voltage generated when the contact pressing force is weakened when the contact is opened and the contact resistance between the contacts is increased, and corresponds to 50 to 85 μs in FIG.
 つまり、式(2)もしくは式(3)を満たすためには、
 (i)半導体スイッチ8のオン電圧VON(オン抵抗RON)が小さくなるように、
 (ii)端子間電圧Vcが大きくなるように、
 (iii)溶融電圧Vm、沸騰電圧Vbが大きくなるように、
直流遮断器2を設計すればよい。アークレス転流を実現するための具体的なアプローチについては後述する。
In other words, in order to satisfy formula (2) or formula (3),
(I) To reduce the ON voltage V ON (ON resistance R ON ) of the semiconductor switch 8,
(Ii) To increase the inter-terminal voltage Vc,
(Iii) To increase the melting voltage Vm and the boiling voltage Vb,
The DC breaker 2 may be designed. A specific approach for realizing arcless commutation will be described later.
 図3は、寄生素子を考慮した直流遮断器2の等価回路図である。主経路6には、主遮断器4と直列なインダクタLが、副経路10には半導体スイッチ8と直列なインダクタLが存在する。これらの寄生素子を考慮したとき、アークレス転流の条件は式(1)で与えられる。
 (L+L)・di/dt+RON・i<Vb   …(1)
 したがって、寄生インダクタンスL,Lなどの寄生インピーダンスが無視し得ない場合には、式(1)を満たすように、直流遮断器2を設計すればよい。寄生の直流抵抗などが存在する場合、それも考慮するとよい。
FIG. 3 is an equivalent circuit diagram of the DC circuit breaker 2 in consideration of parasitic elements. The main path 6 includes an inductor L in series with the main circuit breaker 4, and the sub path 10 includes an inductor L S in series with the semiconductor switch 8. When these parasitic elements are taken into consideration, the arcless commutation condition is given by equation (1).
(L + L S) · di / dt + R ON · i <Vb ... (1)
Therefore, the parasitic inductance L, if the parasitic impedances such as L S can not be ignored, so as to satisfy the equation (1) may be designed to DC circuit breaker 2. If there is a parasitic DC resistance, it should be taken into account.
 寄生インピーダンスが無視できない場合、より好ましくは、溶融電圧Vmにおいて転流が開始するように、式(4)を満たすように設計すればよい。
 (L+L)・di/dt+RON・i<Vm   …(4)
When the parasitic impedance cannot be ignored, it is more preferable to design so as to satisfy the formula (4) so that commutation starts at the melting voltage Vm.
(L + L S) · di / dt + R ON · i <Vm ... (4)
 以上が直流遮断器2の基本構成である。続いてその動作を説明する。図4(a)は、従来のハイブリッド直流遮断器によるアーク転流を説明する図であり、図4(b)は、実施の形態に係る直流遮断器2によるアークレス転流を説明する波形図である。 The above is the basic configuration of the DC circuit breaker 2. Next, the operation will be described. 4A is a diagram for explaining arc commutation by a conventional hybrid DC circuit breaker, and FIG. 4B is a waveform diagram for explaining arcless commutation by the DC circuit breaker 2 according to the embodiment. is there.
 はじめに図4(a)を参照し、従来のアーク転流を説明する。従来の直流遮断器は、IGBTで構成される。時刻0μsより前が接点閉極状態であり、140Aの接点電流icが流れている。時刻0μsに接点が開極する。時間と共に接点間電圧Vcが増大していき、t=50~90μsにおいて、端子間電圧Vcが溶融電圧Vm(0.37V)に達してブリッジが形成され、90μs~105μsにおいて端子間電圧Vcが沸騰電圧Vb(0.77V)を超えると、アーク放電に転移する。アーク放電の開始とともに、端子間電圧Vcすなわち半導体スイッチのコレクタエミッタ間電圧がオン電圧VON(0.7V)を超え、半導体スイッチが導通し、IGBTに流れる電流iIGBTが増加し、接点電流icが減少し、転流が行われる。 First, conventional arc commutation will be described with reference to FIG. A conventional DC circuit breaker is constituted by an IGBT. The contact closed state is before time 0 μs, and a contact current ic of 140 A flows. The contact opens at time 0 μs. The inter-contact voltage Vc increases with time. At t = 50 to 90 μs, the inter-terminal voltage Vc reaches the melting voltage Vm (0.37 V) to form a bridge, and the inter-terminal voltage Vc boils at 90 to 105 μs. When the voltage Vb (0.77 V) is exceeded, transition to arc discharge occurs. With the start of arc discharge, the voltage Vc between terminals, that is, the collector-emitter voltage of the semiconductor switch exceeds the ON voltage V ON (0.7 V), the semiconductor switch becomes conductive, the current i IGBT flowing through the IGBT increases, and the contact current ic Decreases and commutation takes place.
 続いて図4(b)を参照し、実施の形態に係る直流遮断器2のアークレス転流を説明する。半導体スイッチ8は、MOSFETで構成されており、そのオン電圧VONは0.1V~0.2Vと非常に小さい。 Next, arcless commutation of the DC breaker 2 according to the embodiment will be described with reference to FIG. The semiconductor switch 8 is composed of a MOSFET, and the on-voltage V ON is as small as 0.1V to 0.2V.
 時刻t=0μsより前において140Aの接点電流が流れており、時刻0μsに接点が開極する。接点電圧Vcが0.1V~0.2V程度まで、わずかに増加すると、半導体スイッチ8に電流iDSが流れ、転流が開始する。半導体スイッチ8に電流iDSが流れると、接点電流iが減少するため、接点電圧Vcの増大が抑制される。その結果、転流期間の間、接点電圧Vcは0.5~1Vの範囲を維持し続け、沸騰電圧Vbには到達せず、アーク放電も発生しない。 A contact current of 140 A flows before time t = 0 μs, and the contact opens at time 0 μs. When the contact voltage Vc slightly increases to about 0.1 V to 0.2 V, the current i DS flows through the semiconductor switch 8 and commutation starts. When the current i DS flows through the semiconductor switch 8, the contact current i C decreases, so that an increase in the contact voltage Vc is suppressed. As a result, the contact voltage Vc continues to maintain the range of 0.5 to 1 V during the commutation period, does not reach the boiling voltage Vb, and no arc discharge occurs.
 以上が実施の形態に係る直流遮断器2の動作である。
 この直流遮断器2によれば、アーク放電を発生させずに、半導体スイッチに転流させることが可能であるため、接点の消耗を低減でき、寿命を延ばすことができる。
The above is the operation of the DC circuit breaker 2 according to the embodiment.
According to the DC circuit breaker 2, since it is possible to commutate to the semiconductor switch without generating arc discharge, it is possible to reduce contact consumption and extend the life.
 加えて、アークにより発生する荷電粒子や金属蒸気が接点間に存在しないため、接点間の絶縁回復が早いという利点を有する。直流遮断器は、絶縁回復前に半導体スイッチをオフに切りかえると遮断が失敗するが、絶縁回復が早いため、半導体スイッチのターンオフのタイミングの制約が緩和される。 In addition, since there are no charged particles or metal vapor generated by the arc between the contacts, there is an advantage that the insulation recovery between the contacts is quick. The DC circuit breaker fails to shut off if the semiconductor switch is turned off before the insulation is recovered. However, since the insulation recovery is fast, the restriction on the turn-off timing of the semiconductor switch is relaxed.
 また直流遮断器2は、アーク放電が発生しないことから、主遮断器4の接点間の距離を短くできるというさらなる利点を有する。これにより、直流遮断器2を小型化できる。また可動接点の移動距離が短くて済むため、ピエゾ駆動も可能となり、この場合、より一層装置を小型化できる。 Also, the DC circuit breaker 2 has the further advantage that the distance between the contacts of the main circuit breaker 4 can be shortened because arc discharge does not occur. Thereby, the direct-current circuit breaker 2 can be reduced in size. Further, since the moving distance of the movable contact is short, piezo driving is possible, and in this case, the device can be further downsized.
 また、放電にともないガスあるいは真空内に放出される金属粒子を著しく低減できるため、汚染を防止できる。飛散する金属粒子を低減することにより、図1(e)に示すシールド922を不要とすることも可能であり、この場合、直流遮断器2のサイズおよびコストを下げることが可能である。 Moreover, since the metal particles released into the gas or vacuum accompanying the discharge can be significantly reduced, contamination can be prevented. By reducing the scattered metal particles, the shield 922 shown in FIG. 1 (e) can be eliminated, and in this case, the size and cost of the DC breaker 2 can be reduced.
 また、アーク放電が発生しないことにより、大気中での遮断も選択肢として取り得る。この場合には真空が不要となるため、装置を大幅に低コスト化できる。 Also, since arc discharge does not occur, interruption in the atmosphere can be taken as an option. In this case, since a vacuum is not required, the cost of the apparatus can be greatly reduced.
 続いて、直流遮断器2においてアークレス転流を実現するためのアプローチを、いくつかの実施例を参照して説明する。 Subsequently, an approach for realizing arcless commutation in the DC circuit breaker 2 will be described with reference to some examples.
(第1のアプローチ)
 図5(a)は、第1実施例に係る直流遮断器2aの回路図である。半導体スイッチ8aは、並列に接続された複数のトランジスタ(たとえばMOSFET)M1,M2を含んでもよい。トランジスタの個数は特に限定されず、アークレス転流の条件を満たすように選べばよいが、本発明者らが検討したところ、4個MOSFETの並列接続により図4(b)に示すようにアークレス転流が確認され、また2個のMOSFETの並列接続においても、アークレス転流が確認された。なお図5(a)では、ボディダイオード(還流ダイオード)は省略している。
(First approach)
FIG. 5A is a circuit diagram of the DC circuit breaker 2a according to the first embodiment. The semiconductor switch 8a may include a plurality of transistors (for example, MOSFETs) M1 and M2 connected in parallel. The number of transistors is not particularly limited, and may be selected so as to satisfy the conditions of arcless commutation. However, as a result of studies by the present inventors, arcless commutation is achieved by connecting four MOSFETs in parallel as shown in FIG. An arcless commutation was also confirmed in the parallel connection of two MOSFETs. In FIG. 5A, the body diode (freewheeling diode) is omitted.
 複数のトランジスタを並列接続することにより、半導体スイッチ8aのオン抵抗RONを小さくすることができる。これにより、より小さい端子間電圧Vcにおいて、電流iを半導体スイッチ8aに転流することが可能となる。 By parallel connecting a plurality of transistors, it is possible to reduce the on-resistance R ON of the semiconductor switch 8a. As a result, the current i can be commutated to the semiconductor switch 8a at a smaller inter-terminal voltage Vc.
(第2のアプローチ)
 式(3)あるいは(4)を参照すると、寄生インダクタンスLおよびLを小さくすることにより、左辺を小さくでき、したがってアークレス転流しやすくなる。図5(b)は、第2実施例に係る直流遮断器2bの断面図である。主遮断器4bは一般的な電気接点であり、固定接点902、可動接点904、ベローズ906などを備える。直流遮断器2bでは、半導体スイッチ8bを含む市販のパワーモジュールが、主遮断器4のケーシング(筐体)に密着している。これにより配線長を短くでき、インダクタンスや寄生抵抗を下げることができる。
(Second approach)
Referring to Equation (3) or (4), by reducing the parasitic inductances L and L S , the left side can be reduced, and therefore arcless commutation is facilitated. FIG.5 (b) is sectional drawing of the direct-current circuit breaker 2b which concerns on 2nd Example. The main circuit breaker 4b is a general electric contact, and includes a fixed contact 902, a movable contact 904, a bellows 906, and the like. In the DC circuit breaker 2b, a commercially available power module including the semiconductor switch 8b is in close contact with the casing (housing) of the main circuit breaker 4. As a result, the wiring length can be shortened, and the inductance and parasitic resistance can be reduced.
 図5(a)のように複数のトランジスタを並列接続する場合、主遮断器4bの筐体に複数のパワーモジュールを取り付ければよい。 When a plurality of transistors are connected in parallel as shown in FIG. 5A, a plurality of power modules may be attached to the casing of the main circuit breaker 4b.
 上述したように、主遮断器4を従来に比べて小型化できるため、主遮断器4と半導体スイッチ8を同一パッケージあるいは同一モジュール内に内蔵してもよい。これによりさらにインダクタンスを下げることができる。 As described above, since the main circuit breaker 4 can be reduced in size as compared with the prior art, the main circuit breaker 4 and the semiconductor switch 8 may be incorporated in the same package or the same module. As a result, the inductance can be further reduced.
(第3のアプローチ)
 図5(c)は、第3実施例に係る直流遮断器2cの回路図である。この直流遮断器2cは、主経路6ならびに副経路10に対して並列に設けられたスナバコンデンサ14をさらに備える。
(Third approach)
FIG. 5C is a circuit diagram of the DC circuit breaker 2c according to the third embodiment. The DC circuit breaker 2 c further includes a snubber capacitor 14 provided in parallel with the main path 6 and the sub path 10.
 スナバコンデンサ14により接点間電圧Vcの跳ね上がりを抑制できるため、溶融ブリッジからアーク放電に転移しにくくできる。 Since the jump of the contact voltage Vc can be suppressed by the snubber capacitor 14, it is difficult to make transition from the melting bridge to the arc discharge.
(第4のアプローチ)
 図5(d)は、第4実施例に係る直流遮断器2dの回路図である。この直流遮断器2dにおいて、主遮断器4dは、直列に接続された複数の電気接点4_1~4_2を含む。主遮断器4d全体の接点電圧Vcは、個々の電気接点の接点電圧Vc1~Vc2の総和となる。したがって、個々の電気接点4_1~4_2の両端間電圧Vc1,Vc2が低い状態で、半導体スイッチ8を導通させることができ、電気接点4_1,4_2においてアーク放電が発生しにくくなる。なお、電気接点の個数は特に限定されない。
(Fourth approach)
FIG. 5D is a circuit diagram of the DC circuit breaker 2d according to the fourth embodiment. In the DC circuit breaker 2d, the main circuit breaker 4d includes a plurality of electrical contacts 4_1 to 4_2 connected in series. The contact voltage Vc of the entire main circuit breaker 4d is the sum of the contact voltages Vc1 to Vc2 of the individual electrical contacts. Therefore, the semiconductor switch 8 can be turned on while the voltage Vc1 and Vc2 between both ends of each of the electrical contacts 4_1 to 4_2 is low, and arc discharge hardly occurs at the electrical contacts 4_1 and 4_2. The number of electrical contacts is not particularly limited.
 図6は、第4実施例に係る直流遮断器2dの断面図である。この直流遮断器2dの等価回路図は、図5(d)に示されている。直流遮断器2dは、2個の固定電極20_1,20_2と、2個の可動電極22_1,22_2を備える。固定電極20_1と可動電極22_1のペアは、図5(d)の電気接点4_1に相当し、ギャップ24を隔てて対向して配置される。同様に固定電極20_2と可動電極22_2のペアは、図5(d)の電気接点4_2に相当し、ギャップ24を隔てて対向して配置される。2つの可動電極22_1,22_2は一体に形成されてもよい。 FIG. 6 is a cross-sectional view of the DC circuit breaker 2d according to the fourth embodiment. An equivalent circuit diagram of the DC circuit breaker 2d is shown in FIG. The DC circuit breaker 2d includes two fixed electrodes 20_1 and 20_2 and two movable electrodes 22_1 and 22_2. A pair of the fixed electrode 20_1 and the movable electrode 22_1 corresponds to the electrical contact 4_1 in FIG. 5D, and is disposed to face each other with a gap 24 therebetween. Similarly, the pair of the fixed electrode 20_2 and the movable electrode 22_2 corresponds to the electrical contact 4_2 in FIG. 5D, and is disposed to face each other with a gap 24 therebetween. The two movable electrodes 22_1 and 22_2 may be integrally formed.
 2つの可動電極22_1,22_2は、ピエゾアクチュエータ26に取り付けられている。ピエゾアクチュエータ26を駆動することにより、ギャップ24の距離を変化させ、対向する固定電極20と可動電極22を着脱可能となっている。 The two movable electrodes 22_1 and 22_2 are attached to the piezo actuator 26. By driving the piezo actuator 26, the distance of the gap 24 is changed, and the fixed electrode 20 and the movable electrode 22 facing each other can be attached and detached.
 図7(a)は、2つの接点を有する図6の直流遮断器2dの動作波形図であり、図7(b)は、1つの接点を有する直流遮断器の動作波形図である。図8は、さまざまな接点材料の軟化・溶融・沸騰電圧を示すテーブルである。 7A is an operation waveform diagram of the DC circuit breaker 2d of FIG. 6 having two contacts, and FIG. 7B is an operation waveform diagram of the DC circuit breaker having one contact. FIG. 8 is a table showing the softening / melting / boiling voltage of various contact materials.
 銅の沸騰電圧は0.8Vである。図7(b)に示すように1接点の場合、接点電圧が1V弱でアーク放電が発生し、接点電圧は20V(図では振り切れている)にも達する。一方、接点数を2に増やすと、図7(a)に示すように接点電圧が1.5Vを超えても沸騰せず、アーク放電が発生しないことがわかる。このように接点数の増加によりアーク放電を抑制できる。 The boiling voltage of copper is 0.8V. As shown in FIG. 7B, in the case of a single contact, arc discharge occurs when the contact voltage is less than 1V, and the contact voltage reaches 20V (in FIG. 7B). On the other hand, when the number of contacts is increased to 2, as shown in FIG. 7A, it can be seen that even if the contact voltage exceeds 1.5V, it does not boil and arc discharge does not occur. Thus, arc discharge can be suppressed by increasing the number of contacts.
(第5のアプローチ)
 第5のアプローチは、沸騰電圧Vbを高くすることであり、これには、主遮断器4の接点に高融点材料を選択することが有効であり、Ag(銀)、Ni(ニッケル)、W(タングステン)あるいはそれらの合金が有用である。たとえば融点に関して、Agは961℃、Niは1455℃、Wは3382℃である。また、それらの溶融電圧Vmは、Agは0.38~0.64V、Niは0.55~1.1V,Ag-W合金で0.6~1.0Vである(P. P. Koren, IEEE Parts, Hybrids&Packaging, vol. PHP-11, no.1 pp.4-10 (1975))。
(Fifth approach)
The fifth approach is to increase the boiling voltage Vb. For this purpose, it is effective to select a high melting point material for the contact of the main circuit breaker 4, and Ag (silver), Ni (nickel), W (Tungsten) or alloys thereof are useful. For example, regarding the melting point, Ag is 961 ° C., Ni is 1455 ° C., and W is 3382 ° C. Their melting voltage Vm is 0.38 to 0.64 V for Ag, 0.55 to 1.1 V for Ni, and 0.6 to 1.0 V for Ag—W alloy (PP Koren, IEEE Parts, Hybrids & Packaging, vol. PHP-11, no.1 pp.4-10 (1975)).
 接点の電極材料として、沸騰電圧Vbの高い材料を用いることに替えて、以下のアプローチをとることも可能である。
 図9(a)、(b)は、電極材料としてC(炭素)を用いた電極構造の平面図および断面図である。Cuの電極プレート30の表面上に、炭素膜32(厚み200μm)がねじ34を利用して密着して固定されている。図8に示すように、炭素は金属ではないので軟化・溶融・沸騰電圧は定義できないが、3642℃の昇華温度を有する。
Instead of using a material having a high boiling voltage Vb as the electrode material of the contact, the following approach can be taken.
9A and 9B are a plan view and a cross-sectional view of an electrode structure using C (carbon) as an electrode material. On the surface of the Cu electrode plate 30, a carbon film 32 (thickness: 200 μm) is fixed in close contact using a screw 34. As shown in FIG. 8, since carbon is not a metal, the softening / melting / boiling voltage cannot be defined, but has a sublimation temperature of 3642 ° C.
 図10は、図8の電極構造を備える直流遮断器によるアークレス転流の動作波形図である。図10に示すように、接点電圧が7.5V程度まで上昇した後に転流が完了している。なおSi-MOSFETをターンオンさせない場合は,接点間電圧9.0V程度でアーク放電が発生し、30Vまで上昇した。炭素を電極として使用したことにより、タングステン以上の高い接点電圧を得ることができる。 FIG. 10 is an operation waveform diagram of arcless commutation by a DC circuit breaker having the electrode structure of FIG. As shown in FIG. 10, the commutation is completed after the contact voltage rises to about 7.5V. When the Si-MOSFET was not turned on, arc discharge occurred at a contact voltage of about 9.0 V, and the voltage rose to 30 V. By using carbon as an electrode, a contact voltage higher than that of tungsten can be obtained.
 図10に示す接点開極時刻0で、接点電圧が2V程度発生しており、これは他の波形図より大きくなっている。これは、通常の接点抵抗が1mΩ以下であるのに対して、図9の電極構造は13mΩ(2V/150A)もの接点抵抗を有することに起因しており、このような大きな接触抵抗は、電極プレート30と炭素膜32の密着性の悪さが要因のひとつである。 At contact opening time 0 shown in FIG. 10, a contact voltage of about 2V is generated, which is larger than the other waveform diagrams. This is because the normal contact resistance is 1 mΩ or less, whereas the electrode structure of FIG. 9 has a contact resistance of 13 mΩ (2 V / 150 A). The poor adhesion between the plate 30 and the carbon film 32 is one of the factors.
 言い換えれば、電極プレート30と炭素膜32の密着性を高めれば、接点抵抗を十分に小さくできる。そこでプラズマCVD法によって、電極プレート30の表面に炭素膜またはグラフェン膜を形成してもよいし、加熱プレス成形法によって、炭素膜またはグラフェン膜を形成してもよい。これにより、電極プレート30と炭素膜32の密着性を高めて接点抵抗を小さくでき、接点開極前の接点電圧を小さくできる。 In other words, if the adhesion between the electrode plate 30 and the carbon film 32 is increased, the contact resistance can be sufficiently reduced. Therefore, a carbon film or a graphene film may be formed on the surface of the electrode plate 30 by a plasma CVD method, or a carbon film or a graphene film may be formed by a hot press molding method. As a result, the adhesion between the electrode plate 30 and the carbon film 32 can be increased, the contact resistance can be reduced, and the contact voltage before contact opening can be reduced.
(その他の実施例)
 半導体スイッチ8であるMOSFETをターンオフしてサージアブソーバ(アレスタ、バリスタ)でエネルギーを吸収した遮断後には、MOSFETは回路電圧に耐えなければならない。大電流用のMOSFETの定格電圧は、1200V、3300Vなどであり、回路電圧はMOSFETの定格以下とすることが求められる。回路電圧が大きな用途に使用したい場合、MOSFETを複数、直列に接続すればよい。
(Other examples)
After the MOSFET which is the semiconductor switch 8 is turned off and the energy is absorbed by the surge absorber (arrester, varistor), the MOSFET must withstand the circuit voltage. The rated voltage of the MOSFET for large current is 1200 V, 3300 V, etc., and the circuit voltage is required to be lower than the rated voltage of the MOSFET. When it is desired to use for an application with a large circuit voltage, a plurality of MOSFETs may be connected in series.
 図5(e)は、第5実施例に係る直流遮断器2eの回路図である。この直流遮断器2eにおいて、副経路10には、逆直列接続された一対の半導体スイッチ8_1,8_2が設けられる。この直流遮断器2eは、双方向の直流系統、あるいは交流系統の遮断にも利用できる。 FIG. 5E is a circuit diagram of the DC circuit breaker 2e according to the fifth embodiment. In the DC circuit breaker 2e, the sub path 10 is provided with a pair of semiconductor switches 8_1 and 8_2 connected in reverse series. This DC circuit breaker 2e can also be used for bidirectional DC system or AC system interruption.
 なお、図5(a)~(e)に示したさまざまな回路構成および上述のいくつかのアプローチは、任意に組み合わせることが可能である。 It should be noted that the various circuit configurations shown in FIGS. 5A to 5E and the above-mentioned several approaches can be arbitrarily combined.
 実施の形態にもとづき、具体的な語句を用いて本発明を説明したが、実施の形態は、本発明の原理、応用を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が認められる。 Although the present invention has been described using specific terms based on the embodiments, the embodiments only illustrate the principles and applications of the present invention, and the embodiments are defined in the claims. Many variations and modifications of the arrangement are permitted without departing from the spirit of the present invention.
2…直流遮断器、4…主遮断器、6…主経路、8…半導体スイッチ、10…副経路、12…サージアブソーバ。 2 ... DC circuit breaker, 4 ... main circuit breaker, 6 ... main path, 8 ... semiconductor switch, 10 ... sub-path, 12 ... surge absorber.
 本発明は、電力伝送に利用できる。 The present invention can be used for power transmission.

Claims (11)

  1.  直流遮断器であって、
     主経路上に設けられた主遮断器と、
     前記主経路に対して並列な副経路上に設けられた半導体スイッチと、
     を備え、
     前記直流遮断器は、前記主遮断器の接点開極時において、アーク放電が開始する前に前記半導体スイッチに転流するように構成されていることを特徴とする直流遮断器。
    A DC circuit breaker,
    A main circuit breaker provided on the main path;
    A semiconductor switch provided on a sub-path parallel to the main path;
    With
    The DC circuit breaker is configured to commutate to the semiconductor switch before arc discharge starts when the contact of the main circuit breaker is opened.
  2.  直流遮断器であって、
     主経路上に設けられた主遮断器と、
     前記主経路に対して並列な副経路上に設けられた半導体スイッチと、
     を備え、
     前記直流遮断器は、前記主遮断器の接点開極時において、前記主遮断器の両端間に生ずる接点間電圧Vcが沸騰電圧Vbに達する前に前記半導体スイッチがオンするように構成されていることを特徴とする直流遮断器。
    A DC circuit breaker,
    A main circuit breaker provided on the main path;
    A semiconductor switch provided on a sub-path parallel to the main path;
    With
    The DC circuit breaker is configured such that when the contact of the main circuit breaker is opened, the semiconductor switch is turned on before the contact voltage Vc generated between both ends of the main circuit breaker reaches the boiling voltage Vb. DC breaker characterized by that.
  3.  前記直流遮断器は、前記主遮断器の両端間に生ずる接点間電圧Vcが溶融電圧Vmに到達する前に前記半導体スイッチがオンするように構成されることを特徴とする請求項1または2に記載の直流遮断器。 The said DC circuit breaker is comprised so that the said semiconductor switch may be turned on before the voltage Vc between contacts generated between the both ends of the said main circuit breaker reaches the fusion voltage Vm. The DC circuit breaker described.
  4.  前記半導体スイッチは、並列に接続された複数のSiC MOSFETを含むことを特徴とする請求項1から3のいずれかに記載の直流遮断器。 4. The DC circuit breaker according to claim 1, wherein the semiconductor switch includes a plurality of SiC MOSFETs connected in parallel.
  5.  前記主遮断器を含む主経路の直流インダクタンスをL,前記副経路の直流インダクタンスをL、前記半導体スイッチのオン抵抗をRON、前記半導体スイッチに流れる電流をIとするとき、式(1)が成り立つよう構成されることを特徴とする請求項1から4のいずれかに記載の直流遮断器。
     (L+L)・dI/dt+RON・I<Vb   …(1)
    When the DC inductance of the main path including the main circuit breaker is L, the DC inductance of the sub path is L S , the ON resistance of the semiconductor switch is R ON , and the current flowing through the semiconductor switch is I, the formula (1) The DC circuit breaker according to any one of claims 1 to 4, wherein:
    (L + L S ) · dI / dt + R ON · I <Vb (1)
  6.  前記半導体スイッチが前記主遮断器のケーシングに密着しており、あるいは同一モジュール内に内蔵されることを特徴とする請求項1から5のいずれかに記載の直流遮断器。 The DC circuit breaker according to any one of claims 1 to 5, wherein the semiconductor switch is in close contact with the casing of the main circuit breaker or is built in the same module.
  7.  前記主遮断器ならびに前記副経路に対して並列に設けられたスナバコンデンサをさらに備えることを特徴とする請求項1から6のいずれかに記載の直流遮断器。 The DC circuit breaker according to any one of claims 1 to 6, further comprising a snubber capacitor provided in parallel to the main circuit breaker and the sub route.
  8.  前記主遮断器は直列接続された複数の電気接点を含むことを特徴とする請求項1から7のいずれかに記載の直流遮断器。 The DC circuit breaker according to any one of claims 1 to 7, wherein the main circuit breaker includes a plurality of electrical contacts connected in series.
  9.  前記副経路には、逆直列接続された一対の半導体スイッチが設けられることを特徴とする請求項1から8のいずれかに記載の直流遮断器。 The DC circuit breaker according to any one of claims 1 to 8, wherein the sub-path is provided with a pair of semiconductor switches connected in reverse series.
  10.  前記主遮断器の電気接点は、Ag(銀)、Ni(ニッケル)、W(タングステン)あるいはそれらの合金であることを特徴とする請求項1から9のいずれかに記載の直流遮断器。 10. The DC circuit breaker according to claim 1, wherein the electrical contact of the main circuit breaker is Ag (silver), Ni (nickel), W (tungsten) or an alloy thereof.
  11.  前記主遮断器の電気接点は、金属と、前記金属の上に設けられた炭素膜と、を含むことを特徴とする請求項1から9のいずれかに記載の直流遮断器。 10. The DC circuit breaker according to claim 1, wherein the electrical contact of the main circuit breaker includes a metal and a carbon film provided on the metal.
PCT/JP2017/004200 2016-03-02 2017-02-06 Direct current circuit breaker WO2017150079A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018502965A JPWO2017150079A1 (en) 2016-03-02 2017-02-06 DC circuit breaker

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-039993 2016-03-02
JP2016039993 2016-03-02

Publications (1)

Publication Number Publication Date
WO2017150079A1 true WO2017150079A1 (en) 2017-09-08

Family

ID=59743728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004200 WO2017150079A1 (en) 2016-03-02 2017-02-06 Direct current circuit breaker

Country Status (2)

Country Link
JP (1) JPWO2017150079A1 (en)
WO (1) WO2017150079A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5676129A (en) * 1979-11-26 1981-06-23 Tokyo Shibaura Electric Co Breaker
JPS57168425A (en) * 1981-04-09 1982-10-16 Tokyo Shibaura Electric Co Dc switching device
JPS5838420A (en) * 1981-08-31 1983-03-05 株式会社東芝 Dc breaker
JP2000285773A (en) * 1999-03-31 2000-10-13 Toshiba Corp Vacuum switch
WO2005041231A1 (en) * 2003-10-28 2005-05-06 Noboru Wakatsuki Electrical contact opening/closing device and power consumption suppressing circuit
WO2011034140A1 (en) * 2009-09-16 2011-03-24 株式会社ワイ・ワイ・エル Switch
JP2014038775A (en) * 2012-08-17 2014-02-27 Fuji Electric Co Ltd Circuit breaking switch for dc circuit
JP2014120364A (en) * 2012-12-18 2014-06-30 Fuji Electric Co Ltd Circuit breaker switch for dc circuit
US20150222111A1 (en) * 2012-08-27 2015-08-06 Abb Technology Ltd Apparatus arranged to break an electrical current

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5676129A (en) * 1979-11-26 1981-06-23 Tokyo Shibaura Electric Co Breaker
JPS57168425A (en) * 1981-04-09 1982-10-16 Tokyo Shibaura Electric Co Dc switching device
JPS5838420A (en) * 1981-08-31 1983-03-05 株式会社東芝 Dc breaker
JP2000285773A (en) * 1999-03-31 2000-10-13 Toshiba Corp Vacuum switch
WO2005041231A1 (en) * 2003-10-28 2005-05-06 Noboru Wakatsuki Electrical contact opening/closing device and power consumption suppressing circuit
WO2011034140A1 (en) * 2009-09-16 2011-03-24 株式会社ワイ・ワイ・エル Switch
JP2014038775A (en) * 2012-08-17 2014-02-27 Fuji Electric Co Ltd Circuit breaking switch for dc circuit
US20150222111A1 (en) * 2012-08-27 2015-08-06 Abb Technology Ltd Apparatus arranged to break an electrical current
JP2014120364A (en) * 2012-12-18 2014-06-30 Fuji Electric Co Ltd Circuit breaker switch for dc circuit

Also Published As

Publication number Publication date
JPWO2017150079A1 (en) 2018-12-20

Similar Documents

Publication Publication Date Title
JP6683716B2 (en) DC circuit breaker with counter current generation
US8503138B2 (en) Hybrid circuit breaker
Agostini et al. 1MW bi-directional DC solid state circuit breaker based on air cooled reverse blocking-IGCT
US6952335B2 (en) Solid-state DC circuit breaker
Rodrigues et al. Solid state circuit breakers for shipboard distribution systems
CN106663557B (en) For interrupting the separating switch of DC current
US20150131189A1 (en) Composite high voltage dc circuit breaker
US11295919B2 (en) Circuit-breaker with reduced breakdown voltage requirement
US20150116881A1 (en) High voltage dc circuit breaker apparatus
Peng et al. Development of medium voltage solid-state fault isolation devices for ultra-fast protection of distribution systems
CN109950866B (en) Current breaker
CN106356817A (en) Bridge type bidirectional non-arc direct-current circuit breaker
Yasuoka et al. Arcless commutation of a hybrid DC breaker by contact voltage of molten metal bridge
JP2017126544A (en) Non-arc current switching device
Yasuoka et al. A hybrid DC circuit breaker with vacuum contact and SiC-MOSFET for arcless commutation
US20220293354A1 (en) Hybrid circuit breaker with improved current capacity per device size
JP3771135B2 (en) Semiconductor switch
JP2018195565A (en) Direct current shut-down device
WO2017150079A1 (en) Direct current circuit breaker
EP3057232A1 (en) Circuit breaker device
JP5852745B2 (en) Power converter
JP6884186B2 (en) Bidirectional switch
Yasuoka et al. Arcless current interruption of dc 150a using a hybrid dc circuit breaker consisting of sic-mosfet and metal contacts
JP4394301B2 (en) Current limiting device
Kubo et al. Hybrid DC Circuit Breaker Using a SiC‐Semiconductor Module at 1 kA Interruption

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018502965

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759550

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17759550

Country of ref document: EP

Kind code of ref document: A1